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Preface to the Fourth Edition

The fourth edition of the book is presented before you. The new edition includes four new chapters 
and has increased by about 300 pages. Now the book covers the subject in totality and takes care 
of both the basics and the advanced topics of the strength of materials. Besides including four new 
chapters, three existing chapters have been rewritten to make them more relevant and meaningful. 
This has further increased the scope of the book.

I thankfully acknowledge the support and encouragement from two of my best ever friends,  
Jai Shankar and Shakil Ahmad. My parents and in-laws especially Babuji and Mummi are gratefully 
remembered for their blessings. My lovely wife Alka and daughters Shivangi and Shalvi deserve 
special mention for giving their affectionate support that keeps me always elevated and in high spirit.

Finally, I appreciate the response from the readers of the book, which has helped tremendously to 
further improve the book. I hope readers will continue to give their valuable suggestions and remarks 
in future also. I promise to honour their suggestions. 

New Delhi D. K. Singh
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In this revised and augmented third edition, many new solved problems have been added especially in the 
chapters 1, 2, 5, 6, 7, 10 and 13. Simultaneously, a large number of model objective questions have also been 
added to test the understanding of the students from the viewpoints of competitive examinations. The biggest 
advantage of this book is its simplicity in expressing the subject matter in the most simplified manner. The 
material covered is so designed that any beginner can follow it easily, and get a complete picture of the 
subject after having gone through the material covered in the text. 

I deeply appreciate the many comments and suggestions that I received from the users of the previous 
editions of this book. I may be contacted on my email for any further suggestion, comment or criticism. 

NSIT, New Delhi D. K. Singh

Preface to the Third Edition
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The thoroughly revised edition of the book ‘Strength of Materials’ is in your hand. This new edition has 
one more chapter on Mechanical Testing of Materials, which further increases the scope of the book, while 
retaining the flavour of the first edition. A sincere attempt has been made to make the book error-free, but 
still can’t be claimed in totality. 
 
I hope, readers will enjoy this new edition with the same spirit. Any suggestion for the improvement of the
book will be gratefully acknowledged. 

Preface to the Second Edition

D. K. Singh
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Preface to the First Edition

It gives me immense pleasure to present this book before you. There are many books on this subject 

of solved examples for easy understanding of the subject. A number of multiple choice questions has 
been added at the end of each chapter, making the book useful for competitive examinations.

 I am thankful to all the people who helped in the compilation of this book including my publisher 
Mr. Sunil Saxena and Mr. Jai Raj Kapoor. Thanks are also due to my parents and in-laws for their 
continuous encouragement.

 Finally, I want to thank my wife, Alka, for her continuing encouragement, support, and affection 
and my daughters, Shalu and Sheelu, for making the atmosphere lively and workable.

D.K. Singh
New Delhi
March 2007.
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Thomas Young, born on 13 July 1773, was an English physician, physicist 
and polymath. By the age of fourteen, he is said to be well acquainted 
with many languages like Latin, Greek, French, Italian, Hebrew, Arabic 
and Persian, and hence was nicknamed the English Leonardo. He made 

(E), an elastic constant and a measure of the rigidity of materials, is named 

He was also an Egyptologist who helped decipher the Rosetta stone. 

instruments.

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

1
Simple Stresses and Strains

Thomas Young
(1773-1829)

© The Author(s) 2021
D. K. Singh, Strength of Materials,
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1.1 INTRODUCTION  
The reaction of materials to the action of external forces is indicated by the mechanical properties 

stresses induced in the material as a result of application of external loads are the important aspects 
of mechanical properties.

1.2 STRESS-STRAIN CURVES IN TENSION 

property enables a material to resist being pulled apart. Tensile strength of the material is tested by 
conducting tension test.

subjected to an axial load as shown in Fig. 1.1 (a

Fig. 1.1 A tension test.

As the load on the test specimen increases, the resisting force also increases. Once the load 

this condition, where stress is linearly proportional to strain. This point is known as limit of 
proportionality, p. During this period, the material regains its orignal conditions once the load is 

e e

these two points p and e are almost identical, but in most of the cases, the elastic limit is slightly 
higher.
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the specimen retains a permanent change in shape. It means the external load has exceeded the 
resisting force. An engineer is usually interested in either the elastic or plastic response. Plasticity 

increase in strain is more prominent as compared to increase in stress. For some materials, a stress 

is known as yield point and the corresponding stress is called the yield stress. For mild steel (low 

begins is called the upper yield point. Subsequent plastic deformation may occur at a lower stress, 

bending stress or irregularities in the specimen, so the lower yield point is used for design purposes. 
But it is the lower yield point which is usually common. As the load and hence the stress is further 

the ultimate stress or tensile strength or ultimate tensile strength, U of the material.

If the specimen is loaded beyond its ultimate strength, neck formation starts. During this period, 

at the point f as shown in the Fig. 1.2. The material is subjected to neck formation just before failure 
as is shown in Fig. 1.1(b
on planes at 45° to the specimen axis. The stress at this point is known as fracture or breaking stress.

Fig. 1.2 An engineering stress-strain curve for ductile materials.  

For most of the materials (for example cast iron
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1.3).

Fig. 1.3 A stress-strain curve for brittle materials.  

The modulus of elasticity, also called elastic modulus, denoted by E may be determined as the 

longitudinal strain.

1.3 TRUE STRESS-STRAIN CURVE  

supporting the load is gradually decreasing as the specimen elongates. Thus, the engineering stress 
does not represent the actual stress or true stress. Similarly, the true strain differs from engineering 

ws:

 True stress = 
Load applied

Instantaneous area of cross-section
 = P

Af

 ... (1.1)

where  Af 

True strain     = ln
l
l

f

o

⎛
⎝⎜

⎞
⎠⎟

 ... (1.2)

where  lf = Instantaneous length

 lo  = Original length
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   = K . n ... (1.3)

where    = Stress 

Fig. 1.4 A comparison between engineering and 
true stress-strain curves. 

  = Strain 

 K  = A constant, known as strength 

 n

     

K is replaced by E, 
the modulus of elasticity.

n indicates that material 

before it begins to neck. This is an important 
consideration in forming operations, where 
work material is stretched beyond elastic 

in Fig. 1.5.

Fig. 1.5 Correction in the stress-strain curve for neck formation.
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1.4 POISSON’S RATIO 

direction (direction perpendicular to the direction of load applied). These changes in dimensions are 
,

   = – 
Lateral strain

Longitudinal strain
 ... (1.4)

v

is same in tension as well as in compression.

1.5 DUCTILITY  
The ductility of a material enables it to be easily long stretched without failure and drawn into thin 

ability to be hammered out in thin sheets. A typical example of a malleable material is lead, which is 
used in plumbing work for weatherproof seal.

The ductility is usually measured in terms of percentage elongation, which is expressed as

 Percentage elongation  = 
l l

l
f o

o

−
×100  ... (1.5)

where  lf  = Final length
 lo  = Original length
The ductility is also measured in terms of reduction in area (RA), which is expressed as

 RA  = 
A A

A
o f

o

−
×100  ... (1.6)

where Ao and Af 

RA

tensile strength, and necking precedes fracture. For a brittle material, fracture usually occurs before 

1.6 ELONGATION PRODUCED IN A TEST SPECIMEN 

  Stress ( ) = 
Load
Area

 = 
P
A

  Strain ( )  = 
Change in length (elongation)

Original length
 = 

dl
lo
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E = 
σ
∈

= 
P
A

dl
lo

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ = 

Pl
Adl

o

 

  dl  = 
Pl
AE

o

1.7 SHEAR STRESS AND SHEAR STRAIN  
The shear stress is produced as a result of the shear force applied tangential to the surface of a body.

 = 
Shear force
Shear area  = 

F
A

s

s
 ... (1.7)

The shear strain is produced by the shear stress, and is measured by the change in the angle, but 
a), a block ABCD is subjected to a shear force 

Fs on its upper face CD, while the lower face AB Fs, the body 
deforms and takes new shape as ABC D  making an angle 
shear stresses are produced on the faces CD and AB
but of opposite effect are set up on the faces AD and BC
For xy xy as shown in Fig. 1.6 (b). The shear 

   

A

D

B

C
xy

xy

 (a) A body subjected to a shear force Fs (b AD and BC

Fig. 1.6

 tan   ~    =  
DD
AD

 =  
dl
l

The modulus of rigidity or the shear modulus (G
strain.

 G  =  
τ
φ  ... (1.9)
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1.8  VOLUMETRIC STRAIN 

V  = 
dV
V

where V

 dV

 V  = x + y + z ... (1.11)

where x, y and z are the strains produced in x, y and z

and  

∈ = − −

∈ = − −

∈ = − −

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

x
x y z

y
y z x

z
z x y

E E E

E E E

E E E

σ
ν
σ

ν
σ

σ
ν
σ

ν
σ

σ
ν
σ

ν
σ

 ... (1.12)

where x, y and z are the normal stresses in x, y and z

where V

 E

 The equation (1.11), on substituting equation (1.12), changes to 

   V  =
σ σ σx y z

E
+ +

 (1 – 2 ) ... (1.13)

 For x = y = z = , the equation (1.13) reduces to 

  V  = 
3
E

(1 – 2 )  ... (1.14)

 For a circular rod of diameter d and length l,

  V  = 2 d + l ... (1.15)

where   d  = Strain produced in the diameter
  l  = Strain produced in the length

 For a sphere of diameter d

  V  = 3 d  ... (1.16)
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1.9 BULK MODULUS OF ELASTICITY 
l is subjected to three mutually perpendicular stresses of equal intensity  

( x = y = z = ) as shown in Fig. 1.7.

Fig. 1.7

The bulk modulus of elasticity (K) ) or the uniform 
pressure intensity (p V).

K = 
σ
∈V

 = 
p

V∈
 ... (1.17)

1.10 ELASTIC CONSTANTS AND THEIR RELATIONSHIPS  

of elasticity, denoted by E), shear modulus (also called modulus of rigidity, denoted by G) and bulk 
modulus (also called bulk modulus of elasticity, denoted by K). These constants are related to each 

v).

1.10.1 Relationship between E and G
ABCD of side l being subjected to a shear force Fs a). The 

shear force produces shear stresses on sides CD and AB and complementary shear stresses on sides

 (a) A cube subjected to a shear force Fs (b ABCD deformed to ABC D  due to Fs

Fig. 1.8
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AD and BC. The cube gets deformed due to the applied shear force and takes the new shape ABC D  
b). The diagonal AC 

elongates to AC  whereas the diagonal BD is shortened.
Drop perpendicular form point C on AC .
Assume that the strain produced are small so that < CC E = 45°.

    Now AC  = AB BC2 2+

  = BC BC2 2+               (as AB = BC)

  = 2 BC

    Longitudinal strain in AC  = 
AC AC

AC
′−

  = 
EC
AC

′
  = 

CC
AC
′ °cos 45

  = 
CC

BC

′ × 1
2

2
              (on substituting AC)

  = 
1
2
× ′CC

BC

  = 
φ
2

where 
CC
BC

′
= tan  = )

 Shear modulus G = 
Shear stress 
Shear strain 

τ
φ

    or  = 
τ
G

Substituting 

 Longitudinal strain in AC = 
φ
2

 = 
τ

2G
 ... (1.19)

Therefore, the longitudinal strain in diagonal AC
in nature. Similarly the longitudinal strain in diagonal BD

On replacing the shear stress system by a system of direct stress at 45° as shown in Fig. 1.9, we 
1 along the diagonal AC 2 along the diagonal 

BD



Simple Stresses and Strains  11

Fig. 1.9 Direct stresses due to shear.

 Strain in AC  = 
σ νσ1 2

E E
−

  = 
τ ν τ
E E
− −( )

 

  = 
τ ντ
E E
+

  = 
τ
E  (1 + 

 
τ

2G
 = 

τ
E

 (1 + )

     Hence, E = 2G (1 + ) ... (1.21)

This is the required relationship between E and G.

1.10.2 Relationship between E and K
l subjected  to three equal stresses  along the three mutually perpendicular 

directions, that is, x = y = z = 

Fig. 1.10 A cube subjected to equal stresses  on all the sides.
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equal side, that is, x = y = .
Total linear strain produced along any direction

  = 
σ σ σ
E

v
E

v
E

− −

  = 
σ
E

 (1 – 2 ) ... (1.22)

    Also Volumetric strain = 3 × Linear strain

  = 
3 1 2σ
E

v( )−            (using equation (1.22))  ... (1.23)

 Bulk modulus K = Volumetric stress
Volumetric strain

 Volumetric strain = 
Volumetric stress

Bulk modulus
= σ

K
 ... (1.24)

 
σ
K

 = 
3 1 2σ
E

v( )−

     Hence, E = 3K (1 – 2 ) ... (1.25)

This is the required relationship between E and K.

1.10.3 Relationship between G and K
The relationship between E and G is
     E = 2G (1 + )

    
E
G2

 = 1 + 

     or  = 
E
G2

 – 1 ... (1.26)

The relationship between E and K

 E = 3K (1 – 2 )

      
E
K3

 = 1 – 2  

    or  = 
1
2 6
− E

K
  ... (1.27)
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E
G2

 = – 1 = 
1
2 6
− E

K
     

E
G

E
K2 6

+  = 1
1
2

+   

or E
G K
1

2
1

6
+⎛

⎝⎜
⎞
⎠⎟  = 

3
2

    E K G
KG

3
6
+⎛

⎝⎜
⎞
⎠⎟  = 

3
2

    Hence, E = 
9

3
KG

K G( )+

This is the required relationship between G and K.

