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1 Introduction

Several scientific disciplines are involved in the study of chemical processes that
occur in water, air, terrestrial and living environments, and the effects of human
activity on them. Environmental chemistry, as one of these, is not only the discipline
handling substances in difficult targets, such as sludge (Jin et al. 2017), trees (Ferretti
et al. 2002), or lichens (Pirintsos et al. 2006), but also having the task to support
decisions in environmental systems (Pirintsos and Loppi 2008).

Due to the complexity of environmental systems a series of well-defined indica-
tors is constructed, representing the knowledge about the system and thus supporting
decisions for an appropriate management (Buonocore et al. 2018; Grönlund 2019).
Hence, the start for a management and a decision based on a ranking of chemicals
(our example) is the analysis of multi-indicator systems (MIS). An example of MIS
is the output of several lichen biomonitoring studies concerning metal pollution
in the atmospheric environment. To be more specific, the indicators are related to
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locations, their values are derived following a procedure described by Nimis and
Bargagli (1999).

Lichens are perennial, slow-growing organisms, highly dependent on the atmo-
sphere for nutrients. The lack of a waxy cuticle and stomata allows many con-
taminants, which are deposited on lichens by precipitation, fog and dew, dry
sedimentation and gaseous absorption, to be absorbed over the whole lichen thallus
surface, indicating levels of these contaminants in the surrounding environment
(Loppi et al. 1999). By biomonitoring at specifically selected sites, for example
near roads (Frati et al. 2006) or more pristine areas (Loppi and Pirintsos 2003),
information is obtained about the transport and origins of pollution.

In Pirintsos et al. (2014) 11 metals/metalloids are investigated in 20 sites of an
urban and industrial area based on the lichen biomonitoring data set of Demiray
et al. (2012), where Xanthoria parietina lichen specimen have been used as a
biomonitoring organism. The evaluation of the corresponding data matrix is based
on the conception that the Hasse diagram technique (see below) can further be
expanded and improved in the direction of (i) cumulative risk, (ii) the up-to-date
formal presentation and (iii) the interpretation of results in biomonitoring studies of
metal atmospheric pollution.

The analysis of biomonitoring results can be crudely characterized by two
aspects: (a) attempts to support a decision, based on order relations and (b) attempts
to present small scale spatial variations within a geostatistical approach. Here our
focus is on the order theoretical aspects.

As the metals and metalloids are measured at m different sites the concentrations
found in lichens of each site define, after transformations as recommended by Nimis
and Bargagli (1999) an indicator. Hence the MIS contains m indicators, the values
describing the pollution due to a single metal or metalloid.

The question arises how to derive a decision when confronted with m indicators.
Here we show first a Hasse diagram, which is a visualization of the partial order,
induced by the set of indicators (cf. Bruggemann and Patil 2011), then we discuss,
as to how far a single ranking (a weak order (see below)) can be obtained without
the need of a subjective weighting scheme of the indicators in order to aggregate
them by a weighted sum. As an exact solution of the problem how to get a weak
order is hardly computationally tractable, we investigate a new calculation method.

2 Material and Methods

2.1 Data Set

Eleven Metals and metalloids, i.e., Hg, Al, As, Cd, Cu, Fe, Mn, Ni, Pb, V and Zn for
which their pollution has been monitored are included in the study (Pirintsos et al.
2014). For a management it is of importance which of these metals or metalloids (in
the following we call them simply metals, although this is not a chemically correct
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Table 1 data of 11 metals and their scores in lichens in 10 sites

metals
Al As Cd Cu Fe Hg Mn Ni Pb V Zn
Sites
st1 st2 st3 st4 st5 st6 st7 st8 st9 st10
data matrix

st1 st2 st3 st4 st5 st6 st7 st8 st9 st10
Al 4 5 7 5 5 4 4 4 3 5
As 2 5 7 6 7 5 5 4 4 4
Cd 5 7 7 7 4 3 4 2 2 3
Cu 5 5 7 7 4 3 5 3 3 4
Fe 7 7 7 7 7 7 7 7 6 7
Hg 4 3 5 3 3 3 4 2 2 2
Mn 7 7 7 7 6 6 7 4 5 6
Ni 7 7 7 7 6 5 7 4 4 7
Pb 7 7 7 7 5 4 6 4 7 4
V 7 7 7 7 7 6 7 7 4 7
Zn 7 7 7 7 7 7 7 6 7 7

term) is highly concentrated. As sites we select only 10 (of 20) because of reasons
which become clear in following sections. The concentrations are transformed into
a scale of integers from 1 to 7, following the suggestion of Nimis and Bargagli
(1999). 1 indicates a high naturality, whereas 7 express a high deviation from the
natural state. The data are shown in Table 1, in the Results-section. An entry of the
data matrix, dm(I,j) is associated with jth site and the ith metalloid. Details can be
found in Pirintsos et al. (2014).

