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Rotating Rings, Discs and Cylinders                                                                                                                                      

Simeon Denis Poisson, born on 21 June 1781, was a great French 
mathematician, geometer and physicist. He worked under two famous 
mathematicians Pierre-Simon Laplace and Joseph-Louis Lagrange, and 
Sadi Carnot, who is called the father of thermodynamics, was his one of 
the famous students. Poisson is most known for applying mathematics to 
solve problems in electricity and magnetism, mechanics and other areas 

theory and probability. In his Poisson equation, also known as potential 
theory equation, he corrected the Laplace’s second order partial differential 
equation for potential. He is also known for Poisson’s ratio, which is 
widely used in strength of materials. The Poisson distribution is extremely 

random occurrence of events in time or space. In 1818, he was elected a 
fellow of the Royal Society and in 1823, a foreign member of the Royal 
Swedish Academy of Sciences. He is among the 72 people whose names 
are inscribed on the Eiffel Tower.

LEARNING OBJECTIVES
 After reading this chapter, you will be able to answer some of the following questions:
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(1781-1840)
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17.1 INTRODUCTION  
Components such as turbine shafts and discs while rotating at high speeds are subjected to large  
centrifugal forces, which in turn, produce large stresses that are distributed symmetrically about 
their axes of rotation. The stress analysis of these components is useful in their safe design so as to 
prevent their failure.

17.2 ROTATING RING
The force analysis of a thin rotating ring can also be applied to a thin rotating cylinder or rim-type 

Consider a thin ring or a thin cylinder rotating with a constant angular velocity  rad/s about its 
axis as shown in Fig. 17.1.

Fig. 17.1 A rotating ring.

Let r = Mean radius of the ring (or cylinder)

 t = Thickness of the ring (or cylinder)

  = Density of the ring or (cylinder material)

Rotational motion produces centrifugal force on the circumference of the ring or on the walls of 
the cylinder, which in turn, produces hoop (or circumferential) stress h. Since the thickness is very 
small, hence there is no variation of the hoop stress along the thickness, that is, the hoop stress may 
be assumed to be constant.

Now consider a small element ABCD of the ring or cylinder making an angle d  at the centre as 

Forces on the element
The following three forces are acting on the element ABCD :
  The centrifugal force caused due to rotation acting radially outward
  The hoop tension force on the face AB caused due to hoop stress h

  The hoop tension force on the face CD caused due to hoop stress h
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Centrifugal force
Considering unit length of the circumference of the element, the mass m of the element can be 
obtained as
 m = Density × Volume of the element
  = Density × Area of the element × Unit length
  =  × rd  × t × 1
  = rt d  ...(17.1)

The centrifugal force is given as

 Fc = 
mV
r

2

 ...(17.2)

  = m 2r  ...(17.3)
  = r2 2t d (on substituting m)...(17.4)
 where V = Linear velocity
  = r

Hoop tension forces on faces AB and CD
The hoop tension forces act perpendicular to faces AB and CD are equal but opposite in direction; one 
is acting in the left direction and another in the right direction. Its magnitude is
  h × t × 1 = h × t  (assuming unit length)

Now the hoop forces are resolved into horizontal and vertical components. The vertical components 
of the hoop forces acting on faces AB and CD are radially inward and both are equal to

  h × t × sin
dθ
2

The horizontal component of the hoop force acting on face AB is directed leftward and the 
horizontal component on face CD is directed rightward and both are equal to

  h × t × cos
dθ
2

Equilibrium of the element
The horizontal components of the hoop tension forces on the faces AB and CD are equal but opposite 
in direction, hence they cancel each other. Their vertical components are added as they are acting in 
the same direction.

Fc is balanced by the 
sum of the vertical components of the hoop tension forces on the two faces.

 Fc = h × t × sin
dθ
2

 + h × t × sin
dθ
2

 r2 2t d   = 2 × h × t × sin
dθ
2

 (using equation (17.4))
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   = 2 × h × t × 
dθ
2

 (as d  is very small, hence sin
dθ
2

  
dθ
2

)

which gives
 h  = 2r2 ...(17.5)
This is the required expression for the hoop stress in a thin rotating ring.

Example 17.1
The thin rim of a 900 mm diameter wheel is made of steel and weighs 7800 kg/m3. Neglecting the 
effect of the spokes, how many revolutions per minute may it make, if the hoop stress is not to exceed 

E = 210 GPa.

Solution: Given,
 Diameter of the wheel,  d = 900 mm
   = 900 × 10–3 m
 Density of the rim material,      = 7800 kg/m3

 Hoop stress,       h  = 150 MPa
   = 150 × 106 Pa
 Modulus of elasticity, E = 210 GPa
   = 210 × 109 Pa

The diameter of the rim is equal to the diameter of the wheel and its radius

  r = 
d
2

 = 
900 10

2

3× −
 = 0.45 m

The hoop stress is given by using equation (17.5) as
  h = 2r2

  150 × 106 = 7800 × 2 × (0.45)2

which gives
   = 308.167 rad/s

Let N be the number of revolutions per minute, then

   = 
2

60
π N

  308.167 = 
2

60
π N

 which gives N =  308 167 60
2

. ×
π

   = 2942.78  Ans.
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 Now the hoop strain is given as

  h = σh
E

   = 
150 10
210 10

6

9

×
×

 = 7.143 × 10–4

 Hence, the increase in diameter of the wheel is
  Hoop strain × Diameter = 7.143 × 10–4 × 900 
   = 0.643 mm  Ans.

Example 17.2

material of the wheel is 8000 kg/m3

Solution: Given,
 Mean diameter of the wheel,  d  = 800 mm
 Rotational speed, N = 2000 rpm
 Density of the wheel material,   = 8000 kg/m3

 The mean radius of the wheel is given as

  r = 
d
2

 = 800
2

 = 400 mm

   = 400 × 10–3 m
 The angular velocity of the wheel is obtained as

  =  
2

60
π N

   = 
2 2000

60
π ×

 = 209.44 rad/s

 Now the hoop stress is given by equation (17.5) as

  h = 2r2

   = 8000 × (209.44)2 × (400 × 10–3)2

   = 56.147 × 106 Pa
   = 56.147 MPa  Ans.

17.3 ROTATING THIN DISC
Consider a thin disc  of inner radius r1 and outer radius r2 rotating at angular speed  rad/s about 
its axis as shown in Fig. 17.2. The thickness of the disc is negligibly small, so there is no variation 
of stress across the thickness, and there is no axial stress (longitudinal stress) in the disc. The two 
stresses acting on the disc include hoop and radial.
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 (a) A rotating disc (b) Forces acting on the element ABCD

Fig. 17.2

Let t = Thickness of the disc

  = Density of the disc material

Now consider an element ABCD of the disc of radial width dr at radius r subtending an angle d

Forces on the element
ABCD:

  The centrifugal force caused due to rotation
  The radial force on face AB caused due to radial stress r

  The radial force on face CD caused due to radial stress r

  The hoop tension force on face AD caused due to hoop stress h

  The hoop tension force on face BC caused due to hoop stress h

Centrifugal force

 (rd ) × dr × t
Now the mass of the element is

 m = Density × Volume of the element

  =  × (rd ) × dr × t
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The centrifugal force acting on the element is

 Fc = m 2r

  = (  × rd  × dr × t) × 2 × r

  = r2 2t d dr ...(17.6)

Hoop tension forces on faces AD and BC

The hoop tension forces act perpendicular to AD and BC and are equal to h × dr × t.

Now the hoop forces are resolved into horizontal and vertical components. The vertical components 
of the hoop forces acting on faces AD and BC are radially inward and both are equal to

 h × dr × t × sin
dθ
2

 = h × dr × t ×
dθ
2

 (for small value of d , sin
dθ
2

dθ
2 )

The horizontal component of the hoop force acting on face AD is directed leftward and the 
horizontal component on face BC is directed rightward and both are equal to

 h × dr × t × cos
dθ
2

 = h × dr × t ×
dθ
2

 (for small value of d , cos
dθ
2

  
dθ
2 )

Radial forces on faces AB and CD

The radial force on AB is equal to r × rd  × t. It acts radially inward.

The radial force on CD acting radially outward is

  ( r + d r) × (r + dr) × d  × t

Equilibrium of the element

The horizontal components of the hoop tension forces on the faces AD and BC are equal but opposite 
in direction, hence they cancel each other. Their vertical components are added as they are acting in 
the same direction.

Balancing the forces in the radial direction, we have

 r × r × d  × t + h × dr × t × sin dθ
2

 +  h × dr × t × sin dθ
2

   = r2 2 tdrd + ( r + d r) × (r + dr) × d  × t

 r × r × d  × t + 2 h × dr × t × dθ
2

 = r2 2 tdrd + ( r + d r) × (r + dr) × d  × t

(for small value of d , sin
dθ
2

=
dθ
2 )
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Eliminating d ×t from both sides of the equation, we have
  r × r + h × dr = r2 2 dr + r r + r dr + rd r + drd r

Eliminating r r from both sides and neglecting drd r because of its small value, we have
  h dr = r2 2 dr + r dr + rd r

  ( h – r) dr = r2 2 dr + rd r

Dividing by dr on both sides, we have

  ( h – r) = r2 2 + r d
dr

rσ  ...(17.7)

Strain in the element
Due to rotation, the radius of the disc increases. Let the radius r changes to (r + u) and dr changes 
to (dr + du).

Now the hoop strain is given as

  h = 
Final circumference Initial circumference

Initial circumfer
−

eence

   = 
2 2

2
π π

π
( )r u r

r
+ −

   = 
u
r

 ...(17.8)

And the radial strain is given as

  r = Final radial witdh Initial radial width
Initial radial width

−

   = 
( )dr du dr

dr
+ −

   = 
du
dr  ...(17.9)

 Also h = 
σh
E

 – v
σr

E
 ...(17.10)

  r = 
σr

E  – v σh
E

 ...(17.11)

On equating equations (17.8) and (17.10), we have

  
u
r  = 

σh
E

 – v
σr

E

   = 
1
E

 ( h – v r) ...(17.12)
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On equating equations (17.9) and (17.11), we have

  
du
dr  = 

σr

E
 – v σh

E

   = 
1
E

 ( r – v h) ...(17.13)

From equation (17.12), we get
  E × u = r × ( h – v r)

Differentiating w.r.t. r, we have

  E
du
dr

 = ( h – v r) + 
d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟  × r

 or 
du
dr

 = 1
E

v r d
dr

v d
drh r

h r( )σ σ σ σ− + −⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥  ...(17.14)

On equating equations (17.13) and (17.14), we have

  r – v h = h – v r + r
d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟

  r + v r = h + v h + r
d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟

  r (1 + v) = h (1 + v) + r
d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟

 or        ( h – r) (1 + v) + r
d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟  = 0 ...(17.15)