Table 1.1 Young’s Modulus (E), Elastic Limit (e), Maximum Elastic Strain (%) and Tensile 
Strength of some materials

Materials Young’s modulus
(GPa)

Elastic limit
(MPa)

Maximum elastic 
strain (%)

Tensile strength
(MPa)

Steel

Aluminium

Table 1.2 Shear Modulus (G) of some materials

Materials G (GPa)
Steel
Iron

Glass
Aluminium 25

Table 1.3 Bulk Modulus of Elasticity (K) of some materials

Materials K (GPa)
Steel

Iron
Aluminium
Glass 36

25
2.2
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1.11 FACTOR OF SAFETY 
During the design of many structures or components meant for engineering applications, a factor 
usually called factor of safety, is introduced in their design parameters which ensures their safety 
with respect to uncertainties of loading conditions, design procedures or production  methods. It is 
denoted by n

 Factor of safety (n) = 
Maximum stress

Allowable or working stress
 = 

σ
σ
max

w
 ... (1.29)

 Factor of safety (n) = 
Yield stress

Allowable or working stress
 = 

σ
σ

y

w

factor of safety of 2 implies that the component is capable of withstanding two times the maximum 

 Example 1.1

Find its yield strength, ultimate strength, strength at the point of failure, actual strength at the point of 

reduction in area.

Solution: 

 Initial diameter,  d1 = 12 mm

 Final diameter,    d2   

 Initial length,      l1

 Final length,       l2  = 75 mm

 Yielding load           = 25 kN

  A1   = 
π
4 1

2d

    = 
π
4

122× 2
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 A2  = 
π
4 2

2d  = 
π
4

82× 2

The yield strength is obtained as

  yp  = 
Load at the yield point

Initial cross-sectional area

   = 
25 10
113 09

3

.
2  Ans.

The ultimate strength is found as

  u   = 
Maximum load

Initial cross-sectional area

   = 
50 10
113 09

3

.
2  Ans.

  f  = 
Load at the failure point

Initial cross-sectional area

   = 
30 10
113 09

3

.
2  Ans.

The actual strength at the failure point is obtained as

  fa  = 
Load at the failure point
Final cross-sectional area

    = 
30 10
50 26

3

.
2  Ans. 

l l
l

2 1

1

100−
×

   = 
75 60

60
100−

×  Ans.

The percentage reduction in area is found as

  RA  = 
A A

A
1 2

1

100−
×  

   = 
113 09 50 26

113 09
100. .

.
−

×  Ans.
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Example 1.2

E 2.

Solution: Refer Fig. 1.11.

Fig. 1.11

 d

Length of the bar,  l 

Pull force,  P 5 N

  dl = 
Pl
AE

   = 
10 2000

4 100 200 10

5

2 3

×
× × ×π /

 

  Ans.

The strain produced in the bar is obtained as

   = 
dl
l

 = 
0 127
2000
. mm

mm
 

   = 6.36 –5    Ans.

    = E =  6.36 –5  

2  Ans.
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Example 1.3

in different sections and the total elongation produced in the bar. Take E 2.

Solution: Refer Fig. 1.12.

Fig. 1.12

  For part AB  For part BC For part CD
 Length l1 l2 l3

 Diameter d1 d2 d3

     Stress in AB = 
50 10

4 40

3

2

×
×π /  

2   Ans.

     Stress in BC  =  
50 10

4 20

3

2

×
×π /  

2  Ans.

     Stress in CD  = 
50 10

4 10

3

2

×
×π /

 

2  Ans.

Hence, the maximum stress is induced in CD and the minimum stress in AB.

    dl  =  
Pl
A E

Pl
A E

Pl
A E

1

1

2

2

3

3
 = 

P
E

l
A

l
A

l
A

1

1

2

2

3

3

+ +
⎡

⎣
⎢

⎤

⎦
⎥  

    =  
50 10
200 10

80
4 40

60
4 20

40
4 10

3

3 2 2 2

×
× ×

+
×

+
×

⎡

⎣
⎢

⎤

⎦
⎥π π π/ / /

Ans.
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Example 1.4 

E 2.

Fig. 1.13

Solution: Refer Fig. 1.13.
  For part AB For part BC For part CD
 Length l1 = 3 m  l2 = 2 m  l3 = 1 m

  A1 =  A2 = A3 = A = 
π
4

102× 2

The change in length of AB

  dl1  = – = −
× × ×

× ×
Pl
AE

1 1
3 3

3

50 10 3 10
78 54 200 10.

 = – 9.55 mm

 The change in length of BC due 

  dl2 = − = −
× × ×

× ×
P l
AE

2 2
3 3

3

60 10 2 10
78 54 200 10.

 = – 7.64 mm

Fig. 1.14
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The change in length of CD

  dl3 =  – 
P l
AE

3 3  = 
80 10 1 10
78 54 200 10

3 3

3.
 = –

  dl = – (dl1 + dl2 + dl3)

   = – –

 Ans.

Example 1.5  
A rod consists of three bars of unequal diameters (Fig. 1.15). Their diameters and lengths 

 
E 2.

Fig. 1.15

Solution: Refer Fig. 1.15.
 For bar AB For bar BC For bar CD
 Length l1 = 1.5 m l2 = 2.5 m l3 

 Diameter d1 d2 d3 

 The FBD of each bar is shown in Fig. 1.16.

Fig. 1.16
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  A1  = 
π π
4 4

201
2 2d = ×  = 314.16 mm2

  A2  = 
π π
4 4

402
2 2d = ×  = 1256.63 mm2

and   A3  = π π
4 4

303
2 2d = × 2

The stresses induced in three bars are obtained as

  1  = 
P
A

1

1

310 10
314 16

=
×

.
2   Ans.

  2 = 
P
A

2

2

330 10
1256 63

=
×

.
2   Ans.

and   3  = 
P
A

3

3

360 10
706 86

=
×

.
2 (T)  Ans.

CD and the minimum stress in BC. 
The changes in length of three bars are obtained as

  dl1 = – 
P l
A E

1 1

1
 = −

× × ×
× ×

10 10 1 5 10
314 16 200 10

3 3

3

.
.

 = –

  dl2 = –
P l
A E

2 2

2
 = −

× × ×
× ×

30 10 2 5 10
1256 63 200 10

3 3

3

.
.

 = –

and  dl3 = 
P l
A E

3 3

3
 = 

60 10 2 10
706 86 200 10

3 3

3.

  dl = dl1 + dl2  + dl3

 Ans.
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Example 1.6 

stretching the bar. Take E 2.
Solution: 

Initial diameter of the steel bar,  d = 15 mm

Initial length of the steel bar,  l  =  2 m = 2 

Pull force,  P  4 N

  A  = 
π π
4 4

152 2d = ×  = 176.71 mm2

The normal stress produced in the bar is

    = 
P
A
=

×5 10
176 71

4

.
2

The strain produced is 

    = 
σ
E
=

×
282 92

200 103

.
 = 1.414 –3 

Also  = 
Change in length

Initial length  = 
Δ l
l

or  l = . l

   = 1.414 –3  Ans.

    = 
Lateral strain

Longitudinal strain

   = 
(Change in diameter /Initial diameter)

(Change in length/Initial leength)
 = 

( / )
( / )
Δ
Δ
d d
l l

  
Δ d
d  = 

Δl
l  

 1.414 –3 = 3.535 –4

or  d  = d  3.535 –4 

   =15  3.535 –4  Ans.
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  V = 
π
4

2d l×

   = 
π
4

15 20002× ×  = 353429.17 mm3

Now  
dV
V

 =  (1 – 2 )

or   dV = V  (1 – 2 )

   = 353429.17  1.414 –3  (1 – 2 
3   Ans.

The workdone in stretching the bar is obtained as

  W  = 
1
2
× ×P lΔ

   = 
1
2

5 10 2 834 . Ans.

Example 1.7

Find the expression for the elongation of a tapered bar of length l
from d at one end to D at other end, when subjected to an axial pull P with E as modulus of elasticity.

Solution: Refer Fig. 1.17.

Fig. 1.17

dx at a distance x from A, where diameter is d.  
 The diameter at C

  d  = d D d
l

x+
−⎛

⎝
⎜

⎞
⎠
⎟



Simple Stresses and Strains  23

C is

  A  = 
π
4

2d ′ = 
π
4

2

d D d
l

x+
−⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

 The elongation produced in the element is

  dl  = 
P dx
A E
.
′

 The elongation produced in the bar is found as

  dl  = dl P
E

dx

d D d
l

x

l l

′ =
+ −⎡

⎣⎢
⎤
⎦⎥

∫ ∫
0 0

2
4
π

.
.

   = 
4Pl
EDdπ

Example 1.8 

Find the expression for the elongation of a conical bar of length l and base diameter d under its own 
 and the modulus of elasticity E.

Solution:

   Fig. 1.18

dx at a distance x from the apex of the cone. 
The diameter of the bar at the section is

  d   = 
d
l

x.

  A  = 
π
4

2d ′  = 
π
4

2 2

2× d x
l
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The weight of the cone below the section is

  P  = 
1
3

  Area  Length  Density  g

   = 
1
3 4

2π ρd x g′⎛
⎝
⎜

⎞
⎠
⎟ × × ×   

   = 
π ρd g

l
x

2

2
3

12

The elongation produced in the length dx

  dl   = 
P dx
A E
′
′
.
.  = 

x g
E

dx
3

Hence, the total elongation of the bar is obtained as

  dl  = dl x g
E

dx
l l

′ =∫ ∫
0 0 3

ρ
= ρgl

E

2

6

Example 1.9 

P

  Es
2

  Eb
2. 

Fig. 1.19

Solution:  l1

 Diameter of the steel bar, d1

 Length of the brass bar,  l2 

 Diameter of the brass bar, d2
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 A1 = 
π π
4 4

401
2 2d = ×    = 1256.63 mm2

 A2 = 
π π
4 4

202
2 2× = ×d   = 314.16 mm2

Force P is acting on both bars. Both bars will contract on the application of P and the net decrease 
in length of two bars is the sum of two contractions. 

   = 
Pl

A E
Pl

A E
1

1 1

2

2 2

   = 
P P×
× ×

+
×
× ×

250
1256 63 200 10

300
314 16 100 103 3. .

–5P

or    P  = 33194.24 N   Ans.

Example 1.10 

ES
2 and EAl

2.

   Fig. 1.20
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Solution: 
Diameter of the steel bar,  d
Length of the steel bar,  lS

Inside diameter of the aluminium  cylinder,   di

Outside diameter of the aluminium cylinder,   do

Length of the aluminium cylinder,   lAl

Let stress in the steel bar      = S

Stress in aluminium cylinder     = Al

Assume that the aluminium cylinder contracts by an amount dl
The contraction in the steel bar = (dl

  AS  = 
π
4

2d  

             = 
π
4

602× 2

  AAl  = 
π
4

2 2( )d do i−

   = 
π
4

110 702 2( )− 2

  Al  = 
dl

350 25.

  S  = 
dl 0 25

350
.

3  = S AS + Al AAl

   = ES S AS + EAl Al AAl 

3 dl −⎛
⎝
⎜

⎞
⎠
⎟

0 25
350

. 3  
dl

350 25.
 

dl, we get 

  dl
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Hence, the stress in the steel bar is obtained as

  S  = ES S

3  0 511 0 25
350

. . 2   Ans.

    and stress in the aluminium cylinder is obtained as

  Al  = EAl Al

3  0 511
350 25

.
.

2  Ans.

Example 1.11 
An assembly of a steel bar enclosed in an aluminium tube is compressed between two rigid parallel 

  ES 
2

and  EAl
2.

   

   Fig. 1.21
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Solution: Refer Fig. 1.21.
 P 3 N

Diameter of the steel bar,    d
Inside diameter of the aluminium tube,  di

Outside diameter of the aluminium tube,  do

Let s =  Stress produced in the steel bar
  Al =  Stress produced in the aluminium tube

  As = 
π
4

  d 2

   = 
π
4

2 2

  AAl  = 
π
4

 (do
2 – di

2)  = 
π
4

2 2 2

Strain produced in the steel bar  = Strain produced in the aluminium tube

  s

sE
 = Al

AlE

    or   s  = 
E
E

s

Al
Al.

   = 
200 10
70 10

3

3

×
×

× σAl Al     

The applied load is shared by both members.

  s As + Al AAl
3

Al Al 
3        (on substituting s)  

Al
2     Ans.

and s
2    Ans.

Example 1.12

  Es
2

and  Ec
2. 
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Solution: Refer Fig. 1.22.

