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Abstract. Convolutional neural networks trained on publicly available
medical imaging datasets (source domain) rarely generalise to different
scanners or acquisition protocols (target domain). This motivates the
active field of domain adaptation. While some approaches to the problem
require labelled data from the target domain, others adopt an unsuper-
vised approach to domain adaptation (UDA). Evaluating UDA methods
consists of measuring the model’s ability to generalise to unseen data
in the target domain. In this work, we argue that this is not as useful
as adapting to the test set directly. We therefore propose an evaluation
framework where we perform test-time UDA on each subject separately.
We show that models adapted to a specific target subject from the target
domain outperform a domain adaptation method which has seen more
data of the target domain but not this specific target subject. This result
supports the thesis that unsupervised domain adaptation should be used
at test-time, even if only using a single target-domain subject.
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1 Introduction

Recent years have seen huge progress in performance in brain MRI segmenta-
tion, classification and synthesis largely thanks to the application of convolu-
tional neural networks to these problems. The organisation of challenges such
as BRATS [12] and the MICCAI 2017 White Matter Hyperintensity Challenge
[10] have allowed the community to benchmark their segmentation algorithms
on research data. In these cases, training data is usually preprocessed following a
consistent protocol with techniques such as skull stripping, bias field correction,
histogram normalisation and co-registration. Efforts are often put in place to
ensure a certain degree of standardisation across the centres providing data, in
terms of scanners parameters such as field strength, manufacturer, echo time,
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relaxation time and contrast agent. In addition, individuals generally have simi-
lar pre-clinical conditions and pathological presentations. When applied to data
from clinical practice that presents much more heterogeneous acquisition con-
ditions, the performance of algorithms trained on challenge data degrades. Per-
formance can improve if algorithms are fine-tuned on labelled data in the target
domain, but these can be expensive to acquire and rely on relative homogeneity
of acquisition parameters in the target domain. If no labels are available then
unsupervised domain adaptation may be used, which has seen growing interest
in recent years e.g. [9,14].

Domain is not always a clear binary label. Scans of a particular MR modality
(e.g. T1-weighted) may come from the same scanner in the same hospital but
may use different acquisition parameters. Variability can be so large that each
image can almost be considered its own domain.

When evaluating domain adaptation methods for segmentation, there is often
a training set, a validation set and a test set for both source and target domains.
Methods are judged on their ability to generalise from seen data in the source
domain to unseen data in the target domain. In this work we argue for a different
evaluation criterion, namely how well a model performs on the data it adapts to.
We call this “test-time unsupervised domain adaptation”. When this test-time
adaptation is performed on an individual subject we call it “one-shot unsu-
pervised domain adaptation”. We present a domain adaptation method which
leverages a combination of adversarial learning and consistency under augmen-
tation to work in this one-shot case. We apply this methodology on multiple
sclerosis lesion segmentation but it is designed to be applicable to other tasks in
medical imaging.

Related Work: Our work considers the use of existing unsupervised domain
adaptation methods when only a single unlabelled sample from the target domain
is available. In this work we use the same data, pre-processing and segmentation
task as in [18], where the authors tackle one-shot supervised domain adaptation,
adapting to a target domain using a single labelled subject.

It is worth mentioning the framework proposed by Zhao et al. [19] and high-
lighting the difference to this work. The authors consider the variability between
single-modality brain MRIs to be quantifiable by an additive intensity transform
and a spatial transform to a brain atlas. They use this technique to create an
entire labelled dataset from a single brain with an associated anatomical par-
cellation (hence the term “one-shot”). While the intensity transform tackles the
variation in acquisition parameters, the spatial transform covers variations in
anatomy. Although this and follow-up work produce realistic training data in
the context of brain parcellation, such scheme cannot be trivially extended to
application to pathologies in which the variability in presentation, location and
extent is far greater. This is especially true in lesion segmentation, where a lesion
prior cannot be produced from a non-linear deformations of an atlas.

Neural style-transfer methods were recently applied for unsupervised domain
adaptation of cardiac MRI in [11]. The style of the target domain is matched
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to that of a single subject in the source domain by simultaneously minimising
a style loss lstyle(ŷ, y) and a content loss lcontent(ŷ, x) where ŷ is the generated
style-transferred image, x is the image from the target domain and y is the image
from the source domain. This method relies on finding an image in the source
domain which most closely resembles the target image based on a Wasserstein
distance metric. This method is similar to ours in that adaptation is performed
on each individual test subject as its own optimisation problem.

