
Chapter 10
Entering the “Spatium Numerorum”:
Creating Spatial Complexity
from Numbers

White queen:- Can you do addition? What’s one and one and
one and one and one and one and one and one and one and
one? Alice:- I don’t know. I lost count. Red Queen:- She can’t do
addition.
(Lewis Carroll, 1832–1898, “Through the Looking Glass”,
1871)

Abstract Spatial complexity can be created from simple square maps. By parti-
tioning space according to a partitions formula, the total number of possible spatial
partitions can be derived and then, applying the Burnside lemma gives the total
number of symmetric maps allowed by combinatorics. The number of possible
map configurations quickly “explodes” and this poses restrictions to spatial analysis.
Beginning with a restricted and manageable number of generic maps and subjecting
them to symmetric transformations of the symmetry group of the square, it is possible
to create big numbers of possible spatial configurations. Thus a space of numbers
(a “Spatium Numerorum”) is created, beginning with partitions of numbers which
are calculated by partitions formulas (i.e. the Hardy-Ramanujan, Rademacher and
Bruinier & Ono).

Keywords Spatial complexity · Spatium Numerorum · Number theory and
Complexity · Burnside Lemma · Map Complexity · Geocomputation · Partitions
function

10.1 Calculating Spatial Partitions

“Though leaves are many, the root is one”

(W.B. Yeats, 1865–1939, “The coming of wisdom with time”)

Evidently, there are nn possible map configurations of n-colored squares over
a square map with size n. Consider for instance a 2 × 2 map. This map has n =
4 square cells and therefore the number of all possible color map configurations
that can be created from it is nn = 44 = 256. How to identify them? A starting
point is to determine the possible classes of these configurations and can be found in
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number theory, bymaking use of partition functions. A partition function is a function
returning for every positive integer n the number of possible forms by which this n
can be “partitioned”, that is howmany possible sums add up to n, or otherwise stated,
how many entropy classes are possible. For instance, the partition function for n =
5 gives the following P(5)=7 possible partitions:

n=5,             P(5)=7: 
  5 
                          4+1 
                         3+2 
                           3+1+1 
                           2+2+1 
                           2+1+1+1 
                           1+1+1+1+1 

Essentially, the partition function gives the number of possible ways that a number
can be “decomposed” (not to be confused with factoring). As a further example,
consider the partitions of n = 4:

n=4,     P(4)=5: 
     4 

                                3+1 
                                2+2 
      2+1+1 
                               1+1+1+1 

Translating these figures to maps of square cells, it is easy to see how a sum of
possible map configurations corresponds to each one of these partitions of a square
map of 4 cells. To identify these configurations, we need to allow as many as n
colors on the map, so the maximum number of colors is n = 4. All the possible map
configurations per partition of 4 for the partitions 4, 3 + 1, 2 + 2 and 1 + 1 + 1 +
1 are given in Figs. 10.1, 10.2, 10.3 and 10.4 and in summary in Table 10.1.

It was the Fibonacci sequence that was first used to determine the number of
partitions P(n) of a number n:

P(n) = 1√
5

⎛
⎝
[
1 + √

5

2

]n+1

−
[
1 − √

5

2

]n+1
⎞
⎠ =

n/2∑
k=0

(
n − k
k

)
(10.1)

This “old” formula encapsulates the golden ratio, since

lim
n→∞

P(n)

P(n − 1)
=
[
1 + √

5

2

]
= 1.61803... (10.2)

Most commonly however, the Hardy and Ramanujan formula is used to calculate
the partitions of any positive integer (Hardy and Ramanujan 1918) which provides
an asymptotic solution of P with respect to n:
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Fig. 10.1 The possible map configurations of a 4-colored 2 × 2 map for the partitions 4 = 4 and
4 = 3 + 1 (4 and 48 partitions respectively)

Fig. 10.2 The possible map configurations of a 4-colored 2× 2 map corresponding to the partition
4 = 2 + 2
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Fig. 10.3 The 144 possible configurations of a 4-colored 2 × 2 map corresponding to the partition
4 = 2 + 1 + 1

P(n) ≈ 1

4n
√
3
eπ

√
2n/3 (10.3)

The same formula was also independently discovered by Uspensky (1920); the
reader may refer to Hardy and Wright (1979) and to Hardy (1999).