2.2 Basic Concepts of Partial Order

Let X be a finite set of n objects, labeled by x(i) (i = 1, . . . ,n). Objects could be but
not limited to

• chemical compounds (here: metals/metalloids)
• nations, characterized by for example child well-being indicators
• strategies, characterized by performance indicators
• geographical units, characterized for example by pollution, or (within a socio-

economic context) by poverty indicators

Here, indeed the elements of the real example are “chemical elements”, namely
n = 11 metals.

To define an order relation among them, the relation “≤” has to obey the
following order axioms:
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• reflexivity: the object can be compared with itself
• antisymmetry: if x ≤ y and y ≤ x ⇒ x = y
• transitivity: if x ≤ y and y ≤ z ⇒ x ≤ z

A special realization of order relations is given by Eqs. (1, 2, and 3):

x(i) = (x (i, 1) , x (i, 2) , . . . ., x (i,m)) (1)

The quantity x(i, j) is the value of the ith object (i = 1, . . . ,n) (here the ith metal),
the jth indicator (j = 1,..,m) (here the jth site) and m the number of indicators used
(here m = 10).

Equation 1 describes a mapping X ➔ IRm, wherein X is the set of objects (the
metals) and IRm is the set of tuples of real numbers with m components. Note that
the tuples are also denoted as data profiles.

According to m = 10 sites, we will have a system of 10 indicators.

x(i1) ≤ x(i2) : ⇐⇒ (x (i1, 1) , . . . , x (i1,m)) ≤ (
x (i2, 1) , . . . ., x

(
i2,m

))

(2)

Equation 2 needs clarification, as it is not yet clear under which conditions one
tuple (that of x(i1) is to be considered less or equal to that of x(i2). The way how
Eq. 2 can be given a meaning, opens the door to many variants. By Eq. 3

(x (i1, 1) , . . . , x (i1,m))≤ (x (i2, 1) , . . . .x (i2,m)) : ⇐⇒ x (i1, j) ≤x (i2, j)

for all j = 1, .., m
(3)

a special partial order is defined. Two objects, following Eq. 3 are called
“comparable”, otherwise “incomparable”.

The immediate relation to the data and the corresponding indicators has two
consequences:

1. Any order relation x ≤ y is a direct reflection of the data values of x and y. This
is in contrast to many decision support systems, where an order relation cannot
easily be traced back to the original data, i.e., to the data matrix.

2. The partial order methodology, based on Eq. 3 is applicable wherever a data
matrix is available and where a ranking aim can be defined.

In the literature the method, based on Eq. 3 together with appropriate supporting
software, is often denoted Hasse diagram technique (HDT) (Galassi et al. 1996;
Grisoni et al. 2015; Halfon and Reggiani 1986; Bruggemann et al. 2001, 2008; Patil
and Taillie 2004; Klein and Ivanciuc 2006; Simon et al. 2004, 2006; Helm 2003;
Bruggemann and Voigt 2008, 2011, 2012; Carlsen and Bruggemann 2011, 2014a, b;
Carlsen 2008a, b, 2013, 2018; Newlin and Patil 2010; Annoni et al. 2014; Sørensen
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et al. 1998, 2000; Pavan and Todeschini 2004; Pudenz and Heininger 2006; Quintero
et al. 2018; Restrepo and Bruggemann 2008; Restrepo et al. 2008a, b; Voigt et al.
2004a, b) with reference to the German mathematician Helmut Hasse (1967). Sets
X, equipped with a partial order (and thus in this paper by the Eqs. 1, 2, and 3) are
called partially ordered sets and are conveniently denoted as posets and indicated by
(X, ≤).