Recent advances in self-supervised learning have led to large improvements
in semi-supervised learning. Methods such as [2] use self-supervised tasks such as
solving jigsaw puzzles to perform domain adaptation. Promoting invariance in
networks outputs under data augmentation is another self-supervised task which
was shown to work well for domain adaptation in [4] and which we refer to as
Mean Teacher. It was adapted for use in medical image segmentation in [14].
In [13] the authors showed improvements over Mean Teacher using a simpler
paired consistency method. They used paired data as a form of “ground-truth
augmentation”. When paired data is not available, which is most common in
practice, small adjustments to this method can lead to substantial improvements.
The method of [13] was chosen to demonstrate the value of test-time UDA, as it
reported better results than domain adversarial learning and Mean Teacher on
a related task. However, note that our domain adaptation methodology is not
bound to a particular method.

2 Domain Adversarial Learning and Paired Consistency

We adapt the method for domain adaptation described in [13] which con-
sists of domain adversarial learning and consistency training. In domain adver-
sarial training we seek to find a feature representation φθ(x) which contains
as little information about d - the domain of x - as possible and the most
information about the label y. We do so by including a domain discrimi-
nator Dγ(x) which predicts a domain d̂ and is trained by minimising the
binary cross-entropy between this prediction and the ground-truth domain d,
Ladv = lbce(Dγ(φθ(x)), d). We use the gradient reversal layer from [5] to guaran-
tee that the network weights θ change in the direction which minimises the super-
vised loss Lsup and maximises the adversarial loss Ladv where Lsup = l(M(x), ys)
(we use the dice loss for l).

Consistency training is a simple semi-supervised learning method which
works by enforcing invariance to data augmentation. A model M is trained
to produce a prediction ŷs on some source data xs which has an associated label
ys using a regular supervised loss Lsup. An image from the target domain xT is
passed to the same model M to obtain ŷT . The same image is passed through
the model after augmentation g(xT ) (details about the choice of g in Sect. 3) to
produce ŷaug

T . The paired consistency loss Lpc aims at minimising the difference
between ŷT and ŷaug

T . Following the guidance from [14] and [13], the soft dice
is used as Lpc, defined as Lpc(ŷ, ŷaug) =

∑N
i=1 ŷiŷ

aug
i /(

∑N
i=1 ŷi +

∑N
i=1 ŷaug

i ).
By enforcing predictions to be invariant to some noise of perturbation δ,
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y(x) = y(x + δ), we encourage the decision boundary of our classifier to fall
in regions of low density.

The right hand side of Fig. 1 (right) depicts the benefits of domain adversar-
ial learning. In frame a) we see a source and target domain represented by green
and red ovals respectively. They contain representations of foreground and back-
ground pixels shown as grey crosses and red dots. Frame b) shows what happens
when domain adversarial learning is used. The domains become indistinguishable
which makes the ovals overlap. However, when the decision boundary is drawn to
separate the two classes it is done only by looking at the source domain. In frame
c) we introduce paired consistency. The unlabelled points are near the labelled
ones, they will be assigned the label of their nearest cluster which allows the
boundary to be redrawn in an area of low density. We include some t-SNE plots
of our learned features in Figure 3 of the Supplementary Material which clearly
show the positive effect of domain adaptation to the separability of lesion and
background across both domains.

The method proposed in [13] achieved consistency training using what they
denote as “ground-truth augmentation”. This means two registered scans of the
same patient using different acquisition parameters. In this work, we avoid this
requirement by providing stronger augmentation and dropping the third out-
put of their domain discriminator which sought to find a feature space which
contained no information about whether an image was source, target or target
augmented. Note that this minor change significantly reduces the data require-
ments of the model.

Implementation Details. We use a simple 2D U-Net with five levels as the
backbone of our model. Each encoding block has two 2D convolutions with kernel
sizes of 3×3, a stride of 1, and padding of 1 (except the first which has a padding
of 2 and kernel size 5). The blocks have gradually increasing number of filters: 64,
96, 128, 256, 512. We use instance norm and leaky ReLU after each convolution
in each block as in [7]. We use max pooling between each encoder block and
bilinear upsampling between each decoder block and the standard concatenation
of feature vectors from the same depth.

