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Preface

By “spatial complexity” is meant the complexity of surfaces and spatial objects of
dimension 2 or higher. Its manifestations in nature are manifold and so are its
implications for science and technology. Although it is primarily important for
mathematics, geography, ecology, physics, psychology, aesthetics, medicine,
engineering, it relates to everyone and everything. This is because it is behind all
spatial processes and spatial distributions that give rise to the diversity and
heterogeneity observed in spatial forms. It is therefore unsurprising that its
assessment is so tricky. Yet, we need indices and methods to assess it for practical
purposes.

This book goes beyond the well-known and well-established field of “complex
systems” which aims to examine the various behaviours of complex systems.
Instead of focusing on the intensely and widely researched “complex dynamics”
(involving nonlinear behaviours, chaos, etc.), its focus is on explaining why some
spatial form, region, figure, object or surface is complex, why is it more complex
than another and how much so. Hence, a “grassroots” approach to complexity is
presented here, tackling the problem of assessing the complexity of an object or a
surface in two (and higher)-dimensional spaces, as is (without any change or
movement).

Considering these, five key questions about spatial complexity are addressed
here:

i. What defines it?
ii. Why and for whom is it important?
iii. How might it be assessed quantitatively?
iv. How can it be created by adopting simple methods?
v. How is it perceived and how is it associated to qualities and meanings?

As concerns the first question, we should not loose sight from the fact that
expectedly, there are several alternative approaches to complexity and spatial
complexity should not expected to be an exemption. I tried to shed light on as many
as possible, in order to eventually derive a general classification of all the basic
determinants of spatial complexity.
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As for the second question, I aim at offering the possibility to scientists from
across diverse scientific domains, if not to carry out further research in spatial
complexity, at least to take a moment and think if and how in their own domains
they may already be addressing questions of spatial complexity. And if the answer
were positive, then they might as well consider whether the research framework
proposed here might be useful to them.

With respect to the third question, some simple and easily applicable methods
are suggested in this book, enabling oneself to explore spatial complexity
quantitatively.

The fourth question is addressed here by adopting a mixed approach, ranging in
between mathematics, geography, philosophy and experimentation: I propose a
theory for the creation of spatial complexity from simple square maps, by following
number-theoretic, algebraic and combinatorial methods, which I call “Spatium
Numerorum”.

Evidently, tackling the fifth question involves research results and concepts from
psychology, aesthetics, epistemology, philosophy. If not anything else, these
explorations show how important spatial complexity is, not only to science and
technology, but to everyday life also.

The book is articulated in five parts as follows:
Part I Introducing Spatial Complexity (Chaps. 1–2) is the reader’s first borders

crossing into the realm of spatial complexity (Chap. 1), followed by an overview
of the main fields in which spatial complexity emerges in scientific research and
technological applications (Chap. 2). The most often encountered computational
complexity classes are also presented in Chap. 1, as they pop up in various prob-
lems related to spatial complexity. The same chapter (1) contains necessary dis-
ambiguations from misleadingly similar-looking terms, such as “space complexity”,
“shape complexity” and “topological complexity”. The style of introduction to
spatial complexity is intentionally kept informal, so readers from various disciplines
understand what spatial complexity is and appreciate its significance. The realm of
spatial complexity is immense, and therefore no “complete” presentation of its
significance and applications could possibly be made in Chap. 2. Some key areas
are outlined there, for which spatial complexity is particularly important, given that
it is not feasible to cover within one chapter all the scientific disciplines and
domains for which spatial complexity plays a key role. But, hopefully, with this
chapter the reader will appreciate the central position of spatial complexity, at least
for disciplines for which it is particularly significant.

Part II The Mathematical Basis of Spatial Complexity (Chaps. 3–8) presents my
basic mathematical theory of spatial complexity, based on three main sets of
determinants: geometry (Chap. 3), randomness and entropy (Chap. 4), topology
(Chap. 5). Although spatial complexity has several determinants, its assessment will
eventually be algorithmic (Chap. 6). The term “algorithmic” here is used sensu lato,
meaning the complexity as measured by number of symbols, or number of arith-
metic operations (addition, exponentiation), or number of operations on the nature
of the object or the surface examined (substitutions, deletions, etc). In this part also
(Chap. 6), two metrics of spatial complexity (CP1 and CP2) are defined that are
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extensively used in the subsequent chapters for various calculations. Some ideas for
measuring the spatial complexity of 3d objects are also presented in this part
(Chap. 7) while briefly examining the main problems encountered in the assessment
of spatial complexity in 4d and higher-dimensional domains (Chap. 8).

Part III Numbers Behind Spatial Complexity (Chaps. 9–12) constitutes a theo-
retical and practical framework for assessing spatial complexity of small maps, for
creating spatial complexity from numbers and spatial combinatorics, as well as
some surprising and amazing aspects of spatial complexity, as they emerge by
looking for it in mazes, labyrinths and games (Chap. 9). All these conduce to a
“Spatium Numerorum” (“space of numbers”) which seems to lie behind spatial
forms, distributions, surfaces, objects, defining their shape and mathematical
properties. It may sound like a bold assumption, but it nevertheless is possible to
test by examining how spatially complex forms can be created from simple square
maps. I suggest a method for this, by unveiling the number theory behind geometry
and combinatorics, which, in turn, lie behind the spatial complexity of square maps
(Chap. 10). The application of the metrics CP1 and CP2 on 3 � 3 binary maps
(Chap. 11) reveals how the fascinatingly complex interplay between entropy,
patchiness, clumpiness and complexity can bring forth both expected and
counter-intuitive features of spatial complexity. The complete characterization of
spatial complexity of 3 � 3 binary maps turns out to be a surprise in many ways. It
proves, if not anything else, that assessing spatial complexity is, by all means, a
difficult undertaking, but it also gives clues for quantitative assessments of spatial
complexity. And in this context, mapping out primes and transcendentals as binary
square maps (Chap. 12) fosters the need to further explore the “Spatium
Numerorum”.

Part IV Understanding Spatial Complexity (Chaps. 13–14) exposes some issues
that can either hinder or facilitate our understanding of spatial complexity.
Inevitably, spatial complexity is replete with enigmas that test our mathematical and
computational capabilities to their limits (Chap. 13). Yet, there is ground to hope
that we can “understand” spatial complexity by giving a fresh look upon some
already known results from probability theory and algebra (Chap. 14). Some of the
questions addressed in this part are: What is the role of symmetries in understanding
spatial complexity? How do singularities affect its assessment? Can spatial com-
plexity be infinite? How might spatial stochasticity be “tamed” by laws of proba-
bility and stochastic geometry? Might simple methods (such as the “sudoku
method” proposed here) be used to evaluate the complexity of large maps?

Part V Epistemological, Psychological, Geophilosophical and Aesthetic
Perspectives on Spatial Complexity (Chaps. 15–18) examines spatial complexity
from within three domains of the humanities: Psychology (Chap. 15),
Aesthetics/Art Theory (Chap. 16), Philosophy and Epistemology (Chap. 17). The
central questions addressed to in these chapters are to understand how we perceive
spatial complexity (Chap. 15), how we evaluate it aesthetically (Chap. 16), which
philosophical approaches are more fitting to examine it and what are the episte-
mological repercussions of all these (Chap. 17). For instance, to what extent can we
hope to understand spatial complexity at large scales with our current mathematical
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knowledge and computational capabilities? (Chaps. 17 and 18) Finally, an agenda
is laid out for future research in spatial complexity (Chap. 18), with the suggestion
that a future “Observatory of Spatial Complexity” might be helpful to monitor new
developments in spatial complexity, cutting across sciences and disciplines. Such
an observatory, which I named “Mens Spatii” (the mind of space), should be
strongly interdisciplinary in its methods and scope.

As stated earlier, all throughout the book, and in order to conform with the
common perception of the words “space” and “spatial”, these words are taken to
refer to dimensions 2 and higher. Indeed, a mathematician may object that lines and
points are “spaces” too (of one and zero dimensions, respectively); yet, the analysis
of spatial complexity is interdisciplinary and should remain so.

It might be any researcher’s aspiration to possess the scientific means to cal-
culate the spatial complexity of a surface or object in 4, 5, 6, …, n dimensions.
However, as the reader will repeatedly discover throughout this book, the assess-
ment (not to mention the measurement) of spatial complexity is hard, even in very
simple cases of smooth 2d surfaces such as 3 � 3 binary square maps. Furthermore,
as discussed in the book, the extent to which our 2d methods also apply to 3d
surfaces is still poorly known.

Although the aim of this book is not meant to present extensive advanced topics
of mathematics or computer science, effort was made to introduce
non-mathematicians to some key notions of mathematics that are indispensable for
studying spatial complexity. Thus, some key issues are presented step by step, so
that, even readers without a particularly strong background in mathematics would
be able to follow. Besides, overly detailed analyses of particular technical issues
might dissuade some readers with less advanced mathematical skills. Thus, sea-
soned mathematicians may come across concepts perhaps with only limited
explanations, which nevertheless may turn out to be quite promising for future
research. But these cases are rare and clearly meant for experts in those fields, so
non-mathematicians can safely bypass them and come back to them at some later
stage, once they will have acquired further knowledge about those domains.
Reversely, when readers feel already familiar with some topics (which nevertheless
need to be presented for non-mathematicians), they may as well just skip them.

The world around us is rarely ever “simple” (=“not complex”) as much as isn’t
anyone of the objects partaking it. Science has proved this repeatedly: the more we
look closer at finer spatial scales, the more complex the world seems to be. But
choosing a convenient spatial scale of observation, a suitable spatial representation
to code the observations we make and a set of appropriate methods to assess the
complexity of this spatial code is necessary and desirable for theoretical and
practical needs. Hence, the study of spatial complexity should combine theory and
practice, mathematical reasoning and, quite often, experimentation. The quantita-
tive analysis of spatial complexity is a complex problem of its own, of immense
breadth and depth; but, as we are biological entities endowed with advanced
information processing capabilities, one of our ultimate goals and challenges is to
discover how complex is the space we live in—be it the tangible space of our
immediate surrounding, the geographical space, the “virtual” space, or even the
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cosmic space. It would be far too ambitious to assume that one single book would
offer a definite “answer” as to how spatial complexity might be measured and
perceived. Instead, it is hoped that it might serve as a handbook of research methods
in spatial complexity, a compass orienting experts and non-experts alike into the
vast realm of spatial complexity, an agenda for exploration and experimentation.

Tübingen, Germany Fivos Papadimitriou
geotopia@yahoo.fr

Rio de Janeiro: Part of the Copacabana beach and pavement, against the lights of the Avenida
Atlantica at the backdrop, with a view towards Leme. It was there when I decided to write this
book on spatial complexity. Now, after having finished writing and recalling Archimedes’ “Sand
Reckoner”, I reckon that, even after years of research effort, those grains of ultra fine sand that
were lying in front of me that night, by far outnumbered the sum total of thoughts I made about
spatial complexity ever since and, almost certainly, all the thoughts I will be able to make about
spatial complexity in the rest of my life.
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Part I
Introducing Spatial Complexity



Chapter 1
What is Spatial Complexity?

Existence, Space/Land and Becoming is a triad
of discrete elements, which preexisted the origin of the skies.
“Ôν τε καὶ χώραν καὶ γ šνεσ ιν ε�ναι,
τρία τριχÁ καὶ πρὶν oÙρανòν γ εν�σθαι”
(Plato, 428–348 b.C.,“Timaeus”, 52d)

Abstract Spatial complexity is defined here as the difficulty to simplify the struc-
ture or form of a 2-and-higher-dimensional surface or object. The study of spatial
complexity refers to the geographical space, to mathematically abstract spaces, to
physical objects, or to any surface or object, in a n-dimensional space with n equal
to two or higher. Spatial complexity should not be confused with “space complex-
ity”, “topological complexity”, “shape complexity” or “complex stystems”. Spatial
complexity is scale-dependent (it changes according to the level of generalization at
which it is examined and is, under certain conditions, perception-dependent also.

Keywords Spatial complexity · Psychology and complexity · Topology and
complexity ·Map complexity · Computational complexity · Simplicity ·
Geography and Complexity

1.1 Definition and Disambiguation

The end is in the beginning and yet you go on

(Samuel Beckett, 1906-1989, “Endgame”, 1957)

Plainly put, “spatial complexity” is exactlywhat its two constituentwords suggest:
the complexity of a spatial object.

Any spatial object, be it two-dimensional (i.e. a surface) or three-dimensional, or
even n-dimensional, large or small in size, on a plane or on a curved surface, compact
or with holes, rugged or smooth, can be more or less complex in comparison to
another.

In terms of “spatial science”, the most characteristic cases of spatially complex
objects or settings can be identified from the perception of geographical spaces or
outdoor environments (i.e. landscapes), or even from representations of spaces by
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maps, photographs etc. To other sscientists, a machine constituting in many parts,
the shapes and colors of a garment, a painting, and innumerable other objects and
surfaces may be spatially complex.

Let us consider what comes to mind when we think that some object of the real
world is “complex”, in contrast to another one that is “simple”. If something is more
“complex”, it means that it is more difficult to understand, to learn how it works, to
break down in pieces, to re-create from its basic constituents, to explain to ourselves
and to others. All these difficulties are summarized by the word “complexity” and if
the “complex” object is spatial, then we talk about “spatial complexity”, that is the
complexity of a spatial object.

Let us consider these in a practical way: A room is certainly more complex than
another, if there are more objects in it (might as well be so for several other reasons,
as will be examined later). Contrast, for instance, the simplicity of a zen monk’s
room with one of the royal halls of the palace of Versailles. Certainly, the fewer
items or any other categories of distinct objects are confined within a spatial extent,
the simpler the space is. For instance, the floor of a 30 m2 roomwith three chairs on it
is more complex than if only one chair was there, and even more complex than if the
room had been completely empty. Carrying on along the same line of thought, the
fewer items or any other categories of different classes of objects are found within a
strictly confined spatial extent, the simpler this spatial extent will be: if, in addition
to the three chairs, the floor of the same room had a table, a sofa and nineteen books
on it (that is 24 objects belonging to 4 different categories), then it would be more
complex than if it had all its objects belonging to the same category, i.e. 24 books or
24 chairs.

Intuitively also, we understand that some space is more complex, if the objects
in it are in a state of disorder. As we all know, disorder increases the difficulty of
understanding something. If there were only 24 books in the room and they were all
packed together as a single stack, then the room would simply consist in two halves:
the area of the room covered by the books (the stack) and the uncovered area. If the
24 books were scattered all over, then the rooms’ tenant would need to brace herself
to “arrange” the place, or “put things in order”. But what if these 24 books were
not placed disorderly on the floor? What if they were all stacked together on a table
instead? Then the room would have an area of low complexity (where there are no
tables, books, chairs, or sofas) and an area where there is a table with a heap of books
thrown randomly on it. What would the complexity of that room be then? While
complexity may be localized and concentrated within a restricted area of space, it
may as well be absent in other areas.

Hence, spatial complexity is the degree of difficulty to describe (computationally,
linguistically) or to code (i.e. algorithmically) a spatial object, surface, arrangement,
assortment, or piece of space containing objects or surfaces. As such, its study is part
of the study of “complexity” as it has been developed in mathematics and computer
science over the last decades, with the peculiarity that it is focused on the complexity
of spatial entities only, without any restriction as to the nature, the physical or chem-
ical constitution or functions of these spatial entities. Whatever their nature may
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be, we need tools to evaluate the spatial complexity of ordinary objects: the spatial
complexity of a balloon, of a landscape, of one square centimetre of one’s skin etc.

Some notices of disambiguation are due here.

(i) Objects, sets of objects or systems that behave in a complex manner are beyond
the scope of the present book. Complex behaviors, processes and dynamics
constitute the research subject of the already fairly advanced discipline of
“complex systems”, which studies phenomena such as chaos, bifurcations,
unpredictability etc.

(ii) “Spatial complexity” should be clearly distinguished from the term “space
complexity” that is used in informatics to denote the amount of space resources
required for the computation of a problem’s solution. Consequently, the
complexity of processes, behaviors, situations, relationships, temporal changes,
of any process that presents changes in time or changes in contexts other than
spatial, or can not be brought into spatial form only, lies beyond the scope of
“spatial complexity”.

(iii) The notion of “topological complexity” only partly relates to spatial complexity,
because it means quite different things in different scientific contexts, and, as
such it can not replace the significance of the term “spatial complexity”, nor
should it be confused with it. It was defined by Farber (2003, 2004) as the
complexity of the problem of constructing a motion planning algorithm in the
3d space. This term has been adopted mainly in robotics, and particularly in
the study of the complexity of trajectories and motion planning (Grant 2007),
but it has also appeared in various contexts in other domains also: by Finkel
et al. (2006), in the context of diffeomorphisms of 2-dimensional manifolds,
by Martensen (2003) and Godefroy et al. (2001) in the context of Banach
spaces, byGrigoriev (2000) andbySouvaine andYap (1995) in range searching.
Besides these, it is also encountered in biology and DNA analysis (Hertling
1996; Martin-Parras et al. 1998), and in neural networks (Chapline 1997). It
seems that in all these cases the second component of the term (“complex-
ity”) was apparently unrelated to any other domain of complexity analysis (i.e.
algorithmic complexity).

(iv) Spatial complexity is a much wider concept than “shape complexity” for which
the reader may consult the relevant literature (e.g. Chazelle and Incerpi 1984;
Catrakis and Dimotakis 1998; Rossignac 2005; Joshi and Ravi 2010; Cham-
bers et al. 2016). The term “shape complexity” has so far been poorly related to
algorithmic complexity and there are no methods from algorithmic complexity
theory to calculate it, nor is there a universally accepted measure of “shape
complexity”. Furthermore, spatial complexity refers not only to complexity of
shapes (outlines/forms), but also to the spatial allocation and/or distribution of
colors/covers/classes/types/categories over surfaces or spatial objects; it there-
fore also heavily relies on entropy and probabilities of distributions (while
“shape complexity” does not).

(v) Conforming with the common understanding of the word “space”, a two-
dimensional space is the least-dimensional space that can, without any doubt,
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be considered as a “space”; as points and lines alone can not be considered
as “spaces” in the broad non-mathematical sense of the word “space”. This
convention is followed here, and therefore the examination of strictly-less-
than-two-dimensional cases is beyond the scope of “spatial complexity” , unless
they form indispensable constituents of spatial complexity. Spatial complexity
is encountered in innumerable forms, in two, three and higher spatial dimen-
sions, although it can be generated by objects with dimensions lower than two
(i.e. lines). While mathematicians normally deal with “spaces” of dimension
strictly less than two also, the 0-and-1-dimensional spaces do not conform
with what most people call “space” (lines and points are not “spaces” in the
non-mathematical sense) and, as spatial complexity is a fundamentally inter-
disciplinary subject, the common meaning attributed to the word “space” is
respected, so here we mean the complexity of objects and surfaces of (at least)
two dimensions.

Spatial complexity may be charmingly beautiful, puzzling, or even disdainful
(often infuriatingly so). It can be a source of frustration (i.e. to scientists and engi-
neers who seek simplicity and efficiency) and a source of inspiration to philosophers
and artists. Whatever the attitude towards it, all living beings have to cope with it
in different forms, time and again, from their birth until their passing away. Bees
seek flowers among the plants’ leaves, predatory animals assess every tiny change
in a small or large spatial area in order to spot and stalk their prey. Humans seek to
conquer and understand the entirety of space that is available to them on the surface
of this planet and to expand their quest for complex forms of existence in the outer
space.

Distinguishing the interesting from the uninteresting, the useful from the useless,
the certain from the uncertain, eventually involves taking snap decisions that are
based on one’s spatial perception. Taking decisions on whether to stay or leave a
particular location in space, evaluating the aesthetic appeal of an image, deciding
whether a shape in space is purposeful or not, all these and countless more deci-
sions inevitably involve some kind of assessment of spatial complexity. Quite often,
processing such assessments quickly can be a matter of life and death. Generally,
the more complex the spatial area or spatial object surveyed, the more difficult it is
to reach a decision about it. Some successful professionals however, are often able,
with admirable effectiveness, to assess the complexity of spatial arrangements and
take correct snap decisions accordingly (i.e. some military officers). Others still (i.e.
visual artists), are able to create pleasant forms, by masterly exploiting the aesthetic
characteristics of spatial forms, by either enhancing or downsizing spatial complexity
in their artworks. And then, there are scientists (mathematicians, geologists, ecolo-
gists, engineers among many others), who seek to understand how spatially complex
a two-dimensional surface (such as a map or an image) or even three-dimensional
object may be and why. As a general rule, the more advanced a life form is, the more
complex its internal structure.

Aside of the complexity of bodily functions and operations, the human body
organs, tissues and cells display increasingly complex forms if examined at
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finer spatial scales. Furthermore, the rise of increasingly more spatially complex
forms throughout the earth’s history is manifested not only biologically, but also
geologically (in the separation of landmass from the oceans and then the breaking
up of Pangea into several pieces and continents). The incessant processes of spatial
complexification are difficult to grasp in their immensity and multiplicity, as we
possess only limited tools to investigate them to their full breadth and depth. But
striking differences of spatial simplicity vs. complexity are all around us. Given
this, it should be rather easy to start grasping the basics of spatial complexity by
using common knowledge and everyday experience, as will be seen in the following
section.

1.2 Disorder, Asymmetry, Inequality

He had brought a large map representing the sea,

without the least vestige of land: and the crew were much pleased

when they found it to be. A map they could all understand…

Other maps are such shapes, with their islands and capes!

but we’ve got our brave captain to thank that he’s brought us the best:

a perfect and absolute blank!

(Lewis Carroll, “The Hunting of the Snark”, 1876)

Let us see some examples of spatial complexity, as contrasted to spatial simplicity.
A barren landscape bearing no plants, no water and virtually no life is spatially less
complex than a landscape in which many different plant species cover its surface
(Fig. 1.1).

A two-dimensional object, such as a photograph of the sky may have almost zero
variability among its cells (and thus low spatial complexity), while another may
display a great diversity in its color palette (Fig. 1.2). In the animal kingdom, genetic
rules prescribe remarkable differences in the spatial complexities of the appearances

Fig. 1.1 Part of a dry and desert-like landscape, which can not bear vegetation (left) contrasted to
a complex landscape (right) that is endowed with many kinds of different plants within a small area
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Fig. 1.2 A skywith only one color contrasted to a sky with many colors: more colors, higher spatial
complexity

of living beings of the same species (Fig. 1.3). Expectedly, a piece of space is more
difficult to understand, if the objects in it are in a state of disorder (Fig. 1.4).

Besides disorder, also characteristic is the absence of symmetries that would
qualify the space as ordered. Spaces with asymmetries are more difficult to decode
and require more spatial information than spaces endowed with symmetric or repet-
itive patterns (Fig. 1.5). Yet, as often happens, order may occur side by side with
asymmetries within the same space (Fig. 1.6).

Obviously, the whole problematic of spatial complexity can easily spiral out of
any possible computational control and this compels us to seek as simple approaches
to it as possible. That is why, in so many cases, we need to reduce spatial complexity.
Simplifying details in either geometric features or categories of spatial elements (i.e.
colors) in a spatial object results in reducing its complexity. For instance, a regular

Fig. 1.3 Two stray cats (left and middle) that the author used to take care of. On the right, one
of the author’s cats, Flashy, enjoying getting herself entangled in complex spatial settings. Notice
the varying levels of spatial complexity on the cats’ fur: an entirely black one (less complex),
a black-and-white (more complex), and a multicolored one (even more complex). Having closely
observed these three cats’ characters, the author has concluded that the more spatially complex their
appearance, the more complex their behaviors also (an observation that applied to these particular
ones only!)
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Fig. 1.4 An ordered space (left) requires less effort to describe it and therefore has lower spatial
complexity in comparison to a space that hosts disorder (right)

Fig. 1.5 Symmetries in space (left) are indicators of lower spatial complexity, in contrast to
asymmetries (right) that (most probably) imply higher spatial complexity

hexagon is a more complex form than a square. Similarly, an irregular hexagon is
even more complex than a regular hexagon (Fig. 1.7). This is because the hexagon
has more sides and angles than the square and the irregular hexagon has different
angles and side lengths than the regular hexagon.

Simplicity does not only depend on order, symmetry and shape. It has to do with
numbers of objects and shapes also: quantity matters for complexity. It is easier to
draw a square (either by hand or with the aid of a computer), than to draw 439
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Fig. 1.6 The symmetric design of a building, contrastedwith the spontaneously spreading branches
of a tree

Fig. 1.7 Three shapes compared with respect to their spatial complexity: A regular hexagon is
more complex than a square and an irregular hexagon is more complex than a regular hexagon

squares of the same side length. One step further: it is easier to perceive 439 equal-
sized squares than 9 such squares. And, eventually, it is easier to perceive 9 squares
of the same size than 9 squares of unequal sizes (spatial inequalities increase spatial
complexity). To make things even more “complex”, it is easier to perceive 39 equal-
sized squares all red than 39 squares of unequal size and of different color each (can
anyone easily figure out 39 different colors in 39 unequal squares?). So same class
(represented i.e. by the same color), same size, and same geometrymean lower spatial
complexity. Plainly put, spatial dissimilarities increase spatial complexity. Besides
geometric simplification however, thematic simplification is commonly applied in
order to reduce the spatial complexity of an image. In Fig. 1.8 for instance, while the
original picture requires 545 kbytes memory, the simplified one needs only 4 kbytes.
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Fig. 1.8 A photograph of the skyline of Rio de Janeiro (above) and a simplification of this picture
(below). The geometric features (points, lines, areas) of the original picture have been regrouped, so
as to become as simple as possible and the same was done with the colors. Simplification in either
geometric features or spatial elements reduces spatial complexity: the original photograph (above)
requires 545 kb memory while the simplified (below) only 4 kb

1.3 Spatial Complexity in Three Dimensions

“Complex” is a transition that comes

with a reversal or an adventure, or both

“�επλεγμšνην δ� ™ξ Âς μετὰ ¢ναγνωρισμoà

À περιπετείας À ¢μϕo‹ν ¹ μετάβασίς ™στιν”

(Aristotle, 384-322b.C.,”Poetics”, 1452a)

While 2d square cells constitute the basic spatial element for the analysis of 2d
surfaces inZ2, voxels (a compositeword fromvolume and pixel) are the 3d equivalent
of pixels in the digital topology Z3. A 3d surface (even curved surface) can be
voxelized in the same way that a 2d surface is pixelized (Fig. 1.9) and thus, voxelized
landscapes can be created to model the surface of a 3d object or its internal structure.
Although several algorithms have been devised for voxelization, the calculation of
the complexity of voxelized spatial forms remains rather poorly studied to date.

Andyet, surfaces and objectsmaynot appear straightly stretched in space: they can
be knotted, linked, braided, writhed (Fig. 1.10) and topological differences among
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Fig. 1.9 Voxeliation of a cube (left) and of an irregular surface (right)

Fig. 1.10 The “unknot”
(that is a trivial knot,
homeomorphic to the circle,
on the left) and two knots
made from rubber that can
easily be transformed to the
unknot on the left

knots can help us understand whether an object in 3d space is more complex than
another (Fig. 1.11). A central question in knot theory is whether and how a knot can
be untied (would Alexander the Great be able to solve the Gordian knot if he lived
in the twenty-first century without eventually cutting it off?).

Fig. 1.11 Increasing surface
complexity in the 3d space is
reflected by knotting and
linking: it is the same rubber
strand that is simple (left) or
increasingly complex
(middle and right)
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Beyond the third dimension, the equivalent of the voxel is the “doxel” in the 4d
space (dynamic voxel), for which we are still short of satisfactorily efficient algo-
rithms for complexity estimates. Unsurprisingly, as regards spaces of even higher
dimensions (fifth and higher), although our knowledge from topology is fairly
advanced, our methods for estimating spatial complexity are still very poor. Yet,
and as will be explained in the next chapters, severe difficulties are encountered
in encoding, decoding, measuring and perceiving spatial complexity even in two
dimensions only and even in cases of simple small binary maps.

1.4 Computational Complexity Classes

“A short piece of work means as much to me as a long piece of work”

(Harold Pinter, 1930–2008)

No doubt, many problems of spatial complexity involve some kind of computa-
tion. Eventually, the complexity of a spatial object reflects the effort or resources
(measured in terms of time, energy, computational power, either consumed by a
human or a machine) required to fully decipher an object by using a sequence of
symbols or operations.Whether these computations are easy, difficult or even impos-
sible to carry out is a question that falls in the field of “computational complexity”.
The “computational complexity” of a problem concerns the computational difficulty
of solving a certain problem or a class of problems. For further information, the
reader may consult anyone of the classic texts on this subject (i.e. Garey and Johnson
1979; Lawler et al. 1985; Rayward-Smith 1986; Papadimitriou 1994; Van Leeuwen
1998). Although several “computational complexity classes” have been identified,
some categories will be briefly presented next, as they sporadically appear in assess-
ments of spatial complexity. The complexity class “P” contains all problems that
can be solved by a polynomial algorithm (one such is to determine whether a given
number is a prime or not). The class PSPACE is the set of decision problems that
can be solved in polynomial space and a polynomial number of bits of space or
memory (to by used/occupied) are used in any number of time steps. The nondeter-
ministic variant of PSPACE is NPSPACE and the equivalence between the two is
guarranteed by Savitch’s theorem (Savitch 1970). For other interesting equivalences
of PSPACE, the reader is referred to Immerman (1988) and Szelepcsényi (1988).
The class EXPTIME is the set of problems that are solvable in exponential time, that
is by an order of magnitude O(2p(n)) time, where p(n) is a polynomial function of n,
and much alike them, EXPSPACE is the set of problems that are solvable by an order
of magnitude O(2p(n)) space, where p(n) is a polynomial function of n.The often-
encountered class “NP” contains all problems of which the solution can be verified
by a polynomial algorithm (i.e. the problem of deciding whether two graphs are
the same). The class “NP-complete” contains all those “difficult” problems, which
nevertheless have the characteristic that if one of them could be solved, then all the
other ones of the same class might as well. A known example of this class from the
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spatial sciences is the problem of deciding whether it is possible to color any map of
different regions (i.e. countries) with three colors only, in a way that that no two adja-
cent countries are assigned the same color. Finally, the problems of the “NP-hard”
class are even more difficult to solve and most often involve some optimisation. Also
from the spatial sciences, a typical such is problem is the “travelling salesman”,
that consists in finding an optimal route between points without repeating any part
of the itinerary. Despite the fact that many problems of 2d spatial analysis such as
those involving raster image analysis (analysis of imagery on the basis of orthogonal
grids) are expected to be NP-hard, our knowledge of their computational complexity
remains restricted (Coeurjolly et al. 2008; Sivignon and Coeurjolly 2009).

1.5 Perceiving and Creating Spatial Complexity

“The transcendental topography of the mind”

(Georg Lukacs 1994, p. 29)

Understanding the way we perceive spatial complexity is an issue of its own.
As repeatedly proven experimentally with the use of various strings of symbols,
the perception of randomness by humans is skewed and hardly (seldom) accurate
(e.g. Brugger 1997; Falk and Konold 1997; Kahneman and Tversky 1972; Kareev
1992; Lopes and Oden 1987; Nickerson 2002). This is partly due to the fact that
the theoretical concepts of probability may not coincide with subjective views of
what is random and what is regular (see Beltrami 1999), to the extent that the
term “subjective complexity” (Falk and Konold 1997) has been proposed, while the
“qualitative complexity” (Papadimitriou 2010) refers to the meanings conveyed and
the semantics associatedwith the spatial complexity of a spatial object (Papadimitriou
2012).

Plausibly, a deceivingly innocent question emerges (which, as will be seen later,
presents enormous difficulties to answer): what kind of properties a two-dimensional
object has that make it to be perceived as more complex than another? Take, for
instance, two images (Fig. 1.12), both of the same size (367 × 375 pixels). On
the left side, the photograph of a floor with its orderly arrangement of square tiles
contrasts the dense branches of a natural Mediterranean bush (Spartium junceum)
displayed at the photograph on the right. The latter picture displays a very high spatial
complexity (at least as perceived visualy) that is created by the curved, interwoven
thin branches of the bush. It would be hard to believe that, as a matter of fact, the
image on the right rquires only twice (394 kb) the memory required for the storage
of the picture on the left (193 kb). So kilobytes of computer memory are not always
suggestive of spatial complexity of the object examined, particularly the perceived
spatial complexity. To make this point more explicit, consider yet another pair of
imagery (Fig. 1.13), in which a tree is contrasted to a shop selling pottery. In this
case, both images are of the same size (367 × 375) and require the same storage
memory also (334 kb). The point here is to observe the context associated to this
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Fig. 1.12 Two images of the same size (367 × 375). A floor (a) and dense branches of Spartium
junceum (b). Image b requires only the double (393 kb) of the storage memory required by image
a (194 kb), although it is visually a lot more complex

Fig. 1.13 Two snapshots of the same size (367 × 375). A tree (a) and the façade of a shop (b).
Although both images require the same storage memory (334 kb), image a gives a sense of “natural
order” as all branches lean towards the same direction) while image b gives a sense of disorder

difference in computer memory requirements for each image: the fact alone that the
shop’s picture is more complex (and hence, it requires more memory) coincides with
themeaning it conveys to the viewer. Evidently, there is a huge difference associated
to meanings conveyed by these two images: the natural order of the orientation of
the tree’s branches may be a false assurance of low complexity, while the shop’s
facade is an example of diversity, asymmetry and disorder. And yet, both images



16 1 What is Spatial Complexity?

require exactly the same memory storage capacity. Hence, bytes of information are
not always suggestive of the meanings associated to what the images display. In fact,
memory sizes derived from the application of the lossless compressionmethodpngon
each image do not constitute a spatial complexitymeasure on its own: a compression
process or method is not necessarily a measure of complexity and, as a matter of fact,
several compression methods exist. The difference between any two such images is
in memory bytes. But memory bytes measure information; not complexity (although
information may serve as an estimator of complexity of an image lacking other
appropriate measures). And here enter psychology and art theory to explain what is
the difference between visual complexity and the spatial determinants that define the
spatial complexity of an image, object or setting.

Yet, nothing precludes the possibility that spatial complexity be concealed right
before our eyes. This is because the mathematical proof of existence of spatial
complexity and its visual perception can be poorly relatedwith these being two almost
completely disjoint processes. Consider, for instance, the image of Fig. 1.14: all odd-
numbered rows have 6 colored cells each, all even-numbered 8 and all columns have

Fig. 1.14 Spatial complexity may be concealed or misperceived. This map has some remarkably
simple regularities, which nevertheless evade the reader’s attention at first sight (unless one is told
how to unveil them): all odd-numbered rows have 6 dark cells each, all even-numbered ones have
8, while each and all columns have 7 colored cells
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7 colored cells. Despite this mathematical regularity however, there is no easily
discernible pattern in it.
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Chapter 2
Spatial Complexity in Nature, Science
and Technology

Science! True daughter of Old Time thou art!
Who alterest all things with thy peering eyes
(Edgar Allan Poe, 1809–1849, “Science”)

Abstract Some characteristic domains of science and technology for which spatial
complexity is significant are examined here. In cosmology, spatial complexity relates
to the large-scale spatial inhomogeneities of the universe. In geography, earth
sciences and ecology, it appears as one of the two major components of land-
scape complexity and thus affects ecosystem managment and landscape protec-
tion. In physics, complex systems and fractals are two of the most characteristic
fields of science for which spatial complexity is important, while in electronics,
spatial complexity is of paramount importance, for the miniaturization of electronic
devices, for broadening the capacity of electronic systems, processing times of spatial
datasets, QR technologies etc. In the bio-medical sciences, spatial complexity is a
key descriptor of melanomas and emerges as a decisive factor in some interpretations
of MRI imagery, while the complexity of knotting of proteins is important for DNA
analyses.

Keywords Spatial complexity · Geographical complexity · Landscape
complexity · complexity and cancer · Fractals and Complexity · Complex
systems · Geocomputation

2.1 Spatial Complexity in Cosmology

Nature in the universe has been articulated from infinites and finites.

“Ἁ φύσις δ’ ἐν τῷ κόσμῳ ἁρμόχθη ἐξ ἀπείρων τε καὶ περαινόντων“
(Philolaus, 470-385 b.C.,F1,Diog.Laert. 8.85)

Spatial complexity lies at the heart of the problem of the exploration of the large-
scale structure of the universe, and of the “cosmic web” of spider web-like conglom-
erates of galaxies that are developed in it (Liebeskind et al. 2017). In cosmology,
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the “horizon problem” consists in explaining the absence of a generally convincing
explanation of why the universe is homogeneous at its very large scales (that is
why its matter is allocated more or less homogenously in space). According to the
measurements carried out so far, the large-scale topology of our universe presents a
“flatness”, in the sense that angles between any two intersecting lines are preserved
(which would not be anticipated if it had a hyperbolic or a spherical shape). Yet,
following string theory, our universe is a 2d surface (which may as well have infinite
extent), that is called a “brane” (abbreviation for “membrane”). In some theories
(i.e. the Horava-Witten), there are several branes, with dark matter possibly present
in some of them. As one brane moves towards another, it is thought it can modify
the other brane’s physical laws. Thus, the anticipated set of stable states of a “string
landscape” is estimated to range in between 10100 and 101000 and each such state is
thought to be governed by different physical laws. The theory that different possible
worlds might be emanating from simple geometric structures is examined in the
context of string theory, particularly in the context of a multiplicity of universes, the
“multiverse”, which, if exists, should have a truly unfathomable spatial complexity.

At a more detailed spatial scale however, the form, structure and distribution of
galaxies in the universe are intricately related to spatial complexity, of which the
importance for the development of large-scale structures in the universe is evident,
given the presence of areas with large masses (i.e. ~1015 solar masses of the “Coma”
cluster) where “clusters of galaxies” prevail in sharp contrast to other large empty
spaces. This spatial inhomogeneity, in tandemwith the matter-antimatter asymmetry
in our universe, has puzzled cosmologists. If a spatial object is homogeneous, then it is
not as complex as an inhomogeneous one (of the same size). Perhaps, the large-scale
spatial inhomogeneities that havebeenobserved in theuniverse havenever beenbetter
observed than from the spatial distribution of the cosmic microwave background
radiation (CMB) which was emitted since the “big bang” and was dispersed all over
the universe ever since.

Probably, the increasing complexification in the universe occurred in tandemwith
an increase in its entropy. In turn, the cause of the increase in entropy is believed to
be the expansion, which, in turn, is related to the gravitational field. As the universe
expands, its entropy increases and so does its complexity, but as it approaches its heat
death, its complexity is expected to diminish dramatically. Alternatively the roots of
changes in both energy and complexity may be sought in Helmholtz’s free energy,
in the sense that the entropy difference increases, free energy decreases according to
the change in temperature, so free energy grows entropy (Lineweaver et al. 2013).
Understanding the gap between actual and maximum entropy in the universe is
essential in order to explain the growth of the amazingly complex forms in it and the
interplay between entropy and complexity manifests itself in the history of life on
earth, the multiplicity of forms of life, and eventually, the rise of civilization itself.

Spatial complexity might also hold the key to unlock further secrets of the cosmic
space. Specifically, the possibility of existence of life in extraterrestrial environments
depends on particular geoindicators, one of which is the geological differentiation
of a planet’s surface, which can be detected by means of remote sensing techniques
(Jovian satellites for instance, display significant surface fragmentation and hence
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higher spatial complexity than other satellites in our planetary system). These indi-
cators resemble those used in spatial analysis and landscape ecology for the analysis
of complex structures of terrestrial landscapes.

Eventually, understanding how entropy and spatial complexity change due to the
expansion of the universe is a big question of its own, although the interplay between
entropy and spatial complexity reverberates across spatial scales, from the large-scale
structure of the universe down to shapes and patterns, both natural and human-made,
on the face of the earth.

2.2 Spatial Complexity in Geography and Ecology

Vigorous branches falling one on another,

Complexifications of petals, covers of leaves,

complexes of fruits: thus was the language of plants

“Ἔθαλλον οἱ κλάδοι, συνέπιπτον ἀλλήλοις ἄλλος ἐπ’ἄλλον,
ἐγίνοντο τῶν πετάλων περιπλοκαί, τῶν φύλλων περιβολαί,
τῶν καρπῶν συμπλοκαί: τοιαύτη τις ἦν ὁμιλία τῶν φυτῶν”
(Achilles Tatius, 1st-2nd cent. b.C., “Leucippe and Clitophon”, 1.15)

Measuring the complexity of a surface constitutes a major challenge for many
fields of the earth sciences, such as geospatial technologies and GIS. Geography,
landscape analysis and landscape ecology constitute the prominent fields of “visi-
ble” applications of spatial complexity analysis (Papadimitriou 2010a, b; Papadim-
itriou 2012a, b, c), with repercussions for land use planning (Papadimitriou 2013).
In geography, spatial landscape complexity can be perceived in various ways, by
means of maps, satellite imagery or aerial photographs etc. and specific mathemat-
ical methods have been devised for this purpose (Papadimitriou 2002, 2009, 2012a)
to measure this type of landscape complexity. In geomorphology, given the puzzling
spatial complexity of landforms, it has also been suggested that landscape complexity
should be one of the highest research priorities in geomorphology (Werner 1999;
Fonstad 2006; Murray and Fonstad 2007; Goehring 2013; Tlidi et al. 2018).

Landscape complexity has also been identified as one of the key research prior-
ites in landscape ecology (Wu and Hobbs 2002) and several studies have appeared
over the last years in the literature, aiming at quantitative assessments of land-
scape complexity, while research has produced evidence of non-linear interactions
in landscapes (Turchin and Taylor 1992; Pahl-Wostl 1995).

Recognizing the importance of the complexity for landscapes however, a classifi-
cation of types of landscape complexity was made by Papadimitriou (2002; 2010a),
who suggested that landscape complexity is of three basic types: (a) spatial (or
“structural”), (b) functional and (c) qualitative (or semantic). The words “struc-
ture” and “function” have precise meanings in landscape ecology and the reader is
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referred to classic texts of landscape ecology (i.e. Forman and Godron 1986) for their
explanation.

Landscape ecology often resorts to combinations of already known landscape-
ecological indices, such as “landscape patchiness”, “landscape diversity” and “land-
scape fragmentation”. Expectedly, such metrics should affect decisions related to
land management. The “European Landscape Convention” requires assessments of
“landscape fragmentation” (Llausas and Nogue 2012). This can be attributed to
the widely held view that landscape fragmentation is held responsible for negative
effects on ecosystems’ function, as several studies have documented in the literature
of landscape ecology, from across different bioclimatic settings (Pütz et al. 2011;
Gao and Li 2011; Bassa et al. 2012). Besides, landscape fragmentation often occurs
in areas of rapid urbanization (Shrestha et al. 2012). Fragmentation is important in
the complexity of predator–prey systems (Morozov et al. 2006), it is usually caused
by human activity, and affects complexity not only structurally, but sometimes even
functionally so (Briefer et al. 2010). Forest fragmentation poses considerable prob-
lems to successful landscape management plans, and constitutes an important factor
in land use/land cover change analyses of its own (Andrieu et al. 2011; Mas et al.
2012). Besides, evidence from marine biological observations suggests (Hovel and
Lipcius 2002; Hovel 2003) that some marine species (i.e. the juvenile blue) depend
on environmental fragmentation.

The complexity of landscapes needs to be assessed for practical applications,
such as land management, land use planning and forecasting changes (Papadimitriou
2012a, b, 2013). In geo-ecological spatial analysis, we need to explore spatially
structured ecological interactions, but we also need methods to simplify spatial
complexity,while taking into account combinations of nonspatial alongwith spatially
explicit approaches. This is particularly interesting, considering the strong evidence
that self-organization at the landscape level may emerge even from homogeneous
landscapes, therefore forcing us to examine spatial complexity also in the context
of its changes with time (Papadimitriou 2002, 2009, 2010a, b). One way to analyze
spatial complexity is by means of spatial ecological networks in which the nodes of
the network can be species or individuals and links can represent the direction of
flows of mass or energy. In these cases, the complexity of a network can be measured
i.e. by the number of connections per node or the randomness of connections per
node (Fig. 2.1). The extent to which an ecosystem can maintain its functions even if
some of its nodes are removed from it, reveals its stability (Papadimitriou 2013).

Spatial complexity also enters as an important parameter in geographical infor-
mation systems (GIS) and geospatial technologies and in various practical appli-
cations (Batty 2005), because it directly impacts time and resources necessary to
process geospatial data (although this impact may not always be measurable); relief
modelling for instance, depends on terrain complexity. Spatial complexity is also
important in qualitative spatial reasoning and in efforts to develop new generation
GIS, as it modulates the efficiency of handling large repositories of big spatial data.
For these reasons, we sometimes need to reduce the spatial complexity of large spatial
databases in order to speed up computations.
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Fig. 2.1 Two networks, with the same number of nodes each (50), but with different number of
links per node: there are two connections per node for all nodes in the network on the left. The
network on the right is more complex, as it has both a higher number of links per node and a random
number of links per node

Thus, comparing landscape ecology and geospatial technologies, it becomes
evident that whether high spatial complexity is desirable and beneficial or not
varies and depends on particular situations and conditions. In ecology and biogeog-
raphy, high spatial complexity is desirable for ecosystems, as it is associated with
“information-richness” in the geographical space (White and Engelen 1994) and
“species richness” in ecology. In contrast to these, whenwe need to handle data repre-
senting the environment, ecosystems and geographical spaces, a high complexity of
these data may not always be desirable (it can be so only up to an acceptable level
that will allow us to process those data at the desired spatial resolution in order to
fulfill our practical requirements).

2.3 Spatial Complexity in Physics and Electronics

You still have Chaos in you

“Ihr habt noch Chaos in euch”

(Friedrich Nietzsche, 1844–1900, “Also sprach Zarathustra” part 5)

It is common place to say that the earth looked from above a spaceship appears
like a “blue planet”, but zooming in to this all-blue image would reveal the immense
variety of landscapes our blue planet is endowed with. Mapping out this variety of
natural and artificial settings would certainly not result in “blue” color in them all.
In fact, the color of each patch would depend on how far or how close we look at it
from. The dependence of spatial analysis (and, inevitably, complexity also) on the
spatial scale of observation has given rise to the growth of “fractal geometry”, “fractal
landforms”, “fractal dimensions” etc. that have attracted great interest in physics and
other sciences.
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Spatial forms are often “fractal”, self-similar across different spatial scales and
non-differentiable. Measuring “fractal dimension” is based on the fact that the length
of the contour of a planar fractal object is proportional to the ruler’s length g used
to measure the length of the object’s contour and the fractal dimension d, where d is
the limit as the ruler’s length g grows infinitely small (Mandelbrot 1983; Normant
and Tricot 1991):

d = 1 − lim
g→0

log[length(g)]

log g
(2.1)

A common fractal is the “Koch curve” which has a fractal dimension of d =
log4/log3 = 1,262 (Fig. 2.2).

Fig. 2.2 The “Koch curve”
(or “Koch island” or “Koch
snowflake”) has a fractal
dimension of d = 1,262: a
non-integer dimension,
classifying this shape as an
object with dimension in
between 1 (lines) and 2
(planes)

Beyond physics, fractals have been examined in earth sciences, geography and
ecology (among many other disciplines). Although they present a useful approach to
describe how complex a boundary or a spatial form is with measurements becoming
progressively more detailed, they serve as indicators of spatial complexity, but not
as its measures. However, the fact that increasingly more refined spatial scales of
analysis reveal higher complexity is important and concerns many domains of scien-
tific inquiry. Assessing the complexity of higher than one-dimensional forms is
also a key issue in software measurement, computer graphics, information theory,
neural networks, pattern recognition, materials science, physics of fractal objects
and many more. For all these domains, cellular automata occupy a prominent posi-
tion, because discrete models of complex processes have traditionally been based on
cellular automata. These are automatic cellular evolutionary processes depending on
a set of “states” S1,S2,…,Sn and a set of “transition rules” T1,T2,…,T m, acting on
these states. Each cell is found in one state only and that state is determined by the
rules and the states its surrounding cells are in. Consequently, at time t + 1, the state
of each cell, St+1, is determined from the transition rule Ti acting on the state of that
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cell at time t: St
Ti−→ St+1. The “rules” are simple algorithms acting on an array of

cells in two dimensions. Thus, all cells interact with their neighbouring ones, either
in the “rook” sense or in the “king” sense (as the rook’s or the king’s movements
in chess). These neighborhood types are defined as neighborhoods around a point
(x,y), defined by the sets of cells surrounding the central cell. In the case of a von
Neumann’s neighbourhood the interactions are described as: N4(x; y) = {(x + 1; y);
(x-1; y); (x; y-1); (x; y + 1)} and in the case of Moore’s neighbourhood: N8(x; y) =
{(x + 1; y); (x-1; y); (x; y-1); (x; y + 1); (x + 1; y + 1); (x + 1; y-1); (x-1; y + 1); (x-1;
y-1)}. Yet, there are other possibilities (Fig. 2.3) for constructing cellular automata,

Fig. 2.3 Some common types of spatial arrangements in cellular automata: The central cell interacts
with its four surrounding cells in “rook’s case” (a), its nine surrounding cells in “king’s case” (b) and
with twelve cells around it in the case of a von Neumann neighbourhood (c)

with longer interactions than in the 9 cells surrounding the immediate neighbourhood
of the central cells (as, i.e. in the case of a “5x5 Von Neumann neighbourhood”).

Cellular automata have been intensely explored in order to simulate the emer-
gence of spatially complex forms in geography and ecology. In landscape research
for instance, such applications range from the possibility to establish general algo-
rithmic ecological laws, to the exploration of ecological processes such as niches,
industrial ecologies, interspecies competition, latitudinal gradients and species diver-
sity (Rohde 2005; Baynes 2009). In geography, they are used tomodel the progress of
urbanization in the course of time, geomorphological processes such as run-off and
soil erosion and landscape evolution. On the inteface between ecology and geog-
raphy, cellular automata can be used to simulate the ways by which landscapes
change with the spatial propagation of natural hazards (i.e. forest fires) and to
explore the complexity of spatial synchronization and self-organization.With cellular
automata, among many applications, it is also possible to simulate the complexity
of spatial synchronization processes (Satulovsky 1997) as well as phenomena of
self-organization in space (Manrubia and Sole 1996; Malamud and Turcotte 1999).

Changes over time that are simulated by means of cellular automata may unveil
pattern formation and self-organization, which are highly significant facets of
complex system behaviors. Evidently, these changes emerge if the cellular automata
are allowed to run for long times and thus become able to produce aggregates in
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Fig. 2.4 Details (b) of the orbits (a) of the phase space of a widely known dynamical system,
the Lorenz attractor. The finer the resolution of the observations, the more different orbits can be
discerned

space. However, cellular automata (much like fractals) are useful to model and simu-
late spatially complex developments, senarios, behaviors, processes and dynamics,
but not to measure spatial complexity (describing a complex process as it evolves
with time is different than actually measuring it). Further, they can be used to create
spatially complex forms from simple rules, but this is a process that only evolves in
time.

Spatial complexity can also be observed in the representation of the orbits of
dynamical systems in the phase space. In this case however, we do not deal with
spaces of the physicalworld butwithmathematical constructs that are used to plot and
represent the orbits of dynamical systems in time. Phase spaces are not spaces of the
real world; they are mathematical constructs used to represent behaviors of systems
of the real world. Yet, in terms of spatial complexity, it is interesting to notice that
as some orbits are observed at increasingly finer scales, the denser they may appear.
As an example, consider the detail in the orbits of the phase space of the system
of differential equations that is famously known as the Lorenz attractor (Fig. 2.4),
which represents (with some detail of abstraction) the atmospheric circulation by
means of the “Lorenz system” of nonlinear differential equations (Lorenz 1963):

dx1
dt

= a(x2 − x1)

dx2
dt

= bx1 − x2 − x1x3

dx3
dt

= x1x2 − cx3

(2.2)
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The variables x1,x2,x3 are not coordinates of space; they are meteorological vari-
ables and therefore the space they define is a mathematical construct devised to help
us visualize the system’s behavior.