On substituting ( h – r) from equation (17.7) in equation (17.15), we have

       ρ ω σr r d
dr

r2 2 +⎛
⎝⎜

⎞
⎠⎟ (1 + v) + r

d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟  = 0

         r2 2 + v r2 2 + r d
dr

rσ  + vr d
dr

rσ  + r
d
dr

hσ – vr d
dr

rσ  = 0

Eliminating r from the above equation, we have

       r 2 + v r 2 + 
d
dr

rσ  + 
d
dr

hσ  = 0

       r 2 (1 + v) + 
d
dr

rσ  + 
d
dr

hσ  = 0

 or 
d
dr

rσ  + 
d
dr

hσ  = – r 2 (1 + v) ...(17.16)
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On integration, we have

  r + h = –  × 
r2

2
× 2 (1 + v) + A

   = 
− +ρ ωr v2 2 1

2
( )

+ A ...(17.17)

where A is a constant of integration.
Now subtracting equation (17.7) from equation (17.17), we get

  2 r = 
− +ρ ωr v2 2 1

2
( )

 + A – r2 2 – r
d
dr

rσ

  2 r + r d
dr

rσ  = – r2 2 1
2

1+ +⎛
⎝⎜

⎞
⎠⎟

v  + A

   = – r2 2 1 2
2

+ +⎛
⎝⎜

⎞
⎠⎟

v
 + A

   = −
+ρ ωr v2 2 3

2
( )

 + A ...(17.18)

 Multiplying by r on both sides, we have

  2 × r × r + r2 d
dr

rσ  = −
+( )ρ ωr v3 2 3

2
 + A × r

  d
dr

(r2 × r) = −
+( )ρ ωr v3 2 3

2
 + A × r

 Integrating both sides, we get

  r2 × r = −
+ ×ρω2 43

2 4
( )v r

 + A × 
r2

2
 + B

where B is another constant of integration.
Dividing by r2 on both sides, we get

  r = −
+ + +ρω2 2

2

3
8 2

r v
r

( ) A B

   = 
A B
2

3
82

2 2

+ − +
r

r vρω ( )
 ...(17.19)

This is the required expression for the radial stress. The constants A and B can be determined 
by using suitable boundary conditions. Now substituting equation (17.19) in equation (17.17), 
we get

  A B
2

3
82

2 2

+ − +
r

r vρω ( ) + h = −
+ρω2 2 1

2
r v( )

 + A
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  h = ρω ρω2 2 2 2

2

3
8

1
2 2

r v r v
r

( ) ( )+ − + + − −A A B

   = 2r2 3
8

1
2 2 2

+ − +⎛
⎝⎜

⎞
⎠⎟
+ −v v

r
A B

   = 2r2 3 4 4
8 2 2

+ − −⎛
⎝⎜

⎞
⎠⎟
+ −v v

r
A B

   = 2r2 × ( )− − + −1 3
8 2 2

v
r

A B

   = − + + −ρω2 2

28
1 3

2
r v

r
( ) A B

   = 
A B

r
r v

2
1 3

82

2 2

− − +ρω ( )
 ...(17.20)

This is the required expression for the hoop stress for a rotating thin disc. The constants A and B 
can be determined by using suitable boundary conditions.

17.3.1 Hoop and Radial Stresses in a Rotating Solid Disc
For a solid disc, there is no inner radius.
 R1 = 0 and R2 = R (say)

r B
r2

B = 0.

Equations (17.19) and (17.20) are now transformed to

  r = 
A
2

−
+( )ρω2 2 3

8
r v

 ...(17.21)

  h = 
A
2

−
+( )ρω2 2 1 3

8
r v

 ...(17.22)

The boundary conditions is

At the outer radius, where r = R, the radial stress is
 r = 0

On substituting the boundary condition in equation (17.21), we get

  
A
2

 = 
ρω2 2 3

8
R v( )+
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Now equation (17.21) on substituting the value of A
2

 becomes

  r = 
ρω2 2 3

8
R v( )+

 – 
ρω2 2 3

8
r v( )+

   = 
ρω ( )3

8
+ v

 (R2 – r2) ...(17.23)

This is the required expression for the radial stress for a rotating thin solid disc. Equation (17.22) 

on substituting the value of A
2

 becomes

  h = 
ρω2 2 3

8
R v( )+

 – ρω
2 2 1 3

8
r v( )+

   = 
ρω2

8
 [(3 + v)R2 – (1 + 3v)r2] ...(17.24)

This is the required expression of the hoop stress for a rotating thin solid disc.

Hoop and radial stresses at the centre
At the centre of the solid disc, where r = 0, both hoop and radial stresses have equal maximum values, 
given by

  rmax = hmax = 
ρω2 2 3

8
R v( )+

 ...(17.25)

Hoop stress at outer radius
At the outer radius, the radial stress r = 0, but the hoop stress is not zero.

The value of the hoop stress at the outer radius is obtained by putting r = R in equation (17.24) as

 h r = R
 = 

ρω2

8
 [R2 (3 + v) – R2 (1 + 3v)]

 = 
ρω2

8
 (3R2  + vR2 – R2 – 3vR2)

 = 
ρω2

8
 (2R2 – 2vR2)

 = 
ρω2

8
× 2R2 (1 – v)

  = ρω
2 2

4
R  (1 – v) ...(17.26)
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The variation of the hoop and radial stresses in a rotating solid disc along the radius is shown in 
Fig. 17.3.

Fig. 17.3 Distribution of the hoop and radial stresses in a rotating solid disc.

17.3.2 Hoop and Radial Stresses in a Rotating Disc with a Central Hole
B is zero in order to have 

B is not zero and its 
value is obtained using suitable conditions.

The radial stress r is zero at both inner and outer radius of the disc.
 i.e. at r = R1, r = 0
 Also at r = R2, r = 0

From equation (17.19), we have

 r  = 
A B
2

3
82

2 2

+ − +
r

r vρω ( )

 0 = 
A B
2

3
81

2

2
1
2

+ −
+

R
R vρω ( )

 ...(1)

     and 0 = 
A B
2

3
82

2

2
2
2

+ −
+

R
R vρω ( )

 ...(2)

Subtracting equation (2) from equation (1), we have

  B B
R R

R v R v

1
2

2
2

2
2
2 2

1
23

8
3

8
− +

+
−

+ρω ρω( ) ( )
 = 0

 or                   
B( )R R

R R
v R R2

2
1
2

1
2

2
2

2

2
2

1
23

8
−

+ + −ρω ( ) [ ]  = 0
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Eliminating (R2
2– R1

2), we have

 
B

R R
v

1
2

2
2

2 3
8

+ +ρω ( )
 = 0

It gives

 B  = − +( )3
8

2
1
2

2
2v R Rρω  ...(17.27)

Now substituting the value of B in equation (1), we get

 0 = 
A

R
v R R R v

2
1 3

8
3

81
2

2
1
2

2
2 2

1
2

+ × + ⎫
⎬
⎭

⎧
⎨
⎪

⎩⎪
− +( ) ( )ρω ρω

  = 
A v R v R
2

3
8

3
8

2
2
2 2

1
2

− + − +( ) ( )ρω ρω

  = A v R R
2

3
8

2

2
2

1
2− + +( ) [ ]ρω

It gives

 A = ( ) ( )3
4

2
2
2

1
2+ +v R Rρω  ...(17.28)

Finally the values of A and B are substituted in equation (17.19) to get the expression for the radial 
stress r as

 r = 
1
2

3
4

1 3
8

2
2
2

1
2

2

2
1
2

2
2

×
+ +

+ × −
+⎧

⎨
⎩

⎫
⎬
⎭

( ) ( ) ( )v R R
r

v R Rρω ρω

– ρω2 2 3
8

r v( )+

 = 
( ) ( ) ( ) ( )3

8
3

8
3

8

2
2
2

1
2 2

1
2

2
2

2

2 2+ + − + − +v R R v R R
r

r vρω ρω ρω

  = 
( ) ( )3

8

2

2
2

1
2 1

2
2
2

2
2+ + − −

⎡

⎣
⎢

⎤

⎦
⎥

v R R R R
r

rρω
 ...(17.29)

This is the required expression for the radial stress for a rotating disc with a central hole.
A and B are substituted in equation (17.20).

 h = 
A B

r
r v

2
1 3

82

2 2

− − +ρω ( )

  = 
1
2

3
4

1 3
8

2
2
2

1
2

2

2
1
2

2
2

×
+ +

− × −
+⎧

⎨
⎩

⎫
⎬
⎭

( ) ( ) ( )v R R
r

v R Rρω ρω
− +ρω2 2 1 3

8
r v( )
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  = 
( ) ( ) ( ) ( )3

8
3

8
1 3

8

2
2
2

1
2 2

1
2

2
2

2

2 2+ +
+

+
− +v R R v R R

r
r vρω ρω ρω

  = 
ρω2

2
2

1
2 1

2
2
2

2
2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +

⎡

⎣
⎢

⎤

⎦
⎥v R R v R R

r
v r  ...(17.30)

This is the required expression for the hoop stress for a rotating disc with a central hole.

Maximum hoop stress (Hoop stress at inner radius)
Equation (17.30) suggests that with increase in the value of radius r, the hoop stress h decreases and 
vice versa. Hence, h is maximum when r is minimum, that is, when r approaches to R1. Substituting 
r = R1 in equation (17.30), we have

 hmax
 = hr = R1

 = 
ρω2

2
2

1
2 1

2
2
2

1
2 1

2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +

⎡

⎣
⎢

⎤

⎦
⎥v R R v R R

R
R v

  = 
ρω2

2
2

1
2

2
2

1
2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +⎡⎣ ⎤⎦v R R v R R v

  = 
ρω2

2
2

1
2

2
2

1
2

2
2

2
2

1
2

1
2

8
3 3 3 3R R vR vR R vR R vR+ + + + + − −⎡⎣ ⎤⎦

  = 
ρω2

2
2

2
2

1
2

1
2

8
6 2 2 2R vR R vR+ + −⎡⎣ ⎤⎦

  = 
ρω2

2
2

1
2

8
2 3 2 1R v R v( ) ( )+ + −⎡⎣ ⎤⎦

  = 
ρω2

2
2

1
2

4
3 1( ) ( )+ + −⎡⎣ ⎤⎦v R v R  ...(17.31)

This is the required expression for the maximum hoop stress for a rotating disc with a central hole, 
which occurs at inner radius of the disc.  