Some values of the partition function for some small quadratic maps, per map
size, are given in Table 10.2: the ratio P(n)/N(n) diminishes close to zero, even for
small n.

Later, Rademacher (1937) obtained an exact convergent series solution which
includes the Hardy-Ramanujan formula (Rademacher 1932, 1937, 1943):
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Fig. 10.4 The 24 possible
configurations of a 4-colored
2 × 2 map corresponding to
the partition 4 = 1 + 1 + 1
+ 1

Table 10.1 Number of possible map configurations N(n) per partition class for n = 4 square
multi-colored maps. The sum total of all possible configurations is nn = 44 = 256

Partition class Possible configurations N(n)

4 4

3 + 1 48

2 + 2 36

2 + 1 + 1 144

1 + 1 + 1 + 1 24

Table 10.2 Values of the partition function P(n) for small map sizes, numbers of possible map
configurationsN(n) andP(n)/N(n) ratios respectively.Notice howquickly the ratio attains extremely
small values

Map size n Partitions P(n) Possible map configurations N(n) Ratio P(n)/N(n)

4 5 44 = 256 19.5 × 10−3

9 30 99 = 387,420,489 7.743 × 10−8

16 297 1616 = 1844 × 1019 1.61 × 10−17

25 2436 2525 = 8882 × 1034 2.742 × 10−32

36 21637 3636 = 1064 × 1056 2.033 × 10−52

P(n) = 1
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⎥⎦ (10.4)

with the sequence Ak(n) expressed as a Kloosterman sum (an exponential sum
involving natural numbers):
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where δmn is the Kronecker delta (Hardy 1999).
The Kloosterman sum is defined on the concept of “relative primes” of integers:

Two integers n, m are “relatively prime” if they share no common positive factors
(divisors) except 1. If h takes values over a set of residues relative to prime to n and

ĥh = 1(mod n), (10.6)

then a Kloosterman sum is:

S(u, v, n) ≡
∑
h

exp

⎡
⎣2π i

(
uh + vĥ

)

n

⎤
⎦. (10.7)

For further information the reader may consider the relevant literature of number
theory (Kloosterman 1926, 1946; Hardy andWright 1979; Katz 1987; Apostol 1976;
Hardy 1999).

A more recent formula for partitions is given by Bruinier and Ono (2011):

P(n) = 2π(24n − 1)−
3
4

∞∑
k=1

Ak(n)

k
I 3
2

[
π

√
24n − 1

6k

]
(10.8)

where I3/2 stands for the modified Bessel function of the first kind and Ak(n) is the
Kloosterman sum.

The modified Bessel function of the first kind In(z) is defined as an integral

In(z) = 1

2iπ

∮
e

z
2 (1+ 1

t )t−1−ndt (10.9)

or, in terms of the gamma function

In(z) =
( z
2

)n ∞∑
k=0

(
z2

4

)k

k!�(n + k + 1)
(10.10)

and appears as a solution of the second-order modified Bessel differential equation:

x2
d2y

dx2
+ x

dy

dx
− (

x2 + n2
)
y = 0 (10.11)
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This formula for P(n) is given as a finite sum of algebraic numbers:

P(n) = Tr(n)

24n − 1
(10.12)

where the trace Tr(n) is defined as

Tr(n) =
∑
Q∈Qn

R
(
αQ
)
. (10.13)

R(z) stands for a function:

R(z) = −
(

1

2π i

d

dz
+ 1

2πy

)
f (z), (10.14)

where z = x + iy and Qn is any set of representatives of the equivalence classes of
the integral binary quadratic form

Q(x, y) = ax2 + bxy + cy2 (10.15)

with a > 0 and b = 1 mod(12), with the property that for each Q(x, y), we let aQ be
“CM point” in the upper half-plane, for which Q(aQ, 1)= 0, recalling that a point is
CM if its corresponding elliptic curve has complex multiplication.

