
Chapter 3
The Geometric Basis of Spatial
Complexity

Classifying geometrical objects by their degrees of symmetry
represents a sharp departure from the traditional classification
of geometrical figures by their essences
(Manuel De Landa 2002, p. 17)

Abstract Spatial complexity emerges even from simple geometric objects, once
they are arranged at non-trivial geometric positions. The geometric context of spatial
complexity depends on the presence (or absence) of symmetries, orthogonality,
number of intersections and geometry type (Euclidean or other). A simple spatial
relationship (i.e. orthogonality of two sides of the triangle) makes the calculation of
various geometric features (i.e. area, volume) less demanding in terms of operations
required and hence, computation time and resources. Thus, key spatial details such as
the relative position of two or more geometric objects and their intersections (regard-
less of their sizes) result in substantial differences in spatial complexity.Beyond these,
research in polyominoes has furnished various computational complexity results, that
are useful for the analysis of spatial complexity on squared surfaces.

Keywords Spatial complexity · Combinatorial complexity · Geocomputation ·
Coputational Geometry and Complexity · Polyominoes · Map Complexity

3.1 Orthogonality

Inequality is the cause of anomalies in nature

Thus we have gone through the origin of inequality

“Aἰτία δὲ ἀνισότης αὖ τῆς ἀνωμάλου φύσεως
ἀνισότητος δὲ γένεσιν μὲν διεληλύθαμεν”
(Plato, 428–348 b.C., “Timaeus”, 58a)

In fact, even the tiniest spatial differences matter a lot for spatial complexity. In
landscape analysis this has been examined before (Papadimitriou 2002), but to see
why this is so, consider the calculation of the area of the simplest 2d spatial shape
(the triangle) from the lengths of its sides: it is much simpler to calculate the area
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of a right triangle with side lengths measured as a, b and c, than that of a scalene
triangle. As known from high school, the area of a right triangle is calculated from
Pythagoras’ rule: ab/2, but the area of the scalene triangle is calculated from Heron’s
rule:√((
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)(
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− b

)(
a + b + c

2
− c

))
(3.1)

or (most often expressed in an abbreviated form) as:

√
τ(τ − a)(τ − b)(τ − c), where τ= (α + b + c)/2 (3.2)

A simple spatial relationship (orthogonality of two sides of the triangle) therefore
makes the calculation significantly less consuming in terms of computation time
and resources. Thus key spatial details, such as the relative position of two or more
geometric objects regardless of their sizes, result in substantial differences in spatial
complexity. To verify this, one need only consider the algorithmic side of this calcu-
lation. A simple measure of complexity can be the number of arithmetic operations
required tomeasure the area included within each triangle. The algorithm calculating
a right triangle’s area consists in two algebraic operations only (one multiplication
followed by one division), but the algorithm for the calculation of the area of a
scalene triangle requires as many as ten such operations (two additions, one division,
three subtractions, three multiplications and one square root). One might be tempted
to consider that calculating the area of a scalene triangle is more computationally
expansive, because it is more “irregular” than that of a right triangle. This is true,
but how much more irregular is it? Slightly so. In fact, only two of the three lines
defining each triangle have a special relative position (a right angle) but precisely this
special geometric relationship suffices to make a significant difference in the algo-
rithmic process of the calculation of the area defined by each triangle: differences in
geometric properties therefore imply differences in algorithmic procedures.

“Small” but key spatial details may be responsible for significant differences in
spatial complexity: the calculation of the area of any scalene triangle is always more
complex than that of a right triangle.And this is not because of the triangles’ particular
sizes, locations or orientations in space: it is a general property that applies to all
triangles, however large or small they may be and whatever Euclidean space they
may be embedded in: calculating the area of the tiniest scalene triangle will always
be more computationally expansive than that of the hugest right triangle.

Expectedly, as the geometry of a surface changes, the calculation of spatial
complexity may become more demanding. Indeed, the calculation of the area A
of a spherical triangle with sides a, b, c is possible from a variant of Heron’s formula
for planar triangles as follows:

tan

(
A

4

)
= √

sin p sin(p − a) sin(p − b) sin(p − c), (3.3)



3.1 Orthogonality 41

where p = (a + b + c)/2.
Hence, in the case of the spherical triangle, there are more complex operations

to be made compared with the planar triangle and the calculation of the area of a
planar triangle, however large it is, is always easier compared with that of a spherical
triangle, however small that is. Changes in geometry therefore induce changes in
spatial complexity.

