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Abstract. Deep neural networks have achieved satisfactory perfor-
mance in piles of medical image analysis tasks. However the training
of deep neural network requires a large amount of samples with high-
quality annotations. In medical image segmentation, it is very labori-
ous and expensive to acquire precise pixel-level annotations. Aiming at
training deep segmentation models on datasets with probably corrupted
annotations, we propose a novel Meta Corrupted Pixels Mining (MCPM)
method based on a simple meta mask network. Our method is targeted
at automatically estimate a weighting map to evaluate the importance
of every pixel in the learning of segmentation network. The meta mask
network which regards the loss value map of the predicted segmenta-
tion results as input, is capable of identifying out corrupted layers and
allocating small weights to them. An alternative algorithm is adopted to
train the segmentation network and the meta mask network, simultane-
ously. Extensive experimental results on LIDC-IDRI and LiTS datasets
show that our method outperforms state-of-the-art approaches which are
devised for coping with corrupted annotations.

Keywords: Meta Corrupted Pixels Mining · Deep neural network ·
Medical image segmentation

1 Introduction

Recent years have witnessed the blooming of Deep Neural Networks (DNNs) in
medical image analysis, including image segmentation, image registration, image
reconstruction [14], and etc. Due to the powerful representation capability of
DNN, significant progress has been achieved in medical image analysis. However,
training a DNN usually requires a large number of high-quality labeled samples,
which is hard to acquire in various applications. For example, it is very expensive
to generate a precise segment of input image, because the pathological tissue
needs to be marked by professional radiologists [26,27]. As a result, a question
was naturally raised: How can we train a powerful segmentation network only
using a small number of high-quality labeled samples?
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Fig. 1. Corrupted labels effect network’s performance

To address this situation, researchers have paid much attention to train DNNs
in a semi-supervised manner. For example, Yang et al. [23] presented an active
learning method for 2D biomedical image segmentation, which can improve seg-
mentation accuracy through suggesting the most effective rather than all samples
for labeling. In [25], Zhao et al. applied a modified Mask R-CNN to volumetric
data for instance segmentation, and they used bounding boxes for all instances
and voxel-wise labels for a small proportion of instances. Nie et al. [17] proposed
an attention based semi-supervised deep networks, which adopted the adversarial
learning strategy to deal with the insufficient data problem in training complex
networks. In practice, the success of these semi-supervised methods depends on
mining a kind of knowledge which can be used to find out more accurate labels
in the training process. However, most of the existing methods use a fixed prior
knowledge to guide the pseudo label estimation. Therefore, they are very unsta-
ble when dealing with training samples with complex noise distributions. As
shown in Fig. 1, the segmentation network’s results are seriously affected when
corrupted labels are taken as supervisory signals. This phenomenon reveals that
mining corrupted labels is a critical issue in semi-supervised image segmentation.

In this paper, we design a novel Meta Corrupted Pixels Mining (MCPM)
method for medical image segmentation, which can alleviate the impacts of cor-
rupted labels in the training process. To achieve this goal, we design a simple
meta mask network to protect the training of the segmentation network from
the influence of pixels with incorrect labels. Specifically, the meta mask net-
work absorbs in the loss value map of the segmentation prediction as input, and
estimate a weight map indicating the importance of every pixel in the training
of the segmentation network. Once the meta mask network is learned, small
weights are allocated to pixels with corrupted labels. Therefore influences from
these pixels are weakened when updating the segmentation network. In the train-
ing process, we update the segmentation network and meta mask network in an
alternate manner, which can learn a powerful segmentation network from images
with corrupted labels. The main contributions of this work can be highlighted
as follows:

– We design a novel meta learning framework to mine pixels with corrupted
labels during the process of training a segmentation network.
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– Based on the fully convolutional structure, we build up a meta mask network
which can automatically estimate pixel-wise importance factors for mitigating
the influence of corrupted labels.

– Extensive experiments on both LIDC-IDRI and LiTS datasets indicate that
our method achieves the state-of-the-art performance in medical image seg-
mentation with incorrect labels.

2 Related Works

Because our method takes U-Net [19] as segmentation network and applies the
meta learning regime [1] to mine pixels of corrupted labels, we briefly review a few
existing works in terms of U-Net and meta learning in the following paragraphs.

Methods Based on U-Net. This type of methods aim to design a powerful
network structure, which can obtain accurate segmentation results at the output
layer. In [19], Ronneberger et al. proposed a well-known U-shaped structure for
2D medical image segmentation, in which the low-level and high-level feature are
recursively concatenated together from top to down, to improve segmentation
results. Inspired by this idea, a number of variants have been introduced in the
past few years. For example, Milletari et al. [15] extended the U-shaped struc-
ture into 3D version and built an objective function and adopted Dice coefficient
maximisation to supervise the training process. In [13], Kohl et al. proposed a
generative segmentation model based on a combination of a U-Net, in which a
conditional variational autoencoder is designed to produce an unlimited num-
ber of plausible hypotheses. Because its superior performance in medical image
segmentation, we simply choose U-Net as our segmentation network. Then, we
concentrate on designing a meta learning regime which can help learn a robust
segmentation network from training samples with corrupted labels.