Spatial complexity also manifests itself in phenomena of “nonlocal coherence”
(communication of behaviors, properties and processes by distance) that are some-
times observed in natural and social systems. Besides, coherence, coupling and
synchronization emerge from models of nonlinear spatial dynamics (Casado 2001;
Berglund 2007a, b) but the mechanisms by which these properties emerge in spatial
ecosystems are largely unknown. It is probable however, that there exist processes
leading prey-predator interactions to the “edge of chaos” through oscillators (Rai
2004), bymaking dynamical systems to appear as “riddled systems”. In such systems,
as their naming suggests, it is difficult to distinguish basins of attraction and orbits
in the phase space. If this is the case (as currently appears more likely), then we
should not lose sight from the fact that such riddled systems may demand extremely
more elaborate models than we already have at our disposition, particularly if they
are spatially explicit.

Besides physics, spatial complexity is important in the analysis of “big geospa-
tial data” (in image analysis, most commonly). In fact, the need to reduce image
complexity has led to the development of various image compression protocols,
such as jpeg. Other fields of technological applications are QR encodings, that have
now become ubiquitous in algorithmics (Park et al. 2011), microchip construction,
cryptography (Alvarez et al. 2012),materials science (Hyde andSchroder-Turk 2012)
etc. The more complex a space is within the confines of a QR square, the more infor-
mation it contains. Compare, for instance, the QR encoding of the author’s name and
surname with another QR representing additionally his degrees and mailing address
(Fig. 2.5).

Fig. 2.5 QR-representations. Left: the author’s name and title. Right: the author’s name and
title, along with his degrees and mailing address. The finer the (binary) detail in a QR, the more
information is stored in it and, the finer the detail, the higher the spatial complexity
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Differences in spatial complexity are also important for various functions of opto-
electronic systems (radars, scanners etc. technologies), which aim to solve problems
of detection, recognition, classification and identification of targets by using opto-
electronic tracers (either multispectral or monochrome), radiometry in automatic
target recognition, chromatic filters bearing Foreon technology etc., whatever the
scanning method is used and embedded in them (i.e.serial “raster” scanning, parallel
“linear array” scanning, “rosette scanning”).

2.4 Spatial Complexity in the Life Sciences

“All that man is, all mere complexities,

the fury and the mire of human veins”

(W.B. Yeats, 1865-1939, “Byzantium”, 1930)

One of the precursors of modern medicine, Paracelsus, in his “Labyrinthus Medi-
corum Errantium” (1538) used the term “complex” to mean the mixture or coexis-
tence of properties and qualities, while correctly pointing out that the basic elements
of nature are not complex, but simple (the “temperamenta”). Perhaps, nowhere
in the bio-medical sciences becomes the significance of spatial complexity more
explicit than in the identification of skin malignancies; melanomas in particular. The
widely used “ABCDE method” is characteristic for spotting a dangerous melanoma
(Fig. 2.6):Asymmetric form, roughBorders,manyColors, larger than6mmDiameter
and Evolution (change in any of the above). Essentially, all these criteria (except for
the last one that relates to time) are criteria of spatial complexity. Similar criteria are

Fig. 2.6 The “ABCDE” criteria for identification of melanomas. A malignancy has a higher spatial
complexity than a benign skin spot
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used in other cancer malignancy categorization schemes (i.e. the Gleason 5-degrees
scale for prostate cancer).

Yet, the significance of spatial complexity for medicine becomes explicit if one
considers even more domains of the biomedical sciences, such as MRI imagery,
histology, and DNA sequencing. Analyzing ultrasound imagery is an important
field of everyday medical practice, more recently also combined with applications
in telemedicine. Before proceeding to image analysis, histological observations
(images) are converted to binary or multicoloured maps of raster (square) grids
to make them suitable for further analysis. Then, successive images of the same
tumour revealing its changes in spatial complexity indicate the degree of cellular
differentiation and hence malignancy, with a predictability that can mount up to 90%
(Tambasco et al. 2009). The potential of fractal geometry has also been explored as
an indicator of cancer cell differentiation with high degree of success (Capri et al.
2006; Timbo et al. 2009). Besides, one of the most exciting fields of applications of
fractal patterns seems to be the detection of tumour growth (Cross 1994, 1997; Cross
et al 1994; Bash and Jain 2000; Esgiar et al. 2002). Estimating the increasing rough-
ness of borders of cells and tissues as a discriminator of pathological situations has
found applications in cardiology, osteoporosis detection and diagnosis of pulmonary
diseases (Heymans et al. 2000).

But the usefulness of the concept of spatial complexity in biomedical sciences
extends well beyond the domain of oncology. For instance, spatial complexity has
been identified as a key issue in understanding brain function (Jia et al. 2018; Schulz
et al. 2018), so another domain of application is brain MRI analysis. Neuroimaging
using MRI (magnetic resonance imaging) is now ubiquitous and aims at detecting
changes in texture in the spatial distributions of cell types and biochemical substances
in the brain. The applications of such analyses are wide ranging, although the
main body of research has thus far focused on neurodegenerative diseases, such
as Alzheimer’s disease and dementia, particularly with respect to cortical thin-
ning. In such cases, spatial complexity has been correlated with a number of
neurodegenerating diseases (Singh et al. 2006; Young and Schuff 2008).

From a topological perspective, knottedness and entanglement serve as measures
of complexity of folded proteins (Taylor 2007). Some proteins form links that can be
even more complex than knots and, interestingly, the link topology is characteristic
of eukaryotic organisms only (Dabrowski-Tumanski and Sulkowska 2017). Further-
more, sequence complexity relates to the topology of proteins (Romero et al. 2001;
Park and Levitt 1995; Edgar 2004) while various topologically interesting structures
have been identified in them (toroids, solenoids etc.). Interestingly, the higher the
knot complexity, the higher the probability of knotting of a physical substance. This
has been experimentally been proved in the case of ring polymers (Shimamura and
Deguchi 2002). The importance of spatial complexity for DNA topology is exempli-
fied by the role of solenoidal and plectonemic supercoils, involving topoisomerase
enzymes, histones etc. (i.e. Vologodskii 1992; Champoux 2001; Bar et al. 2011).
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Fig. 2.7 Amorphogenetic process resulting fromTuring’s reaction–diffusion equations. The amor-
phous landscape at time 1 (top left) soon becomes slightly patterned after 5 time steps (top right),
then more so after 10 steps (bottom left) and even more so after 100 time steps (bottom right)

Yet, the extent to which knot invariants can be used in order to derive estimations of
complexity remains an open problem. In some cases, it does seem possible (Ricca
2012), as the number of crossings of a knot (ameasure of a knot’s complexity) remains
as the handiest simple measure of knot complexity that is also easily applicable to
chemical and biochemical analyses (Vargas-Lara et al. 2017).

But spatial complexity does not leave its imprint on living beings at their DNA
level only; patterns that appear on the skin or on the fur of animals are quite often
interesting for their spatial complexity also (e.g. zebra strips, puma spots). Trying
to explain how such patterns can be modelled and how spatially complex forms can
be derived from simple differential equations has led to many researches ever since
Turing proposed his set of equations of morphogenesis (Turing 1952):

dx1
dt

= (a1x1 + a2x2
2 + a3x2

3 ) + D1∇2x1

dx2
dt

= (a4x2 + a5x2x3 + a6x1x2) + D2∇2x2

dx3
dt

= (a7x3 + a8x2
2 + a9x1x2) + D3∇2x3 (2.3)

(where ai are parameters and Di are the diffusion coefficients) which has been the
oldest but also one of the most successful models of self-organization in space
(Fig. 2.7).

Other equations model other complex spatial pattern formation processes, i.e.
spiral forms that are produced by the Complex Landau-Ginzburg equation (Fig. 2.8)
of amplitude f (u,t):

∂ f (u, t)

∂t
= (1 + ic1)

∂2 f (u, t)

∂x2
+ ε f (u, t) − (1 − ic2)| f (u, t)|2 f (u, t) (2.4)
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Fig. 2.8 Spirals resulting from modeling spatial diffusion, as calculated from a complex Landau
Ginzburg equation

Fig. 2.9 Dendrites are a
typical example of natural
morphogenesis. Here, a
digitally processed picture of
a tree in the vicinity of the
author’s residence in Athens
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where ε is the control parameter (instability incurs when ε > 0), c1 stands for a
coefficient measuring linear dispersion (the dependence of the wave frequency on the
wave number) and c2 represents the measure of nonlinear dispersion. This equation
has been effectively used to describe ecological invasions affecting the parameters of
oscillatory ecological systems (Reichenbach et al. 2008; Sherratt et al. 2009; Smith
and Sherratt 2009).

Self-organization produces many spatially complex forms of plants and animals,
both regular (geometric) and irregular (dendrites, filaments, aggregates etc.),
whereas branching processes can also yield spatially complex dendritic forms of
morphogenesis (Fig. 2.9).
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The Mathematical Basis of Spatial

Complexity



Chapter 3
The Geometric Basis of Spatial
Complexity

Classifying geometrical objects by their degrees of symmetry
represents a sharp departure from the traditional classification
of geometrical figures by their essences
(Manuel De Landa 2002, p. 17)

Abstract Spatial complexity emerges even from simple geometric objects, once
they are arranged at non-trivial geometric positions. The geometric context of spatial
complexity depends on the presence (or absence) of symmetries, orthogonality,
number of intersections and geometry type (Euclidean or other). A simple spatial
relationship (i.e. orthogonality of two sides of the triangle) makes the calculation of
various geometric features (i.e. area, volume) less demanding in terms of operations
required and hence, computation time and resources. Thus, key spatial details such as
the relative position of two or more geometric objects and their intersections (regard-
less of their sizes) result in substantial differences in spatial complexity.Beyond these,
research in polyominoes has furnished various computational complexity results, that
are useful for the analysis of spatial complexity on squared surfaces.

Keywords Spatial complexity · Combinatorial complexity · Geocomputation ·
Coputational Geometry and Complexity · Polyominoes · Map Complexity

3.1 Orthogonality

Inequality is the cause of anomalies in nature

Thus we have gone through the origin of inequality

“Aἰτία δὲ ἀνισότης αὖ τῆς ἀνωμάλου φύσεως
ἀνισότητος δὲ γένεσιν μὲν διεληλύθαμεν”
(Plato, 428–348 b.C., “Timaeus”, 58a)

In fact, even the tiniest spatial differences matter a lot for spatial complexity. In
landscape analysis this has been examined before (Papadimitriou 2002), but to see
why this is so, consider the calculation of the area of the simplest 2d spatial shape
(the triangle) from the lengths of its sides: it is much simpler to calculate the area
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of a right triangle with side lengths measured as a, b and c, than that of a scalene
triangle. As known from high school, the area of a right triangle is calculated from
Pythagoras’ rule: ab/2, but the area of the scalene triangle is calculated from Heron’s
rule:√((

a + b + c

2

)(
a + b + c

2
− a

)(
a + b + c

2
− b

)(
a + b + c

2
− c

))
(3.1)

or (most often expressed in an abbreviated form) as:

√
τ(τ − a)(τ − b)(τ − c), where τ= (α + b + c)/2 (3.2)

A simple spatial relationship (orthogonality of two sides of the triangle) therefore
makes the calculation significantly less consuming in terms of computation time
and resources. Thus key spatial details, such as the relative position of two or more
geometric objects regardless of their sizes, result in substantial differences in spatial
complexity. To verify this, one need only consider the algorithmic side of this calcu-
lation. A simple measure of complexity can be the number of arithmetic operations
required tomeasure the area included within each triangle. The algorithm calculating
a right triangle’s area consists in two algebraic operations only (one multiplication
followed by one division), but the algorithm for the calculation of the area of a
scalene triangle requires as many as ten such operations (two additions, one division,
three subtractions, three multiplications and one square root). One might be tempted
to consider that calculating the area of a scalene triangle is more computationally
expansive, because it is more “irregular” than that of a right triangle. This is true,
but how much more irregular is it? Slightly so. In fact, only two of the three lines
defining each triangle have a special relative position (a right angle) but precisely this
special geometric relationship suffices to make a significant difference in the algo-
rithmic process of the calculation of the area defined by each triangle: differences in
geometric properties therefore imply differences in algorithmic procedures.

“Small” but key spatial details may be responsible for significant differences in
spatial complexity: the calculation of the area of any scalene triangle is always more
complex than that of a right triangle.And this is not because of the triangles’ particular
sizes, locations or orientations in space: it is a general property that applies to all
triangles, however large or small they may be and whatever Euclidean space they
may be embedded in: calculating the area of the tiniest scalene triangle will always
be more computationally expansive than that of the hugest right triangle.

Expectedly, as the geometry of a surface changes, the calculation of spatial
complexity may become more demanding. Indeed, the calculation of the area A
of a spherical triangle with sides a, b, c is possible from a variant of Heron’s formula
for planar triangles as follows:

tan

(
A

4

)
= √

sin p sin(p − a) sin(p − b) sin(p − c), (3.3)
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where p = (a + b + c)/2.
Hence, in the case of the spherical triangle, there are more complex operations

to be made compared with the planar triangle and the calculation of the area of a
planar triangle, however large it is, is always easier compared with that of a spherical
triangle, however small that is. Changes in geometry therefore induce changes in
spatial complexity.

3.2 Intersections

5. A surface is what has only length and breadth.

6. The extremities of a surface are lines.

“εʹ. ’Επιφάνεια δέ ἐστιν, ὃ μῆκος καὶ πλάτος μόνον ἔχει.
ϛʹ. ’Επιφανείας δὲ πέρατα γραμμαί”.
(Euclid, fourth century b.C.,“Elements”, Book A)

Let us now consider another example, showing how simple geometric elements
can generate spatial complexity. We know that L lines on the plane intersect at pmax

points:

pmax = L(L − 1)

2
(3.4)

Notice that this is not the number of intersection points generated by L lines in
all cases. Specifically, the number u of possible intersections can be calculated from
the formula

uL ,k =
(
L
k

)
(3.5)

with k lines intersecting the other L-k lines.
For instance, if there are L = 3 lines, then the cases that k = 0,1,2,3 lines intersect

with the remaining L-k lines are given in Fig. 3.1 and if, i.e. there are only one
line (k = 1) intersecting the remaining L-k = 2 lines, then there are three cases of
intersection:

u3,1 =
(
3
1

)
= 3!

2! = 3 (3.6)

In exactly the same way, if L = 4 and k = 2, then the number is (Fig. 3.2):

u4,2 =
(
4
2

)
= 4!

2!2! = 6 (3.7)
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Fig. 3.1 Number of cases of
intersections for L = 3 lines,
when k = 0, or k = 1, k = 2
or k = 3 of them intersect the
remaining L-k lines

Fig. 3.2 Alternative cases of
intersection of L = 4
different lines, when k = 0,
1, 2, 3, 4

Notice that the number of intersection points pmax result in only one case:

uL ,L =
(
L
L

)
= 1 (3.8)

Proceeding from lines to areas, we may observe that intersecting lines define
intersecting areas on the plane. Beginning with L = 2 lines, observe that these define
one intersection point. Continuing with more lines i.e. up to L = 7 (as shown in
Fig. 3.3), then progressively more areas are defined in between the intersecting lines
and the maximum number of possible such areas is given by the formula:

Amax = (L − 1)(L − 2)

2
. (3.9)

Now a natural question to ask is how the ratios among lines, intersection points
and areas grow with increasing number of lines (L). The answer essentially lies in
calculating the following limits:
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Fig. 3.3 Maximum intersection points (pmax) defined by 2 to 7 intersecting straight lines (up, from
left to right) and regions (amax) defined by these maximum intersection points (bottom, from left to
right)

lim
L→∞

Amax

pmax
= lim

L→∞

(
1 − 2

L

)
= 1 (3.10)

lim
L→∞

pmax

L
= lim

L→∞

(
L

2
− 1

2

)
= ∞ (3.11)

lim
L→∞

Amax

L
= lim

L→∞

(
L

2
− 3

2
+ 1

L

)
= ∞ (3.12)

Thus, as the number of lines tends to infinity, the number of intersection points
approximates the number of areas defined in-between lines. While the complexity
of calculating the maximum number of intersection points is polynomial (a function
of L2), the number of areas generated tend to infinity with respect to the number of
intersecting lines. This means that as more intersecting lines are drawn on the plane,
a lot more areas can be defined by their possible intersections. Otherwise stated,
the more 1d objects are used to shape 2d spaces, the more such 2d spaces emerge.
The previous formula was for the definition of areas only inside the intersections. If
areas outside the intersection regions are also considered, then the formula giving
the number of regions A is (Fig. 3.4):

Amax =
(
L + 1
2

)
+ 1 (3.13)

Thus, spatial complexity can be created by simple geometric objects, once they
are arranged at non-trivial geometric positions.



44 3 The Geometric Basis of Spatial Complexity

Fig. 3.4 The maximum
number of areas A defined by
L lines both inside and
outside the lines’
intersections. In this case, L
= 3, so there are A = 7
regions

3.3 Curvature and Non-Euclidean Geometries

“On Red Square the earth is roundest,

its slope more firm,

on Red Square the earth is roundest,

and its slope suddenly undolds”

(Osip Mandelstam,1891–1938,“Children’s Haircut”, 1935)

Curvature has been considered as a determinant of complexity for curves and
curved surfaces (Ujiie et al. 2012; Matsumoto et al. 2019). Among all formulas of
geometry, the “isoperimetric inequality” is probably the more appropriate one to
describe the degree of complexity of a shape C that is circumscribed by a curve
γ(t) = (x(t),y(t)):

L2 ≥ 4π A (3.14)

where L is the curve length and A is the area defined by the curve γ:

A =
∮
C
F(x, y) · dγ =

β∫
α

x(t)y′(t)dt (3.15)

It is easy to verify that when the shape is a circle, then L2 = 4πΑ and, hence, the
ratio:

L2/4πA (3.16)

is a geometric assessor of the complexity of a 2d-shape: the higher the ratio, the more
complex the shape is (Fig. 3.5).

The mean curvature of a surface is an old problem in geometry, which consists in
seeking the surface of the largest area among all compact surfaces in the Euclidean
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Fig. 3.5 Using the isoperimetric inequality to assess spatial complexity: Among shapes with the
same area, but with different perimeter lengths, more spatially complex is the one with the higher
perimeter length (c is more spatially complex than b, and b more complex than a)

space enclosing a fixed volume. The obvious solution to this problem is the sphere.
But keeping the geometric properties as elementarily simple as those of a triangle
and changing the geometry type induces considerable changes in spatial complexity.

In assessing the impact of curvature on spatial complexity, one needs to recall that
the Gaussian curvatureKG of a surface is calculated on the basis of the three variables
(EC , FC , GC) of the “first fundamental form”, which, as known from differential
geometry, is equal to

ECdu
2 + 2FCdudv + GCdv

2 (3.17)

leading to the well known (and cumbersome) formula:

KG =

∣∣∣∣∣∣
− 1
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1
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1
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C

(3.18)

As a result of Gauss’s “Theorema Egregium”, there is no planar map representing
the curved surface of the earth, without distorting distances. This is because this
theorem guarantees that Gaussian curvatureKG must be the same so long as there are
local isometries. As the surface of a sphere has a non-zero curvature and the planar
map has zero curvature, the respective KG curvatures are different, and therefore
there are no local isometries. Thus, curved surfaces generate objects of higher spatial
complexity since they require more calculations to measure lengths and areas. The
effect of curvature becomes more decisive for spatial complexity in the case of non-
Euclidean geometries. In the case of Euclidean geometry, the length of the curve
connecting points x and y is:
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L =
∫

|dx(t)
dt

|dt (3.19)

but in a hyperbolic geometry, the distance is:

L =
∫

1

1 − 1
4 |x(t)|2

|dx(t)
dt

|dt (3.20)

so the computation of length in cases of non-euclidean geometries involves more
calculations.

Increasing complexity bymounting dimension from two to three further increases
the spatial complexity of a shape. Take, for instance, the calculation of the volume
of a spherical tetrahedron. This is tantamount to changing the geometry to spherical
and adds up more complexity to the calculations. It may come as a surprise that there
is no simple formula available for the spherical tetrahedron. In fact, the volume of
an arbitrary tetrahedron in a space of nonzero curvature was first calculated only
shortly before the beginning of this century (Cho and Kim 1999) for spaces of
hyperbolic curvature. This was later also calculated by means of other formulas
(Murakami and Ushijima 2005; Murakami and Yano 2005) for the same type of
curvature. Murakami (2011) obtained a formula for the volume of the spherical
tetrahedron. This is given here without detailed explanation; simply for the sake
of illustration of how a lot more complex the calculation of volumes gets when it
extends to geometries of non-zero curvature:

V = Re
(
L̃(b1, b2,, . . . , b6, z̃0)

)
− π arg(−q̃2)

−
6∑
j=1

∂Re
(
L̃(b1, b2,, . . . , b6, z)

)
∂l j

|z=z̃0 − π2 mod (2π2)

2
(3.21)

Notice that, if not anything else, this calculation can not be effectuated without
using complex numbers and the dilogarithm function.

3.4 Spatial Combinatorics and Polyominoes

Precise ideas often lead to doing nothing

“Les idées précises conduisent souvent à ne rien faire”

(Paul Valéry, 1871–1945, Mélange, 1934)

Spatial complexity also emerges from geometric combinatorics. Enumerating
possible compositions of square cells resulting from geometric arrangements of
simple geometric objects is a straightforward method to evaluate the combinatorial
complexity of spatial patterns.
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The “map coloring” problem consists in the determination of the least number
of colors to color any map. In 2d, the “Four colors problem” was to prove that any
map can be colored with no more than 4 colors, whatever the spatial arrangement of
the regions shown on it. After perplexing too many people, it was solved in 1976 by
K. Appel and W. Haken. A generalization was achieved with the Colin de Verdiere
number μ(G), which is an invariant for a graph G (Colin de Verdiere 1990) and any
graph with a CdV invariant μmay be colored with at most μ+ 1 colors. Planar graphs
have μ= 3 and, by means of the “Four Color Theorem” can be colored by at most μ
+ 1 = 4 colors. Disjoint unions of paths (“linear forests”) have μ = 1 and therefore
can be colored by at most 2 colors. Thus four colours are enough to color any map,
with the exception of some exceptionally complex cases (one example of which is
the “Wada lakes”, that is regions sharing the same boundary). In the case of Wada
lakes, the number of colors required is as number as the number of regions defined
by the “lakes”. In some sense therefore, the minimum number of colors necessary to
color just any map remains an unsolved problem.

Aside of the colors problem, an example of combinatorial complexity emerging
from spatial problems is the problem of covering the plane with polyominoes. A
polyomino is a plane geometric shape formed by joining one or more squares of
equal area, edge to edge (Fig. 3.6) and is classified according to how many square
cells it consists in (with 2-cells it is called “domino”, with three cells “triomino”,
with 4 cells “tetromino” and so on).

Several interesting results relate to tiling squares with polyominoes. For instance,
it is known that square maps can (or can not) be tiled by n-ominoes depending on
whether they are even–numbered or odd-numbered, i.e. a 7 × 7 square map can not
be tiled by dominoes (Fig. 3.7).

The complexity of spatial arrangements of polyominoes is interesting because
several problems involving them are intractable. It suffices to observe that the
number of polyominoes with n cells increases fast, giving a glimpse of the high
combinatorial complexity involved: 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17,073,
63,600, 238,591, 901,971, 3,426,576, 13,079,255, 50,107,909… (corresponding
to the Sloane sequence A000105). But high combinatorial complexity in spatial

Fig. 3.6 Polyominoes of various sizes
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Fig. 3.7 Odd-numbered
square maps (7 × 7 here) can
not be tiled by dominoes

arrangements may emerge even from much simpler cases, i.e. when trying to
practically solve simple spatial combinatorial problems.

In this respect, there already are some interesting results about combinations of
particular types of 3d polyominoes (Fig. 3.8). In two dimensions, we know that a
mxn rectangle can be tiled with O-tetrominoes, if and only if m and n are even, if
a n × n square can be tiled with T-tetrominoes, then n2 is divisible by 8, a n × n
square can be tiled with L-trominoes with fourfold rotational symmetry if and only
if n is divisible by 6, a n × n square can be tiled with L-tetrominoes with fourfold

Fig. 3.8 Some types of 2d-and-3d-polyominoes: T-tetromino (a), L-tromino (b), O-tetromino (c),
L-tetromino (d), Monomino (e), 3d monomino (f) and 3d L-tromino (g)
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Fig. 3.9 A solution to the spatial combinatorial problem (see text for explanation): there are 24
alternative land cultivation schemes if one of the four pieces of land is left uncultivated (too many
spatial alternative configurations to decide, even for such a simple problem)

rotational symmetry if and only if n is divisible by 4 and any 2n × 2n square can be
tiled by a monomino and trominoes (Golomb 1954; 1996).

Equivalently, there are similar (unfortunately fewer) results for polyominoes in
3d: any 2n × 2n × 2n cube with n = 1(mod3) can be tiled with a 3d monomino
and 3d L-trominoes (Starr, 2008) and a mxnxk parallelepiped can be packed with 3d
L-trominoes if and only if mnk is divisible by 3 (Soifer 2010).

Spatial combinatorial problems are well known for producing big numbers
quickly. Consider, for instance, the following spatial planning problem:

A farmer owns a square lot of side length x, which can be divided in four equal
squares, of side length x/2 each. He has three types of cultivations to allocate on
these four squares: arable crops, tree crops and orchards. How many alternative land
cultivation schemes are there for the three crop types on the four squares pieces of
land, provided that all three cultivations types should be used in that lot? The farmer
also needs to know the possible spatial arrangements if one quarter of the land is left
uncultivated each time.

There are 24 alternative land cultivation schemes if one of the four squares is left
uncultivated (Fig. 3.9), and as many as 36 different land cultivation schemes if all
squares are occupied by cultivations. Even in this simple land allocation scheme of
only 4 spatial regions and 3 types of spatial entities, it is evident that the number of
possible combinations becomes rapidly high; may be unacceptably high for ordinary
(i.e. everyday) spatial decision-making.
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Chapter 4
The Probabilistic Basis of Spatial
Complexity

From Chaos became Erebus and the black Night;
From Night were born the Aether and the Day,
“™κ Xάεoς δ’ �Eρεβóς τε μšλαινά τε N�̀ξ ™γ šνoντo:
Nυκτ òς δ’ αâτ ’ A„θήρ τε καὶ ‘Hμšρη ™ξεγ šνoντo”
(Hesiod, c.750 b.C., “Theogony” 104,123-125)

Abstract This chapter sets the basis for a probabilistic approach to spatial
complexity, by focusing on: (a) species richness (the number of different qualita-
tive classes /species/ population types/ categories /covers/colours/types) occupying
the spatial extent of a surface, (b) entropy (measured i.e. by Shannon’s formula, and
reflecting the degree of equidistribution of these classes on the basis of their rela-
tive participation percentages) and (c) randomness of allocations of these classes.
Evidently, the higher the number of different classes within a surface, space, or
spatial object, the higher its spatial complexity. Further, the more disordered their
allocation, the higher the spatial complexity also. These considerations however,
ramify to a series of questions, i.e.: when is a string of symbols a random one? what
alternative definitions of random strings are there and how do they impact spatial
randomness?

Keywords Spatial complexity · Complexity and randomness · Entropy and
Complexity · Landscape Diversity · Algorithmic complexity · Map Complexity ·
Landscape complexity

4.1 Spatial Entropy Versus Complexity

“A bit of entropy is a bit of ignorance”

(Seth Lloyd 2007, p.80)

While analyzing spatial complexity, one should always look for the simplest
methods possible, despite the fact that spatial settings are “interesting” exactly when
they are not simple (although they may be pleasant nevertheless). Understanding the
relationship between entropy and complexity is a multi-faceted issue cropping up in
many domains of scientific enquiry. This relationship has attracted the attention of
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physicists and computer scientists time and again. Generally, the higher the number
of different classes (species/populations/categories/covers/colours/types…) within a
surface or spatial object, the higher the spatial complexity. But this also depends on
the scale under which the object is examined, as different classes or objects can be
packed together so densely that they might even accept an easy synoptic description
(Fig. 4.1).

The number of classes present on a spatial surface is only one indication of its
spatial complexity; the relative participation of each one of these classes in the object
examined is another. The more different classes participate to cover the surface, the
higher the spatial complexity. It is common in the scientific literature of ecology,
cartography and geography to define the entropy of a map by using the Shannon
formula (Shannon and Weaver 1949; Forman and Godron 1986):

Fig. 4.1 Progressively subtracting fruits from a tray gives a glimpse of spatial complexity: a high
number of spatial objects (fruits in this case) is not necessarily an indication of high complexity, as
they can be packed together so densely that an overly simplifying description might be attributed to
them (i.e. “a fruity area”). The same applies when the spatial objects are too few against the empty
backdrop (i.e. “a map with one object in it”). Yet, when both the spatial objects and their backdrop
are present at comparable percentages, the increasing difficulty of description becomes obvious.
This difficulty is a measure of spatial complexity of the surface which in this case is defined by the
number of different covers/categories present on the surface
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H = −
V∑

i=1

Qi log(Qi ) (4.1)

where V is the total number of “colors” present in the map depending on the map
examined (i.e. if it is geographic, thenV represents land cover classes, land use types,
landscape types, population types etc) and Qi is the percentage of occurrence of each
color i in the map’s area, with

∑V
i=1 Qi = 1.

If the entire map is covered by one color only, then H=0. With an increase
in the number of colors V, entropy increases, but the entropy formula does not
take into account the spatial allocation of these classes, as the maps (b) and (c) show
(Fig. 4.2).

Thus, entropy is only a relative (although highly important) indicator of spatial
complexity. Let us see two other examples (Fig. 4.3). The maps of the two upper
rows have higher entropy than those of the two bottom rows: H=1 versus H=1.5
respectively. The two upper rows show maps with two colors only, while the two
bottom rows show maps of equal size with three colors. The maps with three colours
have a higher entropy than the maps with two colours, regardless of the spatial
allocation of these colours. These also show why entropy alone is not a sufficient
criterion of spatial complexity, since different spatial configurations (and therefore
different spatial complexities) can correspond to exactly the same entropy values
(Papadimitriou 2012).

In biogeography and ecology, the term “diversity” is widely used. In its general
form, diversity means the identification of the characteristics of a map, as reflected
by the number of different classes of elements in it (i.e. as reflected by the “diver-
sity” of its elements; a term used in spatial ecology) and consists a recurrent theme
in ecological research (Clarke and Warwick 1998; Anand and Orloci 2000; Petro-
vskaya et al. 2006; McShea 1991; Magurran 2004). The connection between diver-
sity and complexity was discussed in ecological context by Zhang et al. (2009), who
found that an increase in Shannon diversity appeared concurrently with increasing
“landscape complexity”. Yet, other studies based on field observations have shown
that spatial complexity and entropy (diversity) are not always positively correlated.

Fig. 4.2 Increasing spatial differentiation results in increasing Shannon entropy (calculated with
a logarithm basis 2). Notice however, that spatial configurations with the same numbers of covers
and the same cover percentages may yield the same entropy values for entirely different spatial
configurations (i.e. cases b and c)



54 4 The Probabilistic Basis of Spatial Complexity

Fig. 4.3 Two sets of maps: the maps of the upper set of two rows are binary and have H=1 while
the two lower sets of rows have three colors and H=1.5 In both cases, the entropy values are the
same for each set of maps. Thus, within each set of rows, entropy alone can not help us distinguish
between spatial configurations with different spatial complexities each

Species richness and complexity are not always correlated either (Azovsky 2009,
p.308).

Besides entropy, another index needs to be parenthetically mentioned, which is
contagion. The “contagion” index was proposed by O’Neill et al. (1988), Turner
(1989; 1990) and Turner and Ruscher (1988) to characterize spatial (landscape)
patterns in landscape maps:

2n ln(n) −
n∑

i=1

n∑

j=1

Qi j ln(Qi j ) (4.2)

where n is the total number of cover types in the geographical space (or landscape),
Qij is the probability of cover type i being adjacent to cover type j, and 2nln(n) is
the maximum contagion, which is attained if there is an equal probability of any two
landscape types being adjacent to one another.

The problem with this index is that it may also yield the same values for entirely
different spatial configurations (and hence, for configurations of entirely different
topology and spatial complexity). As shown in six example 3×3 binary maps
(Fig. 4.4), the 1st binary map has only one black cell, the 2nd has two, while the 3d
has 3 and the 4th has four. Yet, all these maps have the same contagion index. The
same applies to the binary maps 5 and 6: both have the same contagion, although
their spatial configurations are completely different. But different spatial configura-
tions most likely have different spatial complexities (this will be examined in detail
in next chapters). Consequently, contagion can not be taken as a measure of spatial
complexity.
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Fig. 4.4 Small binary maps with the same contagion but with different entropy and different
complexity (at least, as perceived visually). Binary maps 1 to 4 have the same contagion (equal to
0.918), but their entropies are different (both entropy class r and Shannon entropy H are different
in each one of them). The same applies to binary maps 5 and 6

However, it is not only maps that can demonstrate the central role of entropy.
As Steinhaus (1954) suggested, there is an interesting association of the concept of
entropy to the complexity of a curve: the number of intersections of a plane curve
and a random line intersecting that curve is equal to 2L/C, where L is the curve’s
length and C is the length of the boundary of the curve’s convex hull. Plugging this
into Shannon’s entropy formula and defining (arbitrarily) as the “temperature” of the
curve the quantity

log2

(
2L

2L − C

)
(4.3)

it is possible to derive a thermodynamic analogue of curve complexity. Supposedly,
this link between geometry and thermodynamics gives a measure of the “entropy”
of a curve (Mendes France 1983; Dupain et al. 1986):

Hcurve = log2

(
2L

C

)
+ log2

(
2L

2L−C

)

elog2(
2L

2L−C ) − 1
(4.4)

The entropy of a curve is also an indicator of its complexity, i.e. if the curve is
described by a polynomial of degree d, then its entropy is at most 1+log2d (Stewart
1992).
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4.2 Spatial Randomness and Algorithmic Complexity

To a land of deep night, of disorder and utter darkness,

where even light is like darkness

ץֶרֶ֤א“ התָָ֨פיֵע ׀ וֹ֥מְּכ לֶפֹ֗א תוֶָמלְצַ֭ אֹ֥לוְ םירִָ֗דְס עַפתַֹּ֥ו ׃לֶפֹֽא־וֹמכְּ ”פ
(The Bible, Job, 10.22)

The study of spatial randomness of distributions of some population in any spatial
dimension (Fig. 4.5) is a vibrant field of research, particularly in the context of spatial
random processes, for which a basic introduction can be found in Adler (1981) and a
more elaborate and updated in Hristopoulos (2020). Expectedly, spatial complexity
depends on spatial randomness, but, as it turns out, it is difficult to assess spatial
randomness in terms of algorithmic complexity because there are several alternative
approaches to deciding whether a string of symbols is random or not (diverging
approaches even about the one dimensional case).

In an early approach, vonMises (1919) defined an infinite binary string as random,
so long as it has as many 0s as 1s at its “limit”. Adopting a different approach, Church
(1940) defined a random string as every infinite string of which the digits can not be
given by a recursive function. Later, Martin-Löf (1966a, b) suggested that random

Fig. 4.5 An allocation of
flowers on a street created by
natural forces acting both
deterministically (i.e.
gravity) and stochastically
(i.e. affected by changing
wind speed and direction),
thus producing a not entirely
random spatial allocation



4.2 Spatial Randomness and Algorithmic Complexity 57

infinite strings are those that satisfy all statistical tests for randomness. Levin (1973;
1974) and Chaitin (1974; 1975) defined random strings x as those that are endowed
with a maximum Chaitin-Levin complexity, meaning there exists a number c, such
that for every n, this complexity is higher than the difference n-c. Following the
most widely known definition by Kolmogorov (1965) however, an infinite string x is
random, if its Kolmogorov complexity K(x) is maximum.

An alternative approach to randomness is Bennett’s concept of “logical depth” of
an object (Bennett 1973, 1982, 1986, 1988a, b, c, 1990), measuring the time required
to compute a minimal program, with its organisation of the studied object. The “log-
ical depth” of a string is the calculation time needed (by a universalmachine), in order
to produce it from its minimum Kolmogorov description. Bennett’s definition has
had some applications in physics and biology (Bennett 1986, 1988b) and one of the
implication of Bennett’s theory is that the possibility to encounter by chance an object
with large logical depth is very small. Plausibly, the possibility that Bennett’s defi-
nition might be used to assess spatial complexity should not be precluded. However,
the problem with the definition of randomness becomes explicit even by considering
simple cases. Consider, for instance, a binary string composed of 0s and 1s. Let the
sum of the string’s elements be N. If the string is random in the Church sense, then:

limn→∞
(

N

n

)
= 1

2
(4.5)

But there are strings satisfying this equation at the limit, which are clearly non-
random (i.e. the string 0101010101010101010101…). This simple example illus-
trates why the riddle of defining string randomness remains unsolvable even for
one-dimensional objects. Further, many strings that happen to satisfy the criteria of
Von Mises and Church fail to do so for Martin-Löf’s criteria. But characterizing a
string as random in the sense of Kolmogorov means that it accepts no shorter algo-
rithmic description and therefore it has no regularity at all and passes the statistical
tests required by Martin-Löf’s definition.

Yet, diverging opinionswith respect to strings can be seen in the case of 2d surfaces
also. For instance, complexity is often perceived to be a condition “in between order
and chaos”, in such a way that (i.e. in Fig. 4.6), neither map a (ordered) nor map
c are “complex”, because a is ordered and c is random. But map b is perceived
as “complex”, because it is found in between order and randomness and displays
distinct patterns (such as clumps of the same colour in B).

Spatial stochasticity can be created by a 2d Brownian stochastic motion. Here, for
the purpose of illustration, it is plotted for 400,000 time steps (Fig. 4.7). As the east-
west Brownian motion is tantamount to the north-south motion, the joint probability
of being at a position u along the horizontal axis and v along the vertical axis is the
product of the Gaussian probability densities of the respective motions:

P(u, v, t) = 1

2π t
e− (u2+v2)

2t (4.6)
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Fig. 4.6 Different perceptions of what is “complex” affects the impression of what a spatially
complex surface is. According to some interpretations, map b is more complex than both maps
a and c, because it displays both order (patterns of the same colour) and randomness (at the bottom
right quadrant). But following the theory of algorithmic complexity, a spatial region ismore complex
if it is more difficult to describe by an algorithm and if it is closer to randomness: in this way, map
b is more complex than a, while c (a random allocation of the three colours) is more complex than
b

Fig. 4.7 A stochastic
Brownian motion over an
empty space. When the
number of time steps
gradually increases (up to
400,000 here), complex
patchy, rugged spatial forms
emerge

When a rugged surface (noisy, with “ups” and “downs”) is examined, its spatial
complexity will be even more dependent on the level of spatial resolution at which it
is examined.At this point enter issues of choice and technical capabilities: one simply
has to experiment with surfaces that can be constructed on the basis of Gaussian-
type functions describing a terrain (Fig. 4.8) and follow the general type (ai,bi,ci are
constants):

F(x, y) = c1e−(a1x2+a2 y2+a3x+a4 y+a5) + c2e−(b1x2+b2 y2+b3x+b4 y+b5) (4.7)

In a rasterized map, a string of symbols can represent a strip of squares (or paral-
lelograms) of a spatial object. The algorithmic complexity of a string of symbols
is equal to the minimum description of this string. In one dimension, if a string of
symbols is random, then it has maximum algorithmic complexity; equivalently, if
the allocation of colors/covers is random over a map (Fig. 4.9), then it has maximum
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Fig. 4.8 The ruggedness of a surface is a parameter indicating its spatial complexity (a). The degree
of ruggedness essentially reflects the degree of randomness of a surface. The two-dimensional cross-
section of a three-dimensional landscape that is created by usingGausian-type distributions for x and
y can be given by a function F(x, y) that describes the “altitude” of the landscape, such as the profile
shown in b

Fig. 4.9 A random image, generated by a computer. It has almost equiprobable allocation of cells
per luminosity value (histogram on the right) and zero Moran’s autocorrelation index. Such images
have maximum algorithmic complexity in the Kolmogorov sense
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complexity (with respect to any other such map of the same size and with the same
amount of covers/colors). If it has repeating patterns, then its description can be
reduced to a simpler one, by taking advantage of these repetitions, and in that case,
it has a lower complexity than an incompressible string of symbols.
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Chapter 5
The Topological Basis of Spatial
Complexity

1. A point is that of which there is no part.
2. A line is length without breadth.
3. The extremities of a line are points.
“α/.Σημε‹óν ™στ ιν, oá μšρoς oÙθšν.
β /.Γ ραμμὴ δ� μÁκoς ¢πλατšς .
γ /.Γ ραμμÁς δ� πšρατα σημε‹α.”
(Euclid, 4th century b.C.,“Elements", Book A)

Abstract The key topological indicators of spatial complexity are: number of
boundaries, genus, dimension, knottingness, braiding, linking/writhing and immer-
sion of the surface or object: i.e. the higher the number of boundaries and/or knots (or
braids) and the higher the genus and the dimension of the surface or object, the more
spatially complex it is. Some initial experimentations with spatial complexity can be
made with easy-to-derive estimates by using the Gage-Hamilton-Grayson theorem,
Pick’s theoremand intersections of lineswith Jordan curves. Then, spatial complexity
can be assessed in various ways by using concepts of the complexity of knots
and braids, including knot polynomials, linking numbers and Grosberg-Nechaev
complexity.

Keywords Spatial complexity · Knot complexity · Braid theory · Map
complexity · Topology and Complexity · Knot theory · Pick’s theorem

5.1 Boundaries

Ascendance to higher levels of existance

enables even distant entities to develop sympathy to one another...

... because it is easier to encounter disconnected

the elements of the earth than humans.

“¹ ™πὶ τò κρε‹ττoν ™πανάβασις συμπάθειαν
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καὶ ™ν διεστîσιν εργάσασθαι ™δ�́νατo....

…θα̃σσoν γoàν εÛρoι τις ¥ν γεîδες τι μηδενòς γεώδoυς

πρoσαπτóμενoν Àπερ ¥νθρωπoν ¢νθρώπoυ ¢πεσχισμšνoν)”

(Marcus Aurelius, 121–180 a.D., Meditations, 9.9b–9.9c)

The complexity of spatial surfaces and objects depends on their essential topo-
logical properties, such as relative position, dimension, genus etc and topological
criteria can serve to derive measures of spatial complexity (Papadimitriou 2002,
2013). We will begin with the Gage-Hamilton-Grayson theorem (Gage 1983, 1984;
Gage and Hamilton 1986; Grayson 1987, Grayson 1989a, b), according to which,
every closed non-self-intersecting curve on the plane can be simplified to a circle,
following a “curve shortening flow” which moves each point of the curve inwards,
proportionately to the curvature at that point. In this way, a spatially complex closed
curve without self-intersections, can be reduced to a circle (Fig. 5.1).

Fig. 5.1 According to the Gage-Hamilton-Grayson theorem, any spatially complex non-self-
intersecting curve (on the left) can be reduced to another curve, homeomorphic to a circle, (on
the right), following a “curve shortening flow”

Topology alone however, is not a sufficient criterion of spatial complexity; it
always needs to be considered in tandem with other criteria (entropy, geometry
etc). Take, for instance, a possible topological criterion based on the “Jordan Curve
theorem” (proven in 1887). As well known from basic topology, this theorem asserts
that a simple (non-intersecting) closed curve on the plane separates the plane into
two regions, one “inside” the curve, and another “outside” of it. As a consequence
of this theorem, if a point is found inside a closed curve on the plane, then there is
an odd number of intersections from any point inside it towards the space that is on
the outside of the curve.

Would it be plausible to assume that the maximum number of intersections might
be an adequatemeasure of a shape’s complexity?Consider for instance, four different
closed curves (Fig. 5.2): a circle (a) and three other curves homeomorphic to the circle
(b,c). Drawing a line from any point found inside the circle (a) to the outside of the
circle c, there is one intersection point. In the case of the closed curve b, there are
three intersection points and thus curve b is more complex than the circle. Further
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Fig. 5.2 Four different closed curves and straight lines connecting one point inside each curve with
one point outside it. Generally, the more complex the shape is, the more intersection points along
the lines connecting the shape’s inside with its outside

still, from some point found on the inside of curve c, there can be as many as thirteen
intersection points, so the curve c is even more complex than curve b. Although it
can be objected that an infinity of curves might exist, homeomorphic to any one of
those, and they could be spatially more complex and still yield the same numbers
of intersections, this theorem may nevertheless be helpful to realize the relevance of
boundaries for spatial complexity.

Since closed curves create boundaries that separate the inside regions from those
that lie outside the boundary, the role of boundaries in spatial complexity can be
further explored by means of Pick’s theorem (Pick 1899), which provides a calcula-
tion of the area (An) of a planar shape, as measured on a square grid, from the number
of points the shape has on its boundary (Bp), or enclosed in its interior (Ip), following
the simple formula:

Ap = Bp

2
+ Ip − 1 (5.1)

Obviously, a more complex shape will have more points (both Bp and Ip) than a
simple one. Might then Ap, Bp and Ip be useful to estimate the spatial complexity of
spatial objects? A handy answer would be that an estimator of shape complexity to
experiment with, might be the sum of the numbers of internal and boundary points.
Thus, a “naïve” estimator of spatial complexity to experiment with, might be defined
from the shape’s boundary and interior points only:

C p = Bp + Ip (5.2)

To test its applicability, consider two shapes with the same area (as calculated
from Pick’s theorem) and then their difference in appearance and in their Cp value
(Fig. 5.3). To normalize Cp when comparing more than two shapes, Cp might be
divided by the area enclosed. Whether this might explain the complexity of borders
may be open to discussion but this does not diminish the fact that the shape of borders
constitutes a prominent indicator of spatial complexity (Papadimitriou 2002).
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Fig. 5.3 An experiment to link Pick’s theorem with spatial complexity can be illustrated by two
pairs of shapes (a–b on the left and c–d on the right), with the same area per pair, but with different
spatial complexities. The assumption that spatially more complex shapes should have higher sums
of boundary points and internal points is verified here: the area of both shapes a and b is Ap(a) =
Ap(b) = 5.5, but b is more complex than a, as Cp(b) = 13, while Cp(a) = 11. Similarly, Ap(c) =
Ap(d) = 10, but Cp(c) = 18 while Cp(d) = 22

5.2 Knotting

Many riddles must be solved.

Mephistopheles: But many riddles tie also

“Da muß sich manches Rätsel lösen.

Mephistopheles: Doch manches Rätsel knüpft sich auch”

(Johann Wolfgang von Goethe, 1749–1832,“Faust: Der Tragödie erster Teil”)

Knots are objects of the 3d space. A main problem of knot theory is to decide
whether a knot can be unknotted and how quickly (or, otherwise stated, to decide
whether a curve that appears knotted is really knotted). Typically, if a simple closed
curve γ is knotted, then there does not exist any subset S of the R3 that is homeomor-
phic to the disk D = {(x, y) ∈ R2, x2 + y2 < 1} such that the boundary of S equals
the trace of the curve. Two theorems connect the curve’s closedness with curvature
and knottedness: if γ is closed, then its total curvature is at least 2π (Fenchel’s
theorem), but if it is knotted, then its total curvature is at least 4π (Fary-Milnor
theorem). Hence, knotted curves have higher curvature than simply closed ones.

In fact, both knots and braids are intricately related to complexity as shown by a
significant number of studies, i.e. the complexity of knots (Makowsky and Marino
2003; Diao and Ernst 1998; Kholodenko and Rolfsen 1996; Barenghi et al. 2001;
Orlandini et al. 2005) and the complexity of braids (Hamidi-Tehrani 2000; Nechaev
et al. 1996; Bangert et al. 2002; Garber et al. 2002; Fiedler and Rocha 1999), to
the extent that even new types of complexity have been proposed from the study
of knots and braids, such as the “Matveev complexity” (Casali and Cristofori 2006)
for orientable 3-manifolds. From all these studies, it is important to single out the
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Fig. 5.4 The number of crossings of a knot serves as a measure of knottingness, which, in turn, is
an indicator of spatial complexity: a circle (zero crossings) is less complex than a knot with three
crossings (middle), which, in turn, is less complex than a knot with five crossings (right)

definition of “knot complexity” as the number of crossings of a knot (Fig. 5.4) to be
the prominent measure of a knot’s complexity (Kholodenko and Rolfsen 1996).

Some knots can thus be reduced to simpler knots. For instance, a complicated knot
can be reduced to the simple “trefoil” knot (Fig. 5.5). Their characteristic numberings
also differ: the circle is simply the “0_1 knot” (a circle is not a knot), the trefoil knot
is the “3_1 knot” , the 10_123 knot is a knot with 10 crossings etc.

Another central problem of knot theory is to decide whether two knotted curves
are different forms of the same knot. The first, and indeed themost important factor to
help us tackle this problem, is (again) the number of crossings of a knot. The crossing
number, called “beknottedness” by Tait (1898) is the minimum number of changes
of sign of crossings which are necessary to eventually simplify the knot to a trivial
form. But determining the benottedness of a knot is a difficult problem, even for
knots with less than ten crossings (Lickorish 1987). In fact, the same knot may have
infinitely many different two-dimensional representations on the XY-plane (its “knot
diagrams”), and the crossing number of a knot refers always to the diagram which
represents the minimal number of crossings. Next to this, but equally significant for
spatial complexity, is the problem of “unknot recognition” which consists in deciding
whether a given knot represents the unknot. Unknotting a knot is made by applying
anyone (or combinations) of a simple set of standard moves, the “Reidemeister
moves” (Fig. 5.6). These consist in a simple set of three basic moves to links and
knots in the 3d space (Reidemeister 1932).

Fig. 5.5 Unknotting the
complicated knot on the left
produces the simple “trefoil”
knot on the right
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Fig. 5.6 The Reidemeister moves are elementary operations on knots, allowing the unknotting of
a knot

In terms of computational complexity, the topological problem of “unknot recog-
nition” belongs to the NP-complexity class, because an upper bound of the number
of Reidemeister moves (m) necessary to connect a number of crossings (n) of a knot
to the unknot is (Hass and Lagarias 2001):

m ≤ 210
11n, (5.3)

This very big number casts doubts whether we might ever be able to solve the
problem of whether two knots are the same or not. Later however, it was shown
(Burton 2011) that the complexity of deciding whether a knot is the unknot is a
low-order exponential function of the number of crossings.

The same piece of a blankwhiteA4 papermay be described as “White paper”, “An
A4-size white paper”, “Unwritten paper”, “Blank”, or even simply “W” (for white)
and so on. But all these different descriptions differ in their sizes and therefore in
their requirements for computer memory. Consider the extreme case that someone
may be content by annotating everything and everyone as “this part of the Universe”,
since everything is part of this universe. So a flower, a man, a city, a planet, a solar
system, etc will all be “this part of the Universe” alike. Although this may sound
like an absolutely absurd generalization, it is nevertheless a valid one. Expressed in
terms of geography and cartography, the “peri-urban sprawl”, “residential areas”,
“retail commerce areas”, “urban lands”, “industrial settings”, “city centers” can all
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be encoded as “built up lands” or “developed areas”. It is thus important to consider
the spatial-scale dependence of spatial complexity, but also the encoding-dependence
(the level of semantic generalization at which something is studied). Inevitably, the
level of semantic generalization affects the level of spatial generalization and the
reverse.

Once a spatial object is identified for examination, it can not be classified percep-
tually without being encoded first. But determining an optimal encoding is theo-
retically a very difficult (and most likely unsolvable) problem. Thus opens a wide
avenue for case-specificity in spatial complexity assessments. Consider, for instance,
the following question:What do the following algebraically inequivalent expressions
have in common?

y1 = x4 + 3x2 + 1 (5.4)

y2 = x9y + x8y2 + x7y3 − x7y + x6y4 − 3x6y2+
+2x6 + x5y3 − 2x5y + x4y4 − 4x4y2 + 3x4

(5.5)

y3 = 1

x2
+ 1

x4
+ 1

x6
− 1

x5
− 1

x7
(5.6)

y4 = x2 − x + 1 − 1

x
+ 1

x2
(5.7)

At first, the obvious answer would be: “nothing”. Yet, they all describe exactly the
same topological figure: the double overhand knot 5_1, or “cinquefoil” (Fig. 5.7).