R1 approaches R2 = r, we have from equation (17.31)

 h = 
ρω2

2 2

4
3 1[( ) ( ) ]+ + −v r v r

  = 
ρω2

2 2 2 2

4
3[ ]r vr r vr+ + − = 

ρω2
2

4
4× r

  = 2r2

The above expression is same as equation (17.5), which applies to a thin rotating ring or a thin 
rotating cylinder.
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Hoop stress at outer radius
For hoop stress at outer radius, put r  = R2 in equation (17.30).

 hr = R2
 = 

ρω2

2
2

1
2 1

2
2
2

2
2 2

2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +

⎡

⎣
⎢

⎤

⎦
⎥v R R v R R

R
R v

  = 
ρω2

2
2

1
2

1
2

2
2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +⎡⎣ ⎤⎦v R R v R R v

  = 
ρω2

2
2

1
2

2
2

1
2

1
2

1
2

2
2

2
2

8
3 3 3 3R R vR vR R vR R vR+ + + + + − −⎡⎣ ⎤⎦

  = 
ρω2

2
2

2
2

1
2

1
2

8
2 2 6 2R vR R vR− + +⎡⎣ ⎤⎦

  = 
ρω2

2
2

1
2

8
2 1 2 3R v R v( ) ( )− + +⎡⎣ ⎤⎦

  = 
ρω2

2
2

1
2

4
1 3( ) ( )− + +⎡⎣ ⎤⎦v R v R  ...(17.32)

Maximum radial stress 

r and equate it to zero.

 
d
dr

rσ  = 0

 
d
dr

v R R
R R
r

r( ) ( )3
8

2

2
2

1
2 1

2
2
2

2
2+ + − −

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

ρω
 = 0

 
( ) ( )3

8
0 2 2

2

3 1
2

2
2+ − − −⎡

⎣⎢
⎤
⎦⎥

v
r

R R rρω
 = 0

 
( )3

8
2

2
2

1
2

2
2

3

+ −
⎡

⎣
⎢

⎤

⎦
⎥

v R R
r

rρω
 = 0

which gives

 r = R R1 2  ...(17.33)

Substituting the value of r in equation (17.29), we get

 rmax
 = 

( ) ( )3
8

2

2
2

1
2 1

2
2
2

1 2
1 2

+ + − −
⎡

⎣
⎢

⎤

⎦
⎥

v R R R R
R R

R Rρω

  = ( )3
8

2
2

2
2

1
2

1 2
+ + −⎡⎣ ⎤⎦
v R R R Rρω

  = ( ) ( )3
8

2

2 1
2+ −v R Rρω  ...(17.34)
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This is the required expression for the maximum radial stress for a rotating disc with a central 
hole. 

17.3.3 Hoop and Radial Stresses in a Rotating Disc with a Pin Hole at the Centre
In this case, R1 tends to zero. Substituting R1 = 0 and R2 = R in equations (17.31) and (17.34), we get 
the expressions for the maximum hoop and radial stresses for a rotating disc with a central pin hole.

 hmax
 = 

( )3
4

2 2+ v Rρω
 ...(17.35)

 and rmax
 = 

( )3
8

2 2+ v Rρω
 ...(17.36)

 Comparing equations (17.35) and (17.36), we get
 hmax

 = 2 × rmax
 ...(17.37)

Also, when we compare equation (17.35) with equation (17.25), we observe that the maximum 
hoop stress for a rotating disc with a central pin hole is twice the maximum hoop stress for a rotating 
solid disc.

Example 17.3
A steel disc of diameter 800 mm rotates at 2500 rpm. Calculate the hoop and radial stresses developed 
at the centre and outer radius of the disc. The Poisson’s ratio is 0.25 and the density of the disc 
material is 7800 kg/m3.

Solution: Given,

 Radius of the disc, R = 800
2

 = 400 mm 

  = 400 × 10–3 m

 Rotational speed, N = 2500
 Poisson’s ratio, v = 0.25
 Density of the disc material,  = 7800 kg/m3

The angular speed of the disc is given as

  = 2
60
πN

  = 2 2500
60

π ×  = 261.8 rad/s

Hoop stress at the centre
From equation (17.25), the hoop stress at the centre of the disc is maximum, and is given as

 hmax
 = 

ρω2 2 3
8

R v( )+
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  = 
7800 261 8 400 10 3 0 25

8

2 3 2× × × × +−( . ) ( ) ( . )

  = 34.75 × 106 N/m2

  = 34.75 MPa Ans.

Hoop stress at outer radius
From equation (17.26), the hoop stress at the outer radius is given as

 hr = R
 = ρω

2 2 1
4

R v( )−

  = 
7800 261 8 400 10 1 0 25

4

2 3 2× × × × −−( . ) ( ) ( . )

  = 16.04 × 106 N/m2

  = 16.04 MPa  Ans.

Radial stress at the centre
The radial stress at the centre is maximum, and is equal to the hoop stress at the centre.

 rmax
 = hmax

 = 34.75 MPa Ans.

Radial stress at outer radius
The radial stress at the outer radius of the disc is zero.

 rr = R
 = 0 Ans.

Example 17.4 
A steel disc of diameter 250 mm has a central hole of diameter 50 mm, and rotates at 5000 rpm. 
Calculate the hoop stresses developed at the inner and outer radius of the disc. The Prisson’s ratio is 
0.25 and the density of the disc material is 7800 kg/m3.

Solution: Given,

 Outer radius of the disc, R2 = 
250
2  = 125 mm  = 125 × 10–3 m

 Inner radius of the disc, R1 = 
50
2  = 25 mm = 25 × 10–3 m

 Rotation speed, N = 5000 rpm

 Poisson’s ratio, v = 0.25

 Density of the disc material,  = 7800 kg/m3
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The angular speed of the disc is given as

  = 
2
60
πN

  = 
2 5000

60
π ×

 = 523.6 rad/s

Hoop stress at inner radius
Substituting the values of , , v, R1 and R2 in equation (17.31), we get the hoop stress at the inner 
radius of the disc as

 hr = R1
 = 

ρω2

2
2

1
2

4
3 1[( ) ( ) ]+ + −v R v R

  = 
7800 523 6

4
3 0 25 125 10

2
3 2× × + × × −( . ) [( . ) ( )

+ − × × −( . ) ( ) ]1 0 25 25 10 3 2

  = 27.4 × 106 N/m2

  = 27.4 MPa Ans.

This is also the maximum value of the hoop stress, which occurs at the inner radius of the disc.

Hoop stress at outer radius
Substituting the values of , , v, R1 and R2 in equation (17.32), we get the hoop stress at the outer 
radius of the disc as

 hr = R2
 = 

ρω2

2
2

1
2

4
1 3[( ) ( ) ]− + +v R v R

  = 
7800 523 6

4

2× ( . )
 × [(1 – 0.25) × (125 × 10–3)2 + (3 + 0.25)

× (25 × 10–3)2]

  = 7.35 × 106 N/m2

  = 7.35 MPa Ans.

Example 17.5
A circular saw of thickness 5 mm and diameter 800 mm is secured upon a shaft of diameter  
120 mm. The saw material has the density of 8100 kg/m3 and the Prisson’s ratio is 0.3. Calculate the 

of the radial stress in the saw.

Solution: Given,

 Inner radius of the saw, R1 = 
120

2
 = 60 mm = 60 × 10–3 m
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 Outer radius of the saw, R2 = 
800

2  = 400 mm = 400 × 10–3 m

 Density of the saw material,  = 8100 kg/m3

 Poisson’s ratio, v = 0.3

 Maximum hoop stress, hmax
 = 250 MPa = 250 × 106 Pa

 From equation (17.31), the maximum hoop stress is given as

 hmax
 = 

ρω2

2
2

1
2

4
3 1[( ) ( ) ]+ + −v R v R

Substituting values of the given parameters in the above equation, we have

 250 × 106 = 
8100

4
3 0 3 400 10 1 0 3 60 10

2
3 2 3 2× + × × + − × ×− −ω [( . ) ( ) ( . ) ( ) ]

  = 2025 2 [3.3 × (400×10–3)2 + 0.7 × (60 × 10–3)2]

  = 1074.303 2

or 2 = 
250 10
1074 303

6×
.

which gives  = 482.4 rad/s

 Now          = 
2
60
πN

 or          N = 
ω

π
× 60
2

 = 482 4 60
2
. ×
π

 = 4606.6 rpm Ans.

 From equation (17.34), the maximum radial stress is given as

 rmax
 = 

( ) ( )3
8

2

2 1
2+ −v R Rρω

  = 
( . ) ( . ) {( ) }3 0 3 8100 482 4 400 60 10

8

2 3 2+ × × × − × −

  = 89.88 × 106 N/m2 = 89.88 MPa Ans.

Example 17.6
A thin disc of diameter 900 mm has a central hole of diameter 100 mm. Calculate the maximum hoop 
stress developed in the disc, if the maximum radial stress is 25 MPa. The Poisson’s ratio is 0.25.

Solution: Given,

 Outer radius of the disc, R2 = 
900

2
 = 450 mm

                                                                = 450 × 10–3 m
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 Inner radius of the disc, R1 = 
100

2
 = 50 mm

                                                                 = 50 × 10–3 m
 Poisson’s ratio, v = 0.25
 Maximum radial stress, rmax

 = 25 MPa

                                                 = 25 × 106 N/m2

From equation (17.34), the maximum radial stress is given as

 rmax
 = 

( ) ( )3
8

2

2 1
2+ −v R Rρω

 250 × 106 = 
( . )3 0 25

8

2+ ρω
 × {(450 – 50) × 10–3}2

  = 0.065 2

or 2 = 
25 10

0 065

6×
.

  = 3.84615 × 108 ...(1)
Now the maximum hoop stress, using equation (17.31), is given as

 hmax
 = 

ρω2

2
2

1
2

4
3 1[( ) ( ) ]+ + −v R v R

  = 
3 84615 10

4

8. ×
 [(3 + 0.25) × (450 × 10–3)2 + (1 – 0.25)

   × (50 × 10–3)2]
  = 63.46 × 106 N/m2

  = 63.46 MPa Ans. 

Example 17.7
A steel disc of diameter 300 mm has a central hole of diameter 100 mm and it rotates at 4000 rpm. 
Taking Poisson’s ratio as 0.3 and the density of the disc material to be 7800 kg/m3

parameters :
 (a) the hoop stress at the inner and outer radius of the disc
 (b) the radius at which the radial stress is maximum and
 (c) the maximum radial stress.

Solution: Given,

 Outer radius of the disc, R2 = 
300

2
 = 150 mm  = 150 × 10–3 m

 Inner radius of the disc, R1 = 
100

2
 = 50 mm = 50 × 10–3 m



820  Strength of Materials

 Poisson’s ratio, v = 0.3

 Rotational speed, N = 4000 rpm

 Density of the disc material,  = 7800 kg/m3  

 The angular speed of the disc is obtained as

           = 
2
60
πN

  = 
2 4000

60
π ×

 = 418.88 rad/s

(a) Hoop stress at inner radius  
 The hoop stress at the inner radius is the maximum value of the hoop stress, and is given by equation 
(17.31) as

 hr = R1
 = hmax

 = 
ρω2

2
2

1
2

4
3 1[( ) ( ) ]+ + −v R v R

  = 
7800 418 88

4

2× ( . )
× [(3 + 0.3) × (150 × 10–3)2 + (1 – 0.3) × (50 × 10–3)2]

  = 26 × 106 N/m2

  = 26 MPa Ans.

Hoop stress at outer radius 

The hoop stress at the outer radius is given by equation (17.32) as

 hr = R2
 = 

ρω2

2
2

1
2

4
1 3( ) ( )− + +⎡⎣ ⎤⎦v R v R

  = 
7800 418 88

4

2× ( . )
× [(1 – 0.3) × (150 × 10–3)2 + (3 + 0.3) × (50 × 10–3)2]

  = 8.211 × 106 N/m2

  = 8.211 MPa Ans.