Two objects x, y mutually incomparable are denoted as x ‖ y. Within a poset (X,
≤) the number of incomparable pairs x ‖ y is called U. When the orientation x ≤ y
or x ≥ y is of minor interest then the mere fact of comparability is denoted by x ⊥ y.

Note that partial order methodology can also be applied, by evaluation of the
space of all possible data profiles, when the indicators are discrete (cf. e.g. Fattore
and Maggino 2014, as well as Maggino et al. this book).

2.3 Hasse Diagram

The construction of a Hasse diagram, starting from a set of partial order relations (as
an outcome of Eq. 3) is frequently explained in the literature (see e.g. Bruggemann
and Halfon 1997). For the sake of reader’s convenience, some words about Hasse
diagrams may nevertheless useful here: The basis is the order relation x < y. Usually
the object x will be drawn below object y; both are vertices of a graph and presented
by small circles, with the label of the object in the centre. In case x < y a line is
connecting x with y, called an edge, if the vertices are in a cover relation, i.e if there
is no object z for which is valid: x < z < y. The orientation of the order relation is
just obtained from the vertical position. When two objects are not connected by a
system of oriented edges the two objects are incomparable.

By this construction a Hasse diagram allows a two-fold interpretation:

1. Upwards: The numerical values of the objects are nondecreasing along a system
of edges. This “vertical” oriented analysis allows a ranking of objects of subsets
of X, so-called chains.

2. In contrast to (1) there is also a “horizontal” evaluation. This evaluation has its
focus on not connected objects. Following the construction principles of a Hasse
diagram, the objects of in the same vertical position are mutually incomparably.
A set of mutually incomparable objects is called an antichain.

2.4 Weak Order

When the general policy of decision is to find not only the optimal option but also
alternatives, then ranking is a good starting point, since suboptimal objects can
be easily identified if the optimal object is not suitable (e.g., due to political or
economic reasons). The task is how to get a ranking, which is at least a weak order,
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if ties are accepted. Whereas a complete (i.e., total or linear) order is a set of objects,
in which all elements x, y ∈ X are mutually comparable with x 	= y, a weak order
does not require the condition x 	= y, i.e., it accepts equivalent elements (or in terms
of statistics: it accepts ties).

A Hasse diagram allows identifying rankings for subsets of X, without any
subjectivity beyond the data matrix. It is clear that the task to get a weak order
should be parameter free too. Hence, the typical procedure to aggregate the values
of the m indicators into a composite indicator by a numerical procedure, where
weights for each indicator and other parameters are required, is to be avoided. An
important device, how to get a weak order without the need of finding additional
parameters, such as weights for the indicators, out of a partially ordered set is found
in the paper of Winkler (1982). The crucial term is the average height, denoted as
Hav.

2.5 Average Height

Any poset can be represented by a set of linear order, whose elements are called
linear extensions (Davey and Priestley 1990; Trotter 1992). A linear extension is a
linear order, respecting all order relations within a poset. For example the set X= {a,
b, c, d} may have the following order relations:

a < b, a < c, a < d. (4)

Obviously, b ‖ c and c ‖ d, i.e. U = 2. Then the set of linear extensions is:

{(a, b, c, d) , (a, c, b, d) , (a, c, d, b)} .

Within the above set {(a, b, c, d), (a, c, b, d), (a, c, d, b)} a linear extension is for
example (a, b, c, d), others are (a, c, b, d) and (a, c, d, b). Each single linear extension
indicates a complete ordered set, for example (a, b, c, d) denotes: a < b, a < c, a <
d, b < c, b < d, c < d). All order relations of Eq. 4 are reproduced. The fact that the
poset in Eq. 4 includes some incomparabilities leads to the necessity to consider the
3 linear extensions simultaneously. Within each linear extension any object x has a
height that is the number of objects ≤ x. For example, in the linear extension (a, b,
c, d) object a has the height 1, b the height 2, whereas in the linear extension (a, c,
d, b) object b has the height 4.

The idea of Winkler (1982) is to calculate the average of all heights of all objects,
denoted as Hav(x). Let L(k) be the kth linear extension and h(L(k),x) the height of
x in L(k), then, after Winkler (1982)
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Hav(x) :=
(∑

h (L(k), x)
)

/LT (k = 1, . . . , LT ) (5)

where LT is the number of linear extensions derived from a specific poset.
Equation 5 could be a good starting point, when the set of linear extensions is

small. Taking into mind that the number of linear extensions for an object set with
n objects can be up to n! the problem to generate linear extensions and store them
into a memory is computationally hard (see e.g. Atkinson and Chang 1986).

