
Rainer Bruggemann · Lars Carlsen 
Tugce Beycan · Christian Suter 
Filomena Maggino   Editors

Measuring and 
Understanding 
Complex 
Phenomena
Indicators and their Analysis in Different 
Scientific Fields



Measuring and Understanding Complex
Phenomena



Rainer Bruggemann • Lars Carlsen • Tugce Beycan
Christian Suter • Filomena Maggino
Editors

Measuring and
Understanding Complex
Phenomena
Indicators and their Analysis in Different
Scientific Fields



Editors
Rainer Bruggemann
Leibniz-Institute of Freshwater Ecology
and Inland Fisheries
Berlin, Germany

Lars Carlsen
Awareness Center
Trekroner, Roskilde amt, Denmark

Tugce Beycan
Institut de Sociologie
Université de Neuchâtel
Neuchâtel, Neuchatel, Switzerland

Christian Suter
Institut de Sociologie
Universite de Neuchatel
Neuchatel, Switzerland

Filomena Maggino
Dipartimento di Scienze Statistiche
Sapienza University of Rome
Roma, Italy

ISBN 978-3-030-59682-8 ISBN 978-3-030-59683-5 (eBook)
https://doi.org/10.1007/978-3-030-59683-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-59683-5


Preface

The international conference in Neuchatel, Switzerland, 2018, about partial order
and its applications motivated to edit a new book representing the state of the art in
the development and applications of partial order methodology. The very idea is to
analyse multi-indicator systems. Part of the lectures presented in Neuchatel are now
part of this book. However, due to many other actual contributions, this book is not
a proceeding of the conference of 2018, but a monograph with a focus on indicators
and their analysis.

Consequently, in this book (beside an introductory text) the reader will find

• Five chapters specifically concerned with indicators
• Six chapters where the methodological aspect of applied partial order is the main

topic
• Three chapters with a sociological background
• Two chapters with an environmental background
• Finally, two chapters where software aspects are in the foreground

An introductory chapter may be helpful for interested scientists to understand
how partial order in combination with multi-indicator systems can be applied.
Furthermore, a brief overview about all 18 chapters is given.

For the future it is hoped that more scientists will be interested in the exciting
field of applied partial order.

Schwandorf Rainer Bruggemann

Roskilde Lars Carlsen

Neuchatel Tugce Beycan

Neuchatel Christian Suter

Rome Filomena Maggino

v



Indicators and Partial Orders – An
Introduction

Role of Indicators

Our world will increasingly be more and more complex. Hence, evaluation of the
state (in order to find decisions for management in the future) will be correspond-
ingly difficult. In many cases deterministic mathematical models can be sufficiently
sophisticated to support decisions. In the evaluation of chemicals, such as EUSES
(Heidorn et. al. 1997) or the former E4CHEM (Bruggemann and Drescher-Kaden
2003) are suitable examples. Even agent-based models, cannot encompass all
eventualities of our daily life. (Agent based modelling within a general context
is described in Wikipedia, 2020; within geographical simulations in Castle and
Crooks, 2006 and within an ecological context in Hüning et al. 2016.) Hence, one
can find everywhere indicators, e.g., Fragile State Index (FSI) 2019, (Carlsen and
Bruggemann 2013, 2014, 2017) or the Human Environment Interface Index (HEI),
Environment Performance Index (EPI) (for both within the Partial order context,
see (Bruggemann and Patil 2011), World happiness Index (Helliwell et al. 2019),
Human development Index (Human Development Report 2019), Gender equality
Index (Gender Equality Index 2019), Bruggemann and Carlsen 2020, Sustainable
Cities Index (Sustainable Cities Index 2018), Sustainable Society Index (Europe
Sustainable Development Report 2019), Food Sustainable Index (Barilla 2019)
or indicator helping to measure the quality of life in cities (El Din et al. 2013),
just to mention some typical indicators. The general problem is, how to quantify
these indicators (examples are mentioned above). Often sub-indicators (we will call
them “preliminary indicators”) are defined which can be measured, or estimated
by mathematical models or for which an ordinal scale is obvious. In the next step,
this series of indicators typically is condensed to form a single quantity, sometimes
called ‘the index’, or more precisely the composite indicator. In fact, this procedure,
defining subsystems of indicators, leads to hierarchies of indicator systems, for
example, that applied for the definition of the food index (Barilla 2019)).

The mathematical problem is how to carry out this condensation, or aggregation
step, in the most sensible way possible. Bruggemann and Patil (2011) denoted the

vii



viii Indicators and Partial Orders – An Introduction

series of preliminary indicators a multi-indicator system (MIS). The information
within a certain MIS is often important within a holistic point of view (see
for instance Maggino and Zumbo 2012). The aggregation, independent of which
method is applied, must be more or less considered as an averaging. Thus, it seems
to be appropriate to evaluate the MIS as an interim aspect by mathematical methods,
which are able to analyse multiple indicators with respect to the objective under
which the MIS was constructed. The mathematical method of partial order theory is
very helpful in this aspect, and, therefore, indicators and partial order are closely
interrelated when an evaluation by ranking is wanted. Clearly, the partial order
methodology is not the only possibility for studying an MIS (see, e.g., (Brans and
Vincke 1985; Figueira et al. 2005; Colorni et al. 2001; Munda 2008; Munda and
Nardo 2009; Roy 1972; Roy and Vanderpooten 1996; Maggino 2017)).

Here, however, the interplay of MIS and partial order is the main topic.

Partial Order Methodology

When one takes a closer look at the mathematics of partial ordering, it is closely,
although not exclusively related to the regime of indicators. Partial ordering is a
theory of binary relations and is as such especially well-suited for those indicators,
which are ordinal in nature. The reason is that partial order is mathematically deeply
intertwined with

• Graph theory
• Combinatorics
• Algebra

but not with numerical evaluation in the field of real numbers, see, for instance,
(Trotter 1992). In the following, the three items are described in more detail.

Graph Theory

One of the most important visualization techniques of partial orders is the Hasse
diagram. The Hasse diagram is a transitively reduced, acyclic digraph. This
characterization may be enough for mathematicians, but not for scientists interested
in applications. Thus, a few more details are given here.

Partial order is a binary relation among elements xi and xj of a set X which can
be interpreted as ‘better than’, e.g., xi > xj. This relation obeys three axioms:

• Reflexivity, i.e., an element can be compared with itself.
• Antisymmetry, i.e., if an element x is ‘better’ than an element y, then y cannot be

better than x, unless x and y are identical.
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• Transitivity, i.e., if x is ‘better’ than y, and y is ‘better’ than z, then x is ‘better’
than z. A classical counterexample is the tournament. One may define ‘better
than’ as team x beats team y. However, although team y may beat team z, it cannot
be excluded that team z beats team x, which is a violation of the transitivity. On
the other hand, when the order relation is associated with numerical, ordinal
indicator values, the order relation between two elements is governed by the
numerical relation between the indicator values. Thus, the elements can be
ordered, i.e., fulfilling the axiom of transitivity.

If two elements of a set X have an order relation, one can define two vertices for
the elements and connect them. Because the relation is oriented, the orientation for
the two elements is indicated by an arrow and the relation can be described by our
usual symbol ‘<’. When this recipe is performed for all elements of a set, a directed
graph is obtained. When the order relation is based on only one single indicator,
then a complete – linear – order is developed and each of the two elements of X are
connected by an arrow. When there are three elements x, y, z and it is found x < y and
y < x, then transitivity demands that x < z. Hence, for most applications the arrow
for x < z can be omitted, as this relation follows due to the transitivity. The process
of eliminating arrows is called a transitive reduction. Furthermore, a sequence of
arrows such as x0 < x1, x1 < x2, . . . , xn-1 < xn, but xn < x0 is obviously not possible
as it would be a violation of the transitivity as the transitive reduction would cause
a cyclic graph. Eventually, the arrows can be replaced by simple lines, when the
orientation is governed by the vertical position in the drawing plane. The resulting
graph is called a Hasse diagram. Hasse diagrams or comparability graphs (graphs
of the order relation, however without an orientation) can be analysed theoretically.
Note that a sequence of lines which can be followed strictly upwards or downwards
may be called an order theoretical connection, the set of objects within an order
theoretical connection is called a chain.

An analysis can, e.g., investigate whether or not subsets of X dominate others,
or whether subsets of X are strikingly not connected or only weakly connected
with other parts of the graph. It is clear that ‘weakly’ needs a definition. Here it
is used in the sense of ‘only few connections’. As an example of a Hasse diagram,
we can look at the development in Germany (2008–2015) in switching to more
sustainable energy according to the UN Sustainable Development Goal No. 7, using
three indicators (Table 1); for details see (Europe Sustainable Development Report
2019).

Instead of observing three line graphs for each indicator, the Hasse diagram
shows at once some essential facts:

(1) All three indicators are not decreasing in their values for the time evolution:
2008-2009-2011-2012-2015. Other time series can be found, where the indica-
tor values are simultaneously non-decreasing. One can see that for these special
set of years, the pattern of indicator values is co-monotone with the time. Such
subsets of objects, mutually comparable are called chains.

(2) 2010, 2011 and 2013 cannot be compared, because of a counter current devel-
opment of indicator values. They are connected (in a general graph theoretical
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Table 1 The three indicators

Indicator Short Description Direction

sdg7_warm sdg7_w Population unable to keep homes adequately warm
(%)

Low better

sdg7_eurenew sdg7_e Share of renewable energy in gross final energy
consumption (%)

High better

sdg7_co2twh sdg7_co2 CO2 emissions from fuel combustion per electricity
output (MtCO2/TWh)

Low better

context, but not order theoretically). These three objects are members of a so-
called antichain.

(3) The group {2010, 2012} has no order theoretical connections with {2013}. The
identification of the reasons in terms of indicator values is one main task in the
applications of Hasse diagrams.

Combinatorics

Combinatorics comes mainly into play when directed graphs of the order relations
are extended to form graphs with more connections maintaining the already given
ones. This enrichment process can be continued until a complete order is obtained.
However, when the Hasse diagram has elements of X that are not in an order
relation, then the enrichment process delivers a set of complete orders, i.e., the set of
linear extensions. However, the generation of linear extensions from a given Hasse
diagram is computationally extremely difficult. Here combinatorics helps to find
algorithms or even to find closed formulas. These, e.g., play an important role in
an approximation, known as a local partial order model. An example would be the
Hasse diagram (Fig. 1). It is possible to extend the graph to a linear order, where the
sequence of years follows its natural order.

Algebra

It seems to be plausible to try to understand empirical partial orders as being
composed of simpler graph structures. Any two partially ordered sets (posets) can
be combined by following strict composition rules. These composition rules, such as
addition, multiplication and disjoint union, have only little to do with the operations
known for numbers. Nevertheless, this kind of composition is an important guideline
to understand empirical posets. A remarkably richer algebra is obtained, when the
order relations obeys additional requirements. The crucial concept is the uniqueness.
Within an empirical poset, two elements of a set X can be in order relation to
several others. However, when the additional requirement is uniqueness, then any
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Fig. 1 Hasse diagram of
Germany, years 2008–2015.
Details in a publication,
submitted

2015

2011

2012

2010 2013

2014

2009

2008

two elements are downwards and upwards, respectively, related to only one other
graph theoretical neighbored element. Such posets are called lattices and a special
realization is the formal concept analysis, deeply studied by the school of Wille
(Ganter and Wille 1986; Ganter 1987; Ganter and Wille 1996) and Kerber (2017).
The resulting lattices, formal concept lattices, are powerful tools in the analysis
of multi-indicator systems, especially when the indicators can only take discrete
numbers. The extension of the so-called formal concept analysis to indicators,
having continuous data in concept, bears additional theoretical difficulties; see, e.g.,
(Kerber 2017).

When data are metric data, the obvious question is, how to deal which such data
and what is the role of order relations compared to powerful statistical methods, such
as correlation or regression analyses, principal component and cluster analyses, just
to mention a few tools most often used in (multivariate) statistics.

When data are measured, then automatically data uncertainty comes into play.
By comparing partial order and (conventional) statistical tools it should initially
be made clear that partial order as a method to analyse data clearly belongs to
statistics. So why is a discussion needed? The reason is that multivariate statistics is
commonly associated with tools, which are already exemplified above. The aspect
of evaluation, especially evaluation in multi-indicator systems makes partial order
an important tool in this respect. Whereas applying conventional tools, a ‘good’ or
‘bad’ within a data set is not known, and partial ordering is specifically adapted
to that. Applied partial order methodology, together with the analysis of the graph
theoretical structure could be a relevant tool in decision making, operation research
and, to some degree optimization.

The role of uncertainty in data analysis by partial ordering goes back to papers
of Sørensen et al. (1998, 2000). Data, continuous in concept, cannot be considered
as ideally suitable items for partial ordering. There are two main reasons: (i) The
aforementioned role of uncertainty which often arises when data are measured. (ii)
The information due to distances is lost. Both aspects can be methodologically
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handled within the framework of partial ordering, however at the price of its
elegance. Furthermore, if the weights in linear sums of uncertain indicator values
are not sharp, application of partial ordering, as we know it today, comes to its
limits. Studies in this direction are for now just landmarks on a long way.

For readers interested in the mathematical aspect of partial order, we recommend
(Maggino 2017; Trotter 1992; Neggers and Kim 1998; Schröder 2003; Davey and
Priestley 2002).

This book, Indicators and their Analysis in different Scientific Fields reports
recent developments in the field of partial order applications. Some chapters are
based on presentations at the International Conference on Partial Orders in Applied
Sciences in Neuchatel, October 2018. This conference series was initialized 1998
(cf. Table 2) and is a forum for the scientific community with special interests in the
theory and application of indicators.

In the 18 chapters, a variety of new developments within the area of partial
ordering can be found.

Indicators and Theoretical Developments

As mentioned above, indicators play an increasing role in characterizing complex
systems and in decision problems. Indicators are necessary to understand system
behaviour. Hence, several chapters focus on the various aspects of indicators,
addressing subjects like scaling level, relevance and the role of the inherent
characteristic of partial orders, i.e., the incomparability (See J. Wittmann, p. 3,
F. Maggino et al., p. 17). Further chapters discuss the functionality of indicators,
the workflow for building indicators, the structure of complex indicators and the
sensitivity of indicator values, as well as assessment of inhomogeneous indicator-
based typologies through the reverse clustering approach (See J. Owsinski et al.,
p. 31), using a typology of spatial units of Polish municipalities as an illustrative
example.

Indicator values often are considered as continuous in concept, thus the evalu-
ation and exploration is of some fuzzy character. This aspect is considered in two
chapters (see pp. 83–101) where a strict generalization is given central importance.
Evaluations using parameters can usually be considered as sets over lattices. These
two chapters (See A. Kerber and R. Bruggemann, p. 83, and R. Bruggemann and
Kerber, p. 91) are devoted to this approach, whereby the theoretical concept is
exemplified in a study of heavy metals and sulphur pollution along the southern
part of river Rhine.

Very often a strict linear order is wanted, which in the case of multiple indicators
typically is obtained as a result of aggregation of indicators, e.g., leading to a
weighted sum. Although attractive due to its simplicity, the disadvantages are, e.g.,
that potential conflicts expressed by the values of single indicators are suppressed.
A chapter is devoted to the idea of combining the advantages of linearly weighted
sums and partial order theory in order to relax the requirements for a strict linear
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order (See R. Bruggemann and L. Carlsen, p. 63). A further study along these lines
is reported in a separate chapter (See R. Bruggemann et al., p. 63) focusing on the
possible generation of a weak order from a partially ordered set without the need for
subjectively defining parameters beyond the data matrix.

Indicators for Special Purposes

Two chapters (see N. Pankow et al., p. 105 and G. Al-Sharrah and H.M.S. Lababidi,
p. 119) focus on the selection of indicators for specific purposes. One chapter
focuses on the development, assessment for their applicability and relevance of
indicators for sustainability assessment in the procurement of civil engineering ser-
vices, whereas a second chapter reports on dependent indicators for environmental
evaluation of desalination plants with a special focus on which types of correlations
between environmental indicators may affect decision-making when it is done by
ranking.

One chapter presents some efficient sampling designs based on partial order sets
and (sampled) linear extensions as a more flexible process than other designs and is
executable with acceptable initial sample size, the new design in general being more
efficient than its rival designs (See B. Panahbehagh and R. Bruggemann, p. 135).

It is often seen that potentially harmful substances are actually in their own
sense beneficial for their specific purposes, but, e.g., harmful to the environment.
As an exemplary case, partial order methodology has been applied for the search
for suitable alternatives to lead split shots (See L. Carlsen, p. 153).

A chapter with elements from both the environmental and social area puts
forward the question: who is paying for our happiness? The well-defined index for
happiness, the World Happiness Index, was used for ranking 157 countries based on
7 indicators, the result being compared to a similar ranking of the countries applying
the Happy Planet Index focusing on the exploitation of our planet’s resources (See
L. Carlsen, p. 205).

Activated carbon is used for many purposes, e.g., for wastewater treatment as
a strong sorbent. It has a long history and has been prepared from a variety of
material using methods involving physical and/or chemical activation. One of the
latest attempts has been based on Miscanthus straw. One chapter is devoted to
a study that compares 21 different methods for obtaining activated carbon from
various materials (See L. Carlsen and K. Abit, p. 165).

Organisms such as bacteria, fungi or algae have the ability to trap and immobilize
Uran, U; however, bioremediation does not reduce widespread U contamination.
One chapter is dedicated to investigating the ability to concentrate U in bio-
organisms. Partial order methodology discloses which organisms are the optimal
U trappers (See N.Y. Quintero, p. 181).
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Indicators in Social Sciences

The area of social science is the subject of two chapters, where one chapter focuses
on the main motivations (see M. Fattore and A. Arcagni, p. 219) for applying
partial order theory in the statistical analysis of socio-economic data, whereas the
second chapter demonstrates the use of partial order methodology to an analysis of
subjective well-being data from a European harmonized official statistical survey
based on indicators for life satisfaction, meaning of life and emotional status (See
L.S. Alaimo and P. Conigliaro, p. 243).

Software

One of the most popular software packages for studying partial ordering is the
PyHasse. The package contains today more than 100 specialized modules, many of
which are developed for specific purposes. However, it has been argued that PyHasse
constitutes as a tool for ‘connoisseurs’. Hence, web-based versions of PyHasse were
developed (See R. Bruggemann et al., p. 291). However, they include only a limited
number of modules.

However, other approaches to ranking are available, e.g., the Deep Ranking
Analysis by Power Eigenvectors (DRAPE), which is illustrated in a chapter by a
study of the sustainability of 154 countries based on 21 human, environmental and
economic well-being criteria (See C. Valsecchi and R. Todeschini, p. 267).

Schwandorf, Germany Rainer Bruggemann
Roskilde, Denmarks L. Carlsen
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Part I
Indicators and Theoretical Developments



Some Basic Considerations on the Design
and the Interpretation of Indicators in the
Context of Modelling and Simulation

Jochen Wittmann

1 Indicators: In General, in Mathematics, in Modelling
and Simulation

Indicators are necessary and widely used means to understand system behavior. An
overview on the work concerning multi-indicator systems with focus on a ranking
of the indicator quantities gives (Bruggemann et al. 2014).

This paper does not focus on a ranking of different indication aspects a system
provides, but on aggregation these aspects to a single compressed value.

The definition of “indicator” bases on the fact, that the system (or model)
quantity of interest is difficult to observe or completely hidden within the system.
This kind of definition can be found e.g. in the field of economic sciences as
“Measurable variable used as a representation of an associated (but non-measured or
non-measurable) factor or quantity.” (Businessdictionary 2017). The same reference
gives the representative example for an indicator with the “consumer price index
(CPI) [that] serves as an indicator of general cost of living which consists of many
factors some of which are not included in computing CPI.” (Businessdictionary
2017).

Beside economics, there is a wide range of other domains using indicators
intensively: Biology knows indicator plants or organisms that are representatives
for special types of ecosystems (see e.g. Haseloff 1982), but also indicators in the
sense of summarizing measures for the state of the environment such as the index of
biodiversity for example as a measure for the intactness of an ecosystem (Campbell
and Reece 2003).
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Medicine as well knows indicators, e.g. the vital signs as a measure for the state
of a patient especially in intensive medicine (for example the wide range of patient
monitoring systems (Elliott and Coventry 2012). However, another interpretation
gains in importance with respect on sending alarms if the situation becomes instable
or dangerous. The Early-Warning-Score (HealthcareInstitute 2017; Helios-Kliniken
2017) provides an indicator for the over-all state of the patient and combines a list
of vital signs to a single value. Thus, the indicator excerpts the information of the n
vital signs and combines them to a single, highly aggregated measure.

So far, we know an indicator as an aggregating measure for at least partially
hidden or inaccessible system quantities. In the context of system analysis, mod-
elling, and simulation, however, an indicator is required quite in the sense of medical
applications as a tool to sign whether the systems situation is normal, critical, or
catastrophic. The intention is to aggregate the “control panel” of the system (or
model) under observation with its lots of parameters (levels, tachometers, diagrams
. . . ) to one single value. The expression range of a traffic sign with its colors green,
yellow, and red is the desired level of aggregation for the system manager.

At the end of this short introduction stands the observation, that indicators
in modelling context loose the function of making hidden quantities visible and
measurable because the model description is man-made and virtual and, therefore,
transparent and accessible on every level. What remains is the aggregating and/or
ranking function of indicators, which should be discussed more in detail in the
following sections.

2 Functionality of Indicators

2.1 Typical Application Types for Indicators

Before we deal with the structure of indicators, a distinction should be made at
the application level as to which functional tasks are to be solved by indicators or
indicator systems. In the course of this paper it will be worked out that an exact
specification of the expected function of an indicator is the decisive key for an
effective and efficient use. Therefore, at this point, an (incomplete) list of possible
fields of application for indicators.

2.1.1 Warnings

A relatively simple requirement is to interpret the indicator or the current indicator
value as an indication of whether the current system status is within the normal range
or is cause for concern. In this case, exceeding a previously set limit will result in a
warning about the current system status.
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This use is based on two basic ideas: firstly, the fact that the indicator value serves
as an indicator for a more or less complex and less transparent system state, and
secondly, that several influencing variables can be combined in such an indicator
value, which, as an aggregated value, provide indications of the current behavior of
the overall system.

Typical examples are warnings regarding the condition of complex industrial
plants or in intensive care medicine to summarize the values from various vital
parameters.

2.1.2 Decisions Between Alternatives

While in the first case the scale of the indicator together with an absolute threshold
value comes to the fore and requires special design considerations, the second
field of application requires an indicator design that evaluates different decision
alternatives and thus allows a comparison of these alternatives. Typical examples are
the classic advantage and disadvantage lists for previously given decision scenarios
and a decision for the overall problem derived from the individual arguments
collected in these lists. In this case, the focus is not so much on the state of the
system itself, but much more on a relative evaluation, a ranking that relates the
different scenarios of the decision problem to one another.

2.1.3 Optimization

A much more complex use of indicators is found in the solution of system
optimization tasks. In this case it is assumed that the behavior of a system
can be influenced by setting parameters (the so-called manipulated variables),
whereupon the value of the target variable changes. Through targeted changes of
the manipulated variables, an optimum of the target function value is to be achieved
iteratively during optimization.

The description of the optimization procedure clearly shows the use of indicators:
The indicator fulfils the function of the so-called target function and thus summa-
rizes the system state achieved by setting the manipulated variables on a single scale.
On this scale, the mechanism of the optimization algorithm then takes effect and
iteratively minimizes or maximizes the target function or indicator value.

2.1.4 Modelling Real Systems

Similar to the use for triggering warnings, several indicators can be recorded and
observed simultaneously and their dynamic change in indicator values can be
interpreted as an image of the underlying real system. Once again, the example
from intensive care medicine is the most vivid: the measured vital parameters are
not combined into one indicator variable, but their value progression is visualized
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as if in a control station. The expert observer interprets the dynamics of the
different indicator values as an image of the real system and its dynamics and
draws conclusions about the future behavior of the system. The measured values
are therefore not interpreted in the actual sense as indicators, but as current values
of system variables that determine dynamics.

A significant difference to system modelling must be noted at this point: The
dynamic courses of the indicators are exclusively visualized and must be interpreted
by the observer himself. Relationships between the individual variables are not
explicitly specified in the sense of a model, but can only be assumed by attentive
observation of the functional processes. However, the internal structure of the
observed system always remains hidden. Findings about the structure as well as
predictions about future system behavior remain pure hypotheses in the mind of the
observers; they cannot be derived from the set of indicators. Here lies a substantial
difference to the structural models (glass box), as they are set up in the system
modelling for example by systems of differential equations.

2.2 Structural Alternatives for Indicators

Main confusing fact defining and using indicators seems the definition of the
functionality of the indicator. Not only the reachability of a value seems to be of
importance but also the aggregating and valuating character of an indicator. With
the applications of Sect. 1 in mind and together with the differentiation of the
application types from Sect. 2.1, there is a differentiation concerning the functions of
an indicator easily possible that leads to the following three levels of functionality:

2.2.1 Level 1: Observation and Transmission

The intention is to observe a certain system or model quantity. If this quantity
is not measurable directly, transmission becomes necessary. Transmission means
taking the indicator value instead of the value of the hidden or less accessible model
quantity.

A very simple example should illustrate the distinction between the different
functional levels when using indicators: a box of muesli is given together with the
question of how high the proportion of fruits and cereals is. The box is opaque,
so that a direct answer to the question is not possible. An indirect measure must
be found. In this case, the different specific gravity of the proportions is used to
calculate the quotient between the weight of the box and its volume. This value
serves as an “indicator” for the ratio of grain to fruit in the interior. The indicator
value thus provides information about a system quantity that is inaccessible to the
black box (Fig. 1).



Some Basic Considerations on the Design and the Interpretation of Indicators. . . 7

Fig. 1 Example muesli box I

Fig. 2 Example muesli box II

2.2.2 Level 2: Judging

In the second step, the user is interested in a rating beyond the mere value of the
indicator variable. In addition to the scale of the indicator, a decision must therefore
be made as to whether the measured value is “good” or “bad” or how the indicator
values should be ranked between alternatives when making a decision.

Let’s extend the example of the muesli box by distinguishing the fruit content
in apples, oranges, pears and mangoes and ask the evaluative question: Does the
muesli contain enough fruit to make it taste good? It is obvious that a distinction
between “good” and “not good” is necessary depending on a threshold value of the
indicator.

Thus, judging means introducing a classification for the values of the indicator
quantity and thus introducing classes of interpretation as well (Fig. 2).
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2.2.3 Level 3: Aggregation

Aggregating is the usage mainly applied: not only one but several aspects of a
system are

(a) measured (see level 1)
(b) classified (see level 2),
(c) weighted to each other, and
(d) functionally combined to one resulting single value.

As can already be seen from the example in 2.2.2, the task of judging is in most
cases not a one-dimensional problem but a multidimensional one. In the context of
indicators and system optimisation, it is better to speak of a multi-criteria problem.
Different aspects should be considered when assessing the state of the system
measured by the indicator. As in Level 1 and Level 2, a scale must be introduced for
each of these individual aspects and an evaluation or definition of threshold values
must be carried out.

At this point the problem arises that the evaluation of sub-criteria is contradictory
and therefore no simple and unambiguous decision can be made. Ultimately, the
Hasse diagrams, which are the subject of many contributions in this volume,
represent an alternative solution to this decision problem by defining a partial order
for the subcriteria.

The second fundamental alternative is to combine the individual criteria into an
aggregated value. This can be done by arbitrary mathematical operations. Usually,
the values of the subcriteria are added, but multiplication, exponentiation and any
other connections are also conceivable. In order to compensate for imbalances
with regard to the dimensions of the criteria but also to realize an application-
specific weighting of the subcriteria, the values are usually weighted before they
are subjected to the aggregation function. The aim of this aggregation is always to
determine a one-dimensional indicator value with only one scale, on the basis of
which a clear ranking or a clear decision can then be made.

In the muesli example, the quantity available for each type of fruit must be deter-
mined, a weighting factor must be assigned, and the individual values determined
in this way must be aggregated (for example, by forming totals) to determine the
final indicator value for the “quality” of the muesli. Obviously, the problem of the
weighting of the individual aspects (“Can 2 slices of mango compensate for the
lack of 20 pieces of apple?”) and the decision for the aggregation operation (sum
formation? product? ...) come to light. The advantage of this alternative, however,
is that there is a single indicator value at the end and no incomparability has to be
discussed, as occurs with the use of partial orders.

2.2.4 Hierarchy of the Levels

The hierarchy of the levels is obvious: level 1 describes the access to a quantity
under observation, level 2 deals with the range of the values of the quantity observed,
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and at last, level 3 broadens the functionality by permitting n inputs of level-2-type
mathematically combined to an aggregated level-3-indicator. Of special interest is
the structure of the mathematical mapping calculating from n values one.

Two degrees of freedom offers this mapping to the user: First, the possibility
to give the measured parameter values an additional weight before composition.
Second, the kind of functional composition of the n input parameters itself.

These two degrees of freedom influence the design of a hierarchically aggregated
indicator essentially. After the following, more procedural section concerning the
workflow for building indicators, Sect. 4 will focus on the design of a complex,
hierarchically structured indicator and will discuss weights and composition in some
more detail.

2.3 Fitting Structural Alternatives to the Application Types

Before we dedicate ourselves to the workflow with the design of an indicator in the
3rd section, a short comparison between the levels just explained and the typical
application fields from the previous section should be made at this point.

The selection of suitable criteria is always connected with the specification of a
scale (level 1) and in the vast majority of cases additional classes are formed on this
scale which correspond to level 2 (judging). Thus the application fields “Warnings”
and “Decisions between alternatives” can be treated. For system optimization,
it is necessary that the indicator value be designed in such a way that a new
value assignment for the manipulated variables is constructively possible from the
current value. In addition to judging, the indicator must also constructively allow
the calculation of feedback on the input variables of the system. In the case of
optimization, it is sufficient to consider this system as a black box under observation.
This changes, if the claim of the investigation lies in the modelling of the real
system. Then it is not sufficient to observe and visualize the current values of system
variables as indicator values; rather, in the sense of a glass box, knowledge about
the static and dynamic relationships between the observed variables is necessary.
Consequently, a pure indicator system cannot replace a real model of a system.

3 The Workflow for Building Indicators

If the focus lies on how to get an indicator, it will be essential to bring the
corresponding workflow to mind and reflect its steps in detail. The Fig. 3 shows
the actions in green and the resulting objects in blue colour.

Step 1: scope and borders

The first step is the decision, which model quantities among the complete set
(given by the system or the model) are of interest for the indicator objective. Thus,
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Fig. 3 The workflow of indicator design

the system’s parameter set is reduced to a subset containing the relevant information.
In modelling and simulation theory, this step is analogous to defining the borders of
the system under consideration within the detailed “real world” (Schmidt 1985).

Step 2: scale

The second step is to define an appropriate scale for the values of the selected
indicator quantity. In general, there a two cases to distinguish: First, a metric or
nominal scale defines the indicators scale: In this case, the scale gives no hints
for a ranking and may be supposed as “objective” so far. Second, the indicator
originally comes with an ordinal scale or the designer of the indicator defines
discrete classes for the measured indicator values: In this case, by classification,
a first valuating influence is given and thus certain “subjectivity” is brought into the
indicator development process. This corresponds to functionality level 2 from the
previous section.

Step 3: aggregation method

The third step deals with the aggregation functionality. If there are different
indicator quantities selected, they must be combined to an aggregated single value,
now. Two degrees of freedom have to be determined:

Which weight has a certain value in comparison to the other selected indicator
values? Moreover, which operations shall be used for aggregation? The first question
is often discussed and masks the expressiveness of the second one. A wide
choice of operators is possible: addition, multiplication, potentiation, integration,
minimum/maximum, and any other mathematical operation possible. The choice of
the aggregation function is one of the most neglected decisions along the indicator
design workflow although it offers a wide range of opportunities in modelling
the resulting aggregated value. In this step lies great potential for expressing the
relationships between the single indicator values. Much more can be achieved
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already in this step by modelling these relations individually and accurately
according to the original intention and objective of the indicator.

Step 4: risk measure

The next step in the workflow is the determination of a scale for the expected
risk in consequence of a certain indicator value. Now, the value of the indicator has
to be valued not only according to its own value-range but according to the risk,
the indicator value implies for the system. It is of importance to introduce this as a
properly separated step in the workflow because it contains a new level of valuating
and thus demands for an explicit design decision, too.

Step 5: risk threshold

Normally, the last step transforms the risk-value to a classified scale and thus
gives a simplified status of the system. Often this classification is combined with
setting one or more thresholds for appropriate reactions if the threshold is crossed.
Here we finally find for example the traffic light symbology as one possible
occurrence at the end of the indicator design workflow.

4 The Structure of Complex Indicators with Sub-Indicators
and Weightings

In consequence of Sect. 2 “functionality” and Sect. 3 “design-workflow”, the
general structure of an indicator can be depicted as in Fig. 4. At the bottom, the
system (or model) with all its quantities available serves as a source for the indicator
apparatus. In addition to the explanation so far, not only a modular, but also a
hierarchical structure to build an aggregated indicator is allowed. Thus, in general,
a modular hierarchical indicator design combines the originally measured values of
the system to the combined and interpreted final indicator value on top. The guiding
visualization for an indicator value is the picture with the indicator as the top of an
iceberg representing the complete structure not seen under sea-level respective in
the “black-box” with the complex system under observation in it.

However, what users really get with an indicator is a complex model for
interpreting system state. Therefore, users have to know even the invisible parts
of the iceberg and have to handle indicator design in complete analogy to model
design and model construction as explained in the following section.

5 Complex Indicators as a Distinguished Valuation Model

Following the argumentation of the preceding subsections, indicators in modelling
and simulation are much more complex than simple indicators for inaccessible sys-
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Fig. 4 The general structure of an indicator (s system quantity, i indicator value, w weight, op
aggregation/weighting operation)

tem variables. In fact, indicators can have a complex internal structure, represented
by

– a set of different sub-indicators
– the hierarchical structure of these sub-indicators
– a weighting system
– a freely definable aggregation function.

The conclusion of the deliberations is the fact, that indicators themselves are
constructs that model a valuating system within a more comprehensive system
structure. If we transfer the terms and definitions from modelling and simulation
to the process of building complex indicators, the specification of the indicator
seems to be very analogue to the building of a dynamic model. In fact, indicators
can be considered as a “valuation model” that complements the original “dynamic
model” with its defining parts as declaration of model quantities and the dynamic
description.

For indicator purposes, the dynamic model has to provide a set of model
quantities MQ, thus the indicator part for the model has to include.

A. the set of model quantities
MQ.

B. the set of indicator quantities with
IQ = {iq1, . . . , iqn |iqiεMQ|}.

C. the set of weights
W = {w1, . . . ,wn |wi ε�|}.

D. The aggregated indicator value AIV as result of the aggregation function AF
AIV = AF(iq1, . . . , iqn,w1, . . . ,wn).
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Fig. 5 The general structure of a model component with integrated valuating model by hierarchi-
cal indicator

This is the necessary and sufficient indicator structure for an indicator based on
a simple model. However, to transfer the situation to models based on a modular-
hierarchical model specification, the situation grows more complex. With respect to
Sect. 4 that introduced a hierarchically structured indicator-tree the specification for
the aggregating indicator has to be defined more precisely.

Structural, the situation is as follows: The hierarchical model consists of model
components with three defining parts (without loss of generality, we follow the
model description language of (Zeigler 1990)):

– declarations,
– dynamic description,
– specification of the connections.

The indicator part of a model component consists of:

– indicator quantities (A–C in the list above)
– aggregation description (D in the list above)
– specification of the connections (see Fig. 2)

In result, the model component has to be extended according to Fig. 5.
Some special remarks are necessary concerning the interpretation of the

connections-part of this extended model component specification: As in model
hierarchy, the component has to specify to which other indicator-calculation the
value of the aggregated indicator function AIV has to be connected.

Structural, this connection is completely analogues to the connections of model
quantities in the model hierarchy. Therefore, the connection part for the indicator is
common with the connection part of the standard-modelling part of the component.
Doing so, the indicator-hierarchy according to Fig. 2 can be built by already existing
concepts for building and maintaining model-hierarchies.

Beside this structural identity, it has to be emphasized that the indicator hierarchy
might completely differ from the model hierarchy.

Following precisely the steps for model design (Wittmann 2016) in building
indicators, it becomes obvious that the indicator model has to be submitted to an
indicator validation (according to model validation), and an intensive sensitivity
analysis.
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All these steps of the design workflow have to be done with respect to the initial
intention for introducing the indicator. This argumentation follows in full analogy
the argumentation that good models have to be as detailed as necessary and as
abstract as possible to allow efficient model experiments on the one hand and to
meet the targets on the other hand. The same objective oriented design and usage
should be direct the design and the interpretation of indicators.

6 Test and Validation of Indicator Models

Even if the preceding strict distinction between the (dynamic) model of the real
system and the indicator and evaluation model based on it may be too theoretical for
some practical examples, it emphasizes that even for the simple use cases, at each
step of the argumentation and interpretation it must be differentiated whether this
step refers to an abstract representation of reality or whether it deals with evaluation
in the sense of an indicator model. The system model can do completely without
indicators and be executable, the indicator model as introduced in the previous
section, on the other hand, cannot work without the system model.

In addition to this differentiation in design, the differentiation between the system
model and the indicator model has a further advantage: firstly, it makes it obvious
that the indicator model must also be validated, and secondly, it constructively
determines the way in which such validation is to be carried out. Validation can
only take place according to the rules that apply to the validation of the system
model: There must be sufficient agreement with regard to the requirements between
the results derived from reality and the results generated with the aid of the indicator
model.

This throws us back to the fields of application and functionalities for indicators
classified at the beginning and hopefully also makes clear why this classification
work was carried out in advance. The validity of an indicator (system) can only be
validated in relation to the specific requirements to be specified for each individual
application. An abstract “better” or “worse” for one or the other indicator approach,
detached from the objective in the specific application, cannot exist.

Constructively and in addition to the work steps for the creation of an indicator,
the user has the task of specifying

(a) the purpose of the indicator
(b) the accuracy with which the indicator is intended to fulfil this purpose
(c) the examples to be used to test the correspondence between the results of the

indicator and reality.

In the field of software engineering, one speaks of the requirements for a system
(a), the degree to which these requirements must be fulfilled (b) and the test cases
with which the fulfilment of the requirements can/must be proven.

Strictly speaking, the task to develop an indicator begins much earlier than
normally assumed with an explicit specification of the validity criteria for the
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planned indicator and it ends much later than assumed with testing the indicator
against the previously established validity criteria.

7 Some Summary Remarks

By classifying indicators according to fields of application and internal structure,
the article leads to the insight that an indicator is an independent evaluation model
that is independent of the actual system model. Due to its model character, however,
like all models it is subject to quality control by careful validation with the usual
consideration of validity, accuracy and sensitivity (e.g. with regard to weighting
factors in the aggregation of composite indicators).

In contrast to multi-criteria methods based on partial orders, aggregated indicator
systems lead to the one-dimensional decision aids popular with the user (e.g. in the
form of a traffic light that reflects the system state), which very quickly convey
the current system state, but in the case of a system warning require knowledge
about the structure of the aggregation rules in order to determine the partial indicator
responsible for the error display. Partial orders, on the other hand, do not make a
final decision for incomparable alternatives. Instead, they highlight them and leave
the final decision to the user. In the event of a warning, however, the user also has
knowledge of the structures that lead to the warning and is usually better able to
detect its cause.
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Indicators in the Framework of Partial
Order

Filomena Maggino, Rainer Bruggemann, and Leonardo Salvatore Alaimo

1 Introduction: Indicators and Management of Complexity

The topic of indicators has been and continues to be considered a “niche field” in
the methodological scientific debate. However, during the last decades, this issue
has been discussed in any conference, workshop and seminar on measuring socio-
economic dimensions. This is not a specific issue of the natural and social sciences.
Indicators are used and constructed everywhere and their functions in contemporary
societies are widespread. We can observe their increasing importance also in the
media and in the public debate. Governments and international organizations use
them to compare and rank countries on some particular topics, like quality of life,
wellbeing or sustainability.

Although the term indicator is often used as a synonym for index, in statistics
it represents a more recent term indicating indirect measures of phenomena not
directly measurable. In this perspective, an indicator is not simple crude statistical
information but represents a measure organically connected to a conceptual model
aimed at describing different aspects of reality (Maggino 2017a). In brief, an
indicator is what relates concepts to reality through observation. Indicators should
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be developed and managed so that they represent different aspects of the reality.
They picture the reality in an interpretable way, allow meaningful stories to be told
and support evaluations and decisions.

Therefore, any discussion of indicators must start from two fundamental ques-
tions: what are indicators? and why are they so important?

In order to fully understand the importance of indicators, complexity needs
to be addressed. In his “millennium” interview on January 23, 2000 (San Jose
Mercury News), Stephen Hawking said: I think this century will be the century
of complexity (Gorban and Yablonsky 2013). We can encounter this concept in
different fields (e.g., physics, chemistry, biology, engineering, software, social
sciences). It is sometimes abused and used interchangeably with other ones (e.g.,
large, complicated), nevertheless having different meanings. It has no precise
meaning and no unique definition (Erdi 2008). This notion does not belong to a
particular theory or discipline, but rather to a “discourse about science”. According
to Morin (1984), we cannot approach the study of complexity through a preliminary
definition: there is no such thing as “one” complexity, but “different” complexities.

“Complex” is often associated with the concept of “system” and the topic of
“complex systems” is a subject of great scientific debate and interest. While a
simple system has a small number of components with defined roles and clear
rules, a complex one contains many elements, which are interdependent and interact
non-linearly. A system isn’t just any old collection of things. A system is an
interconnected set of elements that is coherently organized in a way that achieves
something (Meadows 2009, 11). This definition takes up and updates the idea
expressed by Aristotle in The Politics: the whole is something over and above its
parts, and not just the sum of them all. The analysis and understanding of complex
systems require approaches allowing more concise views. The guiding concept is
synthesis. Generally speaking, synthesizing responds to a need for concreteness
in the relation with things. It is justified by the fact that knowledge of complex
phenomena involves some form of reductio ad unum (Sacconaghi 2017). The correct
way of understanding those phenomena is to conceive them as a whole, adopting a
synthetic approach.

Getting in contact with reality always involves some process of synthesis, more
or less conscious, consisting in the reduction of a multiple in units. This reduction
could be a risk. Any synthesis should be a stylization and not an over-simplification
of reality.

Indicators play a key role in describing, understanding and controlling complex
systems. An indicator is, therefore, a tool for understanding reality. It is not
necessarily a number. It can be an object, a map, an image. It is what allows us
to grasp the complexity and guide us in understanding it. There is a large amount
of literature on the use of metaphoric images for the representation of phenomena,
especially for complex ones (Lima 2013; Tufte 2015). In Fig. 1, we can see an
example of the representation of multidimensional poverty in Italy (2008) and
its dynamics (Lima 2013). This infographic shows how poverty “red thread” has
various weight, that depends on the different criterion and perspective that the
Italian National Institute of Statistics – Istat used to photograph the society. As
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Fig. 1 The Italian Poverty Red Thread 2008. This map of the poverty line in Italy, realized by
Mario Porpora, is organized according to family typologies (number of family members), and
further categorized by location (the north, center, or south of Italy). (Source: Lima 2013)

clearly shown, percentage values numerically alike have a different absolute value.
In addition, the information is immediately understandable. It is clear that poverty is
spread differently in different macro-areas of the country: 5.2% in the North; 6.9%
in the Centre and 32.2% in the South.

According to Porter (2001), the “soft” power of numbers and indicators is
characteristic of our time. If we hope to use indicators and other measures to make
the world navigable in simpler terms, let us be careful what we wish for. It is
essential that what we are going to build is an authentic representation of the reality,
preserving the systemic characteristics of the phenomena defined by elements and
their relationships. In this perspective, each indicator measures and represents a
distinct constituent of the defined phenomenon and all of them do not represent
a pure and simple collection of indicators but are part of a complex system, a
multi-indicators system, in which. In other words, only a complex instrument (a
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multi-indicators system) allows a full and correct understanding of complexity (see
e.g., Bruggemann and Patil 2011).

Meadows (2009) defines a system as “an interconnected set of elements that
is coherently organized in a way that achieves something” (Meadows 2009,
11). This definition identifies the three main components of a system: elements,
interconnections and functions. A system is not just a collection of things; they
must be interconnected and have a purpose, i.e. they must be aimed at achieving
an objective. The purpose of a system is often difficult to understand. “The best
way to deduce the system’s purpose is to watch for a while to see how the system
behaves” (Meadows 2009, 14). From this Meadows’ statement, it can be deduced
that a system has its own behaviour, different from its parts and that, like any
behaviour, it can change over time. Each system is based on a stock, i.e. the elements
that constitute it in a given time. These stocks change over time due to the effect
of flows. “Flows are filling and draining, births and deaths, purchases and sales,
growth and decay, deposits and withdrawals, successes and failures” (Meadows
2009, 18). Meadows highlights the dynamism of the systems, their adaptation over
time. One cannot understand them without understanding their dynamics of stocks
and flows. Obviously, the change can concern both the system as such and one or
even all of its essential components. Change can also be traumatic and unexpected.
Most of systems are able to withstand the impact of drastic changes thanks to one
of their fundamental characteristics, resilience. “It is both the ability to adapt to
change by evolving and the ability to resist it by restoring its initial state. Resilience
presupposes change: it is not static being, but becoming” (Alaimo 2020, 21). A
system is, therefore, an organic, global and organized entity, made up of many
different parts, aimed at performing a certain function. If one removes a part of
it, its nature and function are modified; the parts must have a specific architecture
and their interaction makes the system behave differently from its parts. Systems
evolve over time and most of them are resilient to change.

Simple systems are characterized by few elements and few relationships between
them; they can be analyzed analytically. Complex systems, on the contrary, are made
up of many elements and many relations of different types; they can be analyzed
only in a synthetic way. In a complex system, elements and connections, besides
being numerous, are various and different.

A particular type of complex system is the Complex Adaptive System (CAS).
They add to the other characteristics typical of complex systems the ability to
adapt. CASs are able to adapt to the world around them by processing information
and building models capable of assessing whether or not adaptation is useful. The
elements of the system have the main purpose of adapting and, in order to achieve
this purpose, they constantly look for new ways of doing things and learning,
thus giving rise to real dynamic systems. These systems challenge our ability to
understand and predict. “It is evident that the main characteristics of complex
adaptive systems are typical of social organizations and phenomena. Each of them is
made up of a network of elements, which interact both with one another and with the
environment. They are multidimensional and their different elements or dimensions
are linked together in a non-linear way. They evolve over time, modifying both
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Fig. 2 The components of the hierarchical design

their dimensions and the links between them. The measurement and analysis of
social organizations and phenomena requires the definition of systems of indicators
capable of capturing their different aspects. As can be easily understood, these
systems are dynamic, since they have to adapt to the changes in the measured
phenomena. In simple terms, they are CASs and can be monitored and measured
through systems of indicators that are CASs themselves” (Alaimo 2020, 26–27).

Developing indicators starts from a need of knowledge. But in most cases the
only way that can be followed is generating indicators, thus projecting a system into
a collection of indicators. Indicators should be developed, through a hierarchical
design, requiring the definition of the following components, shown in Fig. 2:

1. Conceptual model

In social sciences, all measurement processes start with the definition of the con-
cept to be measured (Lazarsfeld 1958). This operation is a process of abstraction, a
complex stage that allows us the identification and the definition of:

• the model aimed at data construction,
• the spatial and temporal ambit of observation,
• the aggregation levels (among indicators and/or among observation units),
• the models allowing interpretation and evaluation.

2. Latent variables and their dimensions

Each variable represents an aspect to be observed and reflects the nature of the
considered phenomenon consistently with the conceptual model. The identification
of the latent variable is founded on theoretical assumptions (requiring also an
analysis of the literacy review) also about its dimensionality. According to its
level of complexity, the variable can be described by one or more factors, called
dimensions. Thus, we can observe uni-dimensional (when the definition of the
considered variable assumes a unique underlying dimension) or multidimensional
(when the definition of the considered variable assumes different underlying factors)
variables.

This identification will guide the selection of the indicators. The correspondence
between the defined dimensionality and the selected indicators has to be demon-
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strated empirically by testing the selected model of measurement. The specification
of the latter refers to the relationship between constructs and indicators. In literature,
we distinguish two different conceptual approaches: reflective and formative.1

3. Basic indicators

In the majority of the cases the defined variable can be measured only indirectly
through observable elements which are called indicators of the reference variable.
Each basic indicator represents what can be actually measured in order to investigate
the corresponding variable. In other words, the indicator is what relates concepts to
reality.

We must specify that in all phases of hierarchical design is involved subjectivity.
Measurement is not an arbitrary process, but necessarily involves subjectivity.
There will always be the influence of the subject’s point of view: in the definition
of phenomena; in the definition of the hypotheses on reality; in the selection
of indicators; in the choice of statistical tools. Subjectivity represents one of
the dimensions inevitably involved in defining concepts, making measurement a
complex exercise.

The proper and accurate application of the hierarchical design allows defining
a complex structure in which each indicator measures and represents a distinct
component in the description of the phenomenon. Different types of indicators can
be present within a system, contributing to its complexity.

Within a system, indicators may show different characteristics related to (i)
the perspective through which the indicators are reporting the phenomenon to
be observed, (ii) the level of observation (e.g. micro/macro, internal/external),
(iii) the nature of the observed characteristics (e.g., objective/subjective, qualita-
tive/quantitative), (iv) the level of dis/aggregation, (v) the communication context
in which the indicators are used, (vi) the interpretation attributed to the indicators in
statistical analyses, (vii) the criteria of their adoption, and (ix) their quality.2

Indicators are also classified according to the type of data they contain. We can
have continuous (metrics), discrete (counts, we can perform operations of a linear
space can be performed, if meaningful, such as weightings, weighted sum as utility
function), ordinal (ratings/ranks, for which at least comparisons are possible) and
nominal data (descriptive, but restricted applicability, for instance stratifications).

One important question we have to address is how many indicators there should
be within a system. There is no single answer. Choosing too few of them carries

1For the main characteristics of these two different approaches, see Maggino (2017a). The
literature about the difference between these two tipes of models is rich. As shown by Alaimo
and Maggino (2020), the state of the theory on formative models has been in intense discussion for
some years. Several authoritative scholars (for instance, Edwards 2011; Aguirre-Urreta et al. 2016)
have questioned the validity of this method and published appeals to no longer host its applications
in scientific journals. The debate seems to be far from being resolved. We would like to point out
that the choice between the two types of model does not depend directly on the researcher, but
exclusively on the nature and direction of relationships between constructs and measures.
2For more information, see Maggino 2017a.
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the risk of not considering fundamental aspects of the phenomenon. In general,
multiple indicators make it possible to measure conceptual dimensions with greater
precision (multiple measurements make it possible to compensate for random
errors), accuracy and discriminant capacity. But, using too many of them can lead
to errors and disturbances in the measurement (information noise, like redundancy).
The selection must always be guided by the conceptual model, the basis of each
system.

Dealing with a multi-indicators system also raises the question of finding tools
and methods that allow us to analyse how they are related to each other. The
increasing dissemination and use of indicators in recent years have highlighted
the weakness of traditional approaches for their treatment. The multi-indicators
systems require approaches allowing more concise views able to summarizing the
complexity. In this case, using traditional statistical techniques (in particular, those
of dimensional reduction: principal component analysis, factor analysis, etc.) is
not functional. The guiding concept, as previously written, crossing all possible
strategies is synthesis (Maggino 2017b). It may concern two different aspects of
the system (Maggino 2009), the units (which aims at aggregating the individuals
value of one indicator observed at micro level; this synthesis should allow the
created macro units to be compared – social groups, age groups, geographic areas –
with reference to the indicators of interest) or the basic indicators (which aims at
aggregating the values referring to several indicators for each unit, micro or macro).

Focusing on the latter, synthesis can be faced through two different approaches,
aggregative-compensative and non-aggregative. The aggregative-compensative
approach3 is the mainstream method to the synthesis. In fact, the term “aggregation”
is often use as a synonym of synthesis is and, implicitly or not, it is generally taken
for granted that “evaluation implies aggregation”. However, many critical issues
affect this approach. First of all, the treatment of ordinal data. To be aggregated and
processed in an effective way, we must consider them as “numbers”; thus, they must
be scaled to numerical values. Unfortunately, this often turns out to be inconsistent
with the nature of phenomena and produces results that may be largely arbitrary,
poorly meaningful and hardly interpretable.

Another question regards the relationships among indicators. According to
Fattore and Maggino (2014), it is clear that many data systems available to social
scientists often comprise weakly interdependent attributes; this situation is a major
obstacle to effective synthesis through aggregative procedures. The composite
indicators approach results inappropriate in these cases, because all its procedures
are aggregative and (even partially) compensative. Another problem is linked to the
interpretation of results. The values assumed by composite indexes often tend to
be representative of situations profoundly different from each other, as a result of

3For a review of the aggregative-compensative approach, please see Maggino 2017b, Mazziotta
and Pareto 2017.
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different values in the elementary indicators, or similar situations between them.4

This can lead to misleading conclusions. One possible solution to the weakness of
the aggregative-compensative methods can be to synthesize not necessarily through
aggregation. This need has led the research to focus on developing alternative
methods, the non-aggregative approaches. They respect the ordinal nature of the
data and the process and trends of phenomena (not always linear but more frequently
monotonic) and avoid any aggregation among indicators. One of the most useful
references in this perspective is the Partial Order Theory (see for instance Davey
and Priestley 1990). Non-aggregative approaches are focused not on dimensions
but on profiles, which are combinations of ordinal scores, describing the «status»
of an individual. Profiles can be mathematically described and analyzed through
tools referring to that theory, in particular Partially Ordered Set (POSET). Through
these tools, information can be extracted directly from the relational structure of the
data, obtaining robust results, not based on binding hypotheses. This approach gives
an effective representation of data and their structure.5 The application of POSET
methodologies lead to conclusions much more meaningful, robust and consistent
than those based upon traditional statistical tools. Moreover, focusing on the profiles
allows having a “synthesis” always representative of the effective combinations
among basic indicators. This avoids flattening the differences between different
combinations in a single numerical value and misinterpreting the results.

2 Overview About Concepts in Partial Order Theory

2.1 Two Basic Approaches

Partial order theory is a mathematical discipline which combines elements of Graph
theory and Combinatorics. In the broadest sense is Graph theory that branch of
Discrete Mathematics which studies relations. Within the context of the analysis of
indicators the relations are defined on the basis of profiles. Depending on the type
of data of the indicators two main lines of analysis approaches can be defined:

1. Ordinal data: The corresponding indicators may have finite and discrete values
of different degrees. Let Q(k) the set of values of the kth indicator, then

∏
Q(k),

k = 1, . . . ,m, m the number of indicators, is the set of all possible value’s
combinations, i.e. of all possible profiles. The analysis of this set as described

4For instance, in two papers on sustainable development and regional differences in Italy, Alaimo
and Maggino show how similar values in composite indicators assumed by different regions
can represent similar or even completely different combinations in basic indicators (Alaimo and
Maggino 2018, 2020).
5In particular, the computations performed to assign numerical scores to the statistical units involve
only the ordinal features of data, avoiding any scaling procedure or any other transformation of the
kind.
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by Fattore 2016, Fattore et al. 2011 allows powerful conclusions and should be
called the value-based approach, because the realization of a profile by objects
does not play a leading role.

2. Metric data: The set Q(k) is not finite and
∏

Q(k), k=,1, . . . ,m, is an infinite
set. Although a powerful approach exists to analyse this infinite set by methods
described by Kerber 2017, Kerber and Bruggemann (this book, and 2015),
Bruggemann and Kerber 2018, in practical applications the set of objects is
considered, together with their profiles. This approach is focusing on objects,
which have a profile, corresponding to the set of indicators and should therefore
be called the object-based approach. As in biology, chemistry and physics
measured data are the basis for research, the object-based approach is usually
applied. See for instance Carlsen and Bruggemann 2017, Carlsen 2018.

2.2 Interplay: Indicators and Objects

The interplay of indicators and the objects and thus the role of graph theory, is more
easily seen in the object-based-approach, which will be described in more details in
the following.

In the field of indicators applied to objects the graph -theoretical relations can
be

• Between indicators
• Between objects (being described and quantified by indicators) and
• Between objects and indicators.

In many cases indicators are applied in the framework of ranking studies, hence
the relations studied by graph theory are directed relations; and the graphs directed
graphs. Ranking has to do with ordering, hence the directed relations should obey
axioms, namely those of partial order theory: They have to be reflexive (an object
must be comparable with itself), antisymmetric, if an object x is better than object
y then the reverse can only be true if the two objects are identical (often in partial
order theory this axiom is relaxed by replacing ‘identical’ with ‘equivalent’) and
finally transitive, if object x is better than object y, and object y is better then object
z, then this implies that object x is better than object z.

The study of directed graph based on order relations leads to a certain type of
directed graphs, namely to acyclic triangle free directed graphs, often called Hasse
diagrams (or simply line diagrams). Hasse diagrams are an appropriate visualization
of partially ordered sets (but not the only ones). Although the axioms of order theory
sound plausible, they impose a very important additional requirement on indicators
(if applied in ranking studies): Any single indicator implies an order among objects.
A consequence is that even if indicators induce an order among objects they may
be counter current. A drastic example is provided by environmental chemistry: A
chemical may be considered as hazardous, if its tendency to accumulate in biota is
high. This accumulation tendency can be measured or estimated Log KOW. Another
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typical aspect is its toxicity. Toxicity is usually measured as that concentration (of
the chemical) where p% of test organisms show an adverse effect (LC). In contrast
to accumulation a large value of LC implies a lower toxicity. Hence both indicators
together will be meaningless, a re-orientation is necessary to find a co-monotone
behaviour in both aspects. When a multi-indicator system is conceptualized in order
to support decisions in a complex system then the above requirements will select
out many candidates.

2.3 Indicator Systems

A final system of indicators leading to a Hasse diagram (or a poset if the
visualization is not in the focus of the study) can be seen as a system, where the
parts (the single indicators) are combined to a graph which indeed allows more
insight into the indicator system and the objects described by the indicators, then
an ensemble of single indicators. The Hasse diagram can be in two extremal states,
both visualized by extremely simple Hasse diagrams:

(i) No relation among the objects -AC (antichain)
(ii) All objects are related – CC (complete chain)

The first case (AC) may be a result of information noise or by an incorrect
orientation, the second case (CC) leads to a ranking, i.e. to an ordering of all objects
under all the indicators applied. In reality the Hasse diagram is in a state between the
two extremal cases and in the mathematically oriented literature there are attempts
to measure the complexity of Hasse diagrams (Luther et al. 2000; Restrepo 2014).
The degree, measuring the state of a Hasse diagram (or of the partial order it is
representing) with respect to AC or CC is of eminent importance and is certainly
not available if the indicator-system are seen only as an ensemble of many single
indicators.

The fact that a Hasse diagram is somewhere between the two states leads
immediately to the second mathematical component, namely combinatorics. The
question is, as to how far a ranking can be found without an aggregation of the
indicators, for example by weighted sums. The conceptual idea is very simple: Can
we find an order preserving map, by which a poset is mapped into an order, where
all objects are mutually comparable. For example: Three indicators leading to a
Hasse diagram of type (AC) imply that there are six such mappings! When a Hasse
diagram belongs to type (CC) then the requirement of “order preserving” implies
that only and only one mapping can be found. Generally, however one obtains a
number of order preserving mappings between 1 and 2m, with m being the number
of indicators. Once such a set of mappings is obtained, statistical measures can be
applied to characterize this set of mappings. In the literature often just mean values
are used, to describe in the average the position each object has in the image of each
mapping (Rkav: average rank). Although numerical devices are known (Bubley and
Dyer 1999) and also a mathematically extremely elegant approach (De Loof et al.
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2006), the task to derive from the Hasse diagrams easily understandable estimation
methods for Rkav is still an important object of research in the future (see also
Bruggemann and Annoni 2014; Bruggemann and Carlsen 2011, 2014; Bruggemann
et al. 2004). It should be noted that in the field of research of indicator systems the
pure rendering of results by an effective but hardly understandable method cannot
be satisfying, because finally it is of main importance to understand, i.e. to trace
back the reason, why certain objects under certain indicator systems get a certain
position in the ranking!

The extremal case (AC) throws another light on the idea that an indicator
system is more than its parts: The Hasse diagram is of no direct help as there
is no order relation among the objects. Nevertheless, the indicators themselves
have a different influence why order relations among objects are broken, thus
inducing new relations, namely among indicators (Bruggemann and Voigt 2011,
2012; Bruggemann and Carlsen 2014).

Even if the Hasse diagram is somewhere in the middle between AC and CC,
algebraic concepts (taken from universal algebra, Davey and Priestley 1990) such
as congruence, linear sums and separated sums, are providing powerful tools to
analyse the indicator system. Congruence, for instance provides a methodological
framework, as to how far a family of subsets of objects can be considered as a
CC-system, i.e. not the objects themselves can be ranked, but appropriate selected
subsets of objects (Carlsen and Bruggemann, Soc.Ind. Res., Febr., 2019 submitted).
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Assessing Inhomogeneous
Indicator-Related Typologies Through
the Reverse Clustering Approach

Jan W. Owsiński, Jarosław Stańczak, Sławomir Zadroz̈ny,
and Janusz Kacprzyk

1 Introduction

The paper addresses the following pragmatic problem: We are given a typology of
spatial units (here: Polish municipalities, close to 2500 in number), elaborated for
definite planning purposes (see Śleszyński and Komornicki 2016). The typology
resulted from a complex procedure, involving a number of indicators. Moreover,
the set of indicators used was not uniform across all (types of) municipalities, for
the procedure had a “branching” character, implying different subsets of features for
particular types. At the same time, the number of types had to be kept “reasonable”
for pragmatic purposes. This gives rise to several questions, not only on the
“validity” of the typology, but also its “meaning”, and, last but not least, “intuitive
appeal”, so important from the policy making standpoint.

In view of these questions a study was performed, aimed at (1) providing
a comparative material for the typology elaborated, (2) basing this comparative
material on a uniform set of data (variables, indicators), (3) identifying the effects of
inhomogeneity of the original criteria and use of incommensurable variables, hard
to express on a par with the others.