   Fig. 1.22

Let the load 15 kN is applied at a distance x from the center of the copper rod and Ps and Pc are 

Now  15 3  = Ps + Pc

   = s As + c Ac    ... (1)

But   As  = Ac = 
π
4  2 

2

  15 3 = ( s + c

or  ( s + c
2    ... (2)

  s

sE  = c

cE

or  s  = 
E
E

s

c
  c 

   = 
200 10
100 10

3

3

×
×

× σc  = 2 c 

  2 c + c
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or  c = 2

and s  = 2 c

   = 2  63.66 
2

The load shared by the steel rod is

  Ps = s As

   

and Pc

   = 5 kN

  Ps  1.5 = 15  x

or  x  = 
10 1 5

15
.

 = 1m

copper rod.       Ans.

Example 1.13 

 
25 kN as shown in Fig. 1.23. Take Es

2 and Eb
2.

Solution: Refer Fig. 1.23.

Fig. 1.23
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Diameter of each rod,  d
Length of the steel rod,  ls  = 3 m
Length of the brass rod,  lb  = 2.5 m
Area of the steel rod,  A = Area of the brass rod

   = 
π
4
× d2  = 

π
4
× 2 2 

Let s  = Stress in the steel rod
  b  = Stress in the brass rod
  s  = Strain produced in the steel rod
  b  = Strain produced in the brass rod

Decrease in length of the steel rod = Decrease in length of the brass rod

   s s

s

l
E

  = b b

b

l
E

  σs × ×
×

3 1000
200 103   = 

σb × ×
×

2 5 1000
100 103

.

or  s  = 1.67 b

  2 s . A + b . A = 25 3   

 ( 2  1.67 b + b) 3   (on substituting s)

   b
2     Ans.

and   s
2    Ans.

Example 1.14 
The steel bolt shown in Fig. 1.24 has a thread pitch of 1.6 mm. If the nut is initially tightened up by 
hand so as to cause no stress in the copper spacing tube, calculate the stress induced in the tube and 

Ec Es

Fig. 1.24
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Solution:
Diameter of the steel bolt, ds

Inside diameter of the copper tube, di  = 12 mm

Outside diameter of the copper tube,  d

Length of the tube = Length of the bolt,

  l

Es
9 Pa

Ec  = 
9 Pa

Pitch of the thread, p = 1.6 mm

Area of the bolt is As = 
π
4

2ds

   = 
π
4

102× 2   

Area of the tube is  Ac = 
π
4 0

2 2( )d di−

   = 
π
4

18 122 2( )−    = 141.37 mm2

the sum ( l) of increase in the length of the bolt ( ls) and decrease in the length of the tube ( lc) is 
equal to the axial displacement of the nut.

  l = ls  + lc  = p× °
°

90
360

   = 1 6 1
4

.

or  Pl
A E A Es s c c

1 +
⎡

⎣
⎢

⎤

⎦
⎥

1
P

or  P×
× × ×

+
× × ×

⎡
⎣⎢

⎤
⎦⎥− −100 1

78 54 10 209 10 141 37 10 100 106 9 6 9. .
1

P, we get

  P
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Hence, stress in the bolt is

  s = 
P
As

= 
30395 14

78 54
.

.
2   Ans.

and stress in the tube is c = 
P
Ac

30395 14
141 37

.
.

   = 215 2    Ans.

Example 1.15 

P

Fig. 1.25

Solution:

  yp
6 Pa

d
n = 4

If F

  P n F 75 2

   = 4
4

75 22× ×⎛
⎝⎜

⎞
⎠⎟
×π σd yp

   = 4
4

20 10 100 10 75 23 2 6× × × × ×−π ( )

Hence, P Ans.
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Example 1.16 

Solution:
Diameter of the rod, D = 25 mm
Length of the rod, l = 1.2 m
Tension force, F
Increase in length of the rod,  dl
Decrease in diameter of the rod  dD
Let v

A of the rod is found as

  A = 
π
4

2D  = 
π
4

25 2× ( )

2

Calculation of modulus of elasticity E

The longitudinal stress 

  = 
F
A

= 
30 10
490 87

3×
.

2

The longitudinal strain 

  = 
dl
l

= 
0 25

1 2 1000
.

.
mm

mm×
–4

E = 
σ
∈

 = 
61 11

2 08 10 4
.

. × −

2    Ans.
Calculation of Poisson’s ratio v

  Lateral Strain = 
dD
D  = 

0 002
25
. mm

mm
–5

v = 
Lateral strain

Longitudinal strain

   = 
8 10

2 08 10

5

4
×
×

−

−.
Ans. 
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Calculation of modulus of rigidity G

The relationship between E and G
  E = 2 G (1 + v)

 or G = 
E

2 1( )+ ν

  = 
293798 08

2 1 0 384
.

( . )+
2     Ans.

Calculation of bulk modulus of elasticity K

The relationship between E and K
  E = 3 K (1 – 2 v)

 or K = 
E

v3 1 2( )−

  = 
293798 08

3 1 2 0 384
.

{ ( . )}− ×
2     Ans.

1.12 THERMAL STRESS AND STRAIN 

Such stress is called thermal stress.

1.12.1 Thermal Stress and Strain in a Simple Bar
lo

Fig. 1.26

Let   Tf = Final temperature

 Ti  = Initial temperature 
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 T Tf – Ti
 
 E
 dl
Suppose that the bar is heated, hence its temperature rises. If the bar were free to expand on 

 lt = lo (1 +  T) ... (1.31)

where lt = Length at t

 lo  = Length at room temperature 

 
l l

l
t o

o

−
 = T

or t  = T ... (1.32)

where  t  = Thermal strain 

  = 
l l

l
t o

o

−

  = 
dl
lo

Now E = 
Stress
Strain

   = 
σt

t∈
where  t  = Thermal stress induced in the bar

or t  = t E

  = E  T  (on substituting t) ... (1.33)

1.12.2 Thermal Stress and Strain in a Compound Bar 
A compound or composite bar is made of tw

or contraction for both, otherwise different expansion or contraction will result. The material with 

Let  lo  = Initial length of the compound bar (equal for both rods)

 1 hermal expansion of the rod (1)

 2

 E1 

 E2
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Fig. 1.27

 A1

 A2

 T  = Rise in temperature
 dl = Elongation of the compound bar

Assuming 2 > 1, it means that rod (2) will expand more as compared to rod (1). If the two rods 
were free to expand, then

 Increase in length of the rod (1), dl1 = lo 1 T ...  (1.34)

 Increase in length of the rod (2), dl2 = lo 2 T ... (1.35)
Since the two rods are connected at their ends, hence on heating, the compound bar will expand 

to an intermediate position RW as shown in Fig. 1.27. To get this intermediate position, the rod (1) 
is being pulled by the rod (2) by a force P1 and the rod (2) is being pushed by the rod (1) by a force 
P2. Because of no external force acting on the compound bar, the two forces are equal in magnitude.

 t1
  = 

dl dl
lo

−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1  E1 ... (1.36)

The corresponding force is

 P1 = dl dl
lo

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1  E1. A1 ... (1.37)

 t2
 = 

dl dl
lo

2 −⎡

⎣
⎢

⎤

⎦
⎥  E2

The corresponding force is 

 P2  = 
dl dl

lo

2 −⎡

⎣
⎢

⎤

⎦
⎥  E2.A2 ... (1.39)

But P1 = P2

or dl dl
lo

−⎡

⎣
⎢

⎤

⎦
⎥1  E1 A1 =  

dl dl
lo

2 −⎡

⎣
⎢

⎤

⎦
⎥ E2 A2
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 (dl – lo 1 T) E1 A1 = (lo 2 T – dl) E2 A2

 dl (A1 E1 + A2 E2)  = lo T ( 2 A2 E2 + 1 A1 E1)

Hence, dl = 
l T A E A E

A E A E
oΔ α α1 1 1 2 2 2

1 1 2 2

+( )
+

 This is the expression for the elongation produced in the compound bar.

 t  = 
dl
lo

 = 
ΔT A E A E

A E A E
α α1 1 1 2 2 2

1 1 2 2

+( )
+

 ... (1.41)

Example 1.17 

A 3 m bar is initially at a temperature of 24
Estimate the expansion of the bar. If the expansion is not allowed, find the stress in the bar. Take 
E 2 and –5

Solution:

Initial length of the bar, lo = 3 m = 3 3 mm

Initial temperature,  Ti

Final temperature,  Tf

The rise in temperature T

 T = Tf  – Ti

The expansion of the bar is found by using equation (1.31).

 dl  = lo  T
3 –5  56

 Ans.

 t = E  T
3  1.2 –5  56

2  Ans.
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Example 1.18 

a) if the supports do not yield and 
(b
 Take E1

2, 1 = 1.2 –5

  E2
2, 2

–5

  E3
2,  3

–5

Fig. 1.28

Solution: The composite bar AB consists of three rods (1), (2) and (3). 
 l1

Length of the rod (2),  l2
Length of the rod (3),  l3
Diameter of the rod (1),  d1
Diameter of the rod (2),  d2
Diameter of the rod (3), d3
Rise in temperature,  T = Tf – Ti

  A1 = 
π
4

d2
1 = 

π
4

2 = 1963.5 mm2

  A2 = 
π
4

d2
2 = 

π
4

2 2

  A3 = 
π
4

d2
3 = 

π
4

2 = 17671.46 mm2

 dl1 = l1 1 T
–5

 dl2  = l2 2 T
–5
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 dl3  = l3 3 T
–5

 dl = dl1 + dl2 + dl3

 (a

 Let   P 

   rod (1)  rod (2)  rod (3)

 Stress  1 = 
P
A1

 2 = 
P
A2

 3 = 
P
A3

    = 
P

1963 5.
2  = 

P
7853 98.

2  = 
P

17671 46.
2  

  

 Strain  1 = 
P

A E1 1
 2 = 

P
A E2 2

 
3

 = 
P

A E3 3

    = 
P

3 927 108.
  = 

P
2 356 108.

  = 
P

1 767 109.

 Elongation  dl'
1 = 1 l1  dl'

2  = 2 l2 dl'
3 = 3 l3

    = 
200

3 927 108

P
.

  = 
300

2 356 108

P
.

  = 
500

1 767 109

P
.   

 The total elongation of the composite bar is found as

 dl'
1 + dl'

2 + dl'
3 = dl

      
200

3 927 10
300

2 356 10
500

1 767 108 8 9

P P P
. . .×

+
×

+
×

–6P

P, we get    P
  Now the stresses induced in each rod are calculated as

 1 = 
P
A1

 = 
382454 58

1963 5
.

.
2   Ans.

 2 = 
P
A2

 =  
382454 58

7853 98
.

.
2   Ans.

and 3 = 
P
A3

 = 
382454 58
17671 46

.
.

2  Ans.
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 (b

   dl  = (dl1 + dl2 + dl3

–6 P

P, we get  P = 261424.65 N

Stresses in the rods are:

   1 = 
261424 65

1963 5
.

.
2   Ans.

   2  = 
261424 65
7853 98

.
.

2   Ans.

 and   3  = 
261424 65
17671 46

.
.

2  Ans.

 Hence, in both cases, the maximum stress is induced in rod (1) and the minimum stress in rod (3).

Example 1.19 
2 each (Fig. 1.29). The 

  E1
2, 1

–5

  E2
2, 2

–5

  E3
2, 3

–5

Fig. 1.29
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Solution:
Load to be supported, P 3 N

A1 = A2 = A3
2

Initial temperature,  Ti

Final temperature,  Tf

Rise in temperature,  T

thereby inducing stresses in them.
 Initially i.e.

 1 = 2 = 3 =   = 
900 10
3 600

3
2 

Because of equal length and equal weight shared by each pillar, equal strains are produced in them, 
say 
 Net strain in rod (1)  =  – 1 T

 Net strain in rod (2)  =  – 2 T

 Net strain in rod (3)  =  – 3 T

Due to heating, each pillar carries some different load but the total load remains the same. Hence
  (  – 1 T) A1 E1 + (  – 2 T) A2 E2 + (  – 3 T) A3 E3 

3

   [(  – 1 T) E1 + (  – 1 T) E2+ (  – 3 T) E3 ] A 3

or      [( –5 3 + ( –5 3     
+ ( –5 3

3

, we get

 –3

Hence, stress in pillar (1) is

 1  = (  – 1 T) E1 
–3 –5 3 2 Ans.

Stress in pillar (2) is

 2  = (  – 2 T) E2
–3 –5 3 2 Ans.

Stress in pillar (3) is 
 3  = (  – 3 T) E3

–3 –5 3 2

2 Ans.
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Example 1.20 

Fig. 1.30

The bolt is tightened by a nut so that the length of tube is reduced by 1.5 mm. If the temperature 

ing. Take
  Es

2, s = 1.2 –5

  Eb
2, b = 1.9 –5

Solution:
Diameter of the steel bolt, d
Internal diameter of the brass tube, di = 15 mm
External diameter of the brass tube, d  = 25 mm
Length of the brass tube, l  = 2 m = 2 
Rise in temperature, T

 As  = π
4

d2 = π
4

 2 2

 Ab  = π
4

(d 2
 – di

2) = π
4

(252 – 152) = 314.16 mm2

During tightening of nut on the bolt, the stresses produced in bolt and tube are tensile and 

because no external force is acting on the assembly.
  s As  = b Ab

 s b  314.16

or s  = 4 b 
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 Stresses before heating

Reduction in tube length, l = 1.5 mm

But l = b

b

l
E

 1.5 = 
σ b ×

×
2000

100 103

or  b
2  Ans.

and   s = 4 b
2  Ans. 

