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Abstract. Despite the great success, deep learning based segmentation
methods still face a critical obstacle: the difficulty in acquiring sufficient
training data due to high annotation costs. In this paper, we propose a
deep active learning framework that combines the attention gated fully
convolutional network (ag-FCN) and the distribution discrepancy based
active learning algorithm (dd-AL) to significantly reduce the annota-
tion effort by iteratively annotating the most informative samples to
train the ag-FCN for the better segmentation performance. Our frame-
work is evaluated on 2015 MICCAI Gland Segmentaion dataset and 2017
MICCAI 6-month infant brain MRI Segmentation dataset. Experiment
results show that our framework can achieve state-of-the-art segmenta-
tion performance by using only a portion of the training data.

1 Introduction

Automated image segmentation is a cornerstone of many image analysis appli-
cations. Recently, thanks to their representation power and generalization capa-
bility, deep learning models have achieved superior performance in many image
segmentation tasks [1,2]. However, despite the success, deep learning based seg-
mentation still faces a critical hindrance: the difficulty in acquiring sufficient
training data due to the high annotation cost. In biomedical image segmenta-
tion, this hindrance is even more severe for the reason that: (1) Only experts
can provide precise annotations for biomedical image segmentation tasks, mak-
ing crowd-computing quite difficult; (2) Biomedical images from high-throughput
experiments contain big data of images, which require extensive workforces to
provide pixel-level annotations; (3) Due to the dramatic variations in biomedical
images (e.g., different imaging modalities and specimens), deep learning models
need specific sets of training data to achieve good segmentation performances,
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rather than using a general training dataset and transfer learning techniques to
solve all kinds of segmentation tasks. Due to these reasons, a real-world biomedi-
cal image segmentation project may require thousands of annotation hours from
multiple domain experts. Thus, there is a great need to develop annotation sug-
gestion algorithms that can assist human annotators by suggesting the most
informative data for annotation to accomplish the task with less human efforts.

1.1 Related Works

Despite the great success of deep learning in image segmentation tasks [3,4], deep
learning based segmentation algorithms still face a critical difficulty in acquir-
ing sufficient training data due to the high annotation cost. To alleviate the
annotation burden in image segmentation tasks, weakly supervised segmenta-
tion algorithms [5–7] have been proposed. However, how to select representative
data samples for annotation is overlooked. To address this problem, active learn-
ing [8] can be utilized as an annotation suggestion to query informative samples
for annotation. As shown in [9], by using active learning, good performance can
be achieved using significantly less training data in natural scene image segmen-
tation. However, this method is based on the pre-trained region proposal model
and pre-trained image descriptor network, which cannot be easily acquired in the
biomedical image field due to the large variations in various biomedical appli-
cations. A progressively trained active learning framework is proposed in [10],
but it only focuses on the uncertainty and the representativeness of suggested
samples in the unlabeled set and ignores the rarity of suggested samples in the
labeled set, which can easily incur serious redundancy in the labeled set.

1.2 Our Proposal and Contribution

In this work, we propose a deep active learning framework, combining a new deep
learning model and a new active learning algorithm, which iteratively suggests
the most informative annotation samples to improve the model’s segmentation
performance progressively.

Although the motivation seems to be straightforward, it is challenging to
design a framework that can perfectly integrate a deep learning model into an
active learning process due to the following challenges: (1) The deep learning
model should have a good generalization capability so that it can produce reason-
able results when little training data are available in the active learning process;
(2) The deep learning model should perform well when using the entire train-
ing set so that it can provide a good upper-bound of the performance for the
active learning framework; (3) The active learning algorithm should be able to
make judicious annotation suggestions based on the limited information provided
by a not-well-trained deep learning model in the early training stage. To over-
come these three challenges, we design a deep active learning framework with
two major components: (1) the attention gated Fully Convolutional Network
(ag-FCN) and (2) the distribution discrepancy based active learning algorithm
(dd-AL):
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Fig. 1. The workflow of our deep active learning framework.

• Attention: For the first and second challenges, we design a novel ag-FCN
that uses attention gate units (AGUs) to automatically highlight salient fea-
tures of the target content for accurate pixel-wise predictions. In addition,
both of the ag-FCN and the AGU are built using bottleneck designs to signif-
icantly reduce the number of network parameters while maintaining the same
number of feature channels at the end of each residual module. This design
ensures the good generality of the proposed ag-FCN.