This exercise was based on the “reverse clustering” approach, developed by the
authors (Owsiński et al. 2017a, b; 2021). This approach consists in attempting to
recreate a given partition, PA, of a set of n objects, on the basis of a set of data on
these objects, X, composed of vectors xi, xi = [xi1, . . . ,xim]. We wish to obtain a
partition PB of the analysed set of objects that is as close to PA as possible (e.g. in
terms of the Rand index), by applying an optimisation procedure, described in the
references mentioned.
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The data set
analysed X

The prior par��on
of X, i.e. PA

The clustering
algorithms and the
data processing
parameters: Z

The search (optimisation) procedure:
maximising the Q(PA,PB)

The criterion
Q(PA,PB):
similarity of
the two
partitionsThe obtained

partition of X:
PB

Fig. 1 Schematic view of the reverse clustering procedure

The optimisation procedure is applied to the vector Z, describing the selected
clustering algorithm that yields the partition PB. This vector is composed of: (i) the
choice of the clustering algorithm, (ii) the choice of its essential parameter(s) – e.g.
the number of clusters, or some threshold distance etc., (iii) the weights, or choice,
of variables, (iv) the distance definitions used (e.g. as expressed through Minkowski
exponent).

The working of the entire procedure of reverse clustering is schematically shown
in Fig. 1.

The preliminary results from the concrete study, considered here, were reported
in Owsiński et al. (2018). Now, besides presenting an ampler view of the results,
we focus on the broader implications for the use of a similar approach in other
settings, where the “composite indicator” context applies, while either continuous
variables are used along with the “strongly” discrete ones to categorise objects, or
the procedure applied involves branchings, so that, in effect, a single-axis-indicator
might not render appropriately the resulting categories.

2 The Study with Its Narrow and Broader Motivations

We present here a study, in which the data on all of Polish municipalities are
analysed in the presence of a definite typology of these municipalities, elaborated
for a concrete (spatial planning) purpose by the specialists from the Institute of
Geography and Spatial Organization of the Polish Academy of Sciences (Śleszyński
and Komornicki 2016). We apply in this context the reverse clustering approach,
meaning that we try to find the parameters of the broadly conceived clustering
procedure, which, when applied to the data on the municipalities, yield a possibly
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similar typology to the one we are given at the outset, in this case – provided by the
geographers.

The study had, therefore, three essential motivations:

1. Yet another check on the capacities and effectiveness of the reverse clustering
approach (Owsiński et al. 2017a, b; 2021), for yet another set of data and for a
different kind of substantive prerequisites;

2. Analysis of a typology, given by a complex and “branching” process, so as to
derive conclusions on the “deviations” of this typology from the one obtained on
the basis of a coherent, unified data set on the same subject, this analysis leading,
hopefully, to some broader conclusions; and

3. The substantive analysis of the given data set, for comparison with the original
typology, and, perhaps, some tangible substantive conclusions.

The broader meaning of this exercise (implied in the motivation 2 above) results
from the following image of the situation:

There is a set of data, concerning a collection of entities, describing certain
features of these entities. We wish to categorise these entities into a relatively small
number of categories (much smaller than the number of entities). (We abstract here
from the question whether we deal with an entire “population” or a “sample”. In the
latter case we assume the “sample” is “representative”.) In general, it would often be
convenient, if the categories formed a linear order (for the reason of categorization
in many cases refers somehow to the “composite indicator” context), although it
may happen that they do not. Namely, in many contexts, even if we are aware of
the essential multidimensionality of the subject matter, we deal with some sort of
“general axis”, corresponding to the potential or hypothetical “composite indicator”,
this axis representing the “magnitude / intensity / graveness of the phenomenon”,
to which the indicator is supposed to refer. In this particular case we deal with
the “urban-rural-peripheral” axis, and the potential divergences are associated with
some special phenomena and corresponding groups of units, e.g. urban areas
featuring different patterns of development (or, indeed, decay), or peripheral rural
areas, where the share of settling urbanites plays an important role (see also Fig. 3
further on).

We assume that we do dispose of a certain categorization of the entities in
question, this categorization coming out of a special procedure, which involves, say,
categorical variables, branchings, various data sets in various branches of the proce-
dure, etc., like in the examples of Fig. 2, showing two typical procedures, related to
social care / unemployment benefit registration and relevant data production, which
can hardly be translated into a unified data set and easily processed as such.

Having the data set and its partition, we wish to recreate the partition for this data
set as faithfully as possible, using clustering. We shall not be using the “decision
variables” of the procedure (or, if used, they will be treated like other variables), and
the data will be the same for all objects. In the here analysed case we used a different
set of variables, as our assumption was to use only the publicly available data.
The substantive sense of the data remains, though, except for one or two original
variables, not accessible to us, very much the same.
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Fig. 2 Two examples of the procedures, leading to the kind of prior categorization of interest here

From the analysis we wish to get an image more “naturally” related to the
data and to compare it with the original categorization, in terms of: (a) existence
of potential “twists” or “artifacts” in the original partition, resulting from the
application of “decision variables”, “thresholds”, etc.; (b) the number and the nature
of categories (clusters) obtained in a more flexible environment; and (c) detecting
the potential outliers, which might, again, be overlooked in the original partition.
In the case there is a definite need of the categories to form an ordering (along
the hypothetical axis of a “composite indicator”), the exercise might also serve to
(d) confirm or put to doubt the possibility of actual formation of such an order in a
more “natural” manner. This kind of situation is schematically depicted in Fig. 3. We
would like to indicate, in the context of this illustration, that two quite typical issues
arise, in connection with a potential partition of a data set that in its general shape is
distributed along the already mentioned “main indicator axis”, namely: 1. Frequent
arbitrary manner of cutting into pieces the “cloud” of data points, stretching along
this main axis; 2. In the cases of “branchings” out of this main axis the question of
their relation to the main axis (which ones lie along the main axis, and which one
diverge from it?) and the existence of an actual separation from the main axis.

An example of such a situation may be also provided by the case of poverty
measurement, and the categories, established in this context. In the measurement
the leading variable seems to be income per capita in the household, social and
other benefits included, while other variables, such as number of persons in the
household, ages of household members, their education, health conditions, housing
situation, etc., being usually either highly or at least significantly correlated. There
may, however, be yet another variable, or group of variables, that are less correlated,
but for some definite reason (e.g. crosschecking) included in the measurement. Say:
driving license? obesity? political attitude? arms possession?
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Fig. 3 An image of categorization, for which the reverse clustering would reveal divergences
from a “natural” partition. Rounded shapes indicate objects, belonging to (five) clusters “along
the primary indicator axis”, while the rectangular ones – belonging to (two) “divergent clusters”

3 On the Reverse Clustering

As outlined in the Introduction, the reverse clustering technique aims at identifying
the partition PB of a certain set of n entities into clusters (Aq, q= 1, . . . ,p), which, for
the given set X of (descriptions of) these entities, X = {xi = {xi1, . . . ,xim}}i = 1, . . . ,n,
and a given a priori partition PA of these entities, is the closest to PA. In the search
for the best PB we apply a natural measure of similarity, or distance, between
the partitions, namely the Rand index (Rand 1971) or some of its variations (see,
e.g., Hubert and Arabie 1985). The Rand index in its original form counts, for two
partitions, the following four numbers: of pairs of objects which fall into the same
cluster in both partitions (a), those that are in different clusters in both partitions (b),
and that are in the same cluster in one partition and in different clusters in the other
(c and d). The original Rand index is simply the quotient: (a + b)/(a + b + c + d),
with a + b + c + d = ½n(n − 1), of course. The search is performed with
the evolutionary algorithm of own design (Stańczak 2003), featuring two-level
selection: of individuals and of the operations.

Although it could be argued that the very problem of the reverse clustering is
equivalent to some kind of “supervised classifier choice”, it is, in general, not.
Namely, (1) the aim is not to provide the basis for classifying individual incoming
new entities, one after another, but rather to map entire new samples (of cardinality
perhaps even much bigger than n) into the obtained partition PB; (2) the new
partition PB needs not be composed of the same number of clusters as PA; (3) in
particular, the approach may lead to the identification of outliers, not entering any
of the essential clusters, forming the partition.

In addition, let us emphasise that the generic problem statement encompasses, in
fact, a whole variety of the potential situations, having quite different interpretations,
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and therefore also the statuses of the obtained solutions. A broader account on
this is provided in Owsiński et al. (2018, 2021), and we shall only sketch here the
respective image. We can speak, namely, of two “axes” in this image:

(I) the degree of “certainty” of PA, meaning that this partition may be either a
“solid” one, e.g. in our case, the classification of the municipalities according
to provinces (a province constituting a cluster), or just a hypothesis (an expert
opinion);

(II) the degree of association of the partition PA with the data set X (the known
or assumed foundation of PA on the actual data set X) – in the above case
of provinces and municipalities there is no such association, while an expert
would most probably base her/his opinion on the data from X, when, for
instance, designing a functional typology, like in the present case, although
not necessarily in an exact manner.

In this perspective, Table 1 presents the relevant examples of situations poten-
tially encountered.

As already indicated, the vector Z of the clustering procedure parameters sought,
is composed of the choice of the algorithm itself, the crucial parameter(s) of
the algorithm, the weights of variables, and the scaling of the distance measure
(Minkowski exponent). The algorithms accounted for are k-means and similar
(Steinhaus 1956; Lloyd 1957), general hierarchical aggregation (parameterised with
the Lance-Williams formula, see Lance and Williams 1966, 1967), and DBSCAN
(Ester et al. 1996), as a representative of the local density-based algorithms. Thus,
quite a broad range of algorithms is covered, with, indeed, a very significant scope
of search, regarding the variables composing Z.

Given the composition of the optimised Z one could include in it, for instance,
an explicit feature selection procedure or another operation, oriented at the shaping
of the description space, as, say a preprocessing stage. We preferred, though, to
encapsulate the entire procedure in one optimisation task, aiming integrally at
getting possibly close to PA, including all the parameters we thought would be
important.

4 The Case Studied

The particular case here studied (described also preliminarily in Owsiński et al.
2018) concerns the typology of close to 2500 Polish municipalities, elaborated for
definite planning purposes by a team from the Institute of Geography and Spatial
Organization of the Polish Academy of Sciences (see Śleszyński and Komornicki
2016). As already indicated, the typological procedure was quite complex, with the
use of a variety of variables and criteria, and including branching decisions. For our
purposes here suffice to quote the “headings” of the typology elaborated, as given
in Table 2.
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Table 3 Ordering of categories according to population densities, persons per sq.km

Categories 1 3 5 2 4 6 9 7 8 10

Population density 2025 1312 379 166 113 72 61 55 48 45

It is obvious from Table 2 that the main axis of the distinctions introduced is –
quite naturally – the urban-rural one, meaning the degree of urbanisation, here
mostly reflected through population density. As we order the categories from Table
2 conform to population density, we obtain an image as in Table 3.

Thus, there is a clear axis, along which the categories are situated, with, perhaps,
definite divergences, related to some of the less densely populated municipality
categories (e.g. the positions of categories 7 and 9), very much like in the schematic
Fig. 2. This implies even a possibility of devising some kind of aggregate indicator,
e.g. along the lines of Owsiński (2017), but such an attempt was not the aim of the
study. On the other hand, there is the question of the number of categories, which
might have been deliberately minimised in the prior functional typology, with the
effect of designing, actually, categories that are not representing the functional types
in a similar (balanced) manner. This is best visible on two examples: categories 6
and 7, one referring to a relatively narrowly specialised communes, and the other –
in reality – composed of several sub-categories (e.g. municipalities with mining
activities, but also with extensive tourist activities!).

In this context, the study intended to possibly accurately recreate the typology
shortly characterised above in order to identify potential divergences and their
sources, possibly with substantive underpinning. However, in view of the compli-
cations of the original procedure, the decision was taken of using a unified set of
variables, describing the municipalities, selected so as to possibly faithfully render
the general diversity of these units, the result of this selection being shown in
Table 4.

Actually, two sets of variables were used in the experiments: the entire set of
21 variables, as shown in Table 4, and the set of 18 variables, from no. 4 till the
end. In the latter case, only relative variables are used, while in the former case,
the two first variables are very important absolute drivers of differentiation. It must
be added, though, that in all calculations the values of variables are unitarised. The
data, used by us, were by 1–2 years more recent than those, which constituted the
basis for the prior functional typology, but, in view both of the inertia of respective
processes and the nature of the variables, this is of no importance for the content of
this study.

5 The Outline of Results

An exemplary image of one of the results obtained is provided in Fig. 4. This
particular result, composed of 10 clusters (the 11th one, signalled in the map legend,
does not appear on it), was obtained with the k-means algorithm. Table 5 presents



40 J. W. Owsiński et al.

Table 4 The choice of variables used in the reverse clustering study

1. Population number 12. Average farm acreage indicator
2. Overbuilt area 13. Registered employment indicator
3. Share of transport related areas 14. Registered businesses per 1000 inhabitants
4. Population density 15. Average business employment indicator
5. Share of agricultural land 16. Share of manufacturing and construction

businesses
6. Share of overbuilt areas 17. Pupils per 1000 inhabitants
7. Share of forest areas 18. Students of over-primary schools per 1000

inhabitants
8. Share of population over 60 years of age 19. Own revenues of municipality per

inhabitant
9. Share of population below 20 years of age 20. Share of revenues from personal income tax

in own communal revenues
10. Birthrate for the last 3 years 21. Share of social care expenses in total

communal budget
11. Migration balance for the last 3 years

Table 5 Comparison (contingency/confusion table) of the original partition and an obtained one,
illustrated in Fig. 4. Correspondence between clusters in two partitions was established on the
basis of the biggest numbers of objects falling into the same cluster

Clusters in the
prior partition Clusters obtained from the reverse clustering: Error

Relative
error

1 2 3 4 5 6 7 8 9 10

1 16 0 14 0 2 0 0 0 0 1 17 0.52
2 0 88 13 84 26 36 9 2 7 0 177 0.67
3 3 0 45 0 7 0 0 0 0 0 10 0.18
4 0 9 3 76 9 50 24 4 26 0 125 0.62
5 0 0 5 8 126 1 0 0 2 0 16 0.11
6 0 0 0 13 18 34 15 33 24 0 103 0.75
7 0 6 0 16 19 11 98 27 45 0 124 0.56
8 0 0 0 6 4 56 0 384 46 0 112 0.23
9 0 1 0 37 20 97 34 146 330 0 335 0.50
10 0 0 0 9 11 11 109 34 88 0 262 1
Error 3 16 35 173 116 262 191 246 238 0 1280 0.517

the contingency (or confusion) table, comparing the original partition from Table
2 with the one illustrated in Fig. 4, definitely implying that the closeness to the
original partition is by no means even close to satisfactory, at least in quantitative
terms (roughly half of units being “misclassified”). At the same time, though, this
result is very much telling in qualitative terms. Let us enumerate at least some of the
essential points with this respect.

Thus, first, although the number of clusters obtained is the same as in the original
partition, it can be said that one of the original clusters “disappeared” (no. 10), and
one “appeared” (the single-item cluster of the capital city of Warsaw). The latter
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Fig. 4 Map of Poland with the image of clusters of municipalities, obtained in one of the
calculation runs (k-means), with 10 clusters

effect is quite understandable, for even though Warsaw is a relatively small city
for the capital of the country of 38 million inhabitants, it has close to two million
inhabitants, while there exists a group of cities with 500–700,000 inhabitants,
followed by another group of 200–400,000. Here the deviation from the Zipf’s law
is obvious.

Secondly, the “errors” occur mainly between the clusters of similar character.
Thus, e.g. for the distinctly urban clusters 1, 3, 5 and the new metropolitan cluster
10, when taken together, the error is at less than 5%.

Third, in connection with the above, there are two kinds of the initial clusters
most affected by the errors: (1) the relatively poorly defined clusters (suburban areas,
initial clusters 2 and 4), supposedly actually separated out of quite continuous frag-
ments of the data set, and (2) the clusters, defined not conform to the overwhelming
logic of the urban-rural axis (initial clusters 6 and 7, composed of units, performing
very specific functions, not really matched by the remaining prior types, e.g. through
other similar distinctions).
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6 Some Comments on the Relation to Indicator Dimension

Let us start with Table 6, in which the obtained weights of variables are shown for
the previously illustrated solution from the reverse clustering. The weights, which
are also subject to the optimisation procedure, add up to 1. It can be said that they
determine the contribution of individual variables to the solution obtained – the best
partition, i.e. the closest to the prior one, that the procedure could find. Note that
the two first variables account together for more than 70% of weight of all the 21
variables.

This is, indeed, a very powerful indication that the urban-rural axis plays here the
truly dominating role. If we add to this other variables, whose weights exceed 1%
(registered businesses, registered employment, migration balance, students, . . . ), the
significance of this main axis even increases.

When, however, we use the limited set of variables (18 variables, all relative ones,
without the first three), the image is different: there is no such strong “pulling force”
along the urban-rural axis, and the four leading variables (employment, businesses,
own revenues of the municipality, students) account together for 57% of weight.
The shape of the obtained clusters is also different, but in general outline similar to
the one here presented, with one important exception that Warsaw belongs to her

Table 6 Variable weights obtained in the calculation, illustrated in Fig. 4 and Table 4

Weight Variable

0.3802 Population

0.3278 Overbuilt area
0.026 Share of transport-related areas
0 Population density

0.0186 Share of agricultural land
0.0017 Share of overbuilt areas
0.0043 Share of forest areas
0.0008 Share of population over 60 years of age

0.0026 Share of population below 20 years of age
0.0013 Birthrate for last 3 years
0.0397 Migration balance for last 3 years
0.0109 Average farm acreage indicator
0.0441 Registered employment indicator
0.0566 Registered businesses per 1000 inhabitants
0.0064 Employment-based average business scale indicator
0.0119 Share of businesses from manufacturing and construction
0.0009 Number of pupils per 1000 inhabitants

0.0338 Number of students of over-primary schools per 1000 inhabitants
0.0098 Own revenues of municipality per inhabitant
0.0227 Share of revenues from personal income tax in own communal revenues
0 Share of social care expenses in total communal budget
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original category of large cities, while the tenth – new – cluster is again a singleton,
but this time an extremely rich provincial commune, where large-scale mining and
industrial development is located. The original clusters are, however, even less well
reconstructed.

7 Final Observations

The approach here applied allowed for an easy reconstruction of the main axis of
partitioning, even if not all of the clusters obtained lie (exactly) along this axis.
It is easy to point out these of the original categories of municipalities, which –
confirming the quite obvious intuitive supposition – are not in conformity with this
axis. This is, largely, what we intended to obtain, when trying to check the capacity
of the approach to handle similar typologies, in which some of the types may not
necessarily be situated roughly along the “leading indicator”, whether explicit or
implicit. At the same time, we got the confirmation as to the primary hypothesis of
existence of the distinct subgroups, even if in a sense distributed along the “leading
indicator” axis. This motivates us to apply the approach to other, similar cases, in
which the interpretations, in terms of relation to the “main axis” or the “leading
indicator” may not be as simple as in this particular one.

On the substantive side only few conclusions, which appear to be truly justified
against the background of the results obtained, namely: (1) it is necessary to
consider separately Warsaw and its zone of influence; (2) more generally, treatment
of the suburban zones / zones of influence of bigger and smaller agglomerations
ought to be reconsidered in the direction of appropriate adjustment / identification
of the thresholds / criteria accounted for (a similar observation applies, anyway,
also to the rural farming communities); (3) regarding the “special types” of rural
municipalities, they should be better justified in terms of their more general socio-
economic characteristics.
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Uncertainty in Weights for Composite
Indicators Generated by Weighted Sums

Rainer Bruggemann and Lars Carlsen

1 Introduction

Checking the literature with respect to decision support systems (for an overview
see for example Colorni et al. 2001; Figueira et al. 2005; Munda 2008; Munda and
Nardo 2008), the concepts of partial order theory seem to play a minor role or are at
best interim results (cf. ELECTRE family (Roy 1972, 1990) or PROMETHEE (in
step I) (Brans and Vincke 1985)). There are two arguments why partial order theory
does not play the role which it could have: (1) The appearance of incomparability,
i.e., the fact that a ranking, i.e., a total order cannot be obtained, because of non-
resolved conflicts in data and (2) the inability to include stakeholders’ knowledge.

Originally, the fact that data beyond the data matrix are not needed was
considered by the authors of this paper as an advantage, because partial order theory
based purely on the data matrix leads to “data driven results” and is therefore free
of any subjectivisms, beside those which already were included in the data matrix.
All parameters used in ELECTRE (Roy 1990) or PROMETHEE (Brans and Vincke
1985) or other decision support systems beyond the data matrix are considered as
subjective and are often difficult to be obtained. Nevertheless, the stakeholder’s
qualitative knowledge should be included within the framework of partial order
theory.

One method in the area of decision support systems is the weighted sum of
(normalized) indicator values for each object. Objects are the issue of interest for
which a decision is to be found. The advantage of the weighted – sum – approach
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is its simplicity, i.e., its high potential for transparency if results are to be discussed
in, e.g., public meetings. This paper acknowlegdes that modeling or stakeholders’
knowledge by weights is a useful step in decision making, however – due to the often
vague nature of knowledge about weights – the uncertainty of finding weights must
be integrated in the analyses. This idea is already explained in several publications
(Bruggemann et al. 2008b, 2012, 2013, Bruggemann and Carlsen 2017, 2018).
The number of incomparabilities, U (see below), depending on the measure of
uncertainty degree, with respect to the numerical value of the weights plays a central
role in this connection. The measure of uncertainty is called s and will be explained
in detail below. Between U and s a very simple linear relation U(s) can be derived
(cf. Bruggemann et al. 2008b).

In this paper the origin of slight deviations from the predicted results of U(s)
is further investigated. To understand these deviations the most simple indicator
system is studied, namely consisting of two indicators only. The paper is organized
as follows. (1) where basic assumptions and equations are introduced, (2) discussing
the concept of “crucial weights”, (3) describing examples, initially some fictitious
examples, followed by an example taken from the field of sociology, and (4)
concluding with a critical discussion.

2 Materials and Method

2.1 Basic Concepts of Partial Order

Let X be a set of objects, labeled by x(i) (i = 1, . . . ,n). Objects could be but not
limited to

• chemical compounds
• nations, characterized by for example child well-being indicators
• strategies, characterized by performance indicators
• geographical units, characterized for example by pollution, or (as in another

contribution for this book described), by poverty indicators

To define an order relation among them, the relation “≤” has to obey the
following order axioms:

• reflexivity: the object can be compared with itself
• antisymmetry: if x ≤ y and y ≤ x ⇒ x = y
• transitivity: if x ≤ y and y ≤ z ⇒ x ≤ z

There are many possibilities to find a realization of an order relation. A special
realization of order relations is given by Eqs. 1, 2 and 3:

x (i) → (x (i, 1) , x (i, 3) , . . . .x (i, m))
)
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where x (i, j) is the value of the ithobject and the jthindicator (j = 1, .., m) (1)

x (i1) ≤ x (i2) : ⇐⇒ (x (i1, 1) , . . . , x (i1, m)) ≤
(

x (i2, 1) , . . . .x
(

i2, m
))

(2)

Equation 2 needs clarification, as it is not yet clear under which conditions one
tuple (that of x(i1) is to be considered less or equal to that of x(i2). The way how
Eq. 2 can be given a meaning, opens the door to many variant.

By Eq. 3

(x (i1, 1) , . . . , x (i1, m)) ≤ (x (i2, 1) , . . . .x (i2, m)) :
⇐⇒ x (i1, j) ≤ x (i2, j) for all j = 1, .., m

(3)

a partial order is defined, which is close to a statistical interpretation of the data
matrix (dm). The reason is that now the properties of the entries of the dm, i.e., of
x(i,j) are decisive whether or not an order relation can be established. Two objects,
following Eq. 3 are called “comparable”, otherwise “incomparable”.

The immediate relation to the data and the corresponding indicators has three
consequences:

1. Any order relation x ≤ y is a direct reflection of the data values of x and y. This
is in contrast to many decision support systems, where an order relation cannot
easily traced back to the original data, i.e., to the dm.

2. The partial order methodology, based on Eq. (3) is applicable wherever a data
matrix is available and where a ranking aim can be defined.

3. It may be necessary to express the ranking aim by a set of indicators

Since the set of indicators {q1, . . . ,qm} is of main importance for all partial order
results based on Eqs. (1, 2 and 3), this set is called the information basis, or -
focusing on the role of indicators – a multi-indicator system (MIS) (cf. Bruggemann
and Patil 2011). In the literature the method, based on Eq. 3 together with
appropriate supporting software, is often denoted Hasse diagram technique (HDT)
(Bruggemann and Halfon 2000; Bruggemann et al. 2001, 2008a; Patil and Taillie
2004; Simon et al. 2006; Helm 2006; Bruggemann and Voigt 2011, 2012; Carlsen
and Bruggemann 2011, 2014; Newlin and Patil 2010; Annoni et al. 2014; Sørensen
et al. 2006) with reference to the German mathematician Helmut Hasse introducing
these diagrams (Hasse 1967). Sets X, equipped with a partial order (and here in this
paper by the Eqs. (1), (2) and (3)) is called partially ordered sets and is conveniently
denoted as posets.

Equation 3 is obviously an extremely hard one, as it demands that

1. all properties considered must follow Eq. 3. Thus, even if m-1 indicators
(columns of dm) obey Eq. 3, a single exception would obviously break the order
and
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2. even minor numerical differences (possibly being considered as scientifically
irrelevant) are evaluated and lead to comparabilities/incomparabilities, although
the objects should better be considered as equivalent.

These two aspects have led to many activities, such as fuzzy concepts that
were introduced (Wieland and Bruggemann 2013; Bruggemann et al. 2011). The
role of incomparabilities were analyzed in details (cf. e.g. Bartel and Mucha
2014; Bruggemann and Carlsen 2014a, b, 2015, 2017). Two objects x,y mutually
incomparable are denoted as x ‖ y. When the orientation x ≤ y or x ≥ y is of minor
interest then the mere fact of comparability is denoted by x ⊥ y.

2.2 Modelling a Decision Support System

As already mentioned, for the sake of public acceptance, the model for decision
support should be simple and the weighted sum of indicator values of an object
seems to be the best starting point. The synthetic indicator, also known as composite
indicator CI of an object x will be calculated, according to Eq. 4.

CI (x) = Σ (g (j) ∗ x (i, j)) i = 1, . . . , n; j
)

1, . . . , m (4)

The entries of a data matrix x(i,j) must be metric in order to combine them by
multiplication with a scalar g(j) and subsequent additions. Furthermore, the entries
x(i,j) and the weights g(j) should conveniently be normalized, i.e., being elements
of the range [0,1]. The boundary condition for the weights g(j) is:

Σ g (j) = 1 j =, 1, . . . , m (5)

and

0 ≤ g (j) ≤ 1 (6)

The crucial point is that (as already mentioned) most often a sharp value for the
weights g(j) cannot be given. Therefore the theoretical concept (already published
and discussed in more detail in Bruggemann and Carlsen 2017) can be described by
the following six items:

1. g(j) is taken from an interval [g(j)min, g(j)max], for the sake of simplicity it is
written: g(j)min = gjmin and g(j)max = gjmax.

2. s(j): = gjmax – gjmin is called the degree of uncertainty with respect to the
weights.

3. it is assumed that s(j) = s for all j.
4. the evolution concept
5. identification of the number of incomparabilities, U, as a leading quantity and
6. in refinement of (5), the concept of Us and other quantities derived from U.
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The concepts (4)–(6) are explained in more details below:

4. Evolution:

Let g(j) be a value taken from [0,1] then the selection of a series of the pairs
(gjmin, gjmax) induces a set of posets. Let for example consider asystem with m = 2
and select as weights g(1) = 0.5, g(2) = 0.5. If s = 0 then there is a sharp knowledge
and no uncertainty with respect to g(1) and g(2). Consequently, there is one and only
one CI, and U, i.e., the number of incomparabilities equals 0. Now let gjmin = 0.45
and gjmax = 0.55., then the resulting s equals 0.1 and weights g(1), g(2) may be
selected within this range. There is obviously a slight uncertainty, which, however,
may not lead to incomparabilities. Let now be gjmin = 0.3 and gjmax = 0.7,
then s = 0.4 and there is considerable uncertainty concerning the selection of
weights. With other words: Around a fixed tuple g defined by (g(1), g(2), . . . ,g(m))
a (mathematical) environment, env(g,s), is of interest, where the starting tuple g and
its uncertainty s is to be specified. Consequently to each environment belongs a
set of composite indicators, which can, but most no be co-monotonic. Increasing s
from 0 (sharp knowledge about the weights) until s = 1 (no knowledge at all) and
regarding Eqs. (4, 5 and 6) leads to a series of environments as follows:

env (g, 0) ⊆ env (g, 0.1) ⊆ . . . .env (g, 1) (7a)

env
(

g
′
, 0

)
⊆ env

(
g‘, 0.1

)
⊆ . . . .env

(
g‘, 1

)
(7b)

. . . .

env
(

g", 0
)
⊆ env

(
g", 0.1

)
⊆ . . . .env

(
g", 1

)
(7c)

Equations (7a, 7b, . . . ,7c) result from the fact that g also can be varied (symbol-
ized by g, g′, g′′). The Scheme (7a- . . . 7c) makes clear that it will be difficult, to
check all resulting posets, due to the set of CI, caused by a certain environment.
Therefore a controlling quantity is needed to observe the development of posets in
a general manner:

5. Incomparability as controlling quantity:

The number of incomparabilities U(g,s) for each env(g,s) is introduced, measur-
ing the number of pairs x ‖ y of each poset induced by the tuple g and s. In fact, by
Eq. 4 the order relations among the objects are no more a matter of the indicators
but on the values of the set of composite indicators {CI} possible within the actually
used environment env(g,s). To stress this, we will sometimes write x ≤ {CI} y or x
‖CI y . Furthermore, the values of the composite indicator will be denoted CI(g,x)
(or CI(g) to stress the role of g.
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6. Us and other quantities derived from U:

The poset, based on the data matrix alone, with n objects and m indicators will
have a number of incomparabilities which is the “total incomparability” and which
is called U0. It is then clear that

U (g, 0) = 0 (8a)

and

U (g, 1) = U0 (8b)

In former publications (Bruggemann and Carlsen 2017) it is shown that the Eq.
(9) describes sufficiently the general situation for a certain g and s varying from 0
to 1:

Us = s ∗ U0 (9)

In the following the incomparabilities are called

• Udirectly, if the determination of U is done, by checking each poset in env(g,s)
• Uan if U can be determined by means of other quantities, such as the crucial

weights (see below)
• Us from Eq. (9)
• U0 the number of incomparabilities of the poset under m indicators, i.e. without

any additional information beyond the data matrix.

In Fig. 1 the evolution of U on the basis of Eq. (9) and Udirectly, i.e. directly
determined from all the posets resulting from different values of s is shown. To
be clear: each environment env(g,s) allows a set of weights, which in turn allows
different CI, and these CI, evaluated similar to Eqs. 1, 2 and 3 (replace x(I,j) by
CI(x(i),k), k being a label for the resulting CI and check x ‖CI y).

Hereto, a fictitious data matrix with 14 objects and m = 3 indicators was applied.

Fig. 1 Evolution of U, based
on Eq. (9), and of the number
of incomparabilities directly
determined from all posets,
resulting from env(g,s),
“Udirectly” is shown. Data
are shown in Table 1



Uncertainty in Weights for Composite Indicators Generated by Weighted Sums 51

Fig. 2 The Hasse diagram
resulting from Table 1. The
total number of
incomparabilities,U0 = 3
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Table 1 Fictitious data
matrix

SEQ q(1) q(2) q(3)

1 4,356,708,827 4,110,873,864 3,891,820,298
2 0,693,147,181 0 0
6 4,189,654,742 3,850,147,602 363,758,616
8 5,017,279,837 4,976,733,742 4,905,274,778
9 2,890,371,758 2,772,588,722 1,386,294,361
22 3,044,522,438 2,833,213,344 2,564,949,357
24 4,204,692,619 3,850,147,602 3,663,561,646
33 3,218,875,825 3,044,522,438 2,833,213,344
42 336,729,583 336,729,583 3,218,875,825
45 0 0 0
48 5,003,946,306 5,164,785,974 5,030,437,921
86 4,234,106,505 4,248,495,242 3,828,641,396
92 49,698,133 5,081,404,365 4,955,827,058
95 4,418,840,608 4,465,908,119 4,043,051,268

The Hasse diagram is shown in Fig. 2:
Checking Fig. 1 the deviations from Eq. 9 seem to be not too large Thus, Eq. 9 can

still be used as a general guide for the evolution of posets due to increasing values
of s (given a certain weight tuple g). Nevertheless, it is of interest, to understand the
deviation, which we are considering as a “fine-structure” of the evolution. It is clear
that the low number of incomparabilities (U0 = 3) implies at maximum 3 jumps in
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the curve for Udirectly. So far, the number of “jumps” in Fig. 1 is obvious. However,
where will the jumps appear?

2.3 Understanding the Fine-Structure

It is completely clear that the ordinal structure of orderings within partial order
theory react on the evolution due to s only in discrete steps. The reason is that the
partial order is changing, when a transition from x ⊥ y to x‖y appears. Nevertheless
it is of interest at which values of weights, within a series of env(g,s) such a
transition and hence an enhancement of U is to be expected. In order to analyze
the fine-structure, the simplest system is assumed, where still incomparabilities
can appear, i.e., the m = 2 system. Starting from low s-values there are only so
few CI’s possible that almost for all object pairs (x, y) it will be found x ⊥ y.
Increasing s, some CI’s may exist such that a comparability relation is transferred to
an incomparability relation. This means that the extension of the range for possible
weight values can be formulated as follows:

s small : CI1 (x) ≤ CI1 (y) , CI2 (x) ≤ CI2 (y) → s enlarged : CI1 (x) ≤ CI1 (y) but CI2 (x) ≤ CI2 (y)

⇓ ⇓
s small g ∈ env (g, s) , such that x≤{CI}y s enlarged : there are weights so that

CI (g, x) ≤ CI (g, y) and

CI
(

g
′
, x

)
≤ CI

(
g
′
, y

)

Hence, within an m = 2-system, there must be a value gc1 (gc1, (gc2 = 1- gc1)
such that CI((gc1, 1-gc1),x) = CI((gc1,1-gc1),y) and if g1 < gc1, then x ≤ CI y
whereas for g1 ≥ gc1, then x‖CIy. These decisive weights (within the m = 2-system)
are called crucial weights. Crucial weights can be calculated in closed form, see Eqs.
10a and 10b and for more details Bruggemann et al. 2008b.

gc1 = (x (2, 2) − x (1, 2)) / [(x (2, 2) − x (1, 2)) − (x (2, 1) − x (1, 1))] (10a)

gc2 = (x (2, 1) − x (1, 1)) / [(x (2, 1) − x (1, 1)) − (x (2, 2) − x (1, 2))] (10b)

If an environment env(g, s) encompasses one of the possible crucial weights, then
there is a chance that composite indicators are generated which are countercurrent
(i.e. not co-monotonic) to others and which therefore generate incomparabilities.
Therefore the crucial weights in the g-space are the location, where the number of
incomparabilities will increase.

As an object set may have more than two elements, many more possible crucial
weights can be calculated, according to different object pairs. As the weights have
to follow Eqs. 5 and 6, the relevant gc-values must also be in the range [0,1].

With the focus on gc1 (the other value in m-2-systems is just 1-gc1) a distribution
of gc-values is possible and instead of a statistical oriented notation we write simply
0 ≤ gc1(1) ≤ gc1(2) ≤ . . . . ≤ 1.
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Fig. 3 The same set of crucial weights. In (1) the uncertainty degree is so low that no crucial
weight is in the corresponding env(g,s)(1). In (2) there is a larger s assumed and the resulting
env(g,s) encompasses two crucial weights (see text)

The visualization of the ordered set of crucial weights is called a spectrum of
crucial weights. The situation may be characterized by Fig. 3:

In Fig. 3, the bar of the second crucial weight (counted from the left) is higher
than the others. This means that this crucial weight is more often realized than
the other crucial weights. Thus, there are more than 1 object pairs, leading to the
same value of gc1. If an environment includes a crucial weight, then the number
of incomparabilities is increasing according to the number of realizations for that
specific gc-value.

Let h(gc1(k)) be the number of realizations for gc1(k), then the considerations
above lead to:

U(s) = ∑
h (gc1(k))

gc1(k) ∈ env (g∗, s) (11)

Depending on the start – value g, increasing s will imply different environments
and the summation depends on how many crucial weights (together with their
number of realization) fall into the actual environment.

2.4 Consequences for Decision Making

In the handbook of the OECD, Nardo (2008) recommends that weights should be
selected in the range around (1/m), m being the number of indicators. Therefore,
in the case of the system with m = 2 the distribution of the gc-values around 0.5
is of interest. If the distribution of the gc-values has its maximum around 0.5 then
slight changes of the weights by increasing the environment env((0.5,0.5), s) may
pass many gc-positions and the number of incomparabilities may strongly increase.
In that case the selection of weights to calculate composite indicators need much
more care than in the other extreme scenario, where the gc-distribution may have
its maximum near 0 or near 1. Then the enlargement of environments env((0.5,0.5),
s) by s will for non-extreme values of s not pass many gc-positions and hence the
uncertainties about the weights (near 0.5) do not have much influence. It should be
clear that the analysis of uncertainty and their influence on the incomparabilities
need two arrangements:
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1. the selection of g, the starting weight tuple and
2. the manner how s is increasing to model the uncertainty about the values of the

weights.

(a) In an m = 2-system one could for example start with g1 = 0, then the
intervals of increasing [gmin, gmax] have always the same lower boundary
and increasing s influences only gmax.

(b) In an m = 2-system where we start with a g, with g1 = 0.5 increasing values
of s affect both boundaries of [gmin, gmax].

3 Results

3.1 Three Fictitious Systems of Crucial Weights

A distribution of crucial weights may be derived from a MIS. Nevertheless, it is also
possible to suppose a certain gc-distribution as an archetype. The latter strategy is
followed within this subsection.

(a) h(gc(1j,k)) as function of k in the following form:

h (gc(1), k) = 1 − k k = 0, .., 1

(once again: without referring to a specific, empirical MIS).

h(gc(1),k) = 1 − k means that the number of realizations of gc s: ts linear
decreasing (just by construction).l.

Beside a normalization constant the behavior of h(gc(k)) as a function of k can
be described by h = f(k), where k is assumed to vary continuously. Then based on
Eq. 11 the following expression holds:

U(k) =
k∫

0

f
(
k’

)
dk’ (12)

With f(k′) = 1 – k′, Eq. 12 leads to.
U(k) = N*k*(2 − k), where N is a scaling factor and k’ is the integration variable

of an integral with the limit 0 and k.
Beside the factor N the resulting function for U is as shown in Fig. 4:

(b) A maximum for the gc-distribution is assumed at gc = 0.5 and h(gc(1),k) is
supposed to decrease symmetrically like a parabola. This situation is a more
realistic with respect to decision support. Here the maximum of gc-realizations
is thought of as being in the range around g1 = 0.5. A model for that is

h
(

gc(1), k = 4 ∗ k ∗ (1 − k) , k = 0, .., 1.
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Fig. 4 The dotted line with
rectangles is U as given by
Eq. 9, whereas the solid line
with the rhombic marker
follows Eq. 11. Ordinate: the
values of incomparabilities,
following from different
models, abscissa: s

Fig. 5 U will follow a
sigmoid function (solid line
with cubic markers) based on
Eq. 12, whereas U calculated
by Eq. (9) is the dotted line
with the rhombic markers.
Abscissa: s-values

Fig. 6 The dotted line with
cubic markers: U following
Eq. 9, the solid line with
rhombic markers follows Eq.
12, abscissa: s-values

The integral of such a h(k) – function leads to a behavior of U as sown in Fig. 5.

(c) Finally the third type of gc-distribution is modeled by

h (gc(1), k) = k, k = 0, . . . , 1.

The resulting U-function, Uan, as well as Us, are shown in Fig. 6. Applying Eq.
12 and normalization to 1 leads to:

Uan = k2,
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The character of the resulting graph can easily be deduced by checking dh/dk:
The slope at k = 0 is 0, whereas the slope at k = 1 equals 2.

In all these three situations the behavior of U is calculated assuming an evolution
of uncertainty, corresponding to case 2a, i.e., while s is increasing and thus
extending the integral [gjmin, gjmax], the starting value of g(1) is always 0. It
should be noted that this is not a realistic assumption, following Nardo (2008)
recommending extreme weights (i.e. g1 near 0 or near 1) are to be avoided. However,
it is a simple consideration to see that the evolution of uncertainties around g1 = 0.5
is similar to that of Fig. 5, which is the outcome of a linearly decreasing distribution
of gc-values. Thus, env((0.5,0.5),s) sees many realizations for gc-values in the
neighborhood of g1 = 0.5, then increasing s and thus symmetrically increasing the
environments the number of realizations is diminishing. At g1 = 0.5 and s = 0 there
is exact knowledge of the weight, there is just one composite indicator and U = 0.
Extending s there are many gc-values with high realizations in the neighborhood of
g1 = 0.5 therefore U by Eq. 11 will strongly increase and then reach the final value
U = U0 asymptotically with a reduced slope.

3.2 Real World Example

3.2.1 Preliminaries

The following example is based on a report of UNICEF (UNICEF, Innocenti
Research Centre, Report card 7, 2007). A comprehensive assessment of well-being
of “children and young people in 21 nations of the industrial world” is given (quoted
from the report). The following part is an abridged version taken from Bruggemann
and Patil (2011).

The study provided 40 different indicators, which are aggregated through several
interim steps into 6 main indicators as follows together with their identifiers:

1. Material well-being, wb
2. Health and safety, hs
3. Educational well-being, ed.
4. Family and peer relationships, fa
5. Behaviors and risks, br
6. Subjective well-being, sub

The sixth indicator, sub, needs some explanation: It is the attempt to “reflect chil-
dren’s own views and voices – for example, the surveys of reported family affluence,
experience of bullying, or the frequency of communications with parents.” (quoted
from the report).

From the data matrix UNICEF defines a composite indicator with equal weights
for all 6 indicators, i.e.:

CI (x) =
∑

(1/6) ∗ Ri (x) , weight vector = (1/6, 1/6, .., 1/6) (13)
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where, Ri(x) is the rank by the ith indicator of nation x.
From CI, Eq. 13 the following ranking is deduced (from the worst to the best):
(UK, US, HU, AU, PT, FR, CZ, PL, GR, CA, DE, BE, IRE, IT, NO, SU, ES, FI,

DK, SW, NE)
Any decision maker may see that “his” nation is “good” with respect to some

indicator, even if his nation got a bad overall position in the ranking. Thus,
Italy is good in the FAMILY indicator, “fa”. Naturally the question arises, is not
“fa” more important than the others, say “ed”, education, and give “fa” a higher
weight? UNICEF, however, used the same weight for each indicator. Hence, for any
indicator, there is the same trade-off compensation: good points may compensate
bad points. However, if, trade-off compensation is allowed, then questioning the
uniform weight of any indicator in the index is indeed justified. Thus, Italy would
get a better overall position if the weight for “fa” would get a higher value. However,
such procedure would make decision makers, feeling responsible for their own
nation unhappy. Poland for example is good in education, and would therefore like
to see this indicator given a higher weight. Hence, it may be a good idea to keep the
six indicators separated, but simultaneously analyzed rather than composited.

In Fig. 7, the Hasse diagram is shown based on the entries of the data matrix
derived by UNICEF. We inverted them, so that the “good” nations are on the top of
the Hasse diagram. The information base, IB, is {wb, hs, ed., fa, br, sub}. In order
to include USA, the missing value in the indicator “sub” was given the mean value
taken from the 20 nations.

Figure 8 shows that there are many conflicts among the different nations: Each
nation has obviously some positive aspects with respect to child well-being, whereas
there is no region that has not a bad value in at least one indicator compared with
other nations. The longest chain contains three nations. Nations within a chain have
incomparabilities with all nations outside the chain. This is a situation, which is
good for an analysis of the reasons, why child well – being has some deficits,
however for decision making the situation is not that comfortable. Because the
analysis is based on two indicators only, the following subsection studies the child
well-being by two indicators (namely fa (family) and ed. (education)) and intervals
for the weights.

NE SW

ES IRE DE CZ FR PT HU

UKUSGR

DK FI SU NO IT BE CA PL AU

Fig. 7 Hasse diagram of 21 nations, the multi-indicator system: {wb, hs, fa, ed., br, sub}
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Fig. 8 The Hasse diagram of
21 nations, with the indicator
set {fa, ed.}. The
incomparabilities due to the
m-2-system reproduce 40%
of the original ones

NE

SU IRE CA PL PT HU

BEIT

SW DK FI ES

CZDENO

GR

FR UK

AU

US

Fig. 9 gc-distribution of the poset of 21 nations and the indicators ed. and fa. The units at the
ordinate are arbitrary. The abscissa: gc-values

3.2.2 Adaptation to an m = 2-System

Once again the number of incomparabilities is used as a leading quantity. The
idea behind this is that any reduction in the number of indicators will reduce the
incomparabilities. However, the incomparabilities themselves are the reason, why
weights are introduced, because otherwise a complete order is already obtained
within the reduced set of indicators. Thus, the procedure is to select those two
indicators, which preserve the highest number of the incomparabilities of the
original indicator set. It turns out by use of the program weight2evolution_vs6_2
of PyHasse that with ed. and fa the number of incomparabilities, Fig. 8.

In Fig. 9 the distribution of the gc-values for the m = 2-system is shown. The
distribution is evidently similar to the second type, shown in Sect. 3.1 (item b).
Hence U based on Eq. 12 should follow a sigmoid function.



Uncertainty in Weights for Composite Indicators Generated by Weighted Sums 59

Fig. 10 The development of U, within the same evolution from s = 0 to s = 1, however with
different starting points for the weights.Abscissa: s starting with 0 and ending at 1.Abscissa:
describes the s-evolution

Indeed the values of U directly taken from all the posets possible in the series
of env(g,s) as well of such, following Eq. 12 are coinciding and show the expected
curve (Fig. 10).

It remains to check the behavior of the starting point g. Starting with g1 = 0.1
the left curve, starting with g1 = 0.5 the right curve in Fig. 10 results.

4 Discussion

Generally Eq. 9 appears as a good starting point to check, how many incomparabil-
ities are to be expected, when the uncertainty in the numerical values of the weights
is described by the parameter s and s is evolving from 0 (sharp knowledge) to 1
(every weight between 0 and 1) is possible. The actual study goes beyond Eq. 9 and
analyzes why deviations from the straight line, represented by Eq. 9, are possible
and how they differ from the straight line. In order to get an idea the most simple
system, still allowing incomparabilities was studied: The system with m = 2. It
becomes clear that the crucial influence is given by those weights, for which the
composite indicator values of any two incomparable objects become nearly equal
values. Furthermore, it becomes clear that the larger the number of U0 the more
dense is the distribution of gc-values along the weight axis, as more evenly is
the distribution of jumps and it can be expected that then the deviations from the
U = s*U0 – line becomes less striking.

Clearly most of multi-indicator-systems will have by far more than 2 indicators.
Can the study above provide us with an advise? No and yes! No, because an explicit
formula for crucial weights in case of m > 2 leads to m-2-dimensional manifolds,
and even if they can be algebraically determined, it is rather difficult to derive
information about crucial weights in general. Yes, because following the device
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of Nardo (2008) the weights should not too much deviate from 1/m, m being the
number of indicators. In the case of the weighted sum, Eq. 4, the condition for
crucial weigths, namely CI(x) = CI(y), with x,y two objects of the object set, can
be relaxed as follows.

δ’ (i1, i2) :=
∑

j=1,...,m

g(j) ∗ (x (i1, j) − x (i2, j)) (14)

In Eq. 14 i1 and i2 are labelling different objects of the object set, j is labelling
different indicators.

If the weights are taken the same value (g(j) = 1/m for all j) then the sum of
differences of the matrix entries alone is decisive:

δ (i1, i2) :=
∑

j=1,...,m

(x (i1, j) − x (i2, j)) (15)

Scanning the whole object set and calculating the δ-values for all pairs, where
x(i1) ‖ x(i2) a distibution for δ is obtained. If then the distribution has high values
in the range g(j) = 1/m then the number of incomparabilities will relatively high
and thence the decision situation difficult. The acceptance of Eq. 15 implies that
the values of the data matrix x are considered as sharp. When noise may perturb
the entries of the data matrix x, then a probability scheme is to be developped
whose result leads to an expectation value for δ(i1,i2). However, this as well as
the following three points are future tasks.

Three further points are worth to be mentioned here:

1. Up to now the uncertainty degree s was the same for each weight. However in
reality the conceptual uncerteinty for each weight may be different. This aspects
needs still a lot of investigations.

2. The determination of a composite indicator due to Eq. 4 needs that the indicators
fulfill certain scaling levels. At least they must be metric in nature, in order to
let multiplication with a scalar (the weights) and summation a mathematically
meaningful. In the case of the child well-being, it is clear that a) a normalization
of ranks, as well as the subsequent algorithmic comination is at least mathemat-
ically questionable. Nevertheless the example is important enough, to consider
the indicators as if they are metric quantities.

3. It is completely clear that the weighted sum, with its high potential for compen-
sation (Munda 2008) has advantages because of its transparency, but there are
other high sophisticated decision support systems (DSS). However an analysis
as in this and the former papers will be extremely difficult for those other DSS,
not only because of their more involved mathematical structure, but also, because
usually more parameters influence the final result, i.e. the final ranking.

Hence there is still much of work possible, to clarify the role of weights and other
parameters in other DSS.
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A Study to Generate a Weak Order
from a Partially Ordered Set, Taken
Biomonitoring Measurements

Rainer Bruggemann, Lars Carlsen, Bardia Panahbehagh,
and Stergios Pirintsos

1 Introduction

Several scientific disciplines are involved in the study of chemical processes that
occur in water, air, terrestrial and living environments, and the effects of human
activity on them. Environmental chemistry, as one of these, is not only the discipline
handling substances in difficult targets, such as sludge (Jin et al. 2017), trees (Ferretti
et al. 2002), or lichens (Pirintsos et al. 2006), but also having the task to support
decisions in environmental systems (Pirintsos and Loppi 2008).

Due to the complexity of environmental systems a series of well-defined indica-
tors is constructed, representing the knowledge about the system and thus supporting
decisions for an appropriate management (Buonocore et al. 2018; Grönlund 2019).
Hence, the start for a management and a decision based on a ranking of chemicals
(our example) is the analysis of multi-indicator systems (MIS). An example of MIS
is the output of several lichen biomonitoring studies concerning metal pollution
in the atmospheric environment. To be more specific, the indicators are related to
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locations, their values are derived following a procedure described by Nimis and
Bargagli (1999).

Lichens are perennial, slow-growing organisms, highly dependent on the atmo-
sphere for nutrients. The lack of a waxy cuticle and stomata allows many con-
taminants, which are deposited on lichens by precipitation, fog and dew, dry
sedimentation and gaseous absorption, to be absorbed over the whole lichen thallus
surface, indicating levels of these contaminants in the surrounding environment
(Loppi et al. 1999). By biomonitoring at specifically selected sites, for example
near roads (Frati et al. 2006) or more pristine areas (Loppi and Pirintsos 2003),
information is obtained about the transport and origins of pollution.

In Pirintsos et al. (2014) 11 metals/metalloids are investigated in 20 sites of an
urban and industrial area based on the lichen biomonitoring data set of Demiray
et al. (2012), where Xanthoria parietina lichen specimen have been used as a
biomonitoring organism. The evaluation of the corresponding data matrix is based
on the conception that the Hasse diagram technique (see below) can further be
expanded and improved in the direction of (i) cumulative risk, (ii) the up-to-date
formal presentation and (iii) the interpretation of results in biomonitoring studies of
metal atmospheric pollution.

The analysis of biomonitoring results can be crudely characterized by two
aspects: (a) attempts to support a decision, based on order relations and (b) attempts
to present small scale spatial variations within a geostatistical approach. Here our
focus is on the order theoretical aspects.

As the metals and metalloids are measured at m different sites the concentrations
found in lichens of each site define, after transformations as recommended by Nimis
and Bargagli (1999) an indicator. Hence the MIS contains m indicators, the values
describing the pollution due to a single metal or metalloid.

The question arises how to derive a decision when confronted with m indicators.
Here we show first a Hasse diagram, which is a visualization of the partial order,
induced by the set of indicators (cf. Bruggemann and Patil 2011), then we discuss,
as to how far a single ranking (a weak order (see below)) can be obtained without
the need of a subjective weighting scheme of the indicators in order to aggregate
them by a weighted sum. As an exact solution of the problem how to get a weak
order is hardly computationally tractable, we investigate a new calculation method.

2 Material and Methods

2.1 Data Set

Eleven Metals and metalloids, i.e., Hg, Al, As, Cd, Cu, Fe, Mn, Ni, Pb, V and Zn for
which their pollution has been monitored are included in the study (Pirintsos et al.
2014). For a management it is of importance which of these metals or metalloids (in
the following we call them simply metals, although this is not a chemically correct
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Table 1 data of 11 metals and their scores in lichens in 10 sites

metals
Al As Cd Cu Fe Hg Mn Ni Pb V Zn
Sites
st1 st2 st3 st4 st5 st6 st7 st8 st9 st10
data matrix

st1 st2 st3 st4 st5 st6 st7 st8 st9 st10
Al 4 5 7 5 5 4 4 4 3 5
As 2 5 7 6 7 5 5 4 4 4
Cd 5 7 7 7 4 3 4 2 2 3
Cu 5 5 7 7 4 3 5 3 3 4
Fe 7 7 7 7 7 7 7 7 6 7
Hg 4 3 5 3 3 3 4 2 2 2
Mn 7 7 7 7 6 6 7 4 5 6
Ni 7 7 7 7 6 5 7 4 4 7
Pb 7 7 7 7 5 4 6 4 7 4
V 7 7 7 7 7 6 7 7 4 7
Zn 7 7 7 7 7 7 7 6 7 7

term) is highly concentrated. As sites we select only 10 (of 20) because of reasons
which become clear in following sections. The concentrations are transformed into
a scale of integers from 1 to 7, following the suggestion of Nimis and Bargagli
(1999). 1 indicates a high naturality, whereas 7 express a high deviation from the
natural state. The data are shown in Table 1, in the Results-section. An entry of the
data matrix, dm(I,j) is associated with jth site and the ith metalloid. Details can be
found in Pirintsos et al. (2014).

2.2 Basic Concepts of Partial Order

Let X be a finite set of n objects, labeled by x(i) (i = 1, . . . ,n). Objects could be but
not limited to

• chemical compounds (here: metals/metalloids)
• nations, characterized by for example child well-being indicators
• strategies, characterized by performance indicators
• geographical units, characterized for example by pollution, or (within a socio-

economic context) by poverty indicators

Here, indeed the elements of the real example are “chemical elements”, namely
n = 11 metals.

To define an order relation among them, the relation “≤” has to obey the
following order axioms:



66 R. Bruggemann et al.

• reflexivity: the object can be compared with itself
• antisymmetry: if x ≤ y and y ≤ x ⇒ x = y
• transitivity: if x ≤ y and y ≤ z ⇒ x ≤ z

A special realization of order relations is given by Eqs. (1, 2, and 3):

x(i) = (x (i, 1) , x (i, 2) , . . . ., x (i, m)) (1)

The quantity x(i, j) is the value of the ith object (i = 1, . . . ,n) (here the ith metal),
the jth indicator (j = 1,..,m) (here the jth site) and m the number of indicators used
(here m = 10).

Equation 1 describes a mapping X ➔ IRm, wherein X is the set of objects (the
metals) and IRm is the set of tuples of real numbers with m components. Note that
the tuples are also denoted as data profiles.

According to m = 10 sites, we will have a system of 10 indicators.

x(i1) ≤ x(i2) : ⇐⇒ (x (i1, 1) , . . . , x (i1,m)) ≤ (
x (i2, 1) , . . . ., x

(
i2,m

))

(2)

Equation 2 needs clarification, as it is not yet clear under which conditions one
tuple (that of x(i1) is to be considered less or equal to that of x(i2). The way how
Eq. 2 can be given a meaning, opens the door to many variants. By Eq. 3

(x (i1, 1) , . . . , x (i1,m))≤ (x (i2, 1) , . . . .x (i2,m)) : ⇐⇒ x (i1, j)≤x (i2, j)

for all j = 1, .., m

(3)

a special partial order is defined. Two objects, following Eq. 3 are called
“comparable”, otherwise “incomparable”.

The immediate relation to the data and the corresponding indicators has two
consequences:

1. Any order relation x ≤ y is a direct reflection of the data values of x and y. This
is in contrast to many decision support systems, where an order relation cannot
easily be traced back to the original data, i.e., to the data matrix.

2. The partial order methodology, based on Eq. 3 is applicable wherever a data
matrix is available and where a ranking aim can be defined.

In the literature the method, based on Eq. 3 together with appropriate supporting
software, is often denoted Hasse diagram technique (HDT) (Galassi et al. 1996;
Grisoni et al. 2015; Halfon and Reggiani 1986; Bruggemann et al. 2001, 2008; Patil
and Taillie 2004; Klein and Ivanciuc 2006; Simon et al. 2004, 2006; Helm 2003;
Bruggemann and Voigt 2008, 2011, 2012; Carlsen and Bruggemann 2011, 2014a, b;
Carlsen 2008a, b, 2013, 2018; Newlin and Patil 2010; Annoni et al. 2014; Sørensen
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et al. 1998, 2000; Pavan and Todeschini 2004; Pudenz and Heininger 2006; Quintero
et al. 2018; Restrepo and Bruggemann 2008; Restrepo et al. 2008a, b; Voigt et al.
2004a, b) with reference to the German mathematician Helmut Hasse (1967). Sets
X, equipped with a partial order (and thus in this paper by the Eqs. 1, 2, and 3) are
called partially ordered sets and are conveniently denoted as posets and indicated by
(X, ≤).

Two objects x, y mutually incomparable are denoted as x ‖ y. Within a poset (X,
≤) the number of incomparable pairs x ‖ y is called U. When the orientation x ≤ y
or x ≥ y is of minor interest then the mere fact of comparability is denoted by x ⊥ y.

Note that partial order methodology can also be applied, by evaluation of the
space of all possible data profiles, when the indicators are discrete (cf. e.g. Fattore
and Maggino 2014, as well as Maggino et al. this book).

2.3 Hasse Diagram

The construction of a Hasse diagram, starting from a set of partial order relations (as
an outcome of Eq. 3) is frequently explained in the literature (see e.g. Bruggemann
and Halfon 1997). For the sake of reader’s convenience, some words about Hasse
diagrams may nevertheless useful here: The basis is the order relation x < y. Usually
the object x will be drawn below object y; both are vertices of a graph and presented
by small circles, with the label of the object in the centre. In case x < y a line is
connecting x with y, called an edge, if the vertices are in a cover relation, i.e if there
is no object z for which is valid: x < z < y. The orientation of the order relation is
just obtained from the vertical position. When two objects are not connected by a
system of oriented edges the two objects are incomparable.

By this construction a Hasse diagram allows a two-fold interpretation:

1. Upwards: The numerical values of the objects are nondecreasing along a system
of edges. This “vertical” oriented analysis allows a ranking of objects of subsets
of X, so-called chains.

2. In contrast to (1) there is also a “horizontal” evaluation. This evaluation has its
focus on not connected objects. Following the construction principles of a Hasse
diagram, the objects of in the same vertical position are mutually incomparably.
A set of mutually incomparable objects is called an antichain.

2.4 Weak Order

When the general policy of decision is to find not only the optimal option but also
alternatives, then ranking is a good starting point, since suboptimal objects can
be easily identified if the optimal object is not suitable (e.g., due to political or
economic reasons). The task is how to get a ranking, which is at least a weak order,
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if ties are accepted. Whereas a complete (i.e., total or linear) order is a set of objects,
in which all elements x, y ∈ X are mutually comparable with x �= y, a weak order
does not require the condition x �= y, i.e., it accepts equivalent elements (or in terms
of statistics: it accepts ties).

A Hasse diagram allows identifying rankings for subsets of X, without any
subjectivity beyond the data matrix. It is clear that the task to get a weak order
should be parameter free too. Hence, the typical procedure to aggregate the values
of the m indicators into a composite indicator by a numerical procedure, where
weights for each indicator and other parameters are required, is to be avoided. An
important device, how to get a weak order without the need of finding additional
parameters, such as weights for the indicators, out of a partially ordered set is found
in the paper of Winkler (1982). The crucial term is the average height, denoted as
Hav.

2.5 Average Height

Any poset can be represented by a set of linear order, whose elements are called
linear extensions (Davey and Priestley 1990; Trotter 1992). A linear extension is a
linear order, respecting all order relations within a poset. For example the set X = {a,
b, c, d} may have the following order relations:

a < b, a < c, a < d. (4)

Obviously, b ‖ c and c ‖ d, i.e. U = 2. Then the set of linear extensions is:

{(a, b, c, d) , (a, c, b, d) , (a, c, d, b)} .

Within the above set {(a, b, c, d), (a, c, b, d), (a, c, d, b)} a linear extension is for
example (a, b, c, d), others are (a, c, b, d) and (a, c, d, b). Each single linear extension
indicates a complete ordered set, for example (a, b, c, d) denotes: a < b, a < c, a <
d, b < c, b < d, c < d). All order relations of Eq. 4 are reproduced. The fact that the
poset in Eq. 4 includes some incomparabilities leads to the necessity to consider the
3 linear extensions simultaneously. Within each linear extension any object x has a
height that is the number of objects ≤ x. For example, in the linear extension (a, b,
c, d) object a has the height 1, b the height 2, whereas in the linear extension (a, c,
d, b) object b has the height 4.

The idea of Winkler (1982) is to calculate the average of all heights of all objects,
denoted as Hav(x). Let L(k) be the kth linear extension and h(L(k),x) the height of
x in L(k), then, after Winkler (1982)
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Hav(x) :=
(∑

h (L(k), x)
)

/LT (k = 1, . . . , LT ) (5)

where LT is the number of linear extensions derived from a specific poset.
Equation 5 could be a good starting point, when the set of linear extensions is

small. Taking into mind that the number of linear extensions for an object set with
n objects can be up to n! the problem to generate linear extensions and store them
into a memory is computationally hard (see e.g. Atkinson and Chang 1986).

The above mentioned difficulty leads to several variants:

• There is still an exact method available. It is based on the fact that the storage
of some sets derived from the poset needs less memory than the storage of
the linear extensions. From a methodological, mathematical point of view this
method transforms the original poset into a lattice and the quantities of interest
can be directly derived from this lattice (De Loof et al. 2006). However, the
lattice-method is only working, when U*n (U: number of incomparabilities in a
set of n objects) is not too large, for details see Bruggemann and Carlsen (2011).