Methods Based on Meta Learning. This kind of methods aim to learn a
kind of knowledge which can be used to guide the training of the network for
solving the target problem [1], which has a wide application in the few-shot
learning community. For example, a number of methods, such as FWL [8]. Men-
torNet [11] used the concept of meta learning to learn an adaptive weighting
function to make the training process more robust to noisy images. However,
the meta learners used in these methods have complex forms and require com-
plicated inputs, which are very hard to be implemented in the training process.
To overcome this problem, Ren et al. [18] proposed a novel meta learning algo-
rithm which can learn an implicit function to assign weights to training samples
based on their gradient directions. In [20], Shu et al. designed a meta weight
network to lean an explicit function which can impose small weights to noisy
samples, therefore the noisy samples will not severely affect the training process.
The difference between our proposed model and the meta weight network is that,
we design a simple meta mask network to learn a knowledge which can mine the
pixels of corrupted labels, so as to learn a powerful segmentation network from
low-quality labeled images.
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Fig. 2. The architecture and workflow of one loop

3 Meta Corrupted Pixels Mining Algorithm

We propose a novel MCPM method which can learn a powerful segmentation
network from images with corrupted labels. Given a small set of images with
clean labels and a large set of images with corrupted labels, our method is
capable of identifying out the pixels with corrupted labels, and excluding them
during the optimization procedure. As shown in Fig. 2, our network architecture
is constituted by two modules: (1) a U-Net based module for segmentation; and
(2) a meta mask network for mining pixels with corrupted labels. In the following
paragraphs, we will introduce our method in detail.

3.1 Objective Functions

Let S = {(Xi,Yi)}N
i=1 represent training images with probably noisy segmenta-

tion annotations, in which the width and height of training images are denoted by
w and h respectively, and N indicates the number of training samples. Besides,
Yi ∈ {0, 1}h×w×c denote the corrupted labels, where c is the number of classes
to be segmented out. First of all, we set up a segmentation network based on
U-Net [19], which yields a pixel-level prediction Pi from input image Xi. We
define Pi = F(Xi;W) where W represents parameters of the segmentation net-
work. To learn W, an objective function is usually adopted to calculate pixel-wise
loss values as function Li

xy = loss(Pi
xy,Yi

xy), where x ∈ [1, h] and y ∈ [1, w] indi-
cate the pixel coordinates. Here, the cross entropy loss function is used as the
objective function.

As mentioned above, there might exist errors in segmentation annotations.
These errors will severely hamper the optimization procedure, for example, pro-
viding incorrect gradient directions in the training process. A straightforward
approach to cope with this issue is ignoring these pixels with incorrect labels
through reweighting loss values. Inspired from [21], we design our meta mask
network in a fully convolutional structure, which can learn an accurate mask
map Ri for the input loss value map Li. We denote Ri = G(Li;Θ), where Ri

xy

indicates the reweighting factor of the pixel at (x, y), and Θ represents param-
eters of our meta mask network. Given a fixed Θ, the optimized solution to W
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Fig. 3. Illustration of how meta mask network works in the training process

can be found through minimizing the following objective function:

W�(Θ) = arg min
W

1
Nhw

N∑

i=1

h∑

x=1

w∑

y=1

Ri
xyLi

xy. (1)

To learn the parameters of our meta mask network, we introduce an addi-
tional meta dataset Ŝ = {(X̂j , Ŷj)}Mj=1 which contains images with high-quality
annotations. In particular, given an input image X̂j and optimized parameters
W�(Θ), the segmentation network will produce a pixel-wise prediction map
P̂j = F(X̂j ,W�(Θ)) at the output layer. Again, we can obtain a loss value
map L̂j through comparing P̂j against Ŷj according to the cross entropy loss
function. With the optimized W, the optimized solution to Θ can be acquired
through minimizing the following objective function:

Θ∗(W) = arg min
Θ

1
Mhw

M∑

j=1

h∑

x=1

w∑

y=1

L̂j
xy. (2)

In the training process, we update W and Θ in an alternation manner. As a
result, the Θ can cope with the varying W, which is beneficial to effectively
mine more corrupted pixels from the predictions of the segmentation network.