The function f (z) is the weight-2 meromorphic modular form entailing Eisenstein
series and Dedekind eta functions:

F(z) = 1

2

E2(z) − 2E2(2z) − 3E3(3z) + 6E2(6z)

η2(z)η2(2z)η2(3z)η3(6z)

= q−1 − 10 − 29q − 104q3 − 273q3... (10.16)

where q = e2π i z is the nome, E2(q) are Eisenstein series, and η(q) are Dedekind eta
functions.

The Eisenstein series is defined as:

Gr (τ ) =
∞∑

m=−∞

∞∑
m=−∞

1

(m + nτ)r
(10.17)

where r > 2 is an integer, τ > 0 and the sums exclude m = n = 0, while satisfying
the following relationship in terms of Riemann zeta functions:
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G2k(τ ) = 2ζ(2k) +

⎡
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σ2k−1(n)e2π inτ

)(
2(2π i)2k

)

(2k − 1)!

⎤
⎥⎥⎦ (10.18)

for n > 1, with ζ (s) the Riemann zeta function and σ k(n) the divisor function.
With an elliptic modulus k and a nome q = eiπτ , the first values of the Eisenstein

series E2n(q) are (Apostol 1976):

E2(q) = 1 − 24
∞∑
k=1

σ1(k)q
2k (10.19)

E4(q) = 1 + 240
∞∑
k=1

σ3(k)q
2k (10.20)

E6(q) = 1 − 504
∞∑
k=1

σ5(k)q
2k (10.21)

Also, the Eisenstein series is defined as:

∞∑
k=−∞

∞∑
j=−∞

[
( j + kτ)−2n j2 + k2 �= 0

0 otherwise

]

= 2ζ(2n) +

( ∞∑
k=1

σ2n−1(k)e2π ikτ
)(

2(2π i)2n
)

(2n − 1)! (10.22)

for n > 1, with ζ (s) the Riemann zeta function and σ k(n) the divisor function.
The Dedekind eta function is a modular form defined over the upper half-plane

{I(τ ) > 0} by the formula:

η(τ) = (q)
1
24

∞∑
n=−∞

(−1)n(q)−n (3n−1)
2 = (q)

1
24
(
1 − (q)2 + (q)5 + (q)7 − (q)12 − · · ·)

(10.23)

where (q) = e2π iτ is the square “nome” q and τ is the half-period ratio (Atkin and
Morain 1993; Berndt 1994) eventually transforming the Dedekind eta function to the
form:

η(τ) = e
π iτ
12

∞∏
k=1

(
1 − e2π ikτ

)
(10.24)
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For some values, it relates to other known functions such as the Jacobi theta
functions, the gamma function etc. For instance, for theta functions with zero
argument:

ϑ.3
(
0, eiπτ

) = η2
(

τ+1
2

)

η(τ + 1)
(10.25)

and with the gamma function

η(i) = �
(
1
4

)

2π
3
4

(10.26)

The Eisenstein series E2 is related to partitions P(n) as follows:

E2(z) = 1 − 24
∞∑
n=1

∑
d/n

d(P(n))n. (10.27)

The nome q is defined on Jacobi theta functions as (Borwein and Borwein 1987):

q = e
iπK

√
1−k2

K (k) (10.28)

with τ the half-period ratio, K(ke) the complete elliptic integral of the first kind, k
the elliptic modulus and the elliptic integral of the first kind has the general form

F(ϕ, k) =
tan ϕ∫

0

dv√
(1 + v2)((1 + (1 − k)2v2)

(10.29)

where v = tanθ (Abramowitz and Stegun 1972).
Hence, the divisor function and the Jacobi theta functions enter in the calculation

of the Dedekind eta function and for the Eisenstein series.
The divisor function of an integer n is the sum of k-th powers of the positive

integer divisors of n:

σk(n) =
∑
d/n

dk (10.30)

and relates to the Riemann zeta function, by means of Ramanujan’s formula (Wilson
1923):
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∞∑
n=1

(
σa(n)σb(n)

ns

)
= ζ(s)ζ(s − a)ζ(σ − b)ζ(s − a − b)