• Some approximations seem to have found more applications, for instance the
method of Bubley and Dyer (1999), which suggests a “good” sampling of linear
extensions.

• Another one has a graph – theoretical background and considers the local
environment around each object within a poset. There are two variants: (1)
the LPOM0 (local partial order model 0) Bruggemann et al. 2004) and (2)
an extended model (LPOMext) (Bruggemann and Carlsen 2011). Although the
extended variant is thought of as delivering better results than LPOM0, it turned
out (Rocco and Tarantola 2014) that the more simple method (LPOM0) may be
in some cases a better approximation than the extended one.

2.6 Idea for an Alternative for the Hav-Calculation

Often partial order can be considered as being composed from simpler posets, here
for example, the concept of linear sum is of specific interest. It is defined as follows:
Let X1, X2 be disjoint subsets of X with

X = X1 ⊕ X2 (6a)

x ∈ X1, y ∈ X2 implies x > y for every x, y (6b)

Equation (6b) can be formulated as follows: If two sets can be found where for
an element of the first set, x, and for any element of the second set, y, is valid: x > y;
the relations among the first, and the second set, resp., are not of interest.
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We may speak of “X1 is fully dominating X2”. Equation 6b does not imply that
within X1 or X2 the elements are mutually comparable.

Let Hav(x, X) denote the average height of x, considering the set X and the
settings of Eqs. 6a and 6b. Then:

Hav (x,X) =| X2 | +Hav (x,X1) (7)

where | . . . | denotes the cardinality of the set. Eq. 7 is a simple conclusion found
from Eq. 6b:

H (L(k), x in X) =| X2 | +H (L(k), x in X1) .

Thus, a calculation method can be thought of, which can be formulated as
follows:

x ∈ X1 : Hav (x,X) = Hav (x,X1)+ | X2 | (8)

y ∈ X2 : Hav (y,X) = Hav (y,X2) , (9)

supposed that Eq. 6b is exactly fulfilled.
The concept of X1, X2 ⊂ X with X1 ∩ X2 = ∅ was already studied by (Restrepo

and Bruggemann 2008) and lead to two quantities, the dominance of X1 over X2 and
the separability of X1 and X2 (Eqs. 10 and 11).

Dom (X1, X2) :=| {(x, y) with x ∈ X1, y ∈ X2 and x > y} | / (|X1| ∗ |X2|)
(10)

Sep (X1, X2) :=|
{
(x, y) with x ∈ X1, y ∈ X2 and x

∥
∥
∥ y

}
| / (|X1| ∗ |X2|)

(11)

By a set of subsets the quantities, defined in Eqs. 10 and 11 can be conveniently
denoted as matrices, dominance (Dom) and separability (Sep) matrices.

Equation (6b) demands that Dom(X1, X2) = 1 and Sep(X1, X2) = 0.
If Dom(X1, X2) = 0, then X1, X2 are completely separated subsets, meaning that

then x ∈ X1, y ∈X2 implies x ‖ y. In that case it is easily seen that we find:
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Hav (x, X1) < Hav (x, X) <| X2 | +Hav (x, X1) (12a)

Hav (y, X2) < Hav (y, X) <| X1 | +Hav (y, X2) (12b)

because as an extremal case the subposet based on X1 can once be completely
below the subposet (X2, <) or completely above (X2, <). Hence: When Dom(X1, X2)
< 0.5 then the role of the separability matrix is overwhelming (because the sum of
Dom- and Sep-matrices is bounded, due to the finite number of comparabilities and
incomparabilities and the Eqs. 8 and 9 fail. Therefore it is needed that the poset, to
be considered, has more comparabilities than incomparabilities. This is the reason,
why instead of 20 sites (the real example) only the 10 first sites were selected.

Summarizing: From a methodological point of view, we want to check, as to how
far a deviation of Dom(X1, X2) from 1 can lead to acceptable results.

3 Results

3.1 Randomly Generated Datasets

In order to test as to how far deviations of Dom(X1, X2) from 1 lead to errors
in the estimation of Hav, 22 smaller datasets (each of 10 objects) were randomly
generated. For each object x of these artificial data sets the Hav-value based on the
scheme given in Eq. 12 was calculated, HavDom(x) and the exact value, Havexact,
based on the lattice theoretical method presented by De Loof et al. (2006, 2011,
2012). The deviation was calculated:

Eps(x) :=| Haxexact (x)–HavDom(x) | (13)

For each dataset a final value epsav was determined:

epsav :=
∑

Eps(x)/n with n =| X | (14)

the quantity epsav being the average error related to any single object. In Fig. 1 the
scatterplot, together with the regression equation is shown.

Figure 1 confirms that the deviations epsav will be rather large, when Dom(X1,
X2) becomes small values. It is clear that the way, how the partitioning of X into
two subsets X1 and X2 is selected, plays an important role. However, aiming at an
efficient method for the calculation of Hav, the principles were:
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Fig. 1 Scatterplot of epsav vs Dom(X1, X2) and the regression equation with R2 ≈ 0.76

Fig. 2 epsav vs Dom(X1, X2) , with Dom(X1, X2) ≥ 0.8

1. To select the X1, X2 in that manner that they have approximately the same number
of elements

2. To find a selection that maximizes Dom(X1, X2).

The principle (1) was a priori considered as more important than the principle
(2). From Fig. 1 it becomes clear that obviously in the specific considered randomly
generated case (for details, see below) the deviations epsav require Dom(X1, X2) ≥
0.8.

When the regression is restricted to those pairs of values (Dom(X1, X2) , epsav),
where Dom(X1, X2) ≥ 0.8, then the result is (more or less trivially) better, see Fig. 2.
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The regression equation based on 6 pairs (the pair (1,0) is realized three times)
has the striking structure:

epsav = a ∗ (1 − Dom (X1, X2) ) for 0.8 < Dom (X1, X2) ≤ 1 (15)

with the coefficient of determination, R2 = 0.88 and the coefficient a around
1.35. This statistical result indicates that the relevant quantity is the deviation Δ:

� := 1 − Dom (X1, X2) (16)

Hence, Eq. 15 expresses proportionality between the error epsav and Δ. The
crucial value 0.8 for separating relevant Dom(X1,X2)-values from irrelevant ones,
may vary from case to case and is open for future research. Furthermore, Fig.
2 shows that the average error related to single objects is less than 0.25 and the
deviations from the regression line will be larger the smaller the value Dom(X1, X2)
is.

3.2 Application to Real Data Set

The estimation method needs the following steps:

1. Defining X1, X2 and the Hasse diagram for the full set X
2. Calculation of Dom(X1, X2)
3. Providing the data for X1 and X2

4. Application of the lattice theoretical method: (a) for X, (b) for X1, (c) for X2

5. Performing the calculations due to Eqs. 8 and 9
6. Inspecting epsav to check the quality of the results

Up to now there is no program performing all 6 steps. However, for steps (1)–
(3) the program package PyHasse (see for details Bruggemann et al. 2014) was
extended by the new module DomRkav. Its graphical user interface is shown in Fig.
3. The data is found in Table 1.

The corresponding Hasse diagram is shown in Fig. 4.
Some remarks concerning Fig. 4 may be useful here:

• Hg and As are minimal elements, they cause the least deviation from a natural
state

• Fe and Zn are maximal elements, they are most problematic because the deviation
of the natural state is very high.

• Incomparabilities, such as for Zn and Fe show that the loading of the lichens in
general is high, however with some geographical differentiation.
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Fig. 3 Graphical user interface for the new PyHasse module DomRkav

Fig. 4 Hasse diagram of the
metals, according to their
deviations from their natural
state in the studied stations
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In order to perform the calculation scheme based on Eqs. 8 and 9 the first step is
to select X1 and X2, i.e. the partitioning of set X.

Step 1:

The sets X1 and X2 are:

set X1: Fe, Zn, Mn, Pb, V, As
set X2: Ni, Al, Cd, Cu, Hg

Step2:

The Dom-matrix is:

X1 X2

X1: 0.361 0.733
X2: 0.0 0.48

Remark 1:

Although Dom(X1, X2) = 0.733 is less 0.8 the next calculation steps are
documented, just for a demonstration.

Remark 2:

The partitioning selected above is not the only possible one. For example, the
metalloid As is a minimal element. Why not assign As to X2? Let X2’ = X2 ∪ {As}
and X1’ = X1 – {As}. Indeed the value of Dom(X1’, X2’) = 0.833 is better than
that of Dom(X1, X2) and correspondingly epsav = 0.395. The disadvantage is that
(X2’,≤) leads due to its symmetry to a very high degree of degeneracy: Fe∼= Zn, Pb
∼= V and As ∼= Al ∼= Cd ∼= Cu. Therefore we continue with the partitioning of X into
X1 and X2 as given above.

Step 3: Calculation of the averaged ranks by the lattice-theoretical method (De Loof
et al., 2006) due to X1 and X2 of step 1.

Figure 5 shows the Hasse diagrams of the two subsets.

Fig. 5 The two Hasse
diagrams due to X1 and X2

Fe Zn

VPb Al Cd

Hg

Cu

Ni

As

Mn

(X1) (X2)
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Table 2 Summarizing the results of step 5 and step 5. Wether x ∈ X1 or ∈ X2 is indicated by
a membership function. If x ∈ X1 then the value in the corresponding column = 1, otherwise 0.
Similarly for x ∈ X2

Object x Havexact X1 X2 Hav( . . . ,X1) Hav( . . . ,X2) HavDom Eps(x)

Al 3,581 0 1 3 3 0,581
As 4,246 1 0 1,597 6,597 2,351
Cd 3,36 0 1 3 3 0,36
Cu 3,36 0 1 3 3 0,36
Fe 10,487 1 0 5,455 10,455 0,032
Hg 1,135 0 1 1 1 0,135
Mn 7,175 1 0 2,364 7,364 0,189
Ni 6,559 0 1 5 5 1,559
Pb 7,169 1 0 2,636 7,636 0,467
V 8,693 1 0 3,576 8,576 0,117
Zn 10,236 1 0 5,273 10,273 0,037

∑
Eps(x) = 6.188

epsav = 0.563
Dom(X1, X2) = 0.733

Step 4: Application of Eqs. 8 and 9.
Step 5: Check for the accuracy of the results.

The remaining steps 4 and 5 are summarized in the following Table 2. The
column below X1 and X2 is the membership function, indicating whether or not
the metal belongs to X1 or to X2.

The value of epsav = 0.563 deviates from the value obtained from Eq. 15;
(epsaveq.15 = 0.36). However the value of Dom(X1, X2) is not within the range of
applicability of Eq. 15. As to be expected, the measure of deviation, epsav, indicates
a bad approximation. Due to pretty large deviations (in terms of epsav the final weak
order shows two inversions:

Exact: Hg < Cd ∼= Cu < Al < As < Ni < Pb < Mn < V < Zn < Fe
Approx.: Hg < Cd ∼= Cu ∼= Al < Ni < As < Mn < Pb < V < Zn < Fe

As it is often the case, different methods coincide, when extremal ranking
positions are to be detected. This empirical finding is found here as well, i.e., Hg
Cd, Cu, as well as V, Zn and Fe coincide in their positions at the beginning or
the end of the ranking sequence. The other positions in a ranking sequence are
usually determined by many factors. Therefore, here different methods will lead to
different ranking positions. Here, indeed, some other metals change their position
(As, Ni) and (Mn, Pb), when the exact, lattice theoretical method is compared with
the approximation, suggested here. The reasons for the inversion Mn, Pb is that Mn
“sees” four vertices order theoretically less than Mn, whereas Pb only “sees” three
vertices. In the approximation however, both are minimal elements, so that for both
metals the Eq. 8 gives the same summand |X2|, being 4. A similar argument holds
for the pair (As, Ni).
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4 Discussion

4.1 Lichen Biomonitoring/Bioaccumulation Matrices as
Multi-indicator Systems

Undoubtedly, any data pre-processing, as done here, are of high importance not
only in chemical risk assessment and management but also broader, in the decision-
making process of environmental policy. However, here is not the place to discuss
in depth the pre-processing, defined by Nimis and Bargagli (1999), nevertheless, we
think that here some words may be helpful:

In biomonitoring techniques of air quality with native lichens, an approach to the
interpretation of data of native lichens is the so-called “naturality/alteration scales”
based on thresholds identifying classes of increasing element concentrations, and
obtained by the meta-analysis of a large set of bioaccumulation data. The method by
Nimis and Bargagli (1999) defines seven classes of element concentrations. These
classes are built up on hundreds of data points collected in Italy between the 1980s
and the 1990s. The seven class scale refer to (1) very high naturality, (2) high
naturality, (3) middle naturality, (4) low naturality/alteration, (5) middle alteration,
(6) high alteration and (7) very high alteration based on the percentile distributions
of element concentrations in lichens (Nimis et al. 2000).

Recently a paper was published, where the data pre-processing of data (is
examined under the methodological background of partial order theory, see Fattore
et al. (2019).

4.2 Applicability of the Proposed Method

The quantity epsav, Eq. 14 is an average value and is – as mentioned already above –
related to a single object. The domain of validity for Eq. 15 is given by 0.8 ≤
Dom(X1, X2) ≤ 1.0.

If Dom(X1, X2) → 0.8 the deviations Eps (Eq. 13) become quickly large as Figs.
1 and 2 (randomly generated data) show. Consequently in the following paragraph
we investigate reasons for large deviations of Eps.

4.3 Reasons for Large Deviations

First of all, a dissection of a poset (X, ≤) into two subposets (X1, ≤) and (X2,
≤) leads to more symmetry in the resulting graphs of the subposets (as already
mentioned above). Hence, the degeneracy of Hav-values is increased. Even if the
enhanced degree of ties is accepted, there can be large deviations, which result from
structures like the one shown in Fig. 6.
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Fig. 6 X1 dominates fully
X2’ but not X2. A typical
situation causing deviations

Fig. 7 A variant for
partitioning of set X

Fe Zn

As

Al Cd

(X2’, ≤)(X1’, ≤)

Hg

VPbMn

Cu

Ni

Considering Fig. 6 a situation, similar to that, causing eq. 12, arises. For x ∈ X1,
Hav(x, X) = Hav(x, X1) + |X2| is an overestimation, because by constructing the
linear extensions, the elements of X2” can also be located above the elements of X1,
whereas by Hav(x, X) = Hav(x, X1) + |X2’| an underestimation follows. Based on
remark 2 (see above) the two Hasse diagrams are shown, when X1’= X1 – {As} and
X2’ = X2 ∪ {As} (Fig. 7)

The element Fe “sees” the same number of lower neighbours as Zn. Similarly, Pb
and V have one upper neighbour. Therefore the exact method delivers Havexact(Fe,
X1’) = Havexact(Zn, X1’) as well as Havexact(Pb, X1’) = Havexact(V, X1’). In Fig.
7, the subposet (X2’, ≤) has also symmetries, leading to: Al ∼= Cd ∼= Cu with respect
to Havexact.

4.4 Conclusive Consideration

By applying the dominance matrix and based on this, the calculation scheme seems
to be attractive for an estimation method of Hav. However, the requirement of very
high values of Dom(X1, X2) seems to be too restrictive to justify to propose this
method as a general approximation method. Thus, up to our actual knowledge this
new procedure will not be practically feasible in comparison with exact results.
When, however, a first check is wanted, for example to start from this a refinement
procedure, then the scheme based on Eqs. 8 and 9 may be useful. When this line of
research is to be followed, then
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• A catalogue could be aimed, where structures are gathered, which typically lead
to strong deviations

• As a candidate for a better approximation the method by Bubley and Dyer (1999),
may be selected and modified in that manner that the weak order as a result of
Eqs. 8 and 9 is a starting linear extension.

Summarizing, we hope that the present study has revealed some mathematical
ideas which may be of interest and attract new research by scholars of the
mathematical chemistry scene.
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Problem Orientable Evaluations as
L-Subsets

Adalbert Kerber and Rainer Bruggemann

1 Evaluation

Evaluations using sequences of parameter values can be considered as sets over a
lattice (cf. (Bruggemann and Kerber 2018; Bruggemann et al. 2011; Kerber 2006,
2017; Pollandt 1997)). An example is G. Restrepo’s evaluation (Restrepo 2008)
of 40 refrigerants using the parameters ODP (ozone depletion potential), GWP
(general warming potential) and ALT (atmospheric life time). The parameters were
normalized, i.e. their values were elements of the interval [0,1] and therefore the
lattice containing these triples of parameter values is L = [0,1]3. With a refrigerant
ref he associated the following triple of real numbers between 0 and 1:

(ODP(ref );GWP(ref );ALT (ref )) ∈ [0, 1]3.

Examples of such triples that he obtained are

refrigerants values of (ODP; GWP; ALT)

ref1 (0.19607843; 0.31621622; 0.01406219)
ref2 (0.16078431; 0.72432432; 0.0312497)
ref3 (0.00980392; 0.12027027; 0.00374969)
ref4... (0.00431373; 0.00513514; 0.00040594)
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This evaluation associates, e.g. with the refrigerant ref4, the truth value tv(ref4
has (ODP;GWP;ALT)) = (0.00431373;0.00513514;0.00040594).

As the entries of this table are in L = [0,1]3, this evaluation is a mapping

E : {
ref 1, ref 2, . . .

} × {(ODP ;GWP ;ALT )} → [0, 1]3,

with, e.g., the value

E
(
ref 4, (ODP ;GWP ;ALT )

) = (0.00431373; 0.00513514; 0.00040594) .

These values are elements of the lattice L = [0,1]3, and hence we may consider
such an evaluation as an L-subset of the set of refrigerants. This way of analysis
implies that we have no more crisp sets (an element is a member of a set: “yes” or
“no”), but fuzzy sets, where the membership can be any number between 0 and 1.
The general case reads as follows:

1.1 Definition

An evaluation E of objects oi ∈ O w.r.t. attributes ak ∈ A and over L is a mapping

E : O × A → L : (oi, ak) → E ((oi, ak)) = tv (oi has ak) ,

i.e. we consider it as an L-subset E of O × A, containing (oi,ak) with the truth value
tv(oi has ak) ∈ L.

1.2 Basic theory

Evaluations of objects oi w.r.t. attributes ak.

– Consider

LO×A := {E | E : O × A → L} ,

the set of all L–subsets of O× A, for a given lattice L. In case L= [0,1]3, an L-subset
of O × A is an association of triples of parameter values to the pairs (o,a) ∈ O × A.

By this generalization of the evaluation we can choose a set theory and its logic
over L and this allows problem–orientation. Hereby we adopt the fuzzy notion
of membership functions (Pollandt 1997) as the set theoretical operations such as
subset-set relation, inclusion, set differences or union are not necessarily related to
crisp sets.
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– On L–subsets S, S’ of a set X we introduce L–inclusion as follows:

S ⊆ L S
′ ⇐⇒ ∀x ∈ X : S(x) ≤ S

′
(x).

– Intersections of two such L-subsets can be defined, using t-norms
τ : L × L → L, mappings with symmetry, monotony, associativity and side

condition τ (x,1L) = x. They yield τ–intersections I on LX with M and N as
arbitrary membership functions (Pollandt 1997).

I(x) = (M ∩ τ N) (x) = τ (M(x), N(x)) .

One of the most important t–norms is:

– The standard norm s, defined as

s (x, y) = x ∧ y.

Other t-norms are the drastic norm, the algebraic product and the bounded
difference, see (Kerber 2006, 2017)

We use a notion of truth, based on τ and its residuum:

– τ * : L × L → L is a residuum of τ , iff

τ (x, y) ≤ ν ⇐⇒ x ≤ τ ∗ (y, ν) .

In this case τ is called a residual t–norm.
As an example of a residuum for L = [0, 1] we select the standard norm, s(α,β)

s∗ (α, β) =
{

1, if α ≤ β

β, otherwise

This means that we have choices, and that we can use a problem orientation:

– Choose a suitable lattice L as set of values; pick a suitable residual t-norm
τ obtaining a set theory. Its residuum τ * gives the corresponding logic, i.e. a
quantification of the subset-set-relation. Apply that to E ∈ LO×A, the evaluation
considered, and get a basis of the implications (see below)!

1.3 Exploration

For the exploration of the evaluation E we can use that object o has attribute a if and
only if E(o,a) > 0. We put

A
′
(o) = τ ∗ (A ⇒ E) = �

a∈A
τ ∗ (A(a), E (o, a)) ,
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and we evaluate A ∈ LA implies B ∈ LA in E by:

τ ∗ (A ⇒ B) = �
o∈O

τ ∗
(

A
′
(o), B

′
(o)

)
.

A ⇒ B holds in E if and only if τ *(A ⇒ B) = 1, i.e., iff A’ ⊆L B’. Defining
pseudo-contents (Ganter and Wille 1996), by

P �== P" and for each pseudo − content Q ⊂ L P : Q" ⊆ L P,

we get the Duquenne/Guigues-basis (Duquenne 1987) which implies every attribute
implication following from E,

P =
{

P ⇒
(

P"\P
)
| P pseudo − content

}
.

1.4 Example

Adding substructures, Cl-, F-, Br-, I-atoms, and using simplified binary parameters
nODP ∗ , nGWP ∗ , nALT ∗ , ... , we obtain for an arbitrary subset of refrigerants (see
for the complete set (Restrepo 2008)) in order not to get too huge outputs:

E nODP∗ nGWP∗ nALT∗ nC Cl F Br I ether CO2 NH3

1 1 0 0 0 1 1 0 0 0 0 0
2 0 1 0 0 1 1 0 0 0 0 0
6 0 0 0 1 1 1 0 0 0 0 0
7 0 0 0 1 1 1 0 0 0 0 0
8 0 1 1 0 0 1 0 0 0 0 0
16 0 0 0 1 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 1 0
22 1 0 0 0 1 1 1 0 0 0 0
23 0 1 1 1 0 1 0 0 0 0 0
29 0 1 1 1 0 1 0 0 1 0 0
32 0 0 0 0 1 0 0 0 0 0 0
33 1 0 0 1 1 1 0 0 0 0 0
35 1 0 1 1 1 1 0 0 0 0 0
36 0 0 0 0 0 1 0 1 0 0 0
37 0 0 0 1 0 0 0 0 1 0 0
38 0 0 0 0 0 0 0 0 0 0 1
39 0 0 0 1 0 1 0 0 1 0 0
40 0 0 0 1 0 1 0 0 1 0 0

The Duquenne/Guigues basis of it yields all what follows, it can be obtained
online, using CONEXP–1.3 (Yevtushenko 2000). We find the implications
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{nODP’} =⇒ {Cl,F}
{nGWP’} =⇒ {F}
{nALT’} =⇒ {F}
{nC,Cl} =⇒ {F}
{nALT∗ ,Cl,F} =⇒ {nODP∗ ,nC}
{nGWP’,nC,F} =⇒ {nALT∗ }
{Br} =⇒ {nODP∗ ,Cl,F}
{I} =⇒ {F}’
{ether} =⇒ {nC}
{nALT’,nC,F,ether} =⇒ {nGWP∗ }

Summarizing we suggest: In order to explore an evaluation of objects o ∈ O
according to given attributes a ∈ A do the following:

– Choose a suitable set theory, i.e. a residual τ and its τ *,
– use Bruggemann’s̈ PyHasse (Bruggemann et al. 2014), to avoid the tedious

manually operations,
– evaluate, using CONEXP (Yevtushenko 2000) if it is binary, the Duquenne/

Guigues basis
– evaluate, using CONEXP (Yevtushenko 2000) if it is binary, the Duquenne/

Guigues basis (Duquenne 1987), a set of hypotheses on possibly interesting
bigger sets � ⊃ O of objects. Try to prove (or at least to check) these!

2 A Further Example

Eight regions along river Rhine in the southwest of Germany were monitored with
respect to pollution by the chemical elements lead, Pb, cadmium, Cd, zinc, Zn and
sulfur, S. As the middle range transport was of main interest, the herb layer was more
closely investigated by the environmental protection agency of Baden Württemberg.
The regions, together with their labels and the total concentrations̈ (mg/kg dry mass)
of Pb, Cd, Zn and S are shown in the following table (Table 1)

Table 1 Measured regional
pollution

Region Label Pb Cd Zn S

Lorrach 1 1 0.04 21 1540
Westwards of Freiburg 24 1.7 0.18 39 1740
Heidelberg 52 2 0.23 36 4030
South of Mulheim 10 1 0.03 29 1780
Offenburg 31 1.1 0.15 28 1740
Mannheim 56 1 0.11 34 1970
Westwards of Mulheim 19 0.8 0.01 18 4030
Rastatt 43 0.5 0.11 39 4030
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Table 2 Discretized regional
pollution

Regions nPb nCd nZn nS

1 0 0 0 0
10 0 0 0 0
24 1 1 1 0
31 1 1 0 0
19 0 0 0 1
43 0 1 1 1
52 1 1 1 1
56 1 1 1 0

We coarsen the data to values 0 or 1: Let mw(j) be the arithmetic mean value of
j-th chemical element (Pb or Cd or Zn or S) taken over all eight regions, indicate by
q(i,j) the total concentration of the j-th chemical element of region i and put

qb (i, j) =
{

0 if q (i, j) > mw(j)

1 otherwise

It is completely clear that the results are depending on outliers and the distribu-
tion of the data, because the mean value is statistically not a robust measure. We
suppress the corresponding analysis, as these data serve only as a demonstration.
The mean values are:

Pb : 1.1375;Cd : 0.1075;Zn : 30.5; S : 2607.5.

Here is an input for the program CONEXP by Yevtushenko (Yevtushenko 2000).
We write (instead of qb(−,j)) nPb, nCd, etc. for easier understanding, write 1 for ×
and 0 for the empty cell, and find (Table 2)

The program CONEXP (Yevtushenko 2000) delivers some implications, which
should be considered as geochemical hypotheses. We list implications as outcome
of CONEXP (Yevtushenko 2000). How often the premises are realized in the
(transformed) data matrix is given by the numbers in <>-brackets:

1. < 4 > nPb =⇒ nCd;
2. < 4 > nZn =⇒ nCd;
3. < 2 > nCd,nS =⇒ nZn.

Within the transformation, and the selection of regions the hypotheses would be:
High pollution by lead implies a high pollution by cadmium. This is plausible as
often by mining activities lead and cadmium are simultaneously found. Similarly
Zn also implies Cd, and finally, when the pollution by Cd and by S is high, then the
hypothesis is that in this case Zn is also highly polluting. It should be realized that
an implication of the form ‘S implies...’ is not found. These hypothetic implications
can a posterior easily be verified by checking Table 2, whereas it is often difficult
to detect implications from reading the table. However, the reader should still be
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aware that the implications are derived from binary data which originally were
continuous in concept. In another contribution within this book (Bruggemann,
Kerber) the mathematical framework given above is reformulated for programming
purposes and may be helpful for a further understanding of the “problem orientable
evaluations as L-subsets”.
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Evaluations as Sets over
Lattices – Application Point of View

Rainer Bruggemann and Adalbert Kerber

1 Introduction

This contribution is based on Bruggemann and Kerber 2018 and on the theory
developed there (in the following referred as BK). The essential point is that an
evaluation, as well as a subsequent exploration starts not always with an ordinal
data matrix or even with a data matrix built of binary data, but on data continuous
in concept, for example: data taken from [0,1]m, as described for m=3 in BK.
Therefore, it is of interest how far the powerful and elegant method of Formal
Concept Analysis (Ganter and Wille 1996) can be applied. Especially, without the
crucial and often arbitrary scaling method which was developed in the school of
Wille. The mathematical concept of an alternative method, avoiding the scaling
procedure (Ganter and Wille 1989) is explained in BK. Here the methods are
examined in more detail with respect to typical tasks in decision support systems and
taking the point of view of a statistician. I.e. a special focus was set on the point,
how the lattice theoretical method can be compared with conventional statistical
methods, as for example correlation analysis.

A technical problem arises: The lattice theoretical method in BK is selected as
one of the modules of the PyHasse software, see BK, because the method is basically
simple however manually performed, very tedious. (For the PyHasse software itself,
see e.g. Bruggemann et al. 2014). Therefore, the mathematical notation is to be
replaced by a notation, which also can be used in the programming language Python.
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2 Materials and Methods

2.1 Notation

Table 1 shows the most important issues.

2.2 The Nature of Mapping A (and B), Standard t-norm

In BK the mappings A and B are introduced as subsets of [0,1]m ,m being |Q|,
in order to be most general and (as will be shown later) to calculate properly
derivations of A and B, resp.. Both mappings are the basis for formulating an
implication A ⇒ B, i.e. to calculate as to how far A implies B. In data exploration
and in Formal Concept Analysis one wants to find out, as to how far a subset
of Q implies another subset of Q. An example based on refrigerants is shown in
BK, where {nODP*} ⇒ {Cl, F} (if there is an ozone depletion potential observed
(nODP*= 1), then (within the given set of refrigerants), the chemicals have Cl- and
F substituents). Both sets {ODP*} and {Cl, F} are crisp subsets of Q = {nODP*,
nGWP*, nALT*, nC,Cl, F, Br, J, ether, CO2, NH3}. For more details, see Sect. 4.1
or Kerber, Bruggemann, this volume.

In other words: Starting a data exploration in terms of finding out as to how
far implications can be established among subsets of Q needs the formulation of
mapping A and B as subsets of {0,1}|Q|. For example the subsets with |Q| = 2 would
be {(0,0)} or {(0,1),(1,0)}, etc. Note that a deepened analysis (here not considered)
would require of [0,1]|Q|. Then a subset with |Q| = 2 could be {(0.2,0.7), (0.8,0.01)},
etc.

Table 1 Notation

Issue Notation Remark

t-norm t in BK: τ

Standard t-norm s in BK: s ; in the following text only the standard
norm will be applied.

Residuum of s s* in this text resid in Python programs
Object set X
Set of indicators Q in former papers also called IB (information basis)
ith object x(i) in BK: o
jth indicator q(j) in BK: a
Entry of a data matrix x(i,j) in BK: ε(o,a). It is assumed that 0 ≤ x(i,j) ≤ 1
Mapping A A A
Mapping B B B
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2.3 Role of Mapping A, Standard Norm and the Data Matrix

A central role in the data exploration applying data continuous in concept plays the
“has”-relation:

An object x ∈ X has an indicator q ∈ Q (1)

Because the data are supposed to be continuous, the term “has” must be
interpreted as a degree, i.e. a truth value (tv) of the “has”-relation. If tv = 0 then
object x has not the indicator q, if tv = 1, then the object has certainly the indicator
q, hence in general tv ∈ [0,1]. Statement (1) in terms of A, Q and x(i,j) is given by
Eq. 2:

A′(x) = ∧q(j)∈Q1⊂Qs ∗ (A (q(j)) , x (i, j)) (2)

Therein is Q1 a crisp subset of Q. The meet-operation in Eq. 2 can in the case of
data continuous in concept replaced by the Min-operation. When Q1 is a singleton,
say Q1 = {q(1)} the evaluation of Eq. 2 is very easy:

A
′
(x) = Min {s ∗ (A (q (j)) , x (i, j))} .

As shown in BK the residuum of the standard norm is given by Eq. (3):

s ∗ (α, β) :=
{

1 if α ≤ β

0 otherwise
(3)

α, β being real numbers ≥ 0.
A is a tuple of length |Q|. A(q(j)) means, the value of the tuple A at position j.

Let us select a 1 at the jth position and 0 otherwise, in order to describe the crisp
subset {q(j)}. Then, the residuum of the standard norm delivers for x(i) everywhere,
where A(q(j)) = 0 the value 1, and only in the jth position the value x(i,j). Hence a
singleton Q1 = {q(j)} selects just the entry x(i,j) and if all x ∈ X are considered just
the jth column of the data matrix.

Consequently, the subset Q1, with several indicators, say {q(j1), q(j2), q(j3)}
delivers for the object x(i) first the entries x(i,j1), x(i,j2) and x(i,j3) and A’(x) is
0 besides at the positions j = j1, j = j2, j = j3) where the actual values of x(i,j) are
to be inserted (which nevertheless can also be 0) and after this selection the minimal
value among the set of entries {x(i,j1), x(i,j2), x(i,j3)} is to be found.

In Fig. 1 the situation, due to Eq. (2) is schematically shown, assuming that
|Q| = 7 and A = (0,1,0,0,1,0,0) describing the crisp subset {q(2), q(5)}.
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Fig. 1 Scheme for the evaluation of Eq. (2), assuming 7 indicators and a data matrix with values
in [0,1]. For one object x(i) Eq. 2 selects just x(i,2) and x(i,5). For each row, the minimal value is
to be selected

2.4 Implication Between Two Disjoint Singletons of Q

Let Q1 be {q(j*)} and Q2 = {q(j**)}. The truth-value tv of an implication can be
calculated, by evaluating Eq. (4):

tv (Q1 ⇒ Q2) = Minx∈X

{
s ∗

(
A

′
(x) , B

′
(x)

)}
(4)

A’(x) and B’(x) quantify, as to how far x has q(j*) and q(j**), resp. From Sect.
2.3 it is known that the has – relation for Q1 selects just the column x(i, j*), whereas
the has-relation of Q2 selects the column x(i, j**). Figure 2 shows schematically the
procedure.

3 Towards a Statistical Approach

3.1 Role of Subsets of X

As should be clear from the above, the truth values of implications will rarely be 1.
Hence it is meaningful to check whether or not subsets of X will modify the truth
values.

Proposition

X1 ⊆ X ⇒ tv (q (j∗) ⇒ q (j ∗ ∗)) |X ≤ tv (q (j∗) ⇒ q (j ∗ ∗))|X1 (5)
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Fig. 2 Procedure to determine the truth value of the implication q(j*) ⇒ q(j**). The blue blocks
symbolize the data matrix x(i,j) , j = 1, . . . ,|Q| and I = 1, . . . ,n

in Eq. 5 the notation . . . |X and . . . |X1 means that the values of tv are taken once
from the set of X and once from the set X1.

Proof The tv-value is taken from Min{s*(x(i,j*)),x(i,j**) } according to Eqs. (2)
and (4). The Min-value is obtained from X; let x(i*, j’) be this minimum. If X1 ⊂ X,
and x(i*,j’) is not in X1, then necessarily tv(X1) ≥ tv(X). Otherwise tv(X1) = tv(X).

Corollary By a proper selection of X1 the truth value can be enlarged.

3.2 Role of Transposed Data Matrix x(j,i) j = 1, . . . ,|Q|,
i = 1, . . . ,n

The question is, when can be guaranteed that the implication between two disjoint
singletons yield tv = 1, applying the standard norm.

Proposition

x (i, j1) ≤ x (i, j2) for all i = 1, . . . , n ⇒ tv ({q (j1)} ⇒
[

q (j2) }) = 1 (6)

Proof A(q(j1)) induces x(i,j1), B(q(j2)) induces x(i,j2). From each pair (x(i,j1),
x(i,j2)) the residual standard norm has to be taken. Due to: x(i,j1) ≤ x(i,j2) for all
i = 1, . . . ,n the residual standard nor equals 1 for x(i), hence the Min-value, taken
over all x(i) equals 1, and tv(q(j1) ⇒ q(j2)) is therefore 1.

Corollary 1 The test for: x(i,j1) ≤ x(i,j2) for all i = 1, . . . ,n means that a
partial order can be defined among the indicators. Because: x(i,j1) ≤ x(i,j2) for all



96 R. Bruggemann and A. Kerber

Fig. 3 Application of the
product order for the
transposed data matrix

i = 1, . . . ,n q(j1) ≤ q(j2) is fulfilled. Checking x(i,j1) ≤ x(i,j2) for all i = 1, . . . ,n
means to investigate the partial order by examining the transposed data matrix.

Corollary 2 If q(j) || q(j*) (i.e. if (q(j,1), q(j,2), . . . , q(j,n)) incomparable with
(q(j*,1), q(j*,2), . . . , q(j*,n)), n being the number of objects, then the minimal
values of all x(i, j*) is to be checked, for which x(i,j*) < x(i,j) to establish the truth
value for the implication q(j) ⇒q(j*), and analogously the minimal values of all
x(i,j*) for which is found: x(i,j) ≤x(i,j*)-

Figure 3 shows this result schematically (instead of q(j1) and q(j2), resp. it is
used q(j*) and q(j**), resp.

Taking the scheme in Fig. 3 literally, then also tv(q(j) ⇒ q(j**)) = 1 is valid.

3.3 Implications and Correlation

As already stated, data continuous in concept can also be analyzed with simple
statistical tools, such as the (Spearman or Pearson) correlation analysis. However, it
is difficult, to find a theoretical relation between tv-values of an implication and the
correlation coefficient. In order to get an idea how the tv-values and the correlation
coefficients could be related, a fictitious data set was analyzed. Table 2 shows the
data.

The term z in Table 2 stands for values from 0.1 to 1 in 0.1 steps, so that in
practice 10 data matrices are analyzed, which only differ in the value x(11,q2).

It is clear that correlation analysis is from its very nature a symmetric analysis,
whereas the truth values of implications depend on the direction of the implication,
i.e. whether q1 ⇒ q2, or q2 ⇒ q1.

Furthermore, the truth values of implications depend on the lowest possible value
of z, i.e. the tv cannot be considered as a statistical robust measure. The correlation
coefficient (Pearson) and the two truth values are calculated for each of the ten
possible data matrices and the result is shown in Fig. 4.



Evaluations as Sets over Lattices – Application Point of View 97

Table 2 A fictitious data set
with 11 objects
x(1), . . . ,x(11) and two
indicators q(1) and q(2)

q(1) q(2)

x(1) 0 0
x(2) 0.1 0.1
x(3) 0.2 0.2
x(4) 0.3 0.3
x(5) 0.4 0.4
x(6) 0.5 0.5
x(7) 0.6 0.6
x(8) 0.7 0.7
x(9) 0.8 0.8
x(10) 0.9 0.9
x(11) 1.0 z

1,2

1

1,8

0,6

0,4

0,2

0
0 0,2 0,4 0,6 0,8 1 1,2

correl
tvq1impq2
tvq2impq1

Fig. 4 The values of the abscissa are the values of z, whereas the ordinate is either the Pearson
correlation coefficient or the two truth values

In that specific case, with a very special family of data matrices, the Pearson
correlation coefficient has an upper limit by the truth value of q2 ⇒ q1, and a lower
limit by the truth value of q1 ⇒ q2.

This example shows that considering the implication based on indicators contin-
uous in concept as an approach for a correlation is misleading: The correlation aims
at a more or less good co-monotony in the two indicators, whereas the truth value,
say of q1 ⇒ q2 depends on the value of z and in the case of the implication q2 ⇒
q1, where the truth value equals 1 for all z only confirms that all data of q2 are larger
than those of q1, when all objects (here x1 to x11 ) are considered.
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4 Two Examples

4.1 Example: Refrigerants

Refrigerants are chemicals, which reduce the temperature during a controlled
evaporation process in various machines (Restrepo et al. 2008a, b; Bruggemann
et al. 2011). In BK the data were transformed to binary ones, and based on this,
implications were deduced. In Table 3 a subset of 4 refrigerants is shown, all
having chlorine and fluorine as substituent. The data set selected is small, just for
demonstration and to avoid too large outputs.

The chemicals are listed in Table 4.
Only the implications between a premise as singleton are analyzed, and only the

standard norm and its residuum resp. is applied. As can be seen from Table 3, the
data are in the interval [0,1], and not in binary form. We have the implications:

(1) F, implies Cl, with truth-value 1.0
(2) Cl, implies F, with truth-value 1.0
(3) nC, implies F, with truth-value 1.0
(4) nC, implies Cl, with truth-value 1.0
(5) nC, implies Cl, F, with truth-value 1.0
GWP, implies F, with truth-value 1.0
GWP, implies Cl, with truth-value 1.0
GWP, implies Cl, F, with truth-value 1.0
ODP, implies F, with truth-value 1.0
ODP, implies Cl, with truth-value 1.0
ODP, implies Cl, F, with truth-value 1.0
ODP, implies GWP, with truth-value 1.0
ODP, implies GWP, F, with truth-value 1.0
ODP, implies GWP, Cl, with truth-value 1.0
ALT, implies F, with truth-value 1.0
ALT, implies Cl, with truth-value 1.0
ALT, implies GWP, with truth-value 1.0

Table 3 Four refrigerants (with labels “1”,”2”,..) and a reduced set of indicators

“1”
“2”
“6”
“7”

ALT

0.01
0.03
0.0
0.01

0.2
0.16
0.02
0.01

ODP

0.32
0.72
0.05
0.15

GWP

0.0
0.0
1.0
1.0

nC

1.0
1.0
1.0
1.0

Cl

1.0
1.0
1.0
1.0

F

ALT atmospheric lifetime, ODP ozone depletion potential, GWP general warming potential, Cl
presence of chlorine in the molecule, F analogously, F analogously, nC at least one C-C-bond
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Table 4 Chemicals, labeled
by “1”, ”2”, . . .

Label Chemical

“1” CCl3F
“2” CCl2F2

“6” C2H3Cl2F
“7” C2H2ClF2

The first five implications are trivial, as one can see from the molecular formulas,
because Cl and F are always present. Nevertheless, a series of implications is found,
where the truth value equals 1. However, it should be clear that the restriction of only
4 chemicals is very severe, especially when originally 40 refrigerants were part of
a partial order driven analysis (Restrepo et al. 2008a). That usually the truth values
are rarely 1 will be shown in the next section.

4.2 Eight German Regions Along the River Rhine

The Environmental Protection Agency of the German state Baden-Württemberg
initialized a large monitoring study, concerning the pollution by lead, Pb, cadmium,
Cd, zinc, Zn and sulfur, S. Different targets were investigated, so for example
the herb layer (see for a general overview: Bruggemann et al. 1998, 1999). The
herb layer is of interest, because it supports to identify middle range transport
phenomena. The total concentrations were measured in mg/kg dry mass. Here, in
this section, eight regions along the river Rhine, from the German part of Basel, until
Karlsruhe are used as example. Originally the interest in these regions was to clarify
whether or not a trend can be observed, following downstreams (Bruggemann et al.
1997). The regions are labelled by {1,10,24,31,19,43,52,56}.

Here implications are investigated between two singletons, once again, only the
standard norm and its residuum are selected.
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As can be seen, the truth values of these implications are remarkably low,
showing that the transformation into binary values must be considered with care.
More details and the role of the selection of another t-norm can be inspected in
Bruggemann and Kerber 2018. Furthermore it is of interest to state that based on
binary transformed data Zn implies Cd, whereas here the implication Zn implies Cd
(however with a small truth value) is found.

5 Discussion

The example, discussed in Sect. 4.2 shows remarkably that accepting a continuous
range of data and implications based no more on a pure binary point of view will
also lead in general to truth values less 1. The main problematic point is that in the
binary case a “1” stands not for the maximum of a possible range [0, 1] but for the
presence of an indicator, so to say, in a close interpretation of the has-relation. In the
case of a continuous scale also the has-relation has truth values and the truth values
in consequence can also take values between 0 and 1. At which truth value can we
speak of a has-relation? Therefore, one of the main tasks in the future is, to provide
tools, how a coarsening of truth values can be performed. Is for example 0.476 for
the implication Cd ⇒ Zn big enough to establish contextually that Cd implies Zn?

The very simple and still pretty arbitrary example for a correlation analysis shows
that the generation of hypotheses can better be based on correlation coefficients than
on the truth values of implications, if the nature of the data allows a correlation
analysis (either Spearman or Pearson, just to denote two famous methods).

Nevertheless, the theoretical concept behind implications based on continuous
data opens another tool, which is worth to be examined further. The tasks for the
future are:

How can the theoretical framework, presented in BK and partially in this chapter
be embedded into the general Formal Concept Analysis, where the concepts,
i.e. pairs, for which (A’)’ = A is valid, play an important role in deriving
implications. Here up to now, there was no mentioning of concepts, although
the theoretical framework is general enough, to establish concepts even for data
continuous in concept. Nevertheless, first approaches indicate that even with
data continuous in concept, the requirement that the “second derivative” of A
(=A” = (A’)’), has to be equal to A itself works well as a method to find
concepts. The fact that the second derivative is to be formed, makes a posteriori
understandable, that in BK the formulation of A as a set [0,1]|Q| was selected: The
first derivative may deliver a tuple of length |Q| whose components are indeed
values taken from [0,1].

The number of implications in the binary case can be large. If -as shown in the
former section- truth values are to be accepted which are not equal 1, then still
the number of implications increases dramatically. Therefore the construction of a
basis, the Duquenne, Guigues basis (Duquenne 1987), is urgently needed. So, even
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if actually the results are not that convincing, the theoretical framework needs still
future work before a final conclusion about its usefulness in case of non-binary data
can be done.
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Part II
Indicators for Special Purposes



Indicators for Sustainability Assessment
in the Procurement of Civil Engineering
Services

Nora Pankow, Rainer Bruggemann, Jan Waschnewski, Regina Gnirss,
and Robert Ackermann

1 Introduction

In order to face global challenges, the UN passed a joint solution also known
as Agenda 2030. UN member states declare themselves ready to implement the
Agenda 2030 and its set of 17 sustainable development goals (SDG) on a national
level (UN 2015). Germany applied the ideas of the Agenda 2030 in the German
Sustainability Strategy and adjusted the SDGs from the global perspective to a
German perspective with specific indicators for the different goals (Bundesregierung
2016). The strategy also states that for an inclusion of a sustainable development
a further implementation into economy, academics and civil society is necessary
(Bundesregierung 2016).

The rising awareness for sustainability, increases the demand for companies
to include and monitor different objectives not just from governmental but also
from customer side (Jasch 2009; Koplin 2006). Consequently, mandatory indicators
must be expanded. The Berliner Wasserbetriebe (BWB) provide Berlin and parts of
the state Brandenburg with drinking water and are responsible for the wastewater
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treatment (BWB 2016). The main goal is to ensure the water quality for present
and the future generation (BWB 2018). This involves the restoration, renovating,
reconstructing and enhancing of plants. The engineering and purchasing of different
engineering projects already require various legal, technical and company internal
guidelines (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin 9/5/2016;
BWB 2014). The implementation of sustainability indicators needs to be fitted for
this complex process. For an enterprise the implementation of indicators given in
the Agenda 2030 can therefore be problematic.

This paper exhibits an option to incorporate sustainability indicators into the
procurement process to support decision-makers. The inclusion of the engineering
phase in the procurement process is seen as essential to secure a more sustainable
company. Thus a sustainable procurement can only be realised when the engineering
phase and purchasing phase also consider sustainability indicators (Koplin 2006;
Wutke 2016).

For this, the top-down approach of the Agenda 2030 was linked to the problem-
oriented bottom-up approach (Coen 2000). Using the bottom-up approach the
specific demands in the procurement of the urban water management can be
considered.

2 Method

The procurement process at the Berliner Wasserbetriebe (BWB) consists of several
phases involving different departments. The main departments are planning and
construction (PB) as well as purchasing (EK) (Pankow 2018). The PB is the biggest
division and oversees systems planning which includes the environmental laws,
technical standards and economic indicators. The decision making for different
variants during the engineering process is usually based on economic indicators.
In consultation with the PB the EK oversees the tendering process. As a state
authority the BWB is bound to the procurement law of the EU and Germany and the
environmental procurement directive of the Senate Department for the Environment,
Transport and Climate Protection of Berlin (Europäische Union 2014; Senat Berlin;
VgV 2016; Senatsverwaltung für Stadtentwicklung und Umwelt Berlin 9/5/2016).

Indicators that have already been included in procurement process of the BWB
are defined as “status quo indicators”. The status quo indicators should be comple-
mented with sustainability indicators, those indicators are called “target indicators”.
However, the indicators must be assessed for their applicability and their relevance
in the specific field for procurement of civil engineering. In a technical workshop
with employees of relevant departments, indicators were selected. Afterwards the
selected indicators had to be tested on their causal relationships in the procurement
process.

https://www.berlin.de/sen/uvk/en/
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2.1 Development of Indicators

The goals defined in the German Sustainability Strategy address different problem
areas in Germany and were not developed for a specific sector or a company. For
example: The German SDG 6 (ensure availability and water sustainable manage-
ment of water and sanitation for) contains three indicators which are focusing on
water quality (phosphor and nitrate) and on access to drinking water. But for the
procurement of civil engineering projects in the public sector other aspects need
to be considered (e.g. cost of the plant, safety of worker). Thus, indicators of the
German Sustainability Strategy need a specification before they can be applied
in the assessment of the procurement process Instead of relying solely on the
Sustainable Development (SDG)-indicators this approach will, as a first step, take
other indicators into consideration. Those indicators should add technical, water-
and BWB-related aspects to ensure the sectoral focus. By adding other indicators, a
base-set of indicators is created (see Table 1). This base-set with over 150 indicators
contains various kinds of aspects, which are of different relevance in the civil
engineering service in the BWB.

For a practical application of the Multi-indicator system (MIS) the number of
target indicators needs to be decreased. Consequently, the next step should be
to narrow down the base set to indicators with a specific relevance in the civil
engineering service.

To identify the indicators with the highest relevance a workshop with the main
contributing departments in the BWB was held. This collective selection round
together with PB, EK and the department of strategy could highlight the most
relevant topics. Each participant was given the same number of votes. With this
workshop a new set of indicators was created, which are here defined as “theoretical
target indicators”.

Since the indicators are from different sources, most of them have different
degree of detail and may contextually overlap. Every indicator from the set of the
theoretical target indicators was therefore reassessed. To ensure the practicability
every indicator should have a direct causal relation or a short chain of causation
(Pankow 2018; Mischke 2017). The theoretical target indicators could be reduced to

Table 1 overview of frameworks for a base-set of indicators

National framework - Sustainable Development Goals of Germany
Technical framework - VDI-Indicators of the technical assessment guideline

- NaCoSi-Indicators for the sustainability controlling of
residential water management systems

Regional framework - Administrative provision procurement and environment
(VwVBU)
- Order and procurement regulations of Berlin

Legal framework - Procurement regulations
- Environmental regulations

Company intern framework - Sustainability indicators of the company
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Table 2 Practical target
indicators

I1 Tariff stability
I2 Air pollutants (health)
I3 Worker safety
I4 Competence management
I6 Free space loss
I8 Acceptance
I9 Affected sources of water
I10 Energy intensity
I11 Power consumption
I13 Greenhouse Gas emissions
I14 Other significant air emissions
I15 Biodiversity of water
I16 Waste
I17 Secondary raw materials
I18.1 Investment costs
I18.2 Operating cost
I19 Spending research and development
I20 Creativity
I21 Environmental management external
I22 Innovation and adaptability
I23 Robustness

Fig. 1 Implementation of Indicators in an iterative process

“practical target indicators”. The practical target indicators are a set of 21 indicators
in total (see Table 2). For the assessment of the case examples the indicators were
divided into the three sustainability dimensions.

Since the concept of sustainability is in transition over influenced by culture and
knowledge a regular reassessment is vital. That is why an incremental implementa-
tion of indicators is proposed (see Fig. 1). By adding indicators over time, the MIS
can be readjusted, and new indicators can be added if necessary.
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2.2 Application to Case Examples

By applying the MIS to case examples, the applicability and practicability was
reviewed. For the utilization in the procurement process the MIS must be used by
PB and EK. As stated by both departments the time exposure and data availability
are defining limitations for the practicability in the procurement process (Pankow
2018).

The selected indicators were tested on four case examples at the BWB. The
goal was to identify the most sustainable variant of three given options. For further
discussion the data was evaluated with a multi-criteria decision analysis using three
different tools: Dashboard of Sustainability, Value Analysis and Partial Order.

As previously explained the MIS requires an incremental implementation and
must be reassessed over time. In this work the partial order was used for an analysis
of the MIS.

2.2.1 Multi-criteria Decision Analysis

There is a broad variety of multi-criteria decision analysis (MCDA). MCDA aims to
systematically analyse a complex problem to support the decision-making process
(Wilkens 2012).

The most prominently used method is a value benefit analysis. The indicators
form the assessment system to which each variant is allocated a partial use value
which can be summed to a total value for each variant (Zangemeister 1971). The
use value allocates a certain weight for each indicator. The weight can be derived
by different methods (Sartorius et al. 2017; Müller-Herbers 2007). In this work the
weights were assigned by the direct ranking method. The direct ranking method
gives each indicator a certain ranking between the indicators. Depending on the
rank a weight is appointed (Žižović et al. 2017).

The second MCDA used is the Dashboard of Sustainability (DS). With a DS the
disaggregated results of a sustainability assessment should be easier to communicate
with non-expert users in decision-making (Traverso et al. 2012). The Dashboard
of Sustainability is a free software, developed by the UN for the assessment of
the Millennium Development Goals of cities and countries (Sachs 2012; Saltelli
et al. 2005). The Excel-tool, provided by the UN, can be readjusted with individual
indicators and presents the results in a coloured dashboard (O’Conner 2003, 2012).
The indicators are normalized, and the variants are compared directly to each other
(Scipioni et al. 2009). The tool provides the option to create an own dashboard and
edit parameters (Seidel-Schulze and Grabow 2007). The variants are conjugated
to a colour range from red (critical) over yellow (medium) to green (very good)
(O’Conner 2003).

The third method is partial order. Partial order is a non-parametric method
where objects are related by the ≤-relation. In addition to this relation, a partially
ordered set is subject to the three axioms of reflexivity, antisymmetry and transitivity
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(Bruggemann and Patil 2011). With the partial order, objects are characterized by
attributes (or in this case indicators). The sorting of variants or objects using the ≤-
relation results in a rating network with characteristic structures, a so-called Hasse
Diagram (HD) (Steinberg 2002). A HD displays the objects and their ≤-relation by
a directed graph (chain). In a poset not all objects are comparable, so they are not
connected by a graph (antichain). The program PyHasse was used to create those
HDs (Bruggemann 2018).

During the course of this work PyHasse showed a low validity for the assessment
of the variants because of the high number of indicators and low number of objects
(Pankow 2018; Bruggemann et al. 2014). The focus of this work was to derive a
MIS to assess variants in decision-making. Therefore, the indicators should also be
assessed in this process. For the assessment of the indicators, the indicators were
treated as objects and the variants as attributes. When the indicators are treated as
objects, the variants can be used to characterize the indicators. For the assessment
of the indicators the case examples were analysed in two different approaches. In
the first approach each case examples forms a matrix and is analysed individually.
Therefore, each case example was considered individually. The other approach is to
analyse all case example in its entirety in one matrix.

The examination tools for both approaches were identical. The indicators must
be normalized to allow forthcoming analysis. The goal of the partial order is the
mapping of indicators on a metric scale. Indicators should therefore not dominate
other indicators due to a large measure-unit. To avoid this kind of dominance a
normalization can be appropriate. After the normalization the HDs for all case
examples and the entirety of all case examples were created.

The characteristic structures formed in the HDs, especially the subsets in the
HD were of interest. With the PyHasse module “sepanal15_4” the separability of
subsets from the HD can be investigated (Restrepo and Bruggemann 2008). The
module provides a degree of separability and the attributes that cause the separability
between two subsets. The result can be displayed graphically in a so-called tripartite
graph.

All indicators were associated with a sustainability dimension (social, ecological
or economic). If one dimension dominates the other dimensions, it would point
to an unbalanced set of indicators. The module “dds_12” in PyHasse analyses the
dominance of an assigned group of attributes. With dds_12 a dominance histogram
is generated. The histogram shows the distribution of the normalized dominance of
objects. In addition to the histogram, the module calculates the dominance matrix,
the separability matrix and the degree of separability.

2.2.2 Case Example

The case examples were previous projects at the BWB. Three of those examples
were projects in different wastewater treatment plants.

The first case example is the exhaust air treatment in the wastewater treatment
plant (WWTP) 1. In the inlet area of the mechanical wastewater treatment at the
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WWTP 1, the maximum workplace concentration and the applicable occupational
exposure limits of hydrogen sulphide concentration have been exceeded. To stay
within the threshold value, the sand trap should be covered, and the exhaust air
sucked off. For the treatment of the exhaust air, there are three different variants:
co-treatment in the aeration, fume scrubber and UV treatment.

The second example is the renewal of the digester chambers for the WWTP 2.
The WWTP is operated with a mechanical and biological stage. The sludge from
the wastewater treatment are fed to sludge digestion. The variants for this case
example were the renovation of the existing septic tanks, an addition of mixed
sludge dewatering and the construction of the septic tanks.

The third example is the treatment of process water in WWTP 3. During
the dewatering of the sludge, the process water with high ammonium content is
produced. This process water is returned to the main sewage stream. Due to lower
effluent criteria of ammonium in the WWTP the process water must be treated
separately. Consequently, three variants were assessed: Stripping and acid wash,
activated sludge process or deammonification in a sequencing batch reactor.

The fourth example is taken from the sewer system rehabilitation. The so-called
Cured-in-place pipe (CIPP) is one of several trenchless rehabilitation methods
where a resin-saturated felt tube is inserted into a damaged pipe. The liner is inserted
using water or air pressure and dries in place. In this case study a product with
different properties was examined.

3 Results

3.1 Variant Analysis

With the value benefit analysis all case studies could be evaluated. The specific value
for each indicator was determined by the direct ranking method, which allowed a
flexible assessment process. Due to the high number of indicators a consideration
of the three sustainability dimensions simplifies the results. The dimension view
shows the high and low rated dimensions of the variants as it can be seen in Fig. 2
for the case example exhaust air treatment in the WWTP1. A high rating indicates
a positive assessment. In this case example each variant has a high value in one
dimension. Variant 3 has the highest total value but is just in one dimension the
highest rated variant. Variant 2 has the highest rating in the ecological dimension. In
the economic and social dimension, the value is the lowest. Variant 1 is like variant
2, in the social dimension the value is high but the other two dimensions are lower
than the other variants.

In Fig. 3 the DS for the same case example can be seen. The created graphic
shows the three sustainability dimensions. The colours mark the different variants
and therefore the “good” and “bad” aspects of each variant are easy to distinguish.
The same case example shows slightly different results as in the value benefit
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Fig. 2 Net diagram of the variant analysis of WWTP 1

Fig. 3 Dashboard of Sustainability for the case example in WWTP 1

analysis. Variant 1 displays better results in the social and economic dimension.
The variant 2 has better result in the ecological dimension. The variant 3 shows a
light green colour in the ecological dimension, but medium to critical rankings in
the social and economic dimension.

The created HD showed complete antichains for all three variants in all case
examples (see Fig. 4), which implies that each variant has specific advantages and
disadvantages (which could be expected, after inspecting Fig. 3).
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3.2 Indicator Analysis

First, HDs for all case examples and the entirety of all case examples were
developed, whereby now the indicators are considered as objects (vertices in the
HD) evaluated by the variants. Each of the HD formed certain subsets, for example
as shown below for the exhaust air treatment in WWTP1 (see Fig. 5). The chains
I6 > I1 und I8 > I3 > I10, I8 > I3 > I20, I8>I11>I10, I8>I11>I20 and I18.1
> I13 were identified. The indicators I16, I22 and I23 are equivalent to I8 and
are therefore not visible on the HD. The object I18.2 is an isolated object. The
degree of separation among those subsets was analysed with the PyHasse module
“sepanal15_4”. The comparison of the subsets C1 (I6, I1) with C2 (I8,I3,I10), C3
(I8,I3,I20), C4 (I8,I11,I10), C5 (I8,I11,I20) and the component C6 (I18.1,I13) with
C4 shows a high degree of separation in the variants 2 and 3. The indicator group can
be separated by these two variants in a present separation . The scatter plot of Fig. 6
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illustrates this separation by means of the separation of components C1 and C2 by
variant 3 and variant 2. All components were showing a high degree of separation
(Fig. 6).

The dominance was analysed with the PyHasse modul “dds12”. In each HD
the indicators were assigned to one sustainability dimension (see Fig. 8). The
indicators of the same dimension are coloured in orange, blue and green. Indicators
from the social dimension are marked orange, the ecological dimension green, and
the economic dimension blue. Based on this allocation, the investigation of the
dominance between the three dimensions with the module dds12 was carried out.
The dominance histogram for the case example WWTP 1 shows a low degree of
dominance (see Fig. 7). The dominance analysis for the other case examples and the
entirety of all case examples showed similar results.
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4 Conclusion and Outlook

To secure water quality and access to water for next generations sustainable devel-
opment is a vital component of the BWB company strategy. Therefore, a stronger
focus on implementation of sustainability in the various company departments
and especially their practical implementation is of interest. Due to the different
protection goals, it is necessary to adapt sustainability to a problem area. This
work dealt with the development of sustainability indicators in procurement of
engineering services, while considering the specific requirements in urban water
management.

The German Sustainability Strategy has not been able to fully adhere to the
goals of the Agenda 2030 but has partially incorporated them into the sustainability
strategy. Consequently, these objectives cannot be transferred to the water sector.
Beyond the German Sustainability Strategy, additional framework conditions were
included for the recording of the indicators and the development of a multi-indicator
system. On the one hand, this has allowed for more specific indicators for the water
sector. On the other hand, this also led to a high number of indicators with different
degrees of detail. The support provided by the employees was an important basis
in the determination of the requirements and the relevance of the indicators. The
participation of employees significantly reduced number of indicators from over
150 to 21.
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It has also proved useful to review the causal relationship. In the next stages of
the indicator development, this step should be included to ensure the relevance in
the specific department.

The trial based on case examples has shown a solid data availability in the
sewage treatment sector. The variants evaluated with the utility analysis and the
dashboard of sustainability were practical in their application and displayed easy to
interpret graphics. Due to the direct ranking method the value benefit analysis has
a subjective value attitude. A stronger focus on the weighting method as suggested
by Sartorius et al. (2017) with the involvement of experts and decision-makers is
recommended. The Dashboard of Sustainability simplified the results with its colour
representation even more than the value benefit analysis. The colour assignment
made the identification of “good” and “bad” rated variants easy. The high degree of
simplification is accompanied by a loss of transparency. The direct comparison of
variants could lead to wrong conclusion especially for non-expert users.

The partial order and the program PyHasse could not be used for the variant
evaluation. The small number of variants and the high number of indicators
lead to many incompatibilities. Examples with more than 3 variants could show
comparability and hence better interpretable results.

The program PyHasse, however, showed usability for the assessment of the MIS.
The study of separability points to differing indicators. The dominance analysis has
shown that no sustainability dimension dominates. This suggests a diverse set of
indicators that covers different aspects. However, the indicator rating used with
PyHasse could be further developed. Since the number of variants was too small
to statistically secure the results.