The first one is the Conway polynomial of this knot, the second is its Kauff-
mann, the third the Jones and the last one its Alexander polynomial. Therefore, four
completely different algebraic expressions describe the same topological reality, the
same spatial complexity.But they are sodifferent because they are derivedon the basis
of different knot description systems. Or, the same topology corresponds to different
algebraic encoding schemes. Polynomial invariants have been suggested to describe

Fig. 5.7 The double
overhand knot 5_1, or
“cinquefoil”
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knots, so that a knot is characterized by a polynomial expression. The first such
was proposed by Alexander in 1928, another by Conway in 1970, to be followed by
Jones’s in 1984, theHOMFLY-PT and theKauffman polynomial in 1987. Computing
these polynomials raises questions of complexity, since it is known that this problem
is xP-hard (Welsh 1993). While recognizing the unknot is an NP-hard problem, the
computation of the Alexander polynomial is in polynomial time, but that of the Jones
polynomial is #P-hard. The problem with knot polynomials is that they are not very
reliable indicators for distinguishing different knots. For instance, it is difficult for
the Jones polynomial to recognize the unknot, while there are different “Kanenobu
knots” (Kanenobu 1986), all with the same Jones polynomial. Also some knots have
a trivial Alexander polynomial. The problem of different knots with the same polyno-
mials extends to the HOMFLY-PTs (Likorish 1987). Indeed, algebraically “similar”
expressions may correspond to completely different spatial objects, but Khovanov
homology is a generalization of the Jones polynomial of knots and can be used to
decide whether a knot is an unknot (Kronheimer and Mrowka 2011), with compu-
tational complexity equal to or higher than the problem of computation of the Jones
polynomial (a #P-hard problem), while computing this homology is in theEXPTIME
class. Another homology, theHeegard Floer (a generalization of theAlexander poly-
nomials) can be used to detect unknots and the genus of knots (Manolescu et al. 2007,
2009).

Yet, knot complexity might be directly estimated from knot polynomials: the “knot
complexity”was defined (Grosberg andNechaev 1991, 1992) as themaximumdegree
of the knot’s characteristic polynomial. For instance, the Kauffman polynomial of
the trefoil knot is:

yx5 + y2x4 − x4 + yx3 + y2x2 − 2x2 (5.8)

and its maximum degree is lower than that of the Kauffman polynomial of a more
complex knot (Fig. 5.8):

Fig. 5.8 Themaximum degree of the Kauffman polynomial of knot a (the trefoil knot, 31) is higher
than that of the knot b (the knot 52) and therefore knot b has higher Grosberg-Nechaev complexity
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5y3x3 − xy3 + y3

x
+ 6y2x6 + 7y2x4 + y2

x2
− 3x5y − 3x3y − x6 − x4 − 1

x2

− 5x6y4 + x5y7 + x3y7 + x6y6 + 2x4y6 + x2y6 − 5x5y5 − 4x3y5

− xy5 − 8x4y4 − 2x2y4 + y4 + 7x5y3 (5.9)

5.3 Braiding

With her hands she wove bright braids

“χερσί πλoκάμoυς �πλεξε ϕαεινo�́ς”

(Homer, Iliad, �. 176)

Much like knots, lines and curved surfaces in 3d space can make interweaving
“strands” creating braids (Fig. 5.9).

As with knots, the higher the number of crossings, the more complex the braid.
Exploring this concept, Bangert et al. (2002) addressed the topological problem of
finding the minimal crossing number of braids, and, likewise with knots, the number
of crossings of a braid has been established as a measure of its complexity (Raymer
and Smith 2007; Berger 1994; Bangert et al. 2002), to the extent that it is also called
“braid complexity” (Simsek et al. 2003).

Fig. 5.9 A braid consists in
a set of interwoven strands in
3d space
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The number of crossings in a braid diagram is equal to the “Artin word” of the
braid. Concomitant to a braid’s complexity is the problem of “Artin words” (which
remains unsolved), consisting in finding an algorithmwhich generates an Artin word
of minimal length for a braid with a fixed number of strands. Also, Garber et al.
(2002) used the term “braids complexity” for the braids word problem. Aside of
the number of crossings however, several other measures of braid complexity have
been proposed, such as the Lyapunov exponents of generators of the braid groups
(Nechaev et al. 1996), the “braiding exponent” (Thieffeault 2005), the “minimum
braid energy” (Bangert et al. 2002), the amount of distortions per braid (Dynnikov
and Wiest 2007), as well as measures based on “Dehornoy orderings” (Ito 2011).

5.4 Writhing and Linking

It is impossible to solve a problem while ignoring the link in it

“��́ειν δ’ oÙκ �στιν ¢γνooàντας τòν δεσμóν”

(Aristotle, 384–322 b.C.,”Metaphysics”, 3/995a)

Besides braiding and knotting, writhing is also a significant determinant of
complexity and, for linked curves, it is measured by the “linking number”. The
linking number is a positive or negative integer, depending on the orientation of the
linked curves and on how many times they cross each other (Fig. 5.10). The higher
the number of crossings, the higher the complexity of the setting. Although curves
do not really qualify as “spatial objects” within the interpretation of “spatial” that
is defined and followed in this book (something is “spatial” if it is at least 2d), they
nevertheless define areas in 2d or volumes in 3d space. Thus, the number of times
they intersect, cross and link is an indicator of spatial complexity (besides, the same
spatial complexity due to writhing would be created if there were bands instead of
curves).

A measure of spatial complexity might therefore be based on the absolute value
of the linking number (ignoring the orientation of the curves):

|L(γ1, γ2)| (5.10)

Fig. 5.10 The linking number of two curves is a positive or negative integer, depending on which
curve crosses above or below the other: the higher the absolute value of the linking number, the
higher the complexity of the curves’ relative position
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whereas the linking number L(γ 1,γ 2) of two curves γ 1 and γ 2 is defined in terms of
their crossings ε(κ):

L(γ1, γ2) = 1

2

∑

κ∈(γ1∩γ2)

ε(κ) (5.11)

Hence, provided that these curves lie both on the same plane, they define areas
and the higher the linking number, the higher the number of areas defined by the
crossings and therefore the higher the spatial complexity (Fig. 5.11), which might
be symbolized by CLN :

CL N = 2|L(γ1, γ2)| + 1 (5.12)

or, expressed in terms of crossings (for L ≥ 1):

CL N =
∣∣∣∣∣∣

∑

κ∈(γ1∩γ2)

ε(κ)

∣∣∣∣∣∣
+ 1 (5.13)

Notice however, that for smooth, disjoint and closed curves in R3, the Gauss
linking number applies:

L(γ1, γ2) = 1

4π

∮

γ1

∮

γ2

(r1 − r2)

|r1 − r2|3
· dr1 × dr2 (5.14)

Fig. 5.11 The absolute value of the linking number of two curves, with both of them on the same
plane, might be an estimator of the spatial complexity of the areas defined by the curves and their
crossings
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where r1(t) and r2(t) are the parametrizations of the curves γ 1 and γ 2. In this
case, one would have to define volumes instead of 2d regions. The linking integral
applies to non-euclidean geometries also, i.e. in spherical and hyperbolic 3-spaces
(DeTurck and Gluck 2004), while Shonkwiler and Vela-Vick (2008) expanded it to
submanifolds M and K (in place of curves γ 1, γ 2) with arbitrary dimensions m and
k respectively (such that m+k=n-1).

5.5 Genus

“The hidden in men and the hidden in things

belong in the same topoanalysis”

(Gaston Bachelard 1994,p. 89)

Expectedly, the higher the genus of a surface, the higher the complexity of its
spatial configuration (Fig. 5.12). The genus is a knot invariant also, because trans-
forming a knot by means of Reidemeister moves does not change its genus. The
unknot is the only knot with genus zero. The “Floer homology” of a knot detects the
knot’s genus and is computable (Manolescu et al. 2009).

Fig. 5.12 Examples of surfaces with genus 0, 1, 2, 3. The higher the genus of a surface, the higher
its spatial complexity

5.6 Dimensions

“A topological egg progressively differentiating

into a Euclidean organism”

(Manuel De Landa 2002, p. 68)
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Increasing dimensions inevitably incurs higher computational cost to spatial
computations. Two characteristic examples exemplify this: First, translating Pick’s
theorem to higher dimensions, the volume V (P) of a lattice polyhedron in Z3 is given
by the number of points in its interior and boundary in a similar way as in the case of
2d Pick’s theorem, with the exception that it also involves Euler’s characteristic of
the polyhedron, χ (P). All these are combined in Reeve’s formula (Reeve 1957a, b):

V (P) = Bn − nB1 + 2(In − nI1) + (n − 2)[2χ(P) − χ(∂ P)]

2n(n2 − 1)
(5.15)

which can be generalized to higher (N) dimensions (Macdonald 1963, 1971):

V (P) =

N−1∑
k=0

(−1)k−1

(
N − 1
k − 1

)
(BN−k + 2IN−k) + (−1)N−1(2χ(P) − χ(∂ P))

N !(N − 1)
(5.16)

evidently involving several more calculations than Pick’s formula for two dimen-
sions.

Second, recalling Heron’s formula for the calculation of the area of a triangle,
that is the simplest 2d shape:

√
τ(τ − a)(τ − b)(τ − c),where τ = (a + b + c)/2 (5.17)

and increasing spatial dimensions from two to three, the volume of a tetrahedron
(the simplest 3d shape) with edges U,V,W, and opposite edges u,v,w (where the edge
u is opposite to U, v is opposite to V and w is opposite to W ) is given by the formula:

V olume =
√

(a + b − c + h)(b + c + h − a)(a + c + h − b)(a + b + c − h)

192uvw
(5.18)

where

a = √
xY Z; b = √

y X Z , c = √
zY X , h = √

xyz

X = (w − U + v)(U + v + x = (U − v + w)(U + v − w)w),

Y = (u − V + w)(V + u + w) y = (V − w + u)(V + w − u)

Z = (u − W + v)(u + v + W ) z

= (W − u + v)(W + u − v) (5.19)
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Evidently, a set of calculations requiring a considerably higher number of arith-
metic operations (59) than those required for Heron’s formula (10): as dimensions
increase, spatial complexity of even the simplest spatial elements increases also.

5.7 Orientability and Immersions

Fortunate islands, lands without a place

“São ilhas afortunadas, são terras sem ter lugar”

(Fernando Pessoa 1888–1935, “As Ilhas Afortunadas”, v.11–12)

A surface is “closed” if it is “compact”, connected and without a boundary. Other-
wise stated, a surface is closed if it is a Hausdorff space which is compact and
connected, and in which every point has a neighborhood homeomorphic to the plane
and “Dehn’s classification theorem” applies to closed surfaces (1907), assuring that
every compact, connected surface is topologically equivalent to a sphere, or to a
connected sum of projective planes or to a connected sum of tori. Or, alternatively
expressed, any closed surface is homeomorphic either to the sphere, or to the sphere
with a finite number of handles added, or to the sphere with a finite number of discs
removed from it and replaced by Möbius bands added to it (Fig. 5.13). It does not
matter for topology where the handles or the Möbius bands are added on the sphere.
So long as there are no holes or handles in an object, all closed surfaces on it are
homeomorphic to a sphere. Each one of the classes of these surfaces is not home-
omorphic to the other. Adding a handle to the sphere is obtained by the removal of
the interiors of a pair of disjoint discs first and then by the attachment of a cylinder
by gluing its boundary circles to the edges of the two holes in the sphere. Möbius
bands are non-orientable surfaces, which highlight one further determinant adding
complexity to spatial forms.

Fig. 5.13 A Möbius band is a non-orientable surface, that is a surface in which its “outside” and
“inside” are indistinguishable from one another
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Fig. 5.14 The Klein bottle is a non-orientable surface immersed in R3

Non-orientability of a surface leads to what seems to be yet another characteristic
of high spatial complexity: immersed surfaces. An immersion is a differentiable func-
tion between two differentiable manifolds whose derivative is injective everywhere.
A common case is mappings fromR2 toR3. In immersions, the image of themanifold
can have transverse intersections. One example is the Klein bottle (Fig. 5.14).

There are many non-orientable closed surfaces that can not be embedded in R3

but they can nevertheless be immersed in it. Immersions of surfaces in 3d space are
interesting due to the increased spatial complexity they entail.
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Chapter 6
The Algorithmic Basis of Spatial
Complexity

-What is the wisest?
-The Number.
-And what is the second wisest?
-Assigning names to things
“Tί τ ò σoϕώτατoν; ’Aριθμóς .
Tί τ ò δε�́τερoν σoϕώτατoν;
Tò τo‹ς πράγμασ ι τ ὰ Ñνóματα τ ιθšμενoν”
(Iamblichus, 245–325 b.C., VP82, 47.17–19)

Abstract Building on previous concepts and measures, two metrics of spatial
complexity of small 2d maps are proposed here: CP1 and CP2. Both are applicable
to square maps (binary or not), so long as each square cell of a map can have a one-
to-one correspondence to one symbol (taken from an alphabet of symbols). These
symbols can be used to represent as many colors, categories etc. as the map requires,
on the basis of a conventional “scanning” run-length encoding sequence. The first
metric gives an evaluation of spatial complexity on the basis of blocks of cells with
repeating patterns that are identified following an iterative process. The secondmetric
is calculated on the basis of vertical and horizontal pairwise comparisons of succes-
sive adjacent strips of the map or surface. Both metrics are easy to compute, assume
integer values and their magnitudes are comparable for small maps.

Keywords Spatial complexity · Map Complexity · Geography and Complexity ·
Edit distance · run-length encoding · Algorithmic complexity · Geocomputation

6.1 The Language of Space

lopadotemahoselahogeleokraniolipsanodimypotrimatosilfio

laravomelitokatakehymenokihlepikosyfofatoperisteralektryonopto

kefalliokiglopeliolagosireovafitraganopterygon

“λoπαδoτεμαχoσελαχoγαλεoκρανιoλειψανoδιμυπoτριμματoσιλϕιo

λαραβoμελιτoκατακεχυμενoκιχλεπικoσσυϕoϕαττoπεριστεραλεκτρυoνoπτo

κεϕαλλιoκιγκλoπελειoλαγωσιραιoβαϕητραγανoπτερ�́γων”

(Aristophanes, 427-386 b.C., “Ecclesiazusae”, line 1163)
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Aristophanes, the ancient greek author of the first comedies in the history of
theatre wrote this 171 letters-long word that probably used to be the longest known
word throughout the ages, supposedly referring to a name of a dish, a kind of a
fricassée containing some 15 ingredients: clearly a “complex” word, describing an
equally complex set of ailments recommended for the creation of this dish. But it
is not human language alone that can create very long words. Metaphorically, space
also “speaks” immensely lengthier “words”, so long as one is able to “listen” to
them. Geometric, topological and other mathematical aspects of spatial complexity
may indicate whether a spatial object is endowed with a higher or lower spatial
complexity, but they do not constitute measures of spatial complexity themselves.
This leads us to a central issue with respect to themeasurement of spatial complexity:
Since complexity is different than entropy, or any other indicator of complexity,
any measure of complexity should be a measure of complexity per se, backed by
the mathematical literature of complexity. Such a measure should (under certain
topological restrictions) be of general applicability to two-(and possibly higher)-
dimensional smooth surfaces. A rasterization/digitization significantly facilitates
the measurement of spatial complexity, since even maps of points and lines can
(under certain conditions) be rasterized and, subsequently, symbols of cover or color
can be assigned to each cell of the resulting square grid. The term “raster” that is
commonly used in GIS signifies geoprocessing of spatial elements on the basis of
squares (pixels). In fact, it is a common practice in geospatial analysis to “rasterize”
all spatial elements, that is to attribute to square cells or pixels even linear or point
data. The long experience gained from the use of geographic technologies (such as
Geographical Information Systems “GIS” and satellite image processing) is particu-
larly useful in this respect. After experimenting with various geo-encoding models,
digital arrays of pixels are used to represent either “vector” (0-and-1-dimensional)
or “raster” (2-dimensional) spatial entities. The rasterization is easily created by
enlarging or reducing the map size as appropriate and assigning a special color
to each one of its cells (Fig. 6.1). Whether the term “cell” or “pixel” is used, it

Fig. 6.1 Rasterization” is a widely used process in image analysis, by which points, lines and
areas (0,1,2-dimensional spatial elements respectively) are translated to square cells. In this way,
all elements of a map, whether points or lines or areas, can be converted to cellular (square)
representations, with accuracy depending on the pre-decided resolution of the square map that
is to be constructed
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invariably concerns discrete square cells on a map of equal square partitions. In the
science and practice of image processing, continuous functions are routinely used in
image analyses. For instance, the convolution of the map f (x, y) with the map g(x, y)
is defined as a function:

h(x, y) =
¨

f (x1, y1)g(x − x1, y − y1)dx1dy1 (6.1)

Thus, analytic expressions of known functions are used in their discrete form,
such as, for instance, the discrete Fourier Transform of a 2d array f (x, y) of sizemxn:

f (u, v) = 1√
mn

m−1∑

x=0

n−1∑

y=0

f (x, y)e−2iπ( xu
m + vy

n ) (6.2)

Equivalently, the form of a closed curve on the plain in polar coordinates (with
distance D from the barycentre and angle θ with respect to the horizontal axis) is
given in terms of a typical Fourier expression:

D = a0
2

+
∞∑

n=1

[an cos(nθ) + bn sin(nθ)] (6.3)

The analytic approach applieswhen the curve is “not too rough”.When the curve’s
shape is not so, the analytic approach is of limited applicability, because it renders
more than one values for the same angle θ. But when the map is examined in discrete
cells, there is always one single value attributed to each cell. Further, the numerical
application of such functions practically presupposes discrete spatial domains, so
some “discretization” or “rasterization” process is eventually unavoidable for all
kinds of computerized image processing.

A square “map” is a binary or multicolored planar surface, which has been
constructed by any means (satellite or aerial photography, plain photography, field
observations, cartographic processing etc.), and can be described mathematically by
a function on the discrete plain Z2 defined as f :Z2 → {0, 1, 2, ..., V }, where V is
the number of colors (“covers”) appearing on the map. In example, a “binary map”
is defined by a function f :Z2 → {0, 1}, where f (0) = white and f (1) = black. In the
same way, for higher spatial dimensions, the mapping function f is defined in Z3 (for
three dimensions, in which case, the equivalent of the 2d pixel is a 3d a “voxel”), in
Z4 (for four dimensions, in which case, the equivalent is a 4d a “doxel”), or in Zn in
general.

Obviously, an alphabet of symbols may be chosen so as to adequately repre-
sent (under certain conventions) spatial allocations (i.e. colors) on a rasterized map
(Fig. 6.2). Yet, we should not lose sight from the fact that both spatial and semantic
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Fig. 6.2 If a three-dimensional surface that is covered by three types of cover (A, B, C) is projected
on a 2-dimensional space and then encoded by using an alphabet of three symbols (A, B, C), it
eventually yields a map, or, alternatively, a 2d linguistic description of this surface

generalizations made on the initial image, map or surface, affect the accuracy, preci-
sion and effectiveness of our assessments of spatial complexity. It is easy to visualize
how a map configuration can eventually be converted into a linguistic or numerical
description with a “run length encoding”, where the spatial sequence of a map’s allo-
cation of covers (i.e.landscape or soil types, kinds of land use, geomorphic features)
corresponds to symbols of an alphabet. Similarly, three-dimensional spaces can be
converted to linguistic descriptions by using some (appropriate for that purpose)
alphabet.

Even maps of points can be converted to maps of square cells. This process
involves the use of Voronoi polygons (or Voronoi cells, or Thiessen polygons) that
make a one-to- one correspondence of spatial regions to points. Indeed, areas covered
by Voronoi polygons can be converted to a map of square cells (Fig. 6.3). Following
similar procedures, lines and curves may be made equivalent to areas, which are
eventually displayed as raster maps.

Practically, re-arranging a two-dimensional image as an one-dimensional line has
long proven useful in computational analyses, particularly for image classification
purposes (Seiffert andMichaelis 1997). It is now natural to ask “how can wemeasure
the complexity of spatial forms of a binary map (or landscape with two land cover
types),without considering spatial distributions of particular physical entities in it?”.

An index of spatial complexity (IS) was initially proposed by Papadimitriou
(2002), measuring the number of common boundaries between different kinds of
map cover per unit area. Later, a different index was proposed (Papadimitriou 2009),
based on Levenshtein distances (Levenshtein 1966) which measure the minimum
distance between two strings of symbols as the minimum number of the three basic
operations necessary to convert one string into another (deletions d, substitutions s,



6.1 The Language of Space 85

Fig. 6.3 Even spatial distributions of points (a) can be converted to areas of square cells (f ).
Voronoi polygons can be used to convert point data to maps of square cells. Beginning with a map
(a) with point data only, a triangulation of the space is created by connecting the points (b). Next,
the barycentres of all triangles are defined (c). Consequently, the barycentres are joined by lines and
these lines are extended as appropriate (d) up to the map’s boundaries. The number of the resulting
Voronoi polygons (e) is equal to the number of initial points (8 in this example) and, eventually, the
map of Voronoi polygons is rasterized (f)

additions t): a = min{d + s + t}. It was shown (Papadimitriou 2009) that this algo-
rithm can be spatialized and that it can be used to calculate the spatial complexity of
a map by means of the formula:

CL = 1

uv

j=v−1
i=u−1∑

i=1
j=1

αi j (6.4)

where u = rows, v = columns of cells of the map, and αij are the entries of the
matrix of the edit distances which are derived by comparing parallel and adjacent
strips of landscapes. This formula converts the one-dimensional edit algorithm from
a measure of minimum description of string differences to a measure of minimal
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length description of spatial differences and it is for this reason that it serve as a
measure of spatial complexity (Papadimitriou 2009).

Another index (KS) was later suggested (Papadimitriou 2012), based on the
concept of Kolmogorov complexity (Kolmogorov 1965, 1986), defined as

Ks = min
(
(U (x), U (y),U

(
x ′),U

(
y′)) (6.5)

where x = the original horizontal string, y = the compressed horizontal string, x′ =
the vertical string, y′ = the vertical compressed string.

The notion of “Kolmogorov complexity” was used to evaluate the algo-
rithmic complexity of a finite string of symbols (e.g. ABDDCBFGAAG… or
0,111,001,010…), which is defined on a finite alphabet, such as {A, B, C, D …
Z} or {0, 1, 2, …}, or {black, white}, or {0, 1} or any other.

The problem with Kolmogorov complexity is that, in the general case, it is
non-computable, so alternative approaches have appeared in the literature. Fortnow
et al. (2011) sought possible answers to the question of extracting the Kolmogorov-
randomness from a string and showed that we can extract Kolmogorov complexity
with only a constant number of bits of additional information in a polynomial-time
computable procedure. Furthermore, it is possible to apply a modified notion of
Kolmogorov-complexity to “short” strings, as will be explained in the next section.

6.2 Metrics of Spatial Complexity

“Tutor: What is twice three?

Scout: What’s a rice tree?

Sub-scout: When is ice free?

Sub-Sub-scout: What’s a nice fee?”

(Lewis Carroll, 1832–1898)

With these premises from previous research, two new and more effective metrics
of spatial complexity will be defined here. “Fivos Papadimitriou spatial complexity
metric 1” (referred to asCP1 hereafter) and the explicit procedure for its computation
will be described next.

This metric makes use of an initial concept by Papentin (1973, 1980, 1982, 1983a,
b), who suggested that it is possible to evaluate the complexity (not spatial) of a
small string by identifying patterns in it and then the string’s complexity is defined
as the length of the compressed string. However, he did not present any algorithmic
procedure for identifying such patterns and his method was not spatial either. Also,
the measure previously defined on the basis of Kolmogorov complexity (Ks) that
was described by Papadimitriou (2012) did not comprise any algorithmic procedure
for finding patterns in a string. And one further difference between the CP1 and the
procedures developed by both Papentin (1973) and Papadimitriou (2012) mentioned
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previously, is thatCP1 is much more restrictive, because it is defined as the minimum
algorithmic complexity taking into account all possible orientation changes of the
square map under consideration.

Consequently CP1 differs:

(I) from the Papadimitriou (2012) metric, because: (a) it follows an exact algo-
rithmic procedure for finding patterns, (b) it is based on Papentin complexity
rather than on Kolmogorov complexity and (c) it is calculated as the minimum
from all possible symmetric transformations (rotations, inversions etc.) of the
original map.

(II) from the Papentin (1973) metric, because: (a) it is spatial (Papentin’s measure
was not) and (b) it is associated with an exact procedure for the identification
of patterns.

In computing the string length, the following conventions are used:

(a) If a symbol is repeated twice or more consecutively, then it can be written with
a power of the times it appears consecutively, i.e. the string AAAAAAABA can
be shortened to A7BA.

(b) If a block of symbols repeats itself consecutively, then parentheses can be used
and powers indicating the number the block of symbols is repeated, i.e. the
string ABCABCABCABCABCABC can be represented as (ABC)6.

(c) Lambda (λ) symbolizes a block of consecutive symbols, used to indicate
compression. In the compressed string, the lambda block of symbols is separated
by a comma (,) from the λ-compressed string. The comma is also counted as
a separate symbol in the final string length calculation. For instance, the initial
30 symbols-long string:

BWBBWBBWBBWBBWBBWBBWBBWBBWBWWW
can be compressed by using the compression λ = BWB that has 5 symbols to

create the following short string: λ9W3.
The above notation would be incomplete without citing the compression λ =

BWB, becauseλ could symbolize just any block of symbols. Hence, the compression
of the initial string should be written as: λ = BWB, λ9W3 which consists in 10
symbols (5 symbols for theλ =BWBplus one symbol for the comma, and 4 symbols
additionally for the short string).

Thus, without any loss of information, it can be said that this compressed 10-
symbols long string can fully encode the initial 30-symbols long string. Hence, the
formula for the calculation of CP1 is simply:

CP1 = min
D4

{Sb} (6.6)

where b = 1, 2, 3, … L and Sb are all the compressed strings generated by blocks
(b) of symbols, from b = 1 symbol up to b = L symbols, and L is the initial length
of the string and for all possible map orientations derived from the symmetry group
of the square (D4).
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Fig. 6.4 Converting a map to a “word” (a string of symbols) for the calculation of its spatial
complexity

Let us now see exactly how the CP1-complexity of a small map can be calculated.
Beginning by scanning cells from top to bottom and from left to right (as one reads
the lines of a book), consider a 3 × 3 binary map (Fig. 6.4) with initial string (with
the position of each symbol numbered below): W B B W B B W B B.

The procedure begins by first trying possible compressions using blocks of two
symbols, beginning from the two first symbols on the left of the string and ending
with the two last symbols (the abbreviationCSL stands for compressed string length):

(a) Blocks of 2 symbols

Symbols’ numbers λ Compression Short string CSL

1 + 2 WB λ = WB λ = WB, λBλBλB 11

2 + 3 BB λ = BB λ = BB, WλWλWλ 11

3 + 4 BW λ = BW λ = BW, WBλBλB2 12

4 + 5 WB λ = WB λ = WB, λBλBλB 11

5 + 6 BB λ = BB λ = BB, WλWλWλ 11

6 + 7 BW λ = BW λ = BW, WBλBλB2 12

7 + 8 WB λ = WB λ = WB, λBλBλB 11

8 + 9 BB λ = BB λ = BB, WλWλWλ 11

and continues with block sizes increasing by one, up to L − 1, as follows:

(b) Blocks of 3 symbols

Symbols’numbers λ Compression Short string CSL

1 + 2 + 3 WBB λ = WBB λ = WBB, λ3 8

2 + 3 + 4 BBW λ = BBW λ = BBW, Wλ2B2 11

3 + 4 + 5 BWB λ = BWB λ = BWB, WBλ2B 11

4 + 5 + 6 WBB λ = WBB λ = WBB, λ3 8

(continued)
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(continued)

Symbols’numbers λ Compression Short string CSL

5 + 6 + 7 BBW λ = BBW λ = BBW, Wλ2B2 11

6 + 7 + 8 BWB λ = BWB λ = BWB, WBλ2B 11

7 + 8 + 9 WBB λ = WBB λ = WBB, λ3 8

(c) Blocks of 4 symbols

Symbols’ numbers λ Compression Short string CSL

1 + 2 + 3 + 4 WBBW λ = WBBW λ = WBBW, λB2WB2 13

2 + 3 + 4 + 5 BBWB λ = BBWB λ = BBWB, WλBWB2 13

3 + 4 + 5 + 6 BWBB λ = BWBB λ = BWBB, WBλWB2 13

4 + 5 + 6 + 7 WBBW λ = WBBW λ = WBBW, λB2WB2 13

5 + 6 + 7 + 8 BBWB λ = BBWB λ = BBWB, WλBWB2 13

6 + 7 + 8 + 9 BWBB λ = BWBB λ = BWBB, WBλWB2 13

(d) Blocks of 5 symbols

Symbols’ numbers λ Compression Short string CSL

1 + 2 + 3 + 4 + 5 WBBWB λ = WBBWB λ = WBBWB, λBWB2 13

2 + 3 + 4 + 5 + 6 BBWBB λ = BBWBB λ = BBWBB, WλWB2 13

3 + 4 + 5 + 6 + 7 BWBBW λ = BWBBW λ = BWBBW, WBλB2 13

4 + 5 + 6 + 7 + 8 WBBWB λ = WBBWB λ = WBBWB, λBWB2 13

5 + 6 + 7 + 8 + 9 BBWBB λ = BBWBB λ = BBWBB, WλWB2 13

(e) Blocks of 6 symbols

Symbols’ numbers λ Compression Short string CSL

1 + 2 + 3 + 4 + 5 + 6 WBBWBB λ = WBBWBB λ = WBBWBB, λWB2 13

2 + 3 + 4 + 5 + 6 + 7 BBWBBW λ = BBWBBW λ = BBWBBW, WλB2 13

3 + 4 + 5 + 6 + 7 + 8 BWBBWB λ = BWBBWB λ = BWBBWB, WBλB 13

4 + 5 + 6 + 7 + 8 + 9 WBBWBB λ = WBBWBB λ = WBBWBB, λWB2 13
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(f) Blocks of 7 symbols

Symbols’ numbers λ Compression Short string CSL

1 + 2 + 3 + 4 + 5 + 6
+ 7

WBBWBBW λ = WBBWBBW λ = WBBWBBW, λB2 13

2 + 3 + 4 + 5 + 6 + 7
+ 8

BBWBBWB λ = BBWBBWB λ = BBWBBWB, WλB 13

3 + 4 + 5 + 6 + 7 + 8
+ 9

BWBBWBB λ = BWBBWBB λ = BWBBWBB, WBλ 13

(g) Blocks of 8 symbols

Symbols’ numbers λ Compression Short string CSL

1 + 2 + 3 + 4 + 5 + 6
+ 7 + 8

WBBWBBWB λ = WBBW, BBWB λ = WBBWBBWB,
λB

13

2 + 3 + 4 + 5 + 6 + 7
+ 8 + 9

BBWBBWBB λ = BBWB, BWBB λ = BBWBBWBB,
Wλ

13

From these calculations, it follows that a string of 8 symbols is the shortest one.
This shortest string faithfully represents the original string of 9 symbols without
loss of information. But 8 is not the value of CP1. From all possible rotations of the
initial map, a rotation by 90° to the right produces a compressed string shorter than
8 symbols (Fig. 6.5), so the resulting string consists in 4 symbols only: W3B6 and
hence we eventually conclude that CP1 = 4 for this map.

Besides CP1, yet another algorithmic metric will be defined here, what can be
called the “Fivos Papadimitriou spatial complexity metric 2”, symbolized by CP2,
based on modifications of the formula that was derived by Papadimitriou (2009), so
as to make it much easier to calculate and more appropriate for small square maps.
The division by the product of rows and columns will be omitted here so it will be
only the sum of the total Levenshtein distances; not their average as in Papadimitriou
(2009) and is thus calculated as:

Fig. 6.5 Orientation matters in the calculation of spatial CP1 -complexity: rotating the initial
binary map (left, with string WB2WB2WB2) by 90° to the right results in the string W3B6, of
which the complexity is readily calculated to be equal to 4 (in contrast to the original map, for
which a lengthy calculation process was required, resulting to a complexity value equal to 8)
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CP2 =
j=v−1
i=u−1∑

i=1
j=1

αij (6.7)

where aij are the in-between i-rows (i = 1, 2, …, u) and in-between j-columns (j =
1, 2, …,v) Levenshtein distances which result from pairwise comparisons of strips
of the surface considered, successively, and for all the strips covering the surface.
Thus, the CP2 metric differs from the CL metric in the following:

(a) it requires less calculations to compute compared to CL for square maps since
no averaging for columns and rows is required;

(b) it assumes only positive integers as values;
(c) it can be used to derive values that are comparable toCP1 for smallmaps (notice,

for instance, that, for 3 × 3 binary maps the maximum value of both CP1 and
CP2 is 8).

However, instead of seeking a minimum length of string number, CP2 seeks a
minimum operations number.

Another difference is that while CP1 is sensitive to symmetric transformations
(rotations, inversions), CP2 is not (for an example calculation of CP2 see Fig. 6.6).

Complexity calculations of either CP2 or CP1 may also be carried out (as the
case may be) according to the “entropy encoding” technique that is widely used in
image processing for many electronics applications. This is a procedure of lossless
data compression, derived by encoding the image components in a “zigzag” fashion,
as shown in Fig. 6.7. It begins from one of the corner cells of the image and then
proceeds in a zigzag manner up to the opposite corner of the image, by recording the
cell category of each cell encountered in this zigzag process. Yet, there are several
other scanning methods that are used in optoelectronics and other technologies.

Fig. 6.6 A 5 × 5 square map with three cover types showing how CP2 and CP1 values are compa-
rable for small square maps. First, notice that CP1=22 because the map’s irreducible string is:
A2CBA2B2C5 BA2CACBA2BAC. Some characteristic column and row slides are depicted to illus-
trate the calculations of CP2 per pair of rows and columns. Eventually, the calculations lead to CP2
= 24 (that is an agreement by more than 90% of the two metrics for this map)
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Fig. 6.7 The “entropy encoding” technique applied on a rasterized 8× 8 initial image (a): beginning
with the top left corner cell (b), continuing with the second upper right cell, then carrying on
diagonally until the entire image is “encoded”, down to the bottom right cell

Following such other methods will inevitably result in different strings of symbols
than the raster scanning (Fig. 6.8).

Fig. 6.8 Alternative scanning methods used in various technologies: raster scanning (a) that is
most commonly used, rosette scanning (b), spiral scanning (c), linear array scanning (d)
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6.3 Extrema of Spatial Complexities CP1 and CP2

Since things may differ from one another,

to a higher or a lesser degree of difference,

there is also a maximal difference,

and that one I call contrariety

“™πεὶ δ� διαϕšρειν ™νδšχεται ¢λλήλων τὰ διαϕšρoντα πλε‹oν καὶ �λαττoν,

�στι τις καὶ μεγίστη διαϕoρά, καὶ τα�́την λšγω ™ναντίωσιν”

(Aristotle, 384-322 b.C., “Metaphysics”, 10.1055a)

It is easy to verify that the CP2 of any multicolored square map of size n ranges in
between 2 and 2n − 2

√
n. Indeed, the spatial complexity of any multicolored map is

lowest when there is only one different cell at any one of the map’s corners. In this
case, the map’s CP2 is at least 2, because the corner cell has only two borders with
two white cells. So the pairwise comparisons of the 1st row with the 2nd row and
the 1st column with the 2nd column will record this difference in CP2. As the size of
a multicolored map increases, all cells will have different colors, so the maximum
CP2 produces

√
n by pair of rows, as well as by per pair of columns. Hence there are√

n − 1 comparisons of map rows, plus
√
n − 1 comparisons of map columns, with√

n differences per comparison. Consequently, there are 2
√
n(

√
n − 1) differences

between cells, compared by columns and by rows pairwise and thus,

2 ≤ CP2 ≤ 2n − 2
√
n (6.8)

Expectedly, the max CP2 grows with increasing n.
As concerns CP1, if a square binary map of size n has only one black cell and that

particular cell is located at anyone of the map’s corners, then its CP1 is minimum and
equal to:

CP1min = 3 + ⌊
log10(n)

⌋
(6.9)

In fact, for any binary map, the lower complexity is attained when there is only
one black cell at any one of the map’s corners. In this case, the map’s CP1 is

CP1
{
BWu

} = 3 (6.10)

where u is the number of white cells that follow in the string.
If there are up to u = 9 white cells (that is a map with n = 10 cells) then the string

still has the same minimum:

CP1
{
BW9

} = 3 (6.11)

and thus, in this case, the minimum CP1 is also CP1 = 3.
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If there are u = 10 white cells following the corner black cell, then the string has
n = 11 so that:

CP1
{
BW10

} = 4 (6.12)

In fact, CP1 will remain equal to 4 for all strings of length up to n = 99:

CP1
{
BW99} = 4 (6.13)

However, with one more cell (n = 100), the string will need three digits to be
described (of which two characters only to represent the power of W), so CP1-
complexity becomes:

CP1
{
BW100

} = 5 (6.14)

Thus, as the map size increases, string codes are determined by a power of 10
(hence by the logarithm of 10) of the exponent u. As log10n also assumes non-integer
values, the floor function �� of the logarithm of n applies, so CP1 has a bound of its
minimum value, depending on the map size n, defined as:

CP1min = 3 + ⌊
log10(n)

⌋
(6.15)

or, equivalently,

CP1 = 2 + ⌈
log10(n)

⌉
(6.16)

where 	
 is the ceiling function.
Notice that the floor function is a stepwise function, meaning that the maximum

values of the minima of CP1 min assume integer values only, whose ranges increase
slowly with n. To verify, consider the following examples, with increasing mapsize
n:

For n = 81,CP1 min = 3 + ⌊
log10(81)

⌋ = 3 + �1.81� = 4 (6.17)

For n = 121,CP1 min = 3 + ⌊
log10(121)

⌋ = 3 + 2 = 5 (6.18)

For n = 625,CP1 min = 3 + ⌊
log10(625)

⌋ = 3 + �2.25� = 5 (6.19)

Thus if any one of the four corner cells of a binary square map is black, whatever
the map size, the minimum CP1 complexity can not be higher than 3 + ⌊

log10(n)
⌋
.

More generally, for the entropy class 1, the minimum CP1 complexity is attained
when there is only one black cell, located at anyone of the map’s corners, so for all
binary maps
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CP1 min = 3 + ⌊
log10(n)

⌋ = 2 + ⌈
log10(n)

⌉
(6.20)

holds, whatever the value of n is.
Given these, it can be proven that if all the black cells of a binary square map

appear as a single block of ω-consecutive black cells located after m-consecutive
white cells anywhere in the map except for its corners, then the CP1 is:

CP1 = 3 + ⌈
log10(m)

⌉ + ⌈
log10(ω)

⌉ + ⌈
log10(n − m − ω)

⌉
(6.21)

Indeed, for any black cell located anywhere in the binary map but the corner, the
string has the general form:

WmBWn−m−1 (6.22)

wherem is the number of cells preceding the black cell and therefore the CP1 of such
strings is:

CP1 = 3 + ⌈
log10(m)

⌉ + ⌈
log10(n − m − 1)

⌉
(6.23)

For three black consecutive cells located anywhere in the map except for the
corner, the string is:

WmB3Wn−m−3 (6.24)

which has a CP1 equal to:

CP1 = 5 + ⌈
log10(m)

⌉ + ⌈
log10(n − m − 3)

⌉
(6.25)

Consequently, for a block of ω consecutive black cells located anywhere in the
map but the corner, the string is:

WmBωWn−m−ω (6.26)

and hence:

CP1 = 3 + ⌈
log10(m)

⌉ + ⌈
log10(ω)

⌉ + ⌈
log10(n − m − ω)

⌉
(6.27)

This formula gives the complexity of all binary maps with entropy class 1
with black cells appearing as a single block anywhere in the binary map except
for the map’s four corner cells.

As an example, consider a binary 10 × 10 map (Fig. 6.9), with the following
incompressible string of 9 symbols:W36B25W39. This map has a single block of 25
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Fig. 6.9 A 10 × 10 binary map, with a single block of 25 consecutive black cells located after 36
initial white cells and 39 white cells that follow immediately after the block of black cells

consecutive black cells located after 36 initial white cells and 39 white cells that
follow immediately after the block of black cells.

Applying the previous formula, the CP1 complexity of this map is:

CP1 = 3 + ⌈
log10(36)

⌉ + ⌈
log10(25)

⌉ + ⌈
log10(39)

⌉

= 3 + 2 + 2 + 2 = 9 (6.28)

Due to to the periodic nature of the floor and ceiling functions, the following
proposition is interesting to consider, which holds when the logarithm of nwith base
10 is non-integer (as most often the case is).

Also, it if and only if
⌊
log10(n)

⌋
/∈ Z , then a lower bound of the minimum CP1

of a square binary map is 2 + log10n.
This follows immediately by considering the Fourier series expansion (sawtooth

function) of the floor function for non-integer real numbers x:

�x� = x − 1

2
+ 1

π

∞∑

k=1

[
sin(2πkx)

k

]
(6.29)

Substituting the value x = log10(n) to

CP1 min = 3 + ⌊
log10(n)

⌋
(6.30)
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yields:

CP1 min = log10 n + 5

2
+ 1

π

[ ∞∑

k=1

sin
[
2πk(log10(n))

]

k

]
(6.31)

and given the bounded variation of the Fourier series, one lower bound is:

2 + log10 n (6.32)

In fact, it is easy to verify that

5

2
+ log10 n > 3 (6.33)

holds for every n > 3.16228 (this is one lower bound; what is the infimum?).
As an example, consider n = 121. Then, log10(121) = 2.082, so a lower bound of

CP1 min is 2 + 2.082 = 4.082. Indeed,

CP1 min = 3 + ⌊
log10(121)

⌋ = 5 > 4.082 (6.34)

Interestingly, the minimum CP1 of binary maps can also be related to the tran-
scendental number π. An alternative expression is derived by expanding the Fourier
series by complex numbers. In the previous example, the same result is derived either
way:

CP1min = 5

2
+ log10(121)

− i
[
log(1 − e−2iπ log10(121)) − log(1 − e2iπ log10(121))

]

2π
= 5 (6.35)

If and only if all black cells of a binary square map appear as a single block of
ω-consecutive black cells located after m-consecutive white cells anywhere in the
map except for its corner, and

⌊
log10(m)

⌋ ∧ ⌊
log10(ω)

⌋ ∧ ⌊
log10(n − m − ω)

⌋
/∈ Z ,

then a lower bound of the minimumCP1 of the map is:

3 + log10 mω + log10(n − m − ω) (6.36)

This can be proven by considering that
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CP1min = 6 + log10 mω + log10(n − m − ω) − 3

2
+

+ 1

π

[ ∞∑

k=1

1

k

(
sin

[
2πk(log10 m)

] + sin
[
2πk(log10 ω)

] + sin
[
2πk(log10 n − m − ω)

])]

(6.37)

and as

−3

2
≤ 1

π

[ ∞∑

k=1

1

k

(
sin

[
2πk(log10 m)

] + sin
[
2πk(log10 ω)

] + sin
[
2πk(log10 n − m − ω)

])] ≤ 3

2

(6.38)

it follows that a lower bound is

3 + log10 mω + log10(n − m − ω) (6.39)

Finally, as the map size n of a multicolored square map increases with n → ∞,
the ratio of the maximum CP1 to the number of the cells’ boundaries converges to 1
and the minimum CP1 tends to zero.

The proof follows easily by counting the number of boundaries from left to right
and converting them into a string of symbols. The first row has

√
n boundaries,

but the last cell of the 1st row is the boundary of the second row. Continuing until
the penultimate cell, the number of boundaries in a multicolored square map is
U = n− 1. All the first column cells have no boundary (they share the same boundary
with the last column’s right boundaries) and the last cell (down right) has no boundary
to any other cell. So, for instance, a 4 × 4 map has 15 boundaries between cells if
the entire map is converted into an one-dimensional map. Consequently, it easily
follows that

lim
n→∞

(
CP1max

U

)
= lim

n→∞
n

n − 1
= 1 (6.40)

and

lim
n→∞

(
CP1min

U

)
= lim

n→∞
3 + ⌊

log10 n
⌋

n − 1
= 0 (6.41)
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Chapter 7
Exploring Spatial Complexity in 3d

We can only claim that we know something,
when we know its first cause
“Tóτε γ ὰρ ε„δšναι ϕαμšν �καστoν,
Óταν τ ὴν πρώτην α„τ ίαν oιώμεθα γ νωρίζ ειν”
(Aristotle, 384-322 b.C.,“Metaphysics”, A3, 983a, 27–28)

Abstract Calculating the spatial complexity of 3d surfaces and multiply connected
spatial objects presents several interesting peculiarities. The author’s metrics of
spatial complexity CP1 and CP2 apply to some surfaces such as the Möbius band,
cylindrical and toroidal surfaces. But on other surfaces they may not, or they may
apply under certain conditions only (i.e. CP1 needs some predefined starting point,
but CP2 does not). Also, Hamiltonian paths can be useful to devise indices of spatial
complexity for surfaces and objects in three dimensions. In any case, the genus of
the 3d surface plays a key role in assessing its spatial complexity, so an experimental
metric CR is proposed here, based on Reeb graphs.

Keywords Spatial complexity ·Map complexity · 3d Complexity ·Möbius band ·
Voxels · Algorithmic Complexity · Reeb graphs

7.1 Simplicial Complexes, Betti Groups and Matveev
Complexity

Although objects seem to be solid,

yet they can be porous and formed

from matter mixed with void

“Undique materies quoniam stipata quiesset

praeterea quamvis solidae res esse putentur,

hinc tamen esse licet raro cum corpore cernas”

(Lucretius, 99-55 b.C.,“De Rerum Natura”, 1.329)

The problem with describing linear features on the surface of the planet is due to
the fact that the sphere is locally diffeomorphic to the plane, but not locally isometric
to it and, consequently, a major part of cartographic and geodesic research has had
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to deal with this difficulty. Further still, not all surfaces of 3d spatial objects are
differentiable, so the applicability of ordinary topological transformations cannot
always be taken for granted. For this reason, for a spatial object that is not composed
from smooth and differentiable surfaces, methods of combinatorial topology can be
more appropriate for spatial analysis.

One of the first efforts to study the surface of the sphere was by means of differ-
ential geometry and geodesics in particular. For many practical applications in geog-
raphy, cartography and ecology, topological methods are essential and, indeed, the
relationship between geography and topology has a long history; for instance, Sen
(1976)was one of the first to draw attention to the relationships between topology and
geography. Following Egenhofer et al. (1989), the topology of a geographical relief
can be broken down to elementary simplices (from 0-simplices up to 3-simplices).
In the same way, but with a different terminology, Scholl and Voisard (1989) claimed
that maps are essentially sets of “tuples”, that is geometric regions to which non-
geometric information is associated to. Besides analysing the spatial complexity of
3d objects however, 3d analyses of geographical settings (Papadimitriou 2012) can
also be useful to decipher their overall complexity (spatial, functional and qualita-
tive). In fact, simplicial complexes have more intensively been considered in theory
and practice of geoinformatics (although not as indicators of spatial complexity).
To define simplicial complexes for analysis of 2d and 3d surfaces, it is necessary to
make a triangulation first. A triangulation of a surface in 3d space is one of the oper-
ations resulting in simplicial complexes. These are “complexes” whose elementary
constituents are “simplexes”, that is algebraic-topological n-dimensional entities of
dimensions 0 (points), 1 (segments), 2 (triangles), 3 (tetrahedra) etc. (Fig. 7.1). The
“Betti groups” (or “homology groups”) are commutative and determine the invari-
ants of a simplicial complex; for further information, the reader is referred to the
classic text of Pontryagin (2015). Here, it suffices to recall that if two polyhedra
(corresponding to two different simplicial complexes) are homeomorphic, then the
complexes defining them have isomorphic Betti groups in all dimensions and there-
fore it is possible to characterize the polyhedra by Betti groups. Interestingly, the
Betti groups are invariant under barycentric subdivision of the complexes to smaller
simplexes.

In a combination of basic structural elements (such as the simplexes) and of the
topology of manifolds, a notion of complexity that relates to 3d manifolds is the
“Matveev complexity” (Matveev 1990) and is based on a combinatorial description

Fig. 7.1 Simplexes of various dimensions
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of a manifold’s basic structural elements, called “spines” (Matveev 1987; Piergallini
1988); in fact, it is based on the calculation of the minimal amount of vertices of a
spine of the manifold. This complexity estimation (which is a non-negative integer)
is additive and equal to the minimum number of tetrahedra of the triangulation of a
3-manifold. A related notion is the “Heegard complexity” (Cattabriga et al. 2010),
but, as research in 3-manifolds has shown (Jaco et al. 2009, 2011), computing the
complexity of a manifold by topological criteria is indeed a difficult problem. From
the perspective of computational complexity, triangulations on 3-manifolds present
NP-problems; i.e. to decide (Ivanov 2008, p. 1) “whether a triangulated 3-manifold
is homeomorphic to a 3-sphere, or to a 2-sphere bundle over a circle, or to a real
projective 3-space, or to a handlebody of genus g”.

7.2 Evaluation on Möbius Bands, Tori
and Multiply-Connected Surfaces

“Everything that happens, and everything that is said,

happens or is said at the surface”

(Gilles Deleuze 2012, p. 150)

As can easily be verified, bothCP1 andCP2 can be applied to closed 2-dimensional
surfaces, even if they are of genus 1. The calculation of CP2 can be carried out by
comparing one strip to its adjacent one, so long as the number of cells in each ring is
the same and there is a one-to-one correspondence between them. As concerns CP1

however, there are as many possible strings representing each ring, as the number of
square cells in each ring suggests, so the calculation of CP1 depends on the point of
departure for measuring the string: changing the point of departure implies the string
will begin from a different symbol and hence its compression may yield different
compressed strings (this requirement does not apply to ordinary rectangular maps,
since the pre-defined departure point applies to anyone of the four corners). Let us
see the calculation ofCP2 over a 2d ellipsoid surfacewith genus one, that is embedded
in R3 (Fig. 7.2).

Counting the cells in a counterclockwise direction yields:

Inner ring: W W BW W B W BW BW B B B
Outer ring: W B W B W W B W B B B B W B

and sliding the string of the outer ring one position to the right yields:

Inner ring: W W BW W B W BW BW B B B
Outer ring: W B W B W W B W B B B B W B

fromwhich it follows thatCP2 = 6. TheCP1 can be evaluated from the concatenation
of the string of the inner circle with that of the outer circle. The concatenation is a
string of 28 symbols, beginning from the pre-defined starting point:
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Fig. 7.2 CalculatingCP1 andCP2 on2-dimensional surfaceswith curvature:CP1 needs a predefined
starting point, although CP2 does not

Fig. 7.3 BothCP1 andCP2 are applicable for calculations on surfaces spreading over various kinds
of Möbius bands

WBWBWWBWBBBBWBWWBWWBWBWBWBBB

of which the compressed string is a string of 24 symbols:

λ = BWBWWBW,WλB3λWBWBWBWB3

Also, the calculation of CP1 and CP2 applies to Möbius bands, as well as to other
surfaces that result from Möbius bands twisted several times (Fig. 7.3).

Similar procedures follow on maps of squares that cover in a chessboard-like
manner a cylindrical surface (Fig. 7.4), so spatial complexity may also be calculated
by means of both CP1 and CP2 complexities, strap by strap, until the entire cylinder’s
surface is completely covered (and similarly, on conchoids, pseudospheres and other
surfaces).