 (b) The radius at which the radial stress is maximum, is given by equation (17.33) as

 r = R R1 2

  = ( ) ( )50 10 150 103 3− × ×− −

  = 0.0866 m

  = 86.6 mm Ans.
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 (c) The maximum radial stress is  given by equation (17.34) as

 rmax
 = ( ) ( )3

8

2

2 1
2+ −v R Rρω

  = 
( . ) ( . )3 0 3 7800 418 88

8

2+ × ×
× {(150 – 50) × 10–3}2

  = 5.645 × 106 N/m2

  = 5.645 MPa Ans.

Example 17.8
A circular disc of outside diameter 500 mm has a central hole and rotates at a uniform speed about  
an axis through its centre. The diameter of the hole is such that the maximum stress due to rotation 
is 85% of that in a thin ring whose mean diameter is also 500 mm. If both disc and ring are made of 
the same material and rotate at the same speed, determine (a) the diameter of the central hole and (b) 
the speed of rotation, if the allowable stress in the disc is 90 MPa. Take the Poisson’s ratio of 0.3 and 
the density of both disc and ring material as 7800 kg/m3.

Solution: Given,

 Mean radius of the thin ring, r = 500
2

 mm

  = 250 × 10–3 m

 Outside radius of the disc, R2 = 500
2

 mm

  = 250 × 10–3 m
Density of the disc and ring material,

  = 7800 kg/m3

 Poisson’s ratio v = 0.3

 Maximum hoop stress in the disc,
  hmax

  = 90 MPa

  = 90 × 106 Pa

Let h be the maximum hoop stress in the thin ring.

 Given        hmax
  = 0.85 × h

 Hence         h = 
σhmax

.0 85

For  thin ring
The hoop stress in the thin ring is given as
          h = 2r2 (using equation (17.5))
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σhmax

.0 85
 = 2r2 (on substituting h)

 
90 10

0 85

6×
.  = 7800 × 2 × (250 × 10–3)2

 2 = 
90 10

7800 0 85 250 10

6

3 2

×
× × × −. ( )

  = 217194.6

which gives
  = 466 rad/s

Now the rotational speed N is given as

 N = 
60
2
ω
π

  = 
60 466

2
×
π

  = 4450 rpm Ans.

For hollow disc
The maximum hoop stress is given as

         hmax
  = 

ρω2

2
2

1
2

4
3 1[( ) ( ) ]+ + −v R v R  (using equation (17.31))

  90 × 106 = 
7800 217194 6

4
× .

 × [(3 + 0.3) × (250 × 10–3)2 + (1 – 0.3) R1
2]

  = 4.23 × 108 × [3.3 × (250 × 10–3)2 + 0.7 × R1
2]

 
90 10

4 23 10

6

8

×
×.

 = 0.20625 + 0.7 R1
2

 0.2128 = 0.20625 + 0.7 R1
2

 R1
2 = 

0 2128 0 20625
0 7

. .
.
−

 = 9.36 × 10–3

which gives
 R1 = 0.09674 m
  = 96.74 mm

Hence, the diameter of the central hole = 2 × R1 

  = 2 × 96.74

  = 193.5 mm Ans.
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Example 17.9
A steel disc of uniform thickness and of diameter 800 mm has a pin hole at the center. Calculate the 
maximum hoop stress developed in the disc, if it rotates at 3000 rpm. The Poisson’s ratio is 0.25 and 
the density of the disc material is 7800 kg/m3. 

Solution: Given,

 Radius of the disc, R = 
8

2
00

 = 400 mm

  = 400 × 10–3 m

 Rotational speed, N = 3000 rpm

 Poisson’s ratio, v = 0.25

 Density of the disc material,  = 7800 kg/m3

The angular speed of the disc is found as

 Now          = 
2
60
πN

  = 
2 3000

60
π ×

 = 314.16 rad/s

From equation (17.35), the maximum hoop stress is given as

         hmax
  = 

( )3
4

2 2+ v Rρω

   = 
( . ) ( . ) ( )3 0 25 7800 314 16 400 10

4

2 3 2+ × × × × −

  = 108 Pa

  = 100 MPa Ans.

Example 17.10
A thin uniform steel disc of diameter 500 mm rotates at 2000 rpm. Calculate the maximum 
principal stress induced in the disc and also plot the distribution of the hoop stress and the radial 
stress along the radius of the disc. Take Poisson’s ratio as 0.3 and the density of the disc material 
is equal to 7800 kg/m3.

Solution: Given,

 Radius of the disc, R = 
500

2
 = 250 mm

               = 250 × 10–3 m
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 Rotational speed, N = 2000 rpm

 Poisson’s ratio, v = 0.3.

 Density of the disc material,  = 7800 kg/m3. 

 The angular speed of the disc is obtained as

           = 
2
60
πN

  = 
2 2000

60
π ×

  = 209.44 rad/s
The maximum hoop stress is also the maximum principal stress, which can be obtained by using 

equation (17.25) as

         hmax
  = 

ρω2 2 3
8

R v( )+

   = 
7800 209 44 250 10 3 0 3

8

2 3 2× × × × +−( . ) ( ) ( . )

  = 8.821 × 106 N/m2

  = 8.821 MPa Ans.

Distribution of the hoop stress
The hoop stress is given by equation (17.24) as 

         h  = 
ρω2

8
 [(3 + v) R2 – (1 + 3v) r2]

Now we select different values of the radius r and determine the corresponding hoop stresses using 
the above equation. The distribution of the stresses is shown in Table 17.1.

Table 17.1 Distribution of the hoop stress

r (mm) 0 50 100 150 200 250

h (MPa) 8.821 8.618 8.00 7.00 5.570 3.742

Distribution of the radial stress 
The radial stress is given by equation (17.23) as 

         r  = 
ρω2 3

8
( )+ v

 (R2 – r2)

The values of the radial stresses corresponding to the selected values of the radius are determined 
using the above equation, which are shown in Table 17.2.
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Table 17.2 Distribution of the radial stress

r (mm) 0 50 100 150 200 250

r (MPa) 8.821 8.468 7.409 5.645 3.175 0

Plotting of the hoop and radial stresses  
The values of the radius are plotted on x-axis and the values of the hoop and radial stresses on y-axis. 
The resulting curves for the two stresses are shown in Fig. 17.4.

Fig. 17.4

Example 17.11
A steel disc of diameter 400 mm has a central hole of diameter 100 mm and rotates at 8000 rpm. 
Taking Poisson’s ratio as 0.3 and the density of the disc material to be 7800 kg/m3, plot the distribution 
of the hoop and radial stresses along the radius of the disc.

Solution: Given,

 Outer radius of the disc, R2 = 
400
2

 = 200 mm = 200 × 10–3 m

 Inner radius of the disc, R1 = 
100

2
  = 50 mm

                                                               = 50 × 10–3 m
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 Poisson’s ratio, v = 0.3

 Rotational speed, N = 8000 rpm

 Density of the disc material,  = 7800 kg/m3

The angular speed of the disc is obtained as

           = 2
60
πN

  = 2 8000
60

π ×

  = 837.76 rad/s

Distribution of the hoop stress 

The hoop stress is given by equation (17.30) as

         h  = 
ρω2

2
2

1
2 1

2
2
2

2
2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +

⎡

⎣
⎢

⎤

⎦
⎥v R R v R R

r
v r

Now we select different values of the radius r and determine the corresponding hoop stresses using 
the above equation. The distribution of the stresses is shown in Table 17.3. 

Table 17.3 Distribution of the hoop stress

r (mm) 50 100 150 200

h (MPa) 183.05 105.55 76.75 49.61

Distribution of the radial stress 

 The radial stress is given by equation (17.29) as 

 r = 
( ) ( )3

8

2

2
2

1
2 1

2
2
2

2
2+ + − −

⎡

⎣
⎢

⎤

⎦
⎥

v R R R R
r

rρω

The values of the radial stresses corresponding to the selected values of the radius are determined 
using the above equation, which are shown in Table 17.4. The radius at which radial stress is 

maximum is R R1 2
3 350 10 200 10= × × ×− −( ) ( )  = 0.1 m = 100 mm.

Table 17.4 Distribution of the radial stress

r (mm) 50 100 150 200

r (MPa) 0 50.80 35.13 0
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Plotting of the hoop and radial stresses
The values of the radius are plotted on x-axis and the values of the hoop and radial stresses on y-axis. 
The resulting curves for the two stresses are shown in Fig. 17.5.

Fig. 17.5

17.4 ROTATING DISC OF UNIFORM STRENGTH
In case of a disc with uniform thickness, the hoop and radial stresses are not uniform and they vary 
along the radius of the disc. On the other hand, a disc of uniform strength has equal values of hoop 
and radial stresses at every radius. Thickness of such a disc is not uniform and varies along the 
axis. Analysis of such a disc is useful in the design of turbine blades rotating at high speeds and are 
required to be subjected to constant stress conditions to prevent their premature failure. 

Consider a rotating disc of uniform strength which is subjected to equal hoop and radial stresses, 
that is, h = r =  and the stresses do not vary with radius. Now consider an element ABCD of radial 
width dr of the disc at a radius r from the axis of rotation making an angle d
in Fig. 17.6.

Let t =  Thickness of the disc at radius r
 t + dt =  Thickness of the disc at radius (r + dr) 
 to =  Thickness of the disc at radius r = 0, that is, at the axis of rotation
  =  Angular speed of the disc
  =  Equal hoop and radial stresses
  =  Density of the disc material 
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Fig. 17.6

Forces on the element 
The following forces are acting on the element ABCD : 
  The centrifugal force caused due to rotation acting radially outward
  The hoop tension force on the face AB caused due to hoop stress 
  The hoop tension force on the face CD caused due to hoop stress 
  The radial force on the face BD caused due to radial stress 
  The radial force on the face AC caused due to radial stress 

Centrifugal force
The mass m of the element can be obtained as
 m = Density × Volume of the element
  =  × (rd dr × t)
  = rtd dr ...(17.38)

The centrifugal force is given as

 Fc = 
mV
r

2

  = m 2r (as V = r)
  = ( rtd dr × 2r) (on substituting m)

  = t 2r2d dr ...(17.39)
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Hoop tension forces on faces AB and CD 

The hoop tension forces act perpendicular to AB and CD and are equal to h × dr × t. 

Now the hoop forces are resolved into horizontal and vertical components. The vertical 
components of the hoop forces acting on faces AB and CD are radially inward and both are equal to 

 × dr × t × sin dθ
2

The horizontal component of the hoop forces acting on face AB is directed leftward

and the horizontal component on face CD is directed rightward, and both are equal to  

 × dr × t × cos dθ
2

Radial force on face BD  

Radial force on BD = × rd t, and its acts radially inward.

Radial force on face AC  

Radial force on AC =  × (r + dr)d t + dt), and it acts radially outward.

Equilibrium of the element

The horizontal components of the hoop tension forces on the faces AB and CD are equal but opposite 
in direction, hence they cancel each other. The vertical components are added as they are acting in 
the same direction (radially inward). 