For the domain discriminator we use a small VGG-style convolutional neural
network with four convolutions of kernel size 3 and stride of 2 each followed
by a batch norm operation and three fully connected layers of size 28800, 256
and 128 respectively with 0.5 dropout in between. We follow the suggestion
from [9] to feed in a concatenated vector of multi-depth features as input to
the discriminator. Specifically, we take the activations from each depth of the
decoder (excluding the center of the U-Net) and use bilinear interpolation to
make them the same shape as the penultimate depth in the spatial dimension.
We then concatenate on the channels dimension. All code is written in PyTorch
and will be made available at the time of publication.
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Fig. 1. Left: Our domain adaptation method uses a paired consistency loss Lpc which
encourages predictions from the target image xT to be invariant to some augmentation
g. The backbone is a single 2D U-Net (parameters are shared) with features from each
depth being interpolated bilinearly, concatenated and fed to a domain discriminator
which uses an adversarial loss Ladv to maximise domain confusion. Right: In a) we
depict representations of pixels in some feature space, the green circle is source and red
target with crosses and circles depicting foreground and background. b) shows what
happens when we introduce an adversarial loss, the feature spaces are shifted such that
they are indistinguishable from the source domain but the decision boundary is drawn
with only souce data. In c) we show the effect of the PC loss in moving the decision
boundary to an area of low-density (Color figure online)

3 Experiments

In the proposed test-time UDA, an unusual approach to train/val/test splits
is taken. In fact, part of the data for which we train the paired consistency
component of our model M is the one on which the labelling quality is tested.
Please note that the labels of the test set are never used during training. In
order to prevent data leakage, all hyperparameters tuning strategies and model
selection steps were performed on a completely separate dataset (results not
shown). Each UDA run was trained for exactly 15,000 iterations using a batch
size of 20 with the exception of the supervised baseline which had a validation
subject to allow for model selection. We used the Adam optimiser with a learning
rate of 1 × 10−3 with no learning rate policy. A separate Adam optimiser with
learning rate 1×10−4 was used for the discriminator. In order to further validate
our model we submit results to the online validation server for the ISBI 2015
challenge. We provide results for the first timepoint of each of the test subjects
in the supplementary material.

Augmentation. In [14] the authors used random affine transforms (rotating,
scaling, shearing and translating) as well as random elastic deformations where
an affine grid is warped and applied to the image. Their method does augmen-
tation on the output of a neural network but this output does not need to be
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differentiated. We use all these augmentations but exclude elastic deformation,
as it is difficult to implement in a differentiable manner (a requirement of the
proposed method). Following the recommendations in [13] we use augmentation
which is realistic, valid and smooth. To this end, we also add bias field augmen-
tation [6] and k-space augmentation [15] as extra transformations, as they have
been shown to produce realistic variations in MRIs.

Data. Domain adaptation is here applied to multiple sclerosis lesion segmentation
as an exemplary task. We use as source domain data from two separate MICCAI
challenges on multiple sclerosis lesion segmentation MS2008 [17] and MS2016 [3].
Data from ISBI2015 [1] is used as target domain. The FLAIR sequences from each
of these datasets are skull-stripped (using HD-BET [8]), bias-field corrected using
the N4 algorithm and registered to MNI space as in [18].

3.1 Results

We present results from five different methods. First, there is a lower bound
provided by using a model trained on the source domain and applied to data
from the target domain, which we refer to as no adaptation. The highest expected
performance is provided by training a model on the target domain images and
labels, fine-tuned from a model trained on the source domain, which we refer
to as supervised. When we use paired consistency and adversarial learning to
domain adapt to a single subject on the target domain, this is denoted as One-
shot UDA. We compare this against a model which sees this and two more
subjects from the target domain, and refer to it as Test-time UDA. A comparison
was also made against a traditional approach to domain adaptation where the
model trains on target domain data which excludes the test subject; we refer
to this variant as Classic UDA. In Table 1 of the supplementary material we
show results for each of these methods evaluated on a variety of metrics. These
were chosen to match those in [1]. The LFPR is the lesion false positive rate and
LTPR is the lesion true positive rate which are implemented as in [17]. We follow
the recommendations of the MICCAI Grand Challenges, specifically the method
described in [16], to provide a single rank score comparing all methods. Note
that this ranking method provides a single summary metric that incorporates a
per-metric non-parametric statistical significance model (Fig. 2).

Table 1. Results on metrics described in [1]. The metrics are ranked using the scheme
from [16] to provide a rank score. The proposed test-time methods are labelled (ours).