7.2 Evaluation on Möbius Bands, Tori and Multiply-Connected Surfaces 105

Fig. 7.4 CP1 and CP2
complexities both apply to
cylindrical surfaces

Allowing for calculations that bypass edges of solid bodies, CP1 and CP2

complexities, can also be calculated on many other surfaces, such as bipyramidal
astroids

x(u, v) = a cos2 u cos3 v

y(u, v) = a sin3 u cos3 v

z(u, v) = a sin3 v (7.1)

and even on holey surfaces such as the Lissajous curves

x = a sin t

y = b sin(nt + ϕ)

z = c sin(mt + ψ) (7.2)

As in the case of Möbius bands, the process for the calculation of CP1 and CP2

complexities along strips that imperceptibly turn from outside to inside applies over
areas of other surfaces also, such as the surface created by Weierstrass’ elliptic
function:

℘(z) = 1

z2
+

∑ (
1

(z − w)2
− 1

w2

)
(7.3)

But, on some surfaces, two different calculations are required (one for the inside
and another for the outside). Examples of such surfaces are “finite minimal Riemann
surfaces” (where w = u + iv), e.g. of the type:

x = aRe

[
w

(
1− k2

) + 8wk2

w2 − 1

]

y = bRe

[
iw

(
k2 + 1

) − 8wk2

w2 − 1

]

z = aRe

[
k

(
w + 2 ln

(
w − 1

w + 1

))]
(7.4)
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Fig. 7.5 Binary square maps
on torus and double torus
surfaces

Yet, in other cases, more than two calculations may be necessary. One such
example is the sphero-cylindrical curve created from a sphere of radius a, a cylinder
of radius b and axis c, with x2 + y2 + z2 = a2 and x2 + (z–c)2 = b2 with the
parametrization:

x = b cos t

y = ±
√
a2 − b2 − c2 − 2bc sin t

z = c + b sin t (7.5)

for b + c equal to or less than a.
While CP2 applies without any complication on a map that is spread over a torus

surface (Fig. 7.5), the CP1 is applicable only with the provision of “stripping off”
the square cells of the torus, band by band. This essentially means that there should
necessarily exist a “starting” column (or row) on this surface. Identifying the optimal
such starting point on the surface so as to minimize the CP1 of all possible strings is
obviously a hard problem, even for small such surfaces. The samedoes not necessarily
apply to maps on surfaces of higher genus (Fig. 7.6).

With these considerations, an obvious question to ask is “what is the difference
between CP1 and CP2 complexities of square planar maps with holes?”. This ques-
tion prompts to conjecture that CP2 would still apply to planar maps with holes, so
long as the corresponding columns and rows of squares are comparable in terms of
Levenshtein distances.

Fig. 7.6 Do CP1 and CP2 metrics apply when the genus of a surface increases?
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7.3 Spatial Complexity of Simple 3d Solids and Voxels

“For whom are these serpents?”

(Georges Bataille 1991, p. 162)

The metrics CP1 and CP2 are not appropriate for calculations over surfaces on
lattices such as the internal faces of successive cubes but they can be applied in case
of voxelized surfaces, if the calculation proceeds even when tipping over an edge
(Fig. 7.7).

Voxelization is useful in many applications, from geology and MRI (Windreicha
et al. 2003; Dickie et al. 2015) to estimations of poses of the human body (Schick
and Stiefelhagen 2015). Inferring changes in values of distributions per voxel from
images is significant for some scientific domains, such as CT-angiography (computed
tomography angiographic images) that is used for discovering problems in the arteries
(Chen and Molloi 2003). Also, in computer tomography, binary images need to be
reconstructed from their projections and this procedure has significant applications
in nanotechnology and electron microscopy (Batenburg et al. 2009; Balazs 2013).
Voxels can also be combined in aggregates so as to approximate the shape of a sphere
(the so-called “naïve sphere”).

Evidently, any 3d object can be approximated in a similar way, by “naïve” 3d-
objects consisting of voxels. Voxelization algorithms have been developed for 3D
lines, 3D circles, etc. and have appeared in various forms, depending on whether
they are applicable on solids, polygons, polyhedra, quadric objects etc. (Laine 2013;
Kaufman and Shimony 1986; Kaufman 1987a), as well as curved objects such as
spheres and cylinders (Kaufman 1987b).

For a suitable introduction to the theory of voxelization, the reader is referred
to the relevant literature (Cohen-Or and Kaufman 1995; Herman 1998; Rosenfeld
1998).

Fig. 7.7 While neither CP1 nor CP2 are appropriate for calculations over surfaces on lattices in
R3 such as the internal faces of successive cubes (a), they can nevertheless be useful when the
calculation is allowed to apply even on successive faces of cubic surfaces as if they were covered
by a tapestry (b)



108 7 Exploring Spatial Complexity in 3d

Fig. 7.8 The three possible cases of adjacency of two cubes: 2-adjacency (when the two cubes
share a common face), 1-adjacency (when they share a common edge) and 0-adjacency (when they
share a common vertex)

Voxelization begins by idenifying the three possible (n − 1)-dimensional adja-
cency types for voxels in n= 3 dimensions (Fig. 7.8) in the discrete Euclidean space
Z3: (a) six voxels that are 6-adjacent to the central voxel, (b) eighteen voxels that are
18-adjacent to the central voxel, and c) twenty six voxels that are 26-adjacent to the
voxel (Fig. 7.9).

The spatial complexity of the colored faces of a cube might be evaluated
by adopting an “entropy encoding” approach, essentially mimicking a typical
“Hamiltonian path”, that is a path from vertex to vertex, so that no vertex is visited
twice. Given that there are three “visible” faces of the cube each time, if we need to
record the colorings of all 6 faces whereas each one of them is covered by a 3 × 3
map, then we have 54 cells to account for. Half of them appear on each view of the
cube at each time step (Fig. 7.10). The first view displays face F1 (front), followed
by F2 (top) and face F3 (left rear) and the second view the faces F4 (back), F5 (right
rear) and F6 (bottom).

Thus, beginning with the topmost cell of the front face and following an “entropy
encoding” path, it is possible to cover all the 54 voxels in a spiral-like and continuous
manner, down to the last 54th, that is the back lowest voxel at the far rear end of the
cube’s diagonal (Fig. 7.11), as a snake making rounds with its tail.

Fig. 7.9 Two adjacency types for voxels in 3d space: 26 adjacent voxels surrounding the central
voxel and 6 adjacent voxels
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Fig. 7.10 Numbering of cube faces: F1 = front, F2 = top, F3 = rear left, F4 = back, F5 = rear
right, F6 = bottom

Fig. 7.11 Calculation of spatial complexity following a 3-dimensional analogue of the “entropy
encoding” method. Registration of faces begins from top left and, following a spiral curve, ends up
at the exactly opposite face at the bottom right of the 9 × 9 × 9 cube (F1 = front, F2 = top, F3 =
rear left, F4 = back, F5 = rear right, F6 = bottom)

As an example, consider a cube with each one of its faces covered by a different
binary 3 × 3 map (Fig. 7.12).

The calculation of CP1-complexity along the entropy encoding path begins with
the initial 54-symbols long string, which, after compression with the replacement
λ =W4B3W2B, yields the final compressed string:

{λ = W4B3W2B,λ2WBλ2W3B2W3BWB}

and therefore 25 symbols are required for the surface of this cube if this particular
encoding scheme is adopted, but, evidently, there are several alternative entropy
encoding schemes.

Thus, besides the possibility to use CP1-complexity as a metric of the spatial
complexity of the cube’s surfaces, there are ample margins for alternative encod-
ings and complexity evaluations. Plausibly, the 3d equivalent of CP1 should be the
minimum of all compressed strings measured over all possible entropy encoding
itineraries over the cube’s surface (unless a universal agreement is made on the exact
direction of the entropy encoding itinerary).
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Fig. 7.12 A 9× 9× 9 cube consisting of 81 voxels, of which the outer faces are 54 in total (9 map
cells on each one of the cube’s 6 faces). F1 = front, F2 = top, F3 = rear left, F4back, F5 = rear
right, F6 = bottom

7.4 Spatial Complexity of Reeb Graphs

“With what fantasy he conferred multiple curvature on space!”

(Gaston Bachelard 1994, p. 157)

Recalling that the Euler characteristicχ (s) is an invariant of a surface s and is given
by the simple formula χ (s) = nodes-vertices + polygons, it might be a good guess
that a combination of areas (polygons), lines (vertices) and points (nodes) should
be useful to provide us with an index of spatial complexity of 3d surfaces; it has
already been used to analyse the complexity of geographical settings (Papadimitriou
2013). Further to Euler’s formula, Lhuilier’s formula takes into account cavities and
tunnels and relates to Euler’s formula, although, as was proved later, that formula
needed modifications, so the extent to which the determinants of χ (s) might serve
as estimators of the spatial complexity of 3d objects is open for future research.
Applying a simple “additive” approach toReeb graphs gives a glimpse of how adding
elementary constituents (sources, sinks and saddles in this case) of a 3d spatial object
might provide an metric of its spatial complexity (Fig. 7.13). The Euler characteristic
is calculated as

χ = Source points+ Sink points−Saddle points (7.6)

so an “additive” complexity metric CR applicable to Reeb graphs might be the
following:

CR = Source points+ Sink points+Saddle points (7.7)
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Fig. 7.13 Identifying source, sink and saddle points on a surface of genus 2. The Euler number of
this object is: χ = Source points+ Sink points− Saddle points= 1+ 1− 4= − 2. A complexity
metric is then: CR = Source points + Sink points + Saddle points = 1 + 1 + 4 = 6

Indicatively, the values for eight shapes of different genus each (Fig. 7.14) are
calculated (Table 7.1). Notice how shapes d and g have the same genus (3) and the

Fig. 7.14 Different 3d objects, with varying numbers of source points, sink points and saddle points
and with different genus each

Table 7.1 Example calculations of CR for the shapes of Fig. 7.14

Shape code Euler’s χ Source points Sink points Saddle points Complexity CR

a 2 1 1 0 2

b 0 1 1 2 4

c − 2 1 1 4 6

d − 4 1 1 6 8

e − 6 1 1 8 10

f − 8 1 1 10 12

g − 4 4 1 9 14
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same Euler number (−4) but shape g is obviously more complex than shape d and
this difference is reflected their respective complexity values: CR(d) = 8 against
CR(g) = 14.
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Chapter 8
Spatial Complexity
in 4-and-Higher-Dimensional Spaces

“There is an analysis situs of more than three dimensions.
I do not say that it is an easy science"”
(Henri Poincaré, 1854–1912, “Dernieres Pensées”, 1913, p. 43)

Abstract One of the greatest challenges in the exploration of spatial complexity
consists in measuring it on 4d surfaces and objects. Some interesting results are
already available for hypercubes and, in this respect, Hamiltonian cycles and cubical
complexes appear promising for solving some problems of 4d spatial complexity
on hypercubes. Topologically surprising objects, such as the exotic spheres, abound
in 4d. Yet, in some cases, higher-dimensional topologies can be easier to work out
calculations on manifolds, thus leaving 3d and 4d objects as likely more difficult to
examine topologically, and, by consequence, with respect to the spatial complexity of
surfaces and objects that are in them. We need to explore what algorithmic measures
of spatial complexity might apply to objects in 4d spaces and, more ambitiously
perhaps, decide whether the 3d-and-4d-spaces are the ones capable of sustaining the
highest spatial complexity among all n-dimensional spaces.

Keywords Spatial complexity · Fourth dimension · Hypercube · Tesseract ·
Exotic spheres · Doxel · 4d Complexity

8.1 Hypercubes, Tesseracts, Doxels, Clifford Tori

“Boredom, neat parallels, oh how neat parallels

are beneath God’s perpendicular”

(André Breton, 1896–1966, “Soluble Fish”, 1924)

Ever since Bernhard Riemann delivered his “Habilitationsschrift” titled “Über
die Hypothesen welche der Geometrie zu Grunde liegen” in 1854, and until today,
the 4d space presents innumerable surprises. As will be explained later, the word
“innumerable” can also be taken literally. It thus goes without saying that spatial
complexity measurements and computations in 4d can be overwhelmingly more
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complex than those in the 3d space. To complicate things even further, research in
differential topology in the later half of the 20th century has revealed that 3d and
4d spaces are far more difficult to understand than other spaces (Hinton 1980; Kaku
1995; Rucker 1996). The difficulty to prove the famous “Poincaréconjecture” bears
testimony to this.

The notion of the “hypecube” (Coxeter 1974; Bowen 1982) is indispensable to
any research in four and higher dimensions. The hypercube is a generalization of the
3-cube to n-dimensions and is a special case of the hyper-rectangle. It is composed
by (n(n − 1)(n − 2)2n−4)/3 cubes, n(n − 1)2n−3 squares, n2n−1 edges and 2n nodes.
In four dimensions, the hypercube is also called “tesseract”, a geometric object
consisting in 8 cubes, 24 squares, 32 edges, 16 vertices. One of the most widely
known representations of the shape of a hypercube is SalvadorDali’s famous painting
“Corpus Hypercubus” presenting the Crucifixion on a hypercube, while the tesseract
has also been suggested as a potentially useful shape for house building (Capanna
2013). The hypercube can be a metaphor to represent all three kinds of landscape
complexity (spatial, functional, qualitative) with the additional fourth dimension of
time (Papadimitriou 2010). In higher than four dimensions, exactly as the 4-cube is
the tesseract or “octachoron”, the 5-cube is the penteract, the 6-cube is the hexeract,
and with increasing dimensions by one, the hepteract, octeract, enneract, dekeract in
the 10th dimension, followed by hendekeract, dodekeract and so on.Hypercubes have
served as models for possible applications in interconnection networks and parallel
computation. Visualizing a tesseract is probably the simplest visual encounter with
an object in the 4th dimension (Fig. 8.1). It may be conjectured that the evaluation
of spatial complexity on such a surface might follow a similar procedure to that
followed in the case of the ordinary 3d cube.

This is because the concept of “doxel” (dynamic voxel) in 4d space has been
suggested to keep track of changes of voxels or their movements in time; at this point,
a distinction is needed to avoid confusion: following changes in spatial complexity
with time is different than documenting changes in time on the same map or surface

Fig. 8.1 A sketch depicting
Dali’s painting “corpus
hypercubus”
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(Papadimitriou 2009, 2012). The use of doxels is instrumental in several applica-
tions: i.e. in informatics (Pacheco and Real 2011), in 3d printing (Tanaka 2015)
and in geographic and geo-environmental representations of 3d data at different
time instants (Brovelli and Zamboni 2012). Evidently, the requirements in terms of
computational resources for such 4d analyses of spatial objects are exuberantly high
and we still lack efficient algorithms for handling doxels. For some scientific and
technical analyses applicable on restricted spatial sizes, it seems that handling doxel
data is nevertheless feasible. In terms of theory however, we are still short of assess-
ments of computational complexity of problems in 4d. Yet, in the case of vertical
decompositions of n hyperplanes of arrangements of linear surfaces in 4d, a bound
was found (Koltun 2001) for n 3-simplices in 4d to be of the order of O(n4logn).
L-trominoes in 4d euclidean spaces were studied by Befumo and Lenchner (2018)
and an interesting problem was posed, that is to identify “a polyomino of dimension
k that cannot be used to tile any rectangular board in dimension k or higher” (Befumo
and Lenchner 2019, p. 40).

No doubt, it is very difficult for the human mind to figure out how a 4d object
may look like, so a framework is needed to help us to keep track of such an object’s
spatial elements. One method might be found in “Hamiltonian paths”, that can be
applied to hypercubes (Fig. 8.2). They pass through each vertex once and thus the
possibility to assess spatial complexity on the surface of a hypercube derived on the
basis of Hamiltonian paths might be considered as a possibility. Alternatively, if the
path leads back to the same vertex which it started from, then the assessment can be
made on the basis of a “Hamiltonian cycle”.

Deriving estimates of spatial complexity by means of Hamiltonian cycles might
follow an “entropy encoding” procedure, as was the case in 3d. It should be noticed
however, that, in its general form, the problem of finding a Hamiltonian cycle is
NP-complete (Karp 1972; Garey and Johnson 1983) and, indeed, from the perspec-
tive of computational complexity, there are several interesting results concerning

Fig. 8.2 A Hamiltonian path of a graph passes only once through each vertex of the graph and can
be defined on hypercubes also. As such, it might serve as a guide for spatial complexity calculations
on 4d hypercubes, i.e. by adopting “entropy encoding” procedures, as in the caseHamiltonian cycles
on (3d) cubes
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the computational complexity of problems emerging from hypercubes, which have
turned out to be NP-complete (Afrati et al. 1985) or NP-hard (Dvořák and Koubek
2010; Baldi 2012).

As in 3d objects, a “cubical complex” is a set of elementary cubes and can be
of any dimension strictly higher than 2. The Euler-Poincaré characteristic of a 4d
cubical complex C is given by an alternating sum of its constituent cubes, where Cn

is the number of cubes of dimension n in C:

χ(C) = C0 − C1 + C2 − C3 + C4 (8.1)

The boundary of a n-dimensional cube is the collection of its (n − 1)-dimensional
faces, so the number of simplices of a n-dimensional triangulation of a manifold
(tetrahedrization etc) might serve as a criterion of a manifold’s complexity. In fact,
any manifold of dimension other than 4 has a handlebody decomposition. This basic
idea in studying the complexity of 4d manifolds is, in a sense, not very different from
Matveev’s complexity for 3d manifolds (Constantino 2011). Yet, in order to classify
4-dimensional shapes by means of their topological properties, the cohomology and
homology groups of cubical complexes need to be defined, since they are topolog-
ical invariants. Towards this end, the concepts of “effective homology” (Sergeraert
1994) and “Steenrod squares” may be useful for distinguishing spaces of isomorphic
homology rings; this field is open for further research.

Despite the apparent difficulties in calculating complexity in 4d, and aside of
graphs and hypercubes, it is easier to unknot knots in 4d space than in 3d, but 2d
surfaces can form more complex non self-intersecting knots in 4d space, since 2d-
surfaces can form knots of higher complexity than strings in 3d space. The “Clifford
torus” (a 4d torus) can be flattened to a plane, and hence, it can be conjectured that
measures of spatial complexity that apply to surfaces in 2d might also apply to a 4d
Clifford torus as well, but this is yet another issue to be explored.

8.2 Manifolds, Gropes and Exotic Spheres

A monster that is more complex than the Typhoon

“�ηρίoν Tυϕîνoς πoλυπλoκώτερoν”

(Plato, 428-348 b.C., “Phaidros”, 230A)

From a different perspective, a topological indicator of complexity of objects in
4d spaces has been suggested to be the “height” or the “class” of a grope. Gropes are
2-complexes (Cannon 1978) that can be built from surfaces spreading out branches
in space like octopus tentacles, eventually extending to 4-manifolds and it has been
suggested (Freedman and Quinn 1990) that the complexity of a grope is measured
by the number of its layers.

Aside of gropes, manifolds of any dimension can be joined together to create
composite manifolds, the “connected sums” (Fig. 8.3). An obvious question to ask
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Fig. 8.3 The topological operation of creating a “connected sum” of two manifolds. Manifolds M1
and M2 are connected together so as to create the connected sum of manifolds M1#M2

is how much more complex such a composite may be compared to a non-connected
manifold. A partially satisfactory assessment of complexity in this respect can be
sought in the concept of “prime manifolds”. These are n-manifolds that can not be
expressed as non-trivial connected sums of two manifolds (non-trivial means they
are not n-spheres). Hence, there are no homeomorphisms by which prime manifolds
can be simplified topologically and they are regarded as equivalent to prime numbers.
Whether the spatial complexity of the connected sum might be calculated from the
addition of the spatial complexities of each manifold is an open problem.

Manifolds are said to “admit” a “differential structure” if the differential calculus
can be applied to them. In 1923, Kerékjártó proved that all 2d or 3d Riemannian
manifolds, as well as Euclidean spaces higher than 4d admit a single differential
structure each. Later, it was proven (Milnor 1956, 1959a, b, 2000) that some higher-
dimensional manifolds may accept several differential structures: a 7d sphere for
instance, accepts 28 differential structures. Even more amazingly, the number of
differential structures varies very strangely with increasing dimension: i.e. while
1,2,3,5-dimensional spaces have only one differential structure each, the 8d has 2,
the 11d has 992, the 12d has only one, the 15d has 16256 etc., while 10d manifolds
do not accept any differential structure at all (Kervaire and Milnor 1963). Hence,
applying calculus to any spatial dimension is a tricky subject since it is still unclear
whether all Riemannian manifolds can accept differential structures or not, and if
they can, how many. Calculating spatial complexity on such differential structures
of higher-dimensional spheres is yet another open problem.

And even trickier problems emerge if the representation space changes from real
to complex. The form omega (ω) of symplectic geometry measures areas of surfaces
of even-dimensional spaces. It can be applied to R4 and the advantage is that it is 2d,
as complex numbers are used and therefore symplectic forms omega of C2 can be
used to measure areas of R4. The extent to which algorithmic complexity measures
can be applied to assess spatial complexity in C2 (and, consequently in R4) is also
open for future research.
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The analogue of the Riemannian metric in complex geometry is the Hermitian
metric. On a complex manifold with the Hermitian metric, if the coordinates are
normal holomorphic, then the metric is a Kähler metric. Following the “Whitney
Embedding Theorem”, every smooth real manifold can be embedded into Rn for
some n. Extending this theorem to the complex space, and according to the “Kodaira
Embedding Theorem”, a compact complex manifold is embeddable in the complex
projective space if and only if it admits a closed and integral Kähler form. With the
works of Castelnuovo, Enriques and Severi in the years 1891–1949 and by Kodaira
in the 1950s, we now possess a classification of complex 2d manifolds by virtue of
the Enriques-Kodaira theorem, while higher dimensional complex manifolds (3d-
complex) were classified by Hironaka, Yau and Mori in the 1970s and 1980s. Back
in 1950, Pontryagin discovered the terms under which a n-dimensional surface is
a boundary of a n+1 dimensional surface. Shortly afterwards (in 1954), his theory
was expanded by Thom with his “Cobordism Theory” and, based on Thom’s theory,
Milnor discovered “exotic spheres” in 7d-spaces, which are not boundaries of balls.
Also, it was the expansion of cobordism theory to k-cobordism (“Ho homotopy”) that
led Novikov (in 1962) to a classification of differential manifolds with dimension 5
and higher. The classification of simply-connected and compact 5-manifolds (Barden
1965) is a lot simpler than that of 3d and 4d manifolds. But non-simply connected
5-manifolds are hard to classify.

Poincaré’s famous problem was to prove whether the hypersphere is the only
closed and orientable 3d surface whose fundamental group is trivial (the fundamental
group of the sphere is trivial because any closed path on the sphere can be contracted
to a point). If the sphere has one handle, it is non-trivial, because there is (at least) one
path which can not be contracted to a point. So the fundamental group of a surface
differentiates the surfaces according to their homotopy.

Three spherical coordinates are required x1, x2, x3 to identify a point on the sphere
S2 with radius r, inclination θ, azimuth ϕ, where θ is in between 0 and π and ϕ is in
between 0 and 2π:

x1 = r sin θ cosϕ

x2 = r sin θ sin ϕ

x3 = r cos θ (8.2)

But a location of a point of the four dimensional hypersphere has hyperspherical
coordinates on S3 that are calculated from four coordinates:

x1 = r cosψ

x2 = r sinψ cos θ

x3 = r cosψ sin θ cosϕ

x4 = r sinψ sin θ sin ϕ (8.3)
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In fact, there are closed and bounded regions of 4d space that can not be parts of
a hypersphere. In terms of spatial complexity, we take notice of two issues here: one
quantitative and one qualitative. The first is that, as the dimension increases only by
one, not only one additional coordinate is necessary to identify the position of a point
from its corresponding angles, but also that (although the trigonometric equations
are analogous to those that apply to S2) the number of arithmetic operations increases
significantly, from 10 to 18. The second, andmore important, is that it is very difficult
for humans to visualize the glome (the four-dimensional sphere).

Poincaré conjectured in 1904 that the topological characterization of the hyper-
sphere is equivalent to that of a sphere. As happened with other manifolds, so in
this conjecture also, with increasing spatial dimension, it is often easier to prove
equivalent theorems, but the problem persists in the third dimension. For instance, it
was shown (Smale 1959, 1962) that it is possible to turn a left glove inside out and
convert it into a right-hand glove in a 4d space, but this is impossible in the 3d space.
The existence of “exotic” smooth structures in 4d space (R4) however, presents a
peculiar anomaly of this space. These “exotic spheres” are smooth manifolds that
are homeomorphic but not diffeomorphic to R4 (Gompf 1983). Furthermore, there
is an uncountable quantity of such smooth 4-manifolds, whereas each one of them
is homeomorphic to R4 but endowed with its own smooth structure which makes
it non-diffeomorphic to R4. Milnor discovered “exotic spheres” in 7d-spaces, that
are not boundaries of balls. In a remarkable discovery, it was proven (Gompf 1985)
that the number of “exotic” structures in 4d space is not only infinite, but, in fact, it
has the cardinality of the continuum. Might the implication of this result, along with
other analogous (Donaldson 1983), indicate that the 3d space is our “upper bound” to
understanding spaces of any dimension? Fortunately however, experimental evidence
from virtual reality experiments (Aflalo and Graziano 2008; Ambinder et al. 2009),
suggests that (if appropriately trained to do so) humans are able (up to a certin extent)
to understand 4d environments.

Thus, emerge (at least) two hitherto unanswered (or unanswerable?) basic ques-
tions: (a) What measures of spatial complexity should apply to spaces with dimen-
sions higher than 3d? (b) Is there sufficient evidence on the basis of which it can
be conjectured that 3d-and-4d-spaces should be singled out as the ones capable of
sustaining the highest spatial complexity among all n-dimensional spaces?
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Part III
Numbers Behind Spatial Complexity



Chapter 9
Squares, Cats and Mazes: The Art
and Magic of Spatial Complexity

Intelligence in labyrinths
(Michel De Certeau 1984, p. 90)

Abstract Spatial complexity can be playful, surprising and artful: some of its
pleasant facets are highlighted in this chapter, as they emerge from the examination
of spatial partitions and by means of games playable on boards of squares: chess, go,
tic-tac-toe, checkers (among many other spatial games) revealing how charming the
spatial complexity of square arrangements can be. Indeed, square maps are scientif-
ically interesting as well as a source of inspiration throughout the ages, from Latin
squares and famous modern painters to the mysterious Arnold Cat Maps and video
games. Square maps can be both symbols of minimalism in art as well as genitors
of highly complex mazes and labyrinths. With innumerable algorithmic challenges
pertaining to them, they are a source of entertainment and endowed with a geometric
shape perfectly suited for displaying and exploring the puzzling, mystic and aesthetic
aspects of spatial complexity.

Keywords Spatial complexity · Spatial Computing · Arnold Cat Map · Spatial
games · Mazes · Complexity and Art · Game complexity

9.1 Square Partitions

“Our physical world not only is described by mathematics, but it is mathematics: a
mathematical structure, to be precise”

(Max Tegmark 2014, p. 6)

Creating square grids by intersecting horizontals and verticals at equal lengths is
not the only way to partition a given spatial region. Although they are the commonest
and by far the easiest to handle numerically, hexagons, triangles, and other shapes
can as well be used to tile the plane, or even combinations of shapes (Fig. 9.1). In
fact, any rectangular spacemay also be partitioned by a fixed ratio, such as the golden
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Fig. 9.1 Various spatial partitions, based on simple geometric shapes: triangles, hexagons and
combinations of geometric shapes (hexagons, squares and triangles, dodecagons and triangles,
octagons and squares etc.)

section, in which any larger rectangle can be made proportional to its adjacent and
smaller rectangle, by a factor equal to the golden section (Fig. 9.2). Thus, the ratio
of the length of the larger rectangle over that of the smaller one is given by

1

2
(1 + √

5) = 1 + 1

1 + 1
1+ 1

1+···

(9.1)

and the ratio of any pair of consecutive numbers is given by the Fibonacci sequence
(these numbers representing length and width of the rectangle) yielding the golden
section, i.e.

Fig. 9.2 Partitioning
rectangular spaces can be
made by a fixed ratio. In this
case, the ratio is the “golden
section”
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Fig. 9.3 The squares on this
2-dimensional space
correspond to points defined
by complex numbers with
integer real parts, thus
partitioning a 2d surface
according to the structuring
induced by the algebraic
integers Rd

89

55
= 1 + 1

1 + 1
1+ 1

1+···

(9.2)

Space partitioning may as well be the result of the application of algebraic struc-
tures, such as the ring of algebraic integers, Rd. This ring contains all the numbers
of the form a + bs, where a, b are ordinary integers. When d = −1, the ring R−1

is the “ring of Gaussian integers”, that is the ring of complex numbers defined on
the complex plain, by a and b integers (Fig. 9.3). When d = −3, the ring R−3 can
represent vertices of equilateral triangles. Notice that four numbers (1, −1, i, −i)
suffice to define a square in the ring R−1 and six numbers in R−3 (the numbers 1,
−2, (1 + 3i)/2, −(1 + 3i)/2, −(1 − 3i)/2, (1 − 3i)/2).

Besides, there also exist iterative schemes for partitioning, making use of pyra-
midal numbers or fractal patterns. The former are based on the rule that the total
number of squares contained in a grid of m × m unit square is the square “pyramidal
number”:

m(m + 1)(2m + 1)

6
(9.3)

In the case of 3 × 3 maps for instance (m = 3), the pyramidal number is 14
(Fig. 9.4). These numbers correspond to alternative coverings of the same map,
by varying squares, either non-overlapping (1 × 1 squares) or overlapping if more
than 1 × 1 cells are used, up to m × m. The overlapping ones are of no apparent
usefulness for spatial analyses, so the use of pyramidal numbers is unsuitable for
spatial complexity assessments. It is however interesting from the point of view of
computational complexity, since identifying squares which correspond to pyramidal
numbers is a computationally-hard problem, because it eventually leads to unsolvable
diophantine equations (Ma 1985; Anglin 1990).
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Fig. 9.4 Squares corresponding to the pyramidal number 14 for 3 × 3 binary maps

Another way to divide a square space is to use fractal methods, such as the Sier-
pinski square (or Cantor gasket) (Fig. 9.5) which, at each step, yields 8 squares of
side length 1/3 and therefore has a fractal dimension equal to log8/log3 = 1.89…

Aside of being conceptually closer to the human perception of space however,
square partitions have the additional benefit that they can easily emerge by appro-
priately converting triangular, hexagonal and other symmetric partitions of space to
square grids, although this does not preclude deriving parallelogram lattices instead
of squares (Fig. 9.6).

Fig. 9.5 The Sierpinski square is a fractal object dividing the square at every step in more squares,
eventually ending up with a “dust” of isolated points around the central square
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Fig. 9.6 Hexagonal, triangular (and other) symmetric partitions of the plane can easily be
transformed to correspond to parallelogram or square grids

Given these, it has become perhapsmore clear why our digital technologies rely so
much on square arrays. It is thus understandable whymaps of square areas are ideally
suited for the analysis of spatial complexity (Papadimitriou 2002, 2009, 2012, 2013).
There has never been a period of human history in which squares ruled everyday life
more than they do now: pixels are squares, and so are digital screens of mobile
devices, televisions, computers, and many other essential electronic devises; and all
these are outlets displaying spatial complexity. But we are not the first ones to be
fascinated by the power of square arrays.

9.2 Squares, Minimalism and Art

Between two words, you have to choose the lesser

“Entre deux mots, il faut choisir le moindre”

(Paul Valéry, 1871–1945, “Tel quel”, 1929)

The power of squares in understanding spatial extents has been widely recognized
across cultures and civilizations (the square as a sacred form is encountered in the
four arms of Vishnu or Shiva, the Tibetan mandalas, the Kaaba cube of Mecca, etc.)
and square arrangements have long been sources of inspiration and puzzlement for
artists and thinkers. Perhaps nowhere is this more explicit than in the case of “magic
squares”, of which an example is the 4× 4magic square depicted in Albrecht Durer’s
famous “Melancholia” gravure (1514). The sum of rows of this magic square is 34
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that is as much as the sum of columns, as the sum of diagonals and the sum of its
four corner cells too:

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

In 1693, de la Loubere gave a method for calculating magic squares for any
odd size. Likewise, the “diabolical squares” are those of which both negative and
positive diagonals produce the same sums. The oldest diabolic magic square was
found inscribed in India (12th b.C.):

15 10 3 6

4 5 16 9

14 11 2 7

1 8 13 12

But there ismore to art than puzzles and “magic” tricks. Spatial complexitymeans,
signifies, creates meanings, or diffuses meanings. For this reason, it poses as an ideal
ground for matching mathematics with art. Besides, as Hilbert said (in 1922) “In the
beginning was the sign” in his “The new grounding of Mathematics: First Report”
(as reported by Ewald 2001).

In the nineteenth century, the mathematician-writer Abbott (1838–1926) begun
his celebrated story “Flatland” (written in 1884) by exclaiming “How franticly I
square my talk!”. In this famous fictitious two-dimensional story, Abbott (1991)
wrote an (unreal) correspondence between human beings and (essentially)…spatial
complexity. In the class-sensitive period that this novelwaswritten, the various inhab-
itants of “Flatland”were probably imagined by the author to correspond to increasing
spatial complexity (although he did not specify this), according to his own personal
criteria: straight lineswould “correspond” towomen, triangles to soldiers and “lowest
classes of workmen”, equilateral triangles or equal-sided triangles to middle class
and squares to “professional men and gentlemen”. Hexagons are reserved for the
nobility and circles for priests. Observing the attribution of shapes to social classes,
it easily follows that the higher the social class, the higher the spatial complexity.

Besides, square divisions of space constitute a recurrent and classic theme in
visual arts, encounteredwithin various artistic currents. One of the founders of theDe
Stijl movement for instance, Theo Van Doesburg (18831931), presented four black
and progressively enlarging squares in his “Arithmetic Composition” (1929–1930)
(Bridgeman Art Library, Switzerland). In 1906, Henri Matisse created his famous
painting “Luxury” (Gallery Orsai, Paris), depicting a calm and pleasant space, giving
the impression of being composed from small pixels.

The devotion to squares however, is characteristic ofminimalism in art.Within the
context of the Russian constructivism, Alexander Rodchenko (1891–1956) painted
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some completely monochrome square paintings, Piet Mondrian (1872–1944), with
his 1935 picture titled “Composition C: Yellow, Red and Blue” presented three
squares (a red, a blue and a yellow) in a black grid of white colours. In another
painting, he presented a plain red square titled “Pure red color” (1921), Supposedly,
he was affected by the dutch theosophic school of “plastic mathematics”, which
contrasted horizontal and vertical lines to curves.

But probably the most exquisite representative of the links between square maps
and art was Kazimir Malevich (1878–1935). His famous “Black Square in a White
Font” (1915) is, as its title suggests, nothing but a big black squarewith awhite border
around it, apparently inviting the viewer to reflect on the mystery of binary square
arrangements. The painting “Quadrilateral” (1914) or “Black Square” is explained
by the painter himself in his “Suprematism” manifesto. His “Suprematist Elements:
Squares” (1923) consisted of two black squares with a beige backdrop. Further,
in his “Suprematist Composition” titled “Red Square and Black Square”, Male-
vich presented a black square and a tilted red square. In interpreting this painting,
Altieri (2001) contended that the red square’s tilt posed a geometric challenge to the
system of coordinates established by the black square. In the context of Malevich’s
“Suprematism”, squares signify feelings and white domains the void.

Similarly, Joseph Albers (1888–1976) presented two red squares in beige ground
in his “Homage to the Square” (1961). Perhaps even more characteristically, Piet
Mondrian’s works display sets of lines intersecting orthogonally forming square
arrangements. In these remarkable cases, spatial complexity was intentionally kept
to a minimum in two ways: not only there was one color only (or two), but the spatial
shape was also the simplest convex shape to describe algorithmically: the square.

Square grids consisting of squares painted with different colors are representative
of “concrete art”, i.e. the “Polychromeof pure colors” (1956) byKarlGerstner (1930–
2017) who used painted cubes of plexiglas to print variousmulticolored squaremaps.
Conceptually very similar was the “arte programmata”, in which binary orthogonal
geometric features and patterns are used with non-repetitive patterning, i.e. with
the works of Gianfranco Chiavatti (1936–2011). But, the charm of squares is not
confined to art only.

9.3 Mazes, Labyrinths and Spatial Games

(Ariadne) gave Theseus a string of which the one end he attached to the labyrinth’s gate and
when he found the Minotaur at the labyrinth’s end he killed him by smiting him with his
fists, then made his way out of the labyrinth by following the string again (back to the gate)

“λίνoν ε„σιóντι �ησε‹ δίδωσι: τoàτo ™ξάψας �ησε�̀ς τÁς θ�́ρας

™ϕελκóμενoς ε„σÇει. καταλαβὼν δ� Mινώταυρoν

™ν ™σχάτ� μšρει τoà λαβυρίνθoυ παίων πυγμα‹ς ¢πšκτεινεν,

™ϕελκóμενoς δ� τò λίνoν πάλιν ™ξÇει”

(Apollodorus, “Epitome”, 1.9)
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Mazes probably qualify for the title of the “temples of spatial complexity”.
Deeply impressing humans throughout the ages, they constitute the most charac-
teristic example of how spatial complexity can be useful for the creation of games.
From king Minos’ famous “labyrinth” in ancient Greece, to the floor of the Chartres
cathedral, mazes have been created in gardens, palaces and public areas, all over
the world. Some are famous, such as the maze of the gardens of Schönbrunn Palace
in Austria, some are particularly large, as the Gardens Shopping Mall in Dubai
(currently the world’s largest indoor maze) and the Samsø Labyrinten in Denmark
(the world’s largest maze, with an area of 60,000 m2).

Nowadays, several algorithmshave been devised forgenerating mazes (i.e. Prim’s,
Kruskal’s, Sidewinder, Aldous-Broder, Binary Tree, Eller’s Recursive Backtracker,
Wilson’s, Growing tree, Hunt andKill, Growing Forest). Equivalently, there are algo-
rithms for solving mazes (Pledge algorithm, Recursive backtracker, Chain algorithm,
Dead and Filler, Tremaux’s algorithm, Wall follower, Cul-de-sac filler, Blind alley
filler, Blind Eye Sealer, Shortest Path Finder etc.). The reader may find a rich litera-
ture documenting these algorithms, but presenting them here analytically is beyond
the scope of this book.

From a computational complexity perspective however, it is interesting to notice
that two maze problems, the “rolling block” and “Alice” mazes have been shown to
be PSPACE-complete (Holzer and Jakobi 2012). But many other spatial games (and
video-games) with maze-like forms (such as the games Lemmings, Loder Runner,
Mindbender, Skweek, Starcraft, Tron and the famous Pac-Man) are all NP-hard
(Viglietta 2013).

Spatial games fascinatedpeople since the early antiquity. Thegame“Go”, invented
in China two millennia b.C., based on a 19 × 19 square board, can host as many as
10768 possible games and “future conflicts may resemble the oriental game of Go
more than thewestern game of chess" (Arquilla andRonfeldt 2001, p. 2). Recreations
with spatial complexity involve a wide range of spatial games that are notoriously
difficult to play, precisely due to their very large number of combinations, i.e. there are
6,670,903,752,021,072,936,960 possible configurations of sudoku (Stewart 2008),
while “Eternity-II puzzle” (a game invented in 2007 and played on a 16 × 16 grid)
has 1.115 × 10557 possible configurations (Pickover 2009).

Besides these, there are old games challenging the player to discover possible
square allocations of numbers, complying to certain rules. Latin squares is one such,
Sudoku is another, in which the player is expected to assign positive integers to cells
of a big 9 × 9 square composed of 3 × 3 squares, so that in no column or row of the
big square appears anyone of the numbers 1–9 twice. A 9 × 9 map needs few steps
only to check whether a solution is valid (exactly 81 steps), but the number of steps
required to search for a solution if it is not known beforehand is impossibly high: 6.6
× 1027 (Aron 2011). Most spatial games essentially draw their complexity from the
breadth of possible spatial combinations of cells on a board. Chess and checkers are
only two such games (and most well known), among many others: Laska, Lanrik,
Kriegspiel, Zetan, Chancellor’s chess, Satrange, Japanese chess, Marseille chess,
Alice, Kamikaze, MingMang, Hazami Sogi, etc. The size of game boards for spatial
games varies depending on the game, but it is usually a square (i.e. 8 × 8 in chess,
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10 × 10 for Snakes and Ladders, 15 × 15 for Scrabble, 18 × 18 for Go), although
it can also extend in higher than two dimensions.

The computational complexity classes also vary: chess is EXPTIME-complete
(Fraenkel and Lichtenstein 1981), as are checkers (Robson 1984) and “Go” (Robson
1983). These games can have a time duration that is exponential with respect to the
size of their playing board. The game “Reversi” (or “Othello”) playable on a square
board is PSPACE-complete (Iwata and Kasai 1994). In fact, even the simplest of all
spatial games, the “tic-tac-toe” with its 9 cells, is PSPACE-complete (Reisch 1980),
making it an excellent example of howhigh spatial complexitymay emerge fromvery
simple spatial arrangements. Similarly, the game “Tetris” has been shown (Demaine
et al. 2002) to be “intractable” for the human mind (“NP-complete”) and sudoku
is NP-hard (verifiable in polynomial number of steps, but solvable in exponentially
high number of steps).

Several famous spatial problems have been examined in chess. For instance,
Euler’s “Knight’s Tour Problem” (1759) asks for the tour of a knight over the board
passing once through all the chessboard’s squares. It has a solution for the 8 × 8
chessboard but not for the 4 × 4 chessboard. “Schwenk’s theorem” characterizes the
rectangular boards that can support a knight’s tours and defines that (Stewart 2010)
a m × k parallelogram chessboard supports a knight’s tour unless either (a) m and k
are both odd, (b) m equals 1, 2, 3, 4, or (c) m = 3 and k = 4 or k = 6 or k = 8.

Chess on Klein surfaces is spatially more complex than common planar 2d chess
(Fig. 9.7), so calculations of movements of chess pieces on this surface presented by
Watkins (2004) are interesting to see howmore complex formulas emerge depending
on whether the piece “king” moves on a Klein surface.

The number of kings required to cover a Klein m ×m chessboard, depends on two
calculations Watkins (2004):

Fig. 9.7 A chessboard on a
Klein surface
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⌈m

6

⌉⌈
2m

3

⌉
(9.4)

But if the chessboard surface is asymmetric (non-square, that is m × k), then the
complexity of the previous calculations increases to (Watkins 2004):

{⌈
m
6

⌉⌈
2k
3

⌉ − ⌈
k−1
3

⌉
m = 1, 2, 3 mod 6⌈

m
6

⌉⌈
2k
3

⌉
m = 4, 5, 6 mod 6

}
(9.5)

Again, spatial asymmetry induces increases in spatial complexity. By far the
most important problem in chess mathematics however, is the “Covering Problem”,
consisting in the determination of the number of pieces of a particular type of move-
ment (i.e. kings, queens, knights, rooks etc.) required to cover a square chessboard.
Nine kings are necessary to cover the 8 × 8 chessboard and the same can be done
with 8 bishops or 8 rooks. For queens (whose movement is the most far-reaching
over the chessboard), the “Spencer-Welch theorem” defines the number of queens
required to “cover” the chessboard. Some mathematical chess problems have also
been been studied over 3d and 4d chessboards (Gibbins 1944; Jelliss and Marlow
1987; DeMaio 2007; Kumar 2008).

Another chess-like spatial game is John Conway’s “Game of Life” that can be
played on square boards and provides useful insights into how self-organisation can
emerge in space. One of its variants, the “Garden of Eden”, of size 5k × 5k, produces
a large number of configurations (Berelkamp et al. 2004):

(225 − 1)k2 (9.6)

and, given adequate time for self-replication, spatial patterns eventually emerge.
The “Game of Life” begins with 3 × 3 sub-squares, to which simple rules apply,
depending on whether the cell is occupied by a digital entity or not. The rules define
how many entities are required in the 3 × 3 sub-square in order for that entity to
survive or reproduce at the next time step and in this way, artificial ecosystems can be
created in silica, which led to the exciting research field of “Artificial Life” that aims
to simulate life-like behaviors and processes by using computer-made (artificial)
animals and plants.

9.4 The Arnold Cat Map

God is sufficiently wise and powerful to mix the many into one and to dissolve again the one
into many. But there is no man, nor will ever be, who will be able to do this

“Óτι θεòς μ�ν τὰ πoλλὰ ε„ς �ν συγκερανν�́ναι καὶ πάλιν

™ξ �νòς ε„ς πoλλὰ διαλ�́ειν ƒκανîς ™πιστάμενoς ¤μα καὶ δυνατóς,

¢νθρώπων δ� oÙδεὶς oÙδšτερα τo�́των ƒκανòς oÜτε �στι νàν oÜτε ε„ς αâθίς πoτε �σται”

(Plato, 428–348 b.C., “Timaeus”, 68d)



9.4 The Arnold Cat Map 137

Or, may be, not? Entropy implies irreversibility: whatever is will never be the
same again. This is what Physics says. Physics exploits Mathematics but has no
much room for magic. But there is plenty of room in Mathematics for unexpected
truths and bewildering results.

Occasionally, mathematics may give the impression of a touch of “magic”: the
“Arnold Cat Map” (ACM) is one such a case and it is interesting to examine it here
in the context of spatial complexity, because it shows unexpected properties of 2d
maps (although it can be expected to extend to 3d volumes also). The ACM is a
discrete map transformation of an image converting it into another, and iteratively
into another, so that after successive iterations, the final image that eventually appears
is completely identical to the original. It was invented (or discovered?) by Vladimir
Arnold and as he used a cat’s face to show the power of the mapping, it was since
called Arnold’s Cat Map (Arnold and Avez 1968).

This simple yet almost magical transformation rearranges the position of each
map cell and repositions it elsewhere on the image, according to a predefined (and
unchanging) rule. After a number of iterations, the cell returns to the same position
as it initially was and it therefore contributes (along with all other cells, which have
been transformed according to the same rule) to a reproduction of the original image
again after all the iterations have been performed (Fig. 9.8).

For their amazing behaviours, ACMs have applications in cryptography and
steganography (data encoding in images). They have positive Kolmogorov-Sinai

Fig. 9.8 The Arnold cat map transformations of the image of Liuliuta. Numbers beneath each
image show the iteration number of the Arnold Cat Map transformation. Soon after the second
iteration, the image has lost all its resemblance to the original cat’s image and it looks chaotic at
the 40th. Oddly, at the 44th iteration, ghost-like features of the original image reappear but do not
last. Eventually, after 219 iterations, the 220th suddenly produces exactly the original again: “Cats
have nine lives”
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entropy (Lichtenberg and Lieberman 1992) and lie at the heart of classical dynamical
chaos (Chirikov 1979; Kornfeld et al. 1982).

The general formula transforming the position of a cell located at (x, y) to another
position on the map is:

[
xk+1

yk+1

]
=

[
1 p
q pq + 1

][
xk

yk

]
mod

(√
n
)

(9.7)

where n is the size of the square map (thus the root is a positive integer), k is the
number of iteration (a positive integer), p and q are the parameters of the ACM (some
positive integers).

Since the determinant of the transformation matrix equals to 1, the map is area-
preserving and the final image is identical to the initial.

As an example, consider the case of an 124 × 124 map, with parameters p = q =
1. The ACM thus is:

[
xk+1

yk+1

]
=

[
xk + yk

xk + 2yk

]
mod (124) (9.8)

The first iteration of a cell described by coordinates (x, y) = (8, 6) yields (x, y) =
(14, 20). The second, (x, y) = (34, 54). In this way, after visiting the positions (88,
18) (106, 0), (106, 106), (88, 70), (34, 104), (14, 118), (8, 2), (10, 12), (22, 34), (56,
90), (22, 112), (10, 122), and eventually, the 15th iteration yields a transition from
the position (132, 254) to the original place of the cell: (8, 6).

This shows how the Arnold Cat Map circulates a cell around the image and then
returns it back to its original position. Apparently, as this process is valid for one
cell, it simultaneously applies to all the image’s cells. Hence, after some iterations,
all cells have returned back to their original positions.

Noticeably, the simplest ACM is when p = q = 1 and this eventually entails the
golden section, because the Lyapunov characteristic exponents of the ACM

[
xk+1

yk+1

]
=

[
1 1
1 2

][
xk

yk

]
(9.9)

are given by the equation

[
xk+1

yk+1

]
=

[
1 − u 1
1 2 − u

][
xk

yk

]
(9.10)

which leads to

u2 − 3u + 1 = 0. (9.11)

Hence
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u = 3 ± √
5

2
(9.12)

which, if plugged into

[
1 − u 1
1 2 − u

][
x
y

]
=

[
0
0

]
(9.13)

yields

y =
(
1 + √

5

2

)
x = ϕx (9.14)

A somewhat similar behavior results from the chaotic “Chebyshev Map”,
described by the equation

x(n + 1) = cos

(
k

cos(x(n))

)
(9.15)

where k(n) is the modulo of

⌊
x(n) + 1

2

⌋

The Arnold Cat Map can be applied to 3d objects also (Chen et al. 2004):

⎡
⎣

xk+1

yk+1

zk+1

⎤
⎦ = A

⎡
⎣

xk

yk

zk

⎤
⎦ mod (n)

where

A =
⎡
⎢⎣

1 + ax azby az ay + ax az + ax ayazby

bz + ax by + ax azbybz 1 + azbz ax + aybz + ax ayazbybz + ax azbz + ax ayby

ax bx by + by bx 1 + ax bx + ayby + ax aybx by

⎤
⎥⎦ (9.16)

with all parameters alpha and beta being positive integers (it can be verified that A
has determinant equal to 1).

Despite its random and chaotic appearance, ACM is an invertible, ergodic and
structurally stable type of Anosov diffeomorphisms, essentially a homeomorphism
of a closed surface preserving the two-dimensional Lebesgue measure and has the
“Poincaré Recurrence Theorem” inbuilt into it. This theorem guarantees ergodicity



140 9 Squares, Cats and Mazes: The Art and Magic of Spatial Complexity

for all dynamical systems (under the condition that the system is Hamiltonian and
preserves its volume in the phase space).

But the completely accurate reproduction of the image after successive iterations
(despite the fact that each and all cells seem randomly transposed) is not the only
enigmatic behavior of ACMs. There is yet another, perhaps even more intriguing
phenomenon, and this has to do with the still poorly understood relationship between
map size and number of iterations. For instance, for p = q = 1, while the 100 × 100
map needs as many as 150 iterations to bring back any cell at its original position,
the slightly larger 101 × 101 map needs only 25 iterations, the 124 × 124 only 15,
but the 150 × 150 needs 300. So simple map transformations acting on 2d square
maps display complex associations with the map size. This inevitably leads us to
hypothesize that some map sizes might be endowed with some peculiar properties,
but we don’t know which ones these map sizes are.
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Chapter 10
Entering the “Spatium Numerorum”:
Creating Spatial Complexity
from Numbers

White queen:- Can you do addition? What’s one and one and
one and one and one and one and one and one and one and
one? Alice:- I don’t know. I lost count. Red Queen:- She can’t do
addition.
(Lewis Carroll, 1832–1898, “Through the Looking Glass”,
1871)

Abstract Spatial complexity can be created from simple square maps. By parti-
tioning space according to a partitions formula, the total number of possible spatial
partitions can be derived and then, applying the Burnside lemma gives the total
number of symmetric maps allowed by combinatorics. The number of possible
map configurations quickly “explodes” and this poses restrictions to spatial analysis.
Beginning with a restricted and manageable number of generic maps and subjecting
them to symmetric transformations of the symmetry group of the square, it is possible
to create big numbers of possible spatial configurations. Thus a space of numbers
(a “Spatium Numerorum”) is created, beginning with partitions of numbers which
are calculated by partitions formulas (i.e. the Hardy-Ramanujan, Rademacher and
Bruinier & Ono).