ζ(2s − 1 − b)
(10.31)

while also satisfying

lim
n→∞

(
σ(n)

n ln ln n

)
= eγ (10.32)

where γ is the Euler-Mascheroni constant.
The Jacobi theta functions are quasi-periodic, expressed in terms of the nome q,

given in the form ϑ.n(z, q) where q is defined in terms of a quasi-period τ as:

q = e2π iτ . (10.33)

Setting thus the nome, leads to different Jacobi forms for successively higher n,
i.e.:

ϑ.1(z, q) =
n=∞∑
n=−∞

(−1)n− 1
2 q(n+ 1

2 )
2

e(2n+1)i z (10.34)

ϑ.2(z, q) =
n=∞∑
n=−∞

q(n+ 1
2 )

2

e(2n+1)i z (10.35)

ϑ.3(z, q) =
n=∞∑
n=−∞

q(n)2e2niz (10.36)

Elliptic integrals of the 1st kind are expressed in terms of Jacobi functions and an
elliptic modulus, which can be expressed in terms of Jacobi theta functions:

k = ϑ2
2 (0, q)

ϑ2
3 (0, q)

. (10.37)

The Jacobi theta functions with z = 0 relate to the gamma function for some
values of the nome, i.e.

ϑ.3
(
0, e−π

) =
4
√

π

�
(
3
4

) (10.38)
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10.2 Entropy Class

...and either the white becomes black, or the black becomes white…

“…καὶ γὰρ ε„ λευκòν Øπάρχoν μελαίνoιτo καὶ ε„ μšλαν λευκαίνoιτo”

(Galen, 129–199 A.D., “On the Natural Faculties”, 1.2)

The possible spatial partitions define entropy. In place of Shannon’s formula for
entropy H, a simpler measure will be used here instead and will hereafter be named
“entropy class” (r). This is the number of colored cells in a map (Fig. 10.5) and
assumes only integer values. In a binary map, the colored cells are the “black” ones
and are considered to be those that constitute the second largest population after the
population bearing the dominant color (the whites in the case of binary maps). If,
for instance, a binary 3 × 3 map is dominantly white, then the black cells can not be
more than 4, that is r = (n − 1)/2, where n is the total number of cells (n = 9 in this
case). If the binary map is even-numbered, then the number of colored cells cannot
be higher than r = n/2.

Obviously, all binary maps of the same entropy class also have the same Shannon
entropy. The higher the number of black cells, the higher the entropy class and this
applies up to the maximum entropy class of the square binary map. Notice however,
that that Shannon entropy H reflects the percentage of the relative participation of
each map type on the map and it is independent of observation scale. Contrary to
this, the entropy class r is scale-dependent, representing the number of colored cells
in a binary map for a precise size and resolution (Fig. 10.6). This difference makes
r more advantageous to Shannon entropy for the analysis of the spatial complexity
of square maps, also due to the fact that it assumes only integer values.

Fig. 10.5 Entropy class r is defined here as the total number of colored cells (red in this case) in
the binary map. Some 3 × 3 binary maps with “entropy classes” r = 1, 2, 3 and 4 are shown



154 10 Entering the “Spatium Numerorum”: Creating Spatial …

Fig. 10.6 The difference between Shannon entropy H and entropy class r consists in the fact that
r is scale-dependent. These twomaps have both the same entropyH, but their entropy classes differ:
the map on the left has r = 4, while the map on the right has r = 16. Thus, by using r instead of H,
map analysis becomes scale-dependent, which is essential for the assessment of spatial complexity

10.3 Generic Maps and Symmetry

“Et plutard un Ange, entr’ ouvrant les portes,

viendra ranimer, fidèle et joyeux les mirroirs ternis”

(Charles Baudelaire, 1821–1867, “La mort des amants”)

Partitioning a space is equivalent to the identification of possible “entropy classes”
in it. But partitioning alone is inadequate to determine all possiblemap configurations
for a certain entropy class. We thus arrive at the next step in the process of generation
of spatially complex square maps: the creation of symmetric replications.