 Stresses after heating

b , brass tube will expand more. But due 

assembly before heating is equal to the net strain produced in the assembly after heating.

 b + s = ( b – s) T

 
s sb

b

s

sE E
+   = ( b – s) T

 
σ b

100 103×
 + 

4
200 103

σ b

×
–5

b, we get
  b

2  Ans.

and   s
2 (Tensile)  Ans.

Example 1.21 

supports as shown in Fig. 1.31. Determine the stress induced, if the temperature of the rod is raised 
 E 2 and –5

Fig. 1.31
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Solution:  Refer Fig. 1.31. AB is the circular rod of length l.

Diameter at A, D1

Diameter at B, D2

dl
 dl  = l  T ... (1)

P

 dl  = 
4

1 2

Pl
ED Dπ  ... (2)

 l  T  = 
4

1 2

Pl
ED Dπ

or  P = 
α πΔT E D D1 2

4

  = 
1 2 10 70 200 10 200 100

4

5 3. × × × × × × ×− π 6 N

 max  = 
P

BCross-sectionalarea at
  = 

P
D( / )π 4 2

2  = 
5 27 10

4 100

6

2

.
/

×
×π

2   Ans.

Example 1.22 

Determine the temperature rise necessary to induce buckling in a 1 m long circular rod of diameter 

–6 E

Fig. 1.32

Solution: 
 Length of the rod, l = 1 m
 Diameter of the rod, d –3 m

 –6
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 A = 
π
4

d2 = 
π
4

–3)2 –3 m2 

  t = T                ( T is rise in temperature)
–6 T

 

  t = t · E
–6 T · E

 A force P equal to t ·A, where A

  P = 
π2

2

EI
l

–6 T · E –3  =  
π π2 3 4

2
64

40 10

1

E × × × −( )

T, we get  T  Ans.

 1. 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
 8. 
 9. 
 10. 
 11. 

 12. 

SHORT ANSWER QUESTIONS
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 1.
   (a) longitudinal strain to lateral strain (b) lateral strain to longitudinal strain
   (c) axial stress to shear stress (d) axial stress to bending stress.
 2.
   (a b c d
 3. For a 12 mm diameter steel rod test specimen, the suitable gauge length is
   (a) 24 mm (b)  36 mm (c) 72 mm (d
  4.    The stress produced on a surface normal to the load applied is called
   (a) shear stress (b)  bending stress (c) normal stress (d)  none of these.
 5. The deformation of a uniform section bar subjected to an axial pull P

   (a) Pl
AE

 (b) 2Pl
AE

 (c) Pl
AE2

 (d)  Pl
AE3

.

 6. The tensile load results in
   (a) contraction (b) elongation (c) bending (d) twisting.
 7. The factor of safety is a ratio of 
   (a) shear stress to working stress (b) bending stress to shear stress
   (c) ultimate stress to working stress (d) working stress to ultimate stress.
 8. The relationship between E and G is
   (a) E = 2G (1 – v)   (b)  E = 2G (1 + v) 
   (c) E = 2G (1 – 2v)   (d)  E = 2 G (1 + 2v).
 9. The relationship between E and K is 
   (a) E = 3 K (1 – 2v)   (b) E = 3 K (1 + 2v) 
   (c) E = 2 K (1 – 2v)    (d)  E = 2 K (1 + 2v).
 10. The relationship among E, G and K is

   (a) E  = 
3

2
KG

K G  (b) E = 
9

3
KG

K G
 (c) E = 

5
2

KG
K G  (d) G = 

9
3

EK
E K

.

 11. The shear stress
   (a) acts normal to the surface (b) acts tangential to the surface
   (c)  is equal to the tensile stress (d

 12.
   (a b) shear stress to shear strain
   (c)  normal stress to shear strain (d) normal stress to linear strain.

MULTIPLE CHOICE QUESTIONS
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 13.
     (a
   (b) steel expands more than brass
   (c)  brass expands more than steel 
   (d
 14.
   (a
   (b
   (c
   (d) none of these.
15. The thermal stress depends on 
   (a)  temperature rise or fall and the modulus of elasticity of the material
   (b
   (c

of material
   (d) none of these.
 16. During the tightening of a nut on a bolt, the stress induced in the bolt is
   (a b) shear (c) tensile  (d) bending.
 17.

of its material is 1.2 –5

   (a b c d

ANSWERS
 1. (b) 2. (c) 3. (d) 4. (c) 5. (a) 6. (b) 7. (c) 8. (b)

 9. (a) 10. (b) 11. (b) 12. (b) 13. (c) 14. (a) 15. (c) 16. (c)

 17. (b). 
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 1. 

the bar. Take E = 2 5 2.
       (Ans. 2).

 2. A square section rod of length l and side D at one end tapers to square section of side d at the 
other end. Find the elongation produced when subjected to an axial pull P.

       Ans Pl
EDd

.
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

.

 3. 
 

Take E = 2 5 2.
       (Ans. 2.39 mm).

 4.
the stress in each bar of the rod. Take E = 2 5 2.

Fig. 1.33

       (Ans.  AB
2

        BC
2

        CD
2).

 5. A 3 m steel rod of diameter 25 mm is placed inside a brass tube of the same length and inside 

    Es
5 2

  and  Eb
5 2.

EXERCISES
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Fig. 1.34

     (Ans.

 6. Two cylindrical rods one of steel and the other of brass are joined at D and restrained by rigid 
supports at A and B Es = 2 5 2 and  
Eb

5 2 a) the reactions at A and B and (b D.

Fig. 1.35

       (Ans. (a)  RA ), RB = 37.2 kN ( )
               (b )).

 7.

ing (a) if the supports do not yield and (b

 

Fig. 1.36
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   Take Es
5 2

    Eb
5 2

    s
–5

    b
–5 

       (Ans. (a 2 2

         (b 2 2).
 8.

E 5 2 and –5

Fig. 1.37

       (Ans. 2 2).

 9.  
2 is 

induced in the rod. Find the stresses in the rod and the tube, if the assembly is heated through 

    Es = 2 5 2, s =1.2 –5

    Eb
5 2, b= 1.9 –5

       (Ans. 2 2

 10.

    E  = 2 5 2 and  = 1.2 –5
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    Fig. 1.38

       (Ans. max
2  

 11.

 Es  = 2 5 2, s = 1.2 –5

 Eb  = 1 5 2, b = 1.9 –5

Fig. 1.39

   (Ans. 2

2).

 12.
wall thickness are put under the same internal pressure. Find the ratio of the change in diameter 
of the cylinder to the change in diameter of the sphere.

   (Ans. (2 – v v)).

 13. A 75 mm diameter compound bar is constructed by shrinking a circular brass bush onto the 

Es Eb

(Ans.



Christian Otto Mohr, born on 8 October 1835, was a German civil 
engineer. He designed some famous bridges while working on railroad 
engineering. He had keen interest in the theories of mechanics and the 
strength of materials. In 1867, he became professor of mechanics at 
Stuttgart Polytechnic, and in 1873 at Dresden Polytechnic. In 1874, Mohr 
formalised the idea of a statically indeterminate structure. In 1882, he 
developed the famous graphical method for analysing stress, known as 
Mohr’s circle, and used it to propose an early theory of strength based 
on shear stress. He also developed the Williot-Mohr diagram for truss 
displacements and the Maxwell-Mohr method for analysing statically 
indeterminate structures, the former method can also be used to determine 
the displacement of truss nodes and forces acting on each member. The 
Maxwell-Mohr method is also referred to as the virtual force method for 
redundant trusses.

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

Christian Otto Mohr
(1835-1918)
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2.1 INTRODUCTION 

most simple and idealized cases. In those cases, planes on which stresses are induced, are normal to 
the direction of load applied. But in the actual practice, plane is not always in such condition, rather 
it is oblique to the load applied and hence stresses and strains are not simple in nature and the effect 
of normal stress and shear stress are considered simultaneously for such analysis. Now the plane is 
under combined or compound stress condition. We will discuss the most general case, when the body 
is subjected to two normal stresses and a shear stress, that is, it is a plane stress condition.

2.2 STRESSES ON AN INCLINED PLANE 
 (PRINCIPAL PLANES AND PRINCIPAL STRESSES)

Consider a rectangular element of unit thickness being subjected to two normal stresses (tensile) in  
x and y directions and a shear stress xy (Fig. 2.1). The inclined plane is HIEF. Let da be the area of 
the inclined plane making an angle  with the vertical plane.

 (a)  Rectangular element subjected (b)  Forces acting on different planes
       to various stresses       

Fig. 2.1 

Area of plane  FG  = da cos
 Area of plane      GH = da sin
 Normal force acting on the plane  FG  = x da cos
 Normal force acting on the plane  GH  = y da sin
 Shear force acting on the plane  FG  = xy da cos
 Shear force acting on the plane  GH  = xy da sin
 For inclined plane HIEF
 Normal force acting on the plane   = x da
 Shear force acting on the plane   = x y da
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 Considering the equilibrium of forces normal to the inclined plane and tangential to it, we have

x da – ( x da cos ) cos  – ( y da sin ) sin  – ( xy da cos ) sin  – ( xy da sin ) cos  = 0  ... (2.1)

x y da + ( x da cos ) sin  – ( y da sin ) cos  – ( xy da cos ) cos  + ( xy da sin ) sin  = 0  ...(2.2)
From equation (2.1), we get

 x  = x cos2  + y sin2  + 2 xy sin  cos 

  = x 
1 2

2
+⎛

⎝⎜
⎞
⎠⎟

cos θ + y 
1 2

2
−⎛

⎝⎜
⎞
⎠⎟

cos θ
+ xy sin2

  = 
σ σx y+

2  + 
σ σx y−

2 cos 2  + xy sin2  ... (2.3)

 From equation (2.2), we have

 x y = ( y – x) sin  cos  + xy (cos2  – sin2 )

  = – ( x – y) sin  cos  + xy (cos2  – sin2 )

  = – 
( )σ σx y−

2  sin2  + xy cos2  ... (2.4)

The resultant stress on the inclined plane is

 r  = σ τx x y′ ′ ′+2 2  ... (2.5)

 Principal plane is a plane of zero shear stress. There are two principal planes at any arbitrary point 
within a material under plane stress condition. These planes are mutually perpendicular to each other 
and have only normal stresses.

 For plane HIEF to be a principal plane

  x y  = 0

  σ σx y−
2

 sin2 p – xy cos2 p = 0 (denoting  by p for principal plane)

 
( )σ σx y−

2
  sin2 p  = xy cos2 p

 tan2 p  = 
2τ

σ σ
xy

x y−
 ... (2.6)

Since tan2 p  = tan (180° + 2 p) 

 Hence, there are two planes for which equation (2.6) holds good. One plane is located at

 p1
= 

1
2

 tan–1 
2τ

σ σ
xy

x y−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  and the other plane is separated by 90°, that is, at p2

 = p1
 + 90°.
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From equation (2.6), we have

 sin 2 p  = 
2

42 2

τ

σ σ τ

xy

x y xy± − +( )

 cos 2 p  = 
σ σ

σ σ τ

x y

x y xy

−

± − +( )2 24

 Substituting sin 2 p and cos 2 p in equation (2.3), we have

  x =  
σ σx y+

2
 +

σ σx y−

2
 ±

−

− +

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

σ σ

σ σ τ

x y

x y xy( )2 24
 + xy ±

− +

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2

42 2

τ

σ σ τ

xy

x y xy( )
 

   =  
σ σx y+

2
± 

1

42 2( )σ σ τx y xy− +
 

( )σ σ
τx y

xy
−

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
2

2
2

   =   
σ σx y+

2
± 

1

4

4
22 2

2 2

( )

( )

σ σ τ

σ σ τ

x y xy

x y xy

− +

− +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

   =  
σ σx y+

2
 ± 

( )σ σ τx y xy− +2 24

2
 The stress with maximum value is known as major principal stress, given by

 1  = 
σ σ σ σ τx y x y xy+

−
− +

2
4

2

2 2( )
 ... (2.7)

 The stress with minimum value is known as minor principal stress, given by

 2  = 
σ σ σ σ τx y x y xy+

−
− +

2
4

2

2 2( )
 ... (2.8)

Maximum shear stress
 For maximum shear stress, differentiate equation (2.4) w.r.t.   and equate it to zero.

  
d

d
x y( )τ
θ
′ ′  = 0

    
σ σx y−⎛

⎝
⎜

⎞

⎠
⎟2
 2 cos2 s – xy (– sin2 s) . 2 = 0

 (Denoting  by s for shear stress)
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             ( x – y) cos2 s + 2 xy sin2 s = 0

or  tan2 s  =  – 
σ σ

τ
x y

xy

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟2
 ...(2.9)

Hence,  sin2 s  = ±
−

− +

σ

σ σ τ

σx y

x y xy( )2 24

and  cos2   = ± 
2

42 2

τ

σ σ τ

xy

x y xy( )− +

 Substituting sin2 s and cos2 s in equation (2.4), we have

 max = ±
− −

− +
±

− +

σ σ σ σ

σ σ τ
τ

τ

σ σ τ

x y x y

x y xy
xy

xy

x y xy
2 4

2

42 2 2 2( ) ( )

  = ±
−

− +
±

− +

( )

( ) ( )

σ σ

σ σ τ
τ

τ

σ σ τ

x y

x y xy
xy

xy

x y

2

2 2

2

22 4

2

4

  = ±
− +

−
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

4 2
2

2 2

2
2

( )

( )

σ σ τ

σ σ
τ

x y xy

x y
xy

  = ±
− +

− +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

4

4
22 2

2 2

( )

( )

σ σ τ

σ σ τ

x y xy

x y xy

  =  ±
− +( )σ σ τx y xy

2 24

2
 … (2.10)

 Using equations (2.7) and (2.8), we get the maximum shear stress in terms of principal stresses as

 max  = 
σ σ1 2

2
−

 … (2.11)

 Hence, the maximum shear strtess is one-half the difference between the maximum and minimum 
principal stresses, and it occurs on the planes inclined at 45o to the principal planes.