As clarified at the beginning of this work, the MIS can be developed in an
iterative process. As a result, the changes of social, legal, technical or scientific
nature occurring over time can be included. Furthermore, this procedure offers the
possibility to test the set of indicators with current obtained data. Once a stable
number of indicators has been reached, the analyses already performed by PyHasse
can be reapplied and expanded.

During the work, further questions related to the indicators and the evaluation
methods have emerged: The evaluation of qualitative indicators has so far been
subjective. For further application it is appropriate to develop a rating scheme to
facilitate the evaluation of these indicators.

The causal relationship and the quality of the indicators were only briefly
addressed in this paper. Further work requires a closer examination of the indicators
in terms of their causal relationship to a specific field in civic engineering and their
assessability. As a result, the evaluation of sustainability by indicators and thus the
decision could be hedged better.

In this work three multicriteria evaluation methods were considered. In the next
phases, further multi-criteria evaluation methods could be tested by case studies
within the implementation phases. The testing of new methods could also lead to
the creation of a proprietary algorithm that can be used for planning and purchasing.
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In the future, this set of indicators for the sewer network and the sewage treatment
sector can be applied and expanded on other departments as well, so that the
company can apply the same pool of indicators.
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Dependent Indicators for Environmental
Evaluations of Desalination Plants

Ghanima Al-Sharrah and Haitham M. S. Lababidi

1 Introduction

Availability of data is essential for effective environmental assessment study. In
desalination studies, environmental data are not commonly available (Roberts et al.
2010). Most of reported data in environmental assessment of desalination operations
are qualitative (low, moderate, above limits, etc.), incomplete and in most cases
inconsistent. For instance, salinity and ion concentrations of the discharged brine
are not enough to assess the environmental impact of the desalination facilities.
Temperature of the brine discharge, for example, is an important variable that has
a direct effect on other variables that affect the marine life, such as the amount
of dissolved oxygen. Another example is salinity, which is frequently reported by
environmental engineers in different methods that are not directly comparable. It
may be reported as mass fraction of dissolved salt (in ppm or g/kg), conductivity (in
Siemens per meter, S/m), or as TDS, which is expressed as total dissolved solids or
total dissolve salts (Boerlage 2011).

The selection of appropriate measures of environmental performance for desali-
nation depends on the nature of the environmental concerns, the type and quantity
of available information, and the degree of accuracy required in the representation.
Different environmental indicators are suitable for different stages of process
development, design or operation. Some indicators are general and can be applied to
a wide range of processes and industries, while others are more specific to the unit
under consideration. Selection of environmental indicators is not an easy task. Prior
to environmental assessment, indicators should be screened to eliminate irrelevant
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and redundant ones. For this reason, it is important to study the relationships
between indicators and their expected impacts on the final decisions.

In general, most of the indicators are in some way or another related to other
properties. Values of indicators are normally measured using online sensors or
determined by chemical Lab analysis of collected samples. In many occasions, Lab
analyses are also necessary to calibrate the sensors. Moreover, most of the indicators
are related to one or more physical or chemical properties. The relationship between
the indicator and its related properties may be expressed in the form of simple
equation derived from basic principles. In many cases, this relationship is correlated
using experimental data. For both cases, the relationship between the indicator and
other variables and parameters is referred to as a “model”. The output of the model is
basically the value of the indicator, while the inputs to the model are the dependent
variables, which are usually known as “primary variables”.

A “dependent indicator” is an indicator that is correlated to other indicators
or to primary variables. The correlations are expressed as models, which are
mathematical formulations that describe how the value of the dependent indicators
change with changes in their corresponding variables. Methods for developing the
correlations (models) are generally classified as statistical and conceptual. Statistical
methods are basically applied to numerical data and result in correlations described
as simple to use formulations (Imam et al. 1993). Conceptual methods are oriented
towards qualitative data and rules. Environmental assessments can benefit from
the correlations that may exist among indicators (Sutherland et al. 2016). These
correlations are also known as dependencies.

Examples of reported dependencies between environmental indicators include
the correlation between dissolved oxygen and pH (Makkaveev 2009), CO2 emission
and energy consumption (Omri 2013) and the watershed indicator that relates
percentages of old forest to interior forest (Sutherland et al. 2016). Dependent
environmental indicators can be modeled as linear, multiple-linear or simple non-
linear models (Piegorsch and Bailer 2005). In an attempt to rank chemicals
according to their hazardous effects (such as threshold limit value or lethal dose),
Al-Sharrah (2011) defined the dependency between the indicator Y1 and another two
indicators, X1 and X2, using the multiple-linear model represented by Eq. (1).

Y1 = ρX1 +
√(

1 − ρ2
)
X2 (1)

Where ρ is a correlation parameter that can be determined using multiple-linear
least-squares regression. In Eq. (1), the indicator Y1 is proportionally correlated

to the indicators X1 and X2 with corresponding coefficients ρ and
√(

1 − ρ2
)
,

respectively. The model suggests that Y1 is equally correlated to X1 and X2 for ρ

= 0.5, correlated to X2 more than X1 for 0 ≤ ρ < 0.5, and to X1 more than X2
otherwise.
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2 Dependent Indicators for Seawater and Brine

Correlation between indicators can be simply identified through expert knowledge
or mathematically using statistical analysis of collected data. Dependent indicators
are not necessarily redundant, and dependencies through correlations do not nec-
essarily mean causations (Guttman 1977), but may represent different concepts.
Hence, exclusion of dependent indicators may affect the overall decision, and it
is possible only when set against the analysis of influence on decision.

In the desalination field, environmental indicators are defined to characterize
water or air releases. For airborne releases, general dependencies include emissions
of greenhouse gases resulting from the required power generation (Younos 2005).
Indicators that are usually considered for assessing the impacts to air pollution are
basically related to the amount and type of the burned fuel. For the waterside, the
indicators are defined to describe the effect of the rejected brine on the marine
environment. Table 1 lists a number of examples on the main dependencies between
environmental indicators. It provides also examples of primary variables that may
be used in correlating the values of dependent indicators.

3 Ranking with Correlated Data

As mentioned earlier, models that are used in correlating environmental data may
be linear, multiple-linear, non-linear, or other more complex forms (Piegorsch and
Bailer 2005). The proposed approach is to study the dependencies in environmental
indicators and utilize these dependencies in refining the available data. The aim
is to improve the environmental decision making when ranking is applied. The
dependencies can be effectively used in completing missing data as well as
excluding redundant indicators. The key challenge is identifying the dependencies
and determining the correlation models.

In this work, the Copeland score (Copeland 1951) ranking method is used. It is
more than a half-century-old voting procedure, which is simply based on pairwise
comparisons of candidates. It is one of many vote-aggregation systems that social-
choice theorists have invented in their attempts to determine the most appropriate
systems for a variety of voting situations. The Copeland rule selects the object with
the largest Copeland score, which is the number of times an object beats other
objects minus the number of times that object loses to other alternatives when
the objects are considered in pairwise comparisons. Using the concept of partially
ordered sets and social choice theory, the Copeland score ranking methodology was
applied outside of its usual political environment (voting) by Al-Sharrah (2011)
to rank objects in science and engineering applications. This method assumes
neither linearity nor any mathematical relationship among indicators and is therefore
defined as a non-parametric method. The method is presented next.
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Table 1 Examples of dependent indicators and primary variables used in characterizing brine
discharge of desalination plants

No
Dependent
indicator

Primary
variables Model References

1 Electric
conductivity

Chlorine (Cl–)
and sodium
(Na+) ions

Linear Fondriest
(2015) and
Sharp and
Culberson
(1982)

2 Total hardness,
expressed as
equivalent
CaCO3

Ca2+ and
Mg2+ ions

[CaCO3] = 2.5[Ca2+] + 4.1[Mg2+] Venkateswarlu
(1996) and
LENNTECH
(2016)

3 Langelier
Saturation
Index (LSI)

Total dissolved
solids (TDS),
concentrations
of calcium
(Ca2+) and
bicarbonates
(HCO3), and
water
temperature

The LSI is expressed as the
difference between the actual
system pH and the saturation pHs
(LSI = pH – pHs). The saturation
pHs a log function of the primary
variables

Alvarez-
Bastida et al.
(2013)

4 Density,
viscosity

Temperature
Salinity

Empirical model valid for salinities
between 0 and 160 ppt and
temperature between 10 and 180 ◦C
at a pressure of 1 atm

El-Dessouky
and Ettouny
(2002)

5 Dissolved
oxygen

pH Non-linear Makkaveev
(2009)

6 Dissolved
oxygen

Temperature
Salinity

Non-linear Lewis (2013)

7 Total alkalinity
(At)

Total amount
of calcium
carbonate

AT = [HCO3
−] + 2[CO3

−2]
(mmol/l)

Danoun (2007)

8 Carbonate
(CO3

−2 and
HCO3

− ),

Total alkalinity [CO3
−2 ] = 0.6 At (mg/l)

[HCO3
−] = 1.22 At(mg/l)

California
Environmental
Protection
Agency (2016)

A data matrix containing a set of objects (e.g., chemicals, projects, universities,
etc.) and their corresponding indicators (e.g., lethal dose, profit, number of courses,
etc.), is used to rank the objects according to a desired aim (e.g., most hazardous,
more sustainable, best performance, etc.). The Copeland method is applied by
comparing one indicator at a time for each pair of objects. This is followed by
counting the number of “greater than” results between indicators (add +1) and the
number of “less than” results (add -1). The total sum of comparisons is set as an
element in a comparison matrix. Detailed description of this method is given by
Al-Sharrah (2011). A simple example is illustrated in Table 2, where the Copeland
rank is applied for four objects (O1 . . . O4) using three indicators (I1 . . . I3) for the
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Table 2 Copeland rank using (a) three indicators and (b) two indicators

Indicator (a) Indicator (b)
I1 I2 I3 Copeland rank I1 I2 Copeland rank

Objects O1 1 3 6 1 1 3 0
O2 0.5 2 4 −5 0.5 2 −4
O3 5 1 2 −4 5 1 −1
O4 5 5 10 8 5 5 5

first case and two indicators (I1 and I2) for the second case. The third indicator
may be assumed dependent indicator and can be correlated to indicators I1 or I2.
In this case, I3 may be excluded from the ranking procedure, in the second case,
to test the effect of removal of dependent indicators. Overall ranking results do not
consider the numerical value of the obtained rank, however, it concentrates on the
relative position of objects (i.e., which one is more important). The results of the
example in Table 2 show that the objects are ranked similarly in both cases, from
most important to least important: O4, is the first, followed by O1, O3, then O2 is the
last. The similarity in the ranks of the two cases (removing a dependent indicator)
cannot be taken as a general result. This is studied in more detail in the subsequent
sections.

Four types of models were used in representing dependencies between studied
data. The models are defined as follows:

3.1 Linear

Y1 = α0 + α1X1 + ε1 (2)

where Y1 is the dependent indicator and X1 is another environmental indicator or a
primary variable. Here, Y1 is linearly correlated to X1. α0 and α1 are the correlation
coefficients, and ε1 is the residual error.

3.2 Multiple Linear

Y1 = β1X1 + β2X2 + ε1 (3)

Here, the dependent indicator Y1 is a function of two indicators, X1 and X2. β1 and
β2 are the correlation coefficients. Equation (1) is one form of the multiple linear
models.
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3.3 Non-linear

Y1 = γ1X1

1 + γ2X2
+ ε1 (4)

3.4 Complex

Y1 = δ1e
−δ2X1 (1 − δ3X2) + ε1 (5)

Equations (4) and (5) are examples of the nonlinear and complex models, respec-
tively. Assessment of the proposed approach was carried out using the following
steps:

1. Original Data: A sequences of uncorrelated normally distributed random indica-
tors X1, X2 ... Xn for hypothetical objects Obj1, Obj2 . . . Objm are generated.

2. Extended Data: A correlation model is selected (Eqs. 2, 3, 4, and 5), and the value
of the dependent indicator Y1 is evaluated for all objects.

3. Decision ranking: Ranking is performed using the original and extended data
(like the example in Table 2). This results in ordering the objects (assigned a
numerical rank) from top to bottom to represent the most and the least important
object.

4. Comparison: The rankings from original and extended data are compared using
the Spearman’s rank correlation coefficient (SRCC).

All the above steps and the simulation runs were implemented using MATLAB.
This included generation of the datasets, evaluation of dependency models, appli-
cation of Copeland ranking, and finally the SRCC value. Random datasets included
sizes of up to 10 objects and 10 indicators, which is a suitable size for a typical
environmental assessment problem. The comparison is made using SRCC, the most
widely used measure of correlation or association between ranks. In statistics,
the SRCC is a non-parametric measure of rank correlation (statistical dependence
between the pairs rankings of two methods). It assesses how well the relationship
between two rankings can be described using a monotonic function. Naturally,
the SRCC between two variables will be high when observations have similar
ranking between the two variables (correlation of 1) and low when observations
have dissimilar or fully opposed ranking between the two variables (correlation of
−1).

The analysis started with 64 datasets. Each data item is ranked and then re-ranked
after the addition of four different dependent indicators one after another (a total
320 ranking runs). The results show that the rankings are not profoundly affected by
the addition of a correlated indicator, no matter whether they were linear and non-
linear. The average SRCC scores that resulted for linear, multi-linear, non-linear, and
complex correlations are 0.892, 0.894, 0.892, and 0.857, respectively. The multi-
linear having the highest SRCC means that if indicators exist in a decision-making
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Fig. 1 Variation of SRCC with data size ratio for different dependency models

exercise with dependencies, their exclusion will slightly affect the ranking of objects
if several of them are correlated multi-linearly. This is also very helpful in cases of
incomplete datasets since the models can help in filling the gaps.

Results with low SRCC values were obtained when the ratio of the number
of indicators to the number of objects is low and vice versa. In other words, if
the number of indicators is high, excluding an indicator or using a dependency
model to predict missing data will not affect the ranking results. On the other hand,
all indicators must be considered for cases where number of indicators is small,
whereas it is acceptable to find dependencies to fill the gaps of missing data. The
results of the randomly simulated data are reported in Fig. 1, which plots the SRCC
values against the ratio of the number of indicators to the number of objects (x-axis),
for all generated datasets for the four different dependency models. The figure shows
a monotonic increase in SRCC with values as low as 0.22.

4 Case Studies

One of the biggest challenges is the validation of any proposed approach. Validation
covers both, applicability of the proposed methodology on real-world problem
as well as accuracy of the outcomes. Professionals must make sure that the
methodology behaves as expected in practice. Even strategies with high statistical
significance may occasionally fail, and they often do (Harris 2015).

Validation procedures usually follow three steps (Varshney et al. 2013): (1)
prospective validation, which occurs before the methodology is used, (2) concurrent
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validation, which occurs simultaneously with the implementation, and (3) retrospec-
tive validation, which occurs after establishment of the methodology and it is usually
applied to real-world data. In this study, the prospective validation of the proposed
approach has been already applied using the random data case presented above (see
Fig. 1).

Three case studies were carried out to demonstrate and validate the proposed
approach. All three case studies are based on actual environmental measurements,
reported in literature, for operational desalination plants in the GCC. The first two
cases studies are considered for the concurrent validation, while the third case study
is for retrospective validation.

4.1 Case Study 1

The first case study is based on data reported by Bu-Olayan and Bivin (2006).
Their study included trace metal levels in seawater from five sites in Kuwait’s
Bay, where many desalination plants exist. The case study covers concentrations
of five metals during harmful and non-harmful algal blooms for both seawater
samples and ctenophore samples in two seasons, summer and winter. The resulted
data matrix consists of five objects (sites I to V) and 40 indicators (concentrations
of five metal in two samples in two seasons in two blooms). All data sets are
provided, i.e. there are no missing data for this case study. Another good point is
that the five metal concentrations were found to be linearly correlated to a high
degree. Hence, data reduction was possible, and it was quite representative to use
the concentration of only one of the metals for the environmental ranking of the
sites. This led to a reduced data matrix of five objects (sites) with eight indicators
(one metal concentration in two samples in two seasons in two blooms). Applying
Copeland ranking for both the original and reduced data matrices gave the same
decisions. The sites were ranked, from the most contaminated to the lowest, as: Site
III (Khadma), Site IV (Towers), Site V(Salmia), Site II (Doha) and Site I (Subiyah).
Hence, excluding dependent indicators was safe given the dependences and large
number of indicators.

4.2 Case Study 2

The next case study is based on data reported by Mohamed et al. (2005) for six
desalination plants in the GCC. Assessment of the plants (objects) is carried out
using 27 indicators, which are listed in Table 3. As shown in the table, there are
several missing data (indicated as ‘NA’), which should be completed if a decision
is to be made about which of the six plants is affecting the environment the most.
Given the relatively high number of indicators, it is recommended to analyze the
data and safely reduce the number of indicators as much as possible. One option is
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to exclude those indicators with incomplete data. This option is not acceptable for
the data presented in Table 3 because it will result in eliminating almost two thirds
of the indicators.

Another option is to exclude indicators that are not highly relevant to the
environmental objective. For instance, SiO2 is considered by the World Health
Organization (WHO) as a safe chemical for marine environment, mainly because
it is a dietary requirement for various organisms. Hence, SiO2 (indicator 14 in Table
3) can be safely excluded from the environmental analysis.

The data presented in Table 3 still has many missing values some adjustments are
needed before testing the assessment methodology presented above. The procedure
starts by studying the dependencies between indicators in order to complete missing
data or otherwise reduce the number of indicators. Examples of using dependencies
in estimating missing values for indicators are:

a) Measurements for the concentration of carbonate (CO3
−), which is indicator 15

in Table 3, is missing. But as indicated in Table 1, carbonate can be estimated
using the total alkalinity (At), i.e. [CO3

−2] = 0.6 At. Furthermore, alkalinity
measurements are available for three plants (indicator 25 in Table 3).

b) Permanent water hardness (indicator 26 in Table 3) is expressed as equivalent
of CaCO3 and this property is usually related to compounds with calcium and
magnesium ions (Ca++ and Mg++ ions). It is therefore possible to estimate the
missing total hardness measurement for plant (d) by applying the correlation in
Table 1, i.e. [CaCO3] = 2.5[Ca2+] + 4.1[Mg2+].

c) Langelier Saturation Index (LSI) (indicator 22 in Table 3) is a calculated property
that reflects the stability of calcium carbonate in water. It estimates the saturation
level of calcium carbonate and indicates the extent of scale deposition on heat
transfer surfaces. Values of the LSI indicator is missing for the last three plants
in Table 3. The exact procedure for evaluating the LSI is relatively complex.
The alternative was to estimate the missing values of the LSI indicator using an
online LSI calculator reported by LENNTECH (2016). Required data include
acidity (pH), calcium ion (Ca++), bicarbonate (HCO3

−), and total dissolved
solids (TDS), which are indicators 7, 1, 16 and 9 in Table 3, respectively, together
with brine temperature. Since the brine temperature is not reported, the LSI was
evaluated at 40 ◦C, which is considered a typical brine temperature taken from
different studies (see for example Dawoud and Al Mulla 2012 and Kotb 2015).

To check the validity of the assessment steps presented above, the data provided
in Table 3 is divided into three datasets. The aim is to test the effect of indicator
dependencies, data sizes, and model format when ranking with the Copeland
method. The selected datasets are presented in Table 4. The first dataset includes
three objects (plants a, b and c) and 23 indicators, with no missing data. One of
the excluded indicators (SiO2) is irrelevant, while the rest (Carbonate, LSI and
Hardness) are initially excluded from the analysis due to incomplete data. Applying
the Copeland ranking procedure on the (3 × 23) dataset that includes the three
plants a, b and c (Alssadanat, Umm Alquain and Hamriyah) results in normalized
ranks of 0.227, 1.0 and zero, respectively. The next step is to extend the original
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Table 3 Chemical composition of rejected brine from six inland desalination plants in the GCC
(Mohamed et al. 2005)

No Parameter
Alssadanat,
Oman (a)

Umm
Alquain,
UAE (b)

Hamriyah,
Sharjah,
UAE (c)

Saja’a
Sharjah
UAE (d)

Buwaib
Saudi
Arabia (e)

Salboukh
Saudi
Arabia (f)

1 Ca++, mg/l 923 202 173 188 573 404
2 Mg++, mg/l 413 510 311 207 373 257
3 Na++, mg/l 2780 3190 1930 4800 2327 1433
4 K++, mg/l 81.5 84.5 50.7 60 NA NA
5 Sr++, mg/l 28.2 21.1 14.2 40 NA NA
6 Sum cation,

meq/l
203.06 192.98 119.48 NA NA NA

7 pH 7.21 7.54 7.66 7.95 4.1 4.5
8 Electrical

conductiv-
ity,
mS/cm

16.8 14.96 127.41 NA NA NA

9 TDS, mg/l 10,553 10,923 7350 12,239 10,800 6920
10 NO3, mg/l 7.2 27.4 15.9 NA 143 142
11 F−, mg/l 0 1.6 1.3 8.0 NA NA
12 Cl−, mg/l 4532 4108 2933 4860 2798 1457
13 SO4, mg/l 1552 2444 1537 2400 4101 2840
14 SiO2, mg/l NA 164.09 133.71 120 NA NA
15 Carbonate

(CO3
−),

mg/l

NA NA NA NA NA NA

16 Bicarbonate
(HCO3

−),
mg/l

466 656 753 NA NA NA

17 N− 1.6 6.2 3.6 NA NA NA
18 Sum anions,

meq/l
167.88 198.05 127.41 NA NA NA

19 Ion balance 9.48 4.02 −3.21 NA NA NA
20 SAR 19.12 27.2 20.3 NA NA NA
21 SER 59.55 71.91 70.27 NA NA NA
22 LSI 1.24 1.04 1.26 NA NA NA
23 R.I. 4.73 5.46 5.14 NA NA NA
24 Total ion,

mg/l
10781 11245 7719 NA NA NA

25 Total
alkalinity

380 538 617 NA NA NA

26 Total
hardness

4041 2630 1730 NA 2968 2066

27 Fe, meq/l 0.06 0.08 0.05 NA 65.5 NA
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Table 4 SRCC between ranks of original and extended data based on data in Table 3 for different
data subsets

No Objects Original indicators
(Table 3)

Ratio+ Extended
indicators

Type of
correlation

SRCC*

1 a,b,c All indicators except:
• SiO2
• Carbonate
• LSI
• Hardness

23/3 = 7.67 Carbonate Linear 0.9996

LSI Complex 0.9996
Hardness Multi-linear 0.9966

2 a,b,c • Ca++
• Mg++
• pH
• Electrical
Conductivity
• Bicarbonate
• Alkalinity

6/3 = 2 Carbonate Linear 1

LSI Complex 0.9449
Hardness Multi-linear 1

3 a,b,c,d,e,f • Ca++
• Mg++
• pH
• Na+

4/6 = 0.67 Carbonate Linear 0.7314

LSI Complex 0.9112
Hardness Multi-linear 0.9580

+Ratio = number of indicators/number of objects
*SRCC between objects’ ranks using original and extended indicators

dataset by adding one additional dependent indicator at a time. Starting with the
carbonate indicator, which is ‘linearly’ correlated to the total alkalinity indicator, as
described above, the extended dataset consists now of 3 objects and 24 indicators.
The new Copeland normalized ranks of the extended dataset are 0.235, 1 and 0.
The normalized ranks of the original (23 × 3) and extended (24 × 3) datasets are
then compared by evaluating their SRCC value (see Table 4). Similarly the original
dataset is extended to include the LSI and total hardness indicators.

The same procedure was applied for the second and third subsets, as shown in
Table 4. The second subset included 6 indicators and 3 objects, while the third subset
included 4 indicators and all 6 objects.

Results shown in Table 4 indicate that decisions on excluding or including
dependent indicators are highly related to the ratio of the number of indicators to
the number of objects. When the number of indicators is twice or higher the number
of objects, then dependent indicators in the dataset that have problems of quality
(incomplete, inaccurate, etc.) can be safely discarded from the analysis. In other
words, the effect on the quality of the decisions obtained from the Copeland ranking
method will be minimal. The first two subsets in Table 4 would result in excellent
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Table 5 Characteristics of brine water from five different desalination plants in the GCC (Dawoud
and Al Mulla 2012)

Abu-Fintas
Qatar

Ajman Um-
Quwain

Qidfa I
Fujairah

Qidfa II
Fujairah

No. Environmental Indicators (a) (b) (c) (d) (e)

1 Temperature, ◦C 40 30.6 32.5 32.2 29.1
2 pH 1.2 0.5 0.3 0.03 0.99
3 EC, μS/cm NR* 16.5 11.3 77 79.6
4 Ca, ppm 1350 312 173 631 631
5 Mg, ppm 7600 413 282 2025 2096
6 Na, ppm NR 2759 2315 17,295 18,293
7 HCO3, ppm 3900 561 570 159 149.5
8 SO4, ppm 3900 1500 2175 4200 4800
9 Cl, ppm 29,000 4572 2762 30,487 31,905
10 TDS, ppm 52,000 10,114 8275 54,795 57,935
11 Total hardness, ppm NR NR 32 198 207
12 Free Cl2, ppm Trace NR 0.01 NR NR
13 SiO2, ppm NR 23.7 145 1.02 17.6
14 Langelier SI (LSI) NR 0.61 0.33 NR NR

*NR not reported

ranking quality because they have high value of SRCC due to their high indicators
to objects ratio, which is almost 8 times for the first case and twice for the second.
In contrast, subset 3 showed lower SRCC values because the number of indicators
is lower than the number of objects. The SRCC values of third case (see Table 4)
indicate that extending the dataset with the hardness indicator would result in a rank
quality better than the LSI and carbonate indicators.

4.3 Case Study 3

The retrospective validation of the proposed methodology will be carried out
here using the brine discharge data reported by Dawoud and Al Mulla (2012)
for five desalination plants in the GCC. The datasets listed in Table 5 consists
of 14 environmental indicators and 5 objects. The aim is to assess the level
of the environmental deterioration caused by these desalination plants. This will
be attained by ranking the plants with respect to their anticipated environmental
impacts.

The first validation step is to prepare the datasets for the ranking process, mainly
by attempting to complete the missing data. Like the previous case study, it is
safe to exclude the SiO2 indicator from the analysis. Next, models listed in Table
1 will be used to find estimates for missing data in Table 5, which are electrical
conductivity (EC), Na concentration, total hardness, free chlorine concentration and
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LSI (indicators 3, 6, 11, 12 and 14). The procedure used in estimating the values of
these indicators, except free chlorine (indicator 12) is described in Al-Sharrah et al.
(2017). For plant (a), the missing values for EC, Na concentration, total hardness
and LSI were estimated as 72 μS/cm, 16,385 ppm, 734 ppm and 2.5, respectively.
For plant (b), the total hardness was estimated as 45 ppm. Moreover, the LSI values
for plants (d) and (e) were estimated as −0.63 and 0.29, respectively (Al-Sharrah
et al. 2017).

The remaining missing values are the free chlorine concentration (indicator 12)
for all plants except Um-Quwain (plant c). The importance of this indicator and
whether it can be accurately estimated through dependencies will be studied first.
The final decision will be dependent on the ability to proceed with the analysis in
case the indicator has been excluded. As demonstrated in the previous case studies,
the indicators to objects ratio is a reliable measure for exclusion of indicators.

The source of free chlorine in the brine is disinfection of feed seawater, which
is essential to prevent biofouling in desalination processes. Chlorine is toxic to
the aquatic organisms; hence, it is crucial that chlorination is tightly controlled to
achieve the desired task with reduced harm to the marine life. The concentration of
free chlorine is dependent on several factors related to the chemical and physical
conditions of seawater and the flushing ability of the coastal zone (Hamed et al.
2017). Estimation of the free chlorine concentration is not possible with available
dependencies and correlations. In effect, free chlorine can be only determined
by chemical analysis. Hence, the free chlorine indicator cannot be used for this
problem, and the question is whether it can be safely excluded from further analysis.

Going back to the data in Table 5, the number of indicators after excluding the
SiO2 indicator is 13 and the number of objects is 5, which results in the ratio of
indicators to objects equals to 2.6 prior to excluding the free chlorine indicator
and 2.4 after exclusion. Therefore, exclusion of the free chlorine indicator may be
justified because the ratio is greater than two.

Two scenarios will be presented for ranking the environmental performance
of the five plants by the Copeland method. The first scenario utilizes the 12
remaining indicators (excluding SiO2 and free Cl2), while the second one considers
the indicators with complete data only (excluding indicators 3, 6, 11, 12, 13 and
14). Hence, the ranking will be performed using 12 × 5 and 8 × 5 datasets. The
ranking results for the two datasets are shown in Table 6. The reported ranks are
normalized in the range from one to zero, where a higher rank indicates more serious
environmental impact.

The ranking results in Table 6 indicate that the ranks for both cases are the same.
The SRCC value calculated for the 8 indicators with respect to 12 indicators is
0.985, which is reasonably high. The results show also that the worst plant in terms
of environmental performance due to brine discharge is Abu-Fintas while the best is
Um-Quwain. These are clear cuts in a sense that identical results have been obtained
from complete and reduced sets of indicators. However, such clarity in decisions
cannot be always achieved with low number of indicators. For instance, the ranks of
Ajman and Um-Quain (plants b and c) can be compared in more confidence when
using 12 indicators. In fact, for the 8 indicators case, it is not realistic to conclude
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Table 6 Copeland normalized ranks for data in Table 5 for datasets of 12 and 8 indicators

Desalination plants Case 1 12 Indicators Case 2 8 Indicators

(a) Abu-Fintas 1 1
(b) Ajman 0.17 0.05
(c) Um-Quwain 0 0
(d) Qidfa I 0.64 0.47
(e) Qidfa II 0.77 0.69

SRCC w.r.t. 12 indicators – 0.985

that Um-Quain is the “worst” plant and Ajman is not when the difference between
them is 0.05. Better resolution is provided for the case of 12 indicators allowing
more confidence in making decision.

Further validation was carried out by comparing the ranking results of the Qidfa
I and II desalination plants with similar results reported by Rustum et al. (2020).
The two plants are in the same area in United Arab Emirates (UAE) but use
different technologies. Qidfa I uses Reverse Osmosis (RO), while Qidfa II uses
Multi-Stage Flash (MSF). Rustum et al. (2020) demonstrated the use of fuzzy
modeling in “sustainability” ranking of typical desalination plants in UAE. One
of the studied sustainability components “Reject stream characteristics”, which is
equivalent to the characteristics of the rejected brine considered in this case study.
The reported results indicated that the normalized ranks for Qidfa I and Qidfa II are
0.7 and 0.6, respectively. In their formulation, the higher the rank is the better the
object is in terms of sustainability. Converting from “sustainable” to “environmental
deterioration” objectives will result in the normalized ranks of 0.3 and 0.4 for Qidfa
I and Qidfa II, respectively. The relative rank is 1.33, which means that Qidfa II
is 1.3 times (33% more) adverse to the environment compared to Qidfa I. This is
conceptually true because it is a known fact that RO brine has less pollutants than
that of the MSF. These results are comparable to the results obtained in Table 6.
Moreover, the relative ranks for the 12 and 8 indicators cases are 1.2 and 1.47,
respectively. In conclusion, our proposed approach gave consistent ranking results
when compared with other more complex ranking methods.

5 Conclusions

Seawater desalination is vital in arid regions and for many countries it is the main
source of potable water. However, they pose real environmental challenges, which
should be addressed to mitigate the impacts on the environment. An important
step in this direction is to quantify and assess the impacts of different desali-
nation technologies and plants to enable decision makers to take environmental
issues when considering new plants. Assessment is usually based on indicators
that characterize the technologies or plants on common basis. There are many
environmental indicators that are specific for desalination. The most important one
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that are widely used have been discussed in this study. The main difficulty in
handling environmental indicators is dealing with incomplete datasets, primarily
because industries are usually interested in measuring operational parameters that
are directly related to the product quality and profitability, not those related to
environmental performance. An effective approach has been proposed for filling
missing values of the indicators. The approach is based on identifying dependencies
between indicators and utilizing such dependencies in correlating the missing values
using a number of proposed models. In case there are no dependencies, exclusion of
indicators is possible with little risk of incorrect decisions only when the numbers
of indicators are relatively high compared to the numbers of studied objects.
Results derived from the case studies showed that exclusion of indicators would
not have drastic effect on the assessment or decision-making as far as the number of
indicators is more than twice the number of objects.
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Introduction into Sampling Theory,
Applying Partial Order Concepts

Bardia Panahbehagh and Rainer Bruggemann

1 Introduction

In sampling theory, for estimating some population parameters, each survey based
on a strategy involves two stages; sampling stage and estimation stage (Hajek 1959).
In the sampling stage, we indicate how it is supposed to select the sample units and
in the estimation stage, estimators will be proposed for estimating the respective
parameters.

The development of sampling theory is based on efficiency; i.e. on the search
for high precision, low cost, etc. Searching is mostly based on the two principles;
Randomization and Representation.

• Randomization: Based on randomization, the sampling design should select
the sample units at random such that all the population units have chances to
be selected. We know such designs as probability sampling designs. In contrast
to probability sampling designs, we have non-probability or selective sampling
designs in which the sampling is based on many factors including personal
or expert-oriented ideas, the population situations, budgets of projects, etc.
Probability sampling designs have at least two advantages relative to their non-
probability versions; first, according to the randomize bases of the designs, we
can make inferences about the estimators, second, we decrease the chance of
facing a bias sample result of personal factors of the sampler mind (Sarndal et al.
2003, page 8).
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• Representation: The exact definition of the representative sample has always
been the subject of various discussions in the statistical literature (for some
interesting discussions see Kruskal and Mosteller 1979a,b,c, 1980; Rao 2005;
Dumicic 2011; Tille and Wilhelm 2017). In fact, the definition of a representative
sample depends on our purpose. For example, if we are going to estimate the
population density of the respective variable, then a simple random sample (SRS)
would be a representative sample; if we are going to estimate the population
total, a sample proportional to size, which is not a miniature of the population
would be a representative sample (Tille and Wilhelm 2017) and if we are going
to know if any member in our population has a specified disease or not, then a
non-probability sample with many non-responses, containing just a few diseased
people, could be a representative sample.

In the way of searching for efficient strategies, based on the two principals,
randomization and representation, auxiliary variables have an important role in
the past, present, and probably future of sampling theory (Rao and Fuller 2017).
Some examples of the roles of auxiliary variables in the design stage are ranked set
sampling (McIntyre 1952; Chen et al. 2004; Bouza-Herrera and Al-Omari 2018),
judgment post-stratified sampling (MacEachern et al. 2004), balanced sampling
(Deville and Tille 2004) and for estimation stage are ratio and regression estimators
(Cochran 1953; Deng and Chhikara 1990), calibration estimator (Deville and
Sarndal 1992).

Among the strategies based on auxiliary variables, some of them like balanced
sampling, regression sampling, etc, need almost complete information about the
population of the auxiliary variables. For example, in balanced sampling, it is
assumed that we know the auxiliary variables for all the population units, before
starting the procedure of sampling, and in the regression estimator, it is assumed
that the population means of the auxiliary variables are known.

However some strategies just need partial information about the auxiliary
variables like ranked set sampling (RSS) and judgment post-stratified sampling.
In these designs just it is assumed that we know or even measure easily auxiliary
variables for the sampled units and based on such information a more representative
sample will be achievable.

Here we are going to discuss the later kind of strategies (that just need partial
information about the auxiliary variables) intending to reduce costs and enhance the
precision for multivariate variables. Then this chapter proceeds as follows; in Sect. 2
for using the information of ranks of data in the univariate case, we discuss RSS
design and an economic version of RSS introduced by Panahbehagh et al. (2018),
in Sect. 3 based on partial order set theory we discussed RSS for multivariate cases
based on a research of Panahbehagh (2020) and the chapter will be finished with a
conclusion in Sect. 4.
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2 Univariate Sampling Based on Ranks of Data

Using ranks of the main variables, based on auxiliary variables, it is possible to take
a representative sample from the target population. Panahbehagh (2020) showed that
if we have complete information about the ranks of all the main variables we can
estimate the population total with a great efficiency relative to SRS. Knowing the
ranks of all the main or even auxiliary variables is very ambitious but it would be
reasonable to assume that if we take a sample, before measuring the main variable,
we can rank these sample units based on some easy to measure auxiliary variables. If
it is possible, then it is better first to take an initial large sample, rank them based on
some easy to measure auxiliary variable, and then select a good, more representative
sample and measure the final sample units exactly based on the main variable. This
idea goes back to McIntyre (1952). He introduced RSS for estimating a kind of
crops, without extending theory. Takahasi and Wakimoto (1968) extended the theory
of RSS and showed that this design is more efficient (more precise) than SRS.

2.1 Ranked Set Sampling

The idea of RSS is simple and beautiful. As a simple example assume we are going
to estimate the mean height of the students in a college based on a sample of size 3.
In SRS we select 3 students randomly and estimate the mean population based on the
sample mean. In RSS, because it is easy and inexpensive to rank the students based
on their heights, we first select 3 students, sort it, and select the shortest student as
the first sample unit. For the second sample unit, we select another SRS sample of
size 3, sort them and select the middle student and for the last sample unit we select
another SRS and select the tallest student as the final sample and then measure the
heights of these three students exactly and estimate the population mean based on
them (see Fig. 1a).

Many different kinds of research, theoretically and practically showed that with
considering precision, RSS is more efficient than SRS in many different problems
(for some complete reviews of RSS see Chen et al. 2004; Bouza-Herrera and Al-
Omari 2018). But yet many researchers are reluctant to use RSS for gathering
their sample because different versions of RSS produce non-iid (independent and
identical) samples and then conventional inferences that are extended based on iid
samples assumption are not applicable for RSS samples. That’s why MacEachern
et al. (2004) introduced judgment post stratified sampling (JPS).

The idea of JPS is using the information of ranks of data just in the estimation
stage and not the design stage. Then we can have an SRS (that is an iid sample)
but take advantage of the ranks of the observations. Following the example of RSS,
for estimating the mean height of the student, assume we are going to select a JPS
sample of size 3. We select 3 students by SRS as the main sample and for indicating
rank for each of the 3 observations, we select 2 students by SRS (as an auxiliary



138 B. Panahbehagh and R. Bruggemann

Fig. 1 Procedures of selection an RSS sample (a) and a JPS sample (b) of sizes three. In RSS
three sets of independent SRS of size three should be selected and each set should be sorted based
on their heights by eyes. The highlighted persons are selected as the final sample and should be
measured exactly. For JPS an SRS as the main sample is selected and for each of its observations,
we should select an SRS of size two to indicate the rank of the respective observation in the
respective sample. For example in (b), for the first observation (the man in left-up of (b)) we select
two persons (indicated by 1st auxiliary SRS) and we indicate the rank of the respective person in
1st auxiliary SRS and then we should allocate rank 2 to him. We proceed the same until the ranks
of all the main SRS sample are indicated

sample) and indicate the rank of the respective observation in the respective sample
(see Fig. 1b). Then based on ranks, we post-stratified the sample and estimate the
mean height of the population based on the conventional estimator in stratified
sampling (Sarndal et al. 2003). MacEachern et al. (2004) showed that the efficiency
of JPS is between SRS and RSS and goes to RSS as the size of the sample is
increasing.

2.2 An Unbalanced Ranked Set Sampling to Reduce the Costs

RSS is an efficient sampling strategy concerning precision. But with considering
cost, it would be inefficient because of needing too many initial samples. To
clarify this situation, suppose that X is the variable of interest (main variable) with
probability density function fμ, expectation E(X) = μ and variance V (X) = σ 2 <

∞ and we are to estimate μ and the variance of the estimator with an RSS of size
m. We can suppose further that there is an auxiliary variable (used for ranking)
with finite expectation and variance, and suppose that this auxiliary variable has a
reasonable correlation with the main variable X and then we can use this auxiliary
variable for ranking X. Here we assume perfect ranking (i.e. ranking based on X

itself and not using an auxiliary variable) with this guarantee that all the results
are also valid for the case of using an auxiliary variable for ranking. If we use an
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Table 1 Selecting a RSS of size m. X(h)i for h, i = 1, 2, . . . , m is h-th order statistic based on X.
The highlighted units will be selected as the final sample for full measurement and the other units
will be used just for ranking

Ranks

Set 1 (Smallest) 2 (Second smallest) · · · m (Largest)

Sets 1 X(1)1 X(2)1 · · · X(m)1

2 X(1)2 X(2)2 · · · X(m)2

.

.

.
.
.
.

.

.

.
. . .

.

.

.

m X(1)m X(2)m · · · X(m)m

auxiliary variable for ranking, the density probability function of the order statistics
should be defined based on the auxiliary variable instead of the main variable.

Now in the case of perfect ranking, we should select m independent sets each of
size m based on SRS, sort each of them based on X and in the first set we select the
smallest unit, in the second set we select the second smallest unit and so on until in
the last set we select the largest unit as the final sample (see Table 1). As we can see
in Table 1, to have an RSS of size m we need to select an initial sample of size m2.
Also to have an RSS of size n• = d × m, instead of selecting d × m sets of size
d ×m, it is recommended to implement d times (cycles) an RSS of size m, because
it would be much more complicate to sort d × m units relative to sorting m units
(Table 2).

As a cost-efficient RSS, Wang et al. (2004) proposed L-Tuple RSS (LTR) as
follows; to have an LTR of size m, first we need to select Cm′

t (the number of t-
combinations from a given set of m′ units) and then select t units from each set
(resulting in t ×Cm′

t = m final sample units) identified by mutually different ranks.
For example for m′ = 5 and t = 2, first select C5

2 = 10 sets of size 5, sort each
of them based on X and then select the units with ranks 1 and 2 from the first set
and units with ranks 1 and 3 from the second set and so on until selecting units with
ranks 4 and 5 from the last set which results to m = 10 × 2 = 20 final sample size.
In LTR setting m′ and t , and also restriction of dependency between m, m′ and t is
challenging (for more details see Panahbehagh et al. (2018)).

To overcome these disadvantages of RSS and LTR, Panahbehagh et al. (2018),
presented an easy to implement and calculate, unbalanced and cost efficient version
of RSS as Virtual Stratified Sampling Using Ranked Set Sampling (VSR). The idea
of VSR is very simple, to have a VSR of size n• = d × m we need to select K sets
(K > d) of size m, sort each set based on X, resulting a post-stratified initial sample
and then select a SRS of size d from each stratum. For its unbalanced version, it is
enough to set K > maxm

h=1 dh and then select a SRS of size dh (say sh) from h-th
stratum (see Table 3). Now it is possible to estimate μ unbiasedly by μ̂VSR as

μ̂VSR = 1

m

m∑

h=1

X̄(h) = 1

m

m∑

h=1

1

dh

∑

i∈sh

X(h)i
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Table 2 Selecting a RSS of size d × m in the case of d cycles of a RSS of size m. X(h)ij for
h, i = 1, 2, . . . , m and j = 1, 2, . . . , d is h-th order statistics in i-th set for j -th cycle. The
highlighted units will be selected as the final sample for full measurement and the other units will
be used just for ranking

Ranks

Cycle Set 1 2 · · · m

1 1 X(1)11 X(2)11 · · · X(m)11

2 X(1)21 X(2)21 · · · X(m)21

.

.

.
.
.
.

.

.

.
. . .

.

.

.

m X(1)m1 X(2)m1 · · · X(m)m1

2 1 X(1)12 X(2)12 · · · X(m)12

2 X(1)22 X(2)22 · · · X(m)22

.

.

.
.
.
.

.

.

.
. . .

.

.

.

m X(1)m2 X(2)m2 · · · X(m)m2

.

.

.
.
.
.

.

.

.
. . .

.

.

.

d 1 X(1)1d X(2)1d · · · X(m)1d

2 X(1)2d X(2)2d · · · X(m)2d

.

.

.
.
.
.

.

.

.
. . .

.

.

.

m X(1)md X(2)md · · · X(m)md

Table 3 Selecting a VSR of size n• = ∑m
m=1 dh. X(h)i for h, i = 1, 2, . . . , m is h-th order

statistics in i-th set. The highlighted units will be selected as the final sample (assuming) for full
measurement and the other units will be used just for ranking

Ranks

Set 1 (1-th Stratum) 2 (2-th Stratum) · · · m (m-th Stratum)

Sets 1 X(1)1 X(2)1 · · · X(m)1

2 X(1)2 X(2)2 · · · X(m)2

3 X(1)3 X(2)3 · · · X(m)3

.

.

.
.
.
.

.

.

.
. . .

.

.

.

K X(1)K X(2)K · · · X(m)K

with

V (μ̂VSR) = σ 2

Km
+ 1

m2

m∑

h=1

1 − dh

K

dh

σ 2
h (1)

where μh = E(X(h)) and σ(h) = V (X(h)) are the mean and variance of the h-
th order statistics based on fμ. As we can see in equation (1), if dh

K
−→ 0, then
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V (μ̂VSR) −→ V (μ̂RSS) where μ̂RSS is the conventional estimator in the conventional
RSS (for more details about definition of μ̂RSS and its variance see Panahbehagh et al.
2018). As we can see, VSR is a kind of RSS that is executable with any K larger
than d. For example if we set m = 5, to have a ranked sample of size n• = d ×m =
3× 5 = 15, we can implement a VSR with selecting Km = 4× 5 = 20 units while
for a conventional RSS we need d × m2 = 3 × 25 = 75 units. Then VSR is a cost
efficient, easy to implement version of RSS. Panahbehagh et al. (2018) also showed
that if we define the efficiency based on high precision and low cost simultaneously,
VSR can be more efficient than RSS and LTR. In next section we extend such idea
to multivariate variables.

3 Multivariate Sampling Based on Ranks of Data

When we have just one variable, it is easy to rank and sort the sample units. For
example if we have two persons, it is straightforward to sort them based on their
heights or their weights. But it would be complicated or even impossible if we
want to sort them based on the two variables, height and weight simultaneously
(see Fig. 2).

In this section we will make a connection between sampling theory and partial
order set theory. For this purpose first we discuss few version of multivariate RSS,
involving multiple variable VSR.

3.1 A Multivariate Ranked Set Sampling

In the case of multivariate variables (Patil et al. 1994) considered one of the
variables as the main variable and sorted the units based this main variable. With
this approach, the strategy is efficient for estimating the mean of the main variable
and efficiency for the other variables depends on their correlations with the main
one. To consider all the variables (say R) simultaneously, often, however, too many
initial sample are taken, and then running a R-layer procedure to consider each
variable in a layer such that at the last we have all combinations of all the ranks for
all the variables together (for more details about such strategies see Al-Saleh and
Zheng 2002; Chen and Shen 2003; Arnold et al. 2009). For example with R = 2
and m = 5, we need 54 = 625 initial units to perform such designs that indicates
inefficiency of them with considering cost.

After presenting a multivariate version of VSR based on the method of Patil
et al. (1994), in the next subsection, based on partial order set theory, a simple and
cost efficient version of multivariate RSS introduced by Panahbehagh (2020) will
be presented.
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Fig. 2 Sorting two persons based on their heights (a) or based on their weights (b) and sorting
them based on their heights and weights simultaneously (c)

3.2 Multivariate VSR

For the demonstration of the multivariate VSR (MVSR), we consider a bivariate
case. The results can be easily extended to more than 2 variables. Assume there
is a 2 dimensional variable Z ∼ fµ with E(Z) = µ, where Z = (X, Y ) and
µ = (μx, μy) also V ar(X) = σ 2

x , V ar(Y ) = σ 2
y and Cov(X, Y ) = ρx,yσxσy that

are all finite. Here we are going to estimate µ.
Now to have a MVSR of size n• = ∑m

m=1 dh first we select an iid sample of Zis
of size m from fµ and sort it according to X in m columns and repeat this, K times
and then select a SRS of size dh from h-th column (see Table 4). Please note that
in Table 4, Z(h)i = (X(h)i , Y[h]i ), and X(h)i is the h-th order statistics in the i-th set
with μx(h)and σ 2

x(h), and Y[h]i is concomitant variable with respect to X(h)i in i-th

set with μy[h]and σ 2
y[h] as the mean and variance respectively. Also here again it is

possible to use an auxiliary variable instead of the main variable for ranking. At the
last, it is possible to estimate the elements of µ, unbiasedly by

μ̂x.MVSR = 1

m

m∑

h=1

X̄(h) = 1

m

m∑

h=1

1

dh

∑

iεsh

X(h)i ,



Introduction into Sampling Theory, Applying Partial Order Concepts 143

Table 4 Selecting a MVSR of size n• = ∑m
m=1 dh. In this table Z(h)i = (X(h)i , Y[h]i ), and X(h)i

is the h-th order statistics in the i-th set with μx(h)and σ 2
x(h), and Y[h]i is concomitant variable

with respect to X(h)i in i-th set with μy[h]and σ 2
y[h] as the mean and variance respectively. The

highlighted units will be selected (assuming) as the final sample for full measurement and the
other units will be used just for ranking

Ranks

Set 1 (1-th Stratum) 2 (2-th Stratum) · · · m (m-th Stratum)

Sets 1 Z(1)1 Z(2)1 · · · Z(m)1

2 Z(1)2 Z(2)2 · · · Z(m)2

3 Z(1)3 Z(2)3 · · · Z(m)3

.

.

.
.
.
.

.

.

.
. . .

.

.

.

K Z(1)K Z(2)K · · · Z(m)K

μ̂y.MVSR = 1

m

m∑

h=1

Ȳ[h] = 1

m

m∑

h=1

1

dh

∑

iεsh

Y[h]i

with

V (μ̂x.MVSR) = σ 2
x

Km
+ 1

m2

m∑

h=1

1 − dh

K

dh

σ 2
x(h),

V (μ̂y.MVSR) =
σ 2

y

Km
+ 1

m2

m∑

h=1

1 − dh

K

dh

σ 2
y[h]

and unbiased estimators of the variances as

V̂ (μ̂x.MVSR) = K−1

m(mK − 1)

m∑

h=1

1

dh(dh−1)

∑

iεsh

(X(h)i−X̄(h))
2+ 1

m(mK−1)

m∑

h=1

(X̄(h)−μ̂x.MVSR)2,

V̂ (μ̂y.MVSR) = K−1

m(mK − 1)

m∑

h=1

1

dh(dh−1)

∑

iεsh

(Y[h]i−Ȳ[h])2 + 1

m(mK − 1)

m∑

h=1

(Ȳ[h] − μ̂y.MVSR)2.

With equal size MVSR (dh = d, h = 1, 2, . . . , m) it is easy to show that

V (μ̂x.MVSR) = 1

dm
(σ 2

x − (1 − d
K

)

m

m∑

h=1

(μ1
x(h) − μx)

2),

V (μ̂y.MVSR) = 1

dm
(σ 2

y − (1 − d
K

)

m

m∑

h=1

(μy[h] − μy)
2)
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and if we assume that X and Y are linked by a linear regression model:

Yi = μy + ρx,y

σy

σx

(Xi − μx) + εi

where ε is a random variable independent from X, then

V (μ̂y.MVSR) = 1

dm
(σ 2

y − (1 − d
K

)

m
ρ2

x,y

m∑

h=1

(μy(h) − μy)
2),

which shows that MVSR is an efficient designs for estimating the population mean
for the main variable and efficiency of the other variable is dependent upon its
correlations with the main one. Then MVSR just consider one of the variables. In
the next subsection, based on partial order set theory (Poset), we will show that, it
is easy to present a strategy to consider all the variables simultaneously.

3.3 Ranked Set Sampling Based on Poset

First briefly we introduce Poset and Linear Extensions (LE).

3.3.1 Poset, Linear Extensions, and Hasse Diagram

The application of partial order set theory for ranking has been described by
Bruggemann and Carlsen (2011). In this theory, we have a set containing m units
each of them with R variables, with a binary relation between the units. To compare
two units of the set, if all variables of the first unit are equal or bigger (smaller) than
the second one, then the first unit is better (≥) (worse (<)) than the second one,
otherwise the two units are not comparable. Linear extensions (LEs) are different
projections of the partial order into a complete order that respect all the relations
in the partial order set. I.e. linear extensions are the result of order preserving
mappings. Therefore a relation a < b in a Poset is preserved in all linear extensions.
Also, a Hasse diagram is a graphical representation of the relation of units of a Poset
with an implied upward orientation. A point is drawn for each unit of the Poset and
joined with the line segment according to the following rules:

• If a < b in the Poset, then the point corresponding to a appears lower in the
drawing than the point corresponding to b.

• The two points a and b will be joined by line segment iff a < b or b < a and
there is no other element, z for which is a < z < b or b < z < a.

For an example of constructing all the LEs and plotting Hasse diagram, consider a
set of m = 5 units with R = 2 variables as presented in Table 5 and Fig. 3.
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Table 5 Units and all the their possible LEs

Set X Y LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8

a 0 1 d d d e d d d e

b 2 1 c c e d b b e d

c 1 2 b e c c c e b b

d 3 3 e b b b e c c c

e 0 4 a a a a a a a a

Fig. 3 Hasse diagram of the units presented in Table 5

Now it is possible to present two strategies:

• ranking based on all the LEs (POC),
• ranking based on a random sample of LEs (POR),

which both of them (with a reasonable sample size) consider all the variables in
ranking procedure simultaneously (Panahbehagh 2020). Indeed in POC based on
rounded mean height (ranks of the units in the respective LEs) of the units we put
them in the strata. To illustrate procedures of POC and POR, we consider a simple
example, a set with m = 5 and R = 2 (see Table 6). As we can see in Table 6,
there is a complete order between the units {a, c, d, e} and {b} is incomparable with
{c, d, e}. Then we have 4 LEs and based on them we can calculate mean height
(MH) and after rounding them we can decide about putting them in the strata. With
repeating this procedure for K sets, we will have an unequal size post-stratified
initial sample with Kh as the size of h-th stratum and like stratified sampling
(Sarndal et al. 2003) we can select a sample of size dh from h-th stratum, which leads
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Table 6 Example of POC and POR for a set with 5 units with R = 2. According to Poset, there is
an order between all the units except b that is incomparable with c, d and e. For these units there
are 4 LEs which leads to an unequal size post-stratified initial sample. For these units, 4-th stratum
will be empty and instead we will have two units in 3-th stratum. In POC we use mean result of
the all LEs and for POR we just select one of them randomly

POC POR

Set X Y LE1 LE2 LE3 LE4 Set MH Stratum LE3 Set Stratum

e 8 7 e e e b e 4.75 5 e e 5

d 4 6 d d b e d 3.50 3 b d 3

c 3 5 c b d d c 2.25 2 d c 2

b 1 9 b c c c b 3.50 3 c b 4

a 0 0 a a a a a 1.00 1 a a 1

Table 7 General POC. Please note that Z{h}i = (X{h}i , X{h}i ) is a unit that has been fallen into
the h-th stratum after i − 1 units, according to its mean height MH in respective LEs

Ranks

1 (1-th Stratum) 2 (2-th Stratum) · · · m (m-th Stratum)

Z{1}1 Z{2}1 · · · Z{m}1
Z{1}2 Z{2}2 · · · Z{m}2
.
.
.

.

.

.
. . .

.

.

.

.

.

.
.
.
. · · · Z{m}Km

Z{1}K1

.

.

.

Z{2}K2

to POC (see Table 7). Panahbehagh (2020) showed that we can estimate unbiasedly
the elements of µ by

µ̂POC = (μ̂x.POC, μ̂y.POC) =
m∑

h=1

WhZ̄{h}, Wh = Kh

Km
, Z̄{h} = 1

dh

∑

iεsh

Z{h}i .

(2)

where Z{h}i = (X{h}i , Y{h}i ) is a unit that has been fallen into the h-th stratum after
i − 1 units, according to its MH in the respective LEs.

For POC, because Kh;h = 1, 2, . . . , m are random, with unknown distribution,
mean and variance it would be complicated to calculate the variance of µ̂POC.
Then it is better to present a design with equal size post stratified-initial sample.
For this purpose, POR is presented. In POR, just one of the LEs would be selected
to decide about putting the units in the strata. In example of Table 6, assume LE3
is selected, then we will put the units of the set in the strata according to ranks of
them in LE3. With repeating this procedure for K sets we will have a post-stratified
initial sample with equal size. Now with showing the sample unit in h-th stratum
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with Z[h}i = (X[h}i , Y[h}i ); i = 1, 2, . . . , K and get a SRSWOR from h-th stratum
of size dh (an integer smaller than K), say sh we can estimate the elements of µ
unbiasedly by

µ̂POR = (μ̂x.POR, μ̂y.POR) = 1

m

m∑

h=1

Z̄[h}; Z̄[h} = 1

dh

∑

i∈sh

Z[h}i , (3)

with (setting ψ as x or y)

V (μ̂ψ.POR) =
σ 2

ψ

Km
+ 1

m2

m∑

h=1

1 − dh

K

dh

EM(
1

Q

Q∑

q=1

S2[h}qψK).

where q = 1, 2, . . . , Q are all the possible combinations of LEs, with the below
unbiased estimator of variance (for equal size sampling, dh = d)

V̂ (μ̂ψ.POR) = 1

dm(Km − 1)
[

m∑

h=1

∑

iεs[h}
(Y[h}i − μ̂ψ.POR)

2 + (K − d)

m∑

h=1

s2[h}ψ ]. (4)

where S2[h}qψK and s2[h}ψ are variance of h-th stratum under q-th combination of
LEs and sample variance of h-th stratum for the variable ψ(= x, y) respectively.

3.3.2 Negative Correlation

When the correlations between variables are strongly negative, according to Poset,
it is probable that most of the units in a set are incomparable. This can make it
meaningless to stratify the sets (note that in this case most of the units will fall in
the middle stratum).

For an almost extreme case consider a case with m = 5, R = 2 and ρ(X, Y ) =
−0.95 in Table 8. As we can see, because of a strong negative correlation between
X and Y , all the units are incomparable and then we will have 5! = 120 possible
LEs and all the units will fall in the middle stratum. If this situation happens for all
the sets then the design will lead to SRS.

To overcome this problem, if the bivariate correlations between some variables
are negative, we can multiple a “−1” to some of them to change the correlations
to positive. But if we have more than two variables, sometimes it is not possible
to make all the correlations positive. In such cases, it is better to select some more
important variables that it is possible to make their correlations positive. We then
rank the units using Poset with these new correlations. As we can see in Table 8
with multiple a “−1” to Y , all the units will be comparable and then each of them
will fall in a separate stratum. Just please note that, if we decide to multiple “−1”
in one of the variables, it should be done for all the selected set and not for some
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Table 8 An example of situation in which there is a negative correlation between X and Y with
ρ(X, Y ) = −0.95

Set X Y LE1 LE2 . . . LE120 MH Stratum Set X −Y LE1 MH Stratum

e 5.0 1.0 e e . . . a 3 3 e 5.0 −1.0 e 5 5

d 4.0 4.0 d d . . . b 3 3 d 4.0 −4.0 d 4 4

c 3.0 4.5 c c . . . c 3 3 c 3.0 −4.5 c 3 3

b 2.0 5.5 b a . . . d 3 3 b 2.0 −5.5 b 2 2

a 1.0 9.0 a b . . . e 3 3 a 1.0 −9.0 a 1 1

Table 9 Example involving 3 sets based on POC and POR

Set1 X Y MH Set2 X Y MH Set3 X Y MH Stratum POC POR

e 8 7 4.75 q 8 6 4.50 w 9 7 4.80 5 e,w e,p,w

d 4 6 3.50 p 5 7 4.50 v 6 6 3.60 4 q,p,v d,q,v

c 3 5 2.25 o 4 5 3.00 u 3 5 2.40 3 d,b,o,r c,o,u

b 1 9 3.50 g 2 2 2.00 t 1 2 1.20 2 c,g,u b,g,r

a 0 0 1.00 f 0 0 1.00 r 0 8 3.00 1 a,f,t a,f,t

of them. In the example of Table 8, we have just one set, and if we have more than
one set, we should proceed for all of them like the first set. Also, it is notable that
if we use such a procedure, after selecting the final sample, we will use the original
data for calculating an unbiased estimator for the population mean vector. For more
details see Bruggemann and Carlsen (2011).

3.4 Example to Clarify the Methods and Calculations

Assume we have a population with an interesting two dimensional variable Z with
ρ(X, Y ) � 0.50 and by m = 5 we are going to estimate µ = (μx, μy) = (4, 5) with
a sample of size n• = 10. For this purpose we select 3 sets of size 5 independently.
The selected sets with their variables are shown in Table 9. Based on all linear
extensions, the MHs of the units are calculated and according to them, the strata are
formed for POC. Also based on selecting one of the LEs for each set, the strata are
formed for POR. As we can see in Table 9, POC and POR lead to unequal and equal
size post-stratified initial sample respectively.

For allocation the sample size to the strata, in POR, we decide to set nh =
2, h = 1, 2, . . . , 5 and for POC we proceed based on proportional to size of strata
allocation, then n1 = n2 = n4 = 3

15 × 10 = 2, n3 = 4
15 × 10 � 3 and finally

n5 = 2
15 × 10 � 1.

Results for estimating the population means and variances are shown in Tables 10
and 11.
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Table 10 Estimating the population means in POC and POR for data of Table 9 based on
equations (2) and (3)

POC POR

Stratum Sample Wh X̄{h} Ȳ{h} Stratum Sample X̄[h} Ȳ[h}
5 e 2/15 8.0 7.0 5 p,w 7.0 7.0

4 q,v 3/15 7.0 6.0 4 q,v 7.0 6.0

3 d,b,o 4/15 3.0 6.7 3 c,u 3.0 5.0

2 c,g 3/15 2.5 3.5 2 g,b 1.5 5.5

1 a,t 3/15 0.5 1.0 1 a,t 0.5 1.0

μ̂x.POC = 3.9 μ̂y.POC = 4.8 μ̂xPOR = 3.8 μ̂y.POR = 4.9

Table 11 Estimating the variances of the estimators in POR for data of Table 9 based on equation
(4)

POR

Stratum Sample (X[h}i − μ̂x.POR)
2 s2

x[h} V̂ (μ̂x.POR) (Y[h}i − μ̂y.POR
2)2 s2

y[h} V̂ (μ̂y.POR)

5 p,w 27.04 0.59 4.41 0.51

1.44 8.0 4.41 0.0

4 q,v 4.84 1.21

17.64 2.0 1.21 0.0

3 c,u 0.64 0.01

0.64 0.0 0.01 0.0

2 g,b 7.84 16.81

3.24 0.5 8.41 24.5

1 a,t 7.84 8.41

14.44 0.5 24.01 2.0

Sum 71.2 11.0 44.9 26.5

4 Conclusion and Discussion

In this chapter, we described a link between sampling strategies and partial order set
theory. As we can see, in the case of multivariate variables, it is possible to present
efficient strategies based on Poset to consider all the variables in ranking and then
estimate the population parameters precisely with reasonable sample size.