The above mentioned difficulty leads to several variants:

• There is still an exact method available. It is based on the fact that the storage
of some sets derived from the poset needs less memory than the storage of
the linear extensions. From a methodological, mathematical point of view this
method transforms the original poset into a lattice and the quantities of interest
can be directly derived from this lattice (De Loof et al. 2006). However, the
lattice-method is only working, when U*n (U: number of incomparabilities in a
set of n objects) is not too large, for details see Bruggemann and Carlsen (2011).

• Some approximations seem to have found more applications, for instance the
method of Bubley and Dyer (1999), which suggests a “good” sampling of linear
extensions.

• Another one has a graph – theoretical background and considers the local
environment around each object within a poset. There are two variants: (1)
the LPOM0 (local partial order model 0) Bruggemann et al. 2004) and (2)
an extended model (LPOMext) (Bruggemann and Carlsen 2011). Although the
extended variant is thought of as delivering better results than LPOM0, it turned
out (Rocco and Tarantola 2014) that the more simple method (LPOM0) may be
in some cases a better approximation than the extended one.

2.6 Idea for an Alternative for the Hav-Calculation

Often partial order can be considered as being composed from simpler posets, here
for example, the concept of linear sum is of specific interest. It is defined as follows:
Let X1, X2 be disjoint subsets of X with

X = X1 ⊕ X2 (6a)

x ∈ X1, y ∈ X2 implies x > y for every x, y (6b)

Equation (6b) can be formulated as follows: If two sets can be found where for
an element of the first set, x, and for any element of the second set, y, is valid: x > y;
the relations among the first, and the second set, resp., are not of interest.
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We may speak of “X1 is fully dominating X2”. Equation 6b does not imply that
within X1 or X2 the elements are mutually comparable.

Let Hav(x, X) denote the average height of x, considering the set X and the
settings of Eqs. 6a and 6b. Then:

Hav (x,X) =| X2 | +Hav (x,X1) (7)

where | . . . | denotes the cardinality of the set. Eq. 7 is a simple conclusion found
from Eq. 6b:

H (L(k), x in X) =| X2 | +H (L(k), x in X1) .

Thus, a calculation method can be thought of, which can be formulated as
follows:

x ∈ X1 : Hav (x,X) = Hav (x,X1)+ | X2 | (8)

y ∈ X2 : Hav (y,X) = Hav (y,X2) , (9)

supposed that Eq. 6b is exactly fulfilled.
The concept of X1, X2 ⊂ X with X1 ∩ X2 = ∅ was already studied by (Restrepo

and Bruggemann 2008) and lead to two quantities, the dominance of X1 over X2 and
the separability of X1 and X2 (Eqs. 10 and 11).

Dom (X1, X2) :=| {(x, y) with x ∈ X1, y ∈ X2 and x > y} | / (|X1| ∗ |X2|)
(10)

Sep (X1, X2) :=|
{
(x, y) with x ∈ X1, y ∈ X2 and x

∥∥∥ y
}

| / (|X1| ∗ |X2|)
(11)

By a set of subsets the quantities, defined in Eqs. 10 and 11 can be conveniently
denoted as matrices, dominance (Dom) and separability (Sep) matrices.

Equation (6b) demands that Dom(X1, X2) = 1 and Sep(X1, X2) = 0.
If Dom(X1, X2) = 0, then X1, X2 are completely separated subsets, meaning that

then x ∈ X1, y ∈X2 implies x ‖ y. In that case it is easily seen that we find:



A Study to Generate a Weak Order from a Partially Ordered Set, Taken. . . 71

Hav (x,X1) < Hav (x,X) <| X2 | +Hav (x,X1) (12a)

Hav (y,X2) < Hav (y,X) <| X1 | +Hav (y,X2) (12b)

because as an extremal case the subposet based on X1 can once be completely
below the subposet (X2, <) or completely above (X2, <). Hence: When Dom(X1, X2)
< 0.5 then the role of the separability matrix is overwhelming (because the sum of
Dom- and Sep-matrices is bounded, due to the finite number of comparabilities and
incomparabilities and the Eqs. 8 and 9 fail. Therefore it is needed that the poset, to
be considered, has more comparabilities than incomparabilities. This is the reason,
why instead of 20 sites (the real example) only the 10 first sites were selected.