Considering forces in the radial direction, we have

 × rd t +  × dr × t × sin
dθ
2

 +  × dr × t × sin
dθ
2

 = Fc +  × (r + dr) d t + dt)

or  × rd t + 2  × dr × t × sin
dθ
2

 = Fc +  × (r + dr) d t + dt)

Substituting the value of Fc from equation (17.39) in the above equation and equating sin
dθ
2

 = 
dθ
2

 as 
d

 × rd t + 2  × dr × t × 
dθ
2

 = t 2r2d dr + rtd rd dt + tdrd drd dt

Eliminating d

 × r × t + tdr  = t 2r2dr + rt + rdt + tdr + drdt

Now eliminating rt and tdr from both sides and neglecting (drdt) as being the product of two 

 0 = t 2r2dr + rdt

 or – rdt = t 2r2dr

 
dt
t

 = −
ρω

σ

2rdr
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On integration, we have

 loge t = − +ρω
σ

2 2

2
r Aelog  ...(17.40)

where loge A  is a constant of integration. 
The boundary condition is 

 when          r = 0
 t = to

Substituting the boundary condition in equation (17.40), we get 
 loge to = loge A 
 which gives       A = to

Equation (17.40) on substituting A becomes 

 loge t = − +ρω
σ

2 2

2
r te olog

 loge t – loge to = −
ρω

σ

2 2

2
r

 loge
o

t
t

⎛
⎝⎜

⎞
⎠⎟

 = −
ρω

σ

2 2

2
r

 
t
to

 = e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

which gives

 t = t eo

r

×
−

⎛
⎝⎜

⎞
⎠⎟

ρω
σ

2 2

2  ...(17.41)

This is the required expression for the thickness of the disc, which varies according to the given value 
of the radius r.

Example 17.12
A turbine rotor is to be designed for uniform strength for a tensile stress of 150 MPa . The rotor runs 
at 6000 rpm and its thickness at the centre is 90 mm. If the density of the material of the rotor is  
7800 kg/m3, determine the thickness of the rotor at a radius of 400 mm.

Solution: Given,
 Uniform stress,  = 150 MPa
  = 150 × 106 Pa
 Rotational speed, N = 6000 rpm
 Thickness of the rotor at the center, to = 90 mm
  = 90 × 10–3 m
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Density of the rotor material,  = 7800 kg/m3

 Radius at the required thickness, r = 400 mm
  = 400 × 10–3 m

The angular speed of the rotor is obtained as

           = 2
60
πN

  = 2 6000
60

π ×

  = 628.32 rad/s
From equation (17.41), the expression for the thickness is given as

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

  = 90 × 10–3 × e
− × × ×

× ×

⎛

⎝⎜
⎞

⎠⎟
−7800 628 32 400 10

2 150 10

2 3 2

6
( . ) ( )

  = 90 × 10–3 × e–1.642

  = 90 × 10–3 × 0.193
  = 0.01742 m
  = 17.42 mm Ans.

Example 17.13
The minimum thickness of a steam turbine rotor is 10 mm at a radius of 200 mm and is required to 
be designed for uniform strength under rotational conditions for a stress of 180 MPa. It runs at 10,000 rpm and 
its material weighs 7800 kg/m3. Determine the thickness of the rotor at a radius of 40 mm.

Solution: Given,
 Rotational speed of the rotor, N  = 10,000 rpm
Radius at the desired thickness, r  = 40 mm
   = 40 × 10–3 m

 Uniform stress,   = 180 MPa
   = 180 × 106 Pa 
 Density of the rotor material,  = 7800 kg/m3 

The angular speed of the rotor is obtained as

            = 2
60
πN

    = 2 10 000
60

π × ,

    = 1047.2 rad/s
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The thickness expression is given as

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

At r = 200 mm, t = 10 mm. Substituting these values in the above equation, we have

 10 × 10–3 = to × e
− × × ×

× ×

⎛

⎝
⎜

⎞

⎠
⎟

−7800 1047 2 200 10
2 180 10

2 3 2

6
( . ) ( )

  = to × e– 0.9504

  = to × 0.3866

 which gives
 to = 0.02586 m

  = 25.86 mm

Again using the thickness equation and substituting the value of to, we have 

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

  = 0.02586 × e
− × × ×

× ×

⎛

⎝
⎜

⎞

⎠
⎟

−7800 1047 2 40 10
2 180 10

2 3 2

6
( . ) ( )

  = 0.02586 × e–0.038

  = 0.02586 × 0.9627

  = 0.0249 m

  = 24.9 mm Ans.

Example 17.14
A steam turbine rotor is 160 mm diameter below the blade ring and 5 mm thick, and runs at  
30,000 rpm. If the material of the rotor weighs 7800 kg/m3 and the allowable stress is 160 MPa, 

condition.

Solution: Given,

 Rotational speed of the rotor,

 N = 30,000 rpm

Radius at the desired thickness, r = 60 mm

  = 60 × 10–3 m

 Uniform stress,  = 160 MPa

  = 160 × 106 Pa

 Density of the rotor material,  = 7800 kg/m3
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 The angular speed of the rotor is obtained as 

           = 
2
60
πN

  = 
2 30 000

60
π × ,

 = 3141.6 rad/s

The thickness expressions is given as  

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

where to is thickness of the rotor at the center, that is, at r = 0.
 Now at         r = 80 mm, t = 5 mm

Using these values in the above equation, we have

 5 × 10–3 = to × e
− × × ×

× ×

⎛

⎝⎜
⎞

⎠⎟
−7800 3141 6 80 10

2 160 10

2 3 2

6
( . ) ( )

  = to × e–1.53966

  = to × 0.2144

which gives
 to = 0.0233 m
  = 23.3 mm Ans.

Again using the thickness equation for r = 60 mm, we have

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

  = 23.3 × 10–3 × e
− × × ×

× ×

⎛

⎝⎜
⎞

⎠⎟
−7800 3141 6 60 10

2 160 10

2 3 2

6
( . ) ( )

  = 23.3 × 10–3 × e–0.866

  = 23.3 × 10–3 × 0.4206 = 9.8 × 10–3 m
  = 9.8 mm Ans.

Example 17.15
A steel turbine disc is to be designed so that between radii of 250 mm and 400 mm, the radial and 
hoop stresses are required to be constant at 60 MPa, when running at 3000 rpm. If the axial thickness 

material is 7800 kg/m3.

Solution: Given,
 Uniform stress,  = 60 MPa
  = 60 × 106 Pa
 Rotational speed, N = 3000 rpm
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 Density of the disc material,  = 7800 kg/m3. 

The angular speed of the disc is obtained as

           = 
2
60
πN

  = 
2 3000

60
π ×

  = 314.16 rad/s

The thickness expression is given as

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

Now at r = 400 mm, t = 12 mm. Substituting these values in the above equation, we have

 12 × 10–3 = to × e
− × × ×

× ×

⎛

⎝⎜
⎞

⎠⎟
−7800 314 16 400 10

2 60 10

2 3 2

6
( . ) ( )

  = to × e–1.0264

  = to × 0.3583

which gives
 to = 0.0335 m

  = 33.5 mm 

Again using thickness equation for r = 250 mm, we have

 t = 0.0335 × e
− × × ×

× ×

⎛

⎝
⎜

⎞

⎠
⎟

−7800 314 16 250 10
2 60 10

2 3 2

6
( . ) ( )

  = 0.0335 × e–0.40095

  = 0.0335 × 0.6697

  = 0.0224 m

  = 22.4 mm Ans.

17.5 ROTATING LONG CYLINDER
The force analysis of a rotating thick cylinder is similar to that of a rotating thin disc except the 
introduction of axial stress. Hence three stresses acting on a rotating thick cylinder include hoop 
stress ( h), radial stress ( r) and axial stress, also called longitudinal stress ( l). It is assumed that 
the transverse sections of the cylinder remain plane even at high speeds of rotation, which implies 
that longitudinal strain is constant. At the same time, all the three stresses acting on the cylinder are 
principal stresses. 
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Consider a small element ABCD of the cylinder at a distance r and of radial thickness dr subtending 
an angle d

Fig. 17.7

Let  h = Hoop strain, also called circumferential strain
 r = Radial strain
 l = Longitudinal strain
  = Angular speed of rotation of the cylinder
 v = Poisson’s ratio
 E = Modulus of elasticity of the cylinder

The strains produced by various stresses are obtained as

 h = 
σ σ σh r l

E
v
E

v
E

− −

  = 
E

 [ h – v ( r + l

 r = 
σ σ σr h l

E
v

E
v
E

− −

  = 
E

 [ r – v ( h + l

 and         l = 
σ σ σl h r

E
v

E
v

l
− −

  = 
E

 [ l – v ( h + r
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Due to rotation, the radius of the cylinder increases. Let the radius r changes to (r + u) and dr 
changes to (dr + du).

Now the hoop strain is also expressed as

 h = 
2 2

2
π π

π
( )r u r

r
+ −

  = 
u
r

 ...(17.45) 

The radial strain is also expressed as

 r = 
( )dr du dr

dr
+ −

  = 
du
dr

 ...(17.46) 

Comparing equations (17.42) and (17.45), we have

 h = 
u
r

 = 
1
E

 [ h – v ( r + l)]

which gives
 Eu = r [ h – v ( r + l)] ...(17.47)

Comparing equations (17.43) and (17.46), we have

 r = 
du
dr

 = 
1
E

 [ r – v ( h + l)] ...(17.48)

Differentiating equation (17.47) with respect to r, we get 

 
du
dr

 = 
1
E

 [ h – v ( r + l)] + 1
E

r d
dr

vr d
dr

d
dr

h r lσ σ σ− +⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 ...(17.49)

Comparing equations (17.48) and (17.49), we get

 r – v ( h + l) = h – v ( r + l) + r d
dr

hσ  – vr
d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟

 r – v h – v l = h – v r – v l + r d
dr

hσ  – vr d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟

Cancelling v l from both sides of the equation and rearranging the terms, we get

 r + v r = h + v h + r d
dr

hσ  – vr d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟

 r (1 + v) = h (1 + v) + r d
dr

hσ  – vr d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟
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 (1 + v) ( r – h) = r d
dr

hσ  – vr d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟

 (1 + v) ( r – h) – r d
dr

hσ  + vr d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟

 

Since l is constant, hence from equation (17.44), we have

 l = 1
E

 [ l – v ( h + r)] = Constant

 or       l – v ( h + r) = Constant (as E is a constant)
Differentiating with respect to r, we have

 
d
dr

lσ – v
d
dr

d
dr

h rσ σ+⎛
⎝⎜

⎞
⎠⎟   = 0

Multiplying all the terms by r, we get

 r
d
dr

lσ – vr d
dr

d
dr

h rσ σ+⎛
⎝⎜

⎞
⎠⎟

 = 0

or r
d
dr

lσ   = vr
d
dr

d
dr

h rσ σ+⎛
⎝⎜

⎞
⎠⎟  ...(17.51)