• Suggestion and Annotation: For the third challenge, we design the dd-AL
to achieve the final goal of the iterative annotation suggestion: decreasing the
distribution discrepancy between the labeled set and the unlabeled set1. If the
discrepancy between these two sets is small enough, which means their distri-
butions are similar enough, the classifier trained on the labeled set can achieve
similar performance compared to the classifier trained on the entire training
dataset with all samples annotated. Therefore, besides the uncertainty met-
ric, dd-AL also evaluates each unlabeled sample’s effectiveness in decreasing
the distribution discrepancy between the labeled set and the unlabeled set
after we annotate it, which is further evaluated by the representativeness and
rarity metrics.

2 Method

Figure 1 shows the workflow of our deep active learning framework. In each anno-
tation suggestion stage, first we pass each unlabeled sample through K ag-FCNs
to obtain its K segmentation probability maps and the corresponding averaged
feature representation. Then, dd-AL selects the most informative unlabeled sam-
ples based on their uncertainties to the currently-trained ag-FCNs and effective-
ness in decreasing the data distribution discrepancy between the labeled and
unlabeled set. Finally, the small set of suggested samples are annotated for fine-
tuning the ag-FCNs. We conduct this annotation suggestion process iteratively
until satisfied.

1 In this paper, the labeled set and unlabeled set refer to the labeled and unlabeled
portions of a training dataset, respectively.
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Fig. 2. The architecture of the semantic attention guided fully convolutional network.

2.1 Attention Gated Fully Convolutional Network

Based on recent advances of deep neural networks such as the fully convolutional
network (FCN, [3]) and non-local network [11], we propose an attention gated
fully convolutional network (ag-FCN) that can not only conduct accurate image
segmentation but also be suitable for active learning. Compared with the original
FCN, our ag-FCN, shown in Fig. 2, has three main improvements:

Attention Gate Units: We propose the Attention Gate Unit (AGU) to fuse
the high-level semantic features to low- and mid-level features. AGU exploits
the high-level semantic information as soft-attentions that lead low- and mid-
level features to focus on target areas and highlight the feature activations that
are relevant to the target instance. Hence, AGU ensures that the ag-FCN can
conduct accurate segmentation on object instances with high variabilities.

Feature Fusion Strategy: Compared with the conventional skip-connections
that progressively merge low-level features to the up-sampling process of high-
level features [3], the feature fusion strategy in the ag-FCN considers each layer’s
attentive features (with semantic attention) as an up-sampling seed. All seeds
will be progressively up-sampled to the input image size, and then be concate-
nated for generating smooth segmentation results.

Bottleneck Residual Modules: In ag-FCN, we replace most convolutional
layers by bottleneck residual modules to significantly reduce the number of
parameters while maintaining the same receptive field size and feature chan-
nels at the end of each module. This design reduces the training cost with less
parameters (i.e., suitable for the iterative active learning) and maintains ag-
FCN’s generalization capability.

These three improvements of our ag-FCN are essential when combining deep
neural networks and active learning. By using our AGUs and feature fusion strat-
egy, the ag-FCN can achieve state-of-the-art segmentation performance using all
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training data, which provides a good upper-bound performance for our frame-
work. By using the bottleneck residual blocks, the ag-FCN can have good gen-
eralization capability even when very little training data are available, and facil-
itate the iterative active learning with small sets of network parameters.

2.2 Distribution Discrepancy Based Active Learning Algorithm

In general, our distribution discrepancy based active learning algorithm (dd-AL)
suggests samples for annotation based on two criteria: (1) the uncertainty to the
segmentation network and (2) the effectiveness in decreasing the distribution
discrepancy between the labeled set and unlabeled set. Since parallelly evaluating
these two criteria of each unlabeled sample is computational expensive, dd-AL
conducts the annotation suggestion process in two sequential steps. As shown in
Fig. 1, first, dd-AL selects N c samples with the highest uncertainty scores from
the unlabeled set as candidate samples. Secondly, among these N c candidate
samples, dd-AL selects a subset of them that have the highest effectiveness in
decreasing the distribution discrepancy between the labeled and unlabeled set.