Summarizing: From a methodological point of view, we want to check, as to how
far a deviation of Dom(X1, X2) from 1 can lead to acceptable results.

3 Results

3.1 Randomly Generated Datasets

In order to test as to how far deviations of Dom(X1, X2) from 1 lead to errors
in the estimation of Hav, 22 smaller datasets (each of 10 objects) were randomly
generated. For each object x of these artificial data sets the Hav-value based on the
scheme given in Eq. 12 was calculated, HavDom(x) and the exact value, Havexact,
based on the lattice theoretical method presented by De Loof et al. (2006, 2011,
2012). The deviation was calculated:

Eps(x) :=| Haxexact (x)–HavDom(x) | (13)

For each dataset a final value epsav was determined:

epsav :=
∑

Eps(x)/n with n =| X | (14)

the quantity epsav being the average error related to any single object. In Fig. 1 the
scatterplot, together with the regression equation is shown.

Figure 1 confirms that the deviations epsav will be rather large, when Dom(X1,
X2) becomes small values. It is clear that the way, how the partitioning of X into
two subsets X1 and X2 is selected, plays an important role. However, aiming at an
efficient method for the calculation of Hav, the principles were:



72 R. Bruggemann et al.

Fig. 1 Scatterplot of epsav vs Dom(X1, X2) and the regression equation with R2 ≈ 0.76

Fig. 2 epsav vs Dom(X1, X2) , with Dom(X1, X2) ≥ 0.8

1. To select the X1, X2 in that manner that they have approximately the same number
of elements

2. To find a selection that maximizes Dom(X1, X2).

The principle (1) was a priori considered as more important than the principle
(2). From Fig. 1 it becomes clear that obviously in the specific considered randomly
generated case (for details, see below) the deviations epsav require Dom(X1, X2) ≥
0.8.

When the regression is restricted to those pairs of values (Dom(X1, X2) , epsav),
where Dom(X1, X2) ≥ 0.8, then the result is (more or less trivially) better, see Fig. 2.
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The regression equation based on 6 pairs (the pair (1,0) is realized three times)
has the striking structure:

epsav = a ∗ (1 − Dom (X1, X2) ) for 0.8 < Dom (X1, X2) ≤ 1 (15)

with the coefficient of determination, R2 = 0.88 and the coefficient a around
1.35. This statistical result indicates that the relevant quantity is the deviation Δ:

� := 1 − Dom (X1, X2) (16)

Hence, Eq. 15 expresses proportionality between the error epsav and Δ. The
crucial value 0.8 for separating relevant Dom(X1,X2)-values from irrelevant ones,
may vary from case to case and is open for future research. Furthermore, Fig.
2 shows that the average error related to single objects is less than 0.25 and the
deviations from the regression line will be larger the smaller the value Dom(X1, X2)
is.

3.2 Application to Real Data Set

The estimation method needs the following steps:

1. Defining X1, X2 and the Hasse diagram for the full set X
2. Calculation of Dom(X1, X2)
3. Providing the data for X1 and X2

4. Application of the lattice theoretical method: (a) for X, (b) for X1, (c) for X2

5. Performing the calculations due to Eqs. 8 and 9
6. Inspecting epsav to check the quality of the results

Up to now there is no program performing all 6 steps. However, for steps (1)–
(3) the program package PyHasse (see for details Bruggemann et al. 2014) was
extended by the new module DomRkav. Its graphical user interface is shown in Fig.
3. The data is found in Table 1.

The corresponding Hasse diagram is shown in Fig. 4.
Some remarks concerning Fig. 4 may be useful here:

• Hg and As are minimal elements, they cause the least deviation from a natural
state

• Fe and Zn are maximal elements, they are most problematic because the deviation
of the natural state is very high.