From equation (17.50), we have 

 (1 + v) ( r – h) – r
d
dr

hσ  + vr d
dr

rσ  + vr
d
dr

lσ  

Substituting equation (17.51) in the above equation, we get

 (1 + v) ( r – h) – r
d
dr

hσ  + vr d
dr

rσ  + v2r
d
dr

d
dr

h rσ σ+⎛
⎝⎜

⎞
⎠⎟  

 (1 + v) ( r – h) – r
d
dr

hσ  + vr d
dr

rσ  + v2r
d
dr

hσ  + v2r d
dr

rσ  

 (1 + v) ( r – h) – r d
dr

hσ  (1 – v2) + vr d
dr

rσ (1 + v) = 0

Eliminating (1 + v) from all the terms, we get

 ( r – h) – r d
dr

hσ (1 – v) + vr d
dr

rσ  = 0

 ( h – r) + r (1 – v) d
dr

hσ  – vr d
dr

rσ  = 0 ...(17.52)

The equilibrium equation of the element can be obtained in a similar manner as in case of a rotating 
thin disc, which is given by equation (17.7) as

 ( h – r) r2 2 + r d
dr

rσ  (from equation (17.7))
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Substituting the above in equation (17.52), we get

r2 2 + r d
dr

rσ  + r (1 – v)
d
dr

hσ – vr d
dr

rσ  = 0

Eliminating r from all the terms and simplifying, we have 

r 2 + 
d
dr

rσ  (1 – v) + (1 – v)
d
dr

hσ  = 0

 or       
d
dr

hσ  + 
d
dr

rσ  = –
ρ ωr

v

2

1( )−
 ...(17.53)

Integration of equation (17.53) gives

 h + r = –
ρ ωr

v

2 2

2 1( )−
 + A ...(17.54)

where A is a constant of integration. 
Now subtracting equation (17.7) from equation (17.54), we get

 h + r – h + r = –
ρ ωr

v

2 2

2 1( )−
 + A – r2 2 – r d

dr
rσ

 2 r + r d
dr

rσ  = – r2 2 1
2 1

1
( )−

+
⎡

⎣
⎢

⎤

⎦
⎥v

 + A

  = – r2 2 
1 2 2
2 1
+ −

−
⎡

⎣
⎢

⎤

⎦
⎥

v
v( )

 + A

  = −
−
−

⎛
⎝⎜

⎞
⎠⎟

ρ ωr v
v

2 2

2
3 2
1

 + A

Multiplying by r on both sides, we get

 2 r r + r2 d
dr

rσ  = −
−
−

⎛
⎝⎜

⎞
⎠⎟

ρ ωr v
v

3 2

2
3 2
1

 + Ar

 d
dr

(r2 × r) = −
−
−

⎛
⎝⎜

⎞
⎠⎟

ρ ωr v
v

3 2

2
3 2
1

 + Ar ...(17.55)

On integration, we have

 r2 × r = −
−
−

⎛
⎝⎜

⎞
⎠⎟
+ρ ωr v

v
Ar4 2 2

8
3 2
1 2

 + B

where B is another constant of integration. 
Dividing throughout by r2, we get

 r = 
A B

r
r v

v2 8
3 2
12

2 2

+ − −
−

⎛
⎝⎜

⎞
⎠⎟

ρ ω
 ...(17.56)
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This is the required expression for the radial stress for a rotating thick cylinder. The constants A 
and B can be determined by using suitable boundary conditions.

Substituting equation (17.56) in equation (17.54), we can obtain the value of h.  

 σ
ρ ω

h
A B

r
r v

v
+ + − −

−
⎛
⎝⎜

⎞
⎠⎟2 8

3 2
12

2 2

 = –
ρ ωr

v

2 2

2 1( )−
 + A

or h = A A B
r

r v
v

r
v

− − + −
−

⎛
⎝⎜

⎞
⎠⎟
−

−2 8
3 2
1 2 12

2 2 2 2ρ ω ρ ω
( )

  = 
A B

r
r

v
v

2 2 1
3 2

4
12

2 2

− +
−

− −⎛
⎝⎜

⎞
⎠⎟

ρ ω
( )

  = 
A B

r
r

v
v

2 2 1
3 2 4

42

2 2

− +
−

− −⎛
⎝⎜

⎞
⎠⎟

ρ ω
( )

  = 
A B

r
r v

v2 8
1 2
12

2 2

− − +
−

⎛
⎝⎜

⎞
⎠⎟

ρ ω
 ...(17.57)

This is the required expression for the hoop stress for a rotating thick cylinder. The constants  
A and B can be determined by using suitable boundary conditions.

17.5.1 Hoop and Radial Stresses in a Rotating Solid Cylinder or a Solid Shaft
r

for the meaningful values of the two stresses, the constant B has to be zero. Now the stresses are 
expressed as 

 r = 
A r v

v2 8
3 2
1

2 2

− −
−

⎛
⎝⎜

⎞
⎠⎟

ρ ω
 ...(17.58)

 and         h = 
A r v

v2 8
1 2
1

2 2

− +
−

⎛
⎝⎜

⎞
⎠⎟

ρ ω
 ...(17.59)

These are the expressions for the radial and hoop stresses respectively at the centre of a rotating 
solid cylinder.

 At the surface of the cylinder, where r = R2 ( = R say),
 r = 0

 Substituting r in equation (17.58), we have 

 0 = 
A R v

v2 8
3 2
1

2 2

− −
−

⎛
⎝⎜

⎞
⎠⎟

ρ ω

 which gives

 
A
2  = 

ρ ωR v
v

2 2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟
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On putting A
2

 in equation (17.58), we have

 r = 
ρ ω ρ ωR v

v
r v

v

2 2 2 2

8
3 2
1 8

3 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟
− −

−
⎛
⎝⎜

⎞
⎠⎟

  = 
ρω2

2 2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

−( )v
v

R r  ...(17.60)

 This is the required expression for the radial stress for any value of r. 

 The expression for the hoop stress on substituting the value of A
2

 in equation (17.59) becomes

 h = 
ρω ρω2 2 2 2

8
3 2
1 8

1 2
1

R v
v

r v
v

−
−

⎛
⎝⎜

⎞
⎠⎟
− +

−
⎛
⎝⎜

⎞
⎠⎟  ...(17.61)

Maximum radial stress 
 The radial stress is maximum at the centre of the cylinder, that is, at r = 0. Putting r = 0 in equation (17.60), 
we get the expression for the maximum radial stress as

 rmax = 
ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 ...(17.62)

Maximum hoop stress 
 The hoop stress is also maximum at the centre of cylinder, that is, at r = 0. Putting r = 0 in equation (17.61), 
we get the expression for the maximum hoop stress as

 hmax = ρω
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 ...(17.63)  

  Hence, 

 rmax
 = hmax = 

ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 ...(17.64)

17.5.2 Hoop and Radial Stresses in a Rotating Hollow Cylinder 
 For a hollow cylinder
 r = 0 at r = R1

 Also         r = 0 at r = R2

Substituting these boundary conditions in equation (17.56), we have

 0 = 
A B

R
R v

v2 8
3 2
11

2

2
1
2

+ − −
−

⎛
⎝⎜

⎞
⎠⎟

ρω
 (where r = R1) ...(1)

 and          0 = 
A B

R
R v

v2 8
3 2
12

2

2
2
2

+ − −
−

⎛
⎝⎜

⎞
⎠⎟

ρω
 (where r = R2) ...(2)
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 Subtracting equation (2) from equation (1), we have

 B 1 1
8

3 2
11

2
2
2

2

2
2

1
2

R R
v
v

R R−
⎛
⎝⎜

⎞
⎠⎟
+ −

−
⎛
⎝⎜

⎞
⎠⎟

−ρω ( )  = 0

 B R R
R R

v
v

R R2
2

1
2

1
2

2
2

2

2
2

1
2

8
3 2
1

−⎛
⎝⎜

⎞
⎠⎟
+ −

−
⎛
⎝⎜

⎞
⎠⎟

−ρω ( )  = 0

 Eliminating ( )R R2
2

1
2− , we have

 
B

R R1
2

2
2  = −

−
−

⎛
⎝⎜

⎞
⎠⎟

ρω2

8
3 2
1

v
v

 which gives

 B = –
ρω2

1
2

2
2

8
3 2
1

R R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟  ...(17.65)

 Substituting the value of B in equation (1), we have

 0 = A
R

R R v
v

R v
v2

1
8

3 2
1 8

3 2
11

2

2
1
2

2
2 2

1
2

+ × − −
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −

−
−

⎛
⎝⎜

⎞
⎠

ρω ρω
⎟⎟

  = 
A R v

v
R v

v2 8
3 2
1 8

3 2
1

2
2
2 2

1
2

− −
−

⎛
⎝⎜

⎞
⎠⎟
− −

−
⎛
⎝⎜

⎞
⎠⎟

ρω ρω

  = A v
v

R R
2 8

3 2
1

2

1
2

2
2− −

−
⎛
⎝⎜

⎞
⎠⎟

+ρω ( )

which gives

 A = ρω
2

1
2

2
2

4
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

+v
v

R R( )  ...(17.66) 

 Now Substituting the values of A and B in equation (17.56), we get the expression for the radial 
stress as

 r = 
1
2 4

3 2
1

1
8

3 2
1

2

1
2

2
2

2

2
1
2

2
2

× −
−

⎛
⎝⎜

⎞
⎠⎟

+ + × − −
−

⎛
⎝⎜

⎞
⎠⎟

ρω ρωv
v

R R
r

R R v
v

( )
⎡⎡

⎣
⎢

⎤

⎦
⎥

   − −
−

⎛
⎝⎜

⎞
⎠⎟

ρ ωr v
v

2 2

8
3 2
1

  = 
ρω ρω ρ ω2

1
2

2
2

2
1
2

2
2

2

2 2

8
3 2
1 8

3 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟

+ − −
−

⎛
⎝⎜

⎞
⎠⎟
−v

v
R R R R

r
v
v

r( )
88

3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

  = ρω
2

1
2

2
2 1

2
2
2

2
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

+ − −
⎡

⎣
⎢

⎤

⎦
⎥

v
v

R R R R
r

r  ...(17.67)  

This is the required expression for the radial stress for a long rotating hollow cylinder.
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Substituting the values of A and B in equation (17.57), we get the expression for the hoop stress as

 h =
1
2 4

3 2
1

1
8

3 2
1

2

1
2

2
2

2

2
1
2

2
2

× −
−

⎛
⎝⎜

⎞
⎠⎟

+ − × − −
−

⎛
⎝⎜

⎞
⎠⎟

ρω ρωv
v

R R
r

R R v
v

( )
⎡⎡

⎣
⎢

⎤

⎦
⎥

  
− +

−
⎛
⎝⎜

⎞
⎠⎟

ρ ωr v
v

2 2

8
1 2
1

  = 
ρω ρω ρ ω2

1
2

2
2

2
1
2

2
2

2

2 2

8
3 2
1 8

3 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟

+ + −
−

⎛
⎝⎜

⎞
⎠⎟
−v

v
R R R R

r
v
v

r( )
88

1 2
1
+
−

⎛
⎝⎜

⎞
⎠⎟

v
v

  = 
ρω ρω2

1
2

2
2 1

2
2
2

2

2 2

8
3 2
1 8

1 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟

+ +
⎡

⎣
⎢

⎤

⎦
⎥ −

+
−

⎛
⎝⎜

⎞
⎠

v
v

R R R R
r

r v
v ⎟⎟  ...(17.68)  

 This is the required expression for the hoop stress for a long rotating hollow cylinder.