3.2 Intersections

5. A surface is what has only length and breadth.

6. The extremities of a surface are lines.

“εʹ. ’Επιφάνεια δέ ἐστιν, ὃ μῆκος καὶ πλάτος μόνον ἔχει.
ϛʹ. ’Επιφανείας δὲ πέρατα γραμμαί”.
(Euclid, fourth century b.C.,“Elements”, Book A)

Let us now consider another example, showing how simple geometric elements
can generate spatial complexity. We know that L lines on the plane intersect at pmax

points:

pmax = L(L − 1)

2
(3.4)

Notice that this is not the number of intersection points generated by L lines in
all cases. Specifically, the number u of possible intersections can be calculated from
the formula

uL ,k =
(
L
k

)
(3.5)

with k lines intersecting the other L-k lines.
For instance, if there are L = 3 lines, then the cases that k = 0,1,2,3 lines intersect

with the remaining L-k lines are given in Fig. 3.1 and if, i.e. there are only one
line (k = 1) intersecting the remaining L-k = 2 lines, then there are three cases of
intersection:

u3,1 =
(
3
1

)
= 3!

2! = 3 (3.6)

In exactly the same way, if L = 4 and k = 2, then the number is (Fig. 3.2):

u4,2 =
(
4
2

)
= 4!

2!2! = 6 (3.7)
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Fig. 3.1 Number of cases of
intersections for L = 3 lines,
when k = 0, or k = 1, k = 2
or k = 3 of them intersect the
remaining L-k lines

Fig. 3.2 Alternative cases of
intersection of L = 4
different lines, when k = 0,
1, 2, 3, 4

Notice that the number of intersection points pmax result in only one case:

uL ,L =
(
L
L

)
= 1 (3.8)

Proceeding from lines to areas, we may observe that intersecting lines define
intersecting areas on the plane. Beginning with L = 2 lines, observe that these define
one intersection point. Continuing with more lines i.e. up to L = 7 (as shown in
Fig. 3.3), then progressively more areas are defined in between the intersecting lines
and the maximum number of possible such areas is given by the formula:

Amax = (L − 1)(L − 2)

2
. (3.9)

Now a natural question to ask is how the ratios among lines, intersection points
and areas grow with increasing number of lines (L). The answer essentially lies in
calculating the following limits:
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Fig. 3.3 Maximum intersection points (pmax) defined by 2 to 7 intersecting straight lines (up, from
left to right) and regions (amax) defined by these maximum intersection points (bottom, from left to
right)
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Thus, as the number of lines tends to infinity, the number of intersection points
approximates the number of areas defined in-between lines. While the complexity
of calculating the maximum number of intersection points is polynomial (a function
of L2), the number of areas generated tend to infinity with respect to the number of
intersecting lines. This means that as more intersecting lines are drawn on the plane,
a lot more areas can be defined by their possible intersections. Otherwise stated,
the more 1d objects are used to shape 2d spaces, the more such 2d spaces emerge.
The previous formula was for the definition of areas only inside the intersections. If
areas outside the intersection regions are also considered, then the formula giving
the number of regions A is (Fig. 3.4):

Amax =
(
L + 1
2

)
+ 1 (3.13)

Thus, spatial complexity can be created by simple geometric objects, once they
are arranged at non-trivial geometric positions.
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Fig. 3.4 The maximum
number of areas A defined by
L lines both inside and
outside the lines’
intersections. In this case, L
= 3, so there are A = 7
regions

3.3 Curvature and Non-Euclidean Geometries

“On Red Square the earth is roundest,

its slope more firm,

on Red Square the earth is roundest,

and its slope suddenly undolds”

(Osip Mandelstam,1891–1938,“Children’s Haircut”, 1935)

Curvature has been considered as a determinant of complexity for curves and
curved surfaces (Ujiie et al. 2012; Matsumoto et al. 2019). Among all formulas of
geometry, the “isoperimetric inequality” is probably the more appropriate one to
describe the degree of complexity of a shape C that is circumscribed by a curve
γ(t) = (x(t),y(t)):

L2 ≥ 4π A (3.14)

where L is the curve length and A is the area defined by the curve γ:

A =
∮
C
F(x, y) · dγ =

β∫
α

x(t)y′(t)dt (3.15)

It is easy to verify that when the shape is a circle, then L2 = 4πΑ and, hence, the
ratio:

L2/4πA (3.16)

is a geometric assessor of the complexity of a 2d-shape: the higher the ratio, the more
complex the shape is (Fig. 3.5).