• Incomparabilities, such as for Zn and Fe show that the loading of the lichens in
general is high, however with some geographical differentiation.
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Fig. 3 Graphical user interface for the new PyHasse module DomRkav

Fig. 4 Hasse diagram of the
metals, according to their
deviations from their natural
state in the studied stations



A Study to Generate a Weak Order from a Partially Ordered Set, Taken. . . 75

In order to perform the calculation scheme based on Eqs. 8 and 9 the first step is
to select X1 and X2, i.e. the partitioning of set X.

Step 1:

The sets X1 and X2 are:

set X1: Fe, Zn, Mn, Pb, V, As
set X2: Ni, Al, Cd, Cu, Hg

Step2:

The Dom-matrix is:

X1 X2

X1: 0.361 0.733
X2: 0.0 0.48

Remark 1:

Although Dom(X1, X2) = 0.733 is less 0.8 the next calculation steps are
documented, just for a demonstration.

Remark 2:

The partitioning selected above is not the only possible one. For example, the
metalloid As is a minimal element. Why not assign As to X2? Let X2’ = X2 ∪ {As}
and X1’ = X1 – {As}. Indeed the value of Dom(X1’, X2’) = 0.833 is better than
that of Dom(X1, X2) and correspondingly epsav = 0.395. The disadvantage is that
(X2’,≤) leads due to its symmetry to a very high degree of degeneracy: Fe∼= Zn, Pb
∼= V and As ∼= Al ∼= Cd ∼= Cu. Therefore we continue with the partitioning of X into
X1 and X2 as given above.

Step 3: Calculation of the averaged ranks by the lattice-theoretical method (De Loof
et al., 2006) due to X1 and X2 of step 1.

Figure 5 shows the Hasse diagrams of the two subsets.

Fig. 5 The two Hasse
diagrams due to X1 and X2

Fe Zn

VPb Al Cd

Hg

Cu

Ni

As

Mn

(X1) (X2)
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Table 2 Summarizing the results of step 5 and step 5. Wether x ∈ X1 or ∈ X2 is indicated by
a membership function. If x ∈ X1 then the value in the corresponding column = 1, otherwise 0.
Similarly for x ∈ X2

Object x Havexact X1 X2 Hav( . . . ,X1) Hav( . . . ,X2) HavDom Eps(x)

Al 3,581 0 1 3 3 0,581
As 4,246 1 0 1,597 6,597 2,351
Cd 3,36 0 1 3 3 0,36
Cu 3,36 0 1 3 3 0,36
Fe 10,487 1 0 5,455 10,455 0,032
Hg 1,135 0 1 1 1 0,135
Mn 7,175 1 0 2,364 7,364 0,189
Ni 6,559 0 1 5 5 1,559
Pb 7,169 1 0 2,636 7,636 0,467
V 8,693 1 0 3,576 8,576 0,117
Zn 10,236 1 0 5,273 10,273 0,037

∑
Eps(x) = 6.188

epsav = 0.563
Dom(X1, X2) = 0.733

Step 4: Application of Eqs. 8 and 9.
Step 5: Check for the accuracy of the results.

The remaining steps 4 and 5 are summarized in the following Table 2. The
column below X1 and X2 is the membership function, indicating whether or not
the metal belongs to X1 or to X2.

The value of epsav = 0.563 deviates from the value obtained from Eq. 15;
(epsaveq.15 = 0.36). However the value of Dom(X1, X2) is not within the range of
applicability of Eq. 15. As to be expected, the measure of deviation, epsav, indicates
a bad approximation. Due to pretty large deviations (in terms of epsav the final weak
order shows two inversions:

Exact: Hg < Cd ∼= Cu < Al < As < Ni < Pb < Mn < V < Zn < Fe
Approx.: Hg < Cd ∼= Cu ∼= Al < Ni < As < Mn < Pb < V < Zn < Fe

As it is often the case, different methods coincide, when extremal ranking
positions are to be detected. This empirical finding is found here as well, i.e., Hg
Cd, Cu, as well as V, Zn and Fe coincide in their positions at the beginning or
the end of the ranking sequence. The other positions in a ranking sequence are
usually determined by many factors. Therefore, here different methods will lead to
different ranking positions. Here, indeed, some other metals change their position
(As, Ni) and (Mn, Pb), when the exact, lattice theoretical method is compared with
the approximation, suggested here. The reasons for the inversion Mn, Pb is that Mn
“sees” four vertices order theoretically less than Mn, whereas Pb only “sees” three
vertices. In the approximation however, both are minimal elements, so that for both
metals the Eq. 8 gives the same summand |X2|, being 4. A similar argument holds
for the pair (As, Ni).
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4 Discussion