Maximum hoop stress
 Equation (17.68) suggests that the hoop stress is maximum where r is minimum, that is, at r = R1. 
Putting r = R1 in equation (17.68), we obtain the value of the maximum hoop stress for the hollow 
cylinder as

 hmax
 = 

ρω ρω2

1
2

2
2 1

2
2
2

1
2

2
1
2

8
3 2
1 8

1 2
1 2

−
−
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⎠⎟

+ +
⎡

⎣
⎢

⎤

⎦
⎥ −

+
−

⎛
⎝

v
v

R R R R
R

R v
v⎜⎜
⎞
⎠⎟

  = 
ρω ρω2

1
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2
2

2
1
2

8
3 2
1

2
8

1 2
1
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+ − +
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

v
v

R R R v
v

( )  ...(17.69)  

Maximum radial stress

r and equate it to zero.

 
d
dr

rσ  = 0

d
dr

v
v

R R R R
r

rρω2
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2 1

2
2
2

2
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8
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⎣
⎢
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⎥
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1
2

2
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3 2
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0 0 2 2−
−
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⎞
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⎣
⎢

⎤

⎦
⎥
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v

R R
r

r( )  = 0

or  2 21
2

2
2

3

R R
r

r−  = 0

 which gives

 r = R R1 2  ...(17.70)
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 Hence, the radial stress is maximum at r = R R1 2 . Substituting this value in equation (17.67), we 

obtain the maximum value of the radial stress for a hollow cylinder as

 rmax = 
ρω2

1
2

2
2 1

2
2
2

1 2
1 28

3 2
1
−
−

⎛
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⎠⎟
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R R R R
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R R
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2
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R R R R( )

  = 
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2 1
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
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−v
v

R R( )  ...(17.71)

 This is the required expression for the maximum radial stress for a hollow cylinder.

Example 17.16
Determine the maximum hoop stress in a long cast iron solid cylinder of diameter 400 mm, which 
rotates at 2000 rpm about its axis. It weighs 7200 kg/m3 and the Poisson's ratio is 0.3.

Solution: Given,

 Radius of the solid cylinder, R = 400
2

 mm

  = 200 × 10–3 m
 Rotational speed, N = 2000 rpm

 Density of the cylinder material,
  = 7200 kg/m3

 Poisson’s ratio, v = 0.3
 The angular speed of the cylinder is obtained as

           = 2
60
πN

  = 2 2000
60

π ×

  = 209.44 rad/s
The maximum hoop stress is obtained using equation (17.63) as

 hmax = ρω
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

  = 7200
8

3 2 0 3
1 0 3

× × × × − ×
−

⎛
⎝⎜

⎞
⎠⎟

−(209.44) (200 10 )2 3 2 .
.

  = 5.41 × 106 Pa
  = 5.41 MPa Ans.
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 Example 17.17

 Calculate the maximum hoop stress in a long hollow cylinder of inside diameter 40 mm and outside 
diameter 200 mm rotating at 3000 rpm. The density of the cylinder material is 7800 kg/m3 and the 
Poisson’s ratio is 0.25.

Solution: Given,

 Inside radius of the hollow cylinder, R1  = 40
2

mm

                                                       = 20 × 10–3 m

 Outside radius of the hollow cylinder, R2  = 200
2

mm

                                                                 = 100 × 10–3 m

 Rotational speed, N = 3000 rpm

 Density of the cylinder material,  = 7800 kg/m3   

 Poisson’s ratio, v = 0.25 

 The angular speed of the cylinder is obtained as

           = 2
60
πN

  = 2 3000
60

π ×

  = 314.16 rad/s

 The maximum hoop stress is obtained using equation (17.69) as

 hmax
 = 

ρω ρω2

1
2

2
2

2
1
2

8
3 2
1

2
8

1 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟

+ − +
−

⎛
⎝⎜

⎞
⎠⎟

v
v

R R R v
v

( )

  = 7800
8

3 2 0 25 20 10 3 2× × − ×
−

⎛
⎝⎜

⎞
⎠⎟
× ×⎡⎣

−(314.16)
1 0.25

2 . ( ) + × × ⎤⎦
− −2 100 10 3 2( )  

    – 7800 20 10
8

1 2 0 253 2× × × × + ×
−

⎛
⎝⎜

⎞
⎠⎟

−(314.16)
1 0.25

2 ( ) .

  = 6543578.3 – 76983.3

  = 6466595 Pa

  = 6.46 MPa Ans.
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 Example 17.18
 Compare the peripheral velocities for the same maximum intensity of stress of (a) a solid cylinder  
(b) a solid thin disc and (c) a thin ring, if they are made of the same material. Take velocity of the 
ring as unity and the Poisson’s ratio 0.3.

Solution:
 For a solid cylinder
 The maximum hoop stress is

 hmax = 
ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 (using equation (17.64)) 

 Since the peripheral velocity is 
 V = R

 Hence, the hoop stress equation for the solid cylinder is

hmax = 
ρV v

v
1
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

  = 
ρV1

2

8
3 2

1 0 3
× − ×

−
⎛
⎝⎜

⎞
⎠⎟

0.3
.

  = 0.428 V 2
1

 or            V 2
1 = 

σ

ρ
h max

.0 428

  = 2.33 × 
σ

ρ
h max  ...(1)

 For a solid thin disc
 The maximum hoop stress is

 hmax
 = 

ρω2 2 3
8

R v+( )
 (using equation (17.25))

  = 
ρV v2

2 3
8
( )+

 (as V2 = R)

  = 
ρV2

2 3 0 3
8

× +( . )

  = 0.4125  V 2
2

 or           V 2
2 = 

σ
ρ

hmax

.0 4125

  = 2.42 × 
σ
ρ
hmax  ...(2)
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 For a thin ring
The maximum hoop stress is

 hmax
 = 2R2 (using equation (17.5))

  = V 2
3 (as V3 = R)

 or            V 2
3 = 

σ
ρ
hmax  ...(3)

 Hence,
 V 2

1 : V 2
2 : V 2

3 = 2.33 : 2.42 : 1

 which gives
 V1 : V2 : V3 = 1.526 : 1.556 : 1 Ans.

 Example 17.19
 A long solid cylinder of diameter 500 mm is rotating at 3500 rpm. Taking Poisson’s ratio as 0.3 and 
the density of the cylinder material to be 7500 kg/m3 a) the maximum stress developed in the 
cylinder and (b) plot the distribution of the hoop and radial stresses along the radius of the cylinder.

Solution: Given,

 Radius of the cylinder, R = 500
2

 mm = 250 × 10–3 m

 Rotational speed, N = 3500 rpm
 Poisson’s ratio, v = 0.3

 Density of the cylinder material,  = 7500 kg/m3

 The angular speed of the cylinder is obtained as

           = 
2
60
πN

 = 
2

60
π  3500×

 = 366.52 rad/s

 The maximum hoop and radial stresses are equal and are given by equation (17.64) as

 hmax = rmax
 = ρω

2

8
3 2
1
−
−

⎛
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⎞
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v
v

  

    =  
7500 366 52 250 10

8
3 2 0 3

1 0 3

2 3 2× × × × − ×
−

⎛
⎝⎜

⎞
⎠⎟

−( . ) ( ) .
.

 

    = 26.98 × 106 Pa = 26.98 MPa Ans.

Distribution of the hoop stress
 The hoop stress is given by equation (17.61) as 

   h  = 
ρω ρω2 2 2 2

8
3 2
1 8

1 2
1

R v
v

r v
v

−
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⎛
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⎞
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− +

−
⎛
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⎞
⎠⎟
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Now we select different values of the radius r and determine the corresponding hoop stresses using 
the above equation. The distribution of the hoop stresses are shown in Table 17.5.

Table 17.5 Distribution of the hoop stress

r (mm) 0 50 100 150 200 250

h (MPa) 26.98 26.26 24.10 20.50 15.47 8.99

Distribution of the radial stress
 The radial stress is given by equation (17.60) as

   r  = 
ρω2

2 2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

−v
v

R r( )

 The values of the radial stresses corresponding to the selected values of the radius r are determined 
using the above equation, which are shown in Table 17.6.

Table 17.6 Distribution of the radial stress

r (mm) 0 50 100 150 200 250

r (MPa) 26.98 25.90 22.67 17.27 9.71 0

Plotting of the hoop and radial stresses
 The values of the radius are plotted on x-axis and the values of the hoop and radial stresses on y-axis. 
The resulting curves for the two stresses are shown in Fig. 17.8.

Fig. 17.8
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Example 17.20
A long hollow cast iron cylinder of inside diameter 50 mm and outside diameter 300 mm is 
rotating at 6000 rpm. Taking Poisson’s ratio as 0.3 and density of the cylinder material to be  
7200 kg/m3 a) the maximum hoop stress (b) the radius at which the radial stress is maximum 
(c) the maximum radial stress and (d) plot the distribution of the hoop and radial stresses along the 
radius of the cylinder.

Solution: Given,

 Inside radius of the hollow cylinder, R1  =  
50
2

 mm

                                                                  =  25 × 10–3 m

Outside radius of the hollow cylinder, R2  =  
300

2
 mm

   =  150 × 10–3 m
   Poisson’s ratio, v =  0.3

  Density of the cylinder material,   =  7200 kg/m3

   Rotational speed, N =  3000

The angular speed of the cylinder is obtained as

           = 
2
60
πN

  = 
2 6000

60
π ×

  = 628.32 rad/s

(a) The maximum hoop stress is obtained using equation (17.69) as

 hmax
 = 

ρω ρω2

1
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2
2

2
1
2

8
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( )

  = 
7200 628 32
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25 10 2 150 10
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3 2 3× × − ×

−
× × + × ×⎛
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− −( . ) .
.

[( ) ( )) ]2

  − ×( ) × ⎛
⎝⎜

⎞
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× × + ×
−

−7200 628 32
8

1 2 0 3
1 0 3

2
3 2

25 10( . ) .
.

  = 55580232 – 507582.03

  = 55072650 Pa

  = 55.07 MPa Ans.
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(b) The radius at which the radial stress is maximum, is given by equation (17.70) as
 r = R R1 2×

  = 25 10 3 3150 10× − −× ×

  = 0.0612 m
  = 61.2 mm Ans.

(c) The maximum radial stress is given by equation (17.71) as

 rmax
 = 

ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v (R2 – R1)2

  = 
7200 628 32

8
3 2 0 3

1 0 3
150 10 25 10

2
3 3 2× × − ×

−
⎛
⎝⎜

⎞
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× × − ×− −( . ) .