Generally, the determination of all linear extensions is computationally a hard
and challenging problem. Therefore calculating heights needs themselves sampling
techniques as shown by Bubley and Dyer (1999). For such situations, pretty good
approximations are presented by Bruggemann et al. (2004) and Bruggemann and
Carlsen (2011) and an interesting alternative is shown by Fattore and Arcagni
(2018).

Future work (concerning the partial order set concepts):
Although the different concepts to calculate approximatively heights of objects

derived from linear extensions, are pretty good, it turns out that sometimes the
mathematical simpler concept delivers better results than the more sophisticated
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one. Therefore it is an important task to develop still better approximations. An
alternative is to develop a theoretical framework to decide when which of the two
methods is to be preferred.

The set of linear extensions consists of LT elements (LEl, l = 1, . . . , LT ).
Assume that the variables used to describe the objects (or units) are of different
importance, then it is clear that linear extensions may have different proximities
to the variables (supposed there is a suitable concept of distances). Hence in a
general framework, the set of linear extensions should not be seen as a uniform
set. Especially if a variable induces a complete order (i.e. an order without ties)
then there must be one linear extension, which reproduces this order. This linear
extension may play a favorite role. Therefore in the further development of the
application of partial order sets in sampling theory, the potential non-uniformity of
linear extensions should be conceptually be built in. Linear extensions are images of
order-preserving maps, where the order relations found in a Poset are reproduced.
The underlying Poset derived from a data matrix reveals more symmetries than
expected from the data matrix alone, because of the ordinal interpretation of the
data. Hence the MH-values (see Table 6) may have several ties. It can be a useful
idea, to develop tie-breaking concepts, to guarantee that within the POC-concept the
objects belong as much as possible to different strata.
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Looking for Alternatives? Split-Shots as
an Exemplary Case

Lars Carlsen

1 Introduction

In the news we are virtually on a daily basis confronted with now this or that is
not good for humans and/or the environment, which obviously calls for alternatives
as many of the suspected, or proven harmful substances are actually in their own
sense beneficial for their specific purposes. This process may be rather complicated
involving a multitude of steps (NAS 2014a, b). The following list is adopted from
(NAS 2014a, b):

1. Identify the chemical of concern.
2. Scoping and problem formulation.
3. Identify potential alternatives.
4. Refer cases with limited or no alternatives to research and development.
5. Assess physicochemical properties.
6. Assess human health and ecological hazards, and assess comparative exposure.
7. Integration of information on safer alternatives.
8. Life cycle thinking.
9. Optional assessments: Additional life cycle assessment,

10. Identify acceptable assessments and refer cases with no alternatives to research
and development.

11. Compare or rank alternatives.
12. Implement alternatives.
13. Research or de novo design of safer alternatives
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In the present study we focus on step 11: ‘compare or rank alternatives’, and
argue that partial order methodology may be introduced as an advantageous decision
support tool, despite the fact that it has been stated that multi-criteria decision
analyses (MCDA) “may be useful in some cases, they may be more complicated
than required for many assessments” (NAS 2014a, b). The present study applies
partial order methodology is applied for the search for suitable alternatives to split-
shots as an exemplary case. Data are adopted from the National Academy of Science
report on the selection of chemical alternatives (NAS 2014a).

Split-shots have traditionally been produced of lead (Pb) as a relatively soft
material that has a good malleability and is corrosion resistant. Further the end
product has an excellent availability and is obtainable at a relatively low price.
However, Pb is both from an environmental and human health perspective an
unwanted compound and thus possible alternatives are searched for. Thus, TURI
(2006) reports that

• “Nearly 2,500 metric tons of lead are used each year in the United States to
produce fishing sinkers.”

• “Many of these sinkers are lost during use. One study found that anglers lost, on
average, one sinker every six hours of fishing”

• “Lead sinkers are lethal to waterbirds, such as loons and swans. One study found
that the most common cause of death in adult breeding loons was lead toxicity
from ingested fishing sinkers”

In the present study 5 alternatives were includes (NAS 2014a, p180; TURI
2006 pp. 3–60 – 3–81), i.e., bismuth (Bi), Ceramic (cer), Steel (ste), Tin (Sn) and
Wolfram (W).

The paper discusses the ranking of indicators for the bismuth (Bi), Ceramic (cer),
Steel (ste), Tin (Sn) and Tungsten (W) as well as lead (Pb) in order to suggest
the optimal alternative to lead split-shots among the 5 other suggested materials
applying the concept of average heights (De Loof et al. 2006; Bruggemann and
Carlsen 2011). The paper finalizes with a discussion of the ranking probabilities for
single alternatives applying the Bubley-Dyer approach to average ranking (Bubley
and Dyer 1999) as well as the version 8_3 of the LPOMext module of PyHasse
(Bruggemann and Carlsen 2011).

2 Methodology

The present paper describes how selected partial order tools may be applied in the
evaluation of alternatives and thus constitutes an advantageous tool in selecting
an optimal alternative out of the set, taking several indicators simultaneously into
account as an alternative to conventional methods to study multi-indicator systems
(MIS) (Bruggemann and Carlsen 2012).
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2.1 The Basic Equation of Hasse Diagram Technique

In its basis partial ordering appears pretty simple as the only mathematical relation
among the objects is “≤” (Bruggemann and Carlsen 2006a, b; Bruggemann and
Patil 2011). As the basis for a comparison of objects, here split-shot alternatives,
characterization by the group of indicators is used (vide infra). This series of
indicators, ri, characterizes the single split-shot alternatives. Thus, if one of the
alternatives (x) is characterized by the set of indicators ri(x), i = 1,...,m, where m is
the number of indicators, it can be compared to another alternative (y), characterized
by the indicators ri(y). Thus, y < x iff

ri (y) ≤ ri (x) for all i = 1, . . . , m (1)

Equation 1 is a very hard and strict requirement for establishing a comparison.
It demands that all indicators of x should be better (or at least equal) than those
of y. Further, let X be a set of alternatives included in the analysis, i.e., X = {Pb,
Bi, cer, ste, Sn, W},1 x will be ordered higher (better) than y, i.e., x > y, if at least
one of the indicator values for x is higher than the corresponding indicator value
for y and no indicator for x is lower than the corresponding indicator value for y.
On the other hand, if ri(x) > ri(y) for some indicator ri and rj(x) < rj(y) for some
other indicator rj, x and y will be called incomparable (notation: x || y) expressing
the mathematical contradiction due to conflicting indicator values. A set of mutual
incomparable objects is called an antichain. When all indicator values for x are
equal to the corresponding indicator values for y, i.e., ri(x) = ri(y) for all ri, the two
compared elements will have identical rank and will be considered as equivalent,
i.e., x ~ y. The analysis of Eq. 1 can be visualized by a Hasse diagram.

2.2 The Hasse Diagram

The Eq. 1 is the basic for the Hasse diagram technique (HDT) (Bruggemann
and Carlsen 2006a, b; Bruggemann and Patil 2011). Hasse diagrams are visual
representations of the partial order. In the Hasse diagram comparable objects are
connected by a sequence of lines (Bruggemann and Carlsen 2006a, b; Bruggemann
and Patil 2011; Bruggemann and Munzer 1993; Bruggemann and Voigt 1995, 2008).

1Pb: Lead, Bi: Bismut, cer: Ceramics, ste: Steel, Sn: Tin, W: Wolfram.
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2.3 The More Elaborate Analyses

In addition to the basic partial ordering tools some more elaborate analyses have
been used including average ranks (Bubley and Dyer 1999; De Loof et al. 2006;
Bruggemann and Patil 2011) and sensitivity analysis (Bruggemann and Patil 2011;
Bruggemann et al. 2014), the latter gives an insight in the relative importance of the
included indicators (Bruggemann and Patil 2011; Bruggemann et al. 2014).

The average ranking is expressed as average height from bottom (min.
Height = 1) to the top (max height = n, i.e., the maximum number of objects,
here n = 6) (Bruggemann and Annoni 2014). The average rank is generated by
calculating all linear order preserving sequences (set LE), the “linear extensions
of the original partial order. From LE_0 the statistical characterization for each
object is obtained. For example the characterization is calculated as the average
value an object has, taken all positions of this object within LE_0, the averaged
heights. It is clear that this procedure is computationally extremely difficult. Hence,
approximations were developed.

For the sentivity analysis (Bruggemann and Patil 2011; Bruggemann et al. 2014),
let Q be the set of all indicators, then taken all indicators of Q leads to a partial
order, which is called PO_0. The corresponding set of linear extensions is denoted
by LE_0. Leaving out one indicator of Q, say rj, then another partial order results,
which is denoted as PO_j.

Both partial orders can be described by an adjacent matrix, say A_0 for PO_0
and A_j for PO_j.

Taken the Euclidian Distance (squared) quantifies the role of indicator qj in
PO_0. This is a sensitivity measure for the indicators of set Q, describing the
structural changes of the partial order leaving one indicator out. This is not
immediately a measure of the sensitivity of the indicators for a ranking, because
the ranking is per definition a linear order and here derived over many interim steps.

If a linear order is obtained by all orders in LE_0, the set of linear extensions
taken from PO_0, then any PO_j will also lead to a corresponding set LE_j. And
this set is the more differing from LE_0 the larger the sensitivity is. Therefore the
ranking due to averaged heights is as more affected by indicator rj as larger its
sensitivity is.

For detail information on the single tool the cited literature should be consulted
as detailed description is outside the scope of the present paper.

2.4 Software

All partial order analyses were carried out using the PyHasse software (Bruggemann
et al. 2014). PyHasse is programmed using the interpreter language Python (version
2.6) (Hetland 2005; Weigend 2006; Ernesti and Kaiser 2008; Langtangen 2008;
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Python 2015) Today, the software package contains more than 100 modules and is
available upon request from the developer, Dr. R.Bruggemann (brg_home@web.de).

2.5 Indicators

The analysis of possible alternatives to Pb split-shots includes a series of indicators.
The indicators are grouped in three main categories, i.e., Technical and Performance
Criteria (TPCr), Environmental Criteria (ENCr), Human Health Criteria (HHCr),
and Cost criteria (Cost), respectively, where TPCr includes 5 sub-indicators,
whereas both ENCr and HHCr includes 3 sub-indicators each and the Cost
comprises 2 sub-indicators (NAS 2014a; TURI 2006).

TPCr (Technical and Performance)

dens: Density
hard: Hardness (desirable for “feel” and noise
mall: Malleability (split-shot application)
lowm: Low melting point (desirable for home production)
corr: Corrosion resistant

EnCr (Environmental)

hito: High toxicity to waterfowl (the lower the better)
toaq: Toxic to aquatic species (the lower the better)
dwst: Primary drinking water standards (MCL action level)

HHCr (Human Health)

carc: Carcinogenicity
devt: evelopmental toxicity
ocex: Occupational exposure: REL (8-hour TWA)

Cost

repr: Retail price
avail: Availability of end product

2.6 Data

Data are adopted directly from the National Academy of Science report (NAS
2014a, p180; TURI 2006 pp. 3–60 – 3–81). Here the 5 possible alternatives are
compared to Pb in a relative simple way, i.e., better, equal or worse. In the present
study we denote these possibilities by 1, 0 and − 1, respectively. In some cases
the report (NAS 2014a) states an uncertainty, denoted by “?”. This results in two
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Table 1 Non-conservative evaluation of the 5 possible alternatives to
Pb (uncertainties are regarded as ‘equal’, i.e., denoted 0 – marked grey)

Criteria Pb Bi cer ste Sn W
dens 0 -1 -1 -1 -1 1
hard 0 1 1 1 0 1
mall 0 -1 -1 -1 0 -1
lowm 0 1 -1 -1 1 -1
corr 0 0 0 -1 0 0
hito 0 1 0 1 1 1
toaq 0 1 0 1 1 1
dwst 0 0 0 1 1 0
carc 0 1 1 1 1 1
devt 0 1 1 1 1 1
ocex 0 0 1 1 1 1
repr 0 -1 -1 0 -1 -1
avail 0 -1 -1 -1 -1 -1

Table 2 Conservative evaluation of the 5 possible alternatives to Pb
(uncertainties are regarded as ‘worse’, i.e., denoted −1 – marked grey)

Criteria Pb Bi cer ste Sn W
dens 0 -1 -1 -1 -1 1
hard 0 1 1 1 0 1
mall 0 -1 -1 -1 0 -1
lowm 0 1 -1 -1 1 -1
corr 0 0 -1 -1 0 0
hito 0 1 -1 1 1 1
toaq 0 1 -1 1 1 1
dwst 0 -1 -1 1 1 -1
carc 0 1 1 1 1 1
devt 0 1 1 1 1 1
ocex 0 -1 1 1 1 1
repr 0 -1 -1 0 -1 -1
avail 0 -1 -1 -1 -1 -1

approaches, i.e., a non-conservative approach whereas in cases of uncertainty an
“equal” is assumed and thus denoted by 0 (Table 1) and a conservative approach
where an uncertainty denoted by −1, thus assuming a ‘worse’ (Table 2).

3 Results and Discussion

Prior to the actual analyses it appears appropriate to clarify what an alternatives
analysis is and what it is not, which has been stated in the National Academy of
Science report (NAS 2014b).
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Thus, an alternatives analysis is

• a process for identifying, comparing, and selecting safer alternatives to chemicals
of concern.

• intended to facilitate an informed consideration of the advantages and disadvan-
tages of alternatives to a chemical of concern

whereas an alternatives analysis is not

• a safety assessment, where the primary goal is to ensure that exposure is below a
prescribed standard,

• a risk assessment, where risk associated with a given level of exposure is
calculated

• a sustainability assessment, that considers all aspects of a chemical’s life cycle,
including energy and material use

3.1 Aggregated Data

Due to the low number of compared elements (6) relative to the total number of
indicators (13) a direct partial ordering of the compared elements based on all
indicators is not meaningful due to a possible lack of robustness (Sørensen et al.
2000). Even ordering based on the single indicators groups gives only little sense.
Thus, some kind of aggregation of the sub-indicators appears appropriate. Hence,
the 13 indicators are aggregated into 4 groups, i.e., Technical and Performance
Criteria (TPCr), Environmental Criteria (ENCr), Human Health Criteria (HHCr)
and Cost criteria (Cost), respectively. The aggregation is carried out by a simple
addition of the indicator values for these four groups. Thus,

• TPCr = dens + hard + mall + lowm + corr
• EnCr = hito + toaq + dwst
• HHCr = carc + devt + ocex
• Cost = repr + avail

The resulting data matrices for the non-conservative and conservative approaches
are given in Tables 3 and 4, respectively.

Table 3 Aggregated data
matrix (non-conservative
approach)

Criteria TPCr EnCr HHCr Cost

Pb 0 0 0 0
Bi 0 2 2 −2
cer −2 0 3 −2
ste −3 3 3 −1
Sn 0 3 3 −2
W 0 2 3 −2
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Table 4 Aggregated data
matrix (conservative
approach)

Criteria TPCr EnCr HHCr Cost

Pb 0 0 0 0
Bi 0 1 1 −2
cer −3 −3 3 −2
ste −3 3 3 −1
Sn 0 3 3 −2
W 0 1 3 −2

Fig. 1 Hasse diagram
generated based the data in
Table 3 using all 4 indicators

Pb ste Sn

W

Bi cer low

high

3.2 The Non-conservative Approach

Analyzing the aggregated data for the non-conservative approach using all four
indicators leads to the Hasse diagram depicted in Fig. 1. The diagram displays two
isolated elements, Pb and ste, which makes an immediate ranking less obvious.

The average ranks of the 6 materials were found to form the following relations:
Sn > W > ste = Pb > Bi = cer, the calculated average height being, 5.6 (Sn), 4.2 (W),
3.5 (ste, Pb) and 2.1 Bi, cer), respectively, indicating Sn as the most advantageous
alternative to Pb. Hence, Sn and Pb are evaluated equal concerning the technical and
performance criteria (TPCr) but Sn appears significantly better than Pb with regard
to environment (EnCr) and human health (HHCr) (cf. Tables 3 and 4).

It is obviously of interest to disclose the relative importance of the four indicators.
Thus, the relative importances of the indicators TPCr, EnCr, HHCr and Cost were
estimated to be 0.333, 0.083, 0.25 and 0.333, respectively. That the technical
and performance indicator (TPCr), on a relative scale appears as being of high
importance may not be surprising. A similar high importance of the cost indicator
(Cost) may not be surprising and these two indicators clearly oust the environmental
and human health indicators (EnCr and HHCr). However, this analysis puts a price
on environmental and human health. To circumvent this, possible unfair judgment,
an analogous analysis was done applying only the three indicators TPCr, EnCr and
HHCr.

In Fig. 2 the Hasse diagram generated based on the TPCr, EnCr and HHCr
indicators only is depicted. It is immediate seen that a much more clear-cut picture
has developed as as all elements are interconnect, which also lead to a clearer picture
regarding the average height with Sn > W > ste > Bi > cer > Pb, the corresponding
average heights being 6.0 (Sn), 4.8 (W), 3.2 (Bi), 3.0 (ste), 2.4 (cer), 1.6 (Pb),
respectively. Thus, excluding the Cost indicator the choice of Sn as the optimal
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Fig. 2 Hasse diagram generated based the data in Table 3 using TPCr, HHCr and EnCr indicators

a

ste

ste

cer

cer

high

low

Bi

Bi Pb

Pb

W

W

Sn
Sn

b

Fig. 3 (a) Hasse diagram generated based the data in Table 4 using all 4 indicators. (b) Hasse
diagram generated based the data in Table 3 using TPCr, HHCr and EnCr indicators

alternative is obvious. It is further interesting to note that in this case all the five
suggested alternative materials for split-shots appear to oust Pb.

The dominating influence of the technical and performance indicator is also
found in this case, the relative importance of the three indicators TPCr, EnCr and
HHCr being equal to 0.5, 0.25, 0.25, respectively.

3.3 The Conservative Approach

A similar set of analyses was carried out for the conservative approach (Table 4),
the resulting Hasse diagrams are displayed in Fig. 3.

By comparing Fig.’s 1/3a and 2/3b on can obviously see that the overall trend
found for the non-conservative approach is found again here. However, some
variations in the relative indicator importance can be noted. Thus, in the case
including all four indicators (Fig. 3a) the Cost indicator appears to be the dominating
indicator, as the relative importances for TPCr, EnCr, HHCr and Cost were found
to 0.273 (TPCr), 0.091 (EnCr), 0.273 (HHCr) and 0.364 (Cost), respectively.
Excluding the Cost indicator the TPCr is found again as the dominating indicator
as the relative importance for TPCr, EnCr and HHCr are found to 0.4 (TPCr), 0.3
(EnCr) and 0.3 (HHCr), respectively.

The overall picture that Sn appears as the optimal alternative is found again here.
Thus, upon inclusion of all four indicators (Fig. 3a) the average ranking was found
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to be Sn > ste > W > Pb > Bi > cer the average heights being 5.5, 4.3, 4.0, 3.5, 2.0 and
1.7, respectively, whereas excluding the Cost indicator we find Sn > W > ste > Bi >
cer > Pb, the average height being 6.0, 4.7, 3.9, 3.1, 1.8 and 1.6, respectively, i.e.,
the ranking being identical for the conservative and non-conservative approach.

3.4 How Sure Are We on the Ranking?

Looking at the rankings in cases where the Cost indicator is excluded it is clear
that Sn turns out as the optimal alternative to Pb split-shots, since Sn is ranked as
high as possible (average height = 6.0) as the only maximal element. However,
with inclusion of the Cost indicator the picture becomes somewhat more blurred.
Thus, decision makers may have a requirement to information concerning how sure
we are on the ranking of the alternatives as the ranking presented, based on partial
order methodology are average ranking, i.e., the is a finite probability that the single
alternatives may take several absolute ranks.

To fulfill such requirements partial order methodology offers several possibilities.
In the present study the Bubley-Dyer approach to average ranking (Bubley and Dyer
1999; Bruggemann and Patil 2011) is applied, by which the probabilities for the
single elements to have a specific rank are retrieved.

In Table 5 the probabilities for the single alternatives and Pb to have specific
ranks are provided. It is seen that although the average ranking placed Sn as the
optimal alternative, the probability for Sn to have rank 6 is only 64.7% and to be at
rank 5 28.5% while for W to have rank 5 it is at 33.6%. It should here be noted that
due to the fact that ste and Pb turn out as elements not comparable to other elements
can take all 6 ranks virtually with the same probability around 15–20%.

To further elucidate the of the incomparable alternatives ste, Sn and W to
Pb the probabilities for the one element being being ranked higher that another
were calculated applying the version 8_3 of the LPOMext module of PyHasse
(Bruggemann and Carlsen 2011):

• Sn > Pb: 0.8
• Sn > ste: 0.8
• W > Pb: 0.6
• W > ste: 0.6

Table 5 Probabilities for the
six materials to exhibit a
specific rank (cf. Fig. 1)

Alt\rank 1 2 3 4 5 6

Pb: 0.158 0.146 0.161 0.173 0.182 0.18
Bi: 0.356 0.371 0.198 0.075 0.0 0.0
cer: 0.335 0.348 0.251 0.066 0.0 0.0
ste: 0.151 0.135 0.162 0.182 0.197 0.173
Sn: 0.0 0.0 0.0 0.068 0.285 0.647
W: 0.0 0.0 0.228 0.436 0.336 0.0
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Table 6 Probabilities for the
six materials to exhibit a
specific rank (cf. Fig. 3a)

1 2 3 4 5 6

Pb: 0.176 0.14 0.165 0.164 0.188 0.167
Bi: 0.328 0.421 0.21 0.041 0.0 0.0
cer: 0.496 0.376 0.128 0.0 0.0 0.0
ste: 0.0 0.063 0.175 0.293 0.254 0.215
Sn: 0.0 0.0 0.0 0.077 0.305 0.617
W: 0.0 0.0 0.322 0.425 0.253 0.0

A similar analysis was carried out for the conservative approach (Fig. 3a), the
resulting calculated probabilities being shown in Table 6. A more or less similar
set of probabilities as for the non-conservative approach can be seen. However, one
significant difference can be noted due to the fact that ste no longer appear as an
isolated element. Thus, the probabilities for ste to have the ranks 4, 5 and 6 are
now significantly higher, approx. 30, 25 and 21%, respectively. Simultaneous the
probability for W to have rank 5 is reduced to 25.3% and the probability for Sn
to have rank 6 is slightly reduced. Pb, as an isolated element can still have all 6
possible ranks with virtually equal probability.

Again the probability relations between Pb and the 3 possible incomparable
alternatives (ste, W and Sn) were calculated:

• ste > W: 0.571
• Sn > Pb: 0.8
• Sn > ste: 0.667
• W > Pb: 0.6

4 Conclusions and Outlook

Despite the statement that “MCDA methodsmay be useful in some cases, they may
be more complicated than required for many assessments” the present study has
shown that partial order methodology is useful in the search for alternatives. Partial
order methodology is not specifically complicated and may facilitate assessments.

Initially only the very basics of partial ordering appear necessary as long as a
fairly “clear” ordering is obtained, i.e., with a low number of isolated elements. In
less clear cases the application of further partial order technics, as here the Bubley-
Dyer approach to average ranks and the local partial order approach to mutual
probabilities leads to further insights into the ranking, e.g., through the disclosure of
probabilities for the single elements to have specific ranks and probability relations
between otherwise incomparable elements.

The present study finds Sn (tin) as the optimal alternative and as long as the
Cost indicator, including retail price and availability is neglected a pretty clear-cut
conclusion. However, apparently the availability and the price of the material play,
maybe not surprisingly, a major role that especially in the case of Pb, which is
available at rather low prices.
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Comparison of Selected Procedures for
Generating Activated Carbon
with Special Focus on Miscanthus Straw
as a Sustainable Raw Material

Lars Carlsen and Kamilya Abit

1 Introduction

In a recent paper we reported on the production of activated carbon (AC) from
Miscanthus straw as a sustainable process to obtain the product as Miscanthus straw
can be harvested yearly for 15+ years (Abit et al. 2019). The use of Miscanthus
straw as the basis for AC production is further substantiated since the plant in
parallel can be used for soil cleaning as the roots effectively take up heavy metals
(Pidlisnyuk et al. 2014; NATO 2017; Nurzhanova et al. 2019; Dias et al. 2007). Since
the demand for AC on a global scale is increasing a wide variety of well-documented
processes for the production is available cf., e.g. Kundu et al. 2014; Gergova et al.
1994; Bae et al. 2014). Thus, it remains to be analyzed how the process based on
Miscanthus straw is comparable to already existing processes. The present study
compares selected procedures for generated AC with special focus on Miscanthus
straw applying partial ordering methodology.

1.1 Background: Factors Affecting AC Productions

Some pyrolysis features such as temperature have the most significant effect, as well
as retention time, heating rate and nitrogen flow rate.
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In AC production, temperature and activation time play a vital role in influencing
the characteristics and properties of the AC produced.

There are processes of physical and chemical activation and simultaneous
carbonization and steam/thermal activation. Physical activation includes the stage
of carbonization and activation, in which steam and carbon dioxide (CO2) are the
most widely used reagents, significantly affecting the porosity of AC. Thus Gergova
et al. (1992) studied the porous structure of activated carbons from agricultural
by-products, and Alcaniz-Monge et al. (2012) prepared activated carbon fibres by
steam or carbon dioxide activation. The AC generation using chemical activation
involves a step in which chemicals, such as potassium hydroxide, phosphoric
acid, zinc chloride or other chemicals, can simply be used at room temperature
(Menéndez-Díaza and Martín-Gullónb 2006). However, depending on the chemicals
used, impurities such as zinc (Zn) and phosphorus (P) can be detected in the
final AC product, which at the same time may lead to an increase in AC cost by
adding the chemical used and purifying the reaction product from impurities. Such
chemical additives for AC activation are potentially harmful to human health and
the environment and also significantly increases the cost of the final AC product
compared to physical activation, for example, water vapor (cf. Abit et al. 2019)
Therefore, physical activation a priori appears as the more appropriate method
of activation to prevent environmental pollution and reduce the cost of the final
product, while obtaining relatively high surface area of AC.

For commercial purposes, coal activation is usually carried out in a mixture of
steam and CO2 at temperatures above 800 ◦C. Recently, studies have be reported
aiming to optimize the final activation temperature in order to reduce the cost
and duration of AC production (cf. Abit et al. 2019). Several studies have been
reported that the activation temperature has a large effect on the surface area and the
yield of AC (Chowdhury et al. 2011; Wang et al. 2017; Baçaoui et al. 2001). The
activation temperature varies from 200 to 1100 ◦C. However, temperature range
from 400 to 500 ◦C is often used for chemical activation and higher temperatures
(800–1000 ◦C) for physical activation (cf. Abit et al. 2019). It should also be noted
that during chemical activation, the processing time of preparing AC is significantly
increased due to the long period for creating complete impregnation of raw materials
with chemical reagents. According to previously obtained research results, with
increasing activation time, the surface area according to the method of Brunauer,
Emmett and Teller (BET) (Thommes et al. 2015) gradually increases, while the
yield of AC decreases (Baçaoui et al. 2001). This may be due to the volatilization
of organic substances from agricultural raw materials.

The yield is an additional indicator that is studied during AC production.
The greater the yield of the carbonization-activation reaction, obviously the more
productive and cost-effective the technology for AC production will be.

The so-called BET surface area (Thommes et al. 2015) is another important
feature, showing the influence of production conditions on the characteristics of the
resulting AC. Basically, the surface area of BET increases with increasing activation
temperature. This may be due to the advancement of new pores due to the release of
volatile matter and the expansion of pores.
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Obviously a large surface area is a priori preferable in order to increase the
sorption capacity.

Given all the factors affecting the cost of the technology and the final product, as
well as the impact on the environment and health, it is necessary to choose the best
options for the ratio of the cost of the final product (AC), product yield, sorption
properties, and harmfulness of production.

The maximum adsorption capacity of AC, which obviously is of major interest,
appears largely to be dependent on the structure of the raw material and the
processes of its production.

2 Methods

The study includes 21 different methods for producing activated carbon. The
methods comprise various starting material as well as both chemical and physical
activation of the initially produced carbon material.

Various materials with high carbon content can be used as raw materials for
the production of AC (Ioannidou and Zabaniotou 2007). Some of the widely used
starting materials are agro-industrial by-products that are characterized by their
renewability, high mechanical strength, low cost, abundance, and low ash content.
Hence, various studies report the use of biomass residues from agricultural waste in
AC production, such as coconut shells (Laine et al. 1989; Laine and Yunes 1992;
Boopathy et al. 2013: Lopez et al. 1996), tropical wood (Hayashi et al. 2000a; Janoš
et al. 2009; Phan et al. 2006), jute (Giraldo and Moreno-Piraján 2008), cane sugar
bagasse (Foo et al. 2013), walnut shells (Yang and Qiu 2010), Also non-agricultural
products, such as phenol-formaldehyde resins (Teng and Wang 2000), bituminous
coal (Hsu and Teng 2000), have been reported as sources of AC.

2.1 Data

The data applied in the study have been retrieved from available literature including
data from our recent paper on AC from Miscanthus straw (Abit et al. 2019).

It should be noted that for some procedures, e.g., that using Miscanthus straw
both a carbonization process and an activation process are part of the overall AC
production, whereas in other procedures only one carbonization/activation process
is involved.

To assess the efficiency of the methods for obtaining AC, four specific indicators
were selected:

1. The temperature of activation (TempA) that is believed to reflect the energy
consumption for the AC production. Thus, the lower the TempA the lower the
necessary energy consumption. Note that the negative values of TempA are used
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in order to have the same orientation for all indicators, i.e. the higher the better
(Bruggemann and Carlsen 2006; Bruggemann and Patil 2011)

2. The eventual yield of AC (Yield)
3. The surface area of the produced AC (Surf) as an indicator for the sorption

characteristics of the AC
4. The method of activation (MoA) that can be either physical, i.e., without applying

any chemicals (apart from possibly water/steam) or chemical, where specific
chemicals are applied as part of the activation process. As itis believed that
avoiding using chemicals is preferable. Thus, the indicator values for chemical
and physical activation are set to 1 and 2, respectively.

Table 1 presents the characteristics of some studies of various materials used in
the production of AC, as a result of which a comparative characteristic was compiled
for various methods of obtaining AC.

2.2 Partial Ordering

Partial ordering appears in its basis pretty simple as the only mathematical relation
among the elements is “≤” (Bruggemann and Carlsen 2006; Bruggemann and
Münzer 1993; Bruggemann and Patil 2011). The basis for a comparison of elements
is a group of indicators (vide infra) that characterizes the elements. This series of
indicators, rj, is selected in order to be characteristic for the processes studied, i.e.,
the preparation of activated carbon. Thus, characterizing one of the methods for AC
production (x) by the a set of indicators rj(x), j = 1, . . . , m, where m is the number of
indicators, can be compared to another method (y), characterized by the indicators
rj(y), when

rj (y) ≤ rj (x) for all j = 1, . . . , m (1)

Equation 1 is a very hard and strict requirement for establishing a comparison. It
demands that all indicators of method x should be better (or at least equal) than those
of method y. Further, let X be the group of methods included in the analyses, x will
be ordered higher (better) than y, i.e., x > y, if at least one of the indicator values for x
is higher than the corresponding indicator value for y and no indicator for x is lower
than the corresponding indicator value for y. On the other hand, if rj(x) > rj(y) for
some indicator j and ri(x) < ri(y) for some other indicator i, the methods x and y will
be denoted incomparable (notation: x | y) expressing the mathematical contradiction
due to conflicting indicator values. A set of mutual incomparable elements is called
an antichain. When all indicator values for x are equal to the corresponding indicator
values for y, i.e., rj(x) = rj(y) for all j, the two methods will have identical rank and
will be considered as equivalent, i.e., x ~ y. The analysis of Eq. 1 results in a graph,



Comparison of Selected Procedures for Generating Activated Carbon. . . 169

Ta
bl

e
1

In
di

ca
to

r
va

lu
es

fo
r

th
e

21
m

et
ho

d
in

cl
ud

ed
in

th
e

ev
al

ua
tio

n

In
di

ca
to

rs
№

M
et

ho
d

M
et

ho
d

1:
Te

m
pA

,◦
C

2:
Y

ie
ld

,%
3:

Su
rf

,m
2
/g

4:
M

oA

1
M

1
L

ai
ne

et
al

.1
98

9
−4

00
45

11
80

1
2

M
2a

L
op

ez
et

al
.1

99
6

−8
00

15
62

0
1

3
M

2b
L

op
ez

et
al

.1
99

6
C

he
m

ic
al

ac
tiv

at
io

n
w

ith
H

3P
04

(4
0%

).
−4

50
40

14
50

1
4

M
2c

L
op

ez
et

al
.1

99
6

C
he

m
ic

al
ac

tiv
at

io
n

w
ith

Z
nC

l2
(2

5%
).

−4
50

40
15

50
1

5
M

3a
L

ai
ne

an
d

Y
un

es
19

92
Ph

ys
ic

al
ac

tiv
at

io
n

(w
ith

C
O

2
at

80
0
◦ C

3–
4

h.
)

−8
00

20
75

1
1

6
M

3b
L

ai
ne

an
d

Y
un

es
19

92
C

3:
C

he
m

ic
al

ac
tiv

at
io

n
(w

ith
H

3
PO

4
30

w
t%

ac
id

)
−5

00
30

13
60

1
7

M
4a

Pa
st

or
-V

ill
eg

as
et

al
.1

99
4

A
ct

iv
at

io
n:

A
ir

−7
50

60
43

9
2

8
M

4b
Pa

st
or

-V
ill

eg
as

et
al

.1
99

4
A

ct
iv

at
io

n:
C

O
2

−9
50

60
65

0
1

9
M

4c
Pa

st
or

-V
ill

eg
as

et
al

.1
99

4
A

ct
iv

at
io

n:
H

2
O

−9
50

60
75

9
2

10
M

5a
Ph

an
et

al
.2

00
6

A
ct

iv
at

io
n:

C
O

2
−9

50
7

91
2

1
11

M
5b

Ph
an

et
al

.2
00

6
C

he
m

ic
al

ac
tiv

at
io

n:
H

3
PO

4
−9

00
33

95
9

1
12

M
6a

G
ir

al
do

an
d

M
or

en
o-

Pi
ra

já
n

20
08

C
he

m
ic

al
ac

tiv
at

io
n

us
in

g
50

%
H

N
O

3
−9

00
46

86
8

1
13

M
6b

G
ir

al
do

an
d

M
or

en
o-

Pi
ra

já
n

20
08

C
he

m
ic

al
ac

tiv
at

io
n

us
in

g
50

%
H

N
O

3
−9

00
46

96
7

1
14

M
7a

H
ay

as
hi

et
al

.2
00

0a
C

he
m

ic
al

ac
tiv

at
io

n:
Z

nC
l 2

−5
00

60
10

00
1

15
M

7b
H

ay
as

hi
et

al
.2

00
0a

C
he

m
ic

al
ac

tiv
at

io
n:

H
3
PO

4
−5

00
60

70
0

1
16

M
7c

H
ay

as
hi

et
al

.2
00

0a
C

he
m

ic
al

ac
tiv

at
io

n:
K

O
H

−5
00

65
25

0
1

17
M

8a
H

su
an

d
Te

ng
20

00
C

he
m

ic
al

ac
tiv

at
io

n:
Z

nC
l 2

−6
00

69
96

0
1

18
M

8b
H

su
an

d
Te

ng
20

00
C

he
m

ic
al

ac
tiv

at
io

n:
H

3
PO

4
−6

00
80

77
0

1
19

M
8c

H
su

an
d

Te
ng

20
00

C
he

m
ic

al
ac

tiv
at

io
n:

K
O

H
−6

00
45

18
00

1
20

M
9

Te
ng

an
d

W
an

g
20

00
Ph

ys
ic

al
ac

tiv
at

io
n:

90
0
◦ C

K
O

H
im

pr
eg

na
tio

n
−9

00
12

22
20

1
21

M
10

A
bi

te
ta

l.
20

19
A

ct
iv

at
io

n
w

ith
H

2
O

at
80

0
◦ C

,6
0

m
in

.
−8

00
28

54
2

2



170 L. Carlsen and K. Abit

the so-called Hasse diagram. Hasse diagrams are unique visualizations of the order
relations due to Eq. 1.

2.2.1 The Hasse Diagram

The Eq. 1 is the basic for the Hasse diagram technique (HDT) (Bruggemann
and Carlsen 2006; Bruggemann and Münzer 1993; Bruggemann and Patil 2011).
Hasse diagrams are visual representation of the partial order. In the Hasse diagram
comparable elements are connected by a sequence of lines (Bruggemann and
Carlsen 2006; Bruggemann and Münzer 1993; Bruggemann and Patil 2011).

By convention, the Hasse diagram originally introduced by Halfon and Reggiani
(1986) is drawn with.

• x ≤ y locating x below y,
• attempting a symmetric presentation as far as possible and
• by an arrangement of elements in levels that are numbered from the bottom and

upwards.
• each element is placed at the highest possible level in the diagram as possible

Two important concepts, in addition to the level structure can directly obtained
by inspecting a Hasse diagram:

• Chains are subsets of X, where each element is mutually comparable to the
others. Those subsets are denoted as ‘completely ordered’: Inspecting a Hasse
diagram, any sequence of lines upwards or (strictly) downwards is a chain

• Antichains are sets, where each element is mutually incomparable with the
others. Hence, levels are subsets of the set of all antichains

• Maximal elements are elements where for a given element x there is no elements
y where x ≤ y

• Minimal elements are elements where for a given element x there is no elements
y where y ≤ x

• If x is at the same time a maximal and a minimal element, then x is called an
isolated element. Isolated elements are always of interest as they must have a
special data structure, which makes them incomparable to any other element of
X.

For a detailed explanation see the work by Bruggemann and Patil (2011).

2.3 The More Elaborate Analyses

In addition to the basic partial ordering tools some more elaborate analyses have
been used including average ranks (Bubley and Dyer 1999; Bruggemann et al. 2004;
De Loof et al. 2006; Bruggemann and Patil 2011, Bruggemann and Carlsen 2011;
Bruggemann and Annoni 2014) and sensitivity analysis (Bruggemann and Patil
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2011; Bruggemann et al. 2014), the latter gives an insight in the relative importance
of the included indicators (Bruggemann and Patil 2011; Bruggemann et al. 2014)
and antichain analyses (Bruggemann and Voigt 2011).

2.3.1 Average Ranks

The average ranking is expressed as average height from bottom (min. Height = 1)
to the top (max height = n, i.e., the maximum number of objects, here n = 21)
(Bruggemann and Annoni 2014). The average rank is generated by calculating all
linear order preserving sequences (set LE), the linear extensions of the original
partial order. From LE_0 the statistical characterization for each object is obtained.
For example the characterization is calculated as the average value an object has,
taken all positions of this object within LE_0, the averaged heights. It is clear that
this procedure is computationally extremely difficult. Hence, approximations were
developed (Bruggemann et al. 2004, Bruggemann and Carlsen 2011).

2.3.2 Sensitivity Analysis

For the sentivity analysis (Bruggemann et al. 2001; Bruggemann and Patil 2011;
Bruggemann et al. 2014), let Q be the set of all indicators, then taken all indicators
of Q leads to a partial order, which is called PO_0. The corresponding set of linear
extensions is denoted by LE_0. Leaving out one indicator of Q, say rj, then another
partial order results, which is denoted as PO_j.

Both partial orders can be described by an adjacent matrix, say A_0 for PO_0
and A_j for PO_j.

Taken the Euclidian Distance (squared) quantifies the role of indicator qj in
PO_0. This is a sensitivity measure for the indicators of set Q, describing the
structural changes of the partial order leaving one indicator out. This is not
immediately a measure of the sensitivity of the indicators for a ranking, because
the ranking is per definition a linear order and here derived over many interim steps.

If a linear order is obtained by all orders in LE_0, the set of linear extensions
taken from PO_0, then any PO_j will also lead to a corresponding set LE_j. And
this set is the more differing from LE_0 the larger the sensitivity is. Therefore the
ranking due to averaged heights is as more affected by indicator rj as larger its
sensitivity is.

2.3.3 Indicator Conflicts – Tripartite Graphs

In order visually to display and thus better understand the role of individual
indicators for incomparisons, the concept of tripartite graph was introduced by
Bruggemann and Voigt (2011). Here an intuitive approach is presented again assum-
ing a case with three indicators. Imagine that Objx has better values (i.e. higher
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Fig. 1 Example of a tripartite graph

a b
M1 M2c

M4cM2b M6b M7b

M6aM5bM4bM4aM3b

M3a M5a

M2a M2a

M10

M7a M7c M8a M8b M8c M9 M1 M2c

M2b M6b M7b

M4a M4c M7a M7c M8a M8b M8c M9 M10

M6aM5bM4bM3b

M3a M5a

Fig. 2 Hasse diagrams resulting in simultaneous inclusion of A: indicators 1–3 and B: all
indicators

values) in comparison to Objy in the first and second indicator, but worse value
(i.e. lower value) in the third indicators. This fact can be graphically represented as
follows (Fig. 1).

Tripartite graphs may be obtained using the module antichain20_4 from the
PyHasse software package.

2.4 Software

All partial order analyses were carried out using the PyHasse software (Bruggemann
and Patil 2011; Bruggemann et al. 2014). PyHasse is programmed using the
interpreter language Python (version 2.6) (Ernesti and Kaiser 2008; Hetland 2005;
Langtangen 2008; Weigend; 2006; Python 2015). Today, the software package
contains more than 100 modules and is available upon request from the developer,
Dr. R. Bruggemann (brg_home@web.de).

3 Results and Discussion

Two attempts to partially order the 21 different methods included in the parent
evaluation were performed: A) disregarding any possible influence of the method
of activation, i.e., including only indicators 1–3, and B) including all 4 indicators.
In Fig. 2 the resulting Hasse diagrams are shown.
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Table 2 Averaged ranking of
the 21 methods for producing
activated carbon. A:
indicators 1–3 and B: all
indicators

A B
Method Rkav Rank Method Rkav Rank

M7a 2.164 1 M7a 2.725 1
M8a 2.968 2 M2c 3.369 2
M2c 3.133 3 M8a 3.927 3
M8b 4 4 M1 5.733 4.5
M1 5.364 5.5 M8c 5.733 4.5
M8c 5.364 5.5 M8b 5.85 6
M2b 6.266 7 M2b 6.738 7
M7b 6.971 8 M6b 7.933 8
M6b 7.533 9 M4c 8 9
M9 8.833 10 M9 8.833 10
M3b 10.032 11 M7b 9.267 11
M7c 11 12 M3b 10.921 12
M4c 12.85 13 M4a 11 14
M6a 16.15 14 M7c 11 14
M5b 16.588 15 M10 11 14
M4a 16.717 16 M6a 16.55 16
M3a 16.786 17 M5b 16.988 17
M4b 17.983 18 M3a 17.408 18
M10 18.913 19 M4b 18.364 19
M2a 19.581 20 M5a 19.881 20
M5a 19.731 21 M2a 19.901 21

It is immediately noted that in case A, i.e. disregarding the actual method of
activation the method M10 that is the AC production from Miscanthus straw) Abit
et al. 2019) is located at the second level (counted from the bottom) covered by
M1, M3b, M7b, M8a, M8b, and M8c, respectively, whereas M10 is not covering
any other method and is thus a minimal element. Note that the location of M10,
which is actually a minimal element, in level 2,is a result of the convention placing
the single elements as high as possible in the Hasse diagram (cf. Sect. 2.2.1). In
contrast to this it is seen that in case B, i.e. including all four indicators M10 now
appears as an isolated element that, again by convention is located at level 5.

Based on these remarks it is obvious that a more precise location of M10
relative to the other 20 methods is not possible only by inspecting the Hasse
diagrams in Fig. 2 To get a better insight in the relative ranking of the different
method we estimated (applying the module LPOMext8_3 of the PyHasse software;
Bruggemann and Carlsen 2011) the so-called averaged rank with 1 as the most
optimal method and 21 as the least – based on the included indicators (cf. Table 1).
In Table 2 the average ranking of the 21 methods corresponding to the two Hasse
diagram shown in Fig. 1 is give. The Rkav values are the calculated ranking values
that subsequently is transformed to the ‘1 – 21’ ranking.

In both cases, the production of AC from Miscanthus straw (M10) is apparently
not one of the best choices. Hence, disregarding the method of activation (Table 2A)
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Table 3 Calculated
probabilities for method M10
being ranking higher than the
other 20 methods

Comparison P

M10 > M1 0.167
M10 > M2a 0.917
M10 > M2b 0.250
M10 > M2c 0.125
M10 > M3a 0.818
M10 > M3b 0.429
M10 > M4a 0.500
M10 > M4b 0.857
M10 > M4c 0.333
M10 > M5a 0.917
M10 > M5b 0.800
M10 > M6a 0.800
M10 > M6b 0.333
M10 > M7a 0.100
M10 > M7b 0.400
M10 > M7c 0.500
M10 > M8a 0.125
M10 > M8b 0.200
M10 > M8c 0.167
M10 > M9 0.333

Table 4 Relative indicator
importance. A: indicators 1–3
and B: all indicators (cf.
Table 1)

A B
Indicator Relative importance Relative importance

TempA 0.147 0.126
Yield 0.412 0.396
Surf 0.441 0.440
MoA 0.101

we find the M10 method at rank 19, whereas applying all four indicators M10 is
found at rank 14 (Table 2B). In the latter case it must be remembered that since the
M10 is an isolated element the ranking is rather uncertain. To get a further insight
in the ranking of M10, the actual probabilities for M10 being ranked higher that the
other methods is shown in Table 3.

From Table 3 it is immediate seen that, looking at probabilities higher than 0.5,
M10 is indeed located higher than the six methods M2a. M3a, M4b, M5a, M5b,
M6a that are all located below M10 in the calculated averaged ranking (Table 2).
Hence, these data substantiate the estimated ranking of M10 to 14 is realistic.

The relative importance of the single indicators was studied applying the sensi-
tivity24_5 module of the PyHasse software (Bruggemann et al. 2001; Bruggemann
and Patil 2011) (Table 4).

It is immediately noted that in both cases the yield and the surface area are by
far the most important indicators with virtually identical importance, whereas the
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temperature of activation and, in case B the method of activation play only minor
roles.

Remaining to be discussed is the reason that M10 in case B appear as an
isolated element. This can advantageously be done applying the tripartite tool
(sepanalcoloured17_0 module of the PyHasse software; Bruggemann and Voigt
2011). The tripartite graph is a simple visualization of any indicator conflict. Thus,
in the present case the element x is the method M10 that is compared to the
remaining methods. A line from an indicator to M10 visualized that for M10 this
indicator is higher than the same indicator for the method y and vice versa. In Fig. 3
is shown the comparisons of M10 to the remaining 20 method, the comparisons
being done level wise.

It immediate seen that several indicator conflicts prevail at all 5 levels. An
important factor to be mentioned is the role of the MoA indicator that virtually in all
cases are higher for M10 than for the other methods. However, as it is obvious also
for the other indicators conflicts prevail at all levels. Thus, as an simple example is
level 1, where the indicators MoA and Yield are higher for M10 than for M2a,
whereas the indicator Surf is higher for M2a than for M10, thus constituting a
conflict and thus an incomparability.

4 Conclusions and Outlook

The importance of AC should obviously not be underestimated, since it satisfies the
needs for an adsorbent for the purification of liquid, gas and solid substances. Thus,
simple and cost-effective ways to increase the production of AC of high quality are
crucial.

In general, we can conclude that the method based on Miscanthus straw
(M10) obviously is not a specifically efficient way for producing activated carbon.
Nevertheless, the following conclusions can be drawn in favor of M10:

1. Activated carbons are prepared using plant material, which is a renewable, fast-
growing, perennial plant. This plant annually brings high biomass growth rates
(Nsanganwimana et al. 2014). Thus, the method is sustainable.

2. The material shows good sorption capacities to ions of heavy metals and
organic substances from the soil (absorption by roots) (Pidlisnyuk et al. 2014;
Reddad et al. 2003). In Kazakhstan, work is underway in the frame of an
international NATO project to clean Kazakhstan’s contaminated soils using this
plant (Nurzhanova et al. 2019). Therefore, there is a very high prospect of
growing Miscanthus, using the root system to clean the soil, and the aboveground
part of the biomass converted to activated carbon to clean water bodies. Also,
the use of the aboveground part as a cheap raw material for producing AC is
economically viable as the disposal of aboveground biomass.

3. Vast unused areas in Kazakhstan can be used for growing Miscanthus. Miscant-
hus material does not require complex pre-treatment, unlike, e, e.g., coconuts
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and apricot kernels. In addition, coconuts are not possible for use in Kazakhstan,
since there is no raw material base and as such a relatively expensive raw
material.(Antoszczyszyn and Michalska 2016).

4. Although apricot kernels and seeds of other fruit trees a priori look like
afdvantageous starting materials thiks material may secrete a large amount of
HCN. Further, as a rule, when obtaining AC from the seeds of various fruits,
chemical methods are used for activation, which is harmful both for a person
working in production and for the environment as a whole.

5. The preparation of AC from traditional raw materials such as bituminous coal,
phenol-formaldehyde resins is an economically expensive and environmentally
harmful production. This raw material is non-renewable, and its extraction is a
laborious and harmful process.

6. The use of wood as a raw material for the production of AC is a laborious process,
as it often requires grinding and chemical preparation of the raw material for
carbonization. The main task of replacing wood with more accessible material is
that a long period is needed to restore and grow large-scale forests, which are cut
down annually as a result of the widespread use of wood.

Cost-effective ACs made of new materials are supposed to find its application
in various industries, such as processes for cleaning of wastewater, air, and the
environment as a whole. Hence, despite the low ranking of the method based on
Miscanthus straw, this method should obviously not be left out of consideration.
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Uranium Trappers, a Partial Order
Study

Nancy Y. Quintero

1 Introduction

Water, soils and subsurface contamination by radionuclides as uranium (U) is a
worldwide problem (McCullough et al. 2003); over a long period, U accumulation
has led to health risks on humans and to deleterious effects on ecosystems (Prakash
et al. 2013). From the chemical point of view, U as well as other actinides, have a
pronounced tendency to form complexes with other elements (Markich 2002). For
example, one of their important features is that in acidic waters, U (VI) dissolves
and forms soluble complexes, facilitating its spread in ground waters (Markich
2002). Although U is a primordial element found in the earth crust (El-Taher et al.
2004), its long half-life, radioactive decay of their daughters and their toxicity,
even at low concentrations, have increased its potential as ecological and public
health hazards (Committee on Uranium Mining in Virginia; Committee on Earth
Resources; National Research Council. Uranium Mining in Virginia: Scientific,
Technical, Environmental, Human Health and Safety, and Regulatory Aspects of
Uranium Mining and Processing in Virginia. Washington (DC): National Academies
Press (US) 2011). Due to these reasons, the final disposal of nuclear wastes has been
a matter of concern to the International Atomic Energy Agency (IAEA), scientists
and energy companies worldwide.
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Contamination of soil and water with U from mining and tailing activities has
been extensively treated using conventional methods such as membranes tech-
nology, electrolysis, ion exchange, solvent extraction, chemical precipitation and
adsorption (Li and Zhang 2012). However, these available treatment technologies
are either not effective enough or are very expensive and inadequate especially
when treating a large amount of waste waters containing U at low concentration
(1 to 100 mg/L, concentrations commonly found in radioactive wastes from) (Li
and Zhang 2012; Volesky 2001). These facts have limited the use of these methods
at large scale (Li and Zhang 2012). Likewise, these shortcomings led to a search
for more eco-friendly approaches like biotechnological methods; these approaches
based on the use of biosorbents have emerged in the last decade as one of the most
promising cost-effective alternatives (Volesky and Holan 1995). Their advantage
relies on the ability of biosorbents, i.e., organisms such as bacteria, fungi or algae,
to trap and immobilise the metals by mechanisms such as biosorption (Fourest
and Roux 1992). These organisms have been highlighted as potential accumulators
having high U uptake capacity.

Once, biosorbents have been used, to avoid spread of radioactive biomass
with U adsorbed, it is recommended its suitable treatment for final disposal as
in the case of other nuclear wastes (Volesky 2001). The result is helping to the
process of ecosystems restoration and to recover the radioactive metals like uranium
(McCullough et al. 2003). Compared to conventional physicochemical methods
assessed taking into account influencing factors such as pH, presence or absence
of carbonates in waste waters, biosorbents are cheaper and attractive because of
their low operating cost and high efficiency (Wang and Chen 2009).

Their performance has been assessed taking into account attributes such as
pH, metal concentration in solution, biomass concentration, age of biomass, tem-
perature, percentage of metal removal, time requested for removing the metal
input and uptake capacity (Yi and Lian 2012). Because this work deals with the
biotechnological issue of determining which microorganisms could be better as U
trappers in aqueous systems, a comparison is required.

An important point for performing this task was to collect an appropriate
methodology. Due to the rapid increase of experimental information coming from
many biotechnological studies dealing with U trappers, there are many data in the
literature. Specifically, in the biosorption field of U, several studies propose the
suitability of biosorbents as U trappers (Wang and Chen 2009); nevertheless, it is
not known which are the best U bioaccumulator in aqueous solutions.

Since several attributes affect the biosorption process and they should be
simultaneously taken into account, the search of a suitable methodology turns
towards multi-criteria decision analysis methods (MCDA) (Lerche et al. 2002).
These MCDA approaches do not only collect and extract relevant information from
the pair-wise comparisons of attributes but also perform data analysis aiming to
screen, to assign priorities and to rank objects (Fattore and Bruggemann 2017).
These tasks are also in the focus of the current work, where the comparison of
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attributes characterising microorganisms should be carried out. In this regard, if the
MCDA approach considers a ranking problem, it offers the results in the form of a
total or partial ranking, which reflects that no unique ranking methodology could be
the best (Fattore and Bruggemann 2017).

In total ranking methods, the order of the objects under study implies to consider
judgements and preferences from the decision-makers and to apply weighted sums
of single attributes for obtaining composite attributes (Bruggemann and Patil 2011).
This procedure adds a certain degree of subjectivity to the ranking, because the
weights are not necessarily related to the basic data matrix, but derived from
political, ethical and some other grounds. Likewise, judgements of the decision
makers can be vague and their preferences as well weights cannot be exactly
evaluated with numerical values in practice (Bruggemann and Patil 2011). In
contrast, partial order ranking arises as an alternative approach that takes advantage
of the use of attributes without including preferences or weights (Bruggemann and
Patil 2011).

Due to the disregard of weights in attributes, partial order methods such as the
Hasse diagram technique (HDT) are more general and least subjective (Lerche et al.
2002; Bruggemann and Patil 2011). Other feature that increases the objectivity in
partial order methods, compared to other MCDA tools, is that the attribute values
keep separated without any numerical combination or aggregation (Bruggemann
and Patil 2011); this step of aggregation generally can hide valuable information
of attributes under study (Bruggemann and Patil 2011). Because of the central
concept in partial order for carrying out ranking studies is the comparison without
the addition neither subjective preferences nor judgements (Lerche et al. 2002;
Bruggemann and Patil 2011), its appropriateness as a MCDA is highlighted.
Therefore, the methodology selected for figuring out the biotechnological problem
exposed in the goal of this chapter is the partial order theory (POT), specifically the
HDT.

The HDT has been a useful approach of POT for decision support, that is
very well described in the literature (Bruggemann and Patil 2011). However, a
disadvantage is that in many cases, several optimal objects are obtained according
to the criteria used to rank objects. Then, the HDT cannot always provide a total
ordering of objects, i.e. it is not possible to know which is the best of all, a single
object, which is the second best, and so on (Bruggemann and Patil 2011) as in
total ranking methods. If decision-makers want to know the best (or worst), this
means necessarily a single object, and then, ranking methods are required. Useful
approaches to generate rankings based on the HDT have been proposed in the
literature; herein two ranking methods were selected: local partial order model
(LPOM0) (Bruggemann and Carlsen 2011) and extended local partial order model
(LPOMext) (Bruggemann et al. 2004).
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2 Materials and Methods

2.1 Data

The objects to be ranked are 83 microorganisms with potential as U trappers. They
are characterised by three attributes according to (Quintero et al. 2017). These
attributes are: U uptake capacity, UC, percentage of U removal (%M) and time
requested for removing the U input, t (Bruggemann et al. 2004). Table 1 shows
the attributes of 83 microorganisms used in the current study (Quintero et al. 2018);
this table includes the 38 prokaryotes studied by (Quintero et al. 2017).

2.2 Methodology Selected in the Current Study

Given a finite set of microorganisms it is posible to define partial order relations
among them in several ways, whence partial order theory has become a powerful
technique in many fields, including the biotechnological one as in the current case
(Quintero et al. 2017).

2.2.1 Hasse Diagram Technique

Here, we only give a short description, for more details see (Bruggemann and Patil
2011; Bruggemann and Halfon 1999).

A Hasse diagram (HD) is a visual representation of a partially ordered set (poset)
underlying the objects and their attributes. If X is the set gathering the microor-
ganisms with potential as U trappers and each microorganism x is characterised by
attributes q, it is possible to order these microorganisms by ordering their atributes
(Bruggemann and Patil 2011).

Hence, if it is established that qi(x) ≤ qi(y), for all i with x, y ∈ X, then x� y. This
also holds if at least for one attribute qj(x) < qj(y), while for all others q(x) = q(y).
The � relation is a binary relation meeting: x � x; if x � y and y � x⇒ x = y; and
if x � y and y � z ⇒ x � z; i.e. � is reflexive, antisymmetric and transitive, which
makes, � an order relation (Trotter 1992).

Any two microorganisms x, y are said to be comparable whenever x� y or y� x,
otherwise they are incomparable (Bruggemann and Patil 2011). The HD shows those
comparabilities that cannot be obtained from others, i.e. those that are not obtained
by transitivities and it constitutes a map of order relationships for the objects. In the
HD, if a sequence of lines is connecting two microorganisms strictly either in the
upward or the downward direction, the microorganisms are considered comparable,
otherwise, they are incomparable (Bruggemann and Patil 2011).