3.2 Meta Mask Network

We take a fully convolutional structure to design our meta mask network, which
can explore more local information to locate the pixels with corrupted labels.
The particularities of the network are two aspects: (1) It has two convolutional
layers with kernels in size of 3 × 3 and 5 × 5, which can extract multi-scale
context information from Li. (2) The resulting outputs and input are further
fused through another 1 × 1 convolutional layer, giving rise to the final mask
map Ri. This simple structure can be trained under the guidance of a few high-
quality labeled samples, which will in turn help train a powerful segmentation
network by using a large number of low-quality labeled samples.

In Fig. 3, we visualize how our meta mask network alleviates the side effect of
corrupted labels in the training process, in which: (1) shows the input image and
ground truth annotations; (2) indicates the corrupted labels; (3) represents the
predicted result obtained by the segmentation network; (4) denotes the mined
pixels of corrupted labels. As we can observe in (5) and (6), the loss between (1)
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and (3) is very small, while the loss between (2) and (3) is large. This indicates
that our meta network can help train a powerful segmentation network with a
large number of images accompanied with corrupted labels.

3.3 Network Optimization

We employ the iterative optimization algorithm to train our model. It is imple-
mented with a single loop and mainly contains the following steps.

– At first, W and Θ are randomly initialized as W0 and Θ0.
– For the t-th iteration, the parameters of the segmentation network are tem-

porally renovated as in Eq. (3), via one step of gradient descent in minimizing
the objective function (1),

W′(t)(Θ) = W(t) − α
1

Nhw

N∑

i=1

h∑

x=1

w∑

y=1

Ri(t)
xy

∂Li
xy

∂W

∣∣∣∣
W(t)

, (3)

where α is the learning rate. Ri(t)
xy is computed through feeding the loss value

map into the meta mask network with parameters Θ(t).
– Then Θ can be updated via optimizing the objective function (2),

Θ(t+1) = Θ(t) − β
1

Mhw

M∑

j=1

h∑

x=1

w∑

y=1

∂L̂j
xy

∂W′(Θ)

∣∣∣∣
W′(t)

∂W′(Θ)
∂Θ

∣∣∣∣
Θ(t)

, (4)

where β is the learning rate.
– Finally, W is updated through minimizing objective function (1),

W(t+1) = W(t) − α
1

Nhw

N∑

i=1

h∑

x=1

w∑

y=1

Ri(t+1)
xy

∂Li
xy

∂W

∣∣∣∣
W(t)

. (5)

Here Ri(t+1)
xy is computed through feeding the loss value map into the meta

mask network with updated parameters Θ(t+1).

3.4 Discussion

Under the guidance of a small meta set with clean annotations, the meta mask
network is learned in a gradient descent by gradient descent manner as shown in
(3) and (4). The update of parameters in the meta mask network is dependent on
the gradients of losses calculated on pixels from both meta and training images.
After putting (3) into (4), it can be easily observed that the ascending direction
of the weight coefficient of every pixel relies on the inner product (it can also be
interpreted as a similarity metric) between the gradient of the pixel (formulated

as ∂Li
xy

∂W |W(t)) and the average gradient of pixels of meta images (formulated

as 1
Mhw

∑M
j=1

∑h
x=1

∑w
y=1

∂L̂
j
xy

∂W′(Θ) |W′(t)). A positive inner product pushes the
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parameters of the meta mask network towards a direction which can give rise
to a larger weighting coefficient for the corresponding pixel; a negative inner
product pushes the network towards the opposite direction. This is the reason
why our method can effectively identify corrupted pixels.

4 Experiments

4.1 Datasets and Metrics

Two datasets are exploited to validate the superiority of our method in medical
image segmentation with noisy annotations, including LIDC-IDRI (Lung Image
Database Consortium and Image Database Resource Initiative) [2,3,7] and LiTS
(Liver Tumor Segmentation) [9]. 64 × 64 patches covering lesions are cropped
out as training or testing samples.

(1) The LIDC-IDRI dataset contains 1018 lung CT scans from 1010 patients
with lesion masks annotated by four experts. 3591 patches are cropped out.
They are split into a training set of 1906 images and a testing set of 1385
images. The remain 300 images are used as the meta set.

(2) The LiTS dataset includes 130 abdomen CT scans accompanied with anno-
tations of liver tumors. 2214 samples are sampled from this dataset. 1471,
300 and 443 images are used for training, meta weight learning, and testing
respectively.

Three metrics, including IOU (also referred as the Jaccard Index), Dice coeffi-
cient and Hausdorff distance, are employed for quantitatively measuring perfor-
mances of segmentation algorithms.

Synthesizing Noisy Annotations. In practice, it is difficult to localize the
boundary of the target region during the annotating procedure. Considering
this phenomenon, we synthesize noisy annotations through creating masks which
loosely encompasses target lesions. We use 2 operators to simulate corrupted anno-
tations. 1) The dilation morphology operator is employed to extend the foreground
region by several pixels (randomly drawn from [0, 6]). 2) The toolkit of deforma-
tion provided in ElasticDeform [6,19,22], which includes more complicate opera-
tions such as rotation, translation, deformation and morphology dilation, is used
to contaminate ground-truths of training images. In our experiment, only a part
of samples are contaminated with the above strategies. We denote the percent of
images which are selected out to generate noisy labels as r.