Example 2.1

 (a) the principal stresses
 (b) the maximum shear stress
 (c) the corresponding normal stress
 (d) the position of the principal planes and
 (e) the plane of maximum shear stress. 
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Solution: Refer Fig. 2.2.

Fig. 2.2

 x = 25 MPa
 y = – 5MPa 
 xy = 30 MPa

 (a) The principal stresses are given as

 1, 2  = 
σ σ σ σ τx y x y xy+

±
− +

2

4

2

2 2( )

  = 
25 5

2
25 5 4 30

2

2 2+ −
±

− − + ×( ) { ( )}
= 10  15 5

 Hence, the major principal stress,  1 = (10 + 15 5 ) MPa  = 43.54 MPa 

 The minor principal stress,  2 = (10 – 15 5 ) MPa = – 23.54 MPa       Ans.

 (b) The maximum shear stress is

 max = 
σ σ1 2

2
−

  = 
43 54 23 54

2
. ( . )

 = 33.54 MPa Ans.

 (c) The normal stress is the average stress acting on all the four faces.

    av  = 
σ σx y+

2
 = 

25 5
2

 = 10 MPa Ans.

 (d) Using equation (2.6), we have

   tan 2 p  = 
2τ

σ σ
xy

x y−
 = 

2 30
25 5

×
− −( )

 = 
60
30

 = 2

   2 p  = tan–1 (2) = 63.4o and 180o + 63.4o = 243.4o

or    p  = 31.7o and 121.7o  Ans.
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 These are the angles made by the principal planes with the plane AB.
 (e) If s be the angle made by the planes of maximum shear stress with AB, then

 tan 2 s  = – 
σ σ

τ
x y

xy

−

2
    (using equation (2.9))

  = – 
25 5

2 30
− −
×

( )
 = – 

1
2

 2 s  = – 26.5o 
 s  = – 13.25o 

(in the anticlockwise direction) is 
 s  = 76.72o and 166.72o Ans.

Example 2.2 
Show that the sum of the normal stresses on any set of two perpendicular planes at a point in a strained 
material is constant.
Solution: Refer Fig. 2.3.

Fig. 2.3

 ABCD is the rectangular element on which two principal stresses x and y are acting. An inclined 
plane AE is making an angle  with the plane AB.

The principal stress acting on the plane AE is

 1  =  
σ σx y+

2  +  
σ σx y−

2
 cos2

The principal stress on another plane at (  + 90o) is 

 2  = 
σ σx y+

2
 – 

σ σx y−

2
 cos (180o + 2 )

  = 
σ σx y+

2  – 
σ σx y−

2
 cos2   [cos (180° + 2 ) = – cos2 ]

Now  1 + 2  = x + y = Constant
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Example 2.3 
The principal stresses at a point across two perpendicular planes are 60 MPa and 50 MPa. Find the 
normal, tangential and resultant stress and its obliquity on a plane at 20° with the major principal 
plane.
Solution: Refer Fig. 2.4 (a).

 (a) (b)
Fig. 2.4

 AB is the major principal plane. Given, 
 1 = 60 MPa
 2  = 50 MPa
   = 20o

 The normal stress on the inclined plane AE is

 x  = 
σ σ σ σ1 2 1 2

2 2
+

+
−

 cos 40o + 0 (using equation (2.3))
(because no shear stress is acting)

  =  
60 50

2
60 50

2
+

+
−

 cos 40o = 58.83 MPa  Ans.

 The tangential stress on the plane AE is given as

 x y  = 
σ σ1 2

2
−

 sin 40o  (using equation (2.4))

  =  
60 50

2
sin 40o  = 3.21 MPa  Ans.

The resultant stress is 

 r  = σ τx x y′ ′ ′+2 2

  = ( . ) ( . )58 83 3 212 2  = 58.91 MPa  Ans.
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 If  is the angle of obliquity (Refer Fig. 2.4 (b)), then

 tan   = 
τ
σ
x y

x

′ ′

′
 = 

3 21
58 83

.
.

 = 0.054

or    = 3.12   Ans.

Example 2.4 

At a certain point in a strained material, there are two mutually perpendicular planes. The normal 
stresses acting on them are 80 MPa tensile and 30 MPa compressive. If the major principal stress is 

 (a) the shear stress acting on two planes
 (b) the minor principal stress and
 (c) the maximum shear stress at the point.

Solution: Refer Fig. 2.5. 
                    Given, x  = 80 MPa

 y  = –30 MPa

Fig. 2.5

 Let 1 and 2 be the major and the minor principal stresses and xy , the shear stress acting on the 
two planes.
 1  = 100 MPa (Given)

 (a) The major principal stress is given by

 1  = 
σ σ σ σ τx y x y xy+

+
− +

2

4

2

2 2( )

  100  = 
80 30

2

80 30 4

2

2 2
−

+
+ +( ) τ xy

or xy  = 51 MPa   Ans.
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 (b) The minor principal stress is given as

 2  =  
σ σx y+

2
 – 

( )σ σ τx y xy− +2 24

2
 

  =  
80 30

2
– 

( )80 30 4 51
2

2 2+ + ×
 = – 50MPa

  = 50 MPa (Compressive) Ans.
 (c) The maximum shear stress is given as

 max  = 
σ σ1 2

2
−

 = 
100 50

2
( )

 = 75 MPa  Ans.

Example 2.5 
At a point in a strained material, the two normal stresses acting on two mutually perpendicular planes 
are 180 MPa tensile and 50 MPa compressive. A shear stress of 20 MPa is also acting on these plnaes. 
Find the normal stress, the tangential stress and the resultant stress on a plane inclined at 30o to the 

Solution: Refer Fig. 2.6.

Fig. 2.6

 CD is the plane of compressive stress and DE is the inclined plane.
Given,  x  = 180 MPa
 y  = – 50 MPa
 xy  = 20 MPa
   = 90  – 30  = 60
 The normal stress on the plane DE is given as

 x  = 
σ σ σ σx y x y+

+
−

2 2
 cos 2  + xy sin 2  (using equation (2.3))

  =  
180 50

2
180 50

2
−

+
+

cos 120  + 20  sin 120  

  = 24.82 MPa  Ans.
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 The shear stress on the plane DE is given as

 x y  = 
σ σx y−

2
 sin 2  – xy cos 2   (using equation (2.4))

  = 
180 50

2
 sin 120o – 20  cos 120o  = 109.6 MPa  Ans.

 The resultant stress on the plane DE is given as

 r  = σ τx x y′ ′ ′+2 2  (using equation (2.5))

  = ( . ) ( . )24 82 109 62 2   = 112.37 MPa  Ans.

 The angle of obliquity  is given by

 tan   = 
τ
σ
x y

x

′ ′

′
 = 

109 6
24 82

.
.

 = 4.41  

or   = 77.24  Ans.

Example 2.6 
At a certain point within a strained material, the two normal stresses acting on two mutually perpendicular 
planes are 60 MPa tensile and 30 MPa compressive. The maximum principal stress is limited to  

Solution: Refer Fig. 2.7. 

Fig. 2.7

Given,  x  = 60 MPa
 y  = – 30 MPa
 1  = 100 MPa

 The major principal stress is given as 

 1  = 
σ σ σ σ τx y x y xy+

+
− +

2

4

2

2 2( )

 100  = 
60 30

2
60 30 4

2

2 2
− +

+ +( ) τxy
  

On solving, we get xy  = 72.11 MPa Ans.
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The maximum shear stress is given as

 max  = 
( )σ σ τx y xy− +2 24

2
 (using equation (2.10))

  = 
( )60 30 4 5200

2

2+ + ×
 = 85 MPa  Ans.

Example 2.7 

In a strained material, the state of stress at a point is given below:

 x  = 40 MPa, y = 25 MPa and xy = 15 MPa
 Find the following parameters:
 (a)  the principal stresses on two mutually perpendicular planes at the point
 (b) the maximum shear stress
 (c) the principal stress planes
 (d) the planes of maximum shear stress and
 (e) the normal stress and shear stress on the planes of maximum shear stress.

Solution: Refer Fig. 2.8.

Fig. 2.8
 (a) The major principal stress is given as 

 1  = 
σ σ σ σ τx y x y xy+

+
− +

2

4

2

2 2( )

  = 
40 25

2
40 25 4 15

2

2 2+
+

− + ×( )
 =  49.27 MPa  Ans.
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  The minor principal stress is given as

  2  = 
σ σx y+

2
 – 

( )σ σ τx y xy− +2 24

2

  = 
40 25

2  – 
( )40 25 4 15

2

2 2− + ×
 = 15.73 MPa Ans.

 (b) The maximum shear stress is obtained as

 max  = 
σ σ1 2

2
−

  = 
49 27 15 73

2
. .

 = 16.77 MPa  Ans.

 (c) The principal planes are given by

 tan 2 p  = 
σ σ1 2

2
−

 (using equation (2.6))

  = 
2τ

σ σ
xy

x y−
 = 2

 2 p  = 63.44o and 243.44o

or p  = 31.72o and 121.72o

Hence,  p1
  = 31.72o

and p2
 = 121.72o

 (d)  The planes of maximum shear stress are given by

 tan 2 s  = – 
σ σ

τ
x y

xy

−

2
  (using equation (2.9))

  = – 
40 25
2 15
−
×

 = – 0.5

 2 s  = 153.44  and 333.44°
or s  = 76.72  and 166.72

 The angle between maximum shear stress plane and the direction of x is 76.72o. The normal stress 
on the planes of maximum shear stress is given as

 x  =  
σ σ σ σx y x y+

+
−

2 2
 cos 2 s + xy sin 2 s 

(using equation (2.3))

  = 
40 25

2
40 25

2
+

+
−

 cos (153.44o) + 15 sin (153.44o)

  = 32.5 MPa  Ans.
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 The shear stress on the planes of maximum shear stress is given as 

 x y  = 
σ σx y−

2  sin 2 s – xy cos 2 s (using equation (2.4))

  = 
40 25

2
 sin (153.44o) – 15 cos (153.44o)

  = 16.77 MPa  Ans.
 The principal planes and the planes of maximum shear stress are shown in Fig. 2.8.

Example 2.8 

At a section in a beam the tensile stress due to bending is 50 N/mm2 and there is a shear stress of  
20 N/mm2. Determine the magnitude and direction of the principal stresses and calculate the 
maximum shear stress. 
Solution: Given, 

  Bending stress,  
b
 = 50 N/mm2

  Shear stress,  = 20 N/mm2

  The major principal stress is given as 

   1 = 2
b + 2

4 2
b
2σ τ+

    = ×
2

50
2

50 4 202 2
+ +

    = 57.01 N/mm2 (Tensile) Ans.

  The minor principal stress is given as 

2 = 2
b  – 2

4 2
b
2σ τ+

    = – ×
2

50
2

50 4 202 2+  = – 7.01 N/mm2 

    = 7.01 N/mm2 (Compressive) Ans.

The angle made by the principal planes with the vertical section of the beam is given as 

   tan 2 p = –
2

21
σ σ

τ

    = . – (– . )
×

57 01 7 01
2 20  = 0.625

Hence,   p = 16º and 106º  Ans. 
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The maximum shear stress is
   max = 

σ σ1 2

2
−

    =  
57 01 7 01

2
. ( . )− −

    =  32.01 N/mm2 Ans. 

Example 2.9 

At a point in an elastic material, the stresses on three mutually perpendicular planes are as follow:  
First plane:  50 MPa tensile and 40 MPa shear
 Second plane: 30 MPa compressive and 40 MPa shear
Third plane:  No stress
Find the following parameters:
 (a) the magnitude and positions of the principal stresses
 (b) the position of planes on which the maximum shear stress acts and 
 (c) the normal and shear stresses on the planes of maximum shear stress.

Solution: Refer Fig. 2.9.

  Given, x = 50 MPa
   y = – 30 MPa  
   xy = 40 MPa
 (a) The principal stresses are given as 

   1, 2 = 
σ σ σ σ τx y x y xy+

±
− +

2
4

2

2 2( )

    = 
50 30

2
50 30 4 40

2

2 2− ±
+ + ×( )

    = (10 ± 56.56) MPa
  Hence, the major principal stress is 
   1 = 10 + 56.56
    = 66.56 MPa (Tensile)  Ans.
  and, the minor principal stess is 
   2 = 10 – 56.56 = – 46.56 MPa
    = 46.56 MPa (Compressive)  Ans.