Keywords Spatial complexity · Spatium Numerorum · Number theory and
Complexity · Burnside Lemma · Map Complexity · Geocomputation · Partitions
function

10.1 Calculating Spatial Partitions

“Though leaves are many, the root is one”

(W.B. Yeats, 1865–1939, “The coming of wisdom with time”)

Evidently, there are nn possible map configurations of n-colored squares over
a square map with size n. Consider for instance a 2 × 2 map. This map has n =
4 square cells and therefore the number of all possible color map configurations
that can be created from it is nn = 44 = 256. How to identify them? A starting
point is to determine the possible classes of these configurations and can be found in
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number theory, bymaking use of partition functions. A partition function is a function
returning for every positive integer n the number of possible forms by which this n
can be “partitioned”, that is howmany possible sums add up to n, or otherwise stated,
how many entropy classes are possible. For instance, the partition function for n =
5 gives the following P(5)=7 possible partitions:

n=5,             P(5)=7: 
  5 
                          4+1 
                         3+2 
                           3+1+1 
                           2+2+1 
                           2+1+1+1 
                           1+1+1+1+1 

Essentially, the partition function gives the number of possible ways that a number
can be “decomposed” (not to be confused with factoring). As a further example,
consider the partitions of n = 4:

n=4,     P(4)=5: 
     4 

                                3+1 
                                2+2 
      2+1+1 
                               1+1+1+1 

Translating these figures to maps of square cells, it is easy to see how a sum of
possible map configurations corresponds to each one of these partitions of a square
map of 4 cells. To identify these configurations, we need to allow as many as n
colors on the map, so the maximum number of colors is n = 4. All the possible map
configurations per partition of 4 for the partitions 4, 3 + 1, 2 + 2 and 1 + 1 + 1 +
1 are given in Figs. 10.1, 10.2, 10.3 and 10.4 and in summary in Table 10.1.

It was the Fibonacci sequence that was first used to determine the number of
partitions P(n) of a number n:

P(n) = 1√
5

⎛
⎝
[
1 + √

5

2

]n+1

−
[
1 − √

5

2

]n+1
⎞
⎠ =

n/2∑
k=0

(
n − k
k

)
(10.1)

This “old” formula encapsulates the golden ratio, since

lim
n→∞

P(n)

P(n − 1)
=
[
1 + √

5

2

]
= 1.61803... (10.2)

Most commonly however, the Hardy and Ramanujan formula is used to calculate
the partitions of any positive integer (Hardy and Ramanujan 1918) which provides
an asymptotic solution of P with respect to n:



10.1 Calculating Spatial Partitions 145

Fig. 10.1 The possible map configurations of a 4-colored 2 × 2 map for the partitions 4 = 4 and
4 = 3 + 1 (4 and 48 partitions respectively)

Fig. 10.2 The possible map configurations of a 4-colored 2× 2 map corresponding to the partition
4 = 2 + 2
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Fig. 10.3 The 144 possible configurations of a 4-colored 2 × 2 map corresponding to the partition
4 = 2 + 1 + 1

P(n) ≈ 1

4n
√
3
eπ

√
2n/3 (10.3)

The same formula was also independently discovered by Uspensky (1920); the
reader may refer to Hardy and Wright (1979) and to Hardy (1999).

Some values of the partition function for some small quadratic maps, per map
size, are given in Table 10.2: the ratio P(n)/N(n) diminishes close to zero, even for
small n.

Later, Rademacher (1937) obtained an exact convergent series solution which
includes the Hardy-Ramanujan formula (Rademacher 1932, 1937, 1943):
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Fig. 10.4 The 24 possible
configurations of a 4-colored
2 × 2 map corresponding to
the partition 4 = 1 + 1 + 1
+ 1

Table 10.1 Number of possible map configurations N(n) per partition class for n = 4 square
multi-colored maps. The sum total of all possible configurations is nn = 44 = 256

Partition class Possible configurations N(n)

4 4

3 + 1 48

2 + 2 36

2 + 1 + 1 144

1 + 1 + 1 + 1 24

Table 10.2 Values of the partition function P(n) for small map sizes, numbers of possible map
configurationsN(n) andP(n)/N(n) ratios respectively.Notice howquickly the ratio attains extremely
small values

Map size n Partitions P(n) Possible map configurations N(n) Ratio P(n)/N(n)

4 5 44 = 256 19.5 × 10−3

9 30 99 = 387,420,489 7.743 × 10−8

16 297 1616 = 1844 × 1019 1.61 × 10−17

25 2436 2525 = 8882 × 1034 2.742 × 10−32

36 21637 3636 = 1064 × 1056 2.033 × 10−52

P(n) = 1

π
√
2

∞∑
k=1

Ak(n)
√
k
d

dn

⎡
⎢⎣
sinh

(
π
k

√
2
3

(
n − 1

24

))

n − 1
24

⎤
⎥⎦ (10.4)

with the sequence Ak(n) expressed as a Kloosterman sum (an exponential sum
involving natural numbers):
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Ak(n) =
k∑

h=1

δGCD(h,k) exp

⎡
⎣π i

k−1∑
j=1

j

k

(
hj

k
−
⌊
hj

k

⌋
− 1

2

)
− 2π ihn

k

⎤
⎦ (10.5)

where δmn is the Kronecker delta (Hardy 1999).
The Kloosterman sum is defined on the concept of “relative primes” of integers:

Two integers n, m are “relatively prime” if they share no common positive factors
(divisors) except 1. If h takes values over a set of residues relative to prime to n and

ĥh = 1(mod n), (10.6)

then a Kloosterman sum is:

S(u, v, n) ≡
∑
h

exp

⎡
⎣2π i

(
uh + vĥ

)

n

⎤
⎦. (10.7)

For further information the reader may consider the relevant literature of number
theory (Kloosterman 1926, 1946; Hardy andWright 1979; Katz 1987; Apostol 1976;
Hardy 1999).

A more recent formula for partitions is given by Bruinier and Ono (2011):

P(n) = 2π(24n − 1)−
3
4

∞∑
k=1

Ak(n)

k
I 3
2

[
π

√
24n − 1

6k

]
(10.8)

where I3/2 stands for the modified Bessel function of the first kind and Ak(n) is the
Kloosterman sum.

The modified Bessel function of the first kind In(z) is defined as an integral

In(z) = 1

2iπ

∮
e

z
2 (1+ 1

t )t−1−ndt (10.9)

or, in terms of the gamma function

In(z) =
( z
2

)n ∞∑
k=0

(
z2

4

)k

k!�(n + k + 1)
(10.10)

and appears as a solution of the second-order modified Bessel differential equation:

x2
d2y

dx2
+ x

dy

dx
− (

x2 + n2
)
y = 0 (10.11)
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This formula for P(n) is given as a finite sum of algebraic numbers:

P(n) = Tr(n)

24n − 1
(10.12)

where the trace Tr(n) is defined as

Tr(n) =
∑
Q∈Qn

R
(
αQ
)
. (10.13)

R(z) stands for a function:

R(z) = −
(

1

2π i

d

dz
+ 1

2πy

)
f (z), (10.14)

where z = x + iy and Qn is any set of representatives of the equivalence classes of
the integral binary quadratic form

Q(x, y) = ax2 + bxy + cy2 (10.15)

with a > 0 and b = 1 mod(12), with the property that for each Q(x, y), we let aQ be
“CM point” in the upper half-plane, for which Q(aQ, 1)= 0, recalling that a point is
CM if its corresponding elliptic curve has complex multiplication.

The function f (z) is the weight-2 meromorphic modular form entailing Eisenstein
series and Dedekind eta functions:

F(z) = 1

2

E2(z) − 2E2(2z) − 3E3(3z) + 6E2(6z)

η2(z)η2(2z)η2(3z)η3(6z)

= q−1 − 10 − 29q − 104q3 − 273q3... (10.16)

where q = e2π i z is the nome, E2(q) are Eisenstein series, and η(q) are Dedekind eta
functions.

The Eisenstein series is defined as:

Gr (τ ) =
∞∑

m=−∞

∞∑
m=−∞

1

(m + nτ)r
(10.17)

where r > 2 is an integer, τ > 0 and the sums exclude m = n = 0, while satisfying
the following relationship in terms of Riemann zeta functions:
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G2k(τ ) = 2ζ(2k) +

⎡
⎢⎢⎣

( ∞∑
n=1

σ2k−1(n)e2π inτ

)(
2(2π i)2k

)

(2k − 1)!

⎤
⎥⎥⎦ (10.18)

for n > 1, with ζ (s) the Riemann zeta function and σ k(n) the divisor function.
With an elliptic modulus k and a nome q = eiπτ , the first values of the Eisenstein

series E2n(q) are (Apostol 1976):

E2(q) = 1 − 24
∞∑
k=1

σ1(k)q
2k (10.19)

E4(q) = 1 + 240
∞∑
k=1

σ3(k)q
2k (10.20)

E6(q) = 1 − 504
∞∑
k=1

σ5(k)q
2k (10.21)

Also, the Eisenstein series is defined as:

∞∑
k=−∞

∞∑
j=−∞

[
( j + kτ)−2n j2 + k2 �= 0

0 otherwise

]

= 2ζ(2n) +

( ∞∑
k=1

σ2n−1(k)e2π ikτ
)(

2(2π i)2n
)

(2n − 1)! (10.22)

for n > 1, with ζ (s) the Riemann zeta function and σ k(n) the divisor function.
The Dedekind eta function is a modular form defined over the upper half-plane

{I(τ ) > 0} by the formula:

η(τ) = (q)
1
24

∞∑
n=−∞

(−1)n(q)−n (3n−1)
2 = (q)

1
24
(
1 − (q)2 + (q)5 + (q)7 − (q)12 − · · ·)

(10.23)

where (q) = e2π iτ is the square “nome” q and τ is the half-period ratio (Atkin and
Morain 1993; Berndt 1994) eventually transforming the Dedekind eta function to the
form:

η(τ) = e
π iτ
12

∞∏
k=1

(
1 − e2π ikτ

)
(10.24)
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For some values, it relates to other known functions such as the Jacobi theta
functions, the gamma function etc. For instance, for theta functions with zero
argument:

ϑ.3
(
0, eiπτ

) = η2
(

τ+1
2

)

η(τ + 1)
(10.25)

and with the gamma function

η(i) = �
(
1
4

)

2π
3
4

(10.26)

The Eisenstein series E2 is related to partitions P(n) as follows:

E2(z) = 1 − 24
∞∑
n=1

∑
d/n

d(P(n))n. (10.27)

The nome q is defined on Jacobi theta functions as (Borwein and Borwein 1987):

q = e
iπK

√
1−k2

K (k) (10.28)

with τ the half-period ratio, K(ke) the complete elliptic integral of the first kind, k
the elliptic modulus and the elliptic integral of the first kind has the general form

F(ϕ, k) =
tan ϕ∫

0

dv√
(1 + v2)((1 + (1 − k)2v2)

(10.29)

where v = tanθ (Abramowitz and Stegun 1972).
Hence, the divisor function and the Jacobi theta functions enter in the calculation

of the Dedekind eta function and for the Eisenstein series.
The divisor function of an integer n is the sum of k-th powers of the positive

integer divisors of n:

σk(n) =
∑
d/n

dk (10.30)

and relates to the Riemann zeta function, by means of Ramanujan’s formula (Wilson
1923):



152 10 Entering the “Spatium Numerorum”: Creating Spatial …

∞∑
n=1

(
σa(n)σb(n)

ns

)
= ζ(s)ζ(s − a)ζ(σ − b)ζ(s − a − b)

ζ(2s − 1 − b)
(10.31)

while also satisfying

lim
n→∞

(
σ(n)

n ln ln n

)
= eγ (10.32)

where γ is the Euler-Mascheroni constant.
The Jacobi theta functions are quasi-periodic, expressed in terms of the nome q,

given in the form ϑ.n(z, q) where q is defined in terms of a quasi-period τ as:

q = e2π iτ . (10.33)

Setting thus the nome, leads to different Jacobi forms for successively higher n,
i.e.:

ϑ.1(z, q) =
n=∞∑
n=−∞

(−1)n− 1
2 q(n+ 1

2 )
2

e(2n+1)i z (10.34)

ϑ.2(z, q) =
n=∞∑
n=−∞

q(n+ 1
2 )

2

e(2n+1)i z (10.35)

ϑ.3(z, q) =
n=∞∑
n=−∞

q(n)2e2niz (10.36)

Elliptic integrals of the 1st kind are expressed in terms of Jacobi functions and an
elliptic modulus, which can be expressed in terms of Jacobi theta functions:

k = ϑ2
2 (0, q)

ϑ2
3 (0, q)

. (10.37)

The Jacobi theta functions with z = 0 relate to the gamma function for some
values of the nome, i.e.

ϑ.3
(
0, e−π

) =
4
√

π

�
(
3
4

) (10.38)
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10.2 Entropy Class

...and either the white becomes black, or the black becomes white…

“…καὶ γὰρ ε„ λευκòν Øπάρχoν μελαίνoιτo καὶ ε„ μšλαν λευκαίνoιτo”

(Galen, 129–199 A.D., “On the Natural Faculties”, 1.2)

The possible spatial partitions define entropy. In place of Shannon’s formula for
entropy H, a simpler measure will be used here instead and will hereafter be named
“entropy class” (r). This is the number of colored cells in a map (Fig. 10.5) and
assumes only integer values. In a binary map, the colored cells are the “black” ones
and are considered to be those that constitute the second largest population after the
population bearing the dominant color (the whites in the case of binary maps). If,
for instance, a binary 3 × 3 map is dominantly white, then the black cells can not be
more than 4, that is r = (n − 1)/2, where n is the total number of cells (n = 9 in this
case). If the binary map is even-numbered, then the number of colored cells cannot
be higher than r = n/2.

Obviously, all binary maps of the same entropy class also have the same Shannon
entropy. The higher the number of black cells, the higher the entropy class and this
applies up to the maximum entropy class of the square binary map. Notice however,
that that Shannon entropy H reflects the percentage of the relative participation of
each map type on the map and it is independent of observation scale. Contrary to
this, the entropy class r is scale-dependent, representing the number of colored cells
in a binary map for a precise size and resolution (Fig. 10.6). This difference makes
r more advantageous to Shannon entropy for the analysis of the spatial complexity
of square maps, also due to the fact that it assumes only integer values.

Fig. 10.5 Entropy class r is defined here as the total number of colored cells (red in this case) in
the binary map. Some 3 × 3 binary maps with “entropy classes” r = 1, 2, 3 and 4 are shown
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Fig. 10.6 The difference between Shannon entropy H and entropy class r consists in the fact that
r is scale-dependent. These twomaps have both the same entropyH, but their entropy classes differ:
the map on the left has r = 4, while the map on the right has r = 16. Thus, by using r instead of H,
map analysis becomes scale-dependent, which is essential for the assessment of spatial complexity

10.3 Generic Maps and Symmetry

“Et plutard un Ange, entr’ ouvrant les portes,

viendra ranimer, fidèle et joyeux les mirroirs ternis”

(Charles Baudelaire, 1821–1867, “La mort des amants”)

Partitioning a space is equivalent to the identification of possible “entropy classes”
in it. But partitioning alone is inadequate to determine all possiblemap configurations
for a certain entropy class. We thus arrive at the next step in the process of generation
of spatially complex square maps: the creation of symmetric replications.

The typical symmetry operations on the square are: rotation 90° clockwise about
the centre, rotation 180° clockwise around, rotation 270° clockwise around, reflection
through the horizontal centre line, reflection through the vertical centre line, reflection
through the main diagonal (upper-left to bottom-right vertex) and reflection through
the other diagonal (bottom-left to upper-right vertex). These symmetric operations
are possible because the square has four lines of symmetry (Fig. 10.7): the two axes
and the two lines y = x and y = −x. Further, by rotating the square by 90°, 180° or
270°, new symmetric configurations are received.

These seven symmetries together with the identity (no rotation, or “trivial
symmetry) create the group of symmetries of the square (8 in total).

Specifically, the operations are:
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Fig. 10.7 Symmetry axes of
the square

VS = Reflection through the vertical
HS = Reflection through the horizontal
DS = Reflection through the diagonal D1

D’S = Reflection through the diagonal D2

IS = identity (no rotation)
R90 = rotation 90° clockwise about the center
R180 = rotation 180° clockwise about the center
R270 = rotation 270° clockwise about the center.

In this way, any new positions of cells are calculated from the multiplication table
(Table 10.3):

The number of map configurations corresponding to each symmetry operation
is given by the “Burnside lemma” (alternatively referred to as the “Burnside–Polya
theorem”), which can be used to endow square partitions with topologically inequiv-
alent positions, along with their associated symmetries. It yields configurations of
symmetry-dependent maps, but the full set of map configurations is received only
after the application of symmetry operations is applied to them.

Let G be a group of elements that permute vertices of objects. Two colorings are
considered indistinguishablewith respect toG if there is some element g belonging to
G, such that g sends one coloring to another. Lettingψ(g) be the number of colorings
which are unchanged when affected by g and Ng the number of generic maps, then
Burnside’s lemma computes the number of generic maps Ng as:
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Table 10.3 Multiplication table showing the results of multiplication of possible symmetries of
the square

HS VS DS D’S IS R90 R180 R270

HS IS R180 R90 R270 HS DS VS D’S

VS R180 IS R270 R90 VS D’S HS DS

DS R270 R270 IS R180 DS VS D’S HS

D’S R90 R270 R180 IS D’S HS DS VS

IS HS VS DS D’S IS R90 R180 R270

R90 D’S DS HS VS R90 R180 R270 IS

R180 VS HS D’S DS R180 R270 IS R90

R270 DS D’S VS HS R270 IS R90 R180

Fig. 10.8 The 21 symmetric 2 × 2 squares with 3 colors

Ng = 1

|G|
∑
g∈G

ψ(g) (10.39)

For instance, for a 2× 2map with three colors the number of generic 2× 2 square
maps with three colors (Fig. 10.8) is (Table 10.4):

Ng = 1

|G|
∑
g∈G

ψ(g) = 1

8

(
34 + 31 + 32 + 31 + 32 + 32 + 33 + 33

)

= 168

8
= 21 (10.40)

Increasing the number of colors by one, the formula yields more possible map
configurations for 2× 2 maps with 4-colors, the total number of which is (Fig. 10.9):
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Table 10.4 Calculation of
symmetries of 2 × 2 squares
with 3 colors

Symmetry Cycle form Number of configurations ψ(g)

IS (1), (2), (3), (4) 34

R90 (1 2 3 4) 31

R180 (1 3), (2 4) 32

R270 (1 4 3 2) 31

VS (1 2), (3 4) 32

HS (1 4), (2 3) 32

DS (1), (2 4), (3) 33

D’S (1 3), (2), (4) 33

Fig. 10.9 The 53 possible 2 × 2 square maps with all possible combinations of 4 colors

Ng = 1

|G|
∑
g∈G

ψ(g)

= 1

8

(
44 + 41 + 41 + 42 + 42 + 43 + 43 + 43

)

= 424

8
= 53 (10.41)
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10.4 Calculating Binary Map Configurations

“Nature is indeed a sum, but not a whole”

(Gilles Deleuze 2012, p. 304)

Given the partitions of space acting on squaremaps, entropy classes can be defined
next. In fact, no more black cells need to be allocated on a map after attaining the
maximum entropy class, since after exceeding the maximum entropy threshold, all
binarymap configurations repeat themselves as black-and-whitemirror reflections of
the configurationswhichwere derived prior to attainingmaximumentropy class. This
is because for entropy classes higher than r = n/2 (if n= even) or r= (n− 1)/2 (if n=
odd), the resulting binary map configurations are mirror-like repetitions of their n-r
counterparts. So a simple replacement of black bywhite cells (orwhite by black cells)
at the same positions of themap produces identical spatial complexity values (simple
replacements of black cells by white cells yields exactly the same cell positions
on each map and this symmetry applies to all possible configurations). Hence, the
central question is how to determine the number of possible map configurations up to
maximumentropy class. It thus suffices to examine the spatial complexity of different
configurations, depending on whether r = n/2 (if n = even) or r = (n − 1)/2 (if n =
odd) and hence, the formula giving the total number of possible square binary map
configurations N(n) per map size n up to maximum entropy class is:

N (n) =
r∑

r=1

n!
r !(n − r)! (10.42)

An application can be seen in the case of 2 × 2 binary maps (Fig. 10.10). The
configurations with r = 3 are mirror-symmetric of those with r = 1. It suffices
therefore to consider configurations only up to rmax = 2 (in the case of 2 × 2 maps).
As n = even, so r = 2 and hence the number of possible configurations N(n) up to
maximum entropy class (r = 2) is:

N (4)r=2 =
2∑

r=1

4!
r !(4 − r)! = 4!

1!3! + 4!
2!2! = 10 (10.43)

Similarly, the number of all possible 3 × 3 binary maps configurations from r =
1 up to the maximum entropy class (which is r = 4) is 255:

N =
r= n−1

2∑
r=1

(
n

r

)
=

r= 9−1
2 =4∑

r=1

(
9

4

)
=
(
9

1

)
+
(
9

2

)
+
(
9
3

)
+
(
9

4

)
= 255

(10.44)
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Fig. 10.10 All the possible configurations of 2 x 2 binary maps. When more than half of the cells
are black, then the map configurations repeat themselves as exactly reversed, therefore without
contributing any more to complexity beyond the state of maximum entropy, which is attained at the
entropy class r = 2 for this map size

The number of possible configurations N(n) up to maximum entropy class,
depends on whether the total number of cells (n) is an even or an odd number:

N (n) =
r∑

r=1

n!
r !(n − r)! =

⎧⎪⎪⎨
⎪⎪⎩

r=(n−1)/2∑
r=1

n!
k!(n−r)! n = odd

r=n/2∑
r=1

n!
r !(n−r)! n = even

⎫⎪⎪⎬
⎪⎪⎭

(10.45)

For n = odd, we simply have:

N (n) =
r= (n−1)

2∑
r=1

n!
r !(n − r)! = 2n−1 − 1 (10.46)

For r = n/2 (case where n = even), the calculation of N(n) is carried out by
employing the Gaussian hypergeometric function 2F1, so the formula giving the
total N(n) of binary maps configurations is:

N (n) = r
r=n/2∑
k=1

n!
r !(n − r)!
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Table 10.5 Even in small binary maps (from 2 × 2 to 6 × 6 shown here), as the map size (n)
increases, the sum of possible square binary map configurations N(n) “explodes”

Binary map size (n) Number of possible binary maps up to rmax

4 10

9 255

16 36,493

25 16,777,216

36 38,897,306,020

= 2n − 1 − n!2F1
(
1, 1 − n

2 , 2 + n
2 ,−1

)
(
n−2
2 !)( n+2

2 !) (10.47)

and therefore,

N (n) =
{

2n−1 − 1 n = odd

2n − 1 − n!2F1(1,1− n
2 ,2+ n

2 ,−1)
( n−2

2 !)( n+2
2 !) n = even

}
(10.48)

To get a glimpse of the “combinatorial explosion” of the number of possible binary
map configurationsN(n) with increasing map size n, it suffices to consider the values
of N(n) with respect to n even only for some low values of n (Table 10.5). Hence,
when embarking to carry out spatial analyses of any kind by using square binary
maps with increasing map size, it always has to be considered that the number of
possible configurations will increase very fast and so the computational complexity
for examining the spatial complexity of all these configurations rapidly spirals out
of computational control.
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Chapter 11
The Spatial Complexity of 3 × 3 Binary
Maps

The triad first constituted the beginning, the middle and the end
‘H τριὰς πρώτη συνšστησεν ¢ρχήν, μεσ óτητα καὶ

τελευτ ή

(Okellos, first century b.C.)

Abstract A complete complexity characterization of 3× 3 binary maps is possible,
fromwhich it is revealed that for all such maps: (i) higher entropy class means higher
spatial complexity in most cases (but not always); (ii) spatial complexity is “gener-
ated” fast but “slows down” as the entropy increases; (iii) high spatial complexity
coincides with high patchiness (confirming the widely held belief about this); (iv) the
higher the clumpiness, the higher the spatial complexity; (v) the number of generic
maps per entropy class decreases as the entropy class grows (implying that identifying
generic forms is equivalent to focusing on a number of possible configurations at a
scale of reduction which is particularly important for spatial complexity: a reduction
from exponential to polynomial growth); (vi) even a slight introduction of “other-
ness” (that is dark cells) in a binarymap induces a high increase in spatial complexity.
So “invading species” in an ecosystem (or, equivalently, “invading” black cells in a
binary map), regardless of their particular location in the map or how few they may
be, immediately create a substantial difference in the map’s spatial complexity; (vii)
some values of spatial complexity concentrate disproportionately larger numbers of
map configurations than other ones.

Keywords Spatial Complexity · 3 × 3 maps · Spatial Computation · Binary
maps · Map Complexity · Entropy and Complexity · Geocomputation

11.1 Parameters of Spatial Complexity of Binary Maps

“Difference is of two kinds… the first is called a difference of number the other of kind”

(David Hume, “A treatise of human nature”, 1740)

Besides entropy class, additional parameters (not measures) of a map’s spatial
complexity (aside of entropy/diversity) are its “patchiness” (P), “adjacency” (A)
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and “clumpiness” (B). The role of these parameters in spatial complexity has been
identified earlier (Papadimitriou 2002; Papadimitriou 2009; Papadimitriou 2012).

Patchiness (P) is the number of non-adjacent (disjoint) patches of the same color
dispersed over the dominant cover of the binary map (which, in the language of
landscape ecology is called “the matrix”).

Adjacency (Ad) is the number of edges shared by cells of the same patch type
(it refers to patches only; not to the dominant color). It is defined as the number of
edges between cells of the same cover type Vi in the map:

Ad =
n∑

i=1

∂i Vi (11.1)

and refers only to the cells that are defined as “colored” (not belonging to the dominant
population of cells).

A typical assumption is that the more patchy a map, the more complex it is
expected to be. Spatial complexity is expected to decrease if patches of the same
color are clumped together and at this point enters the parameter “clumpiness”.

Clumpiness (B) is defined here to be the maximum size of the largest edge-
continuous block (aggregate) of cells of the same patch type: B = max{patch size
of the same color} and it is examined because clustering plays a central role in
self-organization and complexity (Bormashenko et al. 2020).

As an example, consider the calculation of r, P, B, CP1 and CP2 for the three
flag-like example binary maps of the same size (5 × 5), resembling the flags of three
European countries, shown in Fig. 11.1. The results of the calculations are given in
Table 11.1.

Fig. 11.1 Calculating the spatial complexity on three simplified flag-like example binary 5 × 5
maps resembling the flags of three southern European countries
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Table 11.1 Results of the calculations of the metrics and parameters of spatial complexity of three
simplified flag-like example binary 5 × 5 maps shown in Fig. 11.1

Map r P B A CP1 CP2

a 10 1 10 13 6 5

b 5 1 5 4 8 10

c 11 4 7 7 15 23

11.2 The Spatial Complexity of 3 × 3 Binary Maps

“…the origin of numbers from 0 and 1, which I have observed is the most beautiful symbol
of the continuous creation of things from nothing, and of their dependence on God”

(Gottfried Leibniz, 1646–1716, written on 29-3-1698.

Source:Leibniz,G. 1863, “Mathematische Schriften”

ed.C.I.Gerhardt, volume V, Berlin: A.Ascher. page 239)

Let us now return to the 3 × 3 binary maps. Of the 255 total binary 3 × 3
map configurations up to maximum entropy class, some are topologically equivalent
therefore yielding the same spatial complexity (because symmetric configurations
produce topologically equivalent positions of cells). Calculations of CP1 and CP2 on
isomorphic binary maps yield the same results. Thus, non-isomorphic binary maps
can be identified that will be called here “generic” binary maps. These are specific
for each entropy class. For r = 1, 2 and 3 these are shown in Fig. 11.2 and for r = 4
are shown in Fig. 11.3.

With r = 6, the 3 × 3 binary maps yield the same results in calculations as the
binary maps with r = 3. Equivalently, for r = 7 the results are the same as in the
case of r = 2. For this reason, the calculations are carried out only up to r = (n-1)/2,
that is up to r = 4. Consequently, CP1 and CP2 are calculated for all 3 × 3 generic
maps, up to maximum entropy class, as shown in Table 11.2.

The average CP1 per entropy class r (for all entropy classes) can be described
by the following cubic formula (Fig. 11.4):

CP1 = 2.03129 + 2.31226r − 0.392857r2 + 0.0341667r3

(corr.coeff. = 0.996). (11.2)

Notice that the rate of increase of spatial complexity decreases with increasing
entropy class.

The number of map configurations per CP1 complexity value (Fig. 11.5) can be
modeled by a polynomial:

NCP1 = 512.143 − 434.091CP1 + 104.857C2
P1 − 6.19444C3

P1

(corr.coeff. = 0.969) (11.3)
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Fig. 11.2 Generic 3 × 3 binary maps for entropy classes r = 1,2 and 3 black cells per binary map.
Numbers atop of each binary map show the multiplicity of each generic map

This function shows that it is more likely to encounter average and highCP1 values
in 3 × 3 binary maps than lower complexity values.

The average CP2 per entropy class r is given by the following model (Fig. 11.6):

CP2 = 0.0192857 + 2.5556r + 0.122143r2 − 0.104167r3

(with correlation coefficient = 0.9989), (11.4)
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Fig. 11.3 Generic 3 × 3
binary maps of all the map
configurations for entropy
classes with r = 4 black cells
per binary map
withmultiplicity of each
generic configuration
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Table 11.2 There are 49 generic binary maps of size 3 × 3 coresponding to 255 possible
configurations in total

Entropy class (r) Number of map configurations (N) per entropy class
r

Of which generic maps

1 9 3

2 36 8

3 84 15

4 126 23

total 255 49

Fig. 11.4 CP1 complexity
per individual entropy
classes ri

Fig. 11.5 The number of 3
× 3 binary map
configurations per CP1 value
(up to maximum entropy
class)

Fig. 11.6 The CP2
complexity per individual
entropy classes ri is given by
a cubic relationship
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Fig. 11.7 The number of 3
× 3 binary map
configurations per CP2 value
(up to maximum entropy
class)

while an approximation to the number of 3 × 3 binary maps NCP2= f(CP2) per CP2

value (Fig. 11.7) can be described by the model (corr.coeff. 0.86):

NCP2 = 0.585859 − 7.31866CP2 + 6.64358C2
P2 − 0.658249C3

P2 (11.5)

11.3 Patchiness, Adjacency and Clumpiness

“Nature is Harlequin’s cloak made entirely of solid patches and empty spaces; she is made
of plenitude of void, beings and nonbeings, with one of the two posing itself as unlimited
while limiting the other”

(Gilles Deleuze, 2012, p. 304)

The relationships ofCP1withpatchinessP and clumpinessB are shown inFig. 11.8
and the selected formulas best fitting the values of CP1 for both P are (corr.coeff.
0.996):

CP1 = 2.16082e0.558367P (11.6)

Fig. 11.8 CP1—complexity with respect to patchiness P and clumpiness B in 3 × 3 binary maps
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Fig. 11.9 Spatial complexityCP2 with respect to patchiness (P) and clumpiness (B) in 3× 3 binary
maps

and for B:

CP1 = 1.99101 + 1.4249B + 1.20611B2 − 0.37946B3

(with corr.coeff.0.997) (11.7)

Thus high clumpiness and high patchiness are both associated with high CP1

complexity.
The relationships best fitting the values of CP2 with P and B classes respectively

are both polynomial (Fig. 11.9):

CP2 = −0.00053822 + 2.50646P + 0.175495P2 − 0.00625255P3

(corr.coeff. 0.995) (11.8)

and

CP2 = 1.97166 − 2.55623P + 4.97499P2 − 1.30259P3

(corr.coeff. 0.959)
(11.9)

Further, the values of can be best described by polynomial models also
(Fig. 11.10):

P = 0.00247143 + 1.12461r − 0.131214r2 − 0.00575r3

with corr.coeff.0.9999, (11.10)

B = 0.0197429 + 1.25588r − 0.425429r2 + 0.0708333r3

with corr.coeff.0.994 (11.11)
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Fig. 11.10 Patchiness (P), clumpiness (B) and adjacency (Ad ) with respect to entropy class (r) in
3 × 3 binary maps

and

Ad = −0.00282857 − 0.114476r + 0.120286r2 − 0.00833333r3

with corr.coeff. 0.9998 (11.12)

It consequently becomes apparent that patchiness, as well as clumpiness and
adjacency, all increase with increasing entropy class, although patchiness shows a
somewhat different behavior for the higher values of r: themaximumP (P= 2.08474)
is at r = 3.486, that is at an entropy class lower than the maximum.

11.4 Generic 3 × 3 Binary Maps and Their Multiplicities

“You feel the hidden calculation… an elemental maze, unfathomable forest”

(Osip Mandelstam, 1891–1938, “Notre Dame”, 1912)

The percentage of generic maps with respect to the total number of possible map
configurations decreases with increasing map size. For instance, in 2 × 2 binary
maps, there are three generic configurations out of the ten possible configurations
(hence 33% are generic maps) and in 3 × 3 binary maps there are 49 generic maps
out of the 255 configurations (that is 19.2%). Furthermore, the number of generic
maps Ng by entropy class decreases as the entropy class grows. A simulation model
can be obtained by calculating the total number of generic map configurations per
multiplicity ξ for all classes r (ξ r), which is shown in Table 11.3 and defined as the
sum:

Ng =
r=4∑

r=1

ξr (11.13)

The relationship between Ng and ξ can be simulated by a polynomial function,
of the form (Fig. 11.11):
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Table 11.3 Numbers (Ng) of the 49 generic 3 × 3 binary maps per entropy class (r), with their
respective multiplicity factors (ξ r)

Multiplicity (ξ ) r = 1 r = 2 r = 3 r = 4 Ng

1 1 0 0 2 3

2 0 2 2 2 6

4 2 4 7 8 21

8 0 2 5 11 18

16 0 0 1 0 1

Fig. 11.11 The number of generic 3 × 3 binary maps (Ng) per multiplicity class (ξ ) of generic
maps, for all entropy classes r, can be described by a polynomial function

Ng = −9.7381 + 12.3443ξ − 1.47621ξ 2 − 0.0466582ξ 3

(correlation coefficient 0.942). (11.14)

Thus, the number of multiplicity of binary map configurations of 3 × 3 binary
maps increases polymomially with the number of generic maps.

The generic maps are endowed with different topologies and so they can produce
different symmetries. Spatial complexity can therefore be “tamed” by identifying
topologically inequivalent configurations. This is evident, even at the simplest level
of 3 × 3 maps with r = 1, where three different maps, all with the same entropy,
but with different topologies, yield different spatial complexities (Fig. 11.12). If
the exact generic forms are known, then a polynomial relationship (instead of an
exponential model of allocations which would be expected from the formula 2n–1−1
= 255) suffices to produce all the 255 − 49 = 206 non-generic map configurations.
This means that identifying generic forms is equivalent to focusing on a number of
possible configurations at a scale of reduction which is important: a reduction from
exponential to polynomial growth. And this reduction is only possible thanks to the
identification of symmetric map configurations that can be produced by the generic
maps.

Yet, spatial complexity depends on border effects and this dependence is more
significant for smaller maps. The boundaries between cells can range from 2 to 3 or
4, depending on the location of the cell in the map (cells located at the border areas
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Fig. 11.12 Generic configurations of three simple 3 × 3 binary maps. In the case of map a, the
colored cell has only 2 neighboring cells (one east, one south), in the case of b it has 3 (east, west,
south) and in c it has 4 (all four directions)

of a square map have 2 or 3 boundaries, while those located at the map’s central areas
have four boundaries).

With the number of cells of a square map with two, three or four boundaries
(Fig. 11.13) symbolized respectively as ∂2, ∂3, ∂4, the border cells ∂2, ∂3 and the
central cells assume the following values (where n is the total number of cells of the
square map):

∂2 = 4
∂3 = 4

√
n − 8

∂4 = (
√
n − 2)2

(11.15)

Consequently, it is easy to verify that the larger themap size, themore insignificant
the number of outer border cells becomes in comparison to the inner cells:

Fig. 11.13 There are three topological types of square cells according to the number of boundaries
they share with their neighbouring cells. As the map size n increases, the number of 4-boundary
cells increases at the expense of the other types of cells
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lim
n→∞

(
∂2 + ∂3

∂4

)
= lim

n→∞

(
4
√
n − 4

n + 4 − 4
√
n

)
= 0 (11.16)

In fact, only maps larger than 7 × 7 are essentially free from the effects of border
cells: ∂4 − ∂3 > 0 ∀n > 49.

Thus, border cells affect the topology and therefore the spatial complexity of small
maps, much more importantly than the spatial complexity of large maps.

It is however interesting to notice that 3 × 3 are the smallest square maps for
which any other cells are more numerous than the four corner cells: ∂3 − ∂2 > 0
∀n > 9

Hence, assessments of spatial complexity on the basis of 3× 3 binarymaps can be
made, although, for safer estimates, the analysis should be made on square domains
at least 7 × 7 large.

Various ecological observations have confirmed correlations between increased
“diversity” and “habitat complexity”; a notion which entails spatial complexity and
functional complexity (Dean and Connell 1987; Poggio et al. 2010; Keith et al.
2006). Besides ecology, complexity correlates with “diversity” in various fields: in
materials science (Gleitzer 1980), neurosciences (Blaustein and Golovina 2001),
biochemistry (Okazaki et al. 1998) etc. Interestingly, from an ecological study in
Switzerland (Lischke 2005), empirical observations showed that spatial complexity
was high when the first species colonized the region, when, at the fronts of the Picea
abies immigrations, “spots of increased diversity appeared” (Lischke 2005, p. 159).
Thus, “invading species” in an ecosystem (or, equivalently, “invading” black cells in
a binary map), regardless of their particular location in the map or how few they may
be, immediately create a substantial difference in the map’s spatial complexity. As
shown from the present study, even a slight introduction of “alterity” or “otherness”
(that is dark cells) in a binary map induces a high increase in spatial complexity. This
might be anticipated, although it could not have been verified without a complete
complexity characterization of 3 × 3 binary maps. In fact, in both CP1 and CP2,
the highest rate of increase in spatial complexity takes place in between the entropy
classes 0 and 1, therefore suggesting that some entropy classes (the lower ones)
are endowed with more “dynamism” to “produce” spatial complexity than others
(Fig. 11.14).

Fig. 11.14 The rate of increase in spatial complexity increases rapidly for both CP1 and CP2 as the
entropy class rises from 0 to 1 and then decreases with higher entropy class
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Yet, although the maximum average CP1 is at r = 4, the maximum of the average
CP2 is attained (approximately) at the entropy class r = 3 (not at r = 4). Thus, the
change of CP2 with entropy indicates that maximum spatial complexity may occur
in between minimum and average entropy. The range of values that the metric CP2

yields for 3× 3binarymaps conformswith the anticipated variations of complexity in
“between order and chaos”, or “between order and randomness”, as complexity (not
spatial complexity) is thought to be by many researchers, although with a somewhat
different expression here: spatial complexity maximizes in between minimum and
maximum entropy. There is a strong cross-disciplinary need for methods to calculate
and compare the spatial complexities of two-dimensional images, maps, pictures,
landscapes and other 2d representations and surfaces. This aim can not be satisfied
without having a measure to compare spatial complexity with. For this reason it
was necessary to calculate all the expected possible spatial complexity values for all
possible binary spatial configurations. In the present case, this requirement was met
at the level of 3 × 3 maps. Evidently, if larger than 3 × 3 binary maps were used, the
results might differ. Although this may seem obvious, it has to be considered that we
are still short of a formula that would enable us to estimate the spatial complexity
of all the i.e. 36,493 configurations that would be required to calculate for the 4 × 4
binary maps (let alone for larger maps).

11.5 Spatial Analysis at “King’s Neighborhood”

The Pythagoreans decorated with meanings the numbers and the shapes of Gods

“Oƒ δ� �υθαγóρειoι καὶ ¢ριθμo�̀ς

καὶ σχήματα θεîν ™κóσμησαν πρoσηγoρίαις”

(Plutarch, 46-119 a.D., “De Iside et Osiride”, 381f)

Square arrangements keep puzzling scientists and artists for their geometric
simplicity, which, in the digital era, carry some of the most complex information
structures, such as big data of satellite imagery, GIS maps, and all forms of large
geospatial databases, which are some of the most complex kind of observational data
ever collected by humans.

More than twenty centuries ago, Pythagoras discovered the immense power of
squares, by revealing that three squares can always be imagined to correspond to each
side of a triangle. Seen from this perspective, he essentially proved that the simplest
of all spatial forms, the triangle, is intimately related to squares. The Pythagoreans
claimed that the number 3 is the most important of all numbers and attributed to
the triad a central role in the cosmos, because it summarizes the triplet beginning-
middle-end. In praise of the number nine, the neoplatonic philosopher Plotin wrote
his famous “Enneads” and, centuries earlier, according toHesiod’s “Theogony” there
were 9 days and nights separating the sky from the earth. The Pythagoreans were
particularly inclined to study figurative numbers.Take, for instance, the tetraktys
(τετρακτ�́ς). It would be difficult not to observe that the sacred symbol of the
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Pythagoreans conceals a small (3×3maybe?)map (Fig. 11.15). Tetraktys formed the
basis of the Pythagorean oath, but quaternitieswere not uncommon in philosophy and
theology throughout the ages,withmostwidely knownamong them the “quadrivium”
in Neoplatonic epistemology: a sign converting point data to area is an important
(inherent?) process of human perception.

Fig. 11.15 Tetraktys (left) formed the basis of the Pythagorean oath. The ten points might as well
be perceived as defining a 3 × 3 map (right)

Simple 3× 3maps have been used by humans for planning the geographical space
since the antiquity, while archaeological evidence suggests that the 3 × 3 game tic-
tac-toe was played in many places all over the world. Probably invented in ancient
Egypt, we now know that, as deceivingly “simple” as it looks, it can nevertheless be
played in 9! = 362,880 different ways.

Two millennia ago, well-fields in ancient China applied a management scheme
called “jing-tian-zhi” (well-land-system), consisting in 3 × 3 square fields with a
communal area in the middle, surrounded by eight ownerships. Delving into some
classic old chinese texts can be rewarding in ideas about the central role of the square
number 9 in spatial analysis (3 × 3 squares). A legendary planner and geometer of
ancient China, “Yu the Great”, measured nine mountains, nine rivers, nine marshes
and arranged the lands to be cultivated within such areas. The “Yugong” (the book
of the tribute to Yu) describes how Yu marked out the nine provinces of China. Char-
acteristically, the classic Chinese text “The Tribute of Yu” (禹贡) reads as follows in
the beginning: “Yu marked the nine provinces. Then, the hills, increased the rivers’
depth; defined the borders of the land”. The master plan for spatial divisions, the
“Hong Fan” (洪範) allegedly described the division in nine regions (“ch’eou”), and
was brought to Yu by a turtle. The 3× 3 arrangement had the central cell at the center
and eight surrounding cells defining the 8 trigrams of the “Book of Changes”, the
“I-Ching”, nine defined the shape of the royal residence (the “Ming T’ang”), and, as
a matter of fact, was also the defining number for royal ceremonies in China. The
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Taoist ceremonies also have a base of nine, as those of the Mayas and the Aztecs.
And, for Christians, it is the simplest square map that can host the shape of a cross.

As it turns out, 3 × 3 neighbourhoods are fundamental for the arts also, given the
old and well known method of aesthetic appreciation that is called “rule of thirds”.
This practical rule was first named so by John Thomas Smith in his book “Remarks
on Rural Scenery”, quoting the work of Sir Joshua Reynolds (1783), discussing the
balance of dark and light in a painting. Although not a mathematically proven rule, it
is nevertheless a “rule of thumb” for evaluating and appreciating the emotional and
artistic power emitted to the viewer by paintings, images, photographs, sceneries.
The rule suggests the subdivision of a picture on the basis of a 3 × 3 grid, in order
to determine the location in the grid so as to highlight what is more important in the
entire scenery. The rule of thirds suggests that placing the picture’s most important
element along the thirds lines (or close to their intersections) produces always a
higher aesthetic impact than if it were placed anywhere else in the picture. Empirical
observations also show that a much more powerful impression impact is conveyed
to a spectator if the prominent figure of the image (the form of a human, a tree, a
house etc.) is not located at the central square of the 3 × 3 grid, but in the area of the
“thirds” instead (Fig. 11.16).

Given these, it is expected that 3 × 3 maps would have not escaped the attention
of visual artists. Kazimir Malevich painted (1915) his “Black Cross”: a simple black
cross formed by joining the five central cells of a 3 × 3 black-and-white map. Simi-
larly, Ad Reinhardt (1913–1967) painted uniformly black pictures, i.e. his “Abstract
Painting” (1963) is essentially a grid of 3 × 3 black squares. Sol Le Witt painted
(1967) his “Serial Plan”, a work of conceptual art created by using 3 × 3 squares.
Clearly, these are only few representative examples among countless other ones in
art, but what is more important is that 3 × 3 neighborhoods are a key to unlock the
secrets of spatial complexity of small square binary maps.

Fig. 11.16 The “rule of thirds”. Locating the key feature of a painting on the intersection of the
lines of thirds lines on the lower left part of the image creates a higher visual impact (that is makes
the image more “interesting”) than if it were located at the centre of the image
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Chapter 12
Complexity of Binary Maps of Primes
and Transcendentals

Number became the first principle and this is indefinite and
incomprehensible.
The number has in itself all the infinite possible numbers that
may come.
And of the numbers the first entity was the unity, which fatherly
generated all the other numbers
“’Aριθμóς γ šγ oνε πρîτoς ¢ρχή, Óπερ ™στ ίν ¢óριστoν
¢κατ άληπτoν,
�χων �αυτî πάντας τo�́ς ™π ’ �πειρoν δυναμšνoυς

™λθε‹ν ¢ριθμo�́ς κατ ά τ ò πλÁθoς .
Tîν δ� ¢ριθμîν ¢ρχή γ šγ oνε καθ’υπ óστασ ιν η πρώτη

μoνάς ,
ήτ ις ™στ ί μoνάς �ρσην γ εννîσα πατρικîς πάντας

τo�́ς �λλoυς ¢ριθμo�́ς”
(Pythagoras, 580-496 bC)

Abstract Different map sizes and different approximations of π produce interest-
ingly different binarymap representations with substantial differences in their spatial
complexity. Sometimes, knowing the numbers behind the spatial structures not only
explains a map’s structure, but can also be used to predict how a map might look like
if it extended in space (such is the case of transcendental numbers). Assigning black
cells to prime numbers produces square binary maps of primes-and-composites from
which it can be seen that: (a) even-numbered binary such maps “produce” clumps,
while odd-numbered ones do not; (b) CP2 decreases with increasing map size n in
binary maps of primes-composites; (c) both the author’s CP1 and CP2 complexity
metrics are always higher in odd-numbered binarymaps than in even-numberedmaps
of primes-and-composites.

Keywords Spatial complexity · Prime numbers · Binary maps · Map complexity ·
Transcendental numbers and Complexity · pi · Number theory and Complexity
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12.1 Numbers Defining Spaces

“So Nature deals with us, and takes away our playthings one by one, and by the hand leads
us to rest so gently, that we go scarce knowing if we wish to go or stay, being too full of
sleep to understand how far the unknown transcends the what we know”

(Henry Wadswarth Longfellow, 1807–1882, “Nature”)

The title of this section may at first appear surprising, particularly considering
that only very limited research has been hitherto carried out in this particular field.
The truth is that besides geometry and topology, another branch of mathematics,
number theory, most often passes unnoticed in the study of spatial arrangements.
The repercussions of this for spatial scientists may be too early to anticipate, but it
is worth noticing them.

Some number-related aspects of spatial complexity emerge from simulations and
experiments with binary maps. They can be interesting not only in terms of mathe-
matics, but also for future research, as some of them may prove valuable for gaining
some deeper insights in spatial complexity. Such number-theoretic considerations
may relate to various kinds of numbers (integers, reals, transcendentals, complex
etc.). The emergence of π in “Buffon’s needle problem” for instance (a spatial prob-
ability problem which is examined in another chapter) leads us to question whether
this is a unique case of number-theoretical interest emerging from a problem of
spatial probability, or it might as well imply that number theory is essential to under-
stand spatial complexity. Before opting for the first case, we should rather consider
a few more facts, since, surprisingly, despite the fact that some problems of spatial
combinatorics have revealed the presence of π in their solutions, this seems to have
passed more or less unnoticed.

Counting the number of ways a square can be covered by domino tilings can be
illustrating: according toMatousek (2010, p. 85) there are 12,988,816 possible tilings
of the 8 × 8 chessboard by 2 × 1 rectangle dominoes (Fig. 12.1), while the formula
giving the number of domino tilings of an mxn chessboard involves trigonometric
functions and yet, yields integers as results (Matusek 2010, p.93):

√
√
√
√

m
∏

k=1

n
∏

l=1

(

2 cos
kπ

m + 1
+ 2i cos

πl

n + 1

)

(12.1)

But this is not the only case that π shows up unexpectedly in spatial analysis.
Consider, for instance this problem: Choose one cell of a square map, with an arith-
metic regularity, with ever decreasing size. Beginning with an 1× 1 square map (that
is the entire area) and proceeding to a 2 × 2 square map (thus ¼ of the map’s area
has been chosen), choosing one cell again from a 3 × 3 square map (meaning that
1/9 of this map’s area has been selected) and carrying on the same way down to
(1/n) × (1/n) (Fig. 12.2), the total area accumulated from all these choices is
tantamount to calculating the following series:
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Fig. 12.1 One of the
12,988,816 possible tilings
of the 8 × 8 chessboard that
can be made by 2 × 1
rectangle dominoes

Fig. 12.2 A hint about the
possible role of number
theory in spatial complexity.
Calculating the total area of
the sum
1
22

+ 1
32

+ 1
42

+ . . . + 1
n2

leads to the rather
unexpected result π2/6, or,
otherwise stated, deriving a
solution to a spatial problem
involving squares leads to a
transcendental number
which is not usually
associated to square shapes

1

22
+ 1

32
+ 1

42
+ . . . + 1

n2
(12.2)

The result of this calculation may only be obtained through a “magic” trick due
to Euler, and is:

1

12
+ 1

22
+ 1

32
+ 1

42
+ . . . + 1

n2
= π2

6
∼= 1.6449340668 . . . (12.3)
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What is far more interesting to notice here, is that π2/6 is a transcendental number.
It does seem noteworthy that the solution of a spatial problem involving squares only
(not circles or other shapes), can only be expressed in terms of a transcendental
number that is usually associated to a different shape.

But behind the solution to this simple spatial problem might possibly lie some
other interesting relations (in terms of number theory) as well, as, for instance, π2/6
relates to Riemann zeta function:

ζ(s) =
∞

∑

n=1

1

ns
= 1

1s
+ 1

2s
+ 1

3s
+ . . . (12.4)

that is one of the most intensely studied functions.
As well known, the value of the Riemann ζ function of a positive integer n is

defined as:

ζ(n) =
∞

∑

k=1

1

kn
(12.5)

and π2/6 is exactly the value of Riemann zeta for the integer 2:

ζ(2) = π2

6
∼= 1.6449340668 . . . (12.6)

A short digression may be useful here, to recall that the Riemann zeta function
ζ (s) is a function of a complex variable s = σ+it which can also be written as a
converging infinite series for all complex numbers s with real part greater than 1:

ζ(s) =
∞

∑

n=1

1

ns
= 1

1s
+ 1

2s
+ 1

3s
+ . . . (12.7)

This function is meromorphic on the whole complex s-plane, but for real numbers
x, it relates to the gamma function:

ζ(x) =
(

1

�(x)

)
⎛

⎝

∞∫

0

ux−1

eu − 1
du

⎞

⎠. (12.8)

Two characteristic values are ζ (0)= −1/2 and ζ(1) = ∞, with some of its values
relating to other known numbers and constants: the harmonic numbers, the Euler-
Mascheroni constant γ , and, most surprisingly, to physical quantities, such as the
critical temperature of the Einstein-Bose condensates ζ (3/2)= 2.612, the integration
of Planck’s law to derive the Stefan-Boltzmann law in Physics: ζ (4) = π4/90 =
1.0823… among several other relations. Given these, it makes sense to question
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whether any more relations between different types of numbers (transcendental,
primes, reals, complex etc.) and spatial complexity might exist. With partial series
we have that up to a given n, the total area of squares is:

12 + 22 + 32 + 42 + . . . + n2 = n(n + 1)(2n + 1)

6
(12.9)

but the first term of this equation is equal to the ζ (−2) of the Riemann zeta function,
and hence, the sum of the series

ζ(−2) = 12 + 22 + 32 + 42 + . . . + n2 (12.10)

also results from calculations that entail trigonometric functions again:

ζ(−2) = − 1

56

∞∫

0

(1 + t2) cos
(−2 tan−1(t)

)

cosh(π t/2)
dt (12.11)

or even e:

ζ(−2) = 1

6
+ 2
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0

(1 + t2) sin
(−2 tan−1(t)

)

e2π t − 1
dt (12.12)

(where tan−1 is the inverse tangent function and cosh is the hyperbolic cosine func-
tion). Equivalently, the sum of increasingly larger volumes up to infinity is ζ (−3) =
0.0083333…

12.2 Complexity of Binary Square Maps of Primes
and Composites

Good definitely scattered among the figures of evil. Anamorphosis of good. Evil definitely
scattered among the figures of good. Anamorphosis of evil

(Jean Baudrillard 2005, p.142)

The key question tackled here is: “What is the spatial complexity of binary maps
if prime numbers are represented as colored cells on square maps?”