4.2 Implementation Details

Adam and SGD is used to optimize to network parameters on LIDC-IDRI and
LiTS, respectively. The learning rates α and β are initialized as 10−4 and 10−3

respectively, and decayed by 0.1 in 20th epoch and 40th epoch. The batch size is
set as 128. All models are trained with 120 epochs.
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Fig. 4. Visualization of segmentation results. Green and red contours indicate the
ground-truths and segmentation results, respectively. The Dice value is shown at the
top-right corner, and our method produces much better results than other methods.
(Color figure online)

4.3 Experimental Results

Comparison with Existing Methods. Without specification, r is set to 40%
in experiments of this section which means annotations of 40% training images
are contaminated. We compare our method against 7 existing segmentation mod-
els which are proposed to deal with ambiguous, low-quality or insufficient anno-
tations on the LIDC-IDRI dataset: Prob U-Net [13], Phi-Seg [5], UA-MT
[24] modified for 2D segmentation, Curriculum [12], Few-Shot GAN [16],
Quality Control [4], U2 Net [10], and MWNet [20] which is integrated with
U-Net. All above models and the baseline U-Net are trained with mixed images
of the training set and the meta set. We also implement another variant of
U-Net which is trained merely using images from the meta set (indicated by
‘U-Net Meta’). We also report the result of U-Net trained using images with
clean labels (indicated by ‘U-Net Clean’). As shown in Table 1. Our method
performs significantly better than other methods. For example, the Dice value
of our method surpasses that of the second best method MWNet by 3.4%. Addi-
tionally, our method outperforms baseline U-Net models by a large margin. It
even achieves promising performance which is comparable to the result of ‘U-Net
Clean’. This indicates that the impact of incorrect annotations fabricated as in
Sect. 4.1 is almost eliminated. Visualization examples are shown in Fig. 4.

Results with Various r-s. In this section, we vary the percent of noisy images
r from 0 to 0.8. The segmentation results of four methods on LIDC-IDRI and
LiTS are presented in Table 2. On the LIDC-IDRI dataset, our method performs
better than other methods when noises are introduced into the training set. On
the LiTS dataset, our method exceeds other methods consistently under all cases.
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Table 1. Results of segmentation models on LIDC-IDRI.

Noisy Dilation ElasticDeform

Model name mIOU Dice Hausdorff mIOU Dice Hausdorff

U-Net 62.53 75.56 1.9910 65.01 76.17 1.9169

U-Net Meta 60.91 72.21 2.0047 60.91 72.21 2.0047

Prob U-Net 66.42 78.39 1.8817 68.43 79.50 1.8757

Phi-Seg 67.01 79.06 1.8658 68.55 81.76 1.8429

UA-MT 68.18 80.98 1.8574 68.84 82.47 1.8523

Curriculum 67.78 79.54 1.8977 68.18 81.30 1.8691

Few-Shot GAN 67.74 78.11 1.9137 67.93 77.83 1.9223

Quality Control 65.00 76.50 1.9501 68.07 77.68 1.9370

U2 Net 65.92 76.01 1.9666 67.20 77.05 1.9541

MWNet 71.56 81.17 1.7762 71.89 81.04 1.7680

Our MCPM 74.69 84.64 1.7198 75.79 84.99 1.7053

U-Net Clean 75.73 83.91 1.7051 75.73 83.91 1.7051

Table 2. Results (mIOU) of segmentation models using various r-s.

Dataset name LIDC-IDRI LiTS

r 0.8 0.6 0.4 0.2 0 0.8 0.6 0.4 0.2 0

U-Net 42.64 51.23 62.53 69.88 75.73 37.18 43.55 46.41 51.20 61.07

Prob U-Net 52.13 60.81 66.42 71.03 76.37 40.16 45.90 49.22 53.97 60.60

MWNet 61.28 67.33 71.56 72.07 74.40 43.14 44.97 51.96 58.65 59.18

Our MCPM 67.60 68.97 74.69 74.87 75.26 45.09 48.76 55.17 62.04 62.68

5 Conclusion

We proposed a novel Meta Corrupted Pixels Mining method to alleviate the side
effect of corrupted label in medical image segmentation. Given a small number
of high-quality labeled images, the deduced learning regime make our meta mask
network able to locate the pixels having corrupted labels, which can be used to
help train a powerful segmentation network from a large number of low-quality
labeled images. Extensive experiments on two datasets, LIDC-IDRI and LiTS,
show that the proposed method can achieve the state-of-the-art performance in
medical image segmentation.
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