From the HD, several sets can be derived (Bruggemann and Carlsen 2011;
Bruggemann et al. 2004):
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Table 1 Attributes of 83 microorganisms used in U removal (Quintero et al. 2018)

Label Microorganisms

Percentage
of U
removal
[%U]

Uptake
capacity (mg
U/g biomass
dry weight)
[UC]

Time
requested for
removing
uranium input
(h) [t] References

1 Actinomyces
flavoviridis
HUT 6147

41 78.06 1 Nakajima and
Sakagushi
(1986)

2 Actinomyces
levoris HUT
6156

96.05 45.47 1 Horikoshi et al.
(1981)

3 Anabaena
torulosa

48 56 0.5 Acharya et al.
(2012)

4 Arthrobacter
cireus IAM
1660a

2.7 6.66 1 Nakajima and
Tsuruta (2004)

5 Arthrobacter
cireus IAM
12341a

17.1 13.6 1 Nakajima and
Tsuruta (2004)

6 Arthrobacter
nicotianae
IAM 12342a

86.7 68.8 1 Nakajima and
Tsuruta (2004)

7 Arthrobacter
sp. US-10

>90 23.54 1 Nakajima and
Tsuruta (2004)

8 Arthrobacter
simplex IAM
1660

30.63 58.31 1 Tsuruta (2007)

9 Citrobacter
freudii IAM
12471a

21.3 16.9 1 Nakajima and
Tsuruta (2004)

10 Citrobacter
N14

>90 91 17 Kulkarni et al.
(2013)

11 Bacillus badius
IAM 11059

71.86 31.12 1 Horikoshi et al.
(1981)

12 Bacillus cereus
AHU 1030

89.62 30.7 1 Horikoshi et al.
(1981)

13 Bacillus cereus
AHU 1355

87.84 30.28 1 Horikoshi et al.
(1981)

14 Bacillus cereus
AHU 1356

87.39 27.92 1 Horikoshi et al.
(1981)

15 Bacillus cereus
IAM 1656

20.13 38.32 1 Nakajima and
Sakagushi
(1986)

16 Bacillus
stearother-
mophilus IAM
11062

71.70 32.72 1 Horikoshi et al.
(1981)

(continued)
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Table 1 (continued)

Label Microorganisms

Percentage
of U
removal
[%U]

Uptake
capacity (mg
U/g biomass
dry weight)
[UC]

Time
requested for
removing
uranium input
(h) [t] References

17 Bacillus
subtilis AHU
1219

70.94 36.33 1 Horikoshi et al.
(1981)

18 Bacillus
subtilis AHU
1390

74.31 52.81 1 Horikoshi et al.
(1981)

19 Bacillus
subtilis IAM
11062

97.91 48.94 1 Horikoshi et al.
(1981)

20 Bacillus
thuringiensis
IAM 11064

46.37 37.04 1 Horikoshi et al.
(1981)

21 Bacillus
licheniformis
IAM111054a

57.9 45.9 1 Nakajima and
Tsuruta (2004)

22 Bacillus
licheniformis
ATCC 14580a

90.9 85 1 Yi and Yao
(2012)

23 Bacillus
megaterium
IAM1166a

47.7 37.8 1 Nakajima and
Tsuruta (2004)

24 Bacillus
mucilaginosus
ACCC 10012a

87.5 172 1 Yi and Lian
(2012)

25 Bacillus sp.
US-9

>90 23.72 1 Tsuruta (2004)

26 Bacillus
subtilis
IAM1026a

66 52.4 1 Nakajima and
Tsuruta (2004)

27 Brevibacterium
helvolum IAM
1637

6.38 12.14 1 Nakajima and
Sakagushi
(1986)

28 Corynebacterium
equi IAM1038
(Rhodococcus
equi)a

27 21.4 1 Nakajima and
Tsuruta (2004)

29 Corynebacterium
glutamicum
IAM 12435a

7.5 5.9 1 Nakajima and
Tsuruta (2004)

30 Deinococcus
-PhoN

>90 214 8 Kulkarni et al.
(2013)

(continued)
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Table 1 (continued)

Label Microorganisms

Percentage
of U
removal
[%U]

Uptake
capacity (mg
U/g biomass
dry weight)
[UC]

Time
requested for
removing
uranium input
(h) [t] References

31 Deinococcus
proteolyticus
IAM 12141

14.38 27.37 1 Nakajima and
Sakagushi
(1986)

32 Deinococcus
radiodurans
DrPhoN

85 202.3 6 Appukuttan
et al. (2011)

33 Enterobacter
aerogenes
IAM 1183

20.75 39.51 1 Nakajima and
Sakagushi
(1986)

34 Erwinia
herbicola IAM
1562

16.25 30.94 1 Nakajima and
Sakagushi
(1986)

35 Escherichia
coli IAM
1268a

4.5 17.61 1 Nakajima and
Tsuruta (2004)

36 Escherichia
coli AHU 1520

94.71 22.59 1 Horikoshi et al.
(1981)

37 Micrococcus
luteus IAM
1056a

48.9 38.8 1 Nakajima and
Tsuruta (2004)

38 Micrococcus
varians IAM
13594a

4.5 3.57 1 Nakajima and
Tsuruta (2004)

39 Micromonospora
chalcea KCCA
0124

27.75 52.84 1 Choudary and
Sar (2011)

40 Myxococcus
xanthus
C.E.C.T. 422

4.8 4.8 1 González-
Muñoz et al.
(1997)

41 Nocardia
erythropolis
IAM 1399a

64.5 51.2 1 Nakajima and
Tsuruta (2004)

42 Pseudomonas
fluorescens
IAM 12022a

26.7 21.18 1 Nakajima and
Tsuruta (2004)

43 Pseudomonas
aeruginosa
IAM 1054a

39.9 31.65 1 Nakajima and
Tsuruta (2004)

44 Pseudomonas
aeruginosa
J007

99 275 6 Choudary and
Sar (2011)

(continued)
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Table 1 (continued)

Label Microorganisms

Percentage
of U
removal
[%U]

Uptake
capacity (mg
U/g biomass
dry weight)
[UC]

Time
requested for
removing
uranium input
(h) [t] References

45 Pseudomonas
aeruginosa
IAM 1095

35 66.64 1 Nakajima and
Sakagushi
(1986)

46 Pseudomonas
radiola IAM
12098

7.5 14.28 1 Nakajima and
Sakagushi
(1986)

47 Pseudomonas
saccharophilia
IAM 1504

47.75 87.11 1 Nakajima and
Sakagushi
(1986)

48 Pseudomonas
sp. EPS-5028

>90 55 1 Marqués et al.
(1991)

49 Pseudomonas
stutzeri IAM
12097a

44.1 34.99 1 Nakajima and
Tsuruta (2004)

50 Pseudomonas
MGF-48

86 174 0.083 Malekzadeh
et al. (2002)

51 Serratia
marcescens
IAM 1022

19.75 37.6 1 Nakajima and
Sakagushi
(1986)

52 Streptomyces
albidoflavus
HUT 6129

89.91 48.38 1 Horikoshi et al.
(1981)

53 Streptomyces
albidus HUT
6129

88.44 40.03 1 Horikoshi et al.
(1981)

54 Streptomyces
albosporeus
HUT 6130

79.85 38.84 1 Horikoshi et al.
(1981)

55 Streptomyces
albus HUT
6132

92.32 27.49 1 Horikoshi et al.
(1981)

56 Streptomyces
albus HUT
6047

45.88 v87.35 1 Nakajima and
Sakagushi
(1986)

57 Streptomyces
albogriseolus
HUT 6054

59.11 46.89 1 Nakajima and
Tsuruta (2002)

58 Streptomyces
antibioticus
HUT 6137

84.66 55.69 1 Horikoshi et al.
(1981)

(continued)
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Table 1 (continued)

Label Microorganisms

Percentage
of U
removal
[%U]

Uptake
capacity (mg
U/g biomass
dry weight)
[UC]

Time
requested for
removing
uranium input
(h) [t] References

59 Streptomyces
chartreusis
HUT 6140

92.26 38.18 1 Horikoshi et al.
(1981)

60 Streptomyces
cinereoruber
HUT 6142

24.25 46.17 1 Horikoshi et al.
(1981)

61 Streptomyces
echinatus HUT
6090

42.88 81.63 1 Nakajima and
Sakagushi
(1986)

62 Streptomyces
flavoviridis
HUT 6147

77.70 61.64 1 Nakajima and
Tsuruta (2002)

63 Streptomyces
fradie HUT
6054

48.90 38.79 1 Nakajima and
Sakagushi
(1986)

64 Streptomyces
griseoflavus
HUT 6153

50.70 40.22 1 Nakajima and
Sakagushi
(1986)

65 Streptomyces
griseolus HUT
6099

31.88 60.69 1 Nakajima and
Sakagushi
(1986)

66 Streptomyces
hiroshimensis
HUT 6033

22.50 17.85 1 Nakajima and
Sakagushi
(1986)

67 Streptomyces
levorisa

57 90.44 1 Tsuruta (2004)

68 Streptomyces
lilacinofulvus
HUT 6210

9.13 17.37 1 Nakajima and
Sakagushi
(1986)

69 Streptomyces
novaecae-
sareae HUT
6158

71.73 45.55 1 Horikoshi et al.
(1981)

70 Streptomyces
obiraceus HUT
6061

39.63 75.45 1 Nakajima and
Sakagushi
(1986)

71 Streptomyces
olivaceus HUT
6061

66 52.36 1 Nakajima and
Tsuruta (2002)

72 Streptomyces
sp.

60 214.2 0.33 Golab et al.
(1991)

73 Synechococcus
elongatus
BDU 75042

72 53.5 1 Acharya et al.
(2009)

(continued)
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Table 1 (continued)

Label Microorganisms

Percentage
of U
removal
[%U]

Uptake
capacity (mg
U/g biomass
dry weight)
[UC]

Time
requested for
removing
uranium input
(h) [t] References

74 Thiobacillus
novellus
IAM12110a

11.1 11.66 1 Nakajima and
Tsuruta (2004)

75 Sphingomonas
sp. Strain
BSAR-1

>90 306 6–7 Kulkarni et al.
(2013)

76 Paenibacillus
sp. JG-TB8

32 77.1 1 Reitz et al.
(2014)

77 Sulfolobus
acidocaldarius
DMS 639a

9.24 17 1 Reitz et al.
(2010)

78 Streptomyces
violaceus HUT
6164a

80.24 28.27 1 Horikoshi et al.
(1981)

79 Streptomyces
viridochromo-
genes HUT
6031a

38 72.35 1 Nakajima and
Sakagushi
(1986)

80 Streptomyces
viridochromo-
genes HUT
6166a

83.68 23.35 1 Horikoshi et al.
(1981)

81 Streptomyces
viridochromo-
genes HUT
6167a

99.43 20.19 1 Horikoshi et al.
(1981)

82 Thiobacillus
novellus IFO
12443a

25.13 47.84 1 Nakajima and
Tsuruta (2004)

83 Zoogloea
ramigera IAM
12136a

37.35 71.88 1 Nakajima and
Sakagushi
(1986)

a%U values were calculated from data given by authors (see supplementary data in Quintero et al.
2017)

F(x), the up set: F(x) = {y ∈ X : y � x}. i.e. F(x) gathers those objects that are
comparable to x and are located above x.

O(x),the down set: O(x) = {y ∈ X : y � x}. O(x) gathers those comparable objects to
x, which are depicted below x.

P(x), the predecessors set: P(x) = F(x) − {x}.
S(x), the successors set: S(x) = O(x) − {x}
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I(x), the set of incomparable with x: I(x) = {y ∈ X : x ‖ y} I(x). When for the objects
x, y it is valid that q(x) � q(y) and q(x) � q(y), then x and y are incomparable
(x‖y).

C(x),the set of comparable with x that is given by: C(x) – {y ∈ X : x � y or y � x}.
When for the microorganisms x, y it is valid that q(x) � q(y) or q(x) � q(y), then
x and y are comparable (x⊥y).

The objects located at the top of the HD that have no predecessors in a poset are
called maximal objects and which have no successors are called minimal objects
(Bruggemann and Patil 2011). In PyHasse software, minimal objects are located
near the bottom of the drawing plane.

A special case arises when a HD contains two or more pieces called components.
A component of a poset (X, �) is a local poset (C(Xi),�) of (X, �) (Patil and Taillie
2004).

For y ∈ X,given a poset (X, �), if Xi ⊆ X, then C(Xi) = {y : y ⊥ x, x ∈ Xi}.
Components partition the poset into disjoint subsets such that, if x is an arbitrary
member of one component and y is an arbitrary member of a different component,
then x ‖ y (Bruggemann and Patil 2011).

A poset (X, �) is called a weak order if � is transitive and meets linearity. Hence,
the difference between weak and total order is that the former is not antisymmetric
but the latter is Quintero et al. (Quintero et al. 2018).

Likewise, a ranking of X is a two-step procedure where (1) a weak order is found
for X and (2) an ordinal (rank) is assigned to each object of X (Quintero et al.
2018). To assess �, the attributes need to be rightly oriented in such a way that,
for example, high values indicate similar ranking aims (common monotonicity)
(Bruggemann and Patil 2011). Further conventions to draw a Hasse diagram are
found in (Bruggemann and Patil 2011; Bruggemann and Halfon 1999).

2.2.2 Ranking Methodologies

Applying HDT on a set under study, a linear order or ranking of objects may not
be directly found; one way to overcome this issue is to determine the so-called
average heights from the concept of linear extensions (De Loof et al. 2011): A linear
order derived from a poset, preserving all its order relations is a linear extension
(Bruggemann and Patil 2011); the sequence of objects due to a linear extension is
described by their values of height; the object at the bottom of a linear extension has
height = 1, the next, height = 2, and so on (Bruggemann and Patil 2011).

The number of linear extensions suggests how complex is the poset and how
many pairs of objects are incomparable. The calculation of average heights is
of interest because, once estimated, a weak order (tied ranks are not excluded)
can be derived (Bruggemann and Annoni 2014). Therefore, average heights are
often called average ranks (rkavs). But, the direct calculation of these average
heights by counting the heights of objects in each linear extension is most often
computationally intractable (Brightwell and Winkler 1991); the reason is because
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the number of linear extensions in a poset grows with the factorial of the number of
ways of ordering incomparable objects in a poset (Bruggemann et al. 2014). Then,
other methods or approximations are needed (Bruggemann and Annoni 2014). In
this study, two approximations for calculating average ranks of each object in study
have been applied, i.e. local partial order models (LPOM) (Bruggemann and Carlsen
2011; Bruggemann et al. 2004).

2.3 Software

The calculations described in this chapter are performed using the software PyHasse
(Bruggemann et al. 2014).

3 Application of Partial Order Theory to Data Matrix
in Study

3.1 Orientation of Attributes

In the current study, it was set up that the orientation follows the criterion that large
attribute values indicate better recovery of U, than lower one (Quintero et al. 2017).
Hence, from the original data, %M and UC were already rightly oriented, while t
required reorientation. The reason was that the larger the time for U trapping the
more undesirable for ranking by biotechnological reasons (Quintero et al. 2017).

At this last point, it is more efficient an organism trapping U in short time
compared to another spending a larger time (Quintero et al. 2017). In this regard,
in the set X gathering 83 microorganisms with potential as U trapping, it was
needed that organisms requiring less time had high values of the reoriented attribute
(Quintero et al. 2018). Then, t was multiplied by −1 and the maximum t value
added to obtain positive values of the reoriented time, eff in this study (Quintero et
al. 2018) (Quintero et al. 2017).

3.2 Hasse Diagram

Table 1 (Quintero et al. 2018) shows the presence of values not clearly defined
for %U and eff for some microorganisms, namely 7, 10, 25, 30, 48 and 75. These
microorganisms have intervals in attributes %U and eff. With the aim of studying
microorganisms having interval attributes, in (Quintero et al. 2017) it was devised a
set of hypothetical microorganisms. Likewise, it was explored how different interval
values affected their order relationships through the HDT. From Quintero et al.



Uranium Trappers, a Partial Order Study 193

(2017), it was shown that the arbitrary selection of attributes within intervals led to
drawing different conclusions as if other arbitrary selection within the interval were
made. According to (Quintero et al. 2017), in the current study, microorganisms
having %U> 90 and 0 ≤eff≤ 1 were set up to %U= 90.5 and eff= 1. The
corresponding HD is shown in Fig. 1 (Quintero et al. 2018).

At the top of the HD shown in Fig. 1 (Quintero et al. 2018), eight maximal objects
(microorganisms) are found; the numbers in parenthesis represent the labels in the
HD:

Bacillus subtilis IAM 11062 (19)
Bacillus licheniformis ATCC 14580 (22)
Bacillus mucilaginosus ACCC 10012 (24)
Pseudomonas aeruginosa J007 (44)
Pseudomonas MGF-48 (50)
Streptomyces sp. (72)
Sphingomonas sp. BSAR-1 (75) and,
Streptomyces viridochromogenes HUT 6167 (81).

Likewise, four minimal objects (microorganisms) are shown at the bottom of HD
(Fig. 1); they are:

Arthrobacter cireus IAM 1660 (4)
Citrobacter N14 (10)
Deinococcus radiodurans DrPhoN (32)
Micrococcus varians IAM 13594 (38)

Fig. 1 Hasse Diagram of 83 microorganisms with potential for U trapping. Left side: component
with 78 microorganisms performing the U biosorption process in a time ≤1 h; right side:
component with 5 microorganisms characterised by performing the U removal in a long time (>
6 h). Reprinted from Quintero et al. (Quintero et al. 2018)
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A special comment arises here, related to two minimal microorganisms labelled
10 and 32; these species are genetically modified (Kulkarni et al. 2013; Appukuttan
et al. 2011). As expected from this biotechnological feature, they might have a
good U trapping potential due to their engineered cellular systems. However, their
positions as minimal microorganisms show that further studies are required for
improving their U uptake abilities in aqueous solution (Quintero et al. 2017).

3.3 Average Ranks Obtained from the Application of Ranking
Methodologies

LPOM0 and LPOMext ranking methods were applied to the microorganisms and
their attributes; the results are summarised in Table 2 (reprinted from Quintero
et al. 2018). Rank 1 means sought microorganisms and higher ranks less preferred
microorganisms. Note that information for the last ranks is not available, for there
are microorganisms having the same rank due to ties. These cases are highlighted
with an asterisk (Quintero et al. 2017, 2018). Likewise, in the columns showing
the average ranks for each ranking method, it is also included the label of each
microorganism in parenthesis.

Average ranks calculated by LPOM0 and LPOMext can be pretty different; as
a token of that, in Table 2 (Quintero et al. 2018) is shown that microorganisms
labelled 1, 9, 13, 25, 39, 83 and other ones differ in average ranks values calculated
by these two methods. In LPOM0, the number of all microorganisms under study
(X), the number of successors of x, (|S(x)|) and the number of incomparable objects
of x, I(x), are considered (Bruggemann and Carlsen 2011). Furthermore, in LPOM0
microorganisms y incomparable with a certain microorganism x are supposed
isolated (Bruggemann and Carlsen 2011). As seen, it is a simple method given
its mathematical structure that ignores connections between some objects in the
poset (Bruggemann et al. 2004). In contrast, LPOMext does consider connections
among microorganisms and for each microorganism y ∈ I(x), it is checked how
many positions are accessible above and below x (Bruggemann et al. 2004).

4 Results and Discussion

4.1 Mathematical Interpretation from the HD and Average
Ranks

In Fig. 1 taken from Quintero et al. (2018) the existence of two components shows
that the microorganisms located in each of them are incomparable regarding the
organisms located on the other component. This incomparability results from the
existence of attributes with very high values that do not appear in organisms of
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Table 2 Average ranks calculated by LPOM0, and LPOMext for 83 microorganisms with
potential for U trapping

Rank
Microorganism
label

Average ranks, rkavs
(microorganism label)

LPOM0 LPOMext LPOM0 LPOMext

1 22 22 82.73(22) 82.38(22)
2 24 24 82.64(24) 81.99(24)
3 50 50 82.62(50) 81.85(50)
4 19 19 82.35(19) 81.33(19)
5 72 72 82.21(72) 80.51(72)
6 48 48 80.89(48) 79.79(48)
7 2 2 80.27(2) 77.92(2)
8 6 6 79.24(6) 77.71(6)
9 81 67 78.40(81) 74.61(67)
10 59 52 77.00(59) 73.62(52)
11 52 62 76.85(52) 73.50(62)
12 67 58 76.70(67) 73.41(58)
13 3 59 75.87(3) 71.50 59)
14 58 47 75.60(58) 70.41(47)
15 62 56 75.43(62) 69.82(56)
16 47 44,75a 74.00(47) 66.9(44,75)
17 56 73 73.50(56) 66.85 73)
18 55 18 73.04(55) 66.37 (18)
19 53 53 71.71(53) 66.00(53)
20 36 3 70.74(36) 64.40(3)
21 73 61 70.00(73) 63.76(61)
22 18 55 69.70(18) 61.15(55)
23 61 1 67.61(61) 60.50 (1)
24 44,75a 26 67.20(44,75) 60.17(26)
25 1 71 65.56(1) 57.07 (71)
26 26 70 64.91(26) 55.75(70)
27 12,71a 12 63.00(12,71) 54.26(12)
28 70 54 62.46(70) 54.16(54)
29 41 69 61.09(41) 54.05(69)
30 54 41 60.90(54) 53.96(41)
31 76 79 60.67(76) 52.04 (79)
32 25 81 60.48(25) 52.02(81)
33 79 76 60.31(79) 50.06(76)
34 69 57 60.00(69) 48.81(57)
35 83 83 58.15(83) 48.34 (83)
36 13 13,25a 57.93(13) 45.72(13,25)
37 7 21 57.12(7) 45.28(21)
38 57 36 54.78(57) 44.71(36)
39 45 45 54.60(45) 44.25(45)
40 21 64 52.27(21) 40.96(64)
41 14 65 52.14(14) 39.64(65)

(continued)
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Table 2 (continued)

Rank
Microorganism
label

Average ranks, rkavs
(microorganism label)

42 65 37 50.00(65) 37.02(37)
43 8 7 48.00(8) 36.92(7)
44 64 8 47.25(64) 36.53(8)
45 78 14 46.06(78) 35.24(14)
46 17 17 45.40(17) 34.87(17)
47 11 63 44.47(11) 34.58(63)
48 16 30 44.33(16) 33.87(30)
49 37 16 42.86(37) 32.80(16)
50 39 39 42.00(39) 32.61(39)
51 63 11 41.14(63) 31.59(11)
52 80 23 39.53(80) 30.80(23)
53 23 78 36.24(23) 29.33(78)
54 20,30,82a 82 33.60(20,30,82) 28.71(82)
55 60 20 31.29(60) 27.84(20)
56 49 60 30.69(49) 26.07(60)
57 43 49 27.49 43) 24.95(49)
58 33 80 24.89(33) 24.47(80)
59 15 33 22.10(15) 22.90(33)
60 32 43 21.00(32) 22.33(43)
61 51 32 19.93(51) 21.50 (32)
62 28 15 17.75(28) 20.30 15)
63 10 51 16.80(10) 17.99(51)
64 42 28 16.563(42) 17.61(28)
65 34 10 15.75(34) 16.93(10)
66 66 42 14.76(66) 16.15(42)
67 31 34 13.39(31) 15.50(34)
68 9 66 10.65(9) 14.60(66)
69 5 31 8.055(5) 13.47(31)
70 68,77a 9 7.946(68,77) 12.44(9)
71 46 68,77a 6.632(46) 10.10 (68,77)
72 74 5 5.676(74) 10.01(5)
73 27 46 4.421(27) 7.461(46)
74 35 35 3.600(35) 7.440(35)
75 29 74 3.316(29) 7.338(74)
76 40 27 2.182(40) 5.380(27)
77 4 29 1.105(4) 4.503(29)
78 38 40 1.077(38) 2.730(40)
79 – 4 – 2.149(4)
80 – 38 – 1.314(38)
81 – – – –
82 – – – –
83 – – –

Reprinted from Quintero et al. (2018)
aMicroorganisms having the same average rank, therefore equal rank (Quintero et al. 2018)
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the other component. Microorganisms isolated in the component on the right (five
microorganisms) are characterised by performing the biosorption process in a very
long time greater than 6 hours, whereas the microorganisms in the component on
the left, trap U in 1 h or less than 1 h as in the case of bacteria 3, 50 and 72 whose
U removal time is equal to 0.5, 0.083 and 0.33 h, respectively.

In the HD shown in Fig. 1 (Quintero et al. 2018), the maximal microorganisms
are located at the top (19, 22, 24, 44, 50, 72, 81) whereas minimal microorganisms
(4, 10, 32, 38) are located at the bottom; maximal and minimal ones correspond to
the best and the least suitable microorganisms for U removal respectively. Figure 1
(Quintero et al. 2018) also shows that by the simultaneous consideration of %U,
UC and eff it is not possible to find a single best microorganism in the set under
study. Instead, several microorganisms are found as maximal ones. A top eight
microorganisms are found applying LPOM-methods (Quintero et al. 2018); both
ranking methodologies are coincident in the first eight positions, they are from the
first to the eighth:

Bacillus licheniformis ATCC 14580 (22)
Bacillus mucilaginosus ACCC 10012 (24)
Pseudomonas MGF-48(50)
Bacillus subtilis IAM 11062 (19)
Streptomyces sp. (72)
Pseudomonas sp. EPS-5028 (48)
Actinomyces levoris HUT 6156 (2)
Arthrobacter nicotianae IAM 12342 (6)

Numbers in parenthesis represent the label in the HD (Fig. 1) (Quintero et al.
2018).

Because of the presence of some ties, i.e., same values in average ranks for some
microorganisms, the last ranks are not available in Table 2 (Quintero et al. 2018).
These results show that the microorganism 22 (Bacillus licheniformis ATCC 14580)
is the best U trapper. It belongs to the maximal microorganisms (Fig. 1). If the
maximal microorganisms in Fig. 1 are inspected, five out of eight are considered as
well as good U trappers according to the top eight obtained from the application
of order theoretical methods; these five microorganisms are 19, 22, 24, 50 and
72 (Quintero et al. 2018). The top three microorganisms in the current study also
coincide with the results found in the study by (Quintero et al. 2017).

4.2 Biological Interpretation

From the taxonomical point of view, the top three microorganisms in the group
under study are bacteria classified in two genera, Bacillus and Pseudomonas, that
include microorganisms traditionally used as potent U biosorbents. However not all
bacteria belonging to the same genus are good U trappers from aqueous systems
(Quintero et al. 2017).
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Bacteria are generally divided into two main groups, Gram-positive and Gram-
negative, based on their Gram stain retention property; regarding the top eight of
the set of 83 microorganisms herein studied, ranks 1, 2, 4, 5, 7 and 8 correspond
to Gram-positive and ranks 3 and 6 to Gram-negative bacteria, i.e. there is no
correlation between U biosorption and Gram stain classification for these microor-
ganisms (Quintero et al. 2017; Happel 1996). However, there are other studies
showing that Gram-positives bacteria absorb more U than negative ones [Quintero
and Restrepo, 2017], for the first have 40% more binding sites for trapping metal
ions than the second ones (Borrok et al. 2005). In relation to the particular top eight
microorganisms in Table 2, the number of binding-sites for U uptake has not yet
been determined (Quintero et al. 2017).

According to the top eight shown in Table 2 (Quintero et al. 2018), different
microorganisms belonging to the same genus (Bacillus for microorganisms 1, 2 and
3 and Pseudomonas for microorganisms 3 and 6) have good U uptake capacities.
However, this ability is not joined to the genus or species; in the current study,
there are populated genera by different number of bacteria and each bacterium
is characterised by pretty different UC; some examples of these genera and the
number of bacteria studied belonging to these genera, respectively are Bacillus (16);
Pseudomonas (9) and Streptomyces (25).

Likewise, strains belonging to the same species do not trap U in similar amounts,
although they share genetic similarity in the DNA (Quintero et al. 2017; Happel
1996); according to the literature, it is still not clear why these strains do not trap U
in quite similar amounts (Happel 1996). Likewise, different conditions used in the
harvesting from bacterial cultures could lead to different densities of binding sites
at the cell wall level.

Moreover, it has been proposed that bacterial growth phase and biomass pre-
treatment (including washing conditions and presence of inhibitors (Premuzic et
al. 1991) can exert some influence, i.e., if cells are in stationary or growing stage
rather than resting stage or if they have been washed with acidic solutions that could
increase their ability for trapping metal ions (Premuzic et al. 1991). Although there
is no such information for the microorganisms here studied, Pseudomonas sp. EPS-
5028 was exposed to inhibitors and its UC was increased (Marqués et al. 1991).

In addition, the nutrient composition in the growth media may influence the
bacterial growth and lead to variability in the number of functional groups onto the
cell walls (Quintero et al. 2017); additionally it has been proposed that extracellular
polymeric substances (EPS), i.e., macromolecules situated outside of cell walls
could enhance the UC, in some strains of bacteria (Ates 2015). In this study, the top
eight microorganisms were cultured in different nutrient solutions, being difficult
to assess the influence of EPS in their high efficiency as U trappers (Quintero
et al. 2017). However, the two first bacteria in Table 2 (Quintero et al. 2018), B.
licheniformis and B. mucilaginosus secrete EPS or capsules made of extracellular
polysaccharides (Yi and Lian 2012; Yi and Yao 2012). Still, additional work at the
molecular level is needed to understand the chemical properties responsible for the
specificity of the cell wall U interactions found in bacteria (Borrok et al. 2005).
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5 Conclusions

From the biotechnological point of view, it is important to remark that the results
of the application of ranking methodologies and the relations among attributes are
based on the set of 83 microorganisms collected and on the kind of attributes con-
sidered. The presence of two components in the HD evidences the incomparability
among the microorganisms: In the rightward component, 5 microorganisms are
characterised by high values in UC and time for removing U input (t ≥ 6 h, i.e.
low eff ), whereas 78 microorganisms in the leftward component evidenced relative
low values in UC and their time for the U removal is ≤ 1 h (i.e., high eff ).

From the application of order theoretical methods, the ordering of 83 microor-
ganisms is shown, being the best one Bacillus licheniformis ATCC 14580 [Quintero
et al. 2017; Quintero et al. 2018]. Although the two ranking approaches yielded
similar results, some ties between the two rankings are found. These ties can be
gathered in equivalence classes as follows: four in LPMO, i.e. [44,75], [12,71],
[20,30,82] and [68,77] and three equivalence classes in the case of LPOMext,
namely [44,75],[13,25] and [68,77].

Regarding partial order, the results could be eminently broadened, if the density
of active sites for U trapping in cell walls of microorganisms could be included as
an attribute in the data matrix. However, until now this information is not available.

From the biological point of view, it has been found that a high uranium
uptake capacity associated to the microorganisms studied does not depend upon
the taxonomic hierarchy, e.g., species, genera or phyla, even strains in the same
species show different ability for U biosorption (Quintero et al. 2017; Happel 1996).
Differences in U uptake capacities may be joined to specific genetic traits of each
microorganism expressed in its chemical composition and in the number of binding
sites for trapping U cations in the cell walls (Borrok et al. 2005).

As an outlook, the following biotechnological perspectives can be desirable:

– The suitability of the U trappers proposed in the current study could be further
tested in studies combining batch experiments at the wet lab.

– Although the extrapolation of knowledge from the laboratory scale to industrial
application has been a slow process, if an industrial application of the optimal
microorganisms here reported is sought for, other features need to be studied,
e.g. economical ones. This would allow obtaining an estimation of the overall
cost of the sorbent and biosorption process to treat large volumes of waste waters
with low U concentrations in nuclear facilities.

– In addition to the aforementioned suggestions, a step towards the practical
application is to study the adsorption equilibria supplemented with adsorption
kinetics. Due to the economic importance of recovering U from the biomasses,
it is recommended to carry out studies focused on the separation of this
actinide from the biomass. Likewise, it is proposed to assess the reuse of the
microorganisms through adsorption-desorption cycles for improving the benefit-
cost relation inherent to the process at industrial scale.
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Finally, we hope this chapter, besides serving as a preliminary step towards
the potential application of microorganisms for removing U input in aqueous
systems, shows the methodological advantages of partial order in bioremediation, a
promising biotechnological field with many data coming from experiments dealing
with U trappers.
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There Is No Such Thing as a Free Lunch!
Who Is Paying for Our Happiness?

Lars Carlsen

1 Introduction

In a report published by the Danish Ministry of Environment (HRI 2012) it is stated
that “it is no longer possible to imagine a future where the pursuit of happiness is not
somehow connected to sustainability. As the human species continues its quest for
happiness and well-being, more emphasis must be placed on sustainability and the
interaction between sustainability and happiness” and further “there is a growing
awareness of how sustainability and happiness can go hand-in-hand”. However,
the term happiness is not uniquely defined and a somewhat broad definition could
be “the experience of joy, contentment, or positive well-being, combined with a
sense that one’s life is good, meaningful, and worthwhile” (Lyubomirsky 2008). A
more well-defined and structured index for happiness has been reported based on
seven indicators (HI 2016, 2017, 2018):

1. GDP per capita is in terms of Purchasing Power Parity (GPD)
2. Social support (or having someone to count on in times of trouble) (SocSup)
3. The time series of healthy life expectancy at birth (LifeExp)
4. Freedom to make life choices (FreeCho)
5. Generosity (Gener)
6. Perceptions of corruption (PerCor)
7. The country’s own perception of doing better or worse than the hypothetical

country Dystopia (Dys)

In a recent study, comprising the 157 countries included in the World Happiness
Index study (HI 2016) these indicators were analyzed (Carlsen 2018) applying
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partial ordering techniques, disclosing, among other features that on an average
basis the following 10 countries were found as the happiest countries: Iceland, Aus-
tralia, Switzerland, Norway, New Zealand, Denmark, the Netherlands, Finland and
Austria, whereas the bottom of the list displays Madagascar, Congo (Brazzaville),
Egypt, Benin, Chad, Gabon, Burundi, Angola, Armenia and Yemen as the least
happy countries, results that is somewhat different from the original study where
the index is generated by a simple arithmetic aggregation of the 7 indicator values
(HI 2016, 2017, 2018).

In today’s world nothing is free, so the obvious question that arises is now: who
is paying for our happiness? To some extent a study of the Happy Planet Index,
which is focused on sustainable wellbeing for all and is based on 4 indicators, i.e.,
experienced wellbeing (EWB), life expectancy (LEX), inequality of outcomes (IoO)
and the ecological footprint (EFP) (Jeffrey et al. 2016) may give some answers.

The present study focus on answering the above question by partial order
analyses of the World Happiness Index and the Happy Planet index in parallel.

2 Methodology

The present paper describes how selected partial order tools may be applied in
the evaluation of a series of countries taking several indicators simultaneously into
account as an alternative to conventional methods to study MIS (Bruggemann and
Carlsen 2012).

2.1 The Basic Equation of Partial Ordering

In its basis partial ordering appears pretty simple as the only mathematical relation
among the objects is “≤” (Bruggemann and Carlsen 2006a, b Bruggemann and
Patil 2011). The basis for a comparison of objects, here countries, characterized
by the subset of indicators describing their performance in relation a) to happiness
as well as b) to the planetary ‘happiness’ (vide infra). This series of indicators, rj,
characterizes the single countries. Thus, characterizing one country (x) by a set of
indicators rj(x), j = 1,...,m, where m is the number of indicators, can be compared
to another country (y), characterized by the indicators rj(y), when

rj (y) ≤ rj (x) for all j = 1, . . . , m (1)

Equation 1 is a very hard and strict requirement for establishing a comparison.
It demands that all indicators of x should be better (or at least equal) than those
of y. Further, let X be the subset of countries included in the analyses, x will be
ordered higher (better) than y, i.e., x > y, if at least one of the indicator values for
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x is higher than the corresponding indicator value for y and no indicator for x is
lower than the corresponding indicator value for y. On the other hand, if rj(x) > rj(y)
for some indicator j and ri(x) < ri(y) for some other indicator i, x and y will be
called incomparable (notation: x || y) expressing the mathematical contradiction
due to conflicting indicator values. A set of mutual incomparable objects is called
an antichain. When all indicator values for x are equal to the corresponding indicator
values for y, i.e., rj(x) = rj(y) for all j, the two objects/nations will have identical
rank and will be considered as equivalent, i.e., x ~ y. The analysis of Equation 1
results in a graph, the Hasse diagram. Hasse diagrams are unique visualizations of
the order relations due to Equation 1.

2.2 The Hasse Diagram

The Eq. 1 is the basic for the Hasse diagram technique (HDT) (Bruggemann
and Carlsen 2006a, b; Bruggemann and Patil 2011). Hasse diagrams are visual
representation of the partial order. In the Hasse diagram comparable objects are
connected by a sequence of lines (Bruggemann and Carlsen 2006a, b; Bruggemann
and Patil 2011; Bruggemann and Münzer 1993; Bruggemann and Voigt 1995, 2008).

2.3 The More Elaborate Analyses

In addition to the basic partial ordering tools some more elaborate analyses have
been used including average ranks (Bruggemann and Annoni 2014; Morton et
al. 2009; De Loof et al. 2006; Lerche et al. 2003; Bruggemann et al. 2004;
Bruggemann and Carlsen 2011) and sensitivity analysis (Bruggemann and Patil
2011; Bruggemann et al. 2014), the latter gives an insight in the relative importance
of the included indicators (Bruggemann and Patil 2011; Bruggemann et al. 2014).

The average ranking is expressed as average height from bottom (min.
Height = 1) to the top (max height = n, i.e., the maximum number of objects)
(Bruggemann and Annoni 2014). The average rank is generated by calculating all
linear order preserving sequences (set LE), the “linear extensions of the original
partial order. From LE_0 the statistical characterization for each object is obtained.
For example the characterization is calculated as the average value an object has,
taken all positions of this object within LE_0, the averaged heights. It is clear that
this procedure is computationally extremely difficult. Hence, approximations were
developed.

For the sensitivity analysis (Bruggemann and Patil 2011; Bruggemann et al.
2014), let Q be the set of all indicators, then taken all indicators of Q leads to a
partial order, which is called PO_0. The corresponding set of linear extensions is
denoted by LE_0. Leaving out one indicator of Q, say rj, then another partial order
results, which is denoted as PO_j.
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Both partial orders can be described by an adjacent matrix, say A_0 for PO_0
and A_j for PO_j.

Taken the Euclidian Distance (squared) quantifies the role of indicator qj in
PO_0. This is a sensitivity measure for the indicators of set Q, describing the
structural changes of the partial order leaving one indicator out. This is not
immediately a measure of the sensitivity of the indicators for a ranking, because
the ranking is per definition a linear order and here derived over many interim steps.

If a linear order is obtained by all orders in LE_0, the set of linear extensions
taken from PO_0, then any PO_j will also lead to a corresponding set LE_j. And
this set is the more differing from LE_0 the larger the sensitivity is. Therefore the
ranking due to averaged heights is as more affected by indicator rj as larger its
sensitivity is.

For detail information on the single tool the cited literature should be consulted
as a detailed description is outside the scope of the present paper.

2.4 Software

All partial order analyses were carried out using the PyHasse software (Bruggemann
et al. 2014). PyHasse is programmed using the interpreter language Python (version
2.6) (Ernesti and Kaiser 2008; Hetland 2005; Langtangen 2008; Weigend 2006;
Python 2015) Today, the software package contains more than 100 modules and is
available upon request from the developer, Dr. R.Bruggemann (brg_home@web.de).

2.5 Indicators

The seven indicators applied in the World Happiness Index (HI 2016, 2017, 2018)
has been stated above in the introduction.

As mentioned in the introduction, the Happy Planet Index (HPI), focussing
on sustainable wellbeing is based experienced wellbeing (EWB), life expectancy
(LEX), inequality of outcomes (IoO) and the ecological footprint (EFP), the latter
being expressed in global hectares per capital. One global hectare is the world’s
annual amount of biological production for human use and human waste assimi-
lation, per hectare of biologically productive land and fisheries. An approximate
formula for calculating HPI is given by

HPI ≈ LEX ∗ EWB ∗ IoO

EFP
(2)

The eventual calculation of HPI uses a somewhat more elaborate formula
applying ‘some technical adjustments are made to ensure that no single component
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dominates the overall score’ (Jeffrey et al. 2016), where inequality adjusted values
of LEX and EWB are used and some scaling constants are incorporated.

HPI = 0.452 ∗ ((EWBIA − 0.158) ∗ LEXIA + 3.951)

(EFP + 2.067)
(3)

The subscript IA denotes that the EWB and LEX indicators have been ‘inequality
adjusted’ for economic inequalities in the countries. For details Jeffrey et al. (2016)
and nef (2016) should consulted.

It should be noted that in order to achieve a sensible ranking picture it is
mandatory that all indicators included have the same orientation, e.g., the larger
the better. Thus, in the case of the HPI the EFP indicator will be multiplied by −1
in order to guarantee co-monotony with the EWB and LEX indicators.

2.6 Data

The data used for the analysis can be found in the appropriate cited reports (HI 2016;
Carlsen 2018; Jeffrey et al. 2016). The full set of indicators and the complete set of
countries (approx. 150) have been used for the calculations.

3 Results and Discussion

3.1 The World Happiness Index

Let us initially look at what makes us happy. Here we take the onset in the Word
Happiness Index (HI 2016, 2017, 2018). As mentioned in the introduction this index
is calculated by a simple arithmetic aggregation of the 7 indicators mentioned above.
Obviously, such an aggregation of data may lead to more or less strange results due
to compensation effects (Munda 2008), roughly speaking adding apples and oranges
getting bananas. Hence, in a recently paper (Carlsen 2018) the happiness index
was revisited applying partial order methodology, among other things to disclose
the relative importance of the seven indicators. In Fig. 1 the relative importance
of the seven indicators are depicted as calculated applying the sensitivity module
sensitivity23_1 of the PyHasse software package (Bruggemann and Patil 2011;
Bruggemann et al. 2014) on the 2016 happiness index data (HI 2016).

The result summarized in Fig. 1 has in details been discussed by Carlsen (2018),
a discussion that shall not be reproduced here. However, it is worthwhile to mention
just 3 specific indicators, i.e., GPd, Gener and Dys, respectively.

First it can be noted that in an overall evaluation of happiness money, here
expressed as the gross domestic product or more precisely as the purchasing power
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Fig. 1 Relative importance of the seven indicators used to generate the 2016 World Happiness
Index (HI 2016)

parity (PPP), apparently plays only a minor role, actually displaying the lowest
importance of the seven indicators. This is in agreement with the old myth that
‘money can’t buy you happiness’. Second it is, in the context interesting to look
at the second most important indicator is generosity (Gener). Hence, if the GDP
indicator is a measure of receiving/having it is immediately clear that to helping
others and to give is a much more important factor for our happiness as pointed
out in Acts 20:35 “It is more blessed to give than to receive”(KJBO 2016; see also
McConnell 2010).

Third, it is immediately seen the Dys indicator appears as the most important
factor in our perception of happiness. The Dys indicator reveals the single country’s
own, obviously subjective perception of doing better or worse than the hypothetical
country Dystopia, a country where it, roughly speaking, couldn’t be worse (HI 2016,
2017, 2018; Carlsen 2018). This dominance of the Dys indicator is not surprising.
It has been nice expressed by Fyodor Dostoevsky: “The greatest happiness is to
know the source of unhappiness“(Brainyquote 2001). In Table 1 the top-10 countries
based on average ranking are shown. The numbers in parentheses after the single
countries refer to the placement based on the HI for the years 2016–2018 (HI 2016,
2017, 2018; Carlsen 2018).

It can be noted (Table 1) that apart from a single case (Austria in 2016) the
Top-10 countries based on an average ranking including all seven indicators fits
reasonable well with the original HI. However, it also puts a question mark to the
annual discussion in Danish news media that we are no longer the most happy people
in the world (2017 and 2018) since Denmark based on the average ranking never
was.

A short video presentation highlighting the main finding of the study can be
found at https://www.researchsquare.com/article/rs-113102/v1.

https://www.researchsquare.com/article/rs-113102/v1
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Table 1 Top-10 countries based on average ranking of the seven Hi indexes for 2016–2018. The
number in parenthesis refer to the placement based on the HI for the years

2016 2017 2018

1 Canada (6) Switzerland (4) Switzerland (5)
2 Iceland (3) Iceland (3) Norway (2)
3 Australia (9) Norway (1) Iceland (4)
4 Switzerland (2) Canada (7) Canada (7)
5 Norway (4) Denmark (2) Finland (1)
6 New Zealand (8) New Zealand (8) Australia (10)
7 Denmark (1) Netherlands (6) Denmark (3)
8 Netherlands (7) Australia (10) Netherlands (6)
9 Finland (5) Sweden (9) New Zealand (8)
10 Austria (12) Finland (5) Sweden (9)

Table 2 Ecological footprint, inequality-adjusted life expectancy and wellbeing for the top-10
countries by the Happy Planet index

HPI Rank Country Footprint (gha/capita)
Inequality-adjusted
life expectancy

Inequality-adjusted
wellbeing

1 Costa Rica 2.84 72.62 6.79
2 Mexico 2.89 66.31 6.83
3 Colombia 1.87 63.10 5.72
4 Vanuatu 1.86 60.32 5.94
5 Vietnam 1.65 64.79 5.22
6 Panama 2.79 68.33 6.32
7 Nicaragua 1.39 63.44 4.76
8 Bangladesh 0.72 56.62 4.27
9 Thailand 2.66 66.35 5.98
10 Ecuador 2.17 64.09 5.52

3.2 The Happy Planet Index

Turning to the Happy Planet Index (HPI) a quite different picture develops. Let us
first look at the top-10 and bottom-10 countries based on the HPI (Eq. 3).

In the top-10 countries Bangladesh is surprisingly found in the top-10, i.e., at
rank 8 (Table 2). However, looking at the details (Table 2) the answer is found. Thus,
although the Inequality-adjusted life expectancy (56.62) as well as the inequality-
adjusted wellbeing indicators (4.27) are found relatively low also the ecological
footprint for Bangladesh is extremely low, i.e. 0.72, which obviously let to the high
ranking (cf. Eq. 3).

Turning to the bottom-10 countries based on HPI (Table 3) again some surprising
results are seen. In general these countries have rather low Inequality-adjusted life
expectancy and the inequality-adjusted wellbeing indicators which in combination
with low ecological footprint (cf. Eq. 3) lead to the low rank. However, 3 countries
appearing on this list (Table 5) are surprising, especially with regards to the
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Table 3 Ecological footprint, inequality-adjusted life expectancy and wellbeing for the bottom-10
countries by the Happy Planet index

HPI Rank Country Footprint (gha/capita)
Inequality-adjusted
Life expectancy

Inequality-adjusted
wellbeing

131 Burundi 0.80 33.01 3.03
132 Swaziland 2.01 31.81 4.44
133 Sierra Leone 1.24 28.18 3.98
134 Turkmenistan 5.47 48.33 5.12
135 Cote d’Ivoire 1.27 30.64 3.51
136 Mongolia 6.08 56.87 4.61
137 Benin 1.41 37.27 2.82
138 Togo 1.13 39.64 2.42
139 Luxembourg 15.82 78.97 6.70
140 Chad 1.46 27.32 3.67

ecological footprint. Thus, Turkmenistan (5.47), Mongolia (6.08) and, virtually out
of scale Luxembourg (15.82). In the case of Luxembourg it is worthwhile to mention
that one reason for the extreme ecological footprint may be sought for in the fact that
the country is rather small (2.6 km2 x 1000) and dominated by the city Luxembourg.
Hence, Luxembourg as a country may be regarded as urban area with a population
density of 231 people per square kilometer (World Bank 2017) in contrast to the
other much larger countries like, e.g., Mongolia with an area od 1564.1 km2 x 1000
and a pollution density of 2 people per square kilometer (World Bank 2017) For
these countries obviously a somewhat higher values for the Inequality-adjusted life
expectancy and the inequality-adjusted wellbeing indicators cannot compensate for
the high ecological footprint.

The data presented in Tables 2 and 3 and the associated discussion point at the
importance of the ecological footprint (EFP). This is confirmed by looking at the
relative importance of the 3 indicators, EFP, LEX and WB (Fig. 2).

Not surprisingly an average ranking differ here significantly from the simple HPI
ranking based on Eq. 3. In Tables 4 and 5 the top-10 and bottom-10 countries based
on an average ranking applying the 3 HPI indicators (see Sect. 2.5) is shown. The
original HPI calculated based on Eq. 3 is given in addition to the ecological footprint
for the single countries. For comparison the result of the average ranking for the 10
countries based on the seven Hi indicators are shown. Denmark and Luxembourg
are further included (Table 4) for comparison to the HI.

Immediately (Tables 4 and 5) is it noted that significant variations in the average
HPI ranking compared to the average HI ranking prevail.

Looking at the ecological footprint as a key factor to the HPI it appears interesting
to elucidate the variation in the average HPI ranking with a changed EFP. Using
Luxembourg as a spectacular example it is found that a reduction of the Luxembourg
EFP by 10 gha/capita moves the country from place 103 to place 39.
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Fig. 2 Relative importance
of the three indicators used to
generate the 2016 Happy
Planet Index (Jeffrey et al.
2016)
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Table 4 Top-10 countries
plus Denmark and
Luxembourg based on
average ranking of the HPI
indicators

Rkav Country HPI EFP HI (Rkav)

1 Bangladesh 8 0.72 84
2 Costa Rica 1 2.84 20
3 Pakistan 63 0.79 47
4 Norway 12 4.98 5
5 Spain 15 3.67 32
6 Colombia 3 1.87 56
7 Tajikistan 25 0.91 54
8 Philippines 20 1.1 51
9 Vietnam 5 1.65 100
10 Nicaragua 7 1.39 23
50 Denmark 32 5.51 7
103 Luxembourg 139 15.82 21

For comparison the original HPI and the ecological
footprint are given in addition to the average rank-
ing of the same countries applying the HI indicators.
All 2016 data

3.3 Including the Financial Aspect

Now, with reference to the HI, it might be of interest to including the financial
aspect. Thus, adding the Purchasing Power Parity (PPP) as a fourth indicator, PPP
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Table 5 Bottom-10
countries based on average
ranking of the HPI indicators

Rkav Country HPI EFP HI (Rkav)

131 Gabon 120 2.02 153
132 Trinidad and Tobago 130 7.92 90
133 Benin 137 1.41 151
134 Estonia 118 6.86 87
135 South Africa 128 3.31 136
136 Djibouti 127 2.19 na
137 Latvia 121 6.29 82
138 Botswana 126 3.83 130
139 Turkmenistan 134 5.47 49
140 Mongolia 136 6.08 99

For comparison the original HPI and the ecological foot-
print are given in addition to the average ranking of the
same countries applying the HI indicators. All 2016 data

Fig. 3 Relative importance
of the three original
indicators used to generate
the 2016 Happy Planet Index
plus the Purchasing Power
Parity (Jeffrey et al. 2016)
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compares different countries’ currencies through a “basket of goods” approach. In
Fig. 3 the relative indicator importance is visualized.

In excellent agreement with the HI it is seen that again the financial aspect
plays a very minor role. However, not surprisingly inclusion of the PPP indicator
does make some changes to the average HPI ranking both in the top-10 (Table 6)
and the bottom-10 (Table 7). Of the more significant changes Norway, Denmark
and Luxembourg can be mentioned (Table 6) where Norway climbs to the top
rank, whereas Denmark climbs by 17 places and Luxembourg from 103 to 73,
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Table 6 Top-10 countries
plus Denmark and
Luxembourg based on
average ranking of the
original three

HPI (Rkav) Country HPI EFP HI (Rkav)

1 Norway 12 4.98 5
2 Spain 15 3.67 32
3 Colombia 3 1.87 56
4 Pakistan 36 0.79 47
5 Philippines 20 1.1 51
6 Uruguay 14 2.91 33
7 Bangladesh 8 0.72 84
8 Palestine 22 1.19 138
9 Netherlands 18 5.28 8
10 Costa Rica 1 2.84 20
37 Denmark 32 5.51 7
73 Luxembourg 139 15.82 21

HPI indicators plus the PPP indicator. For comparison
the original HPI and the ecological footprint are given
in addition to the average ranking of the same countries
applying the HI indicators. All 2016 data

Table 7 Bottom-10
countries plus Denmark and
Luxembourg based on
average ranking of the
original three

Rkav Country HPI EFP HI (Rkav)

131 Benin 137 1.41 151
132 Trinidad and Tobago 130 7.92 90
133 Mauritania 117 2.54 125
134 Guinea 129 1.41 97
135 Niger 122 1.56 127
136 Djibouti 127 2.19 na
137 Estonia 118 6.86 87
138 Latvia 121 6.29 82
139 Turkmenistan 134 5.47 49
140 Mongolia 136 6.08 99

HPI indicators plus the PPP indicator. For comparison
the original HPI and the ecological footprint are given
in addition to the average ranking of the same countries
applying the HI indicators. All 2016 data

Table 8 Comparison
between the four indicators
for Norway and Luxembourg

HPI Country EFP LEXIA EWBIA PPP

12 Norway 4.98 78.60 7.42 101,564
139 Luxembourg 15.82 78.97 6.70 105,447

in agreement with the relative high PPP for these countries. Hence, the PPP for
Denmark, Norway and Luxembourg in 2016 were 57,636, 101,564 and 105,447
thousand USD, respectively (Jeffrey et al. 2016). For comparison the PPP for
Bangladesh in 2016 was only 859 thousand USD (Jeffrey et al. 2016).

A direct comparison between Norway and Luxembourg is and exemplary case to
illustrate the effects of the different indicators (Table 8).
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The original HPI rank for the two countries are clearly having 3 positive
contributions, i.e., LEX, EWB and PPP, respectively, and one significant negative
contribution, i.e., the EFP. Assuming the latter for Luxembourg to be changed by
10 gha/capita the country changes its average HPI ranking from 73 (Table 6) to 24
again supporting the assumption the EFP is the main controlling factor.

4 Conclusions and Outlook

It has been revealed that the most important sub-indicator for our happiness as
expressed by the analysis of the World Happiness Index appears to be the ‘Dystopia’
indicator, which is a rather subjective measurement that fits quite nicely with the
Lyubomirsky definition of happiness (Lyubomirsky 2008) as “the experience of
joy, contentment, or positive well-being, combined with a sense that one’s life is
good, meaningful, and worthwhile” as well the Dostoevsky quote:” The greatest
happiness is to know the source of unhappiness “(Brainyquote 2001). On the other
hand it was found that the gross domestic product per capita in terms of purchasing
power parity plays only an inferior role. This latter finding is found again looking at
the Happy Planet index. Hence, introducing the GDP expressed as the Purchasing
Power Parities (PPP) again discloses the minor role of financial wealth as a factor
for sustainability in terms of happiness.

It has been demonstrated that the original ranking based on HPI is significantly
different from that based on HI and a posetic based data analysis of the HPI dataset
leaves no doubt that the culprit in this respect unequivocally is the ecological
footprint, which point directly to the Sustainability Development Goal No. 12, i.e.,
Responsible consumption and production (SDG 2018). Of less importance for the
average HPI ranking is inequality adjusted life expectancy and wellbeing that both
increase the HPI. Here reference to Sustainability Development Goal No. 3, i.e.,
Good health and well-being and No. 10, i.e., Reduced inequalities, appears (SDG
2018) appropriate.

One serious question apparently remains: Who is paying for our happiness? The
answer appears rather simple as it point to us. Hence, apparently through our (non-
sustainable) exploitation of nature we let our planet pay for our happiness! This
answer unequivocally leads to a further question: Are we ready for a change? The
more optimistic answer is a maybe, as there might still be time. Let the words by
Frederika Stahl (2015) from ‘The world to come’ close this:

I breathe you in
Soon you’ll be gone
Look at the mess you’re in
See what we’ve done
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The more pessimistic, also expressed by Frederika Stahl is:

I breathe you in
Kiss you one last goodbye
We knew that we could save you
But never really tried
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Posetic Tools in the Social Sciences:
A Tutorial Exposition

Marco Fattore and Alberto Arcagni

1 Why Partial Orders in the Social Sciences?

Why is partial order theory of interest in the social sciences? Simply because many
socio-economic problems are naturally conceptualized and formalized in terms of
order relations and must then be addressed in ordinal terms, i.e. by using concepts
and tools from the theory of partial orders (Davey and Priestley 2002). A typical
example is the evaluation of social traits, like deprivation or well-being, when
statistical units (e.g. individuals or households) are scored against multidimensional
systems of ordinal attributes (i.e. data systems with many variables or indicators
measured on a set of statistical units). If the observed achievement profiles of the
units have so-called conflicting scores (e.g. unit a scores better than unit b on a
dimension and scores worse on another), and this is quite often the case, data can
be ordered only partially, producing a partially ordered set (poset). What kind of
information can be extracted out of such a data structure and how? Here the theory
of order relations comes into play and provides the proper analytical toolbox.

Remark Interestingly, partial orders are useful also when numerical data systems
are to be addressed and one does not want to, or cannot, mix variables through
aggregated procedures, like those leading to composite indicators. In this respect,
one can argue whether using ordinal scales and partially ordered structures is
intrinsic to the phenomena under study or whether it depends upon the perspective
taken by the researcher. In any case, the data structure and the tools adopted in
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any statistical analysis must be as faithful and consistent as possible with the
phenomenon of interest and, in many situations, posets are the appropriate choice.

Although they have not attracted much statistical research yet, partial orders are
ubiquitous in socio-economics and make their appearance whenever multi-criteria
decision problems based on multi-indicator systems (MISes) are to be addressed (so,
for example, partial orders are also applied in environmental chemistry or ecology,
just to mention two further scientific research disciplines). To give the flavor of
possible applications of partial order theory to concrete problems in the socio-
economic field, we list a few cases that can be found in literature.

1. Refugees’ relocation in the EU (Carlsen 2017). The study builds a ranking
of European countries, for refugees’ relocation, based on a multidimensional
system of indicators reflecting territorial refugee absorption capacity.

2. Temporal analysis of the Fragile/Failed State Index (Carlsen and Bruggemann
2014, 2017). Here, poset theory is used to investigate the Fragile and the Failed
State Index, by considering explicitly the multidimensional configurations of
scores on the attributes/variables used in the assessment process, with the aim
to identify temporal trends and anomalous units.

3. European opinions on services (Annoni and Bruggemann 2009). This study
investigates Eurobarometer data, on social and political aspects of citizens’ daily
life, through purely “ordinal” computations, clustering European countries in
terms of satisfaction/dissatisfaction for the prices of different goods/services.p

4. Comparison of fiscal policies. These studies (Bachtrögler et al. 2016; Badinger
and Reuter 2015) analyze, from a multidimensional point of view, the properties
of the fiscal frameworks and the fiscal rules of 81 countries, building a ranking
of fiscal stringency.

5. Immigrants’ deprivation and vulnerability (Arcagni et al. 2019). Here, the
deprivation and the economic vulnerability of immigrants, in the Italian region
of Lombardy, are evaluated. The individual deprivation profiles of a sample of
units are multidimensionally compared to some reference profiles, getting overall
deprivation measures for the entire population of immigrants and for its main
subgroups.

6. Ranking Emergency Departments. In di Bella et al. (2018), partial order theory
is used to build a ranking of Emergency Departments in the Italian Liguria
region, assessed against a multi-dimensional system of attributes, addressing a
very relevant issue, given the increasing importance of emergency services in
regional healthcare systems.

7. Life satisfaction. In Caperna and Boccuzzo (2018), partial order theory is
applied to the study of life satisfaction in Italy, adapting posetic analytical tools
to a big data setting and revealing significant differences in satisfaction degrees
among regions, between genders and among levels of formal education.
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8. Supporting employees with intellectual disabilities. Partial order theory has
been recently used to support the definition of the requirements, for the develop-
ment of an assistive control panel and display interface to enable employees with
intellectual disabilities to extend their range of tasks and to increase their level of
responsibility (Fuhrmann et al. 2018).

All in all, what these examples show is that the concepts and the tools from
partial order theory allow for “classical” problems (like ranking or evaluation. . . )
to be consistently addressed in an ordinal setting, paving the way to deeper, more
reliable and more effective representations of complex socio-economic traits. This
should be enough to acknowledge the key role of partial order theory in supporting
decision-making processes in an increasingly complex world (for a more general
discussion, see Fattore and Maggino 2014).

2 A Few Technical Notes

In this section, we fix the terminology and collect some essential concepts of
partial order theory, also briefly touching upon available software resources, for
practical applications. More details and the mathematical proofs can be found in
cited references.

2.1 Basic Definitions

A partially ordered set (or a poset) π = (X,�π ) is a set X endowed with a partial
order relation �π , i.e. with a reflexive, antisymmetic and transitive binary relation
(Davey and Priestley 2002; Schröder 2016). Two elements xi and xj of the poset
are called comparable, if either xi �π xj or xj �π xi , otherwise they are called
incomparable (written xi ||πxj ). A poset where any two elements are comparable
is called a linear order or a complete order or a total order. A subset of a poset is
called a chain if any two of its elements are comparable: at the opposite, it is called
an antichain, if any two of its elements are incomparable. The upset of an element
xi ∈ π , written xi↑, is the set of elements dominating it: xi↑= {x ∈ π : xi �π x};
analogously, the downset of xi ∈ π , written xi↓, is the set of elements dominated
by xi , i.e. xi↓= {x ∈ π : x �π xi}. Given xi, xj ∈ π , xj is said to cover xi (written
xi ≺π xj ) if xi �π xj and there is no other element xh ∈ π (xh �= xi, xj ) such that
xi �π xh �π xj . If the poset has a finite number n of elements, the cover relation
determines the partial order relation, since xi�π xj holds if and only if there exists a
sequence of elements x0, x1, . . . , xk , such that xi = x0 ≺π x1 ≺π . . . ≺π xk = xj .
In the following, we consider only finite posets.
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2.2 Matrix Representations of Posets

The simplest way to represent algebraically finite partial order relations is by means
of the n × n incidence matrix Z, defined as Zij = 1 if xi �π xj and Zij = 0
otherwise. Alternatively, one can define the n×n cover matrix G, whose entries are
given by Gij = 1 if xi ≺π xj and Gij = 0 otherwise. Since the cover relation and
the partial order relation determine each other, matrices Z and G can be obtained
one from the other, by simple algebraic formulas (Patil and Taillie 2004). Matrices
Z and G are extremely useful in practical computations and provide easy ways to
inspect and investigate relevant features of the underlying poset.

2.3 Graphical Representation of Posets

When the number of elements is small enough, posets can be depicted graphically,
in various ways (Neggers and Kim 1998). The most useful and widely adopted
one is by means of Hasse diagrams, which are directed acyclic graphs, reproducing
the cover relation. In a Hasse diagram, poset elements are represented by vertices,
or nodes; if xi �π xj , then node corresponding to xj is placed higher than node
corresponding to xi and, if xi ≺π xj , an edge is inserted between them. By
transitivity, one can then recover all of the comparabilities of the input poset. Many
examples of Hasse diagrams will be shown in the rest of the chapter (and across the
entire book).

2.4 Linear Extensions

Given two partially ordered sets π = (X,�π ) and σ = (X,�σ ) on the same set
X, we say that σ is an extension of π , if it is obtained from the latter by turning
some incomparabilities into comparabilities, i.e. if xi �π xj in π implies xi �σ xj

in σ . If σ is an extension of π and also a linear order, then it is called a linear
extension of π . The linear extensions of π are all the possible orderings of elements
of π which are compatible with the partial order relation �π , i.e. that do not switch
or eliminate any comparability of π . A simple, but fundamental, theorem in partial
order theory states that any finite poset π is uniquely identified by the set �(π)

of its linear extensions. As discussed later in the chapter, this is a key property for
applications of poset theory to data analysis.
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2.5 Mutual Ranking Probabilities

If xi �π xj in poset π , then it is also xi �λ xj in each linear extension λ of π ;
on the contrary, if xi ||πxj , i.e. if the two elements are incomparable in π , then in
some linear extension λ we have xi �λ xj and in some other linear extension ρ we
have xj �ρ xi . The fraction pij of linear extensions λ ∈ �(π) where xi �λ xj is
called the mutual ranking probability (MRP) of xj over xi (De Loof 2009; De Loof
et al. 2006, 2008); informally, the MRP expresses the “degree of dominance” of xj

over xi . MRPs are usually arranged into the n×n mutual ranking probability matrix
M , whose entry ij is pij . As it will be shown in subsequent paragraphs, M plays a
key role in practical applications.

2.6 Software Resources

Currently, there are two main software resources to perform statistical analysis
on partially ordered data. The PyHasse suite (Koppatz and Bruggemann 2017),
developed in Python, is available at https://pyhasse.org/. It provides a huge number
of modules and procedures for various statistical analyses. A system of functions for
poset manipulation and socio-economic analysis on partially ordered data in the R
environment is provided in the package parsec (Arcagni 2017). Some other useful
routines, mainly to compute mutual ranking probability matrices, are also available
in the package netrankr (Schoch 2017).

3 Posetic Tools in Socio-economics

In this section, we present some of the main posetic tools, for the analysis of ordinal
MISes and partially ordered data in socio-economics. We organize the exposition
around some reference topics, which are of main interest for social scientists. For
each tool, we give the main formulas, summarize its properties and provide a short
example of its use on real data.

3.1 Scoring and Ranking Partially Ordered Data

Perhaps the main problem in the study of multi-dimensional MISes and partially
ordered data is that of ranking statistical units, based on their score profiles or
on their “degree of dominance” with respect to other units. Usually, this requires
computing a non-negative score function s(·) (i.e. a function assigning to each
profile a non-negative real number) and then ranking units based on it. In order to

https://pyhasse.org/
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be consistent with the input partial order relation, the score function s(·) is required
to be strictly order preserving, i.e. such that x � y (which means x � y and x �= y)
in the input poset implies s(x) < s(y); thus, the ranking problem reduces to the
definition of “reasonable” strictly order-preserving maps on posets.

In the daily practice of socio-economic statistics, it is quite typical to compute
the score function, by coding ordinal scores as numbers and by applying tools from
classical data analysis, or even by computing simple averages. This approach is
definitely inconsistent, for two main reasons: first, since ordinal scores cannot be
treated as cardinals, unless forcing the nature of the data; second, since partially
ordered data need not be obtained from MISes, so that no attribute scores even
exist (for example, one could partially order products or services based on personal
taste, with no explicit reference to any underlying quality dimensions). In a posetic
setting, however, all the information useful for scoring and ranking is comprised in
the structure of the partial order relation adopted to describe the data and must be
extracted out of it. The issue thus becomes how score functions can be computed
directly over partial orders.

Currently there are two main algorithms, to score units and to extract rankings
out of a partially ordered set, namely the average height algorithm (Bruggemann
and Patil 2011) and the dominance eigenvector algorithm (Fattore et al. 2019); both
draw upon mutual ranking probabilities, which carry information on the relative
dominance of pairs of poset elements.