Evaluating a Sample’s Uncertainty: In the first step of dd-AL, to evaluate
the uncertainty of each unlabeled sample, we adopt the bootstrapping strategy
that trains K ag-FCNs, each of which only uses a subset of the suggested data
for training in each annotation suggestion stage, and calculates the disagreement
among these K models. Specifically, in each annotation suggestion stage, for
each unlabeled sample su whose spatial dimension is h × w, we first use K ag-
FCNs to generate K segmentation probability maps of su. Then, we compute
an uncertainty score usu

k of the k-th (k ∈ [1,K]) segmentation probability map
of su by using the Best-versus-Second-Best (BvSB) strategy:

usu

k =
1

h × w

h×w∑

i=1

(1 − ∣∣pbestk,i − psecondk,i

∣∣), (1)

where pbestk,i and psecondk,i denote the probability values of the most-possible class
and second-possible class of the i-th pixel on su, respectively, predicted by the
k-th ag-FCN. (1 −

∣∣∣pbestk,i − psecondk,i

∣∣∣) denotes the pixel-wise BvSB score, where
a larger score indicates more uncertainty. In Eq. 1, the uncertainty score of su

estimated by the k-th ag-FCN is the average of the BvSB scores of all pixels
in this image. We compute the final uncertainty score of su by averaging the
uncertainty scores predicted by all K ag-FCNs:

usu

final =
1
K

K∑

k=1

usu

k . (2)

Then, we rank all the unlabeled samples based on their final uncertainty
scores and select the top N c samples with the highest uncertainty scores as the
candidate set Sc for the second step of dd-AL.
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Evaluating a Sample’s Effectiveness in Decreasing Discrepancy: In the
second step of dd-AL, we aim to annotate a subset of the candidate set Sc that
can achieve the smallest distribution discrepancy between the labeled set and
unlabeled set after the annotation. After several annotation suggestion stages,
if the distributions of the labeled set and unlabeled set are similar enough, the
classifier trained on the labeled set can achieve similar performance compared
to the classifier trained on the entire dataset with all samples annotated.

In each annotation suggestion stage, we define Sl as the labeled set with N l

samples and Su as the unlabeled set with Nu samples. We use the i-th candidate
sample sci in Sc, where i ∈ [1, N c], as a reference data point to estimate the data
distributions of the unlabeled set Su and the labeled set Sl, and compute a
distribution discrepancy score dci that represents the distribution discrepancy
between Su and Sl after annotating sci :

dci =
1

N l + 1

N l+1∑

j=1

Sim(sci , s
l
j) − 1

Nu − 1

Nu−1∑

j=1

Sim(sci , s
u
j ). (3)

In Eq. 3, the first term represents the data distribution of the labeled set
Sl estimated by sci , where Sim(sci , s

l
j) represents the cosine similarity between

sci and the j-th sample slj in the labeled set Sl in the high-dimensional feature
space2. The second term in Eq. 3 represents the data distribution of the unla-
beled set Su estimated by sci , where Sim(sci , s

u
j ) represents the cosine similarity

between sci and the j-th sample suj of the unlabeled set Su in the high-dimensional
feature space. After we compute the distribution discrepancy scores for all can-
didate samples in Sc, the candidate sample with the lowest score can be chosen
as the most informative sample for annotation.

To accelerate the annotation suggestion process, we prefer to suggest multiple
samples for the annotation in each stage instead of suggesting one sample at a
time. However, directly ranking the candidate samples in an ascending order
based on their distribution discrepancy scores and suggesting the top ones is
inaccurate. Since the distribution discrepancy of the labeled and unlabeled sets
is computed based on annotating one sample at a time.

To address this problem, we propose the idea of super-sample ssuper, which
is a m-combination of the candidate set Sc with N c samples. In total, there
are

(
Nc

m

)
possible super-samples that can be generated from Sc. The feature

representation of each super-sample is the average of the feature representations
of the m samples within it. Thus, we can rewrite the distribution discrepancy
score computation in Eq. 3 into a super-sample version as:

dsuperq =
1

N l + m

N l+m∑

j=1

Sim(ssuperq , slj) − 1
Nu − m

Nu−m∑

j=1

Sim(ssuperq , suj ), (4)