The mean curvature of a surface is an old problem in geometry, which consists in
seeking the surface of the largest area among all compact surfaces in the Euclidean
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Fig. 3.5 Using the isoperimetric inequality to assess spatial complexity: Among shapes with the
same area, but with different perimeter lengths, more spatially complex is the one with the higher
perimeter length (c is more spatially complex than b, and b more complex than a)

space enclosing a fixed volume. The obvious solution to this problem is the sphere.
But keeping the geometric properties as elementarily simple as those of a triangle
and changing the geometry type induces considerable changes in spatial complexity.

In assessing the impact of curvature on spatial complexity, one needs to recall that
the Gaussian curvatureKG of a surface is calculated on the basis of the three variables
(EC , FC , GC) of the “first fundamental form”, which, as known from differential
geometry, is equal to

ECdu
2 + 2FCdudv + GCdv

2 (3.17)

leading to the well known (and cumbersome) formula:
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As a result of Gauss’s “Theorema Egregium”, there is no planar map representing
the curved surface of the earth, without distorting distances. This is because this
theorem guarantees that Gaussian curvatureKG must be the same so long as there are
local isometries. As the surface of a sphere has a non-zero curvature and the planar
map has zero curvature, the respective KG curvatures are different, and therefore
there are no local isometries. Thus, curved surfaces generate objects of higher spatial
complexity since they require more calculations to measure lengths and areas. The
effect of curvature becomes more decisive for spatial complexity in the case of non-
Euclidean geometries. In the case of Euclidean geometry, the length of the curve
connecting points x and y is:
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L =
∫

|dx(t)
dt

|dt (3.19)

but in a hyperbolic geometry, the distance is:

L =
∫

1

1 − 1
4 |x(t)|2

|dx(t)
dt

|dt (3.20)

so the computation of length in cases of non-euclidean geometries involves more
calculations.

Increasing complexity bymounting dimension from two to three further increases
the spatial complexity of a shape. Take, for instance, the calculation of the volume
of a spherical tetrahedron. This is tantamount to changing the geometry to spherical
and adds up more complexity to the calculations. It may come as a surprise that there
is no simple formula available for the spherical tetrahedron. In fact, the volume of
an arbitrary tetrahedron in a space of nonzero curvature was first calculated only
shortly before the beginning of this century (Cho and Kim 1999) for spaces of
hyperbolic curvature. This was later also calculated by means of other formulas
(Murakami and Ushijima 2005; Murakami and Yano 2005) for the same type of
curvature. Murakami (2011) obtained a formula for the volume of the spherical
tetrahedron. This is given here without detailed explanation; simply for the sake
of illustration of how a lot more complex the calculation of volumes gets when it
extends to geometries of non-zero curvature:

V = Re
(
L̃(b1, b2,, . . . , b6, z̃0)

)
− π arg(−q̃2)

−
6∑
j=1

∂Re
(
L̃(b1, b2,, . . . , b6, z)

)
∂l j

|z=z̃0 − π2 mod (2π2)

2
(3.21)

Notice that, if not anything else, this calculation can not be effectuated without
using complex numbers and the dilogarithm function.

3.4 Spatial Combinatorics and Polyominoes

Precise ideas often lead to doing nothing

“Les idées précises conduisent souvent à ne rien faire”

(Paul Valéry, 1871–1945, Mélange, 1934)

Spatial complexity also emerges from geometric combinatorics. Enumerating
possible compositions of square cells resulting from geometric arrangements of
simple geometric objects is a straightforward method to evaluate the combinatorial
complexity of spatial patterns.
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The “map coloring” problem consists in the determination of the least number
of colors to color any map. In 2d, the “Four colors problem” was to prove that any
map can be colored with no more than 4 colors, whatever the spatial arrangement of
the regions shown on it. After perplexing too many people, it was solved in 1976 by
K. Appel and W. Haken. A generalization was achieved with the Colin de Verdiere
number μ(G), which is an invariant for a graph G (Colin de Verdiere 1990) and any
graph with a CdV invariant μmay be colored with at most μ+ 1 colors. Planar graphs
have μ= 3 and, by means of the “Four Color Theorem” can be colored by at most μ
+ 1 = 4 colors. Disjoint unions of paths (“linear forests”) have μ = 1 and therefore
can be colored by at most 2 colors. Thus four colours are enough to color any map,
with the exception of some exceptionally complex cases (one example of which is
the “Wada lakes”, that is regions sharing the same boundary). In the case of Wada
lakes, the number of colors required is as number as the number of regions defined
by the “lakes”. In some sense therefore, the minimum number of colors necessary to
color just any map remains an unsolved problem.