3.1.1 Average Height

Given a finite poset π , the average height avh(xi) of an element xi ∈ π is defined
as the arithmetic mean of the heights of xi in the linear extensions of π ,

avh(xi) = 1

|�(π)|
∑

λ∈�(π)

hλ(xi), (1)

where the height hλ(xi) of xi in λ is given by 1 + the number of elements below
xi in λ. It can be shown (De Loof 2009) that the average height is linked to mutual
ranking probabilities by the following simple relation:

avh(xi) =
n∑

j=1

pji . (2)

Once the average height is computed for each element of the poset, a ranking
is obtained by ordering elements in a decreasing way. By construction, the average
height is a strictly order preserving map.
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3.1.2 Dominance Eigenvector

This scoring procedure is based on the Singular Value Decomposition (Meyer 2000)
of the mutual ranking probability matrix M , associated to the input poset π . M

is a non-negative matrix and so, by the Perron-Frobenius (Meyer 2000), its first
right singular vector v = (v1, . . . , vn), i.e. the eigenvector1 of MT M relative to the
greatest eigenvalue, has strictly positive components. In addition, it can be proven
that such components are such that xi � xj in π implies vi < vj . Therefore, the
score function s(·)

s : π  → R+

: xi → vi

is strictly order preserving and can be used to rank the elements of the input poset.
Vector v is a linear combination of the rows of M , so the score associated to element
x is a weighted average of the probabilities that x dominates poset elements. By the
properties of the Singular Value Decomposition, vector v has the optimal property
to provide the best uni-dimensional approximation to the mutual ranking probability
matrix; more precisely, it turns out that the rows of the rank-one matrix M̂ which
best approximates matrix M in the Euclidean norm (here called, Frobenius norm)
are proportional to v.

Both the average rank and the dominance eigenvector preserve linear orders,
i.e. if the input poset is a linear order λ, then the final ranking is λ itself. This
natural property is not shared by other scoring functions proposed in the literature
(Todeschini et al. 2015; Saaty and Hu 1998), which extract eigenvectors directly
from the mutual ranking probability M and not from matrix MT M . Notice also that,
in general, scoring functions can produce ties, whenever different profiles occupy
“equivalent” positions in the input poset.

3.1.3 Real Example

Table 1 reports the values of three economic indicators for EU-28 member states
(year 2017). These indicators are numerical, but refer to different features of national
economies; combining them into a composite index can be misleading and so we
keep them separate and represent the dataset as a poset, whose Hasse diagram is
drawn in Fig. 1. Quite naturally, country j dominates country i in the diagram, if

1Let A be a square matrix; a vector x is called eigenvector of A relative to the eigenvalue a if it
holds Ax = ax, where a is a real number. Eigenvectors, when they exist, provide deep information
on the structure of the input matrix and are often used in multivariate statistics, to produce optimal
data synthesis.
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Table 1 Economic indicators for EU-28 member states: GDP per inhabitant (Purchasing Power
Standards); deficit/surplus (% of GDP); gross debt (% of GDP). (Source: Eurostat 2017)

State GDP per inhabitant Deficit/surplus Gross debt

AT Austria 38,100 −0.8 78.3

BE Belgium 35,000 −0.9 103.4

BU Bulgaria 14,800 1.1 25.6

CY Cyprus 25,400 1.8 96.1

CZ Czechia 26,900 1.5 34.7

DE Germany 37,100 1.0 63.9

DK Denmark 38,400 1.1 36.1

EE Estonia 23,600 −0.4 8.7

ES Spain 27,600 −3.1 98.1

FI Finland 32,700 −0.7 61.3

FR France 31,200 −2.7 98.5

GR Greece 20,200 0.8 176.1

HR Croatia 18,500 0.9 77.5

HU Hungary 20,300 −2.2 73.3

IE Ireland 54,300 −0.2 68.4

IT Italy 28,900 −2.4 131.2

LT Lithuania 23,500 0.5 39.4

LU Luxembourg 75,900 1.4 23.0

LV Latvia 20,000 −0.6 40.0

MT Malta 29,300 3.5 50.9

NL Netherlands 38,400 1.2 57.0

PO Poland 20,900 −1.4 50.6

PT Portugal 23,000 −3.0 124.8

RO Romania 18,800 −2.9 35.1

SE Sweden 36,300 1.6 40.8

SI Slovenia 25,500 0.1 74.1

SK Slovakia 22,900 −0.8 50.9

UK United Kingdom 31,700 −1.8 87.4

the former has no economic indicators worse than the latter and at least one of them
which is better (the sign of gross debt has been reversed, so as to have concordant
indicators).

In view of the computation of the average height and the dominance eigenvector,
we preliminarly compute the matrix of mutual ranking probability of the country
poset. To this goal, we must (i) import the data, (ii) define the partial order relation
on the set of countries, (iii) compute the incidence matrix of the resulting poset
and (iv) finally get the MRP matrix. The R code, employing the package parsec
(Arcagni 2017), is reported below.
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Fig. 1 Hasse diagram for the data reported in Table 1

library(parsec)

% data <- data.frame(
% "GDP per inhabitant" = c(38100, 35000, ... ),
% "deficit/surplus" = c(-0.8, -0.9, ...),
% "gross debt" = c(-78.3, -103.4, ...)
% )
% rowames(data) <- c("AT", "BE", ...)
% The above instructions are commented,
% since data are to be completed according to Table 1

X <- rownames(data)
r <- function(x, y) all(data[x,] <= data[y,])
r <- Vectorize(r)
Z <- outer(X, X, FUN = r)
dimnames(Z) <- list(X, X)

% Function Vectorize() produces a wrapper of r
% so as to pass elements one-by-one in the
computation of Z

Z <- validate.partialorder.incidence(Z) % checking
whether Z

% actually represents a partial order relation

M <- MRP(Z) % MRP matrix computation

(function MRP depends upon package netrankr Schoch (2017) that provides
different approaches to evaluate the MRP matrix, namely exact, sampled and
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Fig. 2 Average height and
dominance eigenvector
scores, for the data reported
in Table 1 (the vector of
average heights has been
normalized to have euclidean
norm equal to 1, as the
dominance eigenvector)
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approximated; by default, MRP employs the exact approach, which is generally
suitable for small posets). Finally, the average height and the dominance eigenvector
are computed out of M (see Fig. 2).

avr_height <- colSums(M)
eigenvector <- abs(svd(M)$v[,1])

3.2 Evaluation and Comparison to Multidimensional
Benchmarks

A fundamental problem in socio-economics is the evaluation and the measurement
of multidimensional phenomena, like poverty, quality-of-life, well-being, but also
literacy, freedom, sustainability and many others more. . . . Usually, when the input is
a MIS, evaluation is performed by aggregative procedures, where the input attributes
are combined together into a composite indicator Joint Research Centre-European
Commission et al. (2008). This approach is questionable from many points of view
and, in particular, it proves scarcely consistent and scarcely effective when truly
multidimensional social traits are to be evaluated. The prototypical example is that
of multidimensional poverty where, overcoming the GDP-based perspective on the
societal wealth, one tries to consider jointly different aspects of quality-of-life and
well-being, beyond income or consumption (e.g. access to services; employment
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status; ownership of goods. . . ). In such cases, there is no common unit of measure
among attributes and it is often forcing to look for one. Moreover, poverty data
are often, if not always, of an ordinal kind, so that aggregative procedures are
technically unfeasible.

Poset theory offers a natural solution to this kind of problems, allowing for mul-
tidimensional comparisons among profiles (i.e. set of achievements on attributes) to
be performed, without any preliminary attribute aggregation. This not only solves a
technical issue, but is also more consistent with the nature of the evaluation problem
itself; it is more natural to assess the level of poverty (to take the same example,
as above) of a subject by comparing his/her achievements to one or more poverty
benchmark profiles, rather than pretending to compress them into an “absolute”
deprivation score, to be compared with some numerical threshold. Moreover,
poverty is a multifaceted trait that may assume many different shapes; this is easily
accounted for in a poset setting, where different incomparable profiles can be cho-
sen as structurally different poverty benchmarks, while aggregative/compensative
procedures are forced to identify just a single threshold level. In other words, the
posetic approach to evaluation is much more “complexity preserving” than the
composite indicator one, being capable to extract information directly from the
multidimensional comparison system (i.e. from the partial order relation) and not
from a “compressed” unidimensional reduction of the input MIS.

As detailed in Fattore (2016), the posetic evaluation of multidimensional ordinal
traits can be performed as follows:

1. Take the set of all possible profiles generated by the attributes of the input MIS
and structure them as a poset π .

2. Identify one or more reference profiles, to be used as benchmarks in the eval-
uation process. These benchmarks represent “one or more alternative reference
forms of deprivation”, identified based on socio-economic considerations. As
such, they must constitute an antichain τ , otherwise they would identify different
levels of deprivation, rather than its “border”. This antichain is the multidimen-
sional ordinal analogue of the threshold level in aggregative procedures.

3. Given the antichain τ , poset elements can be partitioned into three disjoint
subsets: U , comprising elements of π that are ordered above all of the elements
of τ ; D, comprising τ itself and all of the poset elements that are ordered below at
least one element of τ and I , comprising poset elements which neither belong to
U nor to D. Referring again to the poverty example, U comprises non-deprived
profiles, D comprises deprived profiles (consistently with the interpretation of τ

as a poverty threshold) and I comprises profiles which are “partly” (in a fuzzy
sense) deprived.

4. Two evaluation functions can then be computed. The first, called identification
function and written idn(·), measures to which degree a poset element belongs to
D (in our reference example, this means measuring to what extent a profile can
be classified as poor). This function takes value 0 on U , value 1 on D and values
in (0, 1) on I . The second function, called severity function and written svr(·),
computes the “intensity” of the trait, for elements belonging to D or to I . The
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identification function idn(x) of a profile x ∈ π is computed as the fraction of
linear extensions where x is ordered below at least one element of τ . The severity
function svr(x) is computed as the average of the distances of x from the least
element above the threshold in each linear extension of π , normalized to [0, 1]
(for details and formulas, see Fattore 2016).

5. Each statistical unit in the dataset then inherits the identification and severity
scores of the profile it shares.

6. Finally, synthetic indicators of various kind can be computed at population level,
starting from the individual scores.

Remark At first, the above procedure can seem somehow “artificial” and deserves a
short comment on the “naturality” of the posetic approach. The sequence of steps 1−
6 can be seen as a composition of actions, each of which is “natural”, i.e. inherently
consistent with its input (e.g., we structure input data as a poset, we apply algorithms
that are consistent with the poset structure. . . ). Assuming that “the composition of
consistent actions is overall consistent”, we can consider the described procedure
as a “natural” way to approach the evaluation of multidimensional deprivation or
similar socio-economic traits.

The procedure just outlined can be tuned to different contexts and modified
according to the needs of the study, as done in Arcagni et al. (2019), where a
“welfare” threshold has been added to the poverty one, to better assess and compare
populations’ deprivation.

3.2.1 Real Example

To exemplify the above procedure, here we report part of the analysis developed
in Arcagni et al. (2019), about deprivation of migrants in Lombardy (Italy). Data
come from the 2014 ORIM2 Survey, which involved 4000 subjects, from different
countries of origin, and pertain to migrants’ socio-economic conditions.

Among other social traits, the cited paper focuses on migrants’ social fragility,
described through a MIS comprising the following four ordinal attributes:

• Working dynamics, coded on a 6-degrees scale: 1 – Persistent unemployment; 2
– Run into unemployment; 3 – Worsening condition 4 – Non-active status; 5 –
Improving condition; 6 – Stable condition.

• Legal status, coded on a 2-degrees scale: 1 – Illegal; 2 – Legal.
• Dependent family in country of origin, coded on a 2-degrees scale: 1 – Yes; 2 –

No.
• One-income family, coded on a 2-degrees scale: 1 – Yes; 2 – No.

2ORIM stands for “Osservatorio regionale per l’integrazione e la multietnicità” (“Regional
observatory on integration and multiethnicity”).
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Table 2 Weight distribution
on the fragility profiles

Profile Weight Profile Weight Profile Weight

1111 0.66 5121 0.00 3212 161.45

2111 0.66 6121 0.25 4212 85.82

3111 2.75 1221 79.33 5212 49.32

4111 0.00 2221 27.98 6212 676.55

5111 0.00 3221 56.37 1122 12.59

6111 7.51 4221 145.62 2122 5.98

1211 15.48 5221 19.61 3122 19.56

2211 21.57 6221 223.55 4122 0.69

3211 59.36 1112 14.23 5122 5.80

4211 45.67 2112 4.22 6122 4.99

5211 19.55 3112 5.58 1222 178.97

6211 250.44 4112 1.59 2222 104.29

1121 1.01 5112 2.72 3222 181.55

2121 0.00 6112 13.55 4222 402.49

3121 7.87 1212 57.92 5222 94.38

4121 0.00 2212 51.45 6222 732.79

To evaluate migrants’ fragility, we first compute the set of all of the profiles
generated by the above attributes (see Table 2):

library(parsec)

prf <- var2prof(varmod = list(
"Working dynamics" = 1:6,
"Legal status" = 1:2,
"Dependent family in country of origin" = 1:2,
"One-income family" = 1:2

))

Next, we set the fragility threshold to the pair of profiles {3122, 3221} and pass the
profiles to the evaluation function to compute the identification and severity
scores (the function, in an automatic way, builds a poset according to the “natural”
criterion that profile j is less fragile than profile i if the former has no attribute
worse than the latter and at least one which is better):

res <- evaluation(
prf,
threshold = c("3122", "3221"),
weights = data

)

where object data is a vector assigning to each profile the weights reported in
Table 2 obtained as sums of sample weights. The procedure produces a list of results
comprising, among other information, vectors res$idn_f and res$svr_abs,
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i.e. the identification and severity functions, respectively. The following code
produces their frequency and cumulative distributions, depicted in Fig. 3.

ord <- order(res$idn_f)
plot(

res$idn_f[ord], res$prof_w[ord],
type = "h",
xlab = "Identification",
ylab = "Frequency"

)
plot(

res$idn_f[ord], cumsum(res$prof_w[ord]),
type = "s",
xlab = "Identification",
ylab = "Cumulative frequency"

)

ord <- order(res$svr_abs)
plot(

res$svr_abs[ord], res$prof_w[ord],
type = "h",
xlab = "Severity",
ylab = "Frequency"

)
plot(

res$svr_abs[ord],
cumsum(res$prof_w[ord]),
type = "s",
xlab = "Severity",
ylab = "Cumulative frequency"

)

3.3 Comparing Populations Over Posets

When two or more populations must be compared on a MIS, the easiest approach is
to score each statistical unit on the latent trait underlying the indicators and then
to compare the resulting distributions, either by using some synthetic indicator
(typically in the class of power means), or in terms of stochastic dominance. In
any case, some information get lost, when multidimensional data are “compressed”
to unidimensional scores, prior to the comparison. A more efficient and powerful
approach is to compare the distributions directly over the poset generated by the
indicator system, extending stochastic dominance to partially ordered structures.
In its essence, the idea is quite simple. Let π be the poset generated by the MIS



Posetic Tools in the Social Sciences: A Tutorial Exposition 233

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

Identification

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

1000

2000

3000

4000

Identification

C
um

ul
at

iv
e 

fre
qu

en
cy

0 5 10 15 20 25 30

0

200

400

600

Severity

Fr
eq

ue
nc

y

0 5 10 15 20 25 30

1000

2000

3000

4000

Severity

C
um

ul
at

iv
e 

fre
qu

en
cy

Fig. 3 Frequency and cumulative distributions of the identification and severity functions

and let �(π) be the set of its linear extensions. On each linear extension of π ,
the distributions can be compared, by using the standard first-order dominance
criterion3 (Fattore and Arcagni 2018). This way, to each pair of populations i and
j , on each linear extension λ of π , a stochastic dominance degree �λ

ij is associated,
measuring to what extent population j stochastically dominates population i, on λ.
Averaging such degrees over �(π), one gets an overall fuzzy first-order dominance
degree �ij between all pairs of distributions (Fattore and Arcagni 2018). The
resulting matrix � comprises all of the information on pairwise dominance among
the populations; although its entries are not mutual ranking probabilities, a final
population ranking can be obtained, by using the dominance eigenvector approach
described previously.

3Given two cumulative distributions F(t) and G(t), defined on the same totally ordered set T

(which can be either continuous or discrete), we say that G first-order dominates F , if G(t) ≤ F(t),
∀t ∈ T . As described in Fattore and Arcagni (2018), the notion of stochastic dominance can be
made fuzzy, computing a degree of dominance in [0, 1].
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3.3.1 Real Example

We report here a simple example from the original paper (Fattore and Arcagni
2018), pertaining to the comparison of populations’ health. Data are taken from
The National Health Interview Survey 2010, held in Denmark. Following Hussain
et al. (2016), four binary dimensions of health are considered4and scored in binary
terms (1 – No health problem; 0 – Health problem) on five populations distinguished
by the educational attainment of the respondents (D1 = Basic, D2 = V ocational,
D3 = Shorthigher, D4 = Mediumhigher, D5 = Longhigher). Table 3 reports
the relative frequency distributions of the populations, on the set of profiles over the
four health dimensions. Such distributions are compared as described above, getting
the matrix of pairwise fuzzy dominance degrees, reported in Table 4. Synthetic
dominance scores extracted by the dominance eigenvector are reported in the last
column of the same table. As it can be seen, the health level increases with
the educational attainment of individuals; in particular, there are noticeable score
gaps (negative and positive, respectively), between the least and the most trained
populations, with respect to the subgroups with middle educational level. The R
code producing the results shown in tables is reported below.

Table 3 Frequency
distributions on the health
profiles, for levels of
educational attainment (data
have been expressed as
relative frequencies)

Profile Basic Vocat. Short Medium Long

0000 0.0912 0.0254 0.0189 0.0220 0.0096

1000 0.0415 0.0369 0.0512 0.0238 0.0065

0100 0.0092 0.0016 0.0038 0.0062 0.0011

1100 0.0930 0.0810 0.0814 0.0669 0.0528

0010 0.0384 0.0248 0.0224 0.0159 0.0032

1010 0.0790 0.0553 0.0452 0.0407 0.0091

0110 0.0217 0.0052 0.0049 0.0045 0.0000

1110 0.2337 0.2294 0.1995 0.1709 0.1232

0001 0.0144 0.0164 0.0100 0.0060 0.0103

1001 0.0405 0.0337 0.0603 0.0517 0.0476

0101 0.0022 0.0014 0.0039 0.0028 0.0023

1101 0.0679 0.1162 0.1358 0.1826 0.2067

0011 0.0183 0.0094 0.0000 0.0041 0.0095

1011 0.0555 0.0554 0.0408 0.0485 0.0638

0111 0.0038 0.0045 0.0040 0.0032 0.0074

1111 0.1896 0.3034 0.3180 0.3501 0.4468

4Dimension 1: Subjective and self-reported health. Dimension 2: Pain or discomfort in shoulder,
back, arms, legs. . . ; headaches; sleeping problems, depression, anxiety. . . Dimension 3: Asthma,
allergy; migraine; diabetes; hypertension; chronic bronchitis. Dimension 4: Tobacco use; excessive
alcohol consumption, obesity; unhealthy life style. . .
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Table 4 Matrix � of pairwise fuzzy dominance degrees between distributions of Table 3
(element �ij is the degree of dominance of distribution j over distribution i); the last column
reports the final score from the dominance eigenvector

Profile Basic Vocat. Short Medium Long Score

Basic 1.00 0.67 0.67 0.70 0.76 0.375

Vocat. 0.47 1.00 0.59 0.62 0.70 0.441

Short 0.47 0.58 1.00 0.62 0.70 0.443

Medium 0.44 0.56 0.56 1.00 0.68 0.462

Long 0.38 0.50 0.51 0.55 1.00 0.505

library(parsec)
prf <- var2prof(varmod = list(

dim1 = 0:1,
dim2 = 0:1,
dim3 = 0:1,
dim4 = 0:1

))
res <- FFOD(profiles = prf, distributions = data)

(data is an object of class data.frame replicating Table 3). The output of the
above code is an object of class FODposet which comprises matrix � (extracted by
res$delta) and various other results on pairwise dominance degrees. By calling

abs(svd(res$delta)$v[,1])

the Singular Value Decomposition of � is finally computed, getting the dominance
eigenvector.

3.4 Synthetic Indicators Over Posets and the Measurement of
Inequality

A major problem, in socio-economic statistics, is the computation of synthetic
indicators for frequency distributions defined over ordinal multidimensional MISes.
This issue combines together two sources of complexity, namely multidimensional-
ity and “ordinality”. The first poses non-trivial conceptual problems. For example,
when extending inequality measures from the unidimensional case, it is necessary
to state unambiguously what is meant by a “more unequal” distribution in a
multidimensional setting, an issue that is not trivial to solve, given the increased
number of degrees of freedom in the shape of multidimensional distributions. On
the other hand, dealing with ordinal attributes adds technical difficulties since, as
previously discussed, mathematical tools designed for cardinal variables cannot be
employed. Again, partial order theory provides the right conceptual and formal
setting, to overcome both these issues.
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The formal development of the theory of synthetic indicators over posets is
not trivial (details can be found in Fattore 2017), but the basic idea is quite
simple and relies, again, on the equivalence between finite posets and their set
of linear extensions. Let π be an n-element poset generated by a MIS and let
p = (p1, . . . , pn) be a relative frequency distribution over it (so that pi is the
fraction of statistical units associated to the i-th element of π ). Suppose, to set the
stage, that we want to measure how unequally p is distributed on π , by means of
a non-negative synthetic indicator G(p, π). Notice that G(·, ·) not only depends
upon the frequency vector p, but also upon the underlying order structure, i.e. upon
poset π . To see why this dependence is essential, just consider two posets on three
elements {a, b, c}, π1 = a � b � c (a chain) and π2 = a||b||c (an antichain),
and let pa = 0.5, pb = 0, pc = 0.5 be the frequency distribution defined on
both of them. Intuitively, in the chain case inequality is higher, since elements
a and c are at the “vertical extremes” of the poset, while in the antichain case
there is no such “vertical” dimension. Keeping fixed the frequency distribution p,
indicator G(·, ·) is thus required to depend upon the underlying ordinal relation
and, in particular, not to decrease as the poset gets extended. In addition, since all
finite posets can be reconstructed by their linear extensions, the value of G(·, ·) on
π is also required to be a function of the degree of inequality of p on the linear
extensions of π ; as derived in Fattore (2017), such a function must belong to the
class of power means. In summary, the inequality degree of a frequency distribution
on a poset π is computed as some power mean of its inequality degrees over the
linear extensions of π . But linear extensions are complete orders and, on them,
inequality can be measured by using any of the ordinal unidimensional indicators
available in literature Maggino and Fattore (2019). This way, the measurement
of inequality on a complex ordered structure gets reduced to an aggregation of
inequality indicators over simple linear orders. Needless to say, this very same
approach can be applied to many other kinds of synthetic indicators, for which
unidimensional ordinal counterparts are available.

3.4.1 Real Example

We apply the procedure outlined above to the measurement of inequality of
childhood poverty in the Democratic Republic of Congo (DRC). Data are taken
from Table 3 of Nanivazo (2015), here replicated in Table 5, and assess poverty in
terms of four binary attributes (1 – Deprivation; 0 – No deprivation):

1. Sanitation deprivation – Children with no access to any kind of improved latrines
or toilets.

2. Water deprivation – Children with only access to surface water for drinking or
for whom the nearest source of water is more than a 15 min walking distance
from their dwellings.

3. Shelter deprivation – Children living in dwellings with more than five people per
room or with no flooring material (e.g., a mud floor).
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Table 5 Frequency distributions on deprivation profiles for the Democratic Republic of Congo and
its regions: DRC democratic republic of congo, KSS kinshasa, BCO bas-congo, BDD bandundu,
ETR equateur, KOC kasai-occidental, KOT kasai-oriental, KTG katanga, MNM maniema, NKV
north-kivu, ORT orientale, SKV south-kivu. (Source: Nanivazo Nanivazo 2015)

Profile DRC KSS BCO BDD ETR ORT NKV MNM SKV KTG KOT KOC

0000 0.31 0.03 0.31 0.34 0.57 0.47 0.40 0.19 0.22 0.22 0.17 0.36

0001 0.15 0.03 0.24 0.40 0.16 0.08 0.07 0.11 0.10 0.06 0.07 0.22

0010 0.03 0.02 0.01 0.11 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02

0011 0.01 0.03 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0100 0.14 0.01 0.06 0.07 0.13 0.25 0.08 0.35 0.16 0.10 0.24 0.16

0101 0.06 0.01 0.10 0.02 0.05 0.04 0.04 0.17 0.05 0.07 0.11 0.11

0110 0.01 0.02 0.03 0.00 0.00 0.00 0.02 0.01 0.03 0.00 0.04 0.01

0111 0.01 0.02 0.02 0.00 0.01 0.00 0.02 0.02 0.03 0.00 0.00 0.01

1000 0.04 0.04 0.01 0.02 0.01 0.03 0.15 0.03 0.11 0.06 0.02 0.03

1001 0.03 0.06 0.02 0.01 0.00 0.01 0.10 0.03 0.03 0.06 0.03 0.06

1010 0.02 0.06 0.01 0.00 0.00 0.02 0.03 0.01 0.05 0.02 0.02 0.00

1011 0.02 0.12 0.08 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.01 0.01

1100 0.04 0.04 0.00 0.00 0.01 0.04 0.01 0.03 0.04 0.10 0.08 0.00

1101 0.04 0.09 0.02 0.00 0.00 0.03 0.01 0.02 0.04 0.08 0.12 0.00

1110 0.03 0.12 0.02 0.00 0.01 0.01 0.03 0.00 0.04 0.07 0.05 0.00

1111 0.06 0.31 0.06 0.00 0.00 0.01 0.01 0.00 0.07 0.13 0.03 0.00

4. Health deprivation – Children for whom the nearest health service provider is
more than a 15 min walking distance from their dwellings.

The deprivation poset π is composed of 16 binary profiles (see first column of
Table 5), partially ordered as depicted in Fig. 4.

As unidimensional inequality index (normalized to [0,1]), we adopt the so-called
Leti index (Leti 1983)

I (p, λ) = 4

n − 1

∑

xi�λxj

pipj

[
hλ(xi) − hλ(xj )

]

where λ = (X,�λ) is a linear extension of the poset π and hλ(xs) is the height of
xs in λ. Inequality over π is then computed as the average of I (p, λ) over the set of
linear extensions of π :

I (p, π) = 1

|�(π)|
∑

λ∈�(π)

I (p, λ).

The computation of the above index for DRC and each of its regions can be
performed using the function evaluation in package parsec:

library(parsec)
prf <- var2prof(varmod = list(
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Fig. 4 Hasse diagram of the deprivation poset π composed of 16 binary profiles

Water = 0:1,
Sanitation = 0:1,
Shelter = 0:1,
Health = 0:1

))
res <- sapply(data, function(x)

evaluation(prf,
threshold = "0000",
weights = x,
inequality = TRUE

)$inequality
)

(data is a data.frame replicating Table 5). In order to run function
evaluation, a threshold must be provided; since we are not interested in the
identification or severity functions, this can be set to any profile. The final inequality
measures (normalized to [0,1]) are shown in Table 6.
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Table 6 Inequality measures for DRC and its regions

DRC KSS BCO BDD ETR ORT NKV MNM SKV KTG KOT KOC

0.6848 0.6484 0.7199 0.2751 0.3254 0.4423 0.5660 0.4769 0.7172 0.8229 0.6961 0.4417

4 Future Research and Perspectives

In the previous sections, we have concisely presented the main motivations why
partial order theory is of interest for the statistical analysis of socio-economic data,
providing an overview of the main posetic tools currently available for practical
applications. Surely this is just a rough summary of what can be achieved using
posetic algorithms and much more details and examples can be found in the
references cited along the text. As a matter of fact, however, the use of posets in
socio-economic analysis is still at its early stage and several research paths are open
and require further investigation. There are at least four main fields of development,
to be carried on. The first is, in a sense, “cultural”: as socio-economic phenomena
get increasingly complex and nuanced, social scientists must change the way they
represent and measure them, accepting that complexity is irreducible and that it must
be dealt with and accounted for. Posets, which have both a “vertical” dimension
(comparability) and a “horizontal” dimension (incomparability), naturally account
for both the “intensity” of multi-dimensional ordinal socio-economic traits and
for their intrinsic “variability” and can represent them in a way that fits better to
their structure. This, however, requires some mind-changing and the acquisition
of a new language. This point of view is brilliantly exposed by Sen (Sen (1992),
pages 48–49): “[. . . ] if an underlying idea has an essential ambiguity, a precise
formulation of that idea must try to capture that ambiguity rather than lose it.
Indeed, the nature of interpersonal comparisons of well-being as well as the task
of inequality evaluation as a discipline may admit incompleteness as a regular part
of the respective exercises. An approach that can rank the well-being of every
person against that of every other in a straightforward way, or one that can compare
inequalities without any room for ambiguity or incompleteness, may well be at
odds with the nature of these ideas. Both well-being and inequality are broad and
partly opaque concepts. Trying to reflect them in the form of totally complete and
clear-cut orderings can do less than justice to the nature of these concepts.” The
second field concerns the development of new statistical procedures, to address data
analysis problems not solved yet, in an ordinal setting. Examples of open issues
are the development of algorithms for cluster analysis and for dimensionality and
complexity reduction on partially ordered structures, as well as for employing partial
orders in inferential procedures, like linear or logistic regression. The third area
pertains to the development of complete and efficient software resources, so as to
spread the use of posets in applied statistics and make it more effective, on larger
datasets. Finally, the fourth development area is the integration of posetic concepts
and tools into older statistical frameworks, in particular in the field of evaluation
(of personal and social traits, like literacy or poverty, but also of social processes
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and systems, like the healthcare, the educational or the welfare systems), where the
“posetic perspective” may well be a key factor to support governance and decision-
making.
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Assessing Subjective Well-being in Wide
Populations. A Posetic Approach
to Micro-data Analysis

Leonardo Salvatore Alaimo and Paola Conigliaro

1 Measuring Subjective Well-being: A Multidimensional
Issue1

The growing attention to the issues of quality of life and well-being in social
studies and in political analysis led to the use of an increasingly wide range of
subjective indicators. The so-called “Stiglitz Report” (Stiglitz et al. 2009) asserts
the need to analyze the subjective condition using indicators able to detect both
aspects of conscious evaluation and emotional states. Further studies added a third
dimension, the eudaimonic one. This three-dimensional classification was explained
in particular in the OECD guidelines on subjective well-being (OECD 2013), which
collect and systematize the most accredited theoretical production in this field.

The definition of measures to assess subjective well-being (hereinafter: SWB)
involves many disciplines, different approaches and a very articulated range of
models, indicators and inquiring tools. This topic naturally belongs to the field
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of psychology in general, and in particular to positive psychology (Seligman
and Csikszentmihalyi 2000). Indeed, the latter identifies two macro-dimensions
of SWB: (1) the hedonic one (related to pleasure, personal satisfaction, positive
emotions and sensations); (2) the eudaimonic one (related to the realization of
the self and the development of authentic human nature). The statistical surveys
in order to measure subjective aspects of quality of life often use tools borrowed
from psychometry, psychology, medicine, social psychology or sociology. These
usually assume the form of scales (verbal, numerical, continuous)2. They can detect
conditions, perceptions, relational aspects, attitudes, behaviours.

The OECD guidelines (OECD 2013) identify three main dimensions in the
assessment of SWB. According to these guidelines, none of the three dimensions
should be neglected in analyzing SWB.

The first one is the evaluative (or cognitive) dimension, concerning the conscious
assessment of satisfaction for life or for some specific aspects of it. Individuals
assess their satisfaction through a process of implicit comparison with expectations
and with a condition deemed suitable or desirable. As A. C. Michalos (1985)
argues, the standards of reference include comparisons with one’s own needs,
past conditions, aspirations, and the results achieved by other people considered
to be nearer and more significant. The “measurement” of satisfaction for life has a
consolidated tradition in social surveys and uses tools that easily allow statistical
processing. They usually consist on questions such as: “ . . . how satisfied are you
with your life on the whole?”. The answers consist in a numerical or verbal scale.
According to some authors, a 7-level scale should be more precise and reliable, but
many surveys adopt a scale [0–10], supposed to be more familiar to the respondents,
especially in those countries like Italy that use this scale of assessment at school
(Macrì 2017). However, even if such references are easy to perceive, interpretative
distortion can still occur. Some studies have shown that people tend to avoid extreme
responses, especially if the scales have a wide range, and they focus on medium-high
responses, if there are no central responses.

Some reports adopt satisfaction for life as a measure of happiness. But in most
cases, this condition is considered an expression of the hedonic dimension or as an
emotional state (“affect” in the OECD guidelines). The definition of the emotional
dimension of SWB has significant interpretative discrepancies, because the concept
presents aspects of polyvalence and polysemy. Analyzing the data we must always
carefully observe the structure of the questions and answers. Furthermore, an
important aspect concerns whether we attribute to the emotional dimension the role
of determinant or effect of well-being. In the first case, the researchers believe that
the emotional state is mainly caused by individual temperament. In the second case,
the emotional state is considered as an expression of SWB and assumes the role of
its indicator. However, it may happen to meet studies that treat the same object with
both functions (e.g. see Eurostat 2015 and 2016).

2e.g. the attitude scales (Likert, Thurstone), social distance scale (Bogardus), semantic differential
scales (Osgood).
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In order to assess emotional state, social studies often adopt tools – internation-
ally used and tested in epidemiology – measuring mental health or psychological
unease. One of the most used is the battery of questions on mental health
(hereinafter: MHI) adopted in the SF-363 questionnaire. This tool considers two
positive and three negative emotional states and the question is how long a person
has experienced each of the five emotions during the previous 4 weeks. The answers
are articulated in six possible items, ranging from “never having experienced that
state” to “being always in that state”. Ware et al. (1993) summarize the measure
of mental health adopting the average score between the five answers. This way to
elaborate data follows two assumptions (even though implicitly): (1) the modalities
are quantitative and continuous; (2) the value of synthesis admits compensation.
Many studies (clinical and epidemiological, but also social statistics) base their
analysis on these assumptions. This model implies the idea that the experience of a
negative emotion can be subtracted from the experience of a positive one, generating
a balanced measure of the respondent’s emotional state. This presupposes that
positive and negative emotions lay on a single continuum, e.g. a latent variable
corresponding to the emotional state (or mental health). Anyway, this statement is
neither obvious nor incontrovertible. Diener and Emmons (1984) show that there
is no compensation between positive and negative emotions, arguing that we can
experience such compensation only in very short periods. If we consider a long
period of time, we might remember having experienced opposite emotions, but we
would not represent them as an average emotional level.

The third pillar of SWB is the eudaimonic dimension. It allows capturing aspects
of SWB strongly based on inter-subjective relationships, such as shared values,
social recognition and belonging. This dimension cannot be called subjective in the
strict sense, because it is not based only on the evaluations, opinions or perceptions
of those directly involved, but also on the observation of behaviors, attitudes,
relationships and results. Eudaimonia corresponds to a state of good psychological
function that goes beyond conscious evaluation or emotional perception and con-
cerns the realization of one’s individual potential (Waterman 2008 and 2011). Some
authors emphasize the egocentric perception of the need for realization and self-
determination (Deci and Ryan 2008), other ones (e.g. Nussbaum 2011) the aspect
of sharing and recognition within a wider system of values. A common definition
of the concept of eudaimonia – and the identification of indicators to measure it – is
not yet available.

Thus, we have just seen how the three dimensions of SWB can be arranged on the
basis of an increasing level of definitional complexity and operational criticality and
a decreasing level of agreement in the scientific community. In any case, the debate
on SWB and its indicators is still very active and involves further concepts, such as
the flourishing (Diener et al. 2010; Seligman 2011; Huppert and So 2013), which
we will not consider here. The three pillars of SWB are, in turn, defined on the basis

3Developed by a group of scholars at the New England Medical Center in Boston coordinated by
J. H. Ware (1993).
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of non-elementary concepts (OECD 2013). Moreover, the correlations between the
three main dimensions are not so strong (Clark and Senik 2011; Huppert and So
2013) as to allow ignoring the contribution of one of them in the evaluation of
SWB. This confirms the need to reveal all three main dimensions of SWB and to
define interpretative tools that can safeguard the multidimensionality of the concept
(OECD 2013).

Comparing different groups of respondents requires synthesizing the information
gathered on very large databases. By doing this, surveys become accessible and
usable to a wider public, supporting democratic participation and political decisions.
However, the need to reduce the complexity can lead to the risk of excessive
simplification of the concepts and to distortive interpretations of the information
collected. In particular, the identification of the measurement model and the choice
of the synthesis method are critically important steps, which have an impact on the
results. An explicit or implicit conceptual model always guides the interpretation
of the relationship between indicators. According to Maggino (2017), the main
distinction is between reflective and formative models. The reflective model refers
to a latent variable that exists irrespective of the units of measurement and the
units of analysis. The indicators must intercept it, interpret it, and measure it. This
means that the indicators are interchangeable and that the internal consistency is of
fundamental importance: if two indicators are uncorrelated, they do not measure
the same concept. The psychometric tools, usually adopted to measure SWB in
statistical surveys, use a reflective model. The indicators’ effectiveness consists
in their capacity to approximate the measure of a characteristic (mental health,
intelligence, ability). In the study of social phenomena, the most common approach
is, instead, the formative (or constructivist) one. According to this model, the
indicators do not depend on the latent variable, but they determine its nature and
characteristics. The formative is a bottom-up explanatory approach. The internal
consistency is of minimal importance: two uncorrelated indicators can both be
useful and even indispensable for the knowledge of multidimensional phenomena.
Therefore, omitting an indicator means omitting part of the construct. In this paper,
we deal with a formative measurement model4.

The correct definition of the conceptual model allows to correctly interpret
the relationships between the indicators and to correctly identify the procedures
for synthesizing them (Maggino 2017). Thus, it is important to use the correct
method of synthesis, considering the nature of the data. As previously written,
many studies process ordinal information as a continuous quantitative variable,
using then synthesis methods traditionally adopted for this type of variable (e.g.
the arithmetic mean). We consider these methods unsuitable to synthesize ordinal
data and misleading for conclusions. Furthermore, in the analysis of complex

4It should be made clear that the choice of the measurement model does not depend on a free
choice of the researcher, but exclusively on the nature of the latent variable measured (Alaimo and
Maggino 2020).



Assessing Subjective Well-being in Wide Populations. A Posetic Approach. . . 247

phenomena, we must focus our attention on interrelations, rather than on causal
relationships among variables.

In this work we apply our analysis to data deriving from the ad-hoc module on
SWB of the European Union Survey on Income and Living Conditions (hereinafter:
Eu-SILC), adopted in the 2013 edition. These data are analysed by Eurostat in two
different reports. The first one (Eurostat 2015) examines data from this module,
aggregated at country level. It studies life satisfaction (hereinafter: LS) according
to some socio-economic dimensions (e.g. the working condition), and the meaning
of life (hereinafter: MoL) in relation to sex, age class and LS. The values of the
meaning of life are higher than those of LS, and the two variables (considering
data aggregated at the national level) seem to have an almost linear relationship,
with the Pearson5 correlation coefficient (Eurostat 2013) of 0.56. Maybe, the
homogeneity in the structure of the two questions and the relative answers, as well as
the recoding of the two items into the same three classes, 6 could have influenced the
homogeneity of the distribution of the aggregate values. Then it appears necessary
to carry out a micro-data processing to better understand the relationships between
the two variables. As concerning the emotional state (hereinafter: ES), the module
adopted the MHI battery (from the SF-36 questionnaire) with questions relating
to five affects7. The questions have a very different structure compared to those
on LS and MoL, because they concern the frequency of each affect in a limited
period of time (four weeks). Furthermore, the five modalities of response8 are
clearly ordinal. However, the Eurostat report analyzes only happiness, in relation
to age group, family structure, work condition, LS and MoL. The second Eurostat
report (Eurostat 2016) compares three multivariate regression models that consider
overall LS as a dependent variable. The third model includes mental well-being
as independent variable, considering the mental status9 calculated on the MHI
battery – as a factor influencing SWB, and not as one of its components. None of
the two Eurostat reports considers the conjoint contribution of the three dimensions
in expressing the SWB level, although this is one of the recommendations of the
OECD guidelines. But above all, all the three variables expressing the dimensions
of SWB are analysed using statistical methods typical of cardinal variables, thus not
taking into account their ordinal nature.

In this paper, we present an application to the synthesis of SWB indicators taking
into account their ordinal nature. In particular, we propose a two-step synthesis
process: first, we address the synthesis of the indicators used to measure the ES

5The choice of Pearson’s correlation coefficient reveals the questionable assumption that variables
are quantitative.
6The two items are both revealed on a scale from 0 to 10. Recoding defined 3 modalities: low if
the level is less than six, median if the level is between 6 and 8 and high for levels 9 and 10.
7Q: How much of the time, during the past four weeks have you been/felt: Very nervous; Down (in
the dump); Calm and peaceful; Downhearted and depressed; Happy.
8A: All of the time; Most of the time; Some of the time; A little of the time; None of the time.
9Mental status is calculated as the average score of the answers to the five questions on emotional
states, reporting the value on a scale from 0 to 100.
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and then move on to the synthesis of the three dimensions of the SWB. Finally,
we propose an analysis of the differences in the SWB level between different sub-
populations of respondents.

We identified the sub-populations according to the self-defined labour status. The
relationship between labour status and SWB is widely established in the litera-ture
(Gallie et al. 2012; Diener et al. 2018).

Our analysis intends to safeguard the multidimensionality of the phenomenon,
applying the Partially Ordered Set (hereinafter: poset) methodology to the micro-
data analysis.

2 The Issue of Subjective Indicators Synthesis

Methods to synthesize subjective measures expressed with ordinal characters have
become more and more sophisticated, while the possibility of making increasingly
complex calculations with simple computers has made such methods more acces-
sible to scholars. There are two main kinds of synthesis approaches: aggregative-
compensatory or non-aggregative (Maggino 2017).

The synthesis of the indicators of ES that uses the arithmetic mean is an example
of aggregative-compensatory approach (Ware et al. 1993; Eurostat 2016). This
approach is based on a reflective measurement model and it assumes that the five
questions measure one and only one latent variable. According to this model, it
is admissible to aggregate information allowing a value of an indicator that is
consistent with the concept to be compensated by a value of another indicator
that appears to be reverse. The model supposes the existence of a high correlation
between the indicators that concur to detect the latent variable, which can be
interpreted as an expression of a high internal consistency. Thus, in a compensatory
approach using, for instance, the arithmetic mean to synthesize different measures,
a respondent expressing the [5, 3, 1] combination on a set of three ordinal-
scale responses from 1 to 5 would be assimilated without distinction to another
responding [3, 3, 3]. It is evident how the use of an aggregative method flattens
the differences between the two different combinations, making equal two profiles
that are actually different (Alaimo and Maggino 2020). Furthermore, the use of
arithmetic mean for the synthesis is conceptually wrong if we consider each affect
as a partially independent element of the emotional status, but primarily because
the five variables expressing affects are ordinal and not cardinal. In brief, statistical
tools for the synthesis of indicators based on an aggregative approach are inadequate
for describing and dealing with multidimensional systems of ordinal data (Fattore
et al. 2011). For this reason, the choice of a non-aggregative method for the
synthesis of SWB variables is the most correct choice. In this work we adopted
the poset methodology. It grounds on partial orders as an application of discrete
mathematics and it is not compensatory. It identifies response profiles basing on
possible combinations of modalities and defines sorting criteria for these profiles.
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A quite complete presentation of the basic definitions and main elements of this
methodology can be found in Fattore 2016 and 2017.

Using poset10, it is possible to analyze the different levels of a multidimensional
concept, making a synthesis by variables. It is also possible to compare different
sub-populations of respondents on providing summary measures for each subgroup.
This paper takes the basic elements of the methodology for granted.

3 Data

Eu-SILC is an European harmonized official statistical survey11, carried out since
2004 and structured in a longitudinal and a transversal component. It periodically
adopts ad-hoc modules that examine in depth topics of particular importance. The
2013 ad-hoc module measures the state of well-being from a subjective perspective,
and consists of 22 questions, on overall LS, satisfaction with specific aspects
of life (including interpersonal relationships), MoL, emotional states (including
happiness), trust, physical security, availability of someone to talk to and someone to
ask for help. The survey units are households and family members over 16-years old.
The Italian survey collected 38,039 respondents in 2013. Within the subset of people
who answered to the ad-hoc well-being module (25,500 respondents), we select
those between 26 and 65 years old (15,354 records). We have chosen to represent the
three dimensions of SWB through the LS the MoL and the five affects. We have also
selected other variables that we consider important to study the differences in SWB
levels in different subgroups: labour status and gender. In particular, concerning the
labour status (employed, unemployed, retired, etc.) we used the one indicated by the
respondent. In fact, we consider that the self-attributed status is more significant in
defining a relationship with the perceived level of well-being. Naturally the variable
status is categorical non-sortable.12

10There is a large literature on the treatment and synthesis of multidimensional systems of ordinal
data using non-aggregative methods, allowing the construction of synthetic measures without the
aggregation of the scores of basic indicators. Within this approach, poset has become a reference
over the years, as demonstrated by many works in different fields of research (for instance, see:
Annoni and Bruggemann 2009; Fattore et al. 2015; Carlsen and Bruggemann 2017; Arcagni et al.
2019). However, poset can also be suitable for quantitative data (see: Fattore 2018; Alaimo 2020;
Alaimo et al. 2020a, b, c), allowing the overcoming of some limitations of the aggregative methods.
11EC Regulation n.1177/2003.
12Full-time employees (EFT), Part-time employees (EPT), Full-time self-employed (SEFT), Part-
time self-employed (SEPT), Unemployed (UNE), Students (STU), Retired (RET), Unfit to work
(UNF), Fulfilling domestic care (HOU), Other inactive (INA).
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4 Exploratory Data Analysis

The first step in our analysis has been the exploratory analysis concerning the
bivariate relationships between the variables of well-being. In order to test the
existence and the strength of linear relationships among the seven variables of
SWB considered, we calculate the correlation coefficients (Kendall’s Tau-b)13. A
high correlation coefficient would indicate a potential high internal consistency
between dimensions, which should allow us to reduce the set of items. As can be
seen from Fig. 1, reporting the correlation plot, the coefficients are not very high.
The higher values are between the affects down and depressed (0.63) and between
calm and happy (0.62). The correlation between MoL and LS is equal to 0.49. The
relationships between these variables and those expressing the ES are weak. The
results of the exploratory analysis seem to confirm our hypothesis that the different
variables considered do not fall on the same continuum and, therefore, constitute
elements of knowledge that cannot be neglected in the synthesis.

Fig. 1 Correlation plot between variables of subjective well-being: life satisfaction; meaning of
life; the five affects representing life satisfaction. N = 15,354

13We only measure linear relationship. It is therefore perfectly possible that while there is strong
non-linear relationship between the variables, r is close to 0.
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5 Application of the Partial Ordering Methodology

The exploratory analysis confirms that the three main dimensions of SWB cannot
be summarised in a single measure using aggregative compensatory approaches
without losing significant information. This synthesis involves a very delicate two-
step process. The first step defines the ES by synthesizing the five affects; in the
second one, the ES becomes an input variable, together with LS and Mol, to define
a SWB measure, which allows us to assess the level of SWB of the population of
respondents. The poset methodology allows creating a non-aggregative and non-
compensatory synthesis of the three dimensions of well-being, based on solid
mathematical criteria (Fattore et al. 2015; Fattore and Bruggemann 2017). In
particular, it seems the most suitable approach to synthesize the five variables
(affects) expressing ES. In effect, these variables are weakly correlated, they are
expressed in terms of frequency of subjective experience and their modalities
represent the order and not absolute values (they do not enjoy the properties of
a ratio scale and the different levels are not equidistant). We believe that the five
affects do not lie in a continuum, which identifies a latent variable: we cannot say
that a frequent happiness and an equally frequent depression give rise to an average
level of ES (even if the temporal reference is limited to the last four weeks).

A first problem is the definition of the ES poset, due to the criticality linked to
the number of profiles expected in a set of five variables each with five modalities
(3125). In fact, each partially ordered set that we can draw is one of the possible sets
(linear extensions) generated by the comparison of profiles. The number of possible
linear extensions in a set of 3125 profiles is enormous and makes computation
impossible. Thus, to overcome computational problems, we have recoded all the
five variables in three modalities (Table 1). By doing this, the number of the possible
profiles becomes 243. Figure 2 reports the distribution of the answers according to
each affect. Only 1.2% of profiles are “homogeneous” (i.e. [1,1,1,1,1], [2,2,2,2,2],
[3,3,3,3,3]). The 38% of respondents have a profile of this type (in particular, 26%
of total population present a profile [3,3,3,3,3])14.

A second problem is to know the specific ES value to be attributed to each
respondent, starting from the values assumed by the 5 affects. According to Fattore

Table 1 Recoding of affect variables

Variables
Modalities Nervous Down Calm Depressed Happy

Always or most of the time 1 1 3 1 3
Sometimes 2 2 2 2 2
A little or none of the time 3 3 1 3 1

14For an example of the distribution of homogeneous profiles within the total ones, see: Conigliaro
(2018).
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Fig. 2 Distribution of emotional status affects: nervous; down; calm; depressed; happy.
N = 15,354

(2017), we can consider poset evaluation as a way to derive a complete order out
of a partial order: once the evaluation scores have been assigned to the elements of
a poset, they can be ordered in a linear order. Through a simple procedure (Fattore
2017), it is possible to assign to each element of a finite poset a score representing
its position in a “low-high” axis. In this way, we obtain the average rank, i.e. the
average position assumed by a profile in each of the considered linear extensions.
We cannot use the average rank – representing itself a synthesis – as an expression
of the level of ES, as it is a measure of (average) positioning of the profile in the
general order. Furthermore, if we apply the quantile criteria to split the profile into
groups, we could find in a single group profiles expressing very different levels
of ES and profiles of the same level in contiguous groups. In this way, we risk
committing errors in attributing an ES level to individual respondents. In addition to
the position in the general order, we need to take into account the situation in terms
of ES deprivation of each profile, by establishing a criterion to assign the response
profiles to the “deprived” or “not-deprived” category. We can do this by defining a
threshold profile. This choice allows characterizing the distribution according to a
conceptual definition of the phenomenon (it may contemplate the meaning attributed
to the item in a particular culture or other considerations). Starting from the partial
order among profiles, the aim of our analysis is to identify the deprived profiles, with
respect to the threshold, in each linear extension of the poset (Fattore 2016). For the
ES, we have defined as threshold profile the combination [2,2,3,2,3]15. It identifies

15Other thresholds could also be added to better characterize and distinguish profiles. However, in
this case we have not identified another suitable point of discrimination at conceptual level.
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those respondents who have experienced negative emotions for most of the time
during the reporting period and positive emotions sometimes or never. We consider
them as people in a low emotional state. After setting the threshold, an identification
function16 is defined, to assign deprivation membership scores in [0,1] to the poset
elements (Fattore 2016)17. In particular, it expresses the quote of events in which the
profile falls into the area of discomfort, considering the different linear extensions.
The severity is the average of the graph distance of the profile from the first profile
above all threshold elements, and it is equal to 0 for profiles above the threshold.
Both the identification function and the severity function are meaningful to describe
the deprivation in the poset: the first one describes the deprivation ambiguity,
the second one its intensity. We cannot use only the identification function as an
absolute value expressing the ES level, because not all profiles with the same level
of it are equally deprived. Indeed, their deprivation can show very different levels
of severity. Taking into account the two information, we can assess the (probable)
deprivation condition of a profile and consequently of the subject expressing it.

In order to construct a synthetic indicator of SWB, we need to know the specific
value of the ES of each respondent. In this way, we can treat it as an input variable
for the second stage of synthesis. To do this, we decided to summarize the three
functions explained above in a single index, so as to have a measure that takes into
account the position of profiles in the general order and the intensity and ambiguity
of their deprivation with respect to the chosen threshold. We could have calculated
the different functions upon the theoretical set of profiles (i.e. 243 profiles) or upon
the actual dataset (in which we observe 230 profiles of the 243 possible ones).
We decided to consider the theoretical set, so as to obtain values of the functions
not influenced by the respondents’ population. To obtain a synthesis, we decided
to use the Mazziotta-Pareto Index18 (hereinafter: MPI), a composite index for
summarizing a set of indicators that are assumed not fully substitutable (Mazziotta
and Pareto 2016). Our composite (constructed by synthesizing the average rank, the
identification function and the severity function19) is positive, i.e., increasing values
of the index correspond to positive variations of the phenomenon. The composite
assumes values between 87 (profile [1,1,1,1,1]) and 121 (profile [3,3,3,3,3]). Table

16For a complete definition of the identification function and its computation, please see: Fattore
et al. 2012.
17All the operations were carried out using the R package PARSEC (Arcagni and Fattore 2018).
18MPI is a partially non-compensatory composite indicator based on a non-linear function which,
starting from the arithmetic mean of the normalized indicators (indicators are standardized by
means of a variant of z-scores, which transforms the indicators into distributions with mean 100 and
standard deviation 10) introduces a penalty for the units with unbalanced values of the indicators.
We chose this method because various analyses have shown that it is more robust than others are
(for instance, see: Mazziotta and Pareto 2015; Alaimo 2020). For more information on the MPI,
please see: Mazziotta and Pareto 2016 and 2017.
19In the normalization, it is necessary to define the polarity of the basic indicators, i.e. the sign of
the relation between the indicator itself and the phenomenon to be measured. Therefore, the type of
composite we want to construct defines polarity. In our case, the average rank has positive polarity,
while the identification and the severity functions negative.
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Fig. 3 Distribution of subjective well-being variables: emotional status; meaning of life; life
satisfaction. N = 15,354

A1 in appendix reports the values of the MPI assigned to each profile. In order to
use the new ES variable in the poset of subjective well-being with MoL and LS, we
have discretized the composite index according to the following criteria:

• profiles with MPI ≤ 99 obtain a value of 1;
• profiles with 100 < MPI ≤ 110 obtain a value of 2;
• profiles with MPI ≥ 110 obtain a value of 3.

Then, we have attributed the values of the new discretized ES variable to the Eu-
SILC dataset. We also have recoded LS and MoL into three modalities following
the recoding adopted by the Italian National Institute of Statistics – Istat (2003) for
LS20. Figure 3 shows the distribution of the frequencies of the three variables of
SWB in the dataset.

The second step of our analysis consists in defining a synthetic “measure” of
SWB, using the three variables representing its dimensions (MoL, LS and ES).
Figure 4 shows on the left the Hasse diagram representing the 27 SWB profiles
and on the right the distribution of respondents for each profile (the nodes have a
size proportional to the frequency of respondents). To highlight different levels of
SWB we defined three thresholds: [3,1,2], [3,2,1] and [2,2,2]. The analysis of the
distribution highlighted that most of respondents declared high levels of MoL. We
have established that a subjective profile, to be defined at a “good” SWB level, must
have at least the dimension MoL at 3 (i.e. from 8 to 10 in the original scale) and one
of the other two dimensions at 2. At the same time, we have also defined another

20Recoding method: (0–5) = 1 – “Low”; (6–7) = 2 – “Medium”; (8–10) = 3 – “High”.
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Fig. 4 Subjective well-being: Hasse diagram of the three dimensions; distribution of respondents
in each profile

threshold, the “low” one, identifying it in a profile that presents a medium level in
all three dimensions at the same time. This means that people who have at most
2 in one or two dimensions and less than 2 in the rest are definitely in poor SWB
condition.

Considering that the SWB levels could be influenced by other variables (e.g.
sex, working condition, etc.), we analyzed and compared it in function of some of
them, taking into account different sub-populations. Let’s consider, for example, the
case of the labour status. Consistently with the aggregate level analysis (Eurostat
2015), the unemployed and other persons excluded from work (such as full and
permanent unfitness) show lower levels for all subjective well-being measures.
There are also differences in the distribution of levels for each of the three SWB
dimensions, depending on the different conditions. Figure 5 shows an example
of differences based on labour status (we consider three categories: unemployed,
part-time employees and full-time employees) and gender. Considering full-time
employees, we can see that MoL has a similar distribution in all gender categories,
while there are some small differences in LS and ES levels. Part-time employees
show some differences in the distribution of males and females, with the latter
having higher levels of MoL and LS, while lower ones of ES. For the unemployed,
SWB levels are lower for all respondents and for all dimensions, with women
reporting higher levels in all items than males.

These are the result of the analyses at micro-data level and the adoption of a
method that respects the multidimensional nature of the concept. They suggest
more precise interpretative hypotheses of the relationships between labour status
and SWB. Thus, a correct analysis of SWB levels in a population must be carried
out taking into account other variables. On the basis of these findings, we decided
to identify a series of sub-sets, generated from the initial dataset on the basis of the
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Fig. 5 Subjective well-being dimensions distribution according to gender and labour status.
N = 15,354
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Table 2 Synthetic measures of subjective well-being by labour status and gender: sub-
populations; poverty gap; wealth gap; number of observations

Sub-populations Poverty Gap Wealth Gap Observations

Total 0.361 0.671 15,354
Full time employees 0.292 0.699 6,076
Part time employees 0.361 0.689 1,206
Unemployed 0.511 0.551 1,400
Male 0.344 0.670 7,131
Female 0.375 0.672 8,223
Full time employees - female 0.313 0.702 2,590
Full time employees - male 0.274 0.695 3,486
Part time employees - female 0.359 0.706 1,009
Part time employees - male 0.298 0.360 197
Unemployed - female 0.482 0.589 732
Unemployed - male 0.536 0.502 668

values of two context variables, gender and labour status21. We studied the SWB
levels in the sub-populations through two procedures.

The first procedure consists in comparing SWB levels in different sub-
populations using two synthetic measures, called poverty gap and wealth gap22.
The name of these measures is a reference to synthetic poverty measures calculated
using the AF method (Alkire et al. 2015). These measures are the average values
of relative severity and relative wealth23 and can be used to compare different
populations. In this work, higher values of poverty gap indicate a population at a
lower level of ES and higher values of wealth gap reveal good ES. Table 2 shows
the poverty gap and wealth gap values in the different sub-populations studied.

The results highlight that the unemployed have worse levels of poverty gap and
wealth gap than the total population. The worst level of poverty gap belongs to
unemployed men. Full-time employees have better levels in both measures then
total population. These results were quite predictable. However, women with a part-
time employment register the highest level of wealth. One possible interpretation of
this result is that part-time work is often, but not always, a choice for many women
allowing them to reconcile labour with private life. This is just a hypothesis, which
should be supported by detailed analyses, for example, regarding the characteristics
of work, working time and income.

21We consider three categories of labour status (unemployed, part-time employees and full-time
employees), three categories of gender (female, male and total population) and their interactions.
22For a definition of the two functions and their computational procedures, please see: Arcagni and
Fattore 2018.
23The relative wealth is the average graph distance from the maximum threshold element, over the
sampled linear extensions divided by the maximum wealth.
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Fig. 6 Cumulative frequencies distribution of identification function according to labour status
and gender

In the second procedure, we compare the distribution of cumulative frequencies
of the identification (Fig. 6) and relative severity (Fig. 7) in the different sub-
populations. Looking at the total population, in Fig. 6 we can see that a half of
the part-time employees and more than 40% of full-time employees have zero or
very low identification level (between 0 and 0.04 of the horizontal axis), while less
than 30% have a high or absolute identification. The share of unemployed persons
with a zero or low level of identification is low (just above 25%), while over half of
them present a high level. Females perform better than total population compared
to full-time and part-time employees, with over 50% presenting zero or very low
identification level (about 25% have a high or absolute identification). Even the
population of female unemployed tends to be better than the total unemployed (for
instance, 30% have zero or very low identification level). The male population
has a similar trend to female one for full-time employees. Considering part-
time employees, we can see that about 30% of men have a low identification
value, compared to 50% of women; similar considerations can also be made for
the unemployed. The results highlight the differences in SWB status for women
and men in different working conditions, confirming a generally better status for
women – unemployed and part-time employees – than for men (same result as in
the first procedure, see Table 2).

In the same way we can compare the distribution of the cumulated relative
frequencies of the relative severity value (Fig. 7), i.e. the depth of the fragility
of the profile among the deprived profiles, comparing it with the most deprived
profile. The value is almost nil for almost 70% of part-time employees, more than
60% for the full-time and quite 40% for unemployed. It is very high for 14% of
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Fig. 7 Cumulative frequencies distribution of severity function according to labour status and
gender

the unemployed and for just 5% of full-time employees. With respect to gender
differences, the considerations made above can be confirmed.

6 Conclusions

The relationship between labour status and SWB is widely established in the
literature. However, this notion is always evaluated at the general level comparing
aggregated data or else at individual psychological level.

The present analyses confirm this relationship at individual level, in wide popu-
lation of respondents. Applying the analyses to micro-data supplied by an official
statistical survey represents a further step that allows us to compare a consistent
number of really subjective conditions. It is in line with the recommendations of the
Commission on the Measurement of Economic Performance and Social Progress
and following international guidelines on measuring well-being in wide populations.