The typical symmetry operations on the square are: rotation 90° clockwise about
the centre, rotation 180° clockwise around, rotation 270° clockwise around, reflection
through the horizontal centre line, reflection through the vertical centre line, reflection
through the main diagonal (upper-left to bottom-right vertex) and reflection through
the other diagonal (bottom-left to upper-right vertex). These symmetric operations
are possible because the square has four lines of symmetry (Fig. 10.7): the two axes
and the two lines y = x and y = −x. Further, by rotating the square by 90°, 180° or
270°, new symmetric configurations are received.

These seven symmetries together with the identity (no rotation, or “trivial
symmetry) create the group of symmetries of the square (8 in total).

Specifically, the operations are:
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Fig. 10.7 Symmetry axes of
the square

VS = Reflection through the vertical
HS = Reflection through the horizontal
DS = Reflection through the diagonal D1

D’S = Reflection through the diagonal D2

IS = identity (no rotation)
R90 = rotation 90° clockwise about the center
R180 = rotation 180° clockwise about the center
R270 = rotation 270° clockwise about the center.

In this way, any new positions of cells are calculated from the multiplication table
(Table 10.3):

The number of map configurations corresponding to each symmetry operation
is given by the “Burnside lemma” (alternatively referred to as the “Burnside–Polya
theorem”), which can be used to endow square partitions with topologically inequiv-
alent positions, along with their associated symmetries. It yields configurations of
symmetry-dependent maps, but the full set of map configurations is received only
after the application of symmetry operations is applied to them.

Let G be a group of elements that permute vertices of objects. Two colorings are
considered indistinguishablewith respect toG if there is some element g belonging to
G, such that g sends one coloring to another. Lettingψ(g) be the number of colorings
which are unchanged when affected by g and Ng the number of generic maps, then
Burnside’s lemma computes the number of generic maps Ng as:
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Table 10.3 Multiplication table showing the results of multiplication of possible symmetries of
the square

HS VS DS D’S IS R90 R180 R270

HS IS R180 R90 R270 HS DS VS D’S

VS R180 IS R270 R90 VS D’S HS DS

DS R270 R270 IS R180 DS VS D’S HS

D’S R90 R270 R180 IS D’S HS DS VS

IS HS VS DS D’S IS R90 R180 R270

R90 D’S DS HS VS R90 R180 R270 IS

R180 VS HS D’S DS R180 R270 IS R90

R270 DS D’S VS HS R270 IS R90 R180

Fig. 10.8 The 21 symmetric 2 × 2 squares with 3 colors

Ng = 1

|G|
∑
g∈G

ψ(g) (10.39)

For instance, for a 2× 2map with three colors the number of generic 2× 2 square
maps with three colors (Fig. 10.8) is (Table 10.4):

Ng = 1

|G|
∑
g∈G

ψ(g) = 1

8

(
34 + 31 + 32 + 31 + 32 + 32 + 33 + 33

)

= 168

8
= 21 (10.40)

Increasing the number of colors by one, the formula yields more possible map
configurations for 2× 2 maps with 4-colors, the total number of which is (Fig. 10.9):
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Table 10.4 Calculation of
symmetries of 2 × 2 squares
with 3 colors

Symmetry Cycle form Number of configurations ψ(g)

IS (1), (2), (3), (4) 34

R90 (1 2 3 4) 31

R180 (1 3), (2 4) 32

R270 (1 4 3 2) 31

VS (1 2), (3 4) 32

HS (1 4), (2 3) 32

DS (1), (2 4), (3) 33

D’S (1 3), (2), (4) 33

Fig. 10.9 The 53 possible 2 × 2 square maps with all possible combinations of 4 colors

Ng = 1

|G|
∑
g∈G

ψ(g)

= 1

8

(
44 + 41 + 41 + 42 + 42 + 43 + 43 + 43

)

= 424

8
= 53 (10.41)
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10.4 Calculating Binary Map Configurations

“Nature is indeed a sum, but not a whole”

(Gilles Deleuze 2012, p. 304)