Binary maps resulting from the allocation of primes on n= odd-numbered square
maps display diagonal alignments, so cells sharing a common side are uncommon
(Fig. 12.3).



184 12 Complexity of Binary Maps of Primes and Transcendentals

Fig. 12.3 Binary maps resulting from n=odd-numbered maps, with prime numbers allocated as
darker cells on progressively larger maps. Notice the diagonal patterns emerging from these maps
and the relative absence of clumps

Notice that the maps with n = odd have only one clump, even as their size
increases from n = 9 to n = 121. On the contrary, when the primes are allocated
on even-numbered maps, they produce more clumps with size of at least two cells
(Fig. 12.4).

As a result of the fact that even-numbered maps produce vertical arrangements
of black cells, while odd-numbered maps display alignments of black cells along
diagonal directions, it is expected that odd-shaped maps would create higher spatial
complexity, since they generate more dissimilar contacts between cells.

This can be verified from calculations ofCP2 for maps 3× 3 up to 10× 10, in that
the formula relatingCP2 and map size n grows with a trigonometric pattern, in which
odd-numbered maps have higher complexity than even-numbered ones (Fig. 12.5):

CP2 = 0.785n + tan(0.04828n) − tan(tan(0.04459n)) (12.13)

with correlation coefficient = 0.99973885
As may easily be verified, even-numbered maps “produce” clumps while odd-

numbered ones do not. Indeed, the clump number B remains constant (equal to 1)
in 3 × 3, 5 × 5, 7 × 7 etc. maps, but increases with map size in even-numbered
maps. It can be verified that odd-numbered maps “keep” the number of clumps B
to a minimum (counting as a clump a conglomerate of two cells or more, either
horizontally or vertically), so a question raises as to the relationship of B with the
number of primes p (corresponding to the entropy of the map) in n = even numbered
maps. For square binary maps 4 × 4 up to 16 × 16 with n = even, a trigonometric
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Fig. 12.4 Binary maps resulting from prime numbers allocated on progressively larger maps, but
always on map sizes with n = even. Notice the presence of clumps (of at least two colored cells)
and the presence of entire columns without any colored cell at all

Fig. 12.5 Odd-numbered maps have higher CLP complexity than even-numbered ones (measure-
ments only on maps from n = 3 × 3 to n = 10 × 10)

relationship is a best fit for clumpiness B values with respect to p:

B = 0.292p − 0.4872 tan(0.5739p) − 0.6177 cos(0.5234 + p) (12.14)

with goodness of fit = 0.99978491 and correlation coefficient = 0.99989552.
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Fig. 12.6 The CP1
complexity of compressed
strings of odd-numbered
binary maps of
primes-and-composites is
constantly higher than that of
even-numbered maps (map
sizes 2 × 2 up to 10 × 10)

Yet, the calculation of CP1-complexity of square maps of sizes 2 × 2 up to
10 × 10 yields differing results for strings for even-numbered and odd-numbered
maps (Fig. 12.6). In fact, the CP1-complexity is always higher for odd-numbered
binary maps.

Expecting the same to hold true for map sizes larger than 10 × 10, it might be a
strong indication (not a proof) that sequences of odd-numbered square binary maps
of primes-and-composites are “able” to “generate” higher spatial complexity than
even-numbered ones.

Some spatial aggregates that appear in even-numbered maps of primes-and-
composites may be due to the presence of twin primes. Allocating primes as black
cells along a line does not reveal any interesting pattern. But it does reveal striking
patterns when carried out over a 2d space. The “Ulam spiral” is a known such pattern,
but it can not reveal differences in spatial complexity as allocations of primes on
square maps do (as, i.e. evidence from small maps suggests here, clumps tend to
appear in even-numbered grids).

But all square binary maps of primes with size n higher than 3 × 3 have rmax

> p and, consequently, the larger maps with number of primes equal to the map’s
maximum entropy class are the 3 × 3 maps.

With these considerations, somequestions for future research arise from the spatial
allocations of prime numbers on square maps:

– Is there an optimal square size for n (with n = even), for which the number of
clumps is maximized in binary maps of primes?

– What are the biggest clumps that can be created in binary maps of primes-and-
composites, with size up to a specified value of n?

– Is there an upper barrier to clump size, whatever the value of n?

We currently do not possess answers to these questions. But answering themmight
give us hints about the ways that number theory underlies spatial complexity and the
reverse: the ways by which spatial complexity may reveal (and lead to) number-
theoretical problems. Understanding the relationships between prime numbers and
spatial complexity can have repercussions in other fields related to spatial complexity.
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For instance. knots can be “primes” or “composites” (nontrivial knots), just as inte-
gers are and the number of prime knots with n crossings increases fast: 0, 0, 1, 1, 2,
3, 7, 21, 49, 165, 552, 2176, 9988, 46,972, 253,293, 1,388,705 etc.

12.3 Square Maps from Transcendental Numbers

God makes the world by calculating, but his calculations never work out exactly and this
inexactitude or injustice in the result, this irreducible inequality, forms the condition of the
world. The world “happens”, while God calculates; if the calculationwere exact, there would
be no world

(Gilles Deleuze 2010, p. 280)

In 1874, Cantor proved that the algebraic numbers are countable, but the real
numbers are uncountable. The transcendental numbers are uncountably infinite. But
how can they be identified? And, transposing this line of thought to spatial analysis of
square maps, howmight these uncountably infinite many transcendentals correspond
to spatial forms? It would make sense to assume that some spatial patterns may
correspond to numbers lurking almost imperceptible and this raises questions about
possible limits to perceiving and understanding spatial complexity. Let us consider
a simple example, by considering a string of binary square maps, of increasing size,
corresponding to the following strings (from left to right):

011111011 . . .

0111110110011101 . . .

0111110110011101110011001 . . .

011111011001110111001100101100111111 . . .

At first sight, none of these strings (or, ultimately, the last string, which comprises
all the previous ones) seems to reveal any known pattern. But they conceal one: if
the digits 1,2,3,4,5 of another string are mapped to 0 s and the digits 6,7,8,9,0 are
mapped to 1 s, the following correspondence between the two strings is derived:

0.011111011001110111001100101100111111
|| | . . .
0.207879576350761908546955619834978770

The latter string corresponds to the decimal digits of the number ii, since

i i = ei ln i = e−( π
2 +2kπ) = 0.207 . . . (12.15)

Expectedly, arbitrarily many digits of the binary string can be isolated and
converted to a spatial representation (Fig. 12.7).
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Fig. 12.7 Changing patterns and clusters of colored and white cells can mislead human perception:
in fact, all these square binary maps are generated by the same number: they represent the first
decimal digits of the number ii= 0.207… with the decimals 1,2,3,4,5 represented by white cells
and the decimals 6,7,8,9,0 by colored cells

Interestingly, following Bellard’s formula, a binary description of π can be
calculated:

π = 1

26

∞
∑

n=0

(−1)n

210n

(

− 25

4n + 1
− 1

4n + 3
+ 28

10n + 1

− 26

10n + 3
− 22

10n + 5
− 22

10n + 7
+ 1

10n + 9

)

(12.16)

which yields a binary string for π = 3.141:

11.00100100001110010101100000010000011000100100110111010010111100 . . .

but if the precision of π were allowed to increase to two more decimals, that is
3.14159, then the binary string is altered after the 13th decimal:

11.00100100001111110011111000000011011100001100110111001000011101 . . .

Thus, depending on the precision of the description of π, Bellard’s formula
produces different binary strings. As in other cases, precision-dependence brings
about significant changes in spatial representations (which, in turn, results in
differences in spatial complexity).

If we take, for instance, the first 49 digits of 3.14… and arrange them in a 7 × 7
map (Fig. 12.8), we would produce a completely different map than if we took the
first 49 digits with the higher precision π = 3.14159. In turn, this means there are
significant differences in the spatial complexities of the two maps.

The largest black block on the left map is 13 while on the right one it is 8 (61%
lower). Yet, the white blocks are comparable: the largest white block on the left is
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Fig. 12.8 The spatial representation of the first 49 digits of π = 3.141 arranged on a 7 × 7 binary
map is different than the representation of the same number of digits of π = 3.14159 (right)

27 (it covers more than half of the 7 × 7 map’s area) while the one on the right is
22 (that is 81% as large). Also, the number of patches on the left map is 4, while on
the map on the right it is 7 (75% higher). The CP1 complexity of the left map is 37
(with the compression λ = W2BW2B), while the CP1 complexity of the right map is
32 (with the compression λ = WB2). The CP2 complexity of the left map is 34 and
of the right is 38 and hence the differences in spatial complexity range from +17%
to −13.5% for only two decimals of π.

Hence, different configurations producing different spatial complexities, may all
be derived from the same transcendental number. And this can not be perceived
initially without knowing the underlying mathematical process or property that has
generated the spatial configuration. Moreover, knowing the transcendental number
behind a map’s spatial structure, not only explains the spatial allocation, but can also
be used to predict a map’s configuration, if enlarged to extend in space.

Recalling that any real decimal number x belonging to the interval [0,1] can be
represented by a continuous fraction and using continued fractions to encode spatial
properties, it is easy to verify that different encodings of the same spatial elements
may produce varying descriptions of spatial complexity and this without changing
the scale of observation. But, identifying an optimal encoding is a computationally
hard undertaking in both binary andmulticoloredmaps.Continued fractions however,
are “base-invariant”, meaning that some numbers which may appear random even-
tually present unexpected “beautiful” patterns. One such is the “golden section” (the
first 50 digits are given here):

1.61803398874989484820458683436563811772030917980576 . . . ,

This apparently “messy” series of decimals surprisingly corresponds to the
simplest continued fraction possible:
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1

1 + 1
1+ 1

1+ 1
1+ 1

1+...

Another such example is
√
2 = 1.4142135623730950488 . . . This number also

appears to have a random allocation of decimals, but as a continued fraction, it reveals
a very simple pattern:

[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . . . . .].

Similarly, the transcendental number e appears random in its decimals

2.71828182845904523536028747135266249775724709369995 . . .

but in continued fraction form it presents a logical procession of even numbers
separated after every two 1 s:

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10,
1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1,
20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, . . . .]

Simple patterns with continued fractions have other numbers also with infinite
decimals; in example π which is equal to to:

4

1 + 12

2+ 32

2+ 52

2+ 72

2+ 92
2+...

or

3 + 12

6 + 32

6+ 52

6+ 72

6+ 92
6+...

These examples show that there may exist a hidden structure in a spatial form
and this structure may correspond to some number, but we have no clue as to how
to identify the number behind the structure.
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Part IV
Understanding Spatial Complexity



Chapter 13
Enigmas of Spatial Complexity

It is a riddle, wrapped in a mystery,
inside an enigma; but perhaps there is a key
(Sir Winston Churchill, 1874–1965,“The Russian Enigma”,
01-20-1939)

Abstract From Thurston’s geometrization theorem to the Banach-Tarski paradox,
spatial complexity can be enigmatic, due to singularities, immersions, infinities (e.g.
Alexander’s wild knots, Antoine’s necklace, Ford circles, Hilbert curves). Measuring
spatial complexity in already “complex” spatial settings constitutes amajor challenge
for future research, as it should combine algorithmics, computation and topology
within a single whole. Further, completely homogeneousmaps can still be complex if
their complexity ismeasured byCP1, because topological differentiation (i.e. division
in square cells) creates spatial complexity: a completely undifferentiated square map
without cells defined on it has a different spatial complexity than a square map with
cells identified in it. And yet, the same allocations of numbers to cells of binary maps
can produce different configurations with different spatial complexities.

Keywords Spatial complexity · Map Complexity · Homogeneity and
Complexity · Algorithmic Complexity · Complexity and Geometry · Complexity
and Topology · Geocomputation

13.1 Geometrization, Singularities and Immersions

Your deep narrow spaces developed into geography;

The altitude was “the mountain of the earth” and to climb down it was a horror

“Tus contadas varas de fondo se nos volvieron geografía;

un alto era “la montaña de tierra” y una temeridad su declive”

(Jorge Luis Borges, 1899–1986,“Curso de los recuerdos”/The flow of memories)

Extending the analysis of spatial complexity to higher than two-dimensional
spaces entails not only difficulties, but surprises also. Measuring spatial complexity
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Fig. 13.1 Some mappings of a binary map by complex functions produce binary maps on which
spatial complexity can be calculated by algorithmic means

on mappings of binary maps which are defined by using complex functions is a chal-
lenge. In some simple cases, it is possible to calculate spatial complexity (Fig. 13.1),
but some mappings of complex functions may produce binary maps on surfaces on
which spatial complexity can be very difficult to calculate algorithmically. Since the
nineteenth century, and after the works of Riemann, Möbius and Klein, we know
that every closed 2d surface is topologically equivalent to orientable spheres (with a
finite number of handles) or to non-orientable surfaces (such as the projective plain
and the Klein bottle) and that three geometries (euclidean, hyperbolic, spherical)
suffice for describing such surfaces. Yet, one century later, it was discovered that
the possible geometries on 3d manifolds are determined by Thurston’s “Geometriza-
tion Conjecture”, which, after its proof by Perelmann (2002, 2003a, b) became the
“Geometrization Theorem”, asserting that every smooth, compact, orientable 3d
manifold can be cut along a set of 2d spheres and 1-holed tori, in a way that each
one of the resulting parts has one of precisely eight possible geometries (Thurston
1982; Thurston 1997).

Before proceeding to Thurston’s geometrization, it is essential to recall that as
the distance d(x,y) between two points x and y varies, the path from x to y will differ
depending on the distance metrics of curve lengths over the manifold. Following
the Geometrization Theorem, aside from the euclidean, spherical and hyperbolic
geometries of the 3d space, there are yet another five less widely known geometries
of 3d manifolds; specifically these are the geometry S2xR (where S2 is the 2-sphere),
H2xR (where H2 is the hyperbolic plane), the geometry of the universal cover of the
Lie group SL2(R), the “sol geometry” (that is the geometry of the Lie group R in
semidirect product with R2) and the “nil geometry” (which is the geometry of the
Lie group of real matrices of the form:
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⎛
⎝
1 x y
0 1 z
0 0 1

⎞
⎠

If x1, x2,x3 are the three spatial coordinates, the metric for the sol geometry is
(Lopez and Munteanu 2011):

ds2 = e2x3dx2
1 + e−2x3dx2

2 + dx2
3 (13.1)

and for the nil:

ds2 = dx2
1 + dx2

2 + (dx3 − x1dx2)
2 (13.2)

These geometries are not easy to visualize. Perceiving shapes in sol geometry
for instance, can be facilitated by solving a set of trigonometric equations in three
dimensions, so as to calculate geodesics within this geometry (Bölcskei and Szilágyi
2006):

x(θ, φ) = − cot θ cosφ(e−r sin θ − 1)

y(θ, φ) = cot θ sin φ(er sin θ − 1)

z(θ, φ) = r sin θ (13.3)

Back in 1833, Bolyai proved that every polygon can be divided in triangles, in such
a way that when re-arranged, these triangles will compose a square. Later, Hilbert’s
third problemquestionedwhether the sameapplies to 3d solidswith tetrahedra instead
of triangles. After Dehn disproved it, it follows that shapes in the 3d space are
significantly more difficult to analyse by means of “tetrahedrizations” than shapes in
the 2d space by means of triangulations. In fact, the 3d space is significantly trickier
than we could possibly expect.With respect to points scattered in a 3-space, Borsuk’s
conjecture for 3-space is that every n-dimensional point set can be decomposed in n
+ 1 pieces of smaller diameter (Borsuk 1933). It would have been convenient to hold
true, but it was disproved for large n (Kahn and Kalai 1993). And a counter-intuitive
result proven by Hausdorff in 1914 asserts that it is possible to divide a sphere into
a finite set of non-measurable parts, which, when re-united, will make two spheres,
each one with area equal to that of the first one. A decade later, Banach and Tarski
proved the same for volumes,with their famous “Banach-Tarski paradox” (Fig. 13.2).
Meanwhile, eversions may also present surprises. A sphere eversion (turning the
sphere inside out) is possible by a homotopy of immersions from S2 to R3 (Smale
1958), following a peculiar procedure (Phillips 1966; Francis and Morin 1980).

The calculation of CP1 or CP2 on some surfaces is impossible, i.e. on the surface
described by

f (x, y) = tan
(
(y − x) − tan(log x) sin(yπ)

√
xy − π − tan x + 2y

)
(13.4)
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Fig. 13.2 A sketch for the visualization of the Banach-Tarski paradox in 3d space

In cartographic, ecological and geographical spatial analyses using 2d maps
however, one mostly deals with surfaces and volumes describable by integrable func-
tions, that is with the provision that a surface or a volume can be described by an
integrable function f . In two dimensions (i.e. in cases of simple planar square maps)
CP1 and CP2 are applicable on bounded regions Rxy of the xy-plane for which the
integral can be calculated because the limit of the sum of infinitesimal areas Ai exists:

¨

Rxy

f (x, y)d A = lim‖�‖→0

n∑
i=1

f (xi , yi )�Ai (13.5)

Equivalently, for 3d regions (volumes), the triple integral of a function f of three
variables that is continuous over a bounded solid region Rxyz is defined (in terms of
elementary volumes Vi) as

˚

Rxyz

f (x, y, z)dV = lim‖�‖→0

n∑
i=1

f (xi , yi , zi )�Vi (13.6)
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These calculations can yield results only if the respective limits exist (when they
do not, it should be one additional cause of concern for spatial complexity). If the
function describing a surface has singularities, then some assessments of spatial
complexity may not be feasible at singularities. Possibly, it would make sense to
recall that one of the most complex spatial objects is the surface described by the
classicWeierstrass function, known since 1872, which is everywhere continuous, but
nowhere differentiable:

f (x) =
∞∑

k=0

ak cos(bkπx) (13.7)

with a being a real number 0 < a<1, b a positive integer and ab > (3π + 2)/2.
At this point, a divergence can be detected between the strictly mathematical and

the “applied” (or “engineering”) approaches to spatial complexity assessments:while
mathematicians may find it difficult to assess spatial complexity of a surface with
singularities, in which case, they might proceed to consider what type a singularity
is and whether it might be removable. The surface created by the potential of the
“swallowtail catastrophe”

V = x5 + ax3 + bx2 + cx (13.8)

is one of the basic unfolding types of singularities in R3 (Zeeman 1977; Thom 1989;
Arnold 1992), combining two minima and two maxima that meet at a single value
of x (Fig. 13.3). Practically however, either CP1 or CP2 can be applied to the entire
surface that is visible from above (even as it is folded), disregarding the singularity
lurking beneath.

Fig. 13.3 A sketch of the
“swallowtail catastrophe”
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In fact, even small differences in the equations describing two surfaces may result
in extremely different plots, different surfaces and hence there is no guarantee that
either CP1 or CP2 would apply to the resulting surface. Compare for instance the
simple smooth surface resulting from the equation

f (x, y) = cos((x − sin y) cos y) (13.9)

with the extremely densely folded surface resulting from an equation that differs
only by its last component:

f (x, y) = cos((x − sin y) cos y − tan(x + y)) (13.10)

Aside of singular points, immersions constitute another enigma of spatial
complexity. If a surface is immersed in a higher dimensional space, it is increasingly
more complex than a surface that is simply embedded in it (Fig. 13.4). In principle,
it would not be possible to apply CP1 or CP2 on such surfaces without discontin-
uous leaps from one part of such a surface to another, due to the self-intersections.
Enneper’s surface for instance, is such an injective immersed surface f (u,v) following
a mapping f (u, v) : R2 → R3 with the general parametric formula

f (u, v) =
(

u − u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
(13.11)

Another immersed surface is “Boy’s surface” that is an immersion of the real
projective plane in R3, with a parametrization by Kusner (1987), by which the coor-
dinates (u,v,w) are expressed in terms of the complex number z with magnitude
‖z‖ ≤ 1:

Fig. 13.4 Example of a 2d
surface immersed in R3
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⎛
⎝

u
v
w

⎞
⎠ = 1

g2
1 + g2

2 + g2
3

⎛
⎝

g1
g2
g3

⎞
⎠ (13.12)

where

g1 = − 3
2 Im

(
z(1−z4)

z6+√
5z3−1

)

g2 = − 3
2Re

(
z(1+z4)

w6+√
5z3−1

)

g3 = − 1
2 + Im

(
z+z6

z6+√
5z3−1

) (13.13)

13.2 Spatial Complexity and Infinity

One should not attribute the idea of the infinite before confirming the entire set of its numbers
that are in between one and infinite.

“τὴν δ� τoà ¢πείρoυ „δšoν πρòς τò πλÁθoς μὴ πρoσ-

ϕ�ρειν πρὶν �ν τις τòν ¢ριθμóν αÙτoà πάντα κατίδ� τòν

μεταξ�̀ τoà ¢πείρoυ τε καὶ τoà �νóς”

(Plato, 428–348 b.C.,“Philebus”, 16c)

Besides singularities, shapes produced by infinite repetitions of elementary
geometric or topological shapes point towards a fundamental problem in spatial
analysis. Following Cantor’s theorem (1878), the number of points in any part of the
line of reals equals the number of points in the entire line of R and, passing on to the
second dimension where things become “really” spatial (at least as conventionally
defined in advance, in the context of this book), it is also equal to the number of points
of any plane in two dimensions, and, by consequence, also equal to the number of
points of any finite-dimensional space. By breaking the connectedness (i.e. by punc-
turing) and therefore changing the cardinalities of the corresponding sets, we are
able to identify classes of infinity. But we are still short of procedures for estimating
spatial complexity of objects in infinite-dimensional and related spaces such as the
Eilenberg−MacLane spaces, the infinite-dimensional complex projective spaces etc.
In the previous sentence, the word “in” leads to further riddles (i.e. assessing spatial
complexity on immersed surfaces in infinite dimensional spaces?). Perhaps, a first
approach in this respect is to measure the spatial complexity of fractal objects such
as the Koch curve or the Hilbert space-filling curve (Fig. 13.5), since these objects
are self-similar across scales, ad infinitum. Typically, Hilbert’s curve is 2d, but it can
be drawn in 3d cubes also (Fig. 13.6) and, in 3d many surfaces can get a lot more
complex, as, indicatively, three characteristic examples from topology reveal:
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Fig. 13.5 The creation of Hilbert’s space-filling curve: from a simple three-segments shape and
with iterative repetitions, the plane is eventually covered

Fig. 13.6 The first step for
the creation of Hilbert’s
space-filling curve in 3d (in a
cube)

(i) Alexander’s horned spheres (intertwined 3d surfaces extending to infinity):
while CP1 or CP2 can be applied to spheres with calculations on strips on grids
meridian-per-meridian, would they also apply on horned spheres?

(ii) Antoine’s necklace is an infinite chain of chains of tori, with diameters
decreasing to zero; it is a “wild embedding” of a set in R3. Wild embeddings
involve shapes defined up to infinity.Whatmight the spatial complexity of such
shapes be? And, even more intriguingly, might there exist shapes with infinite
spatial complexity?

(iii) Ford circles on the plane (Fig. 13.7) are created by drawing initially two circles
with radii 1/2 k2 each (where m,k are integers), centered at (m/k, 1/2 k2) and
continuing with circles of progressively minor sizes for different values of m,k.
The conditions are thatm,k are coprime integers andm/k is irreducible fraction.
Essentially, Ford circles are a modern form of the old greek Apollonian gasket
and, expectedly, there can be 3d Ford spheres also (Northshield 2015).

The possibility that Ford circles essentially yield a visualization of Cantor’s trans-
finite numbers should not be precluded (Pickover 2009). Given that the smallest
such number (the ℵ0) represents the cardinality of the integers, it is an undecidable
problem (under the Zermelo-Fraenkel theory and the axiom of choice) whether the
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Fig. 13.7 The first steps for
making Ford circles on the
plane

next transfinite ℵ1 represents the cardinality of real numbers: ℵ1 = 2ℵ0 . Besides, the
cardinality of the set of (geometrically) “constructible numbers” is also ℵ0. In this
way, Ford circles lead us to a “numbers behind spatial complexity” hypothesis, now
with an additional question: Might spatial complexity be transfinite (or infinite)?

To tackle this question, oneperhaps needs to observe that twomapsof different size
n, with exactly the same spatial pattern in them,may have differentCP1 complexities.
In Fig. 13.8 the small map a is characterized by the irreducible string

W5B2W2BW2BWBW

and hence has an CP1 complexity equal to 13, while the map b has the string

W19B2W6BW6BWBW27

and CP1= 16.
Yet, both maps have exactly the same spatial allocation of their five dark cells,

with exactly the same spatial extent and size (confined in a 3 × 3 area).

Fig. 13.8 The CP1 complexity of the map a is 13, while that of the map b is 16. Yet, both maps have
exactly the same spatial differentiation pattern. So, even if a map is undifferentiated, its size affects
CP1 complexity. The CP2 is the same for both maps: CP2 = 12
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Consider now a completely homogeneous 3 × 3 map with each one and all cells
with the same symbol (A):

A A A
A A A
A A A

For this map, CP2= 0, because CP2 is insensitive to the global spatial complexity
of homogeneous maps, whatever the map size. However, the same does not apply
to CP1 and this prompts to make some further observations. Evidently, the previous
simple map has CP1 equal to CP1{A9} = 2. Consider now a larger map, i.e. 10 × 10,
whose cells are, again, all the same (A):

A A A A A A A A A A
A A A A A A A A A A
A A A A A A A A A A
A A A A A A A A A A
A A A A A A A A A A
A A A A A A A A A A
A A A A A A A A A A
A A A A A A A A A A
A A A A A A A A A A
A A A A A A A A A A

The CP2 of this map is also zero, but CP1{A100} = 4. Equivalently, the uniform
100 × 100 map has CP1{A1000} = 5, and eventually, as the map size n grows, the
CP1 of homogeneous maps is given by CP1(h), that is the CP1 complexity which
is necessarily endowed with a homogeneous map without any heterogeneity at all,
so long as a topological differentiation is defined on the map (definition of square
cells, that is definition of boundaries among cells). With growing map size n, CP1(h)
increases according to the rule:

CP1(h) = 1 + ⌈
log10(n + 1)

⌉
(13.14)

As the map size n tends to infinity:

lim
n→∞

(
CP1(h)

n

)
= lim

n→∞

(
1 + ⌈

log10(n + 1)
⌉

n

)
= 0 (13.15)

Hence, in terms of CP1 complexity, there is a (very small) price to be paid (in
terms of complexity, or “difficulty of understanding” a map), if spatial uniformity
expands to large sizes. And this makes sense, by considering that a 3× 3 square map
with only 9 (identical) cells is a different entity than a 100 × 100 square map with
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10,000 identical cells: if CP1 complexity is adopted, then topological differentiation
creates spatial complexity. This may be negligibly small (depending on the map
size), but certainly non-zero. The increase in spatial complexity of uniform maps
is an altogether different issue, beyond the (obvious) scale-dependence of complex
spatial forms, which is well-known from the literature on fractal objects. In fact, it
touches upon the very delicate relationship between topology and information, in the
sense that an undifferentiated map (without divisions into cells) has a different CP1

complexity than a map with cells defined on it.

13.3 Same Numbers—Different Spatial Complexities

Anyone who considers arithmetic methods of producing random digits is, of course, in a
state of sin

(attributed to John von Neuman, 1903–1957)

Being able to measure spatial complexity however (even under many restrictions
and initial assumptions), does not guarantee that we are able to understand it or
even perceive the mechanisms that have created it. There are reasons to suppose that
behind spatial complexity processes may lurk imperceptible “works of numbers”.
For this reason, besides geometry, topology and algorithmic theory, number theory
might be essential in understanding how spatial complexity is generated. Consider,
for instance, a binary square map, as shown in Fig. 13.9.

Fig. 13.9 A binary square
map. Numbers of black cells
per column and per row are
shown atop and on the right
side of the map respectively.
Notice the regularity in
number sequences repeated
both horizontally and
vertically: 323112
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Fig. 13.10 An alternative
and different-looking binary
map, produced by the same
sequence of numbers:
323112

Without conducting any measurement of spatial complexity, and based only on a
snap visual judgement, this map appears like a random one. But this map conceals
a precise regularity that is not geometric; it is a number-related regularity emerging
from the number of cells that contain black cells per column and per row. The CP2

of this map is 68.
It is even more interesting to consider that exactly the same example sequence

of numbers (323112 in this case) might yield many different spatial configurations
(one such is given in Fig. 13.10) which has a CP2 equal to 78 (that is 14.7% higher).
Hence, the same “spatium numerorum”may be “behind” different alternative spatial
allocations and consequently, different spatial complexities.
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Chapter 14
Taming Spatial Complexity

And so always driven towards new shores,
brought there without return in the eternal night,
will we ever be able to set an anchor
in the ocean of ages, even for one day ?
“Ainsi toujours poussés vers de nouvaux rivages
dans la nuit éternelle emportés sans retour,
ne pourrons-nous jamais, sur l’ océan des âges
jeter l’ancre un seul jour?”
(Alphonse de Lamartine, 1790–1869, “Le Lac”)

Abstract Buffon’s needle, Varignon’s theorem, Jung’s theorem, Sylvester’s
problem, are all hints that random allocations of spatial objects often obey to
geometric restrictions. Further, it can be speculated that, so long as population distri-
butions on surfaces might be represented by strings of symbols, there is no apparent
reasonwhy the arcsine law andKhinchin’s bound should not apply to such strings (i.e.
strings representing binary maps). From an algebraic point of view, spatial symme-
tries may also serve as an extremely powerful tool by which spatial complexity can
be deciphered. FromD4 to Redfield polynomials, symmetries help us understand and
create spatial complexity. Their central role in “taming” spatial complexity brings
associations with important results from graph theory and network analysis (i.e. from
Ramsey theory, the Szemerédi regularity theorem etc). Taming spatial complexity
may be expected by applying a “sudoku” analysis (9 x 9) exploiting the results on
the spatial complexity of 3 x 3 maps,and from Grothendieck’s inequality.

Keywords Spatial complexity · Symmetry and Complexity · Map Complexity ·
Cartography and Complexity · Geocomputation · Sudoku method · Grothendieck

14.1 Taming Spatial Randomness?

“Even in the valley of the shadow of death,

two and two do not make six”

(Leo Tolstoy, 1847–1910)
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Fig.14.1 “Buffon’s needle problem” is about tossing a needle of length L over a space that is
divided by parallel lines drawn at equal lengths, a. If the needle’s length L is equal to a, then the
probability of intersection is P = 2/π

“Buffon’s needle” is a well known case in the mathematical literature, which also
reveals how seemingly unrelated disciplines of mathematics can unexpectedly be
related. In his “Essai d’ Arithmétique Morale” (1777), the Comte de Buffon, posed
a problem of geometric probability: “What is the probability that a needle falling
randomly over a floor divided by parallel lines crosses anyone of them?” (Fig. 14.1).

Indeed, tossing a needle of length L over a space divided by parallel lines of
distance a between them (with L < a), the probability that the needle intersects
anyone of the parallel lines is equal to:

Pr = 2L

α
(14.1)

and if the length of the needle is L = a, then the solution leads to a ratio involving,
surprisingly, the transcendental number π:

Pr = 2

π
. (14.2)

Further, if L > a, then the probability of intersection is:

Pr = 1 − 2

πα

[
a sin−1

( a

L

)
+ L

(√
1 −

( a

L

)2 − 1

)]
(14.3)

so as the length L tends to infinity, the probability of intersection tends to certainty.
Laplace extended Buffon’s work in 1812 to a rectangular grid, demonstrating that

if the distances are a and b apart respectively, then the probability of a needle length
l intersecting the grid is:
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Fig. 14.2 “Varignon’s
theorem” as an example of
“hidden” spatial laws. If four
randomly selected points
A,B,C,D define a convex
quadrangle on the plane,
then the midpoints of any
such convex quadrangle will
always define a
parallelogram (E,F,G,H)

Pr = 1 − 2L(a + b) − L2

παb
. (14.4)

Themain interest inBuffon’s needle problem lies in the fact that the transcendental
number π pops up from spatial probability problems to the extent that π might even
be evaluated to several decimals, simply by conducting repeated experiments with
different values ofL and a. So an experiment in spatial randomness eventually renders
an unanticipated solution involving the transcendental number π in it and hinting
that spatial randomness may obey to geometric laws.

But Buffon’s needle problem is just one example. Surprisingly, locations of
geometric objects in 2d very often obey to geometric “rules” governing the rela-
tionships among them. These rules may nevertheless pass unnoticed, even during
everyday geometric and cartographic measurements and applications.

One characteristic example is “Varignon’s theorem”: let there be four randomly
selected points allocated on the plane, defining an arbitrary (convex) quadrangle;
then, the theorem ascertains that the midpoints of the sides of this quadrangle form
a parallelogram (Fig. 14.2). The unexpected result here is that the shape resulting
from joining the midpoints of the quadrangle’s sides will always be a parallelogram.

Along the same lines, “Jung’s problem” asks whether it is always possible to
enclose a finite set of scattered points in a circle (Jung 1901, 1910). The theorem
states that fromafinite set of scattered points,with largest possible distance h between
them, no matter how scattered the points may be in space, it is always possible to
enclose them in a circle with maximum length equal to:

a = h√
3
. (14.5)

This length is the 2-dimensional case of the general Jung length for n-dimensions
(Dekster 1995, 1997):
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a ≤ h

√
n

2(n + 1)
(14.6)

Similarly,Hall (1982) discovered that picking any three randompoints fromwithin
a circle anddefining a trianglewith them, the probability of obtaining an acute triangle
from these points can be calculated exactly as:

Pr = 4

π2
− 1

8
≈ 28% (14.7)

As the dimension of the n-ball increases, so does the probability of obtaining an
acute triangle, mounting up to 90.5% in the 9th spatial dimension.

Another related problem is to find the number of incidences between m points
and L lines on the plane. The solution is (Bollobas 2010):

2(2mL)2/3 + L (14.8)

while these m points determine at most.

(4m)4/3 + m (14.9)

unit distances among them (Szekely 1997).
Similarly, the average distance between two points on the surface of a circle is

(Weisstein 2011a):

Dc =
∫ π

0

√
2 − 2 cos θdθ∫ π

0 dθ
= 4

π
(14.10)

and the probability of circle and line picking is also a constant (Weisstein 2011b):

2 − 16

π2
(14.11)

For further information, the reader may refer to the relevant texts relating to
geometric probability i.e. (Kendall and Moran 1963; Kendall et al. 1998).

Thus, laws and constants are involved in random geometric allocations. Now let
us consider two further examples of spatial probability, beginning with “Sylvester’s
problem” (posed in 1865): Let E be a bounded, everywhere convex, planar domain.
The problem then is to compute the probability of four points being located in E,
such that one of them lies in the triangle formed by the other points. The formula
giving the probability is:

Pr = 4

A4
E

˚

E

A(x1, x2, x3)dx1dx2dx3. (14.12)
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If the spatial domain E is a triangle, then P = 1/3 and if it is an ellipse, then

Pr = 35

12π2
. (14.13)

More generally, as shown by Blaschke in 1917, for any arbitrary shape of the
domain R, the following inequality holds:

35

12π2
≤ Pr ≤ 1

3
(14.14)

A similar argument applies to the 3-dimensional space: the probability that 5 points
randomly allocated in a 3-dimensional bounded domain E can form a polyhedron
with 5 vertices is (Berger 2010):

Pr = 5

A4
E

¨ ¨

E

A(x1, x2, x3, x4)dx1dx2dx3dx4 (14.15)

Hence, even random allocations of spatial objects often obey to geometric restric-
tions and formulas. Unfortunately however, the existence of such restrictions may
not be as helpful as we would like in order to explain spatial order and disorder.

Aside of these, refreshing the very basics of probability theory may be rewarding
for gaining an even deeper understanding of spatial complexity and for this we need
to revert back to the basic stochastic behavior of one-dimensional series of symbols.
In fact, blocks of cells of either 0 s or 1 s are expected to repeatedly appear in a long
binary string of stochastic events, if we allow a “sufficiently” long observation time.
Specifically, in 1d, for every 0 < a < 1, the probability that after n-trials the sequence
of the number of coin tosses that one or zero occurs repeatedly Sn < na is given by
the “arcsine”:

lim
n→∞(Pr (Tn < a)) → 1

π

a∫
0

1√
x(1 − x)

dx = 2

π
arcsin

(√
a
)

(14.16)

This is the well-known arcsine law (discovered by Paul Levy in 1939). There is
no apparent reason why this law should no apply to a string of symbols representing
the consecutive cells of one 2d strip only (of fixed width), suggesting that blocks of
same type of cells are expected to appear in any sufficiently large map that consists in
one strip only. Applying the Borel-Cantelli lemma (1917) to a such a one-strip-only
map i.e. with black and white cells, it is almost certain that both tossings (black and
white) can be synchronized only finitely many times (“synchronized” means that
there will be as many 0 s as 1 s after n-tosses). However long or disorganized the
tossing experiment may be, its fluctuations of the sequence Sn-np´ will be bound
(where p´ is the apriori probability given by the law of large numbers as stated by
Borel in 1909). This is guaranteed by the “Khinchin theorem bound” (1924), assuring
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that for every ε > 0 and for large enough n, almost surely, the sequence Sn minus nq
will be bound from above by the bound:

(1 + ε)
√
2p′(1 − p′)n ln ln n (14.17)

or, as often alternatively expressed,

lim
n→∞ sup

Sn − np′
√
2p′(1 − p′)n ln ln n

= 1 (14.18)

14.2 Taming Spatial Complexity with Symmetries?

I reach to my center, to my algebra and to my key,

my mirror. Soon I will know who I am.

“Llego a mi centro, a mi álgebra y mi clave,

a mi espejo. Pronto sabré quién soy”

(Jorge Luis Borges, 1899–1986,“Elogio de la sombra” /In praise of darkness)

It appears normal for humans to try to understand spatially complex forms by
rapidly spotting symmetries on them (Fig. 14.3), but, despite our fairly advanced

Fig. 14.3 One normally first
looks for symmetries in
order to understand what a
spatially complex shape
might be (or represent).
Failing to figure out what
this shape is supposed to be,
it may be satisfactory
nevertheless to notice that it
is symmetric, so there is a
(minimum) self-assurance
that, at least, there is some
logic in it
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Fig.14.4 Beginning with a 4 × 4 binary map, multiplying it so as to create a 12 × 12 map, then
proceeding to create a 24 × 24 and, eventually, a 48 × 48 binary map. The underlying simplicity
of the 48 × 48 map (the fact that it is composed by symmetry operations on a basic 4 × 4 map) is
hardly perceptible at first glance

knowledge of mathematical symmetries, psychological studies of symmetry detec-
tion by humans (Huang and Pasher 2002) revealed that the visual detection of spatial
symmetry is often imprecise. This however does not preclude the possibility that, in
all likelihood, humansmay fail to perceive the presence of small symmetric patterns if
they are arranged so as to form a larger non-symmetric figure. Consider, for instance,
a figure composed of various symmetric repetitions (inversions, rotations left, right,
etc.) of the same basic 4 × 4 map (Fig. 14.4).

It appears that the answer to the question whether symmetry and structure are
essential to understand spatial complexity by using algebraicmethods (Papadimitriou
2012) could only be sought at a fundamental level. “Ramsey theory” is probably
relevant in this respect. This theory stems from combinatorics and graph theory and
explores the question of how big should the original system be, so that at least one of
its subsystems has a certain property. Further to Ramsey’s theorem, the reader is also
referred to the Van der Waerden, Erdös- Szekeres and Hales-Jewett theorems (Van
der Waerden 1927; Erdös and Szekeres 1935) and to the related literature (Harary
1983; Landman and Robertson 2004). To those unacquaintened with Ramsey Theory
however, it suffices to say that it essentially ascertains that structures inevitably
appear in subsystems and there is always a subsystem with a higher degree of
organization than the original system, to be found in every partition of any large
structured system or object (although it does not specify which subclass is the one
that contains the structured sub-system). By virtue of Ramsey’s theorem (Ramsey
1930), any large enough finitely colored complete graph is necessarily endowed
with some large monochromatic substructure. Such graphs have k vertices and each
vertex is connected to every other by an edge. The smallest complete graph which,
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if colored with two colors only (i.e. black B and green W), must contain either a
black or a white subgraph and defines the Ramsey numbers R(B, W). Even for small
graphs, the values of Ramsey numbers have proven difficult to determine and few of
them are known. For instance, we know that R(3, 3) = 6 that applies to triangular
graphs, R(4, 4) = 18, R(3, 4) = 9, R(5, 3) = 14. We still do not have an evaluation
for R(5, 5) because that would require the drawing of an awesomely large number of
graphs (approximately 2900). Making only a slight shift from graphs to networks, the
“Szemerédi regularity theorem” applies to all networks and ascertains that, however
big a network may be, it can still be understood by adopting finite approaches.
Formally, if G is a graph with at least V vertices, then there is an integer k with m ≤
k ≤ M and an ε-regular partition of the vertex set of G into k sets, for every ε > 0
and positive integer m (Szemerédi 1975,1978). The profound relationship between
symmetries in mathematics and conservation laws in physics proven by Noether
(1918) showed that conservation laws follow symmetry properties of nature: energy
corresponds to symmetry with respect to time shift, momentum reflects geometric
(spatial) shifts and angular momentum corresponds to spatial rotation. Both Ramsey
Theory and Noether’s theorem imply that symmetry and structure lie at the heart of
natural phenomena and given that maximum entropy implies equal probabilities, it
has been claimed (Rosen 2008, p. 280) that “the entropy death of the universe can
also be called its symmetry death”.

Symmetries play a key role in calculating all possible spatial configurations from
generic ones. By exploring symmetries, we are not only able to understand spatial
complexity of squaremaps, but also to create spatially complex forms from them. But
how does a spatial pattern emerge from a repetition of spatial symmetries? Take, for
instance, D4 (the symmetry group of the square). This can be described by a set of 8
matrices, each one representing a symmetry type of the square (vertical, horizontal):

IS =
(
1 0
0 1

)
, HS =

(
1 0
0 −1

)
, VS =

(−1 0
0 1

)
, (14.19)

the rotational symmetries:

R90 =
(
0 −1
1 0

)
, R180 =

(−1 0
0 −1

)
, R270 =

(
0 1

−1 0

)
(14.20)

and the symmetries with respect to the left (DS) and right (DS’) diagonals of the
square:

DS =
(

0 −1
−1 0

)
, D′

S =
(
0 1
1 0

)
. (14.21)

It is easy to verify that multiplying anyone of these eight matrices with any other
one yields the equivalent result of the composition of symmetries; in example
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R90DS =
(
1 0
0 −1

)
= HS (14.22)

In 3d, the enumeration of all possible spatial configurations by means of symme-
tries is possible by extending the Burnside lemma to three dimensional objects
by making use of the Redfield polynomials (Redfield 1927) which give the group
symmetry G of the cube:

1

|G|
∑
g∈G

sa1(g)

1 s
a2(g)

2 sa3(g)

3 ... (14.23)

So the number of ways of placing i.e. 4 squares and 4 circles at the 8 corners of a
cube (with only one ball at each corner) is calculated from the composition of groups
G1 and G2: G1 ⊗ G2.

where

G1 = 1

242
(
s41 + 3s22 + 8s1s3 + 6s21s2 + 6s4

)2
(14.24)

and

G2 = 1

242
(
s81 + 9s42 + 8s21s23 + 6s24

)2
(14.25)

Hence, the product has a sum of coefficients equal to:

1

243
(
188! + (512 × 122!322!) + (81 × 244!) + (216 × 422!)) = 7 (14.26)

and thus result seven distinct configurations of the cube (Fig. 14.5).

Fig. 14.5 The seven possible cube configurations, with four squares and four circles allocated to
each one of its eight corners
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Considering the wealth in artworks with friezes and symmetric patterns all over
the world, it seems plausible to assume that the exploration of the total number
of all possible symmetries of certain geometric shapes shuld have been of interest
to humans since very early. But it was as late as 1891, when Fedorov proved that
there are only 7 types of linear symmetries in friezes, 17 types of symmetries for
planar shapes, 230 types for 3d symmetry groups. We also now know there are 4783
symmetry groups in the 4d space. Hilbert questioned whether might exist a finite
number of symmetries for each n-dimensional space (this was his 18th problem), but
Bieberbach proved that there is indeed a finite number of symmetries for each spatial
dimension, but we still do not know which formula gives them.

14.3 Taming Spatial Complexity with Grothendieck’s
Inequality?

“To every problem there are two extreme versions:

the Russian version that nobody can simplify

without making it trivial, and the French version

that nobody can generalize any further”

(Vladimir Arnold, 1937–2010,“Real Algebraic Geometry”, 2013, p.63).

With some degree of generalization admittedly, it can be said that what lies
behind any distribution on a square map is, eventually, numbers. These numbers
are linked to spatial patterns and the best way to verify this is by exploring the
resulting spatial complexity that is generated as the “substratum” or numbers varies.
As unexpected connections of number theorywith spatial complexitymay pass unno-
ticed, the connections between spatial objects and algebraic methods can be quite
revealing. Following the Tarski-Seidenberg theorem for instance, there exists a finite
algorithm for classifying the topological properties of curves defined by polyno-
mial equations (although this requires a high number of calculations), and applies
to even low values of the degree polynomial. And, the relation of spatial complexity
with geometric complexity theory (a theory of computational complexity that mainly
aims to prove that P 
= N P as well as some hypotheses of algebraic geometry) is
another issue to be explored in the future, as are the links between knots, 3-manifolds
and prime numbers that have been established from within the field of “arithmetic
topology” (Reznikov 1997, 2000; Morishita 2009). In our efforts to decipher spatial
complexity nevertheless, both algebra and combinatorics can definitely help. Trying
to decipher spatial complexity however, we should not lose sight from the fact that
surprising results may show up unexpectedly. Consider for instance, the Lambert
function:

xa − xb = (a − b)xa+bn (14.27)
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weaving a real variable x and its powers (a and b) with a positive integer n. The
solution of this equation is given by the Lambert series W (x):

W (x) =
∞∑

n=1

(−1)n−1nn−2

(n − 1)! xn

= x − x2 + 3

2
x3 − 8

3
x4 + 125

24
x5

− 54

5
x6 + 16.807

720
x7 + ... (14.28)

which yields as a result a real number for every x ≥ −1/e.
This seemingly uninteresting function has the unexpected property (Eisenstein

1844) that the closed form:

−W (− ln z)

ln z
(14.29)

is the exact result of the calculation of the tower of infinite powers of the complex
number z:

zzz...

(14.30)

and so this “intimidating” tower has an unexpected closed form solution:

zzz... = −W (− ln z)

ln z
(14.31)

Indeed, as the history of mathematics and physics has demonstrated time and
again, breakthroughs await us at every turn of the road. They should not be under-
estimated, nor their possible impacts on gaining a better understanding of nature or
advancing technology to fields that might have been considered prohibitive before.
One characteristic example is Ramanujan’s truly amazing formula linking e, π , and
the golden section (ϕ), all together within a single expression:

1

1 + e−2π

1+ e−4π
1+...

= (
√
2 + ϕ − ϕ)e

2π
5 (14.32)

Another is the multiplication of two nxn matrices. If performed in the usual way,
it is of the order of 2n3 additions and multiplications. But using Strassen’s method,
the number of operations is analogous to nlog7. Observing that log27 < 3, it is evident
that Strassen’s algorithm reduces the complexity of calculations. Spatial analysis
has not and could not be left unscathed by such computational shortcuts. Consider
for instance, that a matrix may represent the values of a square map. Then, the
Grothendieck inequality states that if ai,j is an nxn (real or complex) matrix with
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∑
i, j

ai, j si t j

∣∣∣∣∣∣ ≤ 1 (14.33)

for all (real or complex) numbers si, tj of absolute value at most 1, then there exists
a constant kG, the so called “Grothendieck’s constant”, with the property that

∣∣∣∣∣∣
∑
i, j

ai, j
〈
Si T j

〉∣∣∣∣∣∣ ≤ kG (14.34)

for all vectors Si, T j in the unit ball B(H) of a real or complex Hilbert space.
In fact, the Grothendieck constant is the smallest constant kG that satisfies this

inequality for all nxn matrices. Grothendieck himself tried to determine the value of
this constant and found that:

1.57 ≈ π

2
≤ kG ≤ sinh

(π

2

)
≈ 2.3 (14.35)

Eversince this discovery, the exact value of k remains a mystery. For instance, it
was conjectured (Krivine 1979) that:

1.67696... ≤ kG ≤
(

π

2 ln(1 + √
2)

)
= 1.7822139781... (14.36)

but this conjecture was disproved (Braverman et al. 2011).
The implications of Grothendieck’s inequality for physics, computer science and

human knowledge are profound and can be far reaching. In quantum mechanics
for instance, kG may be interpreted as an upper bound for the deviation in the Bell
inequalities,marking the shift froma classical to a quantumstate. In network analysis,
it is possible to detect communities from within random graphs (i.e. of the Erdös-
Rényi type) by using Grothendieck’s inequality.

Examined from a topological perspective, one of the major issues emerging from
Grothendieck’s work is the fact that it is directly related to Gelfand’s concept of
“nuclear spaces”. These are locally convex vector spaces of infinite dimension which
are endowed with properties of finite-dimensional spaces (Pajot 2015). Thus, the
inequality is able to relate a mathematical expression that is non-calculable (or, at
least NP-hard) by an equivalent expression that is calculable by means of “semidefi-
nite programming” and therefore solvable in polynomial time (Pisier 2012). Conse-
quently, it won’t be too far from the truth to claim that Grothendieck’s work paved
the way to render the infinite and non-calculable into finite and calculable. And this
may very well have numerous favorable implications for spatial analysis and, by
consequence, for the analysis of spatial complexity.
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14.4 Taming Spatial Complexity with a “Sudoku Method”

“Take no thought of the harvest,

but only of proper sowing”

(Thomas Stearns Eliot, 1888–1965, “The Rock”)

When a map’s spatial complexity is measured, it can be compared against the
maximum values of CP1 and CP2 that are readily calculated from the map’s size n.
But thismeasurement of complexity is, in away, self-referential as the resulting value
of CP1 or CP2 refers to the map’s size only; not to the possible spatial distributions
that different colors might assume on that specific map size. For map size 3 × 3, we
now know the exact formulas giving CP1 and CP2 per entropy class. Given this, the
spatial complexity of any map may also be compared to what its complexity would
be expected according to its entropy class. This method can be called a “sudoku
method”, because it requires the division of a map in 9 × 9 squares. Consider, for
instance, a 9 × 9 binary map (Fig. 14.6).

Subdividing it into 9 quadrants (T1 to T9, from the upper left corner to the down
right corner of the image), of size 3 × 3 each, the allocation of the dark cells in the
image (the entropy class r) is given by the following matrix:

r(Ti ) =
⎛
⎝ T1 T2 T3

T4 T5 T6

T7 T8 T9

⎞
⎠ =

⎛
⎝ 5 3 9
1 6 2
2 4 0

⎞
⎠ (14.37)

which is equivalent to the following matrix of different cells:

Fig. 14.6 An example 9 × 9
binary map
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r ′(Ti ) =
⎛
⎝ 4 3 0
1 3 2
2 4 0

⎞
⎠ (14.38)

because all higher than 4 values of complexity are the same as those remaining to
9. The expected spatial complexity depends on the total number of different cells
allocated on the landscape (as “different” are considered the cells of matrix r’),
because the (3 × 3) quadrants with numbers of black cells (entropy class r) from 5
to 9 have the same complexity values as the quadrants with entropy classes from 1
to 4, since they are simply symmetric opposites.