Fig. 2.9
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  Position of principal planes

  The angle made by the principal planes with the vertical section is given as 

   tan 2 P = 
y

xy

x–
2

σ σ

τ

    = 
2 40

50 30
80
80

×
− −

=
( )  = 1

  Hence, P = 22.5º and 112.5º  Ans.

 (b) If s be the angle made by the planes of maximum shear stress with AB, then

   tan 2 s = – 
σ σ

τ
x y

xy

−⎛

⎝
⎜

⎞

⎠
⎟2

    = – 
50 30
2 40
+
×

⎛
⎝⎜

⎞
⎠⎟  = – 1

  or s = – 22.5º

actual angle (in the anticlockwise direction) is  

   s = 67.5º and 157.5°  Ans.

  The normal stresses on the planes of maximum shear stress are: 

  For  = 67.5º

   x = 
y y

xy
x x –

2 2cos sin2 2 θ θ
σ σ σ σ

τ
+

+ +

    = – º × ºcos sin2
50 30

2
50 30 135 40 135+ + +

    = 10 – 28.28 + 28.28

    = 10 MPa  Ans.

  For   = 157.5º

   x = – º × ºcos sin2
50 30

2
50 30 315 40 315+ + +

    = 10 + 28.28 – 28.28

    = 10 MPa  Ans.
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  The shear stresses  on the planes of maximum shear stress are: 

  For   = 67.5º

   x y = – 
x y–

2 sin 2  + xy cos 2  

    = – 2
50 30+  sin 135º + 40 × cos135º

    = – 28.28 – 28.28

    = – 56.56 MPa  Ans.

  For   = 157.5º

   x y = – 2
50 30+  sin 315º + 40 × cos 315º

    = 28.28 + 28.28

    = 56.56 MPa  Ans.

Example 2.10 

A hollow shaft of 40 mm outer diameter and 25 mm inner diameter is subjected to a twisting moment 
of 120 N.m., bending moment of 800 N.m, and axial thrust of 10 kN. Calculate the maximum 
compressive and shear stresses. 

Solution: Refer Fig. 2.10. 

Fig. 2.10

Given,  Outer diameter of the hollow shaft,  do  = 40 mm

  Inner diameter of the hollow shaft,  di  = 25 mm

  Twisting moment, T = 120 N.m

  Bending moment, M = 800 N.m

  Axial thrust,  P = 10 kN

  The bending stress is 

   b  = I
M × y  (using bending equation)

  where I = Moment of inertia of the shaft cross-section about the neutral axis

    = 
π
64 0

4 4( )d di−



70  Strength of Materials

   y

    = 
d
2
0

 Now  b = 
M

d d

d

i
π
64

2
0
4 4

0

( )−
×

    = 
32 0

0
4 4
Md

d diπ( )−

    = 
32 800 40 10

40 10 25 10
1

10

3

3 4 3 6
× × ×
× − ×

×
−

− −π[( ) ( )]
 MPa 

    = 150.25 MPa

  The shear stress is  

    = ×J
T d

2
0  (using torsion equation) 

    = 
16 0

0
4 4
Td

d diπ( )−
 

J = Polar moment of inertia
      of the shaft cross-section

    =
32
π ( )d di0

4 4−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

    = 
16 120 40 10

40 10 25 10
1

10

3

3 4 3 4 6
× × ×

× − ×
×

−

− −π[( ) ( ) ]
 MPa

    = 11.27 MPa

  The direct stress (compressive) is

    = – A
P  

A

d di

=

−

⎡

⎣

⎢
Cross-section area of the hollow shaft

   =
4
π ( )0

2 2⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

    = – 
10 10

4
40 10 25 10

1
10

3

3 2 3 2 6
×

× − ×
×

−

− −π [( ) ( ) ]
MPa

    = – 13.06 MPa
The maximum tensile stress along the axis of the shaft is 
   b +   = 150.25 + (–13.06) = 137.19 MPa
and the maximum compressive stress  = 150.25 + 13.06 
     = 163.31 MPa

Since 163.31 MPa > 137.19, hence 163.31 MPa ( ) is used in the expression for principal stresses.
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The principal stresses are given as

   1, 2 = 
σ σ τ′ ± ′ +
2

4
2

2 2

    = 
163 31

2
163 31 4 11 27

2

2 2. ( . ) ( . )
±

+ ×
  

    = (81.65 ± 82.43) MPa

Hence,   1 = 81.65 + 82.43

    = 164.08 MPa

and   2 = 81.65 – 82.43 = – 0.78 MPa

 Hence, the maximum compressive stress is 

   2  = 0.78 MPa  Ans. 

 The maximum shear stress is obtained as

   max = 
σ σ1 2

2
164 08 0 78

2
− = − −. ( . )

    = 82.43 MPa  Ans.

Example 2.11 

Fig. 2.11 shows a hollow shaft of 150 mm external diameter and 80 mm internal diameter. At its free 

point A, located 1 m from the free end, and at the top shaft surface.

 

   Fig. 2.11

Solution: Refer Fig. 2.11.

  Given,
  External diameter of the hollow shaft, 
   d0 = 150 mm
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  Internal diameter of the hollow shaft, 
   di  = 80 mm 
  Length of the hollow shaft, l = 1 m
   The twisting moment on the shaft is 

   T  = (25 × 103) × 2
500  × 10–3 N.m

    = 6250 N.m

  The bending moment on the shaft is 

   M = (25 × 103) × 1 N.m

    = 25000 N.m

  The maximum bending stress induced in the shaft is 

   b = 
32 0

0
4 4
Md

d diπ( )−  (using bending equation)

    = 
32 25000 150 10
150 10 80 10

1
10

3

3 4 3 4 6
× × ×
× − ×

×
−

− −π[( ) ( ) ] MPa

    = 82.09 MPa

  Shear stress induced in the shaft is 

    = 
16 0

0
4 4
Td

d diπ( )−
 (using torsion equation)

    = 
16 6250 150 10

150 10 80 10
1

10

3

3 4 3 4 6
× × ×
× − ×

×
−

− −π[( ) ( ) ]  MPa

    = 10.26 MPa

  The principal stresses are given as 

   1, 2  = 
σ σ τb b

2
4

2

2 2

±
+

    = 
82 09

2
82 09 4 10 26

2

2 2. ( . ) ( . )
±

+ ×
 

    = (41.04 ± 42.30) MPa
 Hence, 1 = Major principal stress
    = 41.04 + 42.30
    = 83.34 MPa Ans.
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  and 2 = Minor principal stress
    = 41.01 – 42.30
    = – 1.26 MPa 
  Negative sign associated with 2 is indicative of its compressive nature.  Ans.

  The maximum shear stress is 

   max  = 
–
2

1 2

    = 
83 34 1 26

2
. ( . )− −

    = 42.3 MPa Ans.

2.3 MOHR’S CIRCLE OF PLANE STRESS 

famous German civil engineer Otto Mohr (1835–1918). The results obtained by using this method 
are very close to that being obtained by analytical method.

Consider a rectangular element of a material being subjected to biaxial stress condition as shown 
in Fig. 2.12.

Fig. 2.12

Let  x  = Normal tensile stress on planes AB and CD
  y  = Normal tensile stress on planes AD and BC
    = Angle made by inclined plane AE with AB 
  xy  = Shear stress on all the planes AB, BC, CD with DA
  x  = Normal stress on inclined plane AE
  x y  = Shear stress on inclined plane AE
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Construction of Mohr’s Circle (Refer Fig. 2.13)

 A proper scale is chosen to represent the stresses.
 Normal stresses are taken on the abscissa the x-axis and shear stresses on the ordinate the  y-axis).
 To represent x and y, two points M and N are located on x-axis such that ON = x and  

OM = y, and x > y .
  Normals are dropped at the points M and N above and below x-axis such that MY = + xy and 

NX = – xy.
  Points X and Y are joined together to get a straight line XY. This line intersects x-axis at C. Taking 

C as centre and CX or CY as radius, draw a circle. The resulting circle is called Mohr’s circle. 
The circle cuts x-axis at two points K and L.

 OL  = max = 1 = Maximum (major) principal stress

 OK  = min = 2 = Minimum(minor) principal stress

  The centre C of the Mohr’s circle is located at 
σ σx y+

2
.

  XCL (measured anticlockwise) = 2 p, half of this angle i.e., p
the major principal plane with plane AB of the element under consideration in Fig. 2.12.

 The radius of the Mohr’s  circle gives the maximum shear stress.

Fig. 2.13 The Mohr’s circle.

  To know the position of the inclined plane AE, a point S is taken on the circle such that 
LCS = 2  (measured anticlockwise). The perpendicular distance from S on x-axis gives 

shear stress xy and the distance of this perpendicular from y-axis gives normal stress x  on the 
inclined plane.

  The complete sequence of construction of the Mohr’s circle is shown in Fig. 2.13.
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Sign Conventions 
  The tensile stresses are considered positive and hence they are plotted on right side of the origin. 
  The compressive stresses are considered negative, hence they are plotted on left side of the 

origin.
  If the shear stress acting on a face has the tendency to rotate the element clockwise, then it is 

considered to be positive and is taken above x-axis (Fig. 2.14 (a)).

Fig. 2.14
  If the shear stress acting on a face has the tendency to rotate the element counterclockwise, then 

it is considered to be negative and is taken below x-axis (Fig. 2.14 (b)).

Example 2.12 

a) pure shear (b) pure biaxial 
tension (c) pure uniaxial tension and (d) pure uniaxial compression. 
Solution: 

Conditions Mohr’s Circle
(a) Pure shear 

         
(b) Pure biaxial tension

            

Contd...
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(c) Pure uniaxial tension

             
(d) Pure uniaxial compression

       

Example 2.13 

Using normal and shear stresses given in Example 2.1,
 (a) draw the Mohr’s circle
 (b
 (c
 (d

Solution: (a) Refer Fig. 2.15.
 Selection of Scale
Take 0.5 cm  = 5 MPa 
Hence,  y  = 5 MPa = 0.5 cm

 x  = 25 MPa = 2.5 cm
 xy  = 30 MPa = 3.0 cm

 The Mohr’s circle is shown in Fig. 2.16.

Fig. 2.15
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Fig. 2.16

 (b) From Fig. 2.16, we have 

 max  = 1 = 4.35 cm = 43.5 MPa  Ans.

 min  = 2 = – 2.31 cm = – 23.1 MPa Ans.

  = 23.1 MPa  (Compressive) Ans.

 (c) The maximum shear stress is

 max  = 3.3 cm = 33 MPa Ans.

 (d) The position of principal planes are given as: 

 2 p  = 63.5  

or p
1
  = 31.75

and  2 p  = 243.5  

or p2
  = 121.75   Ans.

Example 2.14 

At a point in the cross-section of a loaded member, the maximum principal stress is 15 N/mm2 tensile 
and maximum shear stress of 8 N/mm2 a) the magnitude and nature of 
direct stress on the plane of maximum shear stress (b) the state of stress on a plane, making an angle 
30º with the plane of maximum principal stress. 
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Solution: Selection of Scale
 Take 1 cm = 5 N/mm2

The Mohr's circle is shown in Fig. 2.17.

Fig. 2.17
 OL  = 1 = Maximum principal stress
  = 15 N/mm2

 CL = max= Maximum shear stress 
  = Radius of Mohr's circle
  = 8 N/mm2

The direct stresses on the plane of maximum shear stress are:
 OC = x = 1.4 cm = 7 N/mm2 (Tensile)  
 OK = y = – 0.2 cm = – 1 N/mm2 (Compressive) Ans. 

The stresses on a plane making an angle 30º with the plane of maximum principal stress are: 
 ON = x = 2.2 cm = 11 N/mm2 (Tensile)
 OM = y = 0.6 cm = 3 N/mm2 (Tensile) 
 YN = xy = 1.4 cm = 7 N/mm2 Ans. 

Example 2.15 

A circle of 100 mm diameter is drawn on a mild steel plate before it is subjected to direct tensile stresses 
of 80 N/mm2 and 20 N/mm2 in two mutually perpendicular directions and a shear stress of 40 N/mm2. 
Find the major and minor axes of the ellipse formed as a result of deformation of the circle. Assume,  
E = 200 GPa and Poisson’s ratio as 0.25.

Solution: Refer Fig. 2.18.

 Given, Diameter of the circle on the plate,  d =  100 mm

  Tensile stress in x-direction is  x = 80 N/mm2
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  Tensile stress in y-direction is  y = 20 N/mm2

  Shear stress,  xy = 40 N/mm2

  Modulus of elasticity,  E = 200 GPa
    = 200 × 109 Pa
  Poisson’s ratio v = 0.25

Fig. 2.18

 The principal stresses are given as

   1, 2 = 
σ σ σ σ τx y x y xy+

±
− +

2
4

2

2 2( )

    = 
80 20

2
80 20 4 40

2

2 2+ ±
− + ×( )

    = (50 ± 50) N/mm2

 Hence,  1 = 50 + 50 = 100 N/mm2

and   2 = 50 – 50 = 0 

 Strain produced in the direction of 1 is 1 = –E E
1 2

σ
ν
σ

  = 
100 10
200 10

6

9
×
×

Pa
Pa

       = 5 × 10–4 

 Strain produced in the direction of 2 is 2 = –E E
σ

ν
σ2 1

       = – 1.25 × 10–4

 Change in diameter of the circle along 1 is d1 = 1d
       = 5 × 10–4 × 100  = 0.05 mm
     Change in diameter of the circle along 2 is  d2 = 2d
       = – 1.25 × 10–4 × 100  = – 0.0125 mm
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  As a result of the stresses applied in x and y directions, the circle takes the form of an ellipse 
(Fig. 2.18). The diameter of the circle increases along 1 and decreases along 2.
  Hence, major diameter of the ellipse   = (100 + 0.05) mm
       = 100.05 mm  Ans.  
  and minor diameter of the ellipse   = (100 – 0.0125) mm  
       = 99.9875 mm Ans.