Given the partitions of space acting on squaremaps, entropy classes can be defined
next. In fact, no more black cells need to be allocated on a map after attaining the
maximum entropy class, since after exceeding the maximum entropy threshold, all
binarymap configurations repeat themselves as black-and-whitemirror reflections of
the configurationswhichwere derived prior to attainingmaximumentropy class. This
is because for entropy classes higher than r = n/2 (if n= even) or r= (n− 1)/2 (if n=
odd), the resulting binary map configurations are mirror-like repetitions of their n-r
counterparts. So a simple replacement of black bywhite cells (orwhite by black cells)
at the same positions of themap produces identical spatial complexity values (simple
replacements of black cells by white cells yields exactly the same cell positions
on each map and this symmetry applies to all possible configurations). Hence, the
central question is how to determine the number of possible map configurations up to
maximumentropy class. It thus suffices to examine the spatial complexity of different
configurations, depending on whether r = n/2 (if n = even) or r = (n − 1)/2 (if n =
odd) and hence, the formula giving the total number of possible square binary map
configurations N(n) per map size n up to maximum entropy class is:

N (n) =
r∑

r=1

n!
r !(n − r)! (10.42)

An application can be seen in the case of 2 × 2 binary maps (Fig. 10.10). The
configurations with r = 3 are mirror-symmetric of those with r = 1. It suffices
therefore to consider configurations only up to rmax = 2 (in the case of 2 × 2 maps).
As n = even, so r = 2 and hence the number of possible configurations N(n) up to
maximum entropy class (r = 2) is:

N (4)r=2 =
2∑

r=1

4!
r !(4 − r)! = 4!

1!3! + 4!
2!2! = 10 (10.43)

Similarly, the number of all possible 3 × 3 binary maps configurations from r =
1 up to the maximum entropy class (which is r = 4) is 255:

N =
r= n−1

2∑
r=1

(
n

r

)
=

r= 9−1
2 =4∑

r=1

(
9

4

)
=
(
9

1

)
+
(
9

2

)
+
(
9
3

)
+
(
9

4

)
= 255

(10.44)
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Fig. 10.10 All the possible configurations of 2 x 2 binary maps. When more than half of the cells
are black, then the map configurations repeat themselves as exactly reversed, therefore without
contributing any more to complexity beyond the state of maximum entropy, which is attained at the
entropy class r = 2 for this map size

The number of possible configurations N(n) up to maximum entropy class,
depends on whether the total number of cells (n) is an even or an odd number:

N (n) =
r∑

r=1

n!
r !(n − r)! =

⎧⎪⎪⎨
⎪⎪⎩

r=(n−1)/2∑
r=1

n!
k!(n−r)! n = odd

r=n/2∑
r=1

n!
r !(n−r)! n = even

⎫⎪⎪⎬
⎪⎪⎭

(10.45)

For n = odd, we simply have:

N (n) =
r= (n−1)

2∑
r=1

n!
r !(n − r)! = 2n−1 − 1 (10.46)

For r = n/2 (case where n = even), the calculation of N(n) is carried out by
employing the Gaussian hypergeometric function 2F1, so the formula giving the
total N(n) of binary maps configurations is:

N (n) = r
r=n/2∑
k=1

n!
r !(n − r)!
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Table 10.5 Even in small binary maps (from 2 × 2 to 6 × 6 shown here), as the map size (n)
increases, the sum of possible square binary map configurations N(n) “explodes”

Binary map size (n) Number of possible binary maps up to rmax

4 10

9 255

16 36,493

25 16,777,216

36 38,897,306,020

= 2n − 1 − n!2F1
(
1, 1 − n

2 , 2 + n
2 ,−1

)
(
n−2
2 !)( n+2

2 !) (10.47)

and therefore,

N (n) =
{

2n−1 − 1 n = odd

2n − 1 − n!2F1(1,1− n
2 ,2+ n

2 ,−1)
( n−2

2 !)( n+2
2 !) n = even

}
(10.48)

To get a glimpse of the “combinatorial explosion” of the number of possible binary
map configurationsN(n) with increasing map size n, it suffices to consider the values
of N(n) with respect to n even only for some low values of n (Table 10.5). Hence,
when embarking to carry out spatial analyses of any kind by using square binary
maps with increasing map size, it always has to be considered that the number of
possible configurations will increase very fast and so the computational complexity
for examining the spatial complexity of all these configurations rapidly spirals out
of computational control.
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