The calculation of CP1 for each 3× 3 quadrant (calculated with rotations allowed
also), symbolized here as CP1 (Ti) yields the following matrix:

⎛
⎝ CP1(T1) CP1(T2) CP1(T3)

CP1(T4) CP1(T5) CP1(T6)

CP1(T7) CP1(T8) CP1(T9)

⎞
⎠ =

⎛
⎝ 6 4 2
4 8 8
4 6 2

⎞
⎠ (14.39)

Summing up all CP1 complexity values for all quadrants of the map:

CP1total =
Ti =9∑
Ti =1

CP1(Ti ) = 44 (14.40)

it follows that the average complexity of the map per quadrant Ti is:

CP1 average = 44/9 = 4.89 (14.41)

This“average complexity” of themap at the 3× 3 quadrant level can be compared
with the“expected complexity” of 3 × 3 binary map configurations that is derived
from the already known formula:

CP1 = 2.03129 + 2.31226r − 0.392857r2 + 0.0341667r3 (14.42)

Since the map has 19 different cells in total, anyone of the 3 × 3 quadrants is
expected to have (on the average) raverage = (19 different cells)/(9 quadrants)= 2.111
different cells per quadrant. From this average entropy class, and from the curve of
CP1(r) of the expected complexity, the average expected complexity per quadrant can
be calculated. The CP1 corresponding to raverage = 2.111 different cells is calculated
from the formula discovered for all 3 × 3 binary maps: CP1 expected = 5.4832. This
is the “expected CP2 complexity” of the map at the 3 × 3 quadrant level that is
derived from the model of all 3 × 3 binary square maps. We define the “expected
complexity” to be the “a priori complexity”, that would on the average be expected
from a random allocation of the image’s dark cells in it. Clearly, the a priori spatial
complexity depends on the average entropy class per quadrant. Therefore, the ratio
of the expected to the average complexity is:
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Fig. 14.7 A more complex 9
× 9 binary map

CP1 relative = CP1 average/CP1 expected = 4.89/5.4832 = 89.18% (14.43)

This is the relative complexity of the map, that is a measure of the comparison of
its spatial complexity compared to the expected spatial complexity that corresponds
to the map’s entropy class. In this case, it means that the observed complexity of this
map is approximately 89% of the spatial complexity that would be expected from a
random allocation of as many dark cells in this 9 × 9 binary map. Adopting exactly
the same procedure for CP2 and on the basis of the formula

CP2 = 0.0192857 + 2.5556r + 0.122143r2 − 0.104167r3 (14.44)

it follows that CP2average = 30/9 = 3.33, CP2 expected = 4.945 so the result is
CP2 relative = 67%.

Simularly, for themap of Fig. 14.7.,CP1 relative = 117.5%andCP2 relative = 103.6%
and this allows us to conclude that this map is more spatially complex.

There is a strong cross-disciplinary need for methods to calculate and compare
the spatial complexities of two-dimensional images, maps, pictures, landscapes etc.
in 2d representations. This aim can not be satisfied without having a measure to
compare spatial complexity against. For this reason it was necessary to calculate all
the expected possible complexity types for all possible binary spatial configurations.
In the present book, this objective was met at the level of 3 × 3 maps. The CP1

and CP2 of “large” maps are clearly difficult to calculate as they were for all 3
× 3 binary maps. But, with the sudoku method shown here for small maps, it is
possible to calculate the spatial complexity of any “small-sized” map. Furthermore,
any map can be divided in a grid of cells that would be multiples of 3× 3 elementary
cells, as shown here, so that nested sudokus can be created to cover larger maps and
each sudoku can be considered as the quadrant of its immediately larger sudoku, in
a fractal-like self-similar spatial division. And then, it is possible to use the same
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formulas to derive apriori complexitymeasurements, by comparing the observed (the
measured) map complexity with the theoretically expected from a random allocation
of dark (different) cells on themap. This comparison provides ameasure of themap’s
spatial complexity with respect to its a priori expected spatial complexity. Evidently,
if larger than 3 × 3 binary maps were used, the results would differ. Although this
is obviously true, it has to be considered that we are still short of a formula that
would give us the CP1 complexities of all the i.e. 36,493 configurations that would
be required to calculate for the 4 × 4 binary maps (or for larger maps, such as 5 ×
5, 6 × 6 etc.).
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Part V
Epistemological, Psychological,
Geophilosophical and Aesthetic

Perspectives on Spatial Complexity



Chapter 15
Spatial Complexity,
Psychology and Qualitative Complexity

The streets are the corridors of the soul and obscure trajectories
of memory.
“Les rues sont les couloirs de l’ ame
et des obscures trajectoires de la mémoire”
(Paul Virilio, 2007, p.21)

Abstract How is spatial complexity perceived by humans? The study of spatial
complexity is scale-dependent: a spatial entity that may look simple at some spatial
level, may reveal many details if examined closer at finer spatial scales. To perceive
complexity, we often resort to generalizations: thematic (grouping up similar themes,
i.e. similar colors) and geometric (grouping up similar shapes). We are able to retain
the basic (or prevalent) thematic and geometric properties of spatial objects so as
to make sense of them without significant loss of information. The principles of
gestalt psychology are particularly relevant, as is the concept of “visual complexity”,
which has attracted the attention of many researchers for almost a century. Examples
of binary maps are presented, showing that spatial randomness can not always be
recognized easily, while the reverse also holds: regularities in allocations of black
cells in a binary map can easily be misperceived visually as random allocations.
Yet, the extent to which spatial complexity is associated to qualitative complexity is
hitherto unknown, but it relates to one of the uttermost problems of human existence:
discovering and eliciting meanings from spatial entities. Visual material conveying
strong sense of meaning does not always coincide with high spatial complexity.

Keywords Spatial complexity · Gestalt psychology · Qualitative complexity ·
Complexity and Psychology · Geography and Psychology ·Map complexity

15.1 Gestalt Psychology and Spatial Complexity

“I dare not guess; but in this life of error, ignorance, and strife, where nothing is, but all
things seem, and we the shadows of the dream”

(Percy Bysse Shelley, 1792–1822, “The Sensitive Plant”)
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Fig. 15.1 Hermann grid
creating the illusion of small
grey squares in between the
black ones

The perception of complexity has attracted and keeps attracting the interest
of experimental psychologists for more than fifty years (Attneave 1957; Taylor
and Eisenman 1964; Day 1967; Chipman 1977; Nicki and Moss 1975; Hekkert
and Wieringen 1990; Messinger 1998; Strother and Kubovy 2003). Experimental
psychology in particular, is rich in research results relating to the perception of space,
and many of these are intimately related to the spatial complexity of the object(s)
viewed, from the way we perceive faces (Afraz et al. 2010) to the way we perceive
landscapes and ordinary objects. The perception of spatial patterns is a complicated
issue, replete with surprises, such as (among many) illusory contours, grey ghost
images “seen” from within Hermann grids (Fig. 15.1), “Mach bands“ of shadows,
“texture gradients” (which are perceived when equally-spaced elements in a scene
appear denser from longer distances—see Fig. 15.2) etc.

Experimental evidence has suggested (Popple and Levi 2005) that items placed
close to one another distort the sense of order and increase spatial uncertainty to
the viewer, although spatial thinking may actually reduce the complexity of several
problems (Cain 2019). The “parahippocampal place area” of the temporal cortex has
been identified by neurophysiology as the region of the brain that is activated upon
looking at physical spaces (whether they are indoors or outdoors), in the same way as
the “fusiform face area” under the temporal lobe is activated when viewing faces. By
activating the parahippocampal gyrus, the brain automatically identifies particular
objects it can use for navigation in space and use them as landmarks for guidance.

Perhaps no other psychological theory is more related to the perception of spatial
complexity than gestalt psychology, the basic tenets of which are articulated in a
number of “laws”. With the exception of one that is basically time-related (the “law



15.1 Gestalt Psychology and Spatial Complexity 231

Fig. 15.2 The “texture
gradient”: equally-spaced
elements appear densely
packed if viewed from
longer distances

of common fate”), the remaining laws are space-related and, as such, they should
clearly be brought in the context of spatial complexity. So let us briefly examine them
one by one vis-a-vis with spatial complexity:

The “law of simplicity” (or “pragnanz”) asserts that perception tends to eventually
produce as simple structures as possible. In other words, this is equivalent to claiming
that humans have an inherent mechanism for reducing complexity (including and
most prominently) spatial complexity, so as to create a spatially simpler structure
that the brain’s aparatus can proccess as rapidly as possible. According to this law,
similar spatial elements tend to be grouped together (Fig. 15.3). This is another
way of expressing the thematic generalization of visual input and, quite probably,
many animal species are endowed with this capacity. A further generaliation (and
complexity reduction) is pertinent to the “law of nearness” asserting that the mind
tends to group together elements that are near to one another (Fig. 15.4).

Essentially, this is a mental process of spatial complexity reduction and can be
conceived along the same lines as the “law of good continuation”, which ensures that
our perception tends to connect spatial elements so as to get a sense of continuity
(Fig. 15.5). Finally, the “law of familiarity” explains howspatial elements are grouped
easier if the resulting groups are conducive to meaningful or familiar spatial shapes.
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Fig. 15.3 The gestalt law of simplicity: an array of squares is perceived as either columns or rows
of triangles. If some of them are changed to triangles, then the shape will be perceived as a spatial
arrangement of vertical columns

Fig. 15.4 The gestalt law of nearness: Three squares are easily discernible in this space of points,
due to the spatial proximity (nearness) of four points in each one of these three sets of four points

Fig. 15.5 The gestalt law of good continuation: Beginning a line from point A leads to B (not to
D), as, according to this law, connected points of lines or curves follow the smoothest course from
a start point to an end point. The same applies to the curve starting from C: it “normally” ends at D
instead of B
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Essentially, this law expands further the previous ones, by linking spatial complexity
with qualities (meanings of spatial objects).

Aside of these, the “problem of perceptual segregation” consists in distinguishing
a figure from its backdrop. It was accepted right from the beginnings of the theory of
landscape ecology in which the main landscape cover (the backdrop in this case) is
called “thematrix” that surrounds dispersed fragments and patches of other landscape
covers. In the arts, the impressive impact of gestalt psychology on art is exemplified
by the “Group de Recherche d’ Art Visuel” that was founded in Paris by several
artists with Victor Vasarely (1908–1997) among them, thus founding the “optical
art”.

Beyond these classic laws of gestalt psychology however, an alternative set of
gestalt-type principles has been suggested (Palmer 1992; Palmer 1999; Palmer and
Rock 1994). As in the gestalt laws, aside of one principle that is time-specific (the
“principle of synchrony”), the remaining two are both space-specific. The “principle
of uniform connectedness” asserts that connected regions according to some physical
or geometric criterion (color, brightness, texture etc.) tend to be perceived as a single
unit, while the “principle of common region” explains how spatial elements in the
same region of space are grouped together. These principles seem to match exactly
with the thematic generalization of maps and images, so as to reduce the perceived
spatial complexity to levels affordable by the brain for processing. The latter principle
also reveals the psychological importance of borders among spatial units.

15.2 Scale-Dependence of Spatial Complexity

The image has become the final form of commodity reification

(Guy Debord, 1931–1994,“The society of the spectacle”, 1967)

The spatial complexities in the world around us are difficult for the human brain
to handle, and this is precisely why spatial complexity is so much intricately linked
to the psychology of perception. Indeed, unless we have to make a highly detailed
analysis of an image for some particular purpose, it would be vain to consider its
analysis at the pixel level, unless there is a good practical reason to do so. Analyzing
spatial complexity for practical purposes however, will most often eventually involve
some level of generalization. Truly, while an image may appear “complex” at some
level of observation, it may as well appear “simple” at another (Fig. 15.6).

This observation points to the “generalization” of spatial information that is indis-
pensable to the brain’s internal mechanisms of information processing. Generaliza-
tion helps the viewer (or the researcher) to derive meanings from visual objects of
high spatial variability. This is a twofold process: thematic (unification of similar
classes/colors/categories/themes etc.) and geometric (unification of similar shapes),
so as to derive a simplified version of the initial spatial object, which nevertheless
still makes sense to the viewer, although with less detail (Fig. 15.7).
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Fig. 15.6 Spatial complexity is scale-dependent: a spatial entity that may appear simple at some
spatial resolution may gradually reveal many chromatic details if examined closer, at finer spatial
scales. Here, a photograph of the center of Sao Paulo, as examined at different levels of observation:
the spatial complexities of the resulting maps are expectedly different

Fig. 15.7 The two types of “generalization” of an image: thematic (grouping up similar themes,
i.e. similar colors) and geometric (grouping up similar shapes together). By instantly applying
generalization procedures, the human mind is able to retain the basic (or prevailing) thematic and
geometric properties of a spatial object so as to be able to make sense of it, by affording the least
loss of important information
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Not only thematic, but also geometric simplifications are necessary in order to
process the information arising from highly complex spatial forms and surfaces.
Using quadrants is one method for such complexity-sensitive spatial analyses
(Papadimitriou 2013). The generalization process however, taken to the extremes,
may lead to over-simplification, in which neither the original meaning of the spatial
object is retained, nor its critical geometric details (Fig. 15.8). When it happens, the
hallmark of over-simplification is the impairment of meaning or the loss of funda-
mental spatial and thematic characters of the original spatial object, to the extent that
the simplified object loses completely the meaning or principal character or quality
of the original object. These being said, it follows that there is a strong qualitative
aspect of spatial complexity, which needs to be considered when embarking to carry
out any analysis of spatial complexity. And these qualities are, quite often, inexorably
linked to the spatial resolution of the object observed. Further, since the foveal vision
is better than the peripheral vision, the further a symbol or pattern or spatial element
lies from the viewer’s focus of attention, the less it is discernible. The perception of

Fig. 15.8 A generalization of a spatial object should not lead to over-simplification, in which the
original spatial complexity is lost by its largest part, along with the meaning of the original object.
The overly simplified image at the bottom right bears almost none of the messages that the initial
image emits to the viewer. Yet, there is no general rule defining when and how much should spatial
complexity be simplified
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spatial complexity is therefore focus-dependent: the more remote a spatial element
is from the focus of the gaze, the less it is perceived by the viewer (although it may
well be present).

It is for this reason, that “salience maps” have been created depicting fixations for
the eye, as the gaze casts on some 2d or 3d object. Such maps reveal how the viewer
focusesmore on some particular regions of the scene or picture (Parkhurst et al. 2002)
and they might be used as surrogate auxiliary indicators of the visual complexity of
an object. Experimental evidence (Kidd et al. 2012) has suggested that 7–8 months
old infants tend to focus on neither too simple nor too complex items, but whether
this applies to adults also and under what conditions is still largely unknown.

15.3 Perception of Spatial Randomness and Spatial
Complexity

“We are such stuff as dreams are made on”

(William Shakespeare, 1564–1616, “The Tempest”, IV.i.148)

The way we perceive spatial complexity is truly puzzling. As repeatedly proven
experimentally with the use of various strings of symbols, the perception of random-
ness by humans is skewed and seldom ever accurate (Kahneman and Tversky 1972;
Kareev 1992; Lopes and Oden 1987; Nickerson 2002). This is partly due to the
fact that the theoretical concepts of probability may not coincide with subjective
views of what is random and what is regular (Beltrami 1999), to the extent that the
term “subjective complexity” has even been suggested (Falk and Konold 1997). To
complicate things even more, people of different ages seem to perceive complexity
and randomness differently (Martial Van der Linden et al. 1998), while people who
accept the existence of extrasensory perception tend to discover patterns in random-
ness easier than others (Brugger et al. 1993). To illustrate the surprises encountered
in the perception of spatial randomness and spatial complexity, let us experiment
with some example binary maps.The left map of Fig. 15.9 displays equal numbers of
counts of colored cells, both horizontally and vertically, observing a repetitive and
symmetric pattern: 4111114 that applies to all the map’s borders. In this case, visual
symmetry simply reflects symmetry in numbers. The map on the right resembles
the capital letter B, but it has neither vertical nor horizontal allocations of colored
cells indicating any possible numerical pattern. Thus, patterns meaningful to the
human mind such as geometrical shapes/figures are not expected to necessarily
follow patterns in allocations of numbers also: meanings from spatial allocations do
not necessarily follow numerical patterns in allocations.

Different interesting problems appear when allocations of colored cells appear as
if they were random. The maps of Fig. 15.10 are two such cases, although map (a)
appears less random than map (b), deemed by its vertical set of allocations of cells.
While both maps appear random, map (a) has a striking normality in the number of
colored cells per row. Furthermore, map (b) has half of its colored cells concentrated
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Fig. 15.9 Two 8 × 8 binary maps, with 14 colored cells in each one of them. The map on the left
has a symmetric allocation of colored cells, either if considered horizontally or vertically and this
symmetry is visible in the numbers of cells per row and per column. The map on the right shows a
pattern reminiscent of the capital letter B but without any numerical pattern corresponding to it

Fig. 15.10 Two 8× 8 binary maps, with entropy class 14 each one, and with different partitions of
the number 14, either if counted horizontally or vertically. Counts show numbers of colored cells
per row and per column. While both maps appear random, map (a) has a striking normality in the
allocation of colored cells per row

in only two rows (the 4th and 5th), and as such, they are more aggregated than in map
(a) which displays a higher dispersion of its colored cells. Given this, map (a) would
appear to the viewer as the random one rather than map (b), but, as the regularity in
its counts per row suggests, it is not so.

It is possible to check such divergences between perception and reality, by using
one of the spatial complexity metrics. So let us examine yet another case (Fig. 15.11).
It is also difficult to decide whether this map is random or not. Both the vertical
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Fig. 15.11 An 8 × 8 binary
map with horizontal and
vertical partitioning that
displays a repetitive pattern
(counts show numbers of
colored cells per row and per
column), either if counted
horizontally (1222–1222) or
vertically (221-221-31). By
applying a spatial
complexity metric, it can be
proven that it is non-random

twice repeating pattern 221–221 and the horizontal pattern 1222–1222 can hardly
be dismissed as purely random, although the map as a whole does give a misleading
impression of being a random one. The fact that it is not, can be proven by applying
the CP1 metric. Indeed the string is non-random, because its coding yields (left to
right):

W2BW2BW3BW4BW7BWBW2BW9BWBWBW9B2W2BW2BW5

This string of 39 symbols is reducible by applying i.e. the following compression:

λ = W2B,λ2WλW2λW5λWBλW7λWBWBW7λBλ2W5

which results to 34 symbols.
Similarly, in 3d it is not always visible or otherwise perceptible that a knot may

be “isotopic” to another, simpler knot. For instance, the “Figure 8” knot (resembling
the figure of the number 8) can be twisted so as to become unrecognizable, although
it can still be simplified by typical “unknotting” moves. But reality is quite often far
more complex than these simple cases, to the extent that the degrees of linkedness
or knottedness can be intractable. Indeed, a 3d surface can be so much twisted,
knotted and braided that becomes inexorably complex and impossible to visually
perceive how much complex it is without modifying its structure either manually
or mechanically (Fig. 15.12). It therefore follows that any limitations to visually
perceive (decode, untangle, compress etc.) spatial complexity do not necessarily
imply cognitive limitations also.
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Fig. 15.12 It may not be easy to visually discriminate even the two disjoint rubbers (left). But
strands, strings or surfaces can be so much knotted, inter-linked and inter-braided, that it is impos-
sible to visually solve the resulting riddle (right) without a hands-on intervention to simplify
it

15.4 Qualitative Complexity Versus Spatial Complexity

“Every sign by itself seems dear. What gives it life?”

(Ludwig Wittgenstein 1953, p. 128)

It is not certain however, that gestalt laws encapsulate the qualitative complexity
that is sometimes associated to spatial complexity (or simplicity). This is a special
kind of complexity that relates to meanings, concepts, ideas, beliefs, feelings, affects
associated with a particular piece of space (Papadimitriou 2010). Besides, following
Carl Gustav Jung’s theory of the collective unconscious, an archetype is a rather
simple shape that summarizes a very large set of meanings, which may also be
culture-specific. In the context of spatial complexity, an archetype can be regarded
as a simple geometric shape with a huge qualitative complexity encapsulated in a
strikingly small spatial complexity.

Consider a geologicalmap for instance: its complexity does not only depend on the
areas of rock classes, but also on linear features, such as faults. Furthermore, despite
occupying relatively insignificant portions of the map’s area, some map symbols
(letters, numbers, characters) may nevertheless convey meanings and connotations
that can attract the viewer’s attention far more than the backdrop, which may also
be spatially very complex. In fact, the semantic complexity associated to the spatial
complexity can sometimes be assessed quantitatively (Papadimitriou 2012).

At this point, let us elaborate further on the relationships between spatial
complexity and meanings, by means of the set of example photographs of Fig. 15.13.

The original photograph is D. Its size is 324 kb. If the figures of cats are subtracted
from it, the resulting image A is meaningless, but it nevertheless has a size of 260 kb.
Allowing for the cats’ bodyshapes to show up (but not their faces), then image B
begins to make some sense (an area with bodies of some unrecognizable animals
which could be cats, but also other animals) even with higher spatial complexity,
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Fig. 15.13 A case of spatial complexity vs meaning: D is the original image. Photograph C is the
most meaningful to the viewer, although it has the least spatial complexity

as it requires 304 kb memory. Yet, while the size of image C is only 142 kb, it
conveys the most important part of the meaning of the original image (D), as it
allows (the author only!) to identify faces that are unlike any other: Fafy (left),
Mikraki (middle) and Mati-Mati (right). Hence, although subtracting details from
the original image D results in images of lower spatial complexity as anticipated,
photographs A and B are still meaningless as the cats’ faces are not shown. But it is
precisely the faces that convey the meaning which makes a difference for the entire
(meaningless) images A and B, although with less spatial complexity than either A,
B or D. Hence, highly meaningful visual material does not necessarily coincide with
high spatial complexity. This is becausemeanings are purely subjective and overcome
the algorithmic, computational, geometric and topological determinants of spatial
complexity. This example shows why spatial complexity is different than qualitative
complexity. At the landscape level, it has been shown that a spatially highly complex
landscape is not necessarily endowedwith high qualitative complexity and vice versa
(Papadimitriou 2010). Yet, qualitative complexity is not only personal; it may also
result as a social or cultural construct, recognizable or acceptable by many people.
Consider, for instance, four photographs (Fig. 15.14), invoking different relationships
between spatial complexity and meanings associated to them by different viewers.

A low complexity seascape in a sunset can be vested with any meaning. Oppo-
sitely, a widely known landscape, such as the rock of the Athens Acropolis, has
been associated with more or less the same set of meanings that are understandable
by billions of peoples, regardless of this landscape’s spatial complexity (Parthenon,
the center of ancient Athens, associated with the city that has been the cradle of
democracy and philosophy). Yet, the spatially complex details appearing on the face
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Fig. 15.14 Searching formeaningful interpretations of spatially complex objects. Perceiving spatial
complexity is most likely unrelated to the mathematical properties of the spatial objects observed
(see text for explanation)

of Mati-Mati has a personal meaning (to the author only), that distinguishes this cat
from all other similar ones.

These simple examples give glimpses of the problemof attributing and associating
meanings and qualities to spatial complexity. As yet, philosophy does not seem to
possess a universally acceptable general theory of meaning. Furthermore, how the
human mind forms meanings from images has long been a field of intensive research
and, therefore, the mechanisms by which the mind associates meanings to spatial
formswith regard to their spatial complexity (or to their algorithmic length) is hitherto
unknown. Thus, spatial complexity is intricately connected to one of the paramount
problems of human existence: discovering and eliciting meanings from anything
spatial.
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Chapter 16
Spatial Complexity, Visual Complexity
and Aesthetics

Woe betide him who relies solely on mathematics
(Wassily Kandinsky, 1931, p. 31)

Abstract The concept of “visual complexity” is related to spatial complexity. From
landscapes to paintings and fractals, aesthetic appeal is directly related to spatial
complexity (or, at least, to its determinants). In this chapter, it is examined how and
why: (a) neither spatial complexity nor simplicity guarantee aesthetic appeal; (b)
quite often, neither too complex nor too simple forms are relatively more prefer-
able; (c) the aesthetic appeal of a spatial form can be scale-dependent on its spatial
complexity; (d) spatially complex forms may be aesthetically pleasant only as
parts themselves of a larger spatial arrangement; (e) the viewer’s perspective of
a spatial extent is critical: what seems unordered and complex from one perspec-
tive, may appear ordered and simple if viewed from another; (f) spatial orientation,
dispersal and aggregation affect spatial complexity and, by consequence, its aesthetic
evaluations.

Keywords Spatial complexity · Visual complexity · Landscape aesthetics · Betti
numbers · Geographic Complexity · Complexity and aesthetics · Complexity and
art

16.1 Visual Complexity

“This art is born; not taught”

(Seneca, 4b.C.-65a.D., discussing the art of spiders in building their webs in his “Moral
Letters to Lucilius”

Letter 121.CCXXI.22-23, “On Instinct of Animals”)

Complexity is one of the determinants of aesthetics (Winsor 2004) and a crucial
factor in consumer preference (Creusen et al. 2010), or preference in general (Stamps
2004, Galbraith 2001). Necklaces, necktie knots (the Windsor knot, Pratt knot etc.)
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can be analyzed in terms of knot theory (Fink and Mao 1999; Fink and Mao 1999a)
and indeed, much of the aesthetics of our garments or jewelry are based on artistic
ways of handling forms of spatial complexity. As in attires, so in all fields of art
and aesthetics of things that can be visually perceived, the degree to which spatial
complexity determines aesthetic evaluations is as interesting as it is difficult to
fathom. Take for instance, the famous ornamental celtic knots. They are topolog-
ically interesting due to their exquisite braiding and knotting (Meehan 1991; Trilling
1995) and their design and outfit may be desirable for many, but they may also seem
too “complex” to appeal to the aesthetic taste of others.

“Visual complexity” is a commonly used term in aesthetics and psychology (Vitz
1966; Aitken 1974; Saklofstke 1975) and denotes the degree of complexity of an
image or shape, as perceived visually. Assessing it has been (and still is) a quite
difficult problem, since there is no widely accepted method for measuring it, even
by employing as indicators any of its parametres, magnitudes and properties, such
as disorder, number of colors etc. (Eisenman 1967; Stamps 2002; Donderi 2006).
Visual complexity has been found to affect users’ preference for webpages (Deng
and Scott Poole 2012; Sun et al. 2018), as well as marketing and buyers’ preferences
for industrial products (Wu et al. 2016), such as cars (Chassy et al. 2015) and smart-
phones (Choin and Lee 2012). A particularly characteristic set of researches in visual
complexity would certainly comprise those carried out by Berlyne (Berlyne 1963;
Berlyne 1970; Berlyne 1971; Berlyne 1974) and colleagues (Berlyne and Peckham
1966; Berlyne and Ogilvie 1974; Berlyne et al. 1968), from which a central finding
is that the “visual complexity” of spatial forms is determined by irregularities of their
spatial elements.

Experimental psychological research in visual complexity however, has brought
evidence of the importance of a symmetry-complexity dipole in viewing preferences
(Jacobsen et al. 2006). In fact, both symmetry and complexity of image forms and
patterns have been recognized as strong determinants of viewing preference and
this has been established in psychological research in aesthetics (Eysenck 1941;
Eisenman andGellens 1968; Jacobsen 2004; Tinio andLeder 2009).Hoping to bridge
shape complexitywith aesthetics, Birkhoff (1932) proposed an aestheticmeasure (M)
of a shape, that was linked to “complexity” (C) and order (O) by the (rather overly
simple) ratio: M = O/C and Eysenck (1941) derived an empirical linear formula
for measuring visual preference for different geometrical shapes, according to their
geometric characteristics:

20x1 + 24x2 + 8x3 + 7x4 + 5x5 + 3x6 + 3x7 + 2x8 + x9 − 2x10 − 8x11 − 15x12
(16.1)

where the parameters from x1 to x12 represent mainly geometric properties, such as
symmetries and angles. After empirical research, Eysenck claimed that this formula
might explain as much as 80% of the aesthetic appeal that different polygonal shapes
had on the subjects of the research.
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Adopting a different approach that is reminiscent of topological CW-complexes,
Biederman’s theory of “geons” (abbreviation for geometric icons) highlights the
importance of basic geometric structural units of 3d objects (cubes, pyramids, cylin-
ders, handles etc. termed geons) as responsible for their perception of surfaces and
objects (Biederman 1987). A basic property of geons is that even if they are viewed
from different angles, they are still discernible and perceivable. Being able to decide
what an object is on the basis of its geons only, testifies the psychological “principle
of componential recovery”, which, in turn, explains why we are able to decide what
an object is, even as we view it only partially. Evidently, the higher the number of
“geons” necessary to identify an object, the higher its spatial complexity.

Various image compression techniques and standards (JPEG, PNG, TIFF, GIF
etc.) have resulted from successful efforts to compress image sizes and have revolu-
tionized our information and telecommunication technologies. These are compres-
sion techniques that yield some (lossy or lossless) compression of the initial image
size. The compression is verified by the reduced memory required to store the image
electronically. Although compression techniques and compressed memory are not
measures of complexity themselves, reduction in memory size can be helpful to
explain why a square map is more or less complex than another. This can better
be understood by creating a plot showing how the memory required to store a file
(measured in kilobytes) of a small binary image (with only two colours: black and
white in this case) changes with increasing participation of black cells in it with
respect to spatial complexity (CP2 in this case) and with visual complexity. The file
size can be measured by a loss-less compression algorithm such as png. The more
differentiated an image appears visually, the more spatially complex it should be and
the more computer memory size it should require. To test this, consider for instance
a 256 × 256 undifferentiated (all white) image in which various blocks of 64 ×
64 cells in it are being progressively blackened. By creating an arbitrary number of
such black-and-white images (six here, plus the all-white initial image), the different
images can be arranged so that each one of them appears increasingly more complex
in comparison to its preceding one (Fig. 16.1).

Fig. 16.1 A sample of seven images (numbered), all of the same size, with increasing visual
complexity (perceived from the increased spatial differentiation), from 0 = undifferentiated to 6 =
most differentiated, with different black-and-white allocations on them.Visually, spatial complexity
increases from the 0th image (no complexity at all) to the 6th image (most complex of them all)
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Fig. 16.2 Increasing image size (measured in kilobytes—left vertical axis) with increasing spatial
complexity as perceived visually, in six 256× 256 binary (black and white) images, from absolutely
simple (all white—image 0) to various disparate black and white allocations (images 1–6) plotted
against spatial complexity CP2 (right vertical axis)

The storage capacity requires progressively larger computer memory with spatial
complexity, increasing from the 0th image (completely white) to the 6th (with 7 black
64 × 64 cells in it) and thus, image sizes follow an increasing trend with increasing
spatial differentiation (Fig. 16.2), matching the visual assessment of the complexity
of each one of them.

16.2 Visual Complexity Versus Spatial Complexity of 3d
Objects

With what fantasy he conferred multiple curvature on space!

(Gaston Bachelard 1994, p. 157)

Recalling that the Euler characteristic χ (s) is an invariant of a surface s and is
given by the simple formula χ (s) = n−v + p (where n = nodes, v = vertices and p
= polygons), it might be a good guess that a combination of areas (polygons), lines
(vertices) and points (nodes) should be useful to provide us with an index of spatial
complexity of 3d surfaces. As the Euler invariant depends on the overall topology
of a surface, it is constant for surfaces of the same genus. But the total number of
polygons, vertices and nodes is not the same for all surfaces of the same genus, so it
would be plausible to examine whether it might be initially useful to decide whether
some 3d convex object has higher spatial complexity than another, on the basis of
the three components of the Euler characteristic of a convex surface. So it might be
useful to experiment in terms of the Betti numbers bj of a convex surface s:
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χ(s) =
∞∑

j=0

(−1) j b j = b0 − b1 + b2 − . . . , (16.2)

whether these numbers might be appropriate to evaluate spatial complexity. The
rationale is that the more spatially complex a solid convex body is, the more points,
edges and faces it is expected to have, and hence an (arbitrarily defined) metric of
spatial complexity to experiment with, which may be referred to as C(s) here, might
be based on the sum of Betti numbers:

C(s) =
∞∑

j=0

b j = b0 + b1 + b2 + . . . (16.3)

Some example calculations are given for the sake of comparison, for characteristic
simple solid bodies: for the simplest 3d solid (the tetrahedron), the immediately
more complex (the cube) and some other more visually complex geometric solids
(Table 16.1 and Fig. 7.14). All these 3d shapes have the same Euler characteristic
χ (s), but, as it turns out, different spatial complexities C(s). Further, values of C(s)
grow higher with increasing spatial complexity of each geometric solid, as it is
visually perceived.

The calculation for the simplest 3d solid, the tetrahedron, yields C(s) = 14,
so this can be the minimum spatial complexity C(s) of all simply connected 3d
objects. Besides this experimental metric’s values increasing with the shape’s visual
complexity, it is noticeable that topologically equivalent shapes such as the cube and
the bipyramid have both the same C(s) value. C(s) performs relatively satisfactorily
if applied to objects with low values of n,v,p (some further example calculations are

Table 16.1 Calculation of an experimental simple metric of spatial complexity C(s) for some
convex simply-connected three-dimensional shapes (see Fig. 16.3)

3D shape n v p C(s)

Tetrahedron 4 6 4 14

Cube 8 12 6 26

Bipyramid 6 12 8 26

Cube-and-Pyramid 9 16 9 34

Two Cubes 12 20 10 42

4 cubes Tau 20 36 18 74

5-cubes Cross 24 44 22 90

7-cubes Cross 32 60 30 122

3x3x3 Cube 56 108 54 218

All these solid shapes have the same Euler characteristic χ(s)= 2, but different spatial complexities
C(s). Comparing the results ofC(s) shown here with the shapes shows howC(s) increases for shapes
that appear to be visually more complex
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Fig. 16.3 Some three-dimensional shapes for the calculation of the spatial complexity metric C(s).
Upper row: tetrahedron, cube, bipyramid, cube and pyramid, two cubes, four cubes tau. Lower row:
Five cubes cross, seven cubes cross, 3×3×3 cube

Table 16.2 Some further calculations of C(s) for some archimedean solids of increasing spatial
complexity

Solid n v p C(s)

Sphere divided in 8 parts 6 12 8 26

Triangular icosahedron 12 30 20 62

Truncated cube 24 36 14 74

Rhomb-cub-octahedron 24 48 26 98

Great rhomb-cub-octahedron 48 72 26 146

given in Table 16.2), although it is useful for 3d solids with zero genus only. The
extent to which C(s) might be a useful as an estimator of the spatial complexity of
3d objects in general is open for future research.

16.3 Landscape Aesthetics and Spatial Complexity

Often on the mountain, under the shade of the old oak,

I sorrowfully sit during the sunset and I walk my gaze at random over the valley

“Souvent sur la montagne, à l’ ombre du vieux chêne,

Au coucher du soleil, tristement je m’assieds;

Je promène au hasard mes regards sur la plaine”

(Alphonse de Lamartine, 1790–1869, “L’Isolement”)
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Spatial complexity can be involved in a range of non-overlapping approaches
to landscape interpretation and explanation (Kühne et al. 2018). Perhaps, some of
the most interesting complexification processes can be seen and felt in landscapes
of postmodernity (Kühne 2012a; Kühne 2018; Kühne 2019), in which zones of
fuzziness often appear in cross-border hybrid spatial zones (Kühne 2012: Kühne and
Schönwald 2018).

The visual and aesthetic impact of landscapes has repeatedly been examined by
several researchers (Tyrvainen et al. 2003; Cooper 2009; Saito 2010; Papadimitriou
2010; Papadimitriou 2012). The identification of quantitative determinants of visual
aesthetic forms seems to be particularly difficult, despite the known connection of
landscape structure to aesthetics (Nohl 2001; Franco et al. 2003).

Diversity is a prominent measure of landscape structure (the landscape’s arrange-
ment of its spatial elements), reflecting the relative participation of each one of the
landscape’s elements in the whole. If a landscape has many land types, ecosystems,
land uses, land covers, then it has a high diversity. Some researchers have relied on
the use of landscape diversity (as measured by Shannon’s formula) as an assessor of
landscape complexity (Barrett et al. 2009; Ode et al. 2010), but others (Otahel 1999)
have considered landscape complexity as a separate criterion of landscape aesthetics
than landscape diversity (Coeterier 1996; Sevenant and Antrop 2009; Sevenant and
Antrop 2010). Empirical research (Lindemann-Matthies et al. 2010) has shown that
alpine landscapes characterized by high landscape diversity (Fig. 16.4) are rated by
viewers as more aesthetically appealing; research in landscapes of Norway (Strumse
1994) and Switzerland (Lindemann-Matthies and Bose 2007; Junge et al. 2009)

Fig. 16.4 Asnapshot of the alpine landscape of Innsbruck,Austria.High landscape diversity usually
implies higher aesthetic appeal, as empirical researches have discovered in alpine landscapes
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revealed that species-rich landscapes are more preferred than species-poor (species-
rich means higher number of landscape types, higher diversity, and hence higher
spatial complexity).

Expectedly, the assessment of complexity of visual forms depends on the viewer
and the object viewed. Experimenting with objects of varying complexity, Phillips
et al. (2010) found that subjects preferred either very simple or very complex objects,
so the complexity of objects can be a predictor of preference. In this context, simple
forms coexisting with complex forms within the same spatial setting may also be
aesthetically appealing (Fig. 16.5).

With an interesting connection to the properties and behaviors of complex
systems, several well known architects have strived to represent self-organizing
spatial systems, flocking, swarming and other forms of complex spatial behavior.
Just to mention a few names only, Cache (2003) used the term “associative archi-
tecture” for complex interlacings of architectural elements in space, Hensel et al.
(2006) proposed a complex “morphogenetic design” method, Jenks (1997) intro-
duced “nonlinear architecture”. Also, a variety of architectural creations by i.e. Stan
Allen, Zaha Hadid, Greg Lynn (among others) appear to have adopted concepts of
complexity and/or complex systems theory in their architectural designs.

Fig. 16.5 Athens: View of the city center with the temple of the Olympian Zeus at the forefront
and Lycabettus hill at the backdrop. The spatial complexity of the urban landscape in the middle
area of the picture coexists with hefty areas of spatially less complex areas (urban green), along
with the ancient temple’s simplicity. The coexistence of both spatially complex and simple shapes
within the same setting may result in higher aesthetic appeal than if there were either complex or
simple shapes
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16.4 Spatial Complexity and Aesthetic Evaluations

Neither admiration, nor victories but simply to be accepted as part of an undeniable reality
like stones and trees

“No admiraciones ni victorias

sino sencillamente ser admitidos

como parte de una realidad innegable,

como las piedras y los árboles”

(Jorge Luis Borges, 1899–1986, “Llaneza”/Simplicity)

Some simple designs have been considered aesthetically pleasant throughout the
centuries by many different people. The typical ancient greek ionic style is more
complex in its design than the austere dorian style; in both these styles however,
simple symmetries account for most of the aesthetic appeal. While symmetry may
be more preferrable in the western cultural hemisphere (Gombrich 1979), it is never-
theless a human characteristic to yearn and to search for regularities (Popper 1972).
Chen et al. (2011) found that symmetric patterns aremore aesthetically appealing than
asymmetric ones. But there may be a different reason: some experimental evidence
(Krupinksi and Locher 1988; Locher and Nodine 1989; Palmer 1991) has suggested
that lower visual complexity can be associated with more appealing forms. Expect-
edly however, simplicity alone does not guarantee aesthetic appeal and this is why
most people would prefer a picture rich in chromatic diversity instead of another
with similar but less colors.

Delplanque et al. (2019, p. 146) noticed that “an object that is too simple would
lead to boredom, while toomuch complexity would cause distraction”. The source of
the problematic relationship between spatial complexity and aesthetic appeal should
be sought in the absence of some measure of spatial complexity that might be used
to evaluate the complexity of spatial objects and surfaces. The so-called “aesthetic
middle” investigated by Deplanque et al. (2019) recalls earier experiments (Day
1967), in which it was shown that neither too complex nor too simple patterns are
more preferable.

The complexity of the viewer’s experience of an artwork is often a function of the
artwork’s spatial complexity. The former has been estimated (Krejtz et al. 2014) by
monitoring individuals’ gaze patterns using a Markov model and Shannon’s formula
(Atkins et al. 2010). In other studies however (Kuper 2015), visual complexity and
preference did not correlate completely. Indeed, the Shannon formulawould probably
yield a high figure for an image as disordered as that of Fig. 16.6 and more than few
viewers would consider this assortment rather pleasant.

Another fact to consider is the level of spatial detail (that is the level of spatial
complexity at small resolutions), which may or may not be indicative of the possible
aesthetic appreciation of the image as a whole. Consider for instance, an image
(Fig. 16.7), which may be aesthetically appealing to some.

If any part of this image is viewed in detail, it may not be as appealing. Indeed,
there are cases where spatially complex forms may be highly precise and with a high
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Fig. 16.6 Disorder and high spatial complexity may not necessarily be unpleasant

Fig. 16.7 Aesthetic appeal can be scale-dependent on spatial complexity. If the upper left corner
area of the grand image (left) is enlarged (right), the resulting image may not be as aesthetically
pleasant as the original large image. The same applies to all parts of the grand image, which,
nevertheless, many would find aesthetically appealing, despite its highly disorderly allocation of
colors

level of “complicatedness”, but they may not be aesthetically pleasant, unless they
constitute themselves parts of some larger spatial arrangement that is aesthetically
appealing only if viewed from afar, or at large (Fig. 16.8). Images containing many
different geometric shapes (i.e. squares, rectangles) are more spatially complex than
images with less such shapes and it was experimentally found that the former were
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Fig. 16.8 Branches of a plant interwoven in a dense complex fabric at the ceiling of an arcade, may
not be aesthetically pleasant at a close examination, but they may be so if viewed as part of a whole
(at the scale of the arcade in its entirety): spatially complex settings of lower aesthetic appeal are
combined together within larger settings which give a higher aesthetic appeal

preferred to the latter (Timio and Leder 2009). Besides, asMorris (1995) noticed, the
simplicity of the aesthetic experience does not necessarily stem from the simplicity
of the viewed shapes.

Perhaps, this explains (Liu and Luo 1996) why some fractals are widely consid-
ered as aesthetically pleasant forms as they constitute typical examples of spatially
complex objects (Fig. 16.9). In the case of fractals, there is a direct scale-dependence
of aesthetic appeal on spatial complexity. As Crawther (1991) argued, mathemat-
ical approaches to appreciations of beauty make us recall the Kantian category of
the “sublime”. The aesthetics of fractal objects may relate to the fractal dimension
characterising them, although it may also relate to the branching processes they
may present. However, the relationship between the fractal dimension and aesthetic
appeal of a fractal object remains an open problem. In fact, the repercussions of
mathematical approaches to estimations of beauty are not only philosophical, but
also practical in the case of fractals. For instance Li et al. (2007) suggested that
fractality and complexity can be basic parts of an aesthetically pleasant design.

Whatever the spatial complexity of the observed object may be, aesthetic evalu-
ations are highly dependent on cognitive psychological determinants. The “oblique
effect” is one such example: it is the fact that humans perceive horizontally and
vertically more and better than along other orientations, as has been experimentally
discovered (Campbell et al. 1966; Appelle 1972) and this highlights the preference
for square grids instead of other spatial partitions. However, the oblique effect does
not necessarily imply the ability to recognize the spatial complexity of a surface or
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Fig. 16.9 A fractal object. Should its aesthetic appeal be attributed to the fact that it encapsulates
some interesting mathematical results relating to complexity?

object if seen from different viewpoints following the “viewpoint invariance” as is
called in psychology (Williams et al. 2009), since spatial complexity is not neces-
sarily perceived to be the same if the surface or object is viewed from a different
perspective (Fig. 16.10).

Fig. 16.10 The spatial complexity of a surface is not necessarily perceived as the same if the surface
or object is viewed from a different perspective
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Fig. 16.11 Repeating similar shapes with the same orientation is usually aesthetically acceptable.
But if one shape had a strikingly different angle compared to the other ones, it would probably spoil
the aesthetics of the whole

While orientation plays a prominent role in aesthetics, in the context of spatial
complexity there are surprising twists in the turn (literally). For instance, same shapes
following the same orientations are aesthetically acceptable in general (Fig. 16.11),
but different shapes and with different orientations may not be as appealing. Perhaps
differences in orientation increase the sense of disorder, may be even more than the
geometric differences among the spatial elements themselves, although same shapes
with different orientations may receive positive aesthetic evaluations (Fig. 16.12). In
fact, the japanese art of Ikebana (the art of flower arrangement) is based precisely
on the aesthetic appeal of arranging flowers and branches with different orientations
and asymmetric slanting.

Besides orientation, patterns of branching, dispersal and expansion into space are
also interesting in terms of spatial complexity (i.e. Figure 16.13), as are patterns
of aggregates (Fig. 16.14). In these cases, the characteristics of spatial complexity
of patterns of dispersal or accumulation play the most important role in aesthetic
evaluations.

But geometric relationships between objects are not the only determinants of
the relevance of spatial complexity to aesthetics. Minimalist features in surrealist
paintings are very interesting in that they present a significant class of visual mate-
rial with low spatial complexity which nevertheless is shaped so as to provoke a
major intellectual or emotional impact on the viewer. The sculptures of Man Ray
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Fig. 16.12 Similar shapes, albeit with different orientations may nevertheless be aesthetically
pleasant

Fig. 16.13 Expansion in
space, in which similar
shapes grouped together but
with different orientations in
space can be equally
appealing
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Fig. 16.14 Spatial aggregates (clouds in this case): complex forms are often derived from
aggregation of same objects (as in this case) or dissimilar ones

(1890–1976) convey intense messages to the viewer despite their minimal spatial
complexity. Similarly, the paintings of René Magritte (1898–1967) usually present
forms of minimal spatial complexity but perplexing the viewer with impossible situ-
ations. Might (notwithstanding their historical and aesthetic value), such paintings
be considered “aesthetically pleasant” today?

Whether the shape is a square or another simple shape, minimalist art eventually
tests aesthetics at the lower levels of spatial complexity. But claiming that the elim-
ination of all spatial complexity increases aesthetic appeal can hardly be accepted
unanimously.

Shifting emphasis from low to high spatial complexity, visual artworks (i.e. paint-
ings) can be made more spatially complex by increasing chromatic diversity and
detail. In the context of neo-impressionism for instance, details were meticulously
added by a kind of “pixelization” i.e. as in the works of George Seurat (1859–1891).
On the antipodes of simplicity, some well-known examples are the chaotic composi-
tions in theworks of JacksonPollock (1912–1956) and the assortments of hundreds of
different spatial elements in many of the works of Wassily Kandinsky (1866–1944).
With curvature being a geometric element contributing to the increase of spatial
complexity, paintings of Franz Marc (1880–1916) highlight the contrast between
curves and straight lines. It is probably not accidental that artistic and architectural
styles such as baroque and art nouveau reflected precisely the need to increase spatial
complexity by enhancing one of its main determinants, curvature.
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Chapter 17
Geophilosophy and Epistemology
of Spatial Complexity

We rather prefer to look after many things and to link ourselves
to many things… and so linked with many we feel ourselves
heavy and dragged down by them.
“Mα̃λλoν θšλoμεν πoλλîν ™πιμελε‹σθαι

καὶ πoλλo‹ς πρoσδεδšσθαι…
…¤τε oâν πoλλo‹ς πρoσδεδεμšνoι
βαρo�́μεθα Øπ ’ αÙτîν καὶ καθελκ óμεθα»
(Epictetus, 50–135 a.D. “Discourses”, 14–15)

Abstract Adding difference to an undifferentiated surface or object is the first step
towards increasing its spatial complexity (this difference can be thematic, geometric,
topological etc). The philosophy of Gilles Deleuze appears particularly suited to
explain spatial complexity and, to a lesser extent, some philosophical ideas of Leibniz
and Nicolai Hartmann. The process of creation of spatial complexity from simple
square maps begins with number partitions and entropy, followed by topological
differentiations (boundaries, spatial arrangements etc.) and, eventually, with the
symmetric multiplication of generic forms. Recognizing that curvature and spatial
perspective are crucial to our perception (and hence, interpretation) of anything
spatial, we are led to a re-appraisal of the role of subjectivity in spatial complexity.
As for the research, analysis and exploration of spatial complexity, experimenta-
tion is indispensable and this points to the possibility to consider as more suit-
able an “experimental philosophy”. An epistemological problem is that we can only
partially manage the immense realm of possible spatial configurations. This leads
us to consider that combinatorial explosions induce limits to spatial analysis while
studying spatial complexity at very large (i.e. planetary) scale.

Keywords Spatial complexity · Gilles Deleuze · Geocomputation · Spatial
Computing · Geography and philosophy · Geophilosophy · Big geospatial data
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17.1 From Difference to Complexity

So numerous and so perplexed

“tam numerosae atque perplexae”

(Quintilian, 35–100 a.D., “Institutio Oratoria”, 8.2)

The pair complexity versus simplicity has puzzled philosophers and mathemati-
cians alike for centuries. Geometric simplicity (“Einfachkeit”) may have been just a
formality for Kant, but for Hilbert it certainly was not: his 24th problem was to state
criteria of simplicity, or, essentially, to prove the simplicity of proofs (to decide the
simplest proof among many).

In the philosophy of Nicolai Hartmann, space constitutes a special “category” and
there are paired categories consisting of opposite pairs, i.e. discreteness-continuity,
form-matter, element-complex. While space is an “inorganic” existence (“anorgan-
isches sein”), the “complex” (“gefüge”) has an inside structure while its outside
relates it to other “complexes” or is itself part of the internal structure of another
“complex” (Hartman 1975). The elements of each “complex” and their functions
define its internal structure and its resilience (Hartmann 1940). The internal stability
of a “complex” is assured by the law of connectivity (“Gesetz der Verbundenheit”).

The universe evolved from its primordial unstructured and lifeless state by
increasing its complexity, progressively creating living beings, from which emerged
intelligence, ethics, aesthetics, justice and affection for other beings. It seems more
than likely, that localmodifications of entropy have been a key process in this increase
in complexity. It took ample time for this chain of emergence to assume visible
form, incessant efforts and infinite persistence by nature and, in the later stages, by
humankind. And yet, not even half of the story has unfolded, since the universe is still
not “old” enough. In these processes, relatively small sets of objects and simple rules
about them have proved adequate to create spectacularly complex spatial forms.

The undifferentiated space may be perceived like Leibniz’s “monad”, in the sense
that it “has to have simple substances, as the composed is nothing else but an
amassment, an aggregate (aggregatum) of simple things” (Leibnitz 1714, p. 2). Such
aggregates, composed from simple spatial constituents, can be best examined in the
context of the Deleuzian philosophical framework, in which the “mechanosphere”
that comprises the biosphere and the noosphere is replete with “machinic assem-
blages”, hybrid forms, and “rizhomatous open systems” (Fig. 17.1), which may
include the “promise for a negentropic future” for humankind (Ansell-Pearson 1997,
p. 167). Why the “rhizome” (the greek word «ρίζωμα» that is a root system) is a
philosophical metaphor for spatial complexity is exemplified by two “principles”
of rhizomes: the “principle of cartography” and the “principle of connection and
heterogeneity”. The latter suggests that “any point on a rhizome can be connected
with any other” (Deleuze and Guattari 1983, p. 11). Its spatial (map-like) extent
makes it different than a simple tree-like hierarchical structure composed of linear
elements. In fact, the rhizome is a map, whence also the suggestion (Deleuze and
Guattari 1983, p. 25): “make maps, not tracings”.