2 The encoding part of each ag-FCN can be utilized as a feature extractor. Given an
input image to K ag-FCNs, the average of outputs of Layer 6 in these ag-FCNs can
be viewed as a high-dimensional feature representation of the input image.
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Fig. 3. Some qualitative results of our framework on GlaS dataset (left) and iSeg
dataset (right, pink: Cerebrospinal Fluid; purple: White Matter; green: Gray Matter)
using only 50% training data. (Color figure online)

Fig. 4. Comparison using limited training data of GlaS dataset. FCN-MCS [10] is an
active learning algorithm only considering uncertainty and representativeness.

where dsuperq denotes the distribution discrepancy score of the q-th super-sample
ssuperq in the candidate set Sc. Then, the super-sample with the lowest distri-
bution discrepancy score will be suggested, where the m samples within this
super-sample will be the final suggested samples in this annotation suggestion
stage. Finally, these samples will be annotated for fine-tuning the ag-FCNs.

The suggestion is to find the super-sample with the lowest distribution dis-
crepancy score in Eq. 4. In other words, dd-AL aims to suggest samples that can
minimize the first term in Eq. 4, which is equivalent to minimizing the similar-
ity between suggested samples and the labeled set Sl. Therefore, the proposed
dd-AL ensures the high rarity of suggested samples in the labeled set. Also,
in Eq. 4, dd-AL aims to suggest samples that can maximize the second term,
which is equivalent to maximizing the similarity between suggested samples and
the unlabeled set Su. Therefore, the proposed dd-AL can also ensure the high
representativeness of suggested samples regarding to the unlabeled set.

3 Experiment

Dataset. As the same as [10,14–16], we use the 2015 MICCAI gland segmen-
tation dataset (GlaS, [12]) and the training set of 2017 MICCAI infant brain
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Table 1. Comparing accuracies with state-of-the-art methods on GlaS dataset [12].

Method F1 score ObjectDice ObjectHausdorf

Test A Test B Test A Test B Test A Test B

CUMedNet [15] 0.912 0.716 0.897 0.781 45.418 160.347

TCC-MSFCN [16] 0.914 0.850 0.913 0.858 39.848 93.244

MILD-Net [14] 0.920 0.820 0.918 0.836 39.390 103.070

FCN-MCS [10] 0.921 0.855 0.904 0.858 44.736 96.976

Ours (full training data) 0.938 0.866 0.929 0.870 40.548 93.103

FCN-MCS [10] (50% training data) 0.913 0.832 0.901 0.836 – –

ag-FCN-MCS (50% training data) 0.915 0.842 0.911 0.850 43.363 95.796

FCN-dd-AL (50% training data) 0.920 0.836 0.912 0.844 43.143 96.131

Ours (50% training data) 0.924 0.850 0.918 0.866 41.988 95.331

segmentation dataset (iSeg, [13]) to evaluate the effectiveness of our deep active
learning framework on different segmentation tasks. The GlaS contains 85 train-
ing images and 80 testing images (Test A: 60; Test B: 20). The training set
of iSeg contains T1- and T2-weighted MR images of 10 subjects. We augment
the training data with flipping and elastic distortion. In addition, the original
image (volume) is cropped by sliding windows into image patches (cubes), each
of which is considered as a sample in the annotation suggestion process. There
are 27200 samples generated from GlaS and 16380 samples generated from iSeg.

Implementation Details. In our experiments, we train 3 ag-FCNs (K = 3).
For each annotation stage, we select top 16 uncertain samples in the first step of
dd-AL (N c = 16), and our super-sample size is 12 (m = 12) in the second step
of dd-AL. At the end of each stage, ag-FCNs will be fine-tuned with all available
labeled data.

Experiments on GlaS. First, we compared our ag-FCNs using all training
data with state-of-the-art methods. As shown in Table 1, our ag-FCNs achieve
very competitive segmentation performances (best in five columns), which shows
the effectiveness of our ag-FCN in producing accurate pixel-wise predictions.
Secondly, to validate our entire framework (ag-FCNs and dd-AL), we simulate
the annotation suggestion process by only providing the suggested samples and
their annotations to the ag-FCNs for training. For fair comparison, we follow
[10] to consider the annotation cost as the number of annotated pixels and set
the annotation cost budget as 10%, 30% and 50% of the overall labeled pixels.
Note, though the suggested samples are generated from the original image data
by using data augmentation techniques, the annotation cost budget is based on
the annotation of the original image data. Our framework is compared with (1)
Random Query: randomly selecting samples; (2) Uncertainty Query: suggest-
ing samples only considering uncertainties; (3) FCN-MCS, an active learning
algorithm that only considers the uncertainty and representativeness proposed
in [10]. We follow [10] to randomly divide the GlaS training set into ten folds,
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Table 2. Analyzing the effect of changing the super-sample size on GlaS Test A.