4.1 Lichen Biomonitoring/Bioaccumulation Matrices as
Multi-indicator Systems

Undoubtedly, any data pre-processing, as done here, are of high importance not
only in chemical risk assessment and management but also broader, in the decision-
making process of environmental policy. However, here is not the place to discuss
in depth the pre-processing, defined by Nimis and Bargagli (1999), nevertheless, we
think that here some words may be helpful:

In biomonitoring techniques of air quality with native lichens, an approach to the
interpretation of data of native lichens is the so-called “naturality/alteration scales”
based on thresholds identifying classes of increasing element concentrations, and
obtained by the meta-analysis of a large set of bioaccumulation data. The method by
Nimis and Bargagli (1999) defines seven classes of element concentrations. These
classes are built up on hundreds of data points collected in Italy between the 1980s
and the 1990s. The seven class scale refer to (1) very high naturality, (2) high
naturality, (3) middle naturality, (4) low naturality/alteration, (5) middle alteration,
(6) high alteration and (7) very high alteration based on the percentile distributions
of element concentrations in lichens (Nimis et al. 2000).

Recently a paper was published, where the data pre-processing of data (is
examined under the methodological background of partial order theory, see Fattore
et al. (2019).

4.2 Applicability of the Proposed Method

The quantity epsav, Eq. 14 is an average value and is – as mentioned already above –
related to a single object. The domain of validity for Eq. 15 is given by 0.8 ≤
Dom(X1, X2) ≤ 1.0.

If Dom(X1, X2) → 0.8 the deviations Eps (Eq. 13) become quickly large as Figs.
1 and 2 (randomly generated data) show. Consequently in the following paragraph
we investigate reasons for large deviations of Eps.

4.3 Reasons for Large Deviations

First of all, a dissection of a poset (X, ≤) into two subposets (X1, ≤) and (X2,
≤) leads to more symmetry in the resulting graphs of the subposets (as already
mentioned above). Hence, the degeneracy of Hav-values is increased. Even if the
enhanced degree of ties is accepted, there can be large deviations, which result from
structures like the one shown in Fig. 6.
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Fig. 6 X1 dominates fully
X2’ but not X2. A typical
situation causing deviations

Fig. 7 A variant for
partitioning of set X
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Considering Fig. 6 a situation, similar to that, causing eq. 12, arises. For x ∈ X1,
Hav(x, X) = Hav(x, X1) + |X2| is an overestimation, because by constructing the
linear extensions, the elements of X2” can also be located above the elements of X1,
whereas by Hav(x, X) = Hav(x, X1) + |X2’| an underestimation follows. Based on
remark 2 (see above) the two Hasse diagrams are shown, when X1’ = X1 – {As} and
X2’ = X2 ∪ {As} (Fig. 7)

The element Fe “sees” the same number of lower neighbours as Zn. Similarly, Pb
and V have one upper neighbour. Therefore the exact method delivers Havexact(Fe,
X1’) = Havexact(Zn, X1’) as well as Havexact(Pb, X1’) = Havexact(V, X1’). In Fig.
7, the subposet (X2’, ≤) has also symmetries, leading to: Al ∼= Cd ∼= Cu with respect
to Havexact.

4.4 Conclusive Consideration

By applying the dominance matrix and based on this, the calculation scheme seems
to be attractive for an estimation method of Hav. However, the requirement of very
high values of Dom(X1, X2) seems to be too restrictive to justify to propose this
method as a general approximation method. Thus, up to our actual knowledge this
new procedure will not be practically feasible in comparison with exact results.
When, however, a first check is wanted, for example to start from this a refinement
procedure, then the scheme based on Eqs. 8 and 9 may be useful. When this line of
research is to be followed, then
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• A catalogue could be aimed, where structures are gathered, which typically lead
to strong deviations

• As a candidate for a better approximation the method by Bubley and Dyer (1999),
may be selected and modified in that manner that the weak order as a result of
Eqs. 8 and 9 is a starting linear extension.

Summarizing, we hope that the present study has revealed some mathematical
ideas which may be of interest and attract new research by scholars of the
mathematical chemistry scene.
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