The adopted methodology of synthesis (poset) perfectly fits the framework of
SWB providing a satisfying tool to analyse micro-data and synthesize indicators
expressed in ordinal way. Moreover, the non-compensatory nature of posets make
them the perfect approach to analyze SWB data. This research experiments also a
multi-stage application of this methodology, identifying critical issues and propos-
ing solutions.
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A.1 Appendix

Table A.1 Values of the Mazziotta Pareto Index – MPI for profiles of the emotional status

Profile MPI Profile MPI Profile MPI Profile MPI Profile MPI

11111 87.0 21113 91.3 22222 97.4 32231 102.8 22332 112.0
11211 87.2 13131 92.8 13321 97.4 32222 102.9 32322 112.0
12111 87.3 32211 92.8 33121 97.5 23132 103.0 32232 112.0
21111 87.3 23112 92.9 33211 97.6 33131 103.0 22233 112.0
11121 87.3 12231 93.0 13222 97.6 23321 103.1 23313 112.1
11112 87.5 31131 93.0 31231 97.6 33212 103.1 23322 112.1
11311 87.9 23121 93.0 21331 97.8 13232 103.3 33132 112.1
12211 88.0 21321 93.0 32221 97.9 23231 103.4 32223 112.2
31111 88.0 13221 93.0 23131 98.0 11323 103.4 33213 112.2
13111 88.1 31221 93.1 12331 98.1 12332 103.4 13233 112.3
11131 88.1 33111 93.1 31222 98.1 32321 103.4 32133 112.3
11221 88.1 21312 93.2 22231 98.2 33311 103.4 31332 112.4
21211 88.1 12321 93.3 31321 98.2 22331 103.5 33312 112.4
12121 88.2 22221 93.3 32122 98.2 23222 103.5 33123 112.5
22111 88.2 13311 93.4 32212 98.2 31331 103.7 33231 112.5
11212 88.2 13122 93.4 31132 98.2 13331 103.7 23133 112.6
12112 88.3 23211 93.5 22123 98.3 31232 103.8 13323 112.8
21112 88.3 22311 93.5 22312 98.3 13322 103.8 32313 112.8
11113 88.4 13212 93.5 23311 98.4 33221 103.9 31233 112.8
21121 88.6 32112 93.6 23122 98.4 23123 103.9 31323 112.9
11122 88.9 21222 93.6 33112 98.6 32312 104.0 21333 112.9
12311 89.3 21231 93.7 12223 98.7 22323 104.0 12333 113.2
13112 89.6 13113 93.7 31213 98.7 33113 104.1 33223 118.6
11231 89.7 31311 93.7 21322 98.8 31313 104.1 32332 118.6
23111 89.7 12132 93.7 31123 98.8 23312 104.1 33322 118.6
11312 89.8 11331 93.8 21232 98.8 32213 104.1 23332 118.7
11213 89.9 32121 93.8 32131 98.8 32123 104.2 33232 118.9
13211 90.0 22131 93.8 13132 98.8 31322 104.2 33133 118.9
12131 90.0 12312 94.0 21313 99.0 23213 104.2 33313 118.9
12113 90.0 11133 94.1 22132 99.2 13223 104.3 32233 119.0
22121 90.0 22122 94.1 31312 99.2 33122 104.4 33331 119.0
22211 90.1 12222 94.1 21223 99.3 32132 104.6 23233 119.0
13121 90.1 22212 94.2 11332 99.3 21332 104.7 31333 119.1
21221 90.1 12123 94.2 12232 99.3 22232 104.7 13333 119.1
31211 90.1 31122 94.3 13123 99.5 21133 104.7 23323 119.5

(continued)
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Table A.1 (continued)

Profile MPI Profile MPI Profile MPI Profile MPI Profile MPI

22112 90.2 31212 94.3 32113 99.5 13313 105.1 32323 119.5
32111 90.2 21213 94.3 12313 99.6 12233 105.2 22333 119.8
31121 90.2 11232 94.3 23113 99.6 21233 105.3 33323 119.8
21131 90.3 22113 94.5 13213 99.8 11333 105.4 33332 119.9
31112 90.3 21132 94.6 12133 99.8 13133 105.4 33233 120.0
21311 90.4 11322 94.6 11233 100.1 31223 105.4 32333 120.0
12122 90.4 31113 94.7 13312 101.0 31133 105.5 23333 120.0
21212 90.4 21123 94.8 22223 101.2 22133 105.5 33333 121.1
11321 90.4 12213 94.9 12322 101.3 33321 111.2
12221 90.5 11313 95.0 22322 101.5 23331 111.4
11222 90.5 11223 95.5 21323 101.7 23223 111.5
21122 90.5 23221 96.8 23212 101.7 32331 111.5
11132 90.5 22321 97.1 12323 101.8 23232 111.5
11123 90.6 32311 97.2 22313 101.8 13332 111.8
12212 90.6 13231 97.3 22213 102.6 33222 111.9
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Deep Ranking Analysis by Power
Eigenvectors (DRAPE): A Study
on the Human, Environmental
and Economic Wellbeing of 154 Countries

Cecile Valsecchi and Roberto Todeschini

1 Introduction

Multi-criteria decision making (MCDM) is a decision process applicable in presence
of multiple criteria which are often in contrast with each other (Ivlev et al. 2015;
Kumar et al. 2017; Ho et al. 2010; Triantaphyllou 2000). A decision process consists
of (1) definition and structuring of the problem, (2) model development to compare
and rank the alternatives in a transparent way, (3) elaboration of an action plan.
In general, the main aim of a decision process is to generate information and
solutions in an effective way providing a good understanding of the problem. The
simplest approaches in a MCDM belong to the so-called scoring methods, such
as desirability/utility functions and simple average scoring (Pavan and Todeschini
2008a). Other methods comparing objects pairwise are called outranking methods,
such as dominance functions (Pavan and Todeschini 2008b). Furthermore, partial
order ranking methods, such as Hasse diagram technique, highlight the conflicting
information by identifying incomparable objects (Pavan and Todeschini 2009).

Recently, a new approach based on a development of the Power-Weakness
Ratio (PWR), called Deep Ranking Analysis by Power Eigenvectors (DRAPE) was
proposed (Todeschini et al. 2015, 2019). Indeed, this method is based on the Power-
Weakness Ratio proposed by Sir Kendall in (Kendall 1955) and later implemented
by Ramanujacharyulu in (Ramanujacharyulu 1964) exploiting the ability of the
eigenvalue/eigenvector technique in ranking the objects by taking into account the
whole information present in the data.
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The DRAPE approach offers a sequential ranking procedure and allows a simple
interpretation of the obtained ranking in terms of the importance of the original
criteria.

Here the DRAPE approach is applied to study the sustainability of 154 countries,
expressed as a function of human, environmental and economic wellbeing indicators
(i.e. criteria) with the aim to highlight the potentiality of this multivariate ranking
approach.

This data set is only used as a case study to apply the new proposed ranking
method; a deep discussion and sociological analysis about sustainability as well as
the links between sustainability factors is out of the scope of this paper.

2 Theory

2.1 DRAPE

The Deep Ranking Analysis by Power Eigenvectors (DRAPE) approach (Todeschini
et al. 2019; Valsecchi et al. 2020) allows to rank objects described by multiple
criteria starting from the definition of tournament table and of Power-Weakness
Ratio (Ramanujacharyulu 1964). In addition, this approach provides a-posteriori
information about the contributions of the initial criteria to the ranking by means of
a retro-regression analysis. The method will be briefly described; further details are
available in (Todeschini et al. 2019).

2.1.1 The Tournament Table and Power-Weakness Ratio

Let X be a data matrix being comprised n objects described by p criteria. A basic
tournament table (TW) is a weighted count matrix of size n x n obtained by defining
its elements (tW

ij ) as follows:

tW
ij =

p∑

k=1

wk · δij,k where δij,k =
⎧
⎨

⎩

1 if xik � xjk

0.5 if xik � xjk

0 if xik � xjk

and
p∑

k=1

wk = 1

(1)

where wk is the weight given to the k-th variable and xik is the value of the k-th
variable for the i-th object. The weights can be established by the user according
to any prior knowledge or reflecting defined priorities; if no weighting scheme is
adopted, all the weights are set by default to 1/p (i.e., all the criteria have equal
weights).

The tW
ij value can be easily interpreted as the proportion of cases where the object

i dominates the object j.
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In order to emphasize the extreme winner/loser objects, a threshold t* is used to
smooth the original tournament table as the following:

tW
ij =

{
0.5 if 1 − t∗ ≤ tW

ij ≤ t∗ 0.5 ≤ t∗ < 1

tW
ij otherwise

(2)

that is, the basic tournament table TW is transformed by replacing the original
entries fulfilling the threshold condition with the value of 0.5, which corresponds
to a draw. This basically means to neglect the differences between two objects for
some criteria.

The threshold selection is not user-defined but automatically performed based on
the different actual values of the basic tournament table. Indeed, we extract from
the basic tournament table the different entry values greater than 0.5 and use them
one at a time as the threshold to generate a new smoothed tournament table. It can
be noted that the threshold t∗ = 0.5 corresponds to the original basic tournament
matrix and it is always included in the set t* of selected thresholds. Since different
weighting schemes w can be adopted to modulate the relevance of the criteria in
the decision process and for each of them a different set of thresholds t* can be
obtained, a family of tournament tables {TW[t∗]}is finally generated.

The tournament tables are asymmetrical, nonnegative and irreducible and,
applying the eigenvalue/eigenvector technique, according to the Perron–Frobenius
theorem (Keener 1993), they always give at least a positive eigenvalue to which
corresponds a positive eigenvector L. Thus, from the tournament table and its
transpose matrix we can calculate two eigenvectors L and L*. The loadings of L
rank the objects from the best to the worst one, while the loadings of L* give a
reverse ranking, that is, from the worst to the best object. For each object, it is then
calculated the following score, called Power Weakness Ratio (PWR):

PWRi = α + Li

α + L∗
i

α = 1

n
(3)

where α is a small empirical correction parameter, defined as the reciprocal of the
number n of objects, which avoids singularities or spikes in the case of zero or
very small eigenvector entries. This PWR function encodes both the power and the
weakness of each object over the remaining n – 1 ones, resulting in a trade-off
between how many times an object “defeats” the other objects and how many times
an object is “defeated” by the others.

Once all the objects have been ordered by the corresponding PWR values, a PWR
diagram can be built by defining the vertical axis in terms of the PWR values of the
objects.

A reliable ranking is thus obtained by shrinking the PWR values, usually
represented by several decimal digits, to one or two decimal digits, representing
the degree of resolution.
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To measure the degree of total ordering provided by PWR or, in other words the
degree of not-distinguishable objects, we used the standardized Shannon entropy H:

H =
−

q∑

k=1
pk · log2 (pk)

log2(n)
0 ≤ H ≤ 1 (4)

where q is the number of equivalent ranking levels (i.e., the number of the different
PWR values, rounded to two decimal digits), and pk is the fraction of objects in the
k-th level. If all the objects have different PWR values, a total order without draws
is obtained and the following relationships hold:

q = n pk = 1/n ∀k, k = 1, 2, . . . , q H = 1

On the other side, if all the objects have the same PWR value, no ranking is
obtained, and the following relationships hold:

q = 1 p1 = n/n = 1 H = 0

In general, the standardized Shannon entropy is expected to decrease with the
increase of the threshold value, since increasing the smoothing of the tournament
table leads to have more objects placed at the same ranking level.

2.1.2 Deep Ranking Analysis

The set of families of tournament tables obtained considering different thresholds
t*(w) is automatically pruned by eliminating those matrices whose ranking has a
correlation higher than 0.995 (settled as default value) with those of the previous
ones.

By exploiting the PWR rankings obtained with the different thresholds of the
tournament table, a deep ranking analysis is performed by Principal Component
Analysis (PCA) on the matrix having n rows (the objects) and K columns (the
different PWR rankings). The first component is enough to explain almost the whole
variability of the data. The scores of the first component represent the consensus
ranking (CPWR) of the objects, while the loadings explain the role played by each
threshold in determining the global ranking scores. Thus, the result is a deep ranking
analysis able to summarize all the different PWR rankings.

2.1.3 Retro-regression Analysis

Given the CPWR or a PWR ranking of the objects, a regression can be carried
out to evaluate how the original ordering criteria encoded in the X data matrix are
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related to the final ranking. Indeed, a regression method can be used to obtain the
standardized regression coefficients explaining the relationships between X (i.e., the
original criteria that are the independent variables) and CPWR or PWR, which is
the dependent variable (i.e., the vector “response” y). We used the ridge regression
method, which enables the calculation of the regression coefficients even in the case
of more criteria than objects and avoids spurious spikes of the coefficients. The
ridge model equation can be defined both for the single PWR rankings (at different
thresholds) and for the consensus ranking CPWR as:

bRR =
(

XT · X + k · I
)−1 · XT · y (5)

where k is a scalar value and I is the identity matrix. The value of k was fixed to 0.01
and not optimized through some validation procedure, since we are interested in the
interpretability of the model (i.e. in its fitting) rather than in its predictive capability.

The ridge regression coefficients bRR are standardized by the usual expression:

b∗j = bj · sj

s
j = 1, p (6)

where sj and s are the standard deviations of the j-th variable and the response y
(i.e., CPWR or PWR), respectively, and bj is the ridge regression coefficient of j-th
variable.

The analysis of the retro-regression coefficients allows the a-posteriori interpre-
tation of the obtained rankings in terms of relevance of the original criteria and their
evolution according to the applied degree of smoothing given by the threshold.

2.2 Comparison with Other Ranking Techniques

We compared the results obtained by the DRAPE approach with other well-known
traditional ranking techniques (Pavan and Todeschini 2008a; Pavan and Todeschini
2009). The comparison was performed with the dominance functions (DOM)
(Keller et al. 1991), utility (UTI) functions (Zionts and Wallenius 1976) and simple
additive ranking (SAR) (Zimmermann and Gutsche 1991).

The considered ranking methods are mathematically represented by the fol-
lowing formulas, denoting n as the number of objects, p the number of variables
(criteria), wj the weight of the j-th variable, rij the rank of the i-th objects for the
j-th variable; fij is the linear transform of the i-th object for the j-th variable into the
interval [0, 1], W+ is the sum of the variable weights when object i dominates object
m, W− is the sum of the variable weights when object i is dominated by object m:

UTIi =
p∑

j=1

wj · fij (7)
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SARi =

p∑

j=1
wj · rij
n

(8)

DOMi =
n∑

m=1

1 + W+

1 + W− m �= i (9)

All the values obtained by the formulas 7, 8 and 9 were always scaled in the
interval [0, 1].

3 Dataset

As a case study we considered the countries levels of sustainability used in the
calculation of the Sustainable Society Index (SSI), developed by Sustainable Society
Foundation (Van de Kerk and Manuel 2008) and freely available at http://www.
ssfindex.com. The last available data coming from the sixth edition of the SSI (2016)
were considered.

According to the Brundtland definition, a sustainable society is a society (1) that
meets the needs of the present generation, (2) that does not compromise the ability
of future generations to meet their own needs, (3) in which each human being has
the opportunity to develop itself in freedom, within a well-balanced society and in
harmony with its surroundings (WCDE 1987). Being based on this definition, for
154 countries the SSI collects 21 indicators, grouped into 7 categories belonging
to 3 wellbeing dimensions: human (9 indicators), environmental (7 indicators) and
economic (5 indicators) wellbeing (see Table 1).

The 21 indicators are based on different public data sources circulated by
international organizations such as: Food and Agriculture Organization of the
United Nations (FAO), United Nations Educational, Scientific and Cultural Orga-
nization (UNESCO), World Health Organization (WHO), World Economic Forum
(WEF) and International Monetary Fund (IMF). Further information about how
the indicators are calculated, are provided on the SSI website (SSI n.d.). All the
indicators are in range [0, 10] in the direction of sustainability, i.e. a value of 10
always indicates the maximal sustainability.

We refer to the countries using three letters following the ISO 3166-1 alpha-3
standard published by the International Organization for Standardization (ISO). The
country codes are reported in Appendix. Moreover, we codified the 21 indicators
as reported in the last column of Table 1. Therefore in this work we expand the
considerations made in the previous paper (Todeschini et al. 2019) considering all
the 21 wellbeing indicators.

http://www.ssfindex.com
http://www.ssfindex.com
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4 Software

All the algorithms and calculations were carried out in MATLAB (version 2019a)
by means of routines written by the authors. The DRAPE toolbox v. 2 (new ver-
sion) is available for download at http://www.michem.unimib.it/download/matlab-
toolboxes/drape-toolbox-for-matlab/.

5 Results and Discussion

In order to analyse the effect of different weighting schemes, the following two
approaches were adopted:

1. In the first case an equal weight (wk = 1/21) was assigned to each indicator, i.e.
the initial contribution of the indicators is equal to 0.0048. Therefore, henceforth
this first approach will be called equal.

2. Then, we weighted equally the three wellbeing dimensions which have thus a
contribution of one third each. In this case the sum of the weights of the indicators
belonging to a dimension has to be equal to 0.33. Therefore, each indicator of
human wellbeing has a lower weight (wH = 0.0367) than those of environment
wellbeing (wN = 0.0471) and economy wellbeing (wE = 0.066). From now,
this second approach will be called proportional since the initialized weights are
inversely proportional to the number of indicators per dimension.

Furthermore, we assessed the DRAPE ranking method with both equal and
proportional weight initialization approaches considering: (1) all countries together
and (2) countries grouped by continents (Europe, Africa, North, South and Central
America and Asia-Oceania). The CPWR ranking was considered. For Europe alone
we took into account only 18 out of 21 indicators because H1, H2 and H3 were
almost constant. For sake of visualization a resolution of one decimal digit was
used.

5.1 All Countries

The DRAPE method was applied on 154 countries described by the 21 wellbeing
indicators as summarized in Fig. 1. A weight (equal or proportional) is assigned
to each indicator prior to the construction of the basic tournament table and of the
progressively smoothed ones. The different thresholds found in the basic tournament
table after the correlation pruning are 10 (0.5, 0.55, 0.59, 0.6, 0.62, 0.67, 0.71, 0.74,
0.79 and 0.81) using the equal weighting scheme and 35 for the proportional one.
It can be noticed that the higher the thresholds selected the more the ties in the
consensus ranking, i.e. more objects (points) have the same PWR value. This is

http://www.michem.unimib.it/download/matlab-toolboxes/drape-toolbox-for-matlab/
http://www.michem.unimib.it/download/matlab-toolboxes/drape-toolbox-for-matlab/
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Fig. 1 Scheme of the DRAPE procedure applied to the data countries case study. Starting from
the creation of the tournament tables applying a weighting scheme (equal or proportional) for
the wellbeing indicators; the PWR and entropy are calculated and a deep ranking analysis through
PCA is performed. Finally, the retro-regression analysis allows the interpretations of the indicator’s
importance over the ranking
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due to the progressive smoothing of the tournament table (formula 3) which lead to
smaller entropy values.

The PCA was then performed using the PWR rankings for the retained thresholds
(i.e. thresholds leading to a ranking with a correlation lower than 0.995 with the
others). The CPWR ranking plots are shown in Fig. 2. It is evident that the European
countries (green circles) are in general on the top of the CPWR plots, together
with some Central-American countries (black circles) such as Costa Rica (CRI)
and Cuba (CUB) and two Oceania countries (purple circles): Australia (AUS) and

Fig. 2 Consensus ranking for all the countries represented by CPWR with equal (a) and
proportional (b) initial weights for the indicators. Regression coefficients at threshold 0.5 for equal
(c) and proportional (d) initial weights (the coefficient of determination R2 is equal to 0.92 and
0.89 for the equal and proportional weight initializations, respectively)
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Fig. 2 (continued)

New Zealand (NZL). Asian countries (white circles) show high variability in their
ranks, being some of them located in the middle positions and other in the bottom
positions. The majority of the (blue, yellow and black circles) American countries
(blue circles) are located in the middle-down positions, while the African countries
(red circles) are in the middle-down and bottom of the rank.

The different initialization of the weights involves small variations in the
ranking. For example, Switzerland (CHE) is the fourth most sustainable country
considering the indicators with equal weights (Fig. 2a), but when the indicators are
proportionally weighted (Fig. 2b) it becomes second in the rank order together with
Sweden (SWE) and Denmark (DNK).

The equal initialization of weights is intrinsically unbalanced towards human
well-being indicators, as they are more numerous (9) than environmental (7)
and economic (5) indicators. Therefore, considering equally relevant the three
dimensions of wellbeing (i.e. using a proportional weight initialization) Switzerland
may be more sustainable than Denmark for environmental and/or economic reasons.
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The CPWR ranking was then interpreted by carrying out the retro-regression in
function of the original data matrix X and looking at the regression coefficients.
Regarding the environmental indicators, for both weighting Schemes N4 (energy
use) has a not significant coefficient as N2 (renewable water resources) and N3 (less
consumption). On the other hand, N5 (energy savings) and N6 (less greenhouse
gases) have a high coefficient suggesting that the sustainability ranking can be
explained in particular by these indicators.

5.2 Continents

5.2.1 Europe

Slight differences between the two weighting schemes were noticed also consid-
ering the 40 European countries described by 18 wellbeing indicators, being H1
(sufficient food), H2 (sufficient to drink) and H3 (safe sanitation) almost constant.
The countries in the two CPWR rankings (Fig. 3a, b) show small variations in the
ranking.

The corresponding standardized regression coefficients show a similar behaviour,
but those obtained using the equal weighting scheme are in general lower (Fig. 3a).

In particular, the most influent indicators are H5 (healthy life), N5 (energy sav-
ings) and E5 (less public debt). Moreover, N1 (biodiversity), N3 (less consumption),
N4 (less energy use) and E3 (GDP) are not influent over the ranking.

5.2.2 America

Interestingly, the H5 indicator (healthy life) is relevant also for the 25 American
countries ranking (Fig. 4), but with a high negative coefficient. This indicate that
H5 is inversely related to the ranking suggesting that the most sustainable American
countries are those with a less healthy lifestyle. In this case good governance (H9)
and less greenhouse gases (N6) are the indicator with the most relevant positive
coefficient for the equal and proportional weighting scheme, respectively. It can be
noticed for example that Canada (CAN) and Jamaica (JAM) decrease while Panama
(PAN) increases their CPWR scores considering the weights as proportional.

5.2.3 Africa

In the interpretation of the 44 African countries ranking, E3 (GDP) and N4 (less
energy use) have a negative coefficient (Fig. 5); while H3 (safe sanitation), H9
(good governance) and N7 (renewable energy) have the greatest positive coefficients
in the equal weights initialization case, while H5 (healthy life), N2 (renewable
water resources), E1 (organic farming), E2 (genuine savings), E4 (employment)
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and E5 (less public debt) become relevant in the proportional weights initialization.
In general, using the proportional weighting scheme compared to the equal one,
economic wellbeing indicators have a higher coefficient, that is a higher influence on
the African sustainability ranking. For this reason, countries like Tunisia (TUN) and
Lesotho (LSO) decrease their ranking position switching from equal to proportional
weights initialisation.

Fig. 3 CPWR ranking and standardized regression coefficients for equal (a and c) and propor-
tional (b and d) weights initializations for Europe. CPWR values are represented on the vertical
axis; H stands for the standardized entropy (the coefficient of determination R2 is equal to 0.92 and
0.90 for the equal and proportional weight initializations, respectively)
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Fig. 3 (continued)

5.2.4 Asia-Oceania

Regarding Asia-Oceania, N4 (energy use) and N6 (less greenhouses gases) have the
most influential coefficients using the equal weighting scheme (Fig. 6c), the first
with a negative and the second with a positive value. On the other hand, applying
a proportional weighing scheme reduces the negative influence of N4. According
to the considered indicators, New Zealand (NZL) is the most sustainable country
in Asia-Oceania. Although the coefficients seem not to vary significantly using the
two initializations of weights (Fig. 6c, d), there are still some ranking differences;
for example weighting equally all the 21 indicators, Australia (AUS) is in the
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fourth position after Sri Lanka (LKA) and South Korea (KOR), while it descends
significantly by weighting equally the three dimensions (i.e. proportional approach,
Fig. 6a, b). Indeed, even small variations in coefficients imply different rankings,
especially for countries with similar values of indicators.

Fig. 4 CPWR ranking and standardized regression coefficients for equal (a and c) and propor-
tional (b and d) weights initializations for America. CPWR values are represented on the vertical
axis; H stands for the standardized entropy (the coefficient of determination R2 is equal to 0.93
both for equal and proportional weighting schemes)
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Fig. 4 (continued)

5.3 Comparison with Traditional Ranking Methods

In order to verify the similarity as well as the discrepancy between different
ranking methods, the CPWR DRAPE rankings are compared to those obtained from
the following traditional ranking techniques: dominance functions (DOM), simple
average ranking (SAR) and utility functions (UTI).

As an example, the rankings for all the considered methods were applied to
American countries and the comparisons are reported in Fig.7a when equal weights
are given to all the criteria and in Fig.7b when proportional weights are given to the
criteria.
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All the methods agree to identify Costa Rica (CRI) as the most sustainable
American country, while Guatemala (GTM), Haiti (HTI) and Bolivia (BOL) are in
the last position for SAR, DOM, UTI and CPWR, respectively using equal weights
for the indicators. With a proportional weighting scheme, all the methods locate
Guyana (GUY) in the last position.

Fig. 5 CPWR ranking and standardized regression coefficients for equal (a and c) and propor-
tional (b and d) weights initializations for Africa. CPWR values are represented on the vertical
axis; H stands for the standardized entropy (the coefficient of determination R2 is equal to 0.82 for
the equal weights and 0.77 for the proportional ones)
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Fig. 5 (continued)

In general, it can be noted that, as expected, the different ranking methods show
similar trends but not exactly coincide.

6 Conclusions

The Deep Ranking Analysis by Power Eigenvectors method was applied to 154
countries described by 21 indicators belonging to three wellbeing dimensions taken
from the Sustainable Society Index (SSI) website. In order to study the effect
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of a different initialization of weights on the ranking we considered all the 21
indicators (1) with the equal weights and (2) with weights contribution proportional
to the three wellbeing dimensions. Since the human wellbeing dimension has the
greatest number of indicators, the equal approach is more oriented to human-
based sustainability than the proportional approach which on the other hand
offers a more balanced trade-off between human, environmental and economic

Fig. 6 CPWR ranking and standardized regression coefficients for equal (a and c) and propor-
tional (b and d) weights initializations for Asia-Oceania. CPWR values are represented on the
vertical axis; H stands for the standardized entropy (the coefficient of determination R2 is equal to
0.95 for the equal weights and 0.94 for the proportional ones)
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Fig. 6 (continued)

sustainability, accordingly to the considered indicators. The coefficients explaining
the sustainability ranking provided by the a-posteriori retro-regression analysis take
different values when single continents are considered. For instance, the healthy life
indicator (H5) showed an opposite contribution to the ranking of the European and
American countries. Furthermore, several indicators, which are almost irrelevant in
some continents, become fundamental for the interpretation of the ranking in other
continents.
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Fig. 7 Ranking positions according to dominance functions (DOM, yellow line), simple average
ranking (SAR, orange line), utility functions (UTI, blue line) and DRAPE consensus PWR (CPWR,
purple line), applied to American countries

In conclusion, this simple case study has shown the great ability of the DRAPE
approach to combine several criteria in a single ranking that, being quantitative,
allows very informative comparisons. In addition, the DRAPE approach has allowed
to customize the ranking with the application of different weighting schemes and to
interpret it by means of a retro-regression analysis.
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A.1 Appendix 1

Country ISO3 Country ISO 3 Country ISO 3 Country ISO 3

Albania ALB Congo, rep COD Iceland ISL Mali MLI Romania ROU United
Kingdom

GBR

Algeria DZA Costa Rica CRI India IND Malta MLT Russian
Federation

RUS United
States of
America

USA

Angola AGO Côte
d’Ivoire

CIV Indonesia IDN Mauritania MRT Rwanda RWA Uruguay URY

Argentina ARG Croatia HRV Iran IRN Mauritius MUS Saudi
Arabia

SAU Uzbekistan UZB

Armenia ARM Cuba CUB Iraq IRQ Mexico MEX Senegal SEN Venezuela VEN

Australia AUS Cyprus CYP Ireland IRL Moldova,
republic of

MDA Serbia SRB Vietnam VNM

Austria AUT Czechia CZE Israel ISR Mongolia MNG Sierra
Leone

SLE

Azerbaijan AZE Denmark DNK Italy ITA Montenegro MNE Singapore SGP

Bangladesh BGD Dominican
rep.

DOM Jamaica JAM Morocco MAR Slovakia SVK

Belarus BLR Ecuador ECU Japan JPN Mozambique MOZ Slovenia SVN

Belgium BEL Egypt EGY Jordan JOR Myanmar MMR South
Africa

ZAF

Benin BEN El Salvador SLV Kazakhstan KAZ Namibia NAM Spain ESP

Bhutan BTN Estonia EST Kenya KEN Nepal NPL Sri Lanka LKA

Bolivia BOL Ethiopia ETH Korea north PRK Netherlands NLD Sudan SDN

Bosnia and
Herzegov-
ina

BIH Finland FIN Korea south KOR New
Zealand

NZL Sweden SWE

Botswana BWA France FRA Kuwait KWT Nicaragua NIC Switzerland CHE

Brazil BRA Gabon GAB Kyrgyzstan KGZ Niger NER Syria SYR

Bulgaria BGR Gambia GMB Laos LAO Nigeria NGA Taiwan TWN

Burkina
Faso

BFA Georgia GEO Latvia LVA Norway NOR Tajikistan TJK

Burundi BDI Germany DEU Lebanon LBN Oman OMN Tanzania TZA

Cambodia KHM Ghana GHA Lesotho LSO Pakistan PAK Thailand THA

Cameroon CMR Greece GRC Liberia LBR Panama PAN Togo TGO

Canada CAN Guatemala GTM Libya LBY Papua New
Guinea

PNG Trinidad
and Tobago

TTO

Central
African
Republic

CAF Guinea GIN Lithuania LTU Paraguay PRY Tunisia TUN

Chad TCD Guinea-
Bissau

GNB Luxembourg LUX Peru PER Turkey TUR

Chile CHL Guyana GUY North
Macedonia

MKD Philippines PHL TurkmenistanTKM

China CHN Haiti HTI Madagascar MDG Poland POL Uganda UGA

Colombia COL Honduras HND Malawi MWI Portugal PRT Ukraine UKR

Congo COG Hungary HUN Malaysia MYS Qatar QAT United
Arab
Emirates

ARE
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PyHasse, a Software Package for
Applicational Studies of Partial
Orderings

Rainer Bruggemann, Adalbert Kerber, Peter Koppatz, and Valentin Pratz

1 Introduction

Often a decision is to be found for a set of objects (synonym: options, alternatives)
which are highly complex. Their complexity prevents that a single criterion, i.e.,
property is sufficiently characterizing these objects in a manner that a decision can
be built on. Therefore, objects are to be characterized by a set of properties, which
indicate as to how far the objects are matching with the criterion, relevant for the
decision. In Bruggemann and Patil (2011) the term “Multi-indicator system was
introduced, just to express that the complexity of objects has its counterpart in a
whole set of indicators.

Once a set of indicators is found and a method established, as to how far these
indicators can be quantified, the next problem is, how to distill a decision. This kind
of question lead to many sophisticated Multi-criteria decision aid (MCDA) systems,
as an example PROMETHEE may be mentioned (Brans and Vincke 1985). The
field of MCDA is still increasing and a good overview can be found in Figueira
et al. (2005).
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Within the field of MCDA two problems arise:

(i) How to quantify the many parameters needed beyond the data matrix, and how
to understand their roles.

(ii) The final quantity on which a decision should be based is often a mathematical
complex combination of entries of the data matrix and other (supporting)
parameters. Therefore it is difficult to trace back how a decision was found
and what was the role of the different inputs of the MCDA.

Partial order theory can be a helpful tool. Although partial order is often seen
as a MCDA too, its very idea is that only the entries of the data matrix should
be considered. Often partial order leads to graphical representations, the so-called
Hasse diagrams (see e.g. Bruggemann and Patil 2011). The examination of the
Hasse diagrams lead to evaluation (finally to a decision) and to an exploration
(finally a trace back identifying the role of the single indicators and of their
values). Although both, evaluation and exploration are simply with respect to the
mathematics need, the manual management can be very tedious and error-prone.
This fact caused the development of software. Beside others, the software PyHasse
was developed. This contribution is thought of as a brief introduction into PyHasse
and its further development.

2 The Mathematical Basis of PyHasse

The idea behind the software package PyHasse was to support the interested
researcher in the evaluation of a data matrix, consisting of several rows, (several
objects) which are characterized by several indicators, the columns of the matrix. In
that sense an object x is characterized by a set of indicator values, which is ordered
and considered as a data profile for each object. Partial order comes into play, by
a simultaneous analysis of the data profiles of the objects, i.e., by evaluating the
central equation (of the Hasse diagram technique (HDT)):

x ≤ y : ⇐⇒ q (i, x) ≤ q (i, y) for all indicators, q (i) , (syn.attributes) (1)

The indicators characterize the objects x, y with respect to the criterion under
which the decision is to be performed. We call X the set of objects. (For details
about HDT, see e.g. Bruggemann et al. 2001; Bruggemann and Patil 2010, 2011;
Newlin and Patil 2010; Patil and Taillie 2004).

If for any two objects x, y Eq. (1) does not hold, then it is said: x is incomparable
with y, denoted in most mathematical papers as

x
∥
∥
∥ y.
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Sets equipped with the order relation (1) are called partially ordered sets (abbr.
posets), denoted as (X, ≤). The graphical presentation of posets can be done by
Hasse diagrams and is extremely useful, as long the graphs are not too complex.

The simple Eq. (1) has many facets, for example the notion of conflicts, or of
co-monotony, or of separability etc. This fact requires algorithms, which are (as
mentioned above) most often pretty simple, but awkward to perform manually.
Correspondingly PyHasse includes

(a) graph-theoretical,
(b) order-theoretical,
(c) combinatorial and
(d) statistical aspects.

Due to the school of F. Wille (see Ganter and Wille 1996) one also can
associate

(e) artificial intelligence with partial order theory, see Ganter and Wille 1996 and
a more general approach, based on the concept of t-norms, (Bruggemann et al.
2011; Kerber 2017a, b; Bruggemann and Kerber 2018).

An example of (a) is given by disjoint subsets X1, X2 of X, for which is true:

x ∈ X1, y ∈ X2 ⇒ x
∥
∥
∥y (2)

Subsets with the property (2) are called separated subsets. Usually objects
belonging to different separated subsets are not connected in directed graphs (for
details, see Bruggemann and Voigt 2011). The identification of such separated
subsets is very useful in the sense of exploring the role of indicators and their values.

An example of (b) and (c) is the construction of a linear order, based on the linear
extensions of a poset (X, ≤). Linear extensions of a poset are linear orders which
preserve the order found in the poset (X, ≤). As an example, consider the object set
X = {a, b, c} for which Eq. 1 is analyzed with the following results: a < b, a < c.
Nothing is said about the relation between b and c, because for b and c the Eq. 1
does not hold, then the sequences (a < b < c) and (a < c < b) represent the original
poset whose order relations are preserved. The set of linear extensions can be further
analyzed leading to many useful concepts (for details see Bruggemann and Carlsen
2011).

An example for (d) is once again given by the set of linear extensions, which
can be evaluated by statistical tools; another example is the combination of cluster
analysis with partial order, as shown in (Bruggemann and Carlsen 2014). Other
examples are concerned with the problem of data noise (Bruggemann and Carlsen
2016) and those attempting to combine statistical proximity with a proximity
concept, based on partial order theory (Bruggemann et al. 2014a).
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3 Development of PyHasse

The software PyHasse is clearly not the only one, which may be useful in application
of partial order. An important software package, PARSEC, is based on the statistical
software R, see for details Arcagni 2017. The early development of software for
the analysis of partially ordered setspartial order, for example of WHASSE was
described by Bruggemann and Halfon 1995, Bücherl et al. 1995 and Halfon 2006.

The development of PyHasse began 2007. The programming language is Python.
Python is an interpreter language and convinced the first author due to its clear
programming style and powerful libraries, see for instance Weigend 2003, 2006,
Von Löwis and Fischbeck, 2001. When the programming of PyHasse started,
Python 2.6 was used. The name” PyHasse” arises from Python and from the usual
output, a Hasse diagram. An overview is available, describing the state of 2014, see
Bruggemann et al. 2014b,

The graphical user interface is based on Tkinter, a language derived from the
TCl/Tk-system. Since around 2013 a PyHasse version was made available, which
is accessible via Internet, a web-browser based system (Koppatz and Bruggemann
2017). In its very end it implemented a subset of PyHasse modules, accessible
in a browser based application and should be made generally available for the
mathematicians. This aim, however is coupled with a series of rules, which do not
have directly to do with algorithmic aspects, but with the general readability and
with conformity in the structure with other Python-open software. A predefined
installation of all PyHasse modules is also available as virtual machines (VM). A
virtual machine is a computer within a computer. A predefined sandbox is used
to emulate hardware and deploying all software for a specific use case. The use
of a virtual machine frees the user from extensive and complex installation steps,
except for the installation of the virtual machine itself. Nowadays installing a virtual
machine is an easy step.

The extra requirements for PyHasse running in the browser caused a very slow
development, so actually only seven modules are available. In contrast, the “old”
PyHasse version (“PyHasse conventional”) is in a fast development, because this
software system is not only thought of as useful for other interested scientists, but
is also the main working tool for its developer, R. Bruggemann. Actually PyHasse
conventional contains more than 140 programs (called “modules”) which cover a
wide range from general tasks to very special ones, according to the actual scientific
research fields of its developer. An overview can be found in [Bruggemann et al.
2014b, where also PyHasse – conventional is structured in different classes of
applications. Due to the difficulties indicated above in the development of PyHasse-
online, an interim solution is planned (see below).
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4 An Example of Application of PyHasse

In the following sections the application of both PyHasse software packages is
demonstrated. We apply both variants of PyHasse to the generation of a Hasse
diagram of eight Rhine regions, which are characterized by 4 indicators, describing
the pollution of the herb layer by lead, cadmium, zinc and sulfur (in mg/kg dry
mass). These indicators are denoted by the chemical symbols, i.e. Pb, Cd, Zn and
S. The idea behind this monitoring study by the environmental protection agency
of Baden-Württemberg [ . . . ] (in the following often abbreviated as “bawue”) is to
identify transport mechanisms.

4.1 Data Matrix

The basic assumption is a complete data matrix. Here the eight regions are
characterized by the pollution of the herb layer by four indicators, therefore the
data matrix has 8 rows (for the objects) and 4 columns (for the indicators). For
application in PyHasse-conventional it is urgently required that the (0,0)-position
is filled with a (dummy) text. Therefore the typical data matrix, suitable for both
packages looks, as shown in Fig. 1.

The text “bawueks” is located in the (0,0)-position of the matrix. It is a good
idea to use the “dummy” text for a brief information about the data matrix.

bawueks Pb Cd Zn S

01 1 0,04 21 1540

10 1 0,03 29 1780

24 1,7 0,18 39 1740

31 1,1 0,15 28 1740

19 0,8 0,01 18 4030

43 0,5 0,11 39 4030

52 2 0,23 36 4030

56 1 0,11 34 1970

Fig. 1 data matrix, see text, ks stands for German “Krautschicht” (“herblayer”)
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Here “bawueks” indicates that regions in the south-west of Germany, in Baden-
Wuerttemberg are considered, and that the herb layer is the target of pollution. The
columns are separated by tabs. The regions defining the rows are coded by 01, 10,
24, etc., the indicators are abbreviated by Pb, Cd, Zn and S for lead, cadmium, zinc
and sulfur, resp.

There should be no gap, i.e. if m indicators and n objects are supposed, then all
n*m entries must be filled by numbers, preferentially is the decimal separation the
dot, however a comma as in Fig. 1 is accepted too.

4.2 PyHasse-Online

4.2.1 Overview

Here, the online version is considered. After selection of the web-site pyhasse.org
the user sees, what is shown in Fig. 2.

In Fig. 2 Main parts of the website:

1. About PyHasse
2. Programs & Docs
3. References
4. Interview
5. Jupyter Notebooks
6. News

Fig. 2 First impression of PyHasse-online

https://pyhasse.org/
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Fig. 3 Tags and Categories linking to all posts

7. Archive
8. Tags
9. PyHasse – Conventional

Ad 1.: “Programs & Docs”: This web site informs technically about Python,
virtual machines and the installation procedures. Furthermore, access to the seven
modules, actually available in online. A table contains also links to background
information and examples with basic introductions as Jupyter Notebooks. This is
an additional step to document how to use PyHasse modules.

Ad 2: “About PyHasse and Interviews”: presents some background information.
Ad 3: References: Some publications that reference to partial order theory and its

applications (updated from time to time).
Ad 4: News, Archive and Tags: Adresses news about people, conferences, mod-

ules and other activities around PyHasse. All posts are tagged and accessable
within a tag page also grouped by categories (Fig. 3).

In Table 1 the seven modules are briefly characterized (available in the last
column of the table following the Link “Programs & Docs”. Note, however, all
seven modules available online have a uniform main menu, shown below:

• Home: More information, settings, etc. For example properties for HDT’s
(colors for nodes and labels, fonts,...) .

• Sets: Access to data matrices and their administration.
• General Info: Beside others, the Hasse diagram.
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Table 1 The seven modules in PyHasse-online

Name Main task Remarks

Spyout Generation of a Hasse diagram. Basic module. Recommended for the
beginner, and applied in this section

Antichain Analysis of conflicts Antichain: a subset of the set of objects,
mutually incomparable

Chain Generation of chains and their
characterization

Chain: a subset of the set of objects,
mutually comparable

Copeland The well-known decision support
system based on a concept of
Copeland

LPOM Approximative generation of a
weak order for the objects of the
selected data matrix

Fuzzy Concept of De Walle et al. (1998),
where the relations between two
objects are evaluated by fuzzy
techniques.

Similarity Two data matrices with the same
objects, but with different indicator
sets are compared

Currently in restructuring

• Module specific: Calculations depending specifically on the selected module. For
example in the module chains, one has access to the set of objects, which are
mutually comparable.

• Export: A still not fully implemented possibility to generate results, embeddable
in other programs.

4.2.2 Application of Spyout on the Data Matrix, Shown in Fig. 1

Selection of the button “Spyout” leads to a user interface, shown in Fig. 4.
In Fig. 5 a part of Fig. 4 is shown.
First of all a set is to be selected, for which a partial order analysis is intended.

This set should contain a data matrix (once again: objects are row, attributes, column
defining). Therefore the button “SETS” is important. If no set is selected, a simple
one is used. Here the user has s three possibilities to upload his own matrix. The
most important one is to select a file from one of the user folders. After selection
of the file and “submit” and activating the uploaded set, the user can get several
information. Here the main purpose is to obtain the Hasse diagram, see Fig. 6.

There is a pretty good graphical editor, by which the user can modify the graph,
shown in Fig. 6, however under preservation of the order relations. In Fig. 6 a good
example for separated subsets can be found: X1:={24, 31} and X2 = {19, 43}, for
no pair x,y with x ∈ X1 and y ∈ X2 a order relation, due to Eq. 1 can be found.
This kind of separatedness indicates often special data structures. The knowledge of
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Fig. 4 After selection of “Spyout”

Fig. 5 Section out of Fig. 4

such data structures is helpfiul in tracing back, why an object has a certain position
in comparison to others within a Hasse diagram.

4.3 Application of PyHasse-Conventional

4.3.1 Some Remarks to the First Steps

Actually the software package PyHasse-conventional, often and in the text below
just called PyHasse, is now downloadable from the website pyhasse.org (following

http://pyhasse.org
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Fig. 6 Hasse diagram of the 8 regions along river Rhine. The partial order is defined by the values
of the four indicators lead, cadmium, zinc and sulfur

the instructions in README.txt). The user has to install Python, version 2.6 or 2.7,
then to store the five libraries

• rmod2: basic algorithms,
• raioop2: mainly user interactions, graphics.
• polib: mainly around drawing Hasse diagrams,
• pstat and stats: taken from the Internet and programmed by G. Strangman

http://old.lwn.net/1998/1210/a/stats.py.html, in order to make standard statistical
procedures accessible,

within the folder of Python, and finally he should define a folder for all the
modules, help- and about-texts (on the CD under “RainerHasse”). Usually by the
implementation of Python an icon “Idle” will be located at the desktop, from where
the user can start his activity.

4.3.2 Application of hdsimpl

Some modules in PyHasse are so complicated that the developer (the first author)
decided to program simpler versions, where only the major tasks are available. The
module “hdsimpl” (actually version 04_1) is thought of as a beginners program, just
to generate the Hasse diagram. Its user interface is shown in Fig. 7.

In most of the PyHasse-modules the sequence of activities is roughly given by
the vertical arrangement of the buttons. The module hdsimpl follows this rule.

The first two buttons “about” and “help” obviously inform more closely about
hdsimpl: “about” informs briefly about the module, whereas “help” is a tutorial
and includes often references for supporting publications; most often with a more
theoretical background.

Then a file with the wanted data matrix is to be selected “Select filename”,
the main button is “Draw HD (Hasse Diagram)“, whereas the next ones are most

http://old.lwn.net/1998/1210/a/stats.py.html
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Fig. 7 User interface of
PyHasse, module
hdsimpl04_1.py

often not needed. However the user should close his calculations by using the “exit”
button.

After pressing “Select filename” a browser is opened, and the user can select the
data matrix he wants to be analyzed. In the case, considered here, it is the file with
the name 0_BawueRheinks.txt.

After the selection of the filename, a window pops up, by which the format can
be seleted, corresponding to the format, the data were stored. Usually the txt-file is
to be selected, however other formats are tolerated too.

The next step is in most cases the main step: Draw HD. The result is shown in
Fig. 8.

Clearly the Hasse diagram in Fig. 8 is the same as that of Fig. 6.
Beside the directed, triangle free graph of the Hasse diagram, an additional

information is given in the header of the window:

Utotal = 18.

This informs about the content of the set U = {(x,y) ∈ X2, with x||y}. X is the set
of objects, here of the 8 Rhine-regions. There are 18 pairs of objects, for which the
HDT-equation is not fulfilled, i.e. some indicator values of for example region 31
have larger values than those of region 19, whereas there are some other indicators,
whose values of 31 are less than those of 19.

Concerning the buttons, “cover relation” and “show equivalence class” the reader
should visit the standard literature, for example Bruggemann and Patil 2011.
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Fig. 8 Hasse diagram, obtained by applying hdsimpl, after selection of the data matrix, with 8
Rhine-regions and the four chemical pollution indicators

5 A Newer Example

In two papers (Grisoni et al. 2015; Todeschini et al. 2015) (see also a contribution
in this book) a method is proposed and discussed in the International Conference
on Partial Orders in Applied Sciences: “Towards an Understanding of Complex
Phenomenon: Applying Partial Order Theory to Multi-Indicator Systems.”, which is
based on tournaments. The entries of the tournament matrix t(i1,i2) (i1, i2 indicate
the objects) are defined as follows:

t (i1, i2) = Σ w (j) ∗ δ (j, i1, i2) ;w (j) are suitable selected weights, with Σ

w (j) = 1 and w (j) ∈ [0, 1] (3)

and

δ (j, i1, i2) =
⎧
⎨

⎩

1 if q (i1, j) > q (i2, j)
0.5 if q (i1, j) = q (i2, j)
− 1 if q (i1, j) < q (i2, j)

(4)
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Fig. 9 Graphical
user-interface of method 1 of
the group of Todeschini, see
Grisoni et al. 2015,
Todeschini et al. 2015

The entries t(I,j) in turn can be related to the zeta-matrix, i.e. to the adjacency
matrix of the directed graph, describing the cover – relations of the partial order.
Figure 9 shows the graphical interface.

The data of Rhine pollution are once again selected (“Select filename”), the
Hasse diagram based on the original data matrix (see Fig. 1) (“Draw HD”) is already
shown (see Fig. 8). The specific part starts with the entry field (“inserts weights”),
where (0.25, 0.25, 0.25, 0.25) is selected. By tlimit too large and too low entries
of the tournament-matrix are filtered out. Here, for demonstration tlimit = 0.67 is
selected, following the recommendation, that tlimit should be in the range [0.55,1].
Pressing the button “Todeschini” a Hasse diagram is obtained, resulting from

• weighting and
• cutting by tlimit.

There is no more an isolated element, and the number of incomparabilities is
heavily reduced. In fact, the poset, presented in Fig. 10 is an enriched one of that,
shown in Fig. 8. By the buttons “Linear (weak) order” a linear or weak order is
obtained, following an idea originally proposed by Copeland and recently discussed
by Al-Sharrah (2010), and by “show interim matrices” different matrices are shown,
which may be useful for a closer inspection.

The new Pyhasse program has standard routines, taken from the libraries and
only the specific part, related to the work of Todeschini’s group had to be newly
programmed.
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Fig. 10 Result of additional parameters, such as the weights and tlimit onto the partial order

6 Discussion

6.1 Three Pillars of PyHasse

Nowadays the PyHasse development has three pillars:

1. PyHasse – conventional: This pillar has the largest set of modules and is
changing continuously. If there is a new and interesting idea, then it will be first
programmed and made available for this pillar. A map of modules is hopeless, as
in the meantime around 150 modules are available.

2. PyHasse-Internet: There are some few modules available. However following
the pretty strict rules of the Python community there are to obey many rules,
which are not only influencing the algorithmic structure but also the plain layout
of a Python program. These rules are for sure necessary to guarantee a good
documentation and some standards, however they slow down somewhat the
development.

3. PyHasse via notebook. As there is still a gap between PyHasse-conentional and
PyHasse-Online. Therefore the last years were characterized by the search for
suitable software solutions and a standardized development and distribution of
new modules. A solution is provided by the notebook concept.
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6.2 Notebook

The notebook concept led to a new approach to software development and the use
of all modules:

1. the use of a widespread software solution for scientific research – “Anaconda”.
2. “Anaconda” is a Python-based software that provides good support for mathe-

matical calculations, including the presentation of results.
3. Jupyter Notebooks are part of the software package “Anaconda”, but can also

installed without “Anaconda” in a plain virtual environment.

Jupyter Notebooks are an additional software variant to start investigating your
own data. With a standard way to install python packages in a virtual environment
“pip” or “conda” the investigation can be started. The website presents some sample
data for each module to start fast. Later on it is possible to import other datasets and
look for insights of this data.

This combination of documentation and application will contribute to a better
understanding of both the calculation procedure and the handling of the software
modules.

We plan the automatic generation of Jupyter Notebooks from the existing tests
that are part of each PyHasse module. Later on also all graphical representations for
results (present at the online versions) will be back.

With every Jupyter Notebook, all necessary calculation steps and comments are
displayed in cells Fig. 11.

Fig. 11 A screen shot of Jupyter
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This allows us to document the usage of our own modules and the steps of a
calculation from the import of the data to the calculation results.
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Information noise, 23, 26
International Atomic Energy Agency (IAEA),

181
International Organization for Standardization

(ISO), 272
Interval order, weights, 48, 54, 57

J
Joint Research Centre-European Commission,

228
Judgment post-stratified sampling (JPS),

136–138
Jupyter Notebooks, 297, 305

L
Latent variables, 21–22, 245, 246, 248
Lattice theoretical method, 71, 73, 75, 76, 91
Leti index, 237
Lichens

analysis of biomonitoring
average height, 68–69
construction, Hasse diagram, 67
data set, 64–65
estimation method, 73–76
Hav calculation, 69–71
HDT, 67
“naturality/alteration scales”, 77
partial order, 65–67
weak order, 67–68

description, 64
metals/metalloids, 64
MIS, 63
thallus surface, 64

Life expectancy (LEX), 206, 208
Linear extensions (LEs), 68–69, 78, 144–148,

150, 156, 191–192, 207, 222, 223,
232–237

Local partial order models (LPOM), 183, 192
L-Tuple RSS (LTR), 139

M
Mazziotta-Pareto Index (MPI), 253, 260–261
Metals

biosorption, 182
chemical elements, 65–67

Hasse diagram, 74
heavy metals, 165, 175
in lichens, 65
and metalloids, 64–65
ranking positions, 76
in seawater, 126
trapping metal ions, 198

Microorganisms, 184–190
Miscanthus straw

AC, 165–167, 175, 177
Hasse diagram, 170
methods

agricultural waste, 167
chemical and physical activation, 167
data, 167–168
partial ordering, 168–170

more elaborate analyses
average ranks, 170–171, 173
indicator conflicts, 171–172, 175
isolated element, 175
minimal element, 173
probabilities, 174
production, 173
PyHasse software, 173, 174
relative indicator importance, 174
Rkav values, 173
sensitivity analysis, 170, 171
software, 172
tripartite graphs, 171–172, 175

soil cleaning, 165
Modeling

agent-based, vii
complex indicators, 11–12
decision support systems, 47–52
hierarchical model, 13
and simulation, 10–12
system modelling, 5–6
test and validation, 14–15

Modules, 294
Multi-criteria decision aid (MCDA) systems,

291
Multi-criteria decision analysis (MCDA), 109,

154, 163, 182–183, 291, 292
Multi-criteria decision making (MCDM), 267
Multidimensional ordinal traits, 229
Multidimensional poverty, 19, 20, 228
Multi-indicator synthesis, 248–249
Multi-indicator systems (MIS), 154, 220

elements, interconnections and functions,
20–21

German Sustainability Strategy, 115
indicators role, 47
lichen biomonitoring, 63
mathematical problem, vii–viii
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multi-criteria decision problems, 107, 220
target indicators, 107
traditional statistical techniques, 23

Multivariate VSR (MVSR), 142–144
Mutual ranking probability (MRP), 223

N
National Academy of Science (NAS), 154,

157, 158
Non-aggregative approaches, 24, 248, 249, 251
Non-aggregative method, 248
Non-conservative evaluation, 158

O
Outranking methods, 267

P
Partially Ordered Set (POSET), 24, 25, 47, 67,

121, 222, 293, 294
Partial ordering, 168–170

algebra, x–xii
application, viii
biomonitoring measurements, 65–67
combinatorics, x
complexity, 291
data matrix, 292
graphical interface, 303
graph theory

antisymmetry, viii
Hasse diagram, viii–x
reflexivity, viii
transitive reduction, ix
transitivity, ix

Hasse diagrams, 292
international conferences, xiii–xiv
non-parametric method, 109
parameters, 303, 304
and program PyHasse, 116
refrigerants, 99
set of indicators, 291
set of properties, 291
stakeholder’s knowledge, 45, 46
tournament matrix, 302
transposed data matrix, 95–96
See also Sampling theory

Partial ordering methodology
adoption, 255
aggregative compensatory approaches, 251
average rank, 252

composite index, 254
cumulative frequencies distribution, 258,

259
distribution, 254
distribution, emotional status, 251, 252
Eu-SILC dataset, 254
full-time employees, 257
gender status, 255–257
Hasse diagram, 254, 255
hypothesis, 257
identification function, 253
labour status, 255–257
linear order, 252
micro-data level, 255
part-time employees, 255
poset methodology, 251
poverty gap, 257
severity, 253
threshold profile, 252
variables, 251
wealth gap, 257

Partial order theory (POT), 183
graph theory and combinatorics, 24
Hasse diagram, 26–27
indicator systems, 26–27
interplay of indicators and objects, 25–26
metric data, 25
ordinal data, 24–25

Physical activation, 166
Pollution

AC product, 166
air pollution, 121
cadmium, 88
chemical elements, 87, 88
metal atmospheric, 64
metals and metalloids, 64
PyHasse software, 295
river Rhine, 87, 99, 303

Poset theory, 229
Poverty, 18, 19, 34, 46, 65, 228–230, 236, 239
Poverty gap, 257
Power-Weakness Ratio (PWR), 267–270
Principal Component Analysis (PCA), 270
Prioritization
Product yield, 167
Profiles, 219, 220, 223, 225, 229–231, 237,

238
Prokaryotes, 184
PROMETHEE (preference ranking

organisation) method, 45, 291
Purchasing power parity (PPP), 209, 210, 213,

216
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PyHasse (software package), 156
application

data matrix, 295–296
artificial intelligence, 293
conventional, 299, 300
data matrix, 292
development, 294
dominance analysis, 114
Duquenne/Guigues basis, 86–87
graphical user interface, 74
HDs, 110
hdsimpl, 300–302
Internet and the web-based notebook, xvi
lattice theoretical method in BK, 91
linear extensions, 293
notebook, 305, 306
online version

first impression, 296
modules, 298
tags and categories, 297

partially ordered sets, 293
partial order, 116
pillars, 304
set of indicator values, 292
Spyout, 298–299

Pyrolysis features, 165
Python, 294

R
Rand index, 31, 35
Ranked set sampling (RSS)

auxiliary variable, 138
d X m units, 139, 140

efficient sampling strategy, 138
JPS, 137–138
LTR, 139
measurement and units, 139
multivariate variables, 141
research, 137
sample unit, 137
VSR, 139

Refrigerants, 83, 84, 86, 92, 98–99
Resilience, 20
Retro-regression analysis, 270–271
Reverse clustering

capacities and effectiveness, 33
categorization, 35
choice of variables, 40
classification, potential situations, 36, 37
Rand index, 31, 35
“supervised classifier choice”, 35
working of entire procedure, 32

Risk assessment, 159

S
Safety assessment, 159
Sampling theory

auxiliary variables, 136, 137
calculations, 148–149
development, 135
efficient strategies, 136
estimation stage, 135
Hasse diagram, 144–147
LEs, 144–147
methods, 148–149
multivariate ranked set sampling, 141
multivariate variables, 136
MVSR, 142–144
negative correlation, 147–148
poset, 144–147
randomization, 135–136
representation, 135, 136
sampling stage, 135
sorting, 141, 142

Scaling procedure, 24, 91
Scoring methods, 267
Sensitivity analysis, 156, 171
Simple average ranking (SAR), 282
Simple random sample (SRS), 136
Simple systems, 18, 20
Simulation, 4, 10–12, 124, 125
Singular Value Decomposition, 225, 235
Social sciences

average height, 226, 228
basic definitions, 221
cluster analysis, 239
conflicting scores, 219
data structure and tools, 220
dominance eigenvector, 226, 228
economic indicators, 225, 226
frequency and cumulative distributions, 231
graphical representation, 222
Hasse diagram, 225, 227
integration, 239
linear extension, 222
linear/logistic regression, 239
matrix representations, 222
MRP, 223
multi-criteria decision problems, 220
multidimensional benchmarks, 228–230
numerical data systems, 219
ordinal attributes, 230
partial order theory, 221, 239
populations, 232–235
posetic algorithms, 239
precise formulation, 239
social traits, 219
socioeconomic field, 220–221
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socio-economic problems, 219
socio-economics, 220
software resources, 223
vertical and horizontal dimension, 239
weight distribution, 230, 231

Social traits, 219, 228, 230, 239
Socio-economics

scoring and ranking partially ordered data
average height, 224
degree of dominance, 223
dominance eigenvector, 225
posetic setting, 224
strictly order preserving, 224

Socio-economic traits, 221
Split-short composition

aggregated data, 159–160
alternatives analysis, 159
compare/rank alternatives, 154
conservative approach, 161–162
cost indicator, 162
data, 154
decision makers, 162
humans/environment, 153
lead (Pb), 154
methodology

data, 157–158
Hasse diagram, 155
HDT, 155
indicators, 157
more elaborate analyses, 156
partial order tools, 154
software, 156–157

non-conservative approach, 160–161
partial order methodology, 154, 163
probabilities, 162, 163
process, 153
ranking of indicators, 154
ranking probabilities, 154

Stakeholder’s knowledge, 45, 46
Status quo indicators, 106
Stiglitz Report, 243
Stratified sampling, 138, 145
Subjective well-being (SWB)

ad-hoc module, 247
application, 247
bottom-up explanatory approach, 246
cardinal variables, 247
complexity, 246
correlations, 246
data, 249
definition, 243
emotional state, 244, 245
eudaimonic dimension, 245

evaluative/cognitive dimension, 244
explicit/implicit conceptual model, 246
exploratory data analysis, 250
hedonic dimension, 244
homogeneity, 247
indicators synthesis, 246, 248–249
macro-dimensions, 244
mental well-being, 247
micro-data processing, 247
OECD guidelines, 244
partial ordering methodology (see Partial

ordering methodology)
political analysis, 243
psychology, 243–244
psychometric tools, 246
reflective model, 246
social studies, 243
socio-economic dimensions, 247
statistical surveys, 244
three-dimensional classification, 243

Subjectivity, 10, 22, 68
Surface area, 166–167, 174
Sustainability, 205, 216

assessment, 109, 159
awareness, 105
dimensions, 111
DS, 109, 111, 112, 116
German Sustainability Strategy, 107
implementation of indicators, 108
status quo indicators, 106

Sustainability Development Goal (SDG), 105,
107, 216

Sustainable procurement, 106
Sustainable Society Foundation, 272
Sustainable Society Index (SSI), vii, 272, 273,

284
Sustainable wellbeing, 206, 208
Synthesis, 23, 24, 246–249, 252, 253
Synthetic dominance scores, 234
Synthetic indicators, 48, 230, 232, 235–239,

253
binary attributes, 236, 237
deprivation profiles, 237
formal development, 236
frequency distributions, 235, 236
Hasse diagram, 238
inequality measures, 238, 239
mathematical tools, 235
measurement of inequality, 236
multidimensional setting, 235
power means, 236
unidimensional inequality index, 237
vertical extremes, 236
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T
Technical and Performance Criteria (TPCr),

157, 159
Temperatures, 166
t-norms, 85, 92, 100, 293
Tripartite graphs, 110, 171–172, 175, 176
Typology

municipalities, 32–33
spatial units, 31

U
Uncertainty, 46, 48, 49, 51, 53, 54, 56, 59
Uranium uptake capacity, 199
Uranium (U) trappers

acidic waters, 181
attributes, 182
average ranks, 194–196
biological interpretation, 197–198
biosorbents, 182
biotechnological studies, 182
conventional physicochemical methods,

182
data, 184
data matrix, 183
decision-makers, 183
ecological and public health hazards, 181
ecosystems, 181
Hasse diagram, 192–194
mathematical interpretation, 194, 197
MCDA, 182–183
orientation of attributes, 192
partial order methods, 183
radionuclides, 181
ranking methods, 183, 191–192
soil and water, 182
treatment technologies, 182

Urban-rural axis, 41, 42
Urban water management, 106, 115
Utility functions (UTI), 282

V
Valuation model, 11–14
Value benefit analysis, 109, 111, 116

Virtual machines (VM), 294
Virtual Stratified Sampling Using Ranked Set

Sampling (VSR), 139

W
Wastewater treatment, 182
Wastewater treatment plant (WWTP), 110–114
Weak order, 67–68, 191, 303
Wealth gap, 257
Weighted sum approach, 46, 48, 60

advantage, 46
crucial weights, 46, 50, 52–56, 59–60
decision making, 53–54
decision support systems, 48
fictitious systems, crucial weights, 54–56
fine-structure, analysis, 52–53
incomparabilities, 49–52, 58
partial order, 46–48
well-being, children and young people,

56–58
World happiness index, vii, xv, 205, 206,

208–211, 216
Dys indicator, 210
Dystopia indicator, 216
financial aspect

Denmark, 214, 215
Luxembourg, 214, 215
Norway vs. Luxembourg, 215, 216
relative indicator importance, 214

generosity, 210
gross domestic product, 209, 216
Hi indexes, 210, 211
HPI, 211–213
indicators, 205, 209, 210
methodology

basis partial ordering, 206–207
data, 209
Hasse diagram, 207
indicators, 208–209
more elaborate analyses, 207–208
software, 208

PyHasse software package, 209
simple arithmetic aggregation, 206, 209
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