Super-sample size w/o 4 6 8 10 12 14

F1-score 0.918 0.920 0.920 0.919 0.923 0.924 0.919

Total training time 13.3 h 8.2 h 7.1 h 6.3 h 5.1 h 4.4 h 2.5 h

Table 3. Comparing computation cost with FCN-MCS [10], the current best annota-
tion suggestion algorithm on GlaS dataset. Note, though our GPUs are different from
[10], V100 is only 2.9x faster than P100 on training typical deep learning benchmarks on
average [17]. So, the lead cause of reducing the computation cost is our newly-designed
framework, not the GPU hardware.

Methods Time cost per stage # of stages Total training time GPU

FCN-MCS [10] 10min 2000 333.3 h 4 Tesla P100

Ours 20 s 800 4.4 h 4 Tesla V100

each of which is used as the initial training data for one experiment. The aver-
age results are reported. As shown in Fig. 4, our framework is consistently bet-
ter than the other three query methods. Thirdly, we conduct ablation studies
on our framework (ag-FCN and dd-AL) by replacing our dd-AL by the active
learning algorithm MCS proposed in [10] (shown as ag-FCN-MCS in Table 1)
and replacing our ag-FCN by the FCN proposed in [10] (shown as FCN-dd-AL
in Table 1). As shown in Table 1, both ag-FCN-MCS and FCN-dd-AL outper-
form the deep active learning framework FCN-MCS proposed in [10], and our
framework obtains the best performance among all the four methods using 50%
training data, which reveals that the boosted performance of our framework is
due to both our ag-FCN and dd-AL. Fourthly, we study the effect of changing
the size of the super-sample. As shown in Table 2, compared with our framework
without using super-samples, our framework using super-sample size 12 largely
improves the training time by 9 h and the F1-score by 0.6% on the GlaS Test A,
which validates the effectiveness of our super-sample version of the distribution
discrepancy score computation. Fifthly, in addition to outperforming the current
best annotation suggestion algorithm [10] on biomedical image segmentation in
terms of accuracy (Table 1), our framework is more efficient (Table 3).

Experiments on iSeg. We also extend our ag-FCN into the 3D version (3D-ag-
FCN)3 and test our framework (3D-ag-FCN and dd-AL) on the training set of
iSeg using 10-fold cross-validation (9 subjects for training, 1 subject for testing,
repeat 10 times). As shown in Table 4, our framework still achieves competitive
performances even using only 50% training data. Figure 3 shows some qualitative
examples on the two datasets.

3 We replace all 2D operations with 3D operations (e.g., 2D conv → 3D conv, etc.).
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Table 4. Comparison with state-of-the-art on iSeg dataset [13]. (DICE: Dice Coeffi-
cient; MHD: Modified Hausdorff Distance; ASD: Average Surface Distance).

Method White matter Gray matter Cerebrospinal fluid

DICE MHD ASD DICE MHD ASD DICE MHD ASD

3D-Unet [18] 0.896 5.39 0.44 0.907 5.90 0.38 0.944 13.86 0.15

VoxResNet [19] 0.899 5.20 0.44 0.906 5.48 0.38 0.943 13.93 0.15

3D-SDenseNet [20] 0.910 5.92 0.39 0.916 5.75 0.34 0.949 13.64 0.13

Ours (full training data) 0.928 5.21 0.40 0.921 5.44 0.35 0.960 13.26 0.12

Ours (50% training data) 0.920 5.33 0.44 0.914 5.61 0.37 0.951 13.58 0.17

4 Conclusion

To significantly alleviate the burden of manual labeling in the biomedical image
segmentation task, we propose a deep active learning framework that consists
of: (1) an attention gated fully convolutional network (ag-FCN) that achieves
state-of-the-art segmentation performances when using the full training data
and (2) a distribution discrepancy based active learning algorithm that pro-
gressively suggests informative samples to train the ag-FCNs. Our framework
achieves state-of-the-art segmentation performance by only using a portion of
the annotated training data on two MICCAI challenges.
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