Method Rank Dice Hausdorff LFPR LTPR PPV Sensitivity Vol Diff

Supervised 1.71 0.67 ± 0.1 37. ± 8. 0.52 ± 0.2 0.61 ± 0.2 0.67 ± 0.2 0.73 ± 0.2 0.44 ± 0.2

Test-time UDA (ours) 2.43 0.61 ± 0.2 48. ± 5. 0.54 ± 0.2 0.57 ± 0.2 0.54 ± 0.2 0.76 ± 0.09 0.72 ± 1.0

One-shot UDA (ours) 2.71 0.60 ± 0.2 47. ± 11 0.52 ± 0.2 0.51 ± 0.2 0.54 ± 0.2 0.76 ± 0.09 0.92 ± 2.0

Classic UDA 3.86 0.56 ± 0.1 47. ± 14 0.55 ± 0.2 0.58 ± 0.2 0.49 ± 0.2 0.73 ± 0.2 0.78 ± 0.5

No adaptation 4.29 0.57 ± 0.1 55. ± 7. 0.68 ± 0.08 0.55 ± 0.2 0.49 ± 0.2 0.76 ± 0.08 0.76 ± 0.7
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Fig. 2. Some qualitative results comparing no adaptation, classic unsupervised domain
adaptation, one-shot unsupervised domain adaptation, test-time unsupervised domain
adaptation, and the hypothetical gold-standard using supervised learning. Red denotes
the ground-truth annotation, true positives are shown in green, false negatives are in
yellow and false positives are in blue. (Color figure online)

4 Discussion

The results in Table 1 show a clear ordering with Supervised as the best perform-
ing method, as expected, followed by test-time UDA, one-shot UDA, classic UDA
and finally no adaptation. These results reveal that learning enough information
about a domain shift, i.e. Classic UDA, is not enough to get the best perfor-
mance on each test subject in the target domain. By domain-adapting to each
test subject, we are adapting to the subjects individual anatomical and patho-
logical presentation. It is also worth mentioning that our One-shot unsupervised
domain adaptation achieved a dice of 0.60 on the ISBI training set which is com-
parable to the 0.58 reported on the ISBI holdout set in [18] despite not using
a single label from ISBI. Results in Table 2 show the performance of Test-time
UDA against a Supervised baseline, Classic UDA and One-shot UDA. Classic
UDA outperformed One-shot, but test-time UDA was best of all. Future work
will include experiments on brain tumour segmentation and compare additional
UDA methods in the Classic, One-shot and Test-time settings.
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Table 2. Results from the ISBI 2015 holdout set hosted at https://smart-stats-tools.
org/lesion-challenge. We ran our three UDA methods on the first timepoint of each of
the 14 test subjects. Note that one of the limitations of this form of validation is the
low inter-rater disagreement reported in Carass et al. The same ranking scheme was
used as in the training set, however the symmetric distance was used instead of the
Hausdorff. The Classic UDA outperformed One-shot but test-time UDA was best of
all.

Method Rank Dice LFPR LTPR PPV TPR Volume difference

Valverde et al. (Supervised) 1.50 0.60 ± 0.2 0.22 ± 0.2 0.41 ± 0.2 0.73 ± 0.2 0.54 ± 0.2 5829 ± 7900

Test-time UDA (ours) 4.25 0.51 ± 0.2 0.53 ± 0.2 0.25 ± 0.2 0.59 ± 0.2 0.51 ± 0.2 6947 ± 8800

Classic UDA 4.42 0.49 ± 0.2 0.54 ± 0.2 0.28 ± 0.2 0.55 ± 0.2 0.48 ± 0.2 5784 ± 7500

One-shot UDA (ours) 4.50 0.48 ± 0.2 0.52 ± 0.3 0.28 ± 0.1 0.52 ± 0.3 0.51 ± 0.2 7009 ± 7700

5 Conclusion

Existing approaches to unsupervised domain adaptation in medical image seg-
mentation adapt to subjects in a target domain. The performance of these algo-
rithms is then measured based on how well they generalise to unseen subjects
in this target domain. When looking through scans in a hospital PACS sys-
tem there is a large amount of heterogeneity in acquisition parameters. As an
example, at our local hospital (anonymous), we found more than 1400 different
brain MRI sequences being used. We can thus think of each of these scans as
its own domain, which motivates what we call “test-time unsupervised domain
adaptation”. Note that this is not an algorithmic modification, but simply a
training and testing framework, where a domain adaptation algorithm is trained
and evaluated on the same target data. We perform experiments using a modern
domain adaptation technique which combines the benefits of domain adversarial
learning and consistency regularisation. Our experiments on multiple sclerosis
lesions suggest that using domain adaptation on a single subject can be more
effective than classic domain adaptation on more subjects.
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