Aside of the colors problem, an example of combinatorial complexity emerging
from spatial problems is the problem of covering the plane with polyominoes. A
polyomino is a plane geometric shape formed by joining one or more squares of
equal area, edge to edge (Fig. 3.6) and is classified according to how many square
cells it consists in (with 2-cells it is called “domino”, with three cells “triomino”,
with 4 cells “tetromino” and so on).

Several interesting results relate to tiling squares with polyominoes. For instance,
it is known that square maps can (or can not) be tiled by n-ominoes depending on
whether they are even–numbered or odd-numbered, i.e. a 7 × 7 square map can not
be tiled by dominoes (Fig. 3.7).

The complexity of spatial arrangements of polyominoes is interesting because
several problems involving them are intractable. It suffices to observe that the
number of polyominoes with n cells increases fast, giving a glimpse of the high
combinatorial complexity involved: 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17,073,
63,600, 238,591, 901,971, 3,426,576, 13,079,255, 50,107,909… (corresponding
to the Sloane sequence A000105). But high combinatorial complexity in spatial

Fig. 3.6 Polyominoes of various sizes
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Fig. 3.7 Odd-numbered
square maps (7 × 7 here) can
not be tiled by dominoes

arrangements may emerge even from much simpler cases, i.e. when trying to
practically solve simple spatial combinatorial problems.

In this respect, there already are some interesting results about combinations of
particular types of 3d polyominoes (Fig. 3.8). In two dimensions, we know that a
mxn rectangle can be tiled with O-tetrominoes, if and only if m and n are even, if
a n × n square can be tiled with T-tetrominoes, then n2 is divisible by 8, a n × n
square can be tiled with L-trominoes with fourfold rotational symmetry if and only
if n is divisible by 6, a n × n square can be tiled with L-tetrominoes with fourfold

Fig. 3.8 Some types of 2d-and-3d-polyominoes: T-tetromino (a), L-tromino (b), O-tetromino (c),
L-tetromino (d), Monomino (e), 3d monomino (f) and 3d L-tromino (g)
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Fig. 3.9 A solution to the spatial combinatorial problem (see text for explanation): there are 24
alternative land cultivation schemes if one of the four pieces of land is left uncultivated (too many
spatial alternative configurations to decide, even for such a simple problem)

rotational symmetry if and only if n is divisible by 4 and any 2n × 2n square can be
tiled by a monomino and trominoes (Golomb 1954; 1996).

Equivalently, there are similar (unfortunately fewer) results for polyominoes in
3d: any 2n × 2n × 2n cube with n = 1(mod3) can be tiled with a 3d monomino
and 3d L-trominoes (Starr, 2008) and a mxnxk parallelepiped can be packed with 3d
L-trominoes if and only if mnk is divisible by 3 (Soifer 2010).

Spatial combinatorial problems are well known for producing big numbers
quickly. Consider, for instance, the following spatial planning problem:

A farmer owns a square lot of side length x, which can be divided in four equal
squares, of side length x/2 each. He has three types of cultivations to allocate on
these four squares: arable crops, tree crops and orchards. How many alternative land
cultivation schemes are there for the three crop types on the four squares pieces of
land, provided that all three cultivations types should be used in that lot? The farmer
also needs to know the possible spatial arrangements if one quarter of the land is left
uncultivated each time.

There are 24 alternative land cultivation schemes if one of the four squares is left
uncultivated (Fig. 3.9), and as many as 36 different land cultivation schemes if all
squares are occupied by cultivations. Even in this simple land allocation scheme of
only 4 spatial regions and 3 types of spatial entities, it is evident that the number of
possible combinations becomes rapidly high; may be unacceptably high for ordinary
(i.e. everyday) spatial decision-making.
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