17.1 From Difference to Complexity 265

In the philosophy of Deleuze, the differentiation of space ad infinitum inevitably
entails “a transportation of difference, a diaphora (difference) of diaphora, until
a final difference” (Deleuze 2010, p. 40) and, in this way, natural selection is a
process of endless differentiation with aim to enhance the capabilities of survival:
“the leitmotiv of the origin of species is: we do not know what individual difference
is capable of!” (Deleuze 2010, p. 310). It is in this Deleuzian context, that De Landa
(2002, p. 25) wrote that the differentiation process (eventually leading to complex
forms) begins from an undifferentiated space which “progressively differentiates,
eventually giving rise to extensive structures (discontinuous structures with definite
metric properties)”. The simplest difference on a 2d squared surface can be created by
introducing one “black” cell in a simple undifferentiated (i.e. all-white) square map
and convert it into a binary map. In the case of Arnold Cat Maps, these differences
can spread all over the image, interchange positions in it and eventually fall back at
the same place where they originally were located, so as to reproduce the original
image unchanged back again. However, entropy alone does not suffice to explain
spatial complexity. Higher entropy only indicates higher spatial complexity in small
binary maps, but not always so; topology is probably the other most significant
determinant of spatial complexity. The central role of topological properties in the
understanding of space reiterates in the context of various philosophical approaches,
both ancient and modern, from Aristotle to Wittgenstein, Whitehead, Minkowski,
Prior, Heidegger, as has been identified by several researchers (da Costa et al. 1997;
Simons 2006; Peters 2008; Sean 2009).

Fig. 17.1 Areal “rhizome” (a complex root system)with its knots, links,writhes, variable curvature,
intersections, etc.: the epitome of natural spatial complexity?
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17.2 Curvature and Subjectivity

It is among the philosopher’s fields, we think, to consider also geographical surveys, as we
intend to do here

“TÁς τoà ϕιλoσóϕoυ πραγματείας ε�ναι νoμίζoμεν,

ε‡περ ¥λλην τινά, καὶ τὴν γεωγραϕικήν,

¿ν νàν πρo�ρήμεθα ™πισκoπε‹ν”

(Strabo, 62 b.C.–23 a.D., Geography, Chap. 1)

There is not a single philosophical approach to the geographical space. In fact
there is a vast array of possible philosophical perspectives, i.e. positivist, essentialist
(Kühne et al. 2018), postmodern (Kühne 2012a, b; Kühne 2018) among several other
ones, of which a detailed analysis can be found in Kühne (2019). But philosophers
were not the only ones to be concerned with space. The geographer Hagerstrand
(1982) suggested the mapping of personal 4d place-times, the geographer Virilio
(1994, p. 7) a “teletopology”, of spaces that are better understood when viewed from
a distance, and the science fiction author Stanislav Lem proposed a “toposophy”
(Broderick 2001, p. 324), while the new latest generation of geospatial technologies
enables the user to create subjective maps and share themwith other users (Papadim-
itriou 2010a, b). These characteristic and many other geophilosophical approaches
reverberate the problem of subjectivity in the perception of geographical space. How
is subjectivity related to the geographical space has long been an issue of debate
among geographers, but there is a hint from the point of view of spatial complexity
analysis. And this is curvature.

“The world is an infinite series of curvatures or inflections and the entire world is
enclosed in the soul” (Deleuze 2012, p. 26). Curvatures and inflections define a key
characteristic of existence that is folds, which are one feature of spatial complexity.
Following Deleuze, labyrinths have many folds which can also lead to complex
internal structures with caverns and porosity and thus, with a metaphysical exten-
sion, “God plays tricks, but also furnishes the rules of the game” (Deleuze 1993,
p. 71). Given the current state of human knowledge, a philosophical rather than
a mathematical question is: might bi-dimensionality (spatial extent) be a “trick of
nature” to convert one-dimensional randomness into non-randomness?

Back to curvature now, its combinationwith perspective is central in the perception
of spatial complexity. The viewer’s perspective of a spatial extent is critical in the
way that space is perceived by the viewer: a seemingly unordered allocation of
spatial objects may appear perfectly ordered if viewed from a different perspective
(Fig. 17.2).

A central question is whether the construction of mental maps (or subjective maps
in general) results as one of the inevitable consequences of the human inadequacy,
not only to perceive, but also to represent the geographical space (manually or other-
wise) without error and this inevitably leads us to introduce “subjective” perceptions,
interpretations, theorizations and explanations of the geographical space. It is in this
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Fig. 17.2 Light spots on the ceiling of an auditorium. If viewed from the left or the right side of
the auditorium, they appear unordered, but if viewed from the center of the auditorium, a perfect
alignment surprisingly emerges

epistemological context, that subjective geographies were first proposed by the “sit-
uationists” movement, in a way that “the situationists’ division of the city echoes the
psychologists’ topology of the brain” (Bukatman 2005, p. 169). How this problem
can be tackled quantitatively can be enlightening as it reveals the underlying spatial
complexity.

The distance of point (x1, y1) from point (x2, y2) on a 2d Euclidean space is:

D =
√

(x1 − x2)2 + (y1 − y2)2, (17.1)

but the distance between two points (ϕ1, θ1) and (ϕ2, θ2) on the surface of a sphere
(in polar coordinates ϕ = longitude and θ = latitude) is:

D = R[arccos{sin ϕ1 sin ϕ + cosϕ1 cosϕ2 sin(θ1 − θ2)}] (17.2)

As we shift our point of focus from maps of small geographical regions to maps
of large areas (i.e. showing parts of continents or even the entire globe), distances
are best calculated by Riemannian metrics. The Riemannian length of a “path” h is:

MR(h) =
∫ b

a
‖ (P(t))‖ Rdt (17.3)

and the Riemannian distance between two points u and v is:

DR(u, v) = inf
p∈Wh

MR(h) (17.4)

whereWh contains all the paths that join u and v. On the basis of these considerations,
the total error of a mental map with respect to the reality of the geographic space has
been calculated (Tobler 1965; Meshcheryakov 1965) as:
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π∫

−π

2π∫

0

2π∫

0
( d S

ds − 1)2 cosϕdθdϕ

2π
π2∫

−π

π∫

0
cosϕdθdϕ

(17.5)

where

d S

ds
=

√
(g2

x cos2 a + 2gxy sin a cos a + g2
y sin

2 a (17.6)

is a measure of the distance on the surface of the earth of S(u, v) from s(x,y) expressed
in Riemannian metrics.

It is self-evident even from the high number of calculations necessary to compute
such distances, that humans have to tolerate imprecisions in their estimations of
area, angle, distance, location. Might this suggest that subjective geographies are
inevitable?

17.3 A Philosophical Ladder to Spatial Complexity

The (phenomena of nature) are marvelously complex and interwoven to one another, as will
be evident to him who investigates them

“To�́τoις τo‹ς παθήμασιν πρòς ¥λληλα συμπλεχθε‹σιν

τεθαυματoυργημšνα τù κατὰ τρóπoν ζητoàντι ϕανήσεται”

(Plato, 428–348 b.C., “Timaeus”, 80c)

The (neo-Platonic) philosopher Plotinus suggested (Enneads, IV, 4xxxii) that
“sympathy” may have been the driver for the aggregation of simple things together,
the underlying force which pushes them close to one another and this “pervades the
entire universe”. Thus, in a neo-Platonic sense, clumpiness (B) is a result inevitably
emerging from the work of “sympathy” in the world. And, as the (also neo-Platonic)
philosopher Porphyry warned (in “The Cave of the Nymphs, 6), the universe may
appear charming from “outside”, but obscure and dark from “inside”: a remarkable
observation thatmay apply to spatial complexity aswell: charming as one observes it,
but obscure and difficult to decipher. Plotinus questioned also (“Enneads”, V, 2i) how
everything might have been derived from some “Single One”, without that “One”
being endowed with either duality or diversity. Translating this thought to twenty-
first century science, it means that increasing entropy is precisely the next step after
the differentiation of the uniform “One” and, in this sense, 3 × 3 square binary maps
are a very characteristic example documenting how changes in spatial complexity
rapidly increase from entropy class 0 to class 1. The spatial analysis of 3 × 3 maps
may turn out to be very special: neurophysiological experiments on the perception
of numbers seem to confirm that the numbers 1, 2, 3 are perceived differently by
humans than other numbers, with high-accuracy measurements suggesting that they
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are perceived as many as 200 milliseconds faster than other numbers (Revkin et al.
2008; Hyde and Spelke 2009).

Having examined how spatial complexity can be created by simple square maps,
we saw how andwhy entropy is a necessary but not sufficient condition for the gener-
ation of spatial complexity and the same applies to topology (due to the topologically
inequivalent positions of the map’s square cells).

As the experimentation with small maps revealed, the ladder to creation of spatial
complexity from small maps begins with partitions which define “entropy class”.
Entropy, as a measure of disorder, may also be vested with the meanings of discord,
disagreement, chaos, redundancy etc. Disorder is perceived to appear in tandemwith
bad things. In James 3:16 the Bible reads “Where you have envy and selfish ambition,
there you find disorder and every evil practice” (“�Oπoυγὰρ ζÁλoς καὶ ™ριθεία, ™κε‹
¢καταστασία καὶ πα̃ν ϕαàλoν πρα̃γμα”). At this point, it is worth remembering
Deleuze (2010, p. 299) in his writing that we live in “aworld the very ground ofwhich
is difference, in which everything rests upon disparities, upon differences”. Just one
more step up on the ladder linking entropywith complexitywill reveal that the combi-
nation of both entropy and topology seems to be a necessary and sufficient condi-
tion for the creation of generic binary maps. And there enters symmetry, whereas
symmetric transformations of generic maps create the total number of possible map
configurations and hence, a general “formula” describing the generation of complex
spatial forms from simple square maps is:

Partitions(or Entropy) + Topology + Symmetries

=> Total number of PossibleMapConfigurations

Quite possibly, this formula may be applicable to square maps only and to no
other types of spatial arrangements. Yet, it may serve as a model for creating spatial
complexity. The number of possible configurations can therefore be considered at
three distinct levels, with increasing number of possible configurations at each level:
(a) partitions, (b) generic maps and (c) total number of configurations. Each level is
characterized by a prevailing property and is endowed with the properties of the level
preceding it: adding topological differences to entropy-only differences of config-
urations, the level of generic maps is attained and adding at this level the range of
possible symmetries (algebraic differentiation) eventually yields the total number of
possible configurations (Fig. 17.3).

Spatial arrangements corresponding to number partitions is the primary cause
driving the whole process of spatial differentiation in this ladder linking spatial
simplicitywith spatial complexity, so it wouldmake sense to askwhether the possible
partitions follow any pattern themselves. An insight can be sought in the “Ramanujan
congruences” which reveal that the partition function P(n) may follow some rules
according to the form of the integer n, for instance:
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Fig. 17.3 Adding topological differences to configurations derived frompartitions results in generic
maps. Adding symmetry to generic maps results in the total number of square map configurations
N(n)

P(5n + 4) = 0 mod 5

P(7n + 5) = 0 mod 7

P(11n + 6) = 0 mod 11

(17.7)

Following the Dyson conjecture, such congruences can be explained by means of
the length and the rank of a partition, as proved by Atkin and Swinnerton-Dyer in
1954.

At the upper steps of the ladder, repeating patterns on the basis of symmetries are
reminiscent of the concept of the “ritournelle” (the refrain), which is an important
theme of Deleuzian philosophy. As described in Deleuze’s (and Guattari’s) “Mille
Plateaux”, the “refrain” is a block of content, and constitutes the nucleous of a
spatial extentwhich, asDeleuzedescribes, is perceived as “territory”.Metaphorically,
the “refrain” is, more or less, equivalent to the λ block used here to calculate the
CP1 complexity of small strings. The binarization and coding of the spatial lattice
takes place in the Deleuzian “striated” space, the Euclidean, a space of the “actual”.
In Deleuzian terms, this contrasts the “smooth space” (“lisse”) that is a “space of
intensities”, where the “virtual” world of qualities dwells and thus “binarymachines”
are created, which “growmore complex as they intersect or collide with one another,
confront each other, and cut us up in every direction” (Deleuze and Guattari 1983,
p. 77).

Some of the syllogisms about spatial complexity however, would not have been
possible to make without the use of square maps. It seems that, even more than
symmetry, orthogonality may be the prominent geometric property enabling us to
analyze and understand spatial complexity. Salvador Dali, in his “Disintegration of
the persistence of Memory” (1952), influenced by quantum mechanics, illustrates
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Fig. 17.4 The Morse diagram of a simple knot (left) and its Dynnikov “arc-presentation” (right)

how the fabric of space-time is discrete at quantum scales. In this work, the funda-
mental discreteness of space at quantum scales is represented by arrays of disjoint
orthogonal bricks. Even curves in R3 can in many ways be better understood if they
are represented by vertical and horizontal lines. For instance, Dynnikov diagrams
with vertical and horizontal lines can be used to represent and solve knots; these are
called “arc-presentations” and their complexity is equivalent to the number of the
vertical lines of the diagram and, following a theorem by Dynnikov (2006), every
knot has an arc-presentation (Fig. 17.4).

17.4 Experimenting in the Spatium Numerorum

“I think therefore I err”

(Gigerenzer 2005, p. 1)

Several centuries ago, the ancient greek philosopher Parmenides first posed
the problem of deciding what it means for a spatial extent to have a property
differentiating it from another. Plato discussed in “Philebus” the aesthetics of
geometric shapes (Philebus, 51d), Aristotle (in his “Metaphysics”) attributed beauty
to order and symmetry, while Pythagoras was concerned with “figurative numbers”
(i.e. triangular, square, pentagonal numbers). Following Kant, all humans have a
common basic form of spatial understanding inherited “apriori” (Godlove 1996),
but, according to Hume, we can better understand discrete quantities in space (De
Pierris 2012). Might this discreteness imply computability problems beyond human
reach? And, as Levy aptly observed (Levy 2004, p. 133), “the relevance of space in
human life is increasing. Individuals have become actors of their own spatiality as
well as of the spatiality of others”. Such subjective “spatialities” might explain the
rise in non-postitivist and “idiographic” approaches in geography (Hallisey 2005)
over the last decades. Sometimes, spatialities can not be understoodwithout elaborate
experimentation and spatial complexity may be very characteristic.
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Epistemologically, adopting experimentation as a centralmethod to explore spatial
complexity appeals to the current philosophical perspective of “Experimental Philos-
ophy” an emergent trend aiming to (Alexander 2012, p. 2): “apply the methods of the
social and cognitive sciences to the study of philosophical cognition”, by shifting the
focus of emphasis from what particular philosophers think about something (as has
been the traditional philosophical practice for ages) to what ordinary people think.
Thus, it often poses problems, carries out quantitative analyses on the basis of which
it then derives philosophical interpretations, which often allow it to come up with
conclusions that were previously unanticipated. Clearly, all physical science has deep
roots in experimentation, but that does not mean the experimental approaches always
follow the practices of experimental philosophy or that they are eventually subjected
under philosophical scrutiny. But computer-assisted explorations may prove indis-
pensable in analyzing spatial complexity. Yet, whether we are able to understand
spatial complexity by using only mathematical methods or not is a different issue.

The perspective of “mathematical formalism” suggests that mathematics is no
more than a meaningless world of symbols and hence, processing strings of symbols
of cover types on surfaces is equally “meaningless”. In such a case, our estimates
of spatial complexity may be well-structured or even accurate, but not necessarily
producingmeanings for us. It remains to be seen how and if this might lead us further,
i.e. to nominalism or intuitionism. Although reaching at a satisfactory “explana-
tion” of a phenomenon implies its “understanding” according to some philosophers
(De Regt 2009a, b), it does not imply the same to others. Following Lipton (2009)
for instance, “understanding” is possible even without explanation. Whatever the
case, experimentation (as in the case of 3 × 3 binary maps) is a potentially useful
approach to tackle spatial complexity, particularly with the adoption of mathemat-
ical methods, models and simulations towards this end. In mathematics, despite the
fact that we are still short of an analytic proof of the Riemann hypothesis thus far,
the experimentation hypothesis has been verified computationally for up to ten tril-
lion zeroes. Other examples of experimentalist approaches abound in mathematics:
another case is a theorem proven by “collaborative mathematics”, an effort initiated
by T. Gowers, and the Hales-Jewett theorem (Hales and Jewett 1963) which is a
multidimensional generalization of the tic-tac-toe arrangements and generalization
of van der Waerden’s theorem from Ramsey theory, essentially proving that high-
dimensional objects must be expected to exhibit some combinatorial structure and
that it is impossible to encounter complete randomness in them.

With a strong experimentation-and-simulation method, the study of spatial
complexity of square maps might also be interpreted as a “philosophical anima-
tion”; a term coined by Mullarkey (2000, p. 179) to describe the use of diagrams and
shapes for philosophical thinking. The use of square maps for deriving results about
spatial complexity may thus serve as an explanation of the ways by which spatial
complexity is generated and how it changes over surfaces, as well as a general model
for “understanding” spatial complexity.
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17.5 Large-Scale Spatial Complexity: Limits to Spatial
Analysis?

“Human mind can not bear very much reality”

(T.S. Elliot, 1888–1965, “Burnt Norton”)

Spatial combinatorial “explosions” generate large numbers of possible
map configurations very quickly. Computer processing of the resulting spatial
datasets is one problem; stretching the humanmental capacities enough tofigure them
out is another. Some human communities are accustomed to using parts of the human
body for counting and only count small numbers. The Oksapmim in New Guinea
use 28 parts of the body (face hands, shoulders) to count (Saxe 2014). However,
despite the fact that different types of magnitudes are encoded by different neurons,
but the brain areas responsible for spatial information processing and for numer-
ical processing overlap in the fronto-parietal quantity network (Nieder 2019).Tricks
to shorten our way to calculations of “explosively” large numbers may appear in
tandem with technological advances in computing. For instance, multiplication as
taught at school requires n2 operations, but converting numbers to be multiplied to
polynomials with complex roots by using fast Fourier transforms (Rittaud 2013)
requires a significantly lower number of operations, specifically of the order of
nlogn[log(log(n))].

Even such compressions however, can not always help us perceive the very big
numbers emerging from spatial combinations. In fact, the problem of perceiving
and coping with such numbers has apparently been known since the antiquity.
Archimedes (287–212 b.C.), in his short work “The Sand Reckoner” («�αμμίτης»,
or «’Aμμoυ Kαταμšτρης») estimated that as many as 108×1016 “grains of sand”
might fill the entire space of the universe: a myriad of myriads and this raised to the
power of the myriad of myriads and all this to the power of a myriad of myriads
(“μία μυριὰδα μυριὰδων ε„ς τήν μυριoστή μυριὰδα καὶ Óλo ε„ς τήν μυριoστή

μυριὰδα”); a number that turns out to be much bigger than the number of baryons
in the universe. Unsurprisingly therefore, some philosophers have repeatedly high-
lighted the inadequacy of humanmind to imagine very large numbers (i.e.McTaggart
1927; Norcross 1997; Broome 2004). In view of this challenge, the philosophical
currents of “epistemic modality” and “fictionalism” are particularly relevant: by
examining modal expressions in languages (like “might”, “could” etc.), “epistemic
modality” focuses on possible worlds (Egan andWeatherson 2011). In this way,N(n)
can be interpreted philosophically, as a “modal” expression of possible combinations
of n objects.

Yet, spatial complexity may also be perceived through the philosophical lenses
of “fictionalism”, which accepts the plurality of worlds under certain conditions
(Liggins 2008;Woodward 2008). In response to these philosophies, “modal realism”,
in a synthesis of epistemic modality and fictionalism, accepts both possible and
impossible worlds as “real”. Modal realism begun with a work on pragmatic and
semantic problems arising from pluralities of worlds by Lewis (1986) and progressed
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with Yagisawa’s (2010) philosophy of “possible” worlds. The overwhelming compu-
tational complexity that easily emerges from problems involving large scale spatial
combinations and possible spatial outcomes crops up in spatial decision-making and
agrees with empirical evidence suggesting that when humans are asked to evaluate
uncertain spatial outcomes, they accept uncertainty, but “remain profoundly divided
over what strategies to adopt” (Retaillé and Walther 2011, p. 85).

Indeed, the epistemological impact of calculations of N(n) can be more far-
reaching if considered at the level of practice, for they unavoidably suggest there
may be possible limits to geographical knowledge and practice. This raises a serious
epistemological problem for spatial scientists, with geographers and cartographers
among themmost prominent:Might the “exploding”numbers of possiblemap config-
urations force researchers to accept subjective interpretations as indispensable to
spatial analysis?

It is not difficult to explore the orders of magnitudes resulting from such
“explosions”. Take, for instance, a square binary map of size 100 × 100. How
many binary map configurations are possible from the 10,000 cells of this
map up to maximum entropy? The answer is that this map can host precisely
100,891,344,545,564,193,334,812,497,256 different binary squaremaps. This figure
is approximately tantamount to 100 billion billion billion, or 100 octillion of possible
binary map configurations.

Equivalently, a map of size 1 km × 1 km may host as many as

2.702 × 10299

possible different binary maps of size 1 square meter each (2, 7 followed by 300
digits) up to maximum entropy class, or, more precisely,

270 288 240 945 436 569 515 614 693 625 975 275 496 152 008
446 548 287 007 392 875 106 625 458 705 522 193 898 612 483
924 502 370 165 362 606 085 021 546 104 802 209 750 050 679
917 549 894 219 699 518 475 423 665 484 263 751 733 356 162
464 079 737 887 344 364 574 161 119 497 604 571 044 985 756
287 880 514 600 994 219 426 752 366 915 856 603 136 862 602
484 428 109 296 905 863 799 821 216 320

What might the geographical implications of these magnitudes be? Consider that
the total surface area of the earth is approximately 5.1 × 108 km2. If, instead of a
sphere, the area of the terrestrial surface stretched over onto a planar square map of
equal area, this map would have a side equal to the square root of 5.1 × 108, that
is 22,583 km. Consequently, if up to r = 225,000,000 black cells were defined on
this planar map, the number of all possible 1 km × 1 km binary map configurations
would be:
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N (n) = 1010
8.817116294672106

How big is this number? To compare with, there are only about 3 × 1080 cubic
metres volume of space in the observable universe, while a commonly used estimate
of the number of baryons in the observable universe is of the order of 1080 and the
number of atoms in the universe ranges between 4× 1078 and 6× 1079. Also, for the
sake of comparison, the (notoriously high) number of all valid positions in a chess
game ranges between 1043 and 1050. It is easy to see that N(n) exceeds all these
numbers:

1010
8.3

> 1080 > 1079 > 1050

Hence, if the entire earth’s (planar) surface were subdivided into square cells
of 1 km2 size each and all possible allocations of black cells in this map were
calculated (even only up to maximum entropy class), the total number of possible
map configurations would be higher than the number of atoms and higher than the
number of baryons in the entire (known) universe.

Would it be an exaggeration to consider this simple calculation as an indication of
the limits to our geographical knowledge and understanding? Evidently, this would
also limit the potential of spatial planning alternatives.

And if the earth’s surface were stretched out as a square planar map and if it were
divided into cells of 1 square meter size each, then the number of possible binary
square maps up to maximum entropy would be:

1010
101,105837751009754

(10 to the power of 10 to the power of 10 to the power of 1.106). This number can
be expressed as approx. 1 “googol” to the power of 1.106 (1 googol equals 10100);
a number clearly beyond comprehension for the human mind (1 followed by 101
zeroes):

10,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000

000,000,000,000

The naming “google” was introduced arbitrarily, by the 9-years oldMilton Sirotta
in 1920. Although rather useless in calculations so far, googol is sometimes used to
benchmark the border between the very large and the physically uncountable (Kasner
2001).
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Such magnitudes are reminiscent of the “oceanic feeling of limitlessness and
boundlessness” (Lambert et al. 2006, p. 479) which has long inspired, disappointed
(and motivated) geographers and navigators throughout the ages. We are thus in
position to calculate only a very small number of possible spatial configurations of
the earth’s surface and, therefore, we can only partially manage (computationally)
the vast realm of possible spatial configurations. It won’t be too far from the truth
to claim that there are limits not only to our understanding, but may be even to our
very imagination of how an adequately large piece of space might possibly look
like. If more types of spatial allocations were considered in the geographical space
(i.e. not only binary, but multi-colored allocations also), then the number of possible
configurations would increase intractably for relatively “small” n. The temptation
to suggest that potential geographies imply limits to spatial computability seems
hard to resist. When Garry Kasparov lost to IBM”s “Deep Blue” in 1997, many
doubted whether human mental power might be up to the computational challenge
posed by supercomputers. But, as was pointed out (Rasskin-Gutman 2012), a player
looking eight moves ahead in chess is already presented with as many possible game
evolutions in chess as there are stars in the galaxy.

So how many “moves ahead” can a spatial planner or a geographer make? How
many possible spatial allocations could we possibly reflect upon? How long will it
take before being able to decide that a spatial scenario or a spatial plan has really
examined all the possible spatial outcomes? And, eventually, will we ever be able to
cope with spatial analysis at such large spatial scales?

We so far have no definite answers to these questions and we may never have. In
as much as there are many possible interesting chess games which we do not know
of (because they have never been played), there are (almost) innumerable ways for
humans to consider possible alternative spatial arrangements on the surface of the
earth that have never been considered and there may not even exist adequate time
available to examine them.
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Chapter 18
Spatial Complexity and the Future

Some of the legends are simple and some are complex
“Eἰσὶ δὲ τῶν μύθων οἱ μὲν ἁπλοῖ οἱ δὲ πεπλεγμένοι”
(Aristotle, 384–322 b.C., “Poetics”, 1452a)

Abstract Three sets of determinants of spatial complexity have been identified:
(i) probabilistic (entropy, randomness), (ii) geometrical (symmetries, intersections,
orthogonality, curvature), (iii) topological (boundaries, genus, dimension, knotted-
ness, braiding, knotting, linking, braiding, writhing). Spatial complexity is an inter-
disciplinary subject and a spatial complexity observatory might need to be estab-
lished, to monitor developments and research results related to spatial complexity
from across all disciplines. The future of humankind highly depends on the degree
to which it is able to understand, exploit and manage spatial complexity at large
(planetary) scales. Even in planning a utopia, would we prefer maximum spatial
complexity? Or just maximum spatial diversity? Or a co-presence of different “com-
possible” (as Leibniz named them) spatial configurations? Might quantum computa-
tion and/or spatial computing help us explore spatial alternatives? No doubt, crossing
borders into the amazing realm of spatial complexity poses challenging problems at
both theoretical and practical levels.

Keywords Spatial complexity · Spatial computing · Geography and complexity ·
Quantum computation · Complexity and inter-disciplinary · Mens Spatii ·
Kardashev

18.1 Key Determinants of Spatial Complexity

Our knowledge is only partial and our prophecies are also partial

“ἐκ μέρους δὲ γινώσκομεν καὶ ἐκ μέρους προφητεύομεν”
(St.Paul, A’ Corinthians, 13)

It is now appropriate to take stock of what we know to try to identify general
fields, axes, criteria, or, better, “determinants” of spatial complexity. As research
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from disparate research fields has revealed, spatial complexity is a genuinely inter-
disciplinary field of research. This is because spatial contrasts, disparities and
inequalities in variables, parameters, intensities, populations, quantities and qual-
ities are ubiquitous, cutting across most (if not almost all) domains of scientific
enquiry. We live in a world of incessant and unlimited spatial differentiations, so we
have developed science and technologies to explore them. Whether we use satellite
imagery orMRI, data fromfield observations or 3d representations from physical and
chemical experiments, or even higher-dimensional spatial analyses, we are prompted
to deal with innumerable types and forms of more or less spatially complex objects
and surfaces. As a matter of fact, it often passes unnoticed that questions and prob-
lems relating to particular determinants of spatial complexity essentially conceal the
overall problem of defining and assessing spatial complexity itself. For instance,
when a physicist examines the “spatial entropy” of a chemical process, or when a
landscape ecologist calculates the “landscape diversity” of a landscape, they are both
referring to some determinants of spatial complexity. And when a textile designer
draws celtic braids and knots on the canvas and a fluid mechanics engineer examines
braided flows of liquids, they essentially deal with the same determinant of spatial
complexity (braiding).

Spatial complexity is a property of every spatial object or allocation in space; it
may be trivially low or intractably high. Whether we deal with two, three, or higher-
dimensional entities, it nevertheless depends on some key factors such as quantity
of spatial elements, quantity of non-spatial elements allocated in space, randomness,
symmetries, geometry type, topology, genus, dimension, knottedness, and, possibly,
qualities. Defining the degree of complexity or simplicity of a spatial object or surface
is tantamount to calculating the difficulty involved in this definition, whether it is
i.e. a nano-surface or the large-scale structure of the universe. We deal with spatial
complexities, we suffer from them, we need to rid of them, but we also need to create
them with our technologies and we enjoy taking aesthetic pleasure from observing
them in various forms of visual artworks.

As concerns the psychological context of spatial complexity, there are strong
indications that the mechanisms defining the perception of spatial complexity may
not be as quantitatively tractable as we would like them to be. However, transferring
such difficulties to categories of mathematics for which we have well-crafted tools
may be encouraging.

Our current mathematical armature does not guarantee complete success in
conquering the summits of spatial complexity analysis. Quite the contrary; it some-
times only serves to prove that some spatial problems easily lead to combinatorial
explosions or intractable situations. But knowing the limits of human knowledge and
the limits of human understanding in relation to spatial problems is not a minor issue,
whatever the particular field of one’s scientific expertise may be. And yet, there is
another, brighter side: the fact that in most cases, we generalize spatial data, and
through these generalizations we are efficient in counting, evaluating and handling
the levels of spatial complexity we need. And in this respect, possessing easy-to-use
metrics such asCP1 andCP2, helps in assessing the spatial complexity of “small”maps
on (admittedly vaguely defined) “not-too-complex” surfaces. Extending these indices
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(and any other ones that may appear in the future) to three and more dimensions
and adjusting them to also apply to non-euclidean geometries and to higher dimen-
sional objects is clearly a big challenge, but certainly not the only one. The study
of spatial complexity is replete with open problems and addressing them effectively
will significantly impact the way we perceive the world around us.

Spatial complexity apparently depends on three key sets of determinants:
entropy/randomness, geometry and topology. All these determinants should even-
tually yield some algorithmic and/or computational expressions defining spatial
complexity. The manifestations of each one of these sets of determinants are mani-
fold. Thus, with respect to entropy, the higher the number of cover types and the
more random the allocation, the more complex the object is. Conversely, if there
are symmetries and simple shapes, the less complex it is. And, if the space is non-
euclidean, complexity increases. But neither entropy nor geometric properties are
adequate indicators of spatial complexity; topology is indispensable, by offering us
further descriptors of complexity (whether the space examined has high or low genus,
the number of spatial dimensions, the number of boundaries in it etc). All in all, the
spatial complexity of a surface or object therefore seems to depend on the following
factors (Fig. 18.1):

(A) Entropy and randomness

• Richness in non-spatial categories/classes/covers: the higher the number of
distinctively different categories, the higher the spatial complexity.

• Entropy: the more equiprobable the number of non-spatial cate-
gories/classes/covers, the more complex the object.

• Randomness of allocation of these spatial or non-spatial categories: generally,
but not always, the higher the randomness of the allocation of the categories,
the higher the spatial complexity, or, otherwise put, less patterning means higher
spatial complexity.

(B) Geometry

• Symmetries: a less symmetric object or form is expectedly a more complex one.
• Intersections: more intersections among spatial elements imply a more complex

spatial setting.
• Orthogonality: intersections at right angles result in less complex objects.
• Geometry type: it is more computationally demanding to describe an object that

obeys a non-euclidean geometry.

(C) Topology

• Boundaries: more boundaries among the different spatial elements means the
object is more complex.

• Genus: the higher the genus of an object, the more complex it is.
• Dimension: The higher the spatial dimension of an object, the more complex.
• Knottedness, braiding, linking, writhing: the presence of knots, braids, links and

writhes make an object more complex.
• Immersions and singularities.
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The identification of key determinants of spatial complexity however, does by
no means imply that the riddle of spatial complexity has been solved. There are
limits to the quantitative assessments of several of these determinants. And besides
these, there lies the unfathomable domain of qualitative and subjective interpretations
of spatial complexity, which entails an enormous complexity of its own. It would
be far too ambitious to claim that such a literally “knotty” subject might easily be
“unknotted” within a single book. Yet, one can at least hope that the importance of
spatial complexity will be highlighted as a central factor in the vast range of scientific
explorations, as it already is and as it deserves to be. As we are not alone on the face
of the earth, we should not loose sight from the fact that the ways by which other
living beings perceive and assess spatial complexity is largely unknown. For humans
however, it seems that spatial complexity is intricately related to the very essence of
human identity:we, as a species, are able both to generate immensely complex spatial
forms, as well as to de-complexi-fy those spatial forms that are necessary to maintain
and improve our livelihoods. Furthermore, assessing spatial complexity is practically
useful, from identifying melanomas to producing more efficient electronic devices,
designing intellectually challenging spatial games, exploring aesthetics, etc. Truly,
the bulk of this book is essentially a mathematical approach to spatial complexity,
but this might make one wonder: is it inevitable to resort to mathematics in order to
explain spatial complexity? The answer is: “Yes. Mostly”, because it seems nearly
impossible to derive any reliable assessment of spatial complexity without resorting
to quantified criteria which have to do with measurable quantities (number of inter-
sections, bounds to combinatorial complexity, genus, number of knot crossings etc.),
as well aswithmathematical but not necessarilymeasurable quantities (i.e. the geom-
etry type of the setting that is considered). May be, it is precisely this combination of
measurable (and “assessable” more generally) properties with not easily measurable
properties that defines the overall spatial complexity of a surface or object. Possibly,
with some degree of generalization, it might make sense to assume that any qualita-
tive or subjective estimates of spatial complexity may also be partially attributed to
such combinations. Plausibly, one can not easily prove or disprove this conjecture
without compelling experimental evidence at hand. But we are still very far from
that.

18.2 Spatial Complexity, “Com-Possible” Worlds
and Quantum Computation

And they said to all the Israelites:

The land which we spied on is very very beautiful

“καὶ εἶπαν πρὸς πᾶσαν συναγωγὴν υἱῶν Ἰσραὴλ λέγοντες·
ἡ γῆ, ἣν κατεσκεψάμεθα αὐτήν, ἀγαθή ἐστι σφόδρα σφόδρα”
(The Bible, Numbers, 14.7)
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In a letter dated 23 November 1697, Leibniz expressed his thought that “out of
the infinite combinations of possibles and possible series, there exists one with the
greatest amount of essence or possibility and this is brought into existence”. Indeed,
for Leibniz (in the 1923 edition of Samtliche schiften und briefe”. Vol.A VI iv 2232),
“possible things have no existence at all and therefore have not the power to exist”.
Further, not all possible combinations are “com-possibles”. That is, some possible
things are not compatiblewith each other, and thus can not be realized simultaneously
and syn-chorically: “there are many possible universes, each collection of compossi-
bles making up one of them” (Leibniz ed. 1969, L662), but, as he wrote in a letter to
Louis Bourguet (5 August 1715) “God chooses the best possible” (Leibniz ed. 1890,
G III 583). Amazingly, Leibniz appreciated that the whole process of com-possibles
ressembles spatial games where cells on the board are either filled or left empty
according to the game’s rules and the player’s strategy (Leibniz 1890 ed., G IV 405-
6, from a letter sent to Fracois Pinsson in June 1701). Hence, to the question “Which
one of the worlds is the best possible?”, Leibniz answers that it is the one containing
“as many things as possible” (Strickland 2006,p. 30), or the set in “whichmost things
co-exist” (op,cit,195). With this thought, Leibniz essentially concluded to a principal
criterion for the determination of which world would be the best possible: the one
ensuring the highest variety. This condition, interpreted in modern terms, means a
world endowed with the highest diversity possible (or maximum entropy).

In vol.VI of his “Interpretation of Nature”, Denis Diderot (1754) wondered about
possible explanations of the imaginary situation that “Eternity” wrote the “universal
mechanism” in the pages of an enormous book, and posed the question: Would the
book be more understandable than the universe itself? (“Si l’Éternel, pour manifester
sa toute-puissance plus évidemment encore que par les merveilles de la nature, eût
daigné développer le mécanisme universel sur des feuilles tracées de sa propre main,
croit-on que ce grand livre fût plus compréhensible pour nous que l’universmême?”).
This seemingly paradoxical question, by modern standards, ehoes the very concept
of algorithmic complexity and can be restated as follows: Would the complexity of
the book be equal to the complexity of the physical universe?

Indeed, the worlds of “possibles” have proven a very fertile ground to non-
philosophers and non-scientists and the existence of alternative worlds has been a
source of inspiration for several authors. Simply consider J. R. R. Tolkien’s “Lord of
the Rings” and “Silmarillion”, H. Rh. Lovecraft’s “Kthulu”, G. Orwell’s “1984”,
T.More’s “Utopia” and so on, among innumerable others. Whether completely
fantastic, or created on the basis of modern scientific thinking as in Francis
Fukuyama’s “posthuman future” (Fukuyama 2002), these worlds so far remain
nothing more than merely imagined worlds of human fiction, appearing only in
printed paper and films; never in reality.

Nonetheless, the existence of “Parallel worlds” and alternative possible worlds is
not precluded, as they constitute significant parts of certain interpretations of quantum
mechanics. Although their examination is beyond the scope of this work, it is worth
considering that, following theGhirardi-Rimini-Weber theory of quantummechanics
(Ghirardi et al. 1986), the entire world can be considered as eventually one physical
object only: the wave function of the universe. Following this line of thought, all
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realizations in this world result from vibrations of Schrödinger’s wave function. This
may seem too simplistic or too theoretical an approach, but the oncoming quantum
computers may overcomemany of the obstacles standing in the way towards massive
spatial computation, eventually paving the way to the computation of “alternative
worlds” for very largemap sizes. This is because quantum computers are exponential,
non-deterministic Turing machines, with extremely high computational capacity,
able to process simultaneously overlapping possible eigenstates of quantum systems
(“qubits”). A qubit comprises several possible states of combinations of 0 and 1,
simultaneously. It takes two eigenstates: |1> and |0> and these are derived from the
superposition of two quantum states |ψ> = a|1> + b|0> (where a and b are complex
numbers, with a+ b= 1). For instance, an 8-bit set ofmutually exclusive states is 256
such states if processed on a classic computer, but a quantum computer is expected
to be able to process in polynomial time all 28 combinations simultaneously. In
particular, according to Heisenberg matrix mechanics, the quantum state vector |ψ>
in the Hilbert space is:

|ψ〉 = a1

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
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0

⎞
⎟⎟⎟⎟⎟⎠

+ a3

⎛
⎜⎜⎜⎜⎜⎝

0
0
1
...

0

⎞
⎟⎟⎟⎟⎟⎠

+ ... + an

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
...

1

⎞
⎟⎟⎟⎟⎟⎠

so the 2-qubit states appear as column vectors:

|00〉 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, |01〉 =
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1
0
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0
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0
0
0
1

⎞
⎟⎟⎠

Quantum computation effectuated on the basis of qubits m is based on the power
2m, so a calculation with m=6 qubits gives 64 possible routes. Consequently, with
quantum computers, a number of routes as high as 1,9x1081 can be calculated, with
onlym=270 qubits; this number of routes is so big that approximates the total amount
of particles in the universe.

So, quantum algorithms, such as “Shor’s algorithm” may be promising in short-
ening calculation times. While factorizing a number of n digits long by means of
classical arithmetic requires a number of operations rising exponentially with n,
Shor’s quantum algorithm requires a growth of only O(n3). The same algorithm can
be used to rapidly factorize numbers to primes. To avoid using complex numbers,
instead of q-bits, the u-bits have been introduced, with even more surprising proper-
ties: a u-bit is essentially capable of interacting with all other bits of information in
the universe.
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Consequently, given the very rapid growth in computational power, it may be
too early to define the ultimate limits to our computational capability, and hence the
limits to how spatial complexity can be perceived, understood and explained, either
by human intelligence alone or aided by machines.

18.3 Large-Scale Spatial Complexity, Spatial Computing
and Planetary Futures

“You’re on Earth. There’s no cure for that”

(Samuel Beckett, 1906–1989, “Endgame”, 1957)

Were a super-powerful planner given the chance to re-plan the earth, what should
he need to maximize? Homogeneity? Diversity? Symmetry? Spatial complexity? As
the reader may correctly have suspected, this question reverberates the centuries-
old problem of utopia and utopism, from Plato (his “Politeia”) to Thomas Moore.
The naturalist Richard Jefferies wrote in his novel “Αfter London” (1885) about
a future in which, after a disaster, the population of London is eliminated and
the formerly busy city is colonised by plants and has reverted into wilderness: an
appalling dystopia or a green utopia? Similarly, William Morris in his “News from
Nowhere” (1890) described a post-industrial world without transport networks or
industry, where woodlands have replaced buildings in a clearly rural “utopia”, that
might be summarised by the known motto “Et in Arcadia ego”. But the urban devel-
opment across the world has proven that what humans eventually create on the face
of the earth is quite the opposite: a rapid complexification of planetary proportions.
For Jameson (1990), the greatest danger in utopian thinking is the regression to
uniformity. In short, maximum order is not utopia and, as a matter of fact, the major
challenge for the future is to achieve a stable complex society (Whitehead 1926,
p. 90) instead of a society with maximum order.

The world has become immensely more complex and the earth’s spatial
complexity has attained heights that none could ever expect at the time of the first
industrial revolution in which the utopists lived. This visible spatial complexity is
convoluted with an equally immense invisible one, created by all sorts of cyber-
physical systems, AR, VR, networks of networks and “hypernetworks” surrounding
the globe, connecting the Internetwith sensors and cableless networks (Papadimitriou
2010a, b), forming vast arrays of “spatial computing”.

Where does this exploding spatial complexity lead us to? Some decades ago,
Freeman Dyson and Nikolai Kardashev classified civilizations in the universe
(provided there exist other ones aside of ours’) into three types, according to their
energy management techniques (Dyson 1979; Kardashev 1964): “Type I civiliza-
tions” are those who have become capable of using all forms of their planet’ s
energy. By virtue of a globally established synergy, they have avoided major military
conflicts, have constructed planetary telecommunication networks, and have devel-
opedmethods to take advantage of their planet’s energy (i.e. wind energy, geothermic
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Fig. 18.2 Imagining a possible galactic Type-II civilization and “Dyson spheres” (created by the
author).

fields). “Type II civilizations” have mastered stellar energy sources and have thus
become able to use energy from stars, which they use to colonize neighboring stellar
systems (Fig. 18.2).“Type III civilizations” are able to use energy from stars of many
stellar systems and thus colonize their galaxy. This classification also relates to the
“Dyson spheres” which sometimes astronomers have mistakenly thought to have
discovered. Following Kaku (1997), the “United Federation of Planets” that is the
central entity in the series “Star Trek” is an example of the “Type II” status, whilst
the “Borg” extraterrestrial societies qualify for the “Type III” status. The imaginary
cubic Borg colonies are advanced human-cybernetic hybrids that have assimilated
individualities and transformed them into a unified system of life and intelligence,
embracing every living being in their own system of spatial intelligence. But we
are not there, since humankind still does not even qualify for the “Type I” status: a
“planetary intelligence” is still in the making.

As suggested by Doyle et al. (2011), the entropy and complexity of a message
of extraterrestrial origin may determine whether the signal is complex enough to
have been emitted by some intelligent agent and (op.cit., p. 417) “a direct indication
of the measure of the intellectual capabilities and possibly the complexity of the
social structure of the senders”. Such a message may be transmitted as a string of
symbols (in a linear format), but its decoding and/or interpretation may as well be
spatial and the complexity of the signal emitted would most likely be an indication
of the civilization’s complexity level. A spatially-encoded intelligent message might
as well entail a universally understandable mathematical pattern. Indeed, the famous
message emitted from the earth to the outer space, the “Arecibo message”, was
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characteristically spatial. Emitted on the 16th of November 1974, the Arecibo radio
telescope in Puerto Rico sent the “Arecibo Message” to the star cluster M13, with
a frequency of 238 MHz and a power of 1000 kW. The message consisted in 1679
binary digits. This number is the product of two prime numbers (23 × 73 = 1679)
and hence the message was a binary map of 23 columns by 73 rows. If read column-
wise (23 × 73), it does not make any sense, but if read row by row (that is 73 ×
23), it contains information about the atomic numbers of the chemical elements H,
C, N, O and P, which make up the basis of life on earth (the DNA), the basic forms
of DNA nucleotides. The same spatial arrangement makes sense in other ways also,
as it conveys information about the form of a human body, the DNA helix, the graph
of the solar system and a graph of the Arecibo radio telescope (the antenna dish).
The message was sent to star cluster M13, some 25000 light years away, hoping
that any intelligent beings that would receive it would also be able to decode it and
understand the information it conveys. Essentially, this is tantamount to hoping that
their aptitudes in decoding and deriving meanings from spatial complexity will be
matching our own.

Most likely, two of the hallmarks of our unique position in the universe are our
ability to decode the complexity of the natural world and our capacity to create our
own complexity. Both these exist regardless of the chemical, physical or biological
substances involved or the processes generating them. Most of our fellow humans
live in a world of high complexity (both natural and human-made), although some
still live in a world of more natural than human-made complexity. Yet, others have
decided to abandon the complexity of the “civilized” life to indulge in the lures of
a less complex life. In the Dhammapada for instance, it is written (25:22) that “The
monk, joyful and fulfilled by Buddha’s doctrine, achieves the blisssing of the state of
equanimity, and has let aside the world’s complexities”. The majority of us however,
prefer to live in a complex world, with complex lives full of complex networks,
complex technologies, complex economies, etc. In either case, humans make choices
of simplicity over complexity and complexity over simplicity on a daily basis. How
many of these choices, livelihood types and interactions are spatial? No doubt, a
large share of them, from choosing how to present food on a dish, to how to combine
shapes and colors of garments and how to arrange clothes in the cupboard. This
complexity-related decision making is deeply rooted in our nature and differentiates
us from other species, whose choices are considerably more limited.

Meanwhile, in a world that gets increasingly more complex, we experience a
frenzying “spatialization” of digital data, from GPS and locational data to selfies.
As we walk down the streets of a big city, we see innumerable signs and labels. All
these are spatial objects.We seldom bother to see them all in their true 3d context; we
most often read them as 2d images and signs. Understanding, decoding andmanaging
spatial complexity is one of the major future challenges for science and technology.

That’s because we need to simplify the unnecessary spatial complexity and we
only choose a very small portion of this huge inflow of spatial information to process
for future reference (which includes advertisements, posters, vast numbers of colors
of cars, attires of other people, building facades etc). And all these are spatial data,
spatial forms, spatial randomness and spatial patterns. We live in a realm of natural
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and human-made spatial complexity, in a world of “global complexity” (Urry 2003).
And our future very much depends on what we do with the natural spatial complexity
that the planet has bequeathed to us and what we do with the spatial complexity we
have created ourselves. At much larger spatial scales however, increasing complex-
ification (through information and communication technologies, complex transport
networks etc)might consist a potential vulnerability of human civilization.Managing
wisely the large-scale spatial complexity of the planet is an obviously extremely
“complex” undertaking,with unfathomable implications for everyone and everything
on the face of the earth.

18.4 Mens Spatii: Towards an Observatory of Spatial
Complexity

“The battle against Chaos and Old Night,

which is our one truly human activity”

(Bertrand Russell 1926, p. 267)

As Fernando Pessoa wrote in his poem “Ulisses", “myth is the nothing that is
everything” (O mito é o nada que é tudo). Thousands of years ago, in ancient greek
mythology and according toHesiod, the goddessMitis (Μῆτις), daughter of theOcean
and Tythys (the Land), born together with Eros (love) and Aether (spirit) and was
the first wife of Zeus (the leader of the 12 gods of the ancient greek mythology). She
was the primary goddess of wisdom and mother of the more widely known goddess
of wisdom, Athina to whom she bestowed her wisdom. Athina gave her name to
the city of Athens, but her mother’s capacities may have been even greater, since
she also was the goddess of cleverness, able to cleverly weave things and processes
(“μῆτιν ὑφαίνειν” as written in the Iliad Η. 324). Complexity is the result of things
interwoven together. The greek verb pleko (πλέκω) means to weave. Had the ancient
greeks known about the modern concept of complexity, it is likely they might have
attributed to it one of their foremost and primary divinities.

In geographical analyses nowadays we need maps to analyze the geographical
space and to perceive the world from images, but we also need our spatial data to
be easily updatable in real time. As imagined by Cubitt (1998, pp. 50–51) we might
eventually need an “Imperial Encyclopedia” created from satellite maps, eventually
fulfilling “the dream of Cartography: the endlessly updatable map”.

Although this may be sounding like a very remote possibility, we hopefully
however are in position to approximate an initial coarse classification of determi-
nants of spatial complexity. The set proposed here may not be exhaustive in details;
future research findings might suggest regroupping these determinants otherwise or
even adding new ones. In any case, the “philosophers’ stone” of spatial complexity
should be the unification of all the various determinants of spatial complexity into a
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unified system of spatial complexity assessment, which would render a single quanti-
tative value of complexity for a surface or object, knowing the values for each one of
the determinants given here. It is still uncertainwhether concepts of homology should
be used, or of group-theory, or algebraic geometry or category theory or indeed, of
just any other branch of mathematics, in order to bring together all the determinants
of spatial complexity together at some higher level of generalization. What can we
say, for instance, about the overall spatial complexity of a setting of interwoven
branches of plants with intersections and braiding and curvature? And would the
complexity be higher if the branches were all straight lines or if the they were with
less intersections? So, combining assessments of spatial complexity on the basis of
different criteria (geometric and topological in this case) simultaneously presents
one of the foremost important challenges for future research in spatial complexity.

It would probably be erroneous to assign any one single determinant of spatial
complexity some higher status in comparison to others. Although we need huge
efforts to get close to that stage of knowledge, there seems to be enough evidence,
theoretically and practically derived, enabling us to suggest that if any such overall
assessment is indeed possible at all, it should be expected to have the form of some
kind of algorithmic assessment, since in examining the spatial complexity of a surface
or an object, any geometric, topological or probabilistic formalism will eventually
have to be translated into algorithmic length and/or computational cost. With this
thought,weuncomplicatedly revert back to traditional algorithmic and computational
complexity. There is no reason really to assume that it might have been feasible to
proceed otherwise and this is encouraging, considering that some algorithmic tools
for measuring simple cases of spatial complexity are already available. Indeed, the
length of description of a spatial object or surface is firmly set at the very heart of
spatial complexity analysis. Succeeding to convert the values of the determinants of
spatial complexity to a final algorithmic or computational description seems to be a
rather remote possibility given our current state of knowledge. But, at least, wemight
establish some landmarks on our way towards it. Thus, future research does not have
to divert into unknown pathways; it simply needs to follow the relevant domains
of research that are already established (mathematics, geography, earth sciences,
ecology, social sciences, engineering, topography, cosmology, computer science,
biomedical sciences, spatial computing etc.) and just be sensitive to all upcoming
research results that might be relevant to spatial complexity.

Consequently, due to the inter-disciplinary nature of spatial complexity analysis,
it would probably be best to monitor, accumulate and evaluate results relevant to
spatial complexity as they come out from the different scientific domains. This will
ensure the robustness of the advancing knowledge about spatial complexity and will
also help to avoid the danger of biasing this essentially inter-disciplinary subject to a
single scientific discipline. For this reason, it may be better to envisage our theoretical
knowledge of spatial complexity as advancing in pace with our knowledge from
experiments and practice in various disciplines. And “practice” in this case may also
entail artifacts of human creativity, constructions, artistic production, engineering
applications etc. In short, we need a “Spatial Complexity Observatory”, which might
be named “Mens Spatii” (the mind of space). In this way, besides the theoretical
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achievements, the exploration of spatial complexity may gradually develop into a
truly fascinating experience along the way.

We all dwell in a vast realm of spatial complexity, butwe probably haven’t realized
its importance for us. But, as we progressively advance its exploration, we will also
sharpen our sensitivity to appreciate it to the extent it deserves, because it is precisely
spatial complexity that reflects the plurality and diversity of colors, forms, shapes
and features, that the fabric of the world is made of. The moment we think we
grasped it, the next it has already changed; and yet, we carry on. Because, as the
Dhammapada (8.14) reads, “it is more worthy to live even one single day by grasping
the impermanence of all things, than one thousand years in ignorance”.

The realm of spatial complexity is vast, overwhelming, dangerous, tricky, playful,
deceiving, puzzling, dazzling, elusive, and may be, above all, charming.

Quite possibly, attempting to cross its borders is an endeavor resembling that of
the great navigators of the past who embarked to discover new continents.

Embarking to discover new realms has always been challenging and…complex.
But handsomely rewarding also.
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