Example 2.16 

A thin cylinder with closed ends has an internal diameter of 50 mm and a wall thickness of 2.5 mm. 
It is subjected to an axial pull of 10 kN and a torque of 500 N.m, while under an internal pressure of 
6 MN/m2 .

 (a) Determine the principal stresses in the tube and the maximum shear stress. 

 (b
direction  and magnitude indicated (schematic).

 (c) Sketch the Mohr’s stress circle.  

Solution: Given, 

  Inside diameter of the cylinder,   d = 50 mm

  Wall thickness of the cylinder,  t = 2.5 mm

  Axial pull,  P = 10 kN

  Torque applied, T = 500 N.m

  Internal pressure,  p = 6 MN/m2

  The cross-sectional area of the cylinder is 

   A = d × t =  × 50 × 10–3 × 2.5 × 10–3 

    = 3.927 × 10–4 m2

 (a) The hoop stress is given as 

   h  = t
pd
2   = 

2 × 2.5 ×
6 × 50 ×

10
10

–

–

3

3
 = 60 MPa

  The longitudinal stress is 

   l = 2
h  = 2

60  = 30 MPa

  The direct stress due to axial pull is 

    = 
3.927 ×

10 × × MPaA
P

10
10

10
1

–4

3

6=  = 25.46 MPa
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 The longitudinal stress acts along the axis of the cylinder and the hoop stress acts perpendicular 
to it. The direct stress also acts along the axis of the cylinder. Hence, the total stress acting along the 
axis is 
    l +  = 30 + 25.46  = 55.46 MPa = x (say)
 and   h = y (say)
 The shear stress is

    xy = 
2

2
T

d tπ
 = 

2 500
50 10 2 5 10

1
103 2 3 6

×
× × × ×

×− −π ( ) ( . )
MPa  = 50.93 MPa

 The principal stresses are given as 

    1, 2 = 
σ σx y+

2  ± 
( )σ σ τx y xy− +2 24

2

     = 
55 46 60

2
55 46 60 4 50 93

2

2 2. ( . ) ( . )+ ±
− + ×

     = (57.73 ± 50.98) MPa
 Hence, 1 = Major principal stress
     = 57.73 + 50.98 = 108.71 MPa  Ans. 
  and  2 = Minor principal stress
     = 57.73 – 50.98 = 6.75 MPa Ans.
 The maximum shear stress is obtained as

   max = 
σ σ1 2

2
−

  = . – .
2

108 71 6 75  = 50.98 MPa  Ans.
 (b) and (c)
 The stress configuration on a square element and the related Mohr’s circle is shown in  
Fig. 2.19.

h

h

ll

xy

xy

O 
M 

C N L 

x

2

max xy

1

y

 

 

  (a b) Mohr’s circle
Fig. 2.19



82  Strength of Materials

Example 2.17 

A circular shaft is subjected to combined loads of bending M and torque T. With the help of Mohr’s 
circle diagram, represent the stresses on an element of the shaft surface. From this diagram or by 

loads of M and T.   

Solution: The bending stress is  

   b = 32
3

M
dπ

 (using bending equation)

   M = Bending moment 
   d = Diameter of the shaft
  The shear stress is 

    = 
16

3
M
dπ

 (using torsion equation)     

  The principal stresses are given as 

   1, 2 = 
σ σ τb b

2
4

2

2 2

±
+

     = 
16

3
2 2

πd
M M T( )± +

   = 
σ σ1 2

2
−

    = 
σ τb

2 24
2
+

    = 
16

3
2 2M

d
M T

π
−

  The Mohr’s circle is shown in Fig. 2.20. 
   ON = b 
   OL  = 1 
   OK  = 2  
   OY  =  NX = 
   CC  =     

      

  

Fig. 2.20
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 1. What is principal stress? How many principal stresses are there for a plane stress condition?

 2. What is a principal plane? What is its significance?

 3. Who invented Mohr’s circle?

 4. What does the radius of Mohr’s circle indicate?

 5. How is the plane of maximum shear stress located?

 6. When is the shear stress positive or negative?

1. The stresses are said to be compound, when
 (a) normal and shear stresses are acting simultaneously
 (b) torsion and bending stresses are acting simultaneously
 (c)  normal and bending stresses are acting simultaneously 
 (d) bending and stresses are acting simultaneously.

2. The principal planes are the planes of
 (a)   maximum shear stress  (b) minimum shear stress
 (c)   maximum normal stress (d) zero shear stress.

3. The principal stresses are given as

 (a)  
σ σ σ σ τx y x y xy+

±
+ −

2
4

2

2 2( )
 (b) σ σ σ σ τx y x y xy+

±
− +

2
4

2

2 2( )

 (c)  
σ σ σ σ τx y x y xy−

±
+ +

2
4

2

2 2( )
  (d) 

σ σ σ σ τx y x y xy−
±

+ −

2
4

2

2 2( ) .

4. The principal stresses are basically
 (a) shear stresses   (b) bending stresses
 (c) normal stresses   (d)  none of these.

5. The planes of maximum shear stress are located at which of the following angle to the principal 

 (a) 90    (b) 45  

 (c) 60    (d) 30

SHORT ANSWER QUESTIONS

  
MULTIPLE CHOICE QUESTIONS
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6. The maximum shear stress is equal to 

 (a) ±
− +( )σ σ τx y xy

2 24

2
  (b)  ±

+ +( )σ σ τx y xy
2 24

2
 

 (c) ±
− −( )σ σ τx y xy

2 24

2
 (d) ±

+ −( )σ σ τx y xy
2 24

2
. 

7. The principal planes are separated by 
 (a) 180  (b) 45  (c) 90  (d) 60

8. The maximum shear stress is equal to 
 (a)   one-half of the algebraic difference of the principal stresses
 (b) the algebraic difference of the principal stresses
 (c)  the sum of the principal stresses
 (d) the difference of the principal stresses.
9. For uniaxial loading condition, the maximum shear stress is equal to 
 (a) uniaxial stress   (b) two times the uniaxial stress 
 (c) three times the uniaxial stress (b)  one-half of uniaxial stress.
10.  For a complex stress system, the total number of principal planes is
 (a) two  (b) four (c)  three (d)  none of these.
11. The radius of the Mohr’s circle indicates the
 (a)  maximum principal stress (b) minimum principal stress
 (c)  maximum shear stress   (d) minimum shear stress.
12. In case one principal stress is zero, the other principal stress is equal to 
 (a)  maximum shear stress  (b) two times the maximum shear stress
 (c)  three times the maximum shear stress (d) none of these.

ANSWERS

 1. (a) 2. (d) 3. (b) 4. (c) 5. (b) 6. (a) 7. (c) 8. (a)

 9. (d) 10. (c) 11. (c) 12. (b).
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EXERCISES

 1. A rectangular element is subjected to a tensile stress of 60 MPa, a compressive stress of  
20 MPa and a shear stress of 30 MPa. Find (a) the principal stresses, (b) the maximum 
shear stress and (c) the location of the principal planes. 

    (Ans. (a) 70 MPa, – 30 MPa; (b) 50 MPa; (c) 18.4o and 108.4o).
 2. The stresses at a point on two perpendicular planes BC and AC are as shown in Fig. 2.21.  

Determine the position of the plane AB such that the shear stress on it is equal to zero. What 

Fig. 2.21

   (Ans.  = 18.43 , 90 MPa (Tensile), 10 MPa (Compressive)).
 3. The principal stresses at a point within a strained material are 90 MPa and 70 MPa as shown 

in Fig. 2.22. Find the normal, the tangential and the resultant stress on a plane inclined at 30° 
to the axis of the major principal stress.

   

Fig. 2.22

    (Ans. 75 MPa, 8.66 MPa, 75.5 MPa).
 4. At a certain point in a strained material, two normal stresses, one a tensile stress of 100 MPa 

and another a compressive stress of 90 MPa are applied at two mutually perpendicular planes. 
If  maximum di
which two normal stresses are acting. (Ans. 109.54 MPa).
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 5. For a biaxial stress system, x = 65 MPa, y = 75 MPa and xy = 40 MPa. Find (a) the principal 
stresses and their planes and (b) the maximum shear stresses and the  planes on which they 
occur. (Ans. (a) 110.31 MPa, 29.68 MPa, 48.56°, 138.56°

   (b)  40.315 MPa, 3.56°, 93.56°).

 6. At a point in a strained material, the resultant intensity of stress across a plane is 100 MPa tensile 
inclined at 45° to its normal. The normal component of stress intensity across the plane at right 
angle is 30 MPa compression. Find the position of principal planes and stresses across them. 

 (Ans. 27.25°, 117.25°, 100.7 MPa, – 66.35 MPa, 86.6 MPa).

 7. At a point in a loaded specimen, the principal stresses acting on two mutually perpendicular 
planes are 60 MPa and 40 MPa, both being compressive. Determine the resultant stress acting 
on a plane inclined at 60° measured clockwise to the plane on which the larger of the normal 
stresses is acting. (Ans. 45.82 MPa).

 8. A steel shaft is subjected to a torque of 20 kN m and a bending moment of 10 kN m. The 
diameter of the shaft is 100 mm. Calculate the maximum and the minimum principal stresses 
and the maximum shear stress in the shaft at its surface. 

   (Ans. 165 MPa, – 63 MPa, 114 MPa).

 9. At a point in a strained material, the vertical shear stress is 15 MPa and the horizontal tensile 

principal planes. (Ans. 32 MPa, – 7 MPa, 25°, 115°).

 10. At a point in a material, there is a horizontal tensile stress of 270 MPa, a vertical tensile stress 
of 130 MPa and shearing stress of 40 MPa downward on left. With the aid of Mohr’s circle or 

they act. Determine also the maximum shearing stress in magnitude and direction.
    (Ans. 280.62 MPa, 119.38 MPa, 14.87°, 104.87°, 80.62 MPa, 59.87°, 149.87°).

 11. For a plane stress condition in which x = 140 MPa, y = 20 MPa and xy 
principal stresses and the locations of the principal planes.

   (Ans. 165 MPa,  –5 MPa,  – 22.5°,  – 112.5°).

 12. For the plane stress condition shown in Fig. x and the position of the principal planes, 
if the maximum principal stress is – 7MPa. 

Fig. 2.23
(Ans. 105 MPa,  – 26.6º,  – 116.6°).
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 13.
the principal planes. 

Fig. 2.24

(Ans. 102.5 MPa,  – 62.5 MPa,  36°,  126°).

 14. A tensile stress 1 and a shear stress  act on a given plane of a material. Show that the principal 
stresses are always of opposite sign. If an additional tensile stress 2 acts on a plane perpen-
dicular to that of 1

(Ans.  = σ σ1 2( ) ).



Figure shows an I-section, which is one of the most widely used cross-sections for beams.

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

Centroid and Moment of Inertia
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3.1 CENTRE OF GRAVITY 

concentrated. In other words, it is the point where the weight of the body acts. It may or may not be 
located within the body and its position depends upon the shape of the body. It is denoted by G.

If the mass is uniformly scattered in the body, then the body can be assumed to be made of many 
elemental masses m1, m2, m3, ... . Suppose these elemental masses are located at distances x1, x2, x3, ... from 
y y1, y2, y3, ... from x x  and y

   x    = 
m x m x m x

m m m
1 1 2 2 3 3

1 2 3

+ + +…
+ + +…

 = 
mx
m

∑
∑  ... (3.1)

and  y   = 
m y m y m y

m m m
1 1 2 2 3 3

1 2 3

+ + +…
+ + +…

 = 
my
m

∑
∑  ... (3.2)

3.2 FIRST MOMENT OF AREA AND CENTROID 

A located 
in the xy-plane as shown in Fig. 3.1.

Fig. 3.1 Plane area A with the centroid G.

Further we consider a small element of area dA in the plane area A
(x, y x and y

A with respect to the x

  Qx   = y dA
A
∫  ... (3.3)

A with respect to the y

  Qy   = x dA
A
∫  ... (3.4)
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The values of Qx and Qy may be positive, negative or zero, depending on the location of the origin O 
of the coordinate axes. In SI units, Qx and Qy are expressed in m3, and their dimension is [L3].
The centroid G of the area A xy-plane that has coordinates

  x   = 
Q
A

y  and y = 
Q
A

x  ... (3.5)

xy  
x = y = 0, then Qx = Qy = 0.

of areas A1, A2, A3

  Qx  = ydA Q A y
A

x i i i

i

∫∑
⎛

⎝
⎜

⎞

⎠
⎟ = =Σ Σ( )  ... (3.6)

  Qy  = xdA Q A x
A

y i i i

i

∫∑
⎛

⎝
⎜

⎞

⎠
⎟ = =Σ Σ( )  ... (3.7)

xi , yi) are the coordinates of the centroid of area Ai.