.
( )

  = 19034326 Pa
  = 19.03 MPa Ans.

(d) Distribution of the hoop stress
The hoop stress is given by equation (17.68) as

 h = ρω ρω2
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Now we select different values of the radius r and determine the corresponding hoop stresses using 
the above equation. The distribution of the hoop stresses is shown in Table 17.7.

Table 17.7 Distribution of the hoop stress

r (mm) 25 50 75 100 125 150

h (MPa) 55.07 33.00 26.65 21.76 16.58 10.66

Distribution of the radial stress
The radial stress is given by equation (17.67) as

 r = 
ρω2

1
2

2
2 1

2
2
2

2
2

8
3 2
1
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⎛
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+ − −
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v
v

R R
R R
r

r

The values of the radial stresses corresponding to the selected values of the radius r are determined 
using the above equation, which are shown in Table 17.8.

Table 17.8 Distribution of the radial stress

r (mm) 25 50 75 100 125 150

r (MPa) 0 18.27 18.27 14.28 8.04 0
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Plotting of the hoop and radial stresses
The values of the radius are plotted on x-axis and the values of the hoop and radial stresses on y-axis. 
The resulting curves for the two stresses are shown in Fig. 17.9.

Fig. 17.9

 3. Name the stresses that act on a rotating thin disc.

SHORT ANSWER QUESTIONS
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 1. The rotational speed N (rpm) and the angular velocity  (rad/s) are related as

 (a) N = 2
60
πω  (b)  = 2

60
π N  (c)  = π N

60
 (d)  = 3

60
πN .

 2. The expression for the hoop stress for a thin rotating ring is given as (  = Density,  = Angular 
speed and r = Radius)

 (a) r2 (b) 2r (c) 2r2 (d) 2 2r2.
 3. The expression for the hoop stress for a solid rotating disc at any radial distance r is given as 

(  = Density,  = Angular speed, v = Poisson’s ratio, R = Radius).

 (a)  ρω ( )3
8
+ v  (R2 – r2)   (b) ρω2 1

8
( )+ v  (R2 – r2) 

 (c)  ρω2

8
 [(3 + v)R2 – (1 + 3v)r2] (d) ρω2

8
 [(3 + v) R2 – (1 + 3v) r2].

  4. The expression for the radial stress for a solid rotating disc at any radial distance r is given 
as (  = Density,  = Angular speed, v = Poisson’s Ratio, R = Radius).

 (a) ρω ( )3
8
+ v  (R2 – r2)   (b) 

ρω2 1
8
( )+ v

 (R2 – r2) 

 (c) 
ρω2

8
 [(3 + v)R2 – (1 + 3v)r2] (d)  

ρω2

8
 [(3 + v) R2 – (1 + 3v) r2].

 5. The hoop and radial stresses at the centre of a solid rotating disc are expressed as (  = Density, 
 = Angular speed, R = Radius and v = Poisson’s ratio)

 (a) ρω ρω2 2 2 23
8

1
8

R v R v( ) , ( )+ +  (b) ρω ρω2 2 2 23
8

3
8

R v R v( ) , ( )+ +

 (c) 
ρω ρω2 2 2 21

4
3

8
R v R v( ) , ( )− +

 (d)  
ρω ρω2 2 2 21

4
1

8
R v R v( ) , ( )− + .

 6. The hoop stress at the outer radius of a solid rotating disc is (  = Density,  = Angular speed, 
r = Radius and v = Poisson’s ratio)

 (a) 
ρω2 2 3

8
R v( )+

 (b) 
ρω2 2 1

4
R v( )+

 (c) 
ρω2 2 1

4
R v( )−

 (d) 
ρω2 2 1

8
R v( )+ .

 7. The maximum radial stress in case of a hollow disc occurs at a radial distance equal to  
(R1 = Inner radius and R2 = Outer radius)

 (a) R1  (b) R2  (c) R R1 2  (d) 2 1 2R R .

MULTIPLE CHOICE QUESTIONS
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 8. The maximum value of the radial stress for a hollow disc is (  = density,  = Angular speed,  
v = Poisson’s ratio, R2 = Outer radius and R1 = Inner radius)

 (a) 
( )1

4

2+ v ρω
 (R2 – R1)2  (b) 

( )3
8

2+ v ρω
 (R2

2 – R2
1 )2

 (c) 
( )1

8

2+ v ρω
 (R2 – R1)2  (d) 

( )3
8

2+ v ρω
 (R2

2  – R2
1 )2.

 9. The expressions for the hoop and radial stresses in a rotating disc with a central pin hole are  
(  = Density, v = Poisson’s ratio,  = Angular speed and R = Radius)

 (a) 
( ) , ( )3

8
3

4
2 2

2 2+ +v R v Rρω ρω
 (b) 

( ) , ( )1
4

3
8

2 2 2 2+ +v R v Rρω ρω
 

 (c) 
( ) , ( )2

4
3

8

2 2 2 2+ −v R v Rρω ρω
 (d)  ( ) , ( ) .3

4
3

8

2 2 2 2+ +v R v Rρω ρω

 10. Consider the following statements :
 1. The radial stress is zero at both inner and outer radius of a hollow rotating disc.
 2. Both radial and hoop stresses at the centre of a solid rotating disc are maximum and equal.
 3. The radial stress at the outer radius of a solid rotating disc is zero.
 4. The maximum hoop stress for a rotating disc with a central pin hole is twice the maximum 

hoop stress for a rotating solid disc.
  Of these statements:
  (a)  1 and 2 are true   (b) 1, 2 and 4 are true 
  (c) 2 and 3 are true   (d) 1, 2, 3 and 4 are true.
 11. Consider the following statements about a disc of uniform strength :
 1. The hoop and radial stresses do not vary along the radius of the disc.
 2. It has maximum thickness at the centre.
 3. It has uniform thickness throughout.
 4. Its thickness decreases gradually towards its outer edge.
  Of these statements :
  (a)  1 alone is true   (b) 1, 2 and 4 are true
  (c) 1 and 2 are true   (d) 1 and 3 are true.
 12. Consider the following statements about a rotating long cylinder :
 1. It involves three stresses, namely hoop, radial and axial.
 2. The longitudinal strain is constant.
 3. All the stresses are principal stresses.
 4. The radial stress is zero at the surface of the cylinder 
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  Of these statements :
  (a)  1 and 2 are true   (b) 1, 3 and 4 are true
  (c)  2 and 4 are true   (d) 1, 2, 3 and 4 are true.
 13. The maximum radial stress in case of a solid long rotating cylinder is (  = Density,  = Angular 

speed, R = Radius, v = Poisson’s ratio)

  (a) 
ρω2 2

4
3
1

R v
v

−
−

⎛
⎝⎜
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⎠⎟    (b) ρω2 2
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⎛
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⎞
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.

 14. The maximum hoop stress in case of a solid long rotating cylinder is (  = Density,  = Angular 
speed, R = Radius, v = Poisson’s ratio)

  (a) ρω2 2

8
1
3 2

R v
v

−
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⎛
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⎠⎟    (b) ρω2 2
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⎛
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⎠⎟    (d) 

ρω2 2

4
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⎛
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⎞
⎠⎟

.

 15. The maximum radial stress in case of a hollow long rotating cylinder is

 (a) 
ρω2

4
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 (R2 – R1)2 (b) 
ρω2
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1
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⎛
⎝⎜

⎞
⎠⎟

v
v

 (R2 – R1)2

 (c) 
ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 (R2 – R1)2 (d) 
ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 (R2
2 – R1

2).

 1. (b) 2. (c) 3. (c) 4. (a) 5. (b) 6. (c) 7. (c) 8. (b)

 9. (d) 10. (d) 11. (b) 12. (d) 13. (c) 14. (b) 15. (c)

ANSWERS
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EXERCISES

 1. A uniform thin disc of diameter 600 mm has a central hole of diameter 100 mm. Determine the 
maximum hoop stress induced in the disc, if the maximum radial stress is not to exceed 15 MPa. 
Take Poisson’s ratio as 0.25. (Ans. 43.48 MPa).

 2. A uniform thin disc of diameter 700 mm has a pin hole at the centre. Determine the maximum 
hoop stress induced in the disc, if it rotates at 3000 rpm. Take Poisson’s ratio as 0.3 and the 
density of the disc material to be 7800 kg/m3. (Ans. 77.8 MPa).

 3. A hollow steel disc of uniform thickness has outer diameter 500 mm and inner diameter 200 mm 
and it rotates at 3000 rpm. Taking Poisson’s ratio as 0.3 and the density of the disc material to 
be 7800 kg/m3 a) the maximum hoop and radial stresses induced in the disc and (b) the 
radius at which the radial stress is maximum.

       (Ans. (a) 41.04 MPa, 7.14 MPa (b) 158.11 mm).

 4. A thin uniform steel disc of diameter 300 mm rotates at 4000 rpm. Calculate the maximum 
hoop stress induced in the disc and plot the distribution of the hoop and radial stresses along 
the radius of the disc. Take Poisson’s ratio as 0.25 and the density of the disc material equals to 
7800 kg/m3. (Ans. 12.5 MPa).

 5. Derive the expression for the hoop stress at the outer radius of a solid disc of radius R, which 
rotates at  rad/s and is made of material having a density  and Poisson’s ratio v. Hence, prove 
that the hoop stress reduces to zero, if the Poisson’s ratio tends to unity.

 6. A long thick cylinder of inner diameter 150 mm and outer diameter 450 mm rotates at 4000 rpm. 
Find the hoop stresses at its inner and outer surfaces. Take the Poisson’s ratio of 0.3 and the 
density of the cylinder material as 7470 kg/m3.

    (Ans. 57.9 MPa, 11.9 MPa).

 7. A steam turbine rotor is 150 mm diameter below the blade ring and 5 mm thick, and runs at 

allowable stress of 150 MPa and the density of the rotor material to be 7800 kg/m3. Assume 
uniform strength condition.

       (Ans. 14.9 mm, 35.7 mm).

 8. A long solid steel cylinder of diameter 400 mm is rotating at 5000 rpm. Taking Poisson’s ratio 
as 0.3 and the density of the material of the cylinder to be 7800 kg/m3 a) the maximum 
stress developed in the cylinder and (b) plot the distribution of the hoop and radial stresses along 
the radius of the cylinder.

       (Ans. 36.66 MPa).
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 9. A long hollow cast iron cylinder of inside diameter 60 mm and outside diameter 300 mm is 
rotating at 3600 rpm. Taking Poisson’s ratio as 0.3 and the density of the material of the cylinder 
to be 7200 kg/m3

  (a) the maximum hoop stress
  (b) the radius at which the radial stress is maximum, and
  (c) the maximum radial stress.

(Ans. (a) 19.87 MPa (b) 67.08 mm (c) 6.31 MPa).

 10. Prove that the maximum hoop stress at the centre of a long rotating solid cylinder is given as

 hmax
 = ρω

2 2

8
3 2
1

R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟

 where         = Density of the cylinder material
  = Angular speed of the cylinder
 R = Mean radius of the cylinder
 v = Poisson’s ratio.
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