A consisting of a number of elemental areas a1, a2, 
a3 xy

Fig. 3.2 Location of the centroid.

  A  = a1 + a2 + a3 + ... 

    = a∑
Let x   = Distance of the centroid of the area A from the y-axis
  y   = Distance of the centroid of the area A from the x-axis

  x   = 
a x a x a x

a a a
1 1 2 2 3 3

1 2 3

+ + +…
+ + +…
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   = 
ax
a

∑
∑

   = 
ax

A
∑

 ...(3.8)

and  y   = 
a y a y a y

a a a
1 1 2 2 3 3

1 2 3

+ + +…
+ + +…

   = 
ay
a

∑
∑

   = 
ay

A
∑  ...(3.9)

x  and y A.

Example 3.1 
Find the centroid of a T-section shown in Fig. 3.3.

 Fig. 3.3

Solution: Refer Fig. 3.3. The entire T
symmetrical about YY AB is chosen as  
the reference line.
 For part (1)

 Area  a1  = 200  30 = 6  103 mm2

Distance of its C.G. from AB

  y1 = 250 30
2

+⎛
⎝
⎜

⎞
⎠
⎟  = 265 mm
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 For part (2)

 Area  a2  = 250  20 = 5  103 mm2

 Distance of its C.G. from AB 

  y2 = 
250
2

 = 125 mm

y   = 
a y a y

a a
1 1 2 2

1 2

   = 
( ) ( )

( ) ( )
6 10 265 5 10 125

6 10 5 10

3 3

3 3
× × + × ×

× + ×
  = 201.36 mm

and  x   = 0

AB on line YY.  Ans.

Example 3.2 
Find the centroid of an I-section shown in Fig. 3.4.

 Fig. 3.4

Solution:
symmetrical about YY AB be the reference line.
 For part (1)

 Area  a1  = 150  20 = 3  103 mm2

 Distance of its C.G. from AB

  y1  = 30 200 20
2

+ +⎛
⎝
⎜

⎞
⎠
⎟  = 240 mm
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 For part (2)

 Area  a2  = 200  25 = 5  103 mm2

 Distance of its C.G. from AB 

  y2 = 30 200
2

+⎛
⎝
⎜

⎞
⎠
⎟  = 130 mm

 For part (3)

 Area  a3  = 250  30 = 7.5  103 mm2

 Distance of its C.G. from AB

  y3  = 
30
2

 = 15mm

  y   = 
a y a y a y

a a a
1 1 2 2 3 3

1 2 3

   = 
( ) ( ) ( . )

( ) ( ) ( .
3 10 240 5 10 130 7 5 10 15

3 10 5 10 7 5 1

3 3 3

3 3
× × + × × + × ×

× + × + × 003)
 = 95.64 mm

and  x   = 0

AB.  Ans.

Example 3.3 
Find the centroid of the angle section (L-section) shown in Fig. 3.5.

Fig. 3.5

Solution: AB and AC
two parts (1) and (2).

 For part (1)

 Area  a1  = 250  15  = 3750 mm2
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 Distance of its C.G. from AC

  x1  = 
15
2

 = 7.5 mm

 Distance of its C.G. from AB 

  y1  = 
250
2

 = 125 mm

 For part (2)

 Area  a2  = (120 – 15)  15 

   = 1575 mm2

 Distance of its C.G. from AC

  x2  = 15 120 15
2

+
−⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

   = 67.5 mm

 Distance of its C.G. from AB

  y2  = 
15
2

 = 7.5 mm

  x   = 
a x a x

a a
1 1 2 2

1 2

   = 
( . ) ( . )3750 7 5 1575 67 5

3750 1575
× + ×

+

   = 25.24 mm

and  y   = 
a y a y

a a
1 1 2 2

1 2

   = 
( ) ( . )3750 125 1575 7 5

3750 1575
× + ×

+

   = 90.24 mm

AC and at a distance 

of 90.24 mm from AB.    Ans.
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Example 3.4 
Find the centroid of the channel section shown in Fig. 3.6.

Fig. 3.6

Solution: AB and 
AC

 For part (1)

 Area  a1  = 50  15 = 750 mm2

 Distance of its C.G. from AC 

  x1  = 
50
2

 = 25 mm

 Distance of its C.G. from AB

  y1  = ( )150 15 15
2

− +⎡
⎣⎢

⎤
⎦⎥

 = 142.5 mm

 For part (2)

 Area  a2  = [150 – (15  2)]  10 

   = 1200 mm2

 Distance of its C.G. from AC

  x2  = 
10
2  = 5 mm

 Distance of its C.G. from AB

  y2  = 
150

2
 = 75 mm

 For part (3)

 Area  a3  = 50  15 = 750 mm2
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 Distance of its C.G. from AC

  x3  = 
50
2  = 25 mm

 Distance of its C.G. from AB

  y3  = 
15
2  = 7.5 mm

  x   = 
a x a x a x

a a a
1 1 2 2 3 3

1 2 3

   = 
( ) ( ) ( )750 25 1200 5 750 25

750 1200 750
× + × + ×

+ +
 = 16.11 mm

and  y   = 
a y a y a y

a a a
1 1 2 2 3 3

1 2 3

   = 
( . ) ( ) ( . )750 142 5 1200 75 750 7 5

750 1200 750
× + × + ×

+ +
  = 75 mm

AC and at a distance of 75 mm 
from AB.     Ans.

Example 3.5 
A circular part of diameter 70 mm is cut out from a circular plate of diameter 200 mm as shown in Fig. 3.7. 
Find the centroid of the remaining part.
Solution: Refer Fig. 3.7. Let AB and CD
  G

  G
  G   = 

Fig. 3.7
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 For circular plate 

 Area of the plate,  a1  = π
4

  2002 = 3.141  104 mm2

 Its C.G. lies on AB i.e., y1 = 0 and the distance of the C.G. from CD is 

  x1  = 
200
2

 = 100 mm
 For part being cut

 Area of the shaded portion, a2 = 
π
4

  702 = 3.848  103 mm2

 Its C.G. from CD

  x2  = ( )200 70 70
2

− +⎡
⎣⎢

⎤
⎦⎥

 = 165 mm
 For remaining part

 The distance of the C.G

  x   = 
a x a x

a a
1 1 2 2

1 2

   = 
( . ) ( . )

. .
3 141 10 100 3 848 10 165

3 141 10 3 848 10

4 3

4 3
× × − × ×

× − ×
 

   = 90.92 mm

and  y  = 0
XX line at a distance of 90.92 mm from CD.  Ans.

Example 3.6 
Find the centroid of the section shown in Fig. 3.8.

Fig. 3.8

Solution: AB and 
BC as the reference lines.
 For part (1)

 Area  a1  = 
1
2

  
π
4

  502  = 982.14 mm2
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 Distance of its C.G. from AB

  x1  = 25 – 
4 25

3
×
π

 = 14.39 mm

 Distance of its C.G. from BC

  y1 = 
50
2

 = 25 mm
 For part (2)
 Area  a2  = 70  50 = 3500 mm2

 Distance of its C.G. from AB

  x2  = 25 70
2

+⎛
⎝
⎜

⎞
⎠
⎟  = 60 mm

 Distance of its C.G. from BC

  y2  = 
50
2

 = 25 mm
 For part (3)

 Area  a3  = 
1
2

  50  50 = 1250 mm2

 Distance of its C.G. from AB

  x3  = 25 70 50
3

+ +⎛
⎝
⎜

⎞
⎠
⎟  = 111.66 mm

 Distance of its C.G. from BC

  y3  = 3
100  = 33.33 mm

  x AB

   = 
a x a x a x

a a a
1 1 2 2 3 3

1 2 3

   = 
( . . ) ( ) ( . )

.
981 74 14 39 3500 60 1250 111 66

981 74 3500 1250
× + × + ×

+ +
 = 63.45 mm

and  y BC

   = 
a y a y a y

a a a
1 1 2 2 3 3

1 2 3

   = 
( . ) ( ) ( . )

.
981 74 25 3500 25 1250 33 33

981 74 3500 1250
× + × + ×

+ +
 = 26.82 mm

AB and at a distance of 
26.82 mm from BC.    Ans.



100  Strength of Materials

Example 3.7 
Find the centroid of the area bounded by the x-axis, the line x = a and the parabola y2 = kx as shown 
in Fig. 3.9.

Fig. 3.9

Solution: Consider a vertical elementary strip of thickness dx at a distance x from the y-axis as shown 
in Fig. 3.9.
 The area of the strip is dA = ydx
 The centroid of the strip is located at distance of y  = y

2  from the x-axis.

 The distance of the centroid of the whole area from the x-axis is given as

  y   = 
dA y

dA
. ′∑

∑
 = 

ydx y

A

.
2∫

 = 

y dx

A

2

2∫

   = 

Kx dx

A

a

0

2

∫
 (y2 = kx)

   = 
K
A

x
a

2 2

2

0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  

   = 
Ka

A

2

4

   = K. a2

4
. 1

A

   = 
b
a

2
. a2

4
. 3

8
b

   = 
3
8
b
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 Now consider a horizontal strip of thickness dy at a distance x from the y-axis as shown in Fig. 3.10.

Fig. 3.10

 The length of the strip   = (a – x) 

 The area of the strip is dA  = (a – x) dy

 The centroid of the strip is located at a distance of x  = x a x
+

−⎛
⎝
⎜

⎞
⎠
⎟2

 = 
a x

2
 from the y-axis.

 The distance of the centroid of the whole area from the y-axis is given as 

  x  = 
dA x

dA
. ′∑

∑

   = 

( ) .a x dy a x

A

b

−
+

∫
0 2

   = 
1

2
2 2

0A
a x dy

b

( )−∫

   = 
1

2
2

2 2

0A
a y

k
dy

b

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫   ( y2 = kx)

   = 
1

2
2

0

4

2
0A

a dy y
K

dy
b b

∫ ∫−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   = 
1

2 5
2

0

5

2
0

A
a y y

K
b

b

( ) −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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    = 
1

2
5

2
5

4

2

A
a b b

b
a

−
⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

y = b, then x = a, hence

  K  = 
y
x

2

 = 
b
a
2

  x  = 
1

2 5
2

2

A
a b a b−
⎡

⎣
⎢

⎤

⎦
⎥  = 

1
2

4
5

2

A
a b.

   = 
1

2 2
3

4
5

2
ab

a b
⎛
⎝⎜

⎞
⎠⎟

.   = 3
5
a

x , y ), that is, 3
5

3
8

a b,⎛
⎝
⎜

⎞
⎠
⎟ . Ans.

Example 3.8 
Find the coordinates of the centroid of a quarter-ellipse shown in Fig. 3.11, using direct integration 
method.

Fig. 3.11

Solution: The equation of the ellipse is

  
x
a

y
b

2

2

2

2+   = 1

 where a and b
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 From the equation of ellipse, we have

  x = 
a
b

b y2 2−  ...(1)

  y = 
b
a

a x2 2−  ...(2)

 Now consider a vertical strip of height y and width dx at a distance x from the y-axis as shown in  
Fig. 3.11.
 Area of the strip dA = y ·dx
The distance of the centroid of the strip from the y-axis is 

  x  = 
xdA

dA
∫
∫

   = 
x ydx

ydx

a

a

.
0

0

∫

∫

   = 
x b

a a x dx

b
a a x dx

a

a

. 2 2

0

2 2

0

−

−

∫

∫
 (on substituting y from equation (2))

 or x  = 
x a x dx

a x dx

a

a

2 2

0

2 2

0

−

−

∫

∫
 ... (3)

 Let x = a sin  then dx = a cos  d  ... (4)

 when x = 0,  = 0

  x = a, = 
π
2

Equation (3) can now be expressed as

  x  = 
a a a a d

a a a d

sin · ( sin ) · cos

sin · cos

θ θ θ θ

θ θ θ

π

π

2 2 2

0

2

2 2 2

0

2

−

−

∫

∫
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   = 
a a a d

a a d

sin · cos · cos

cos · cos

θ θ θ θ

θ θ θ

π

π
0

2

0

2

∫

∫

   = 
a d

a d

3 2

0

2

2 2

0

2

sin cos

cos

θ θ θ

θ θ

π

π

∫

∫

   = a
d

d

·
sin ( sin )

cos

θ θ θ

θ θ

π

π

1

1 2
2

2

0

2

0

2

−

+⎛
⎝⎜

⎞
⎠⎟

∫

∫

 (cos 2  = 2 cos2  – 1)

   = 2

1 2

3

0

2

0

2

a
d

d

·
(sin sin )

( cos )

θ θ θ

θ θ

π

π

−

+

∫

∫

   = 2

3 3
4

1 2

0

2

0

2

a
d

d

·
sin sin sin

( cos )

θ θ θ θ

θ θ

π

π

− −⎛
⎝⎜

⎞
⎠⎟

+

∫

∫

   = 2

3
4

3
4

1 2

0

2

0

2

a
d

d

·
sin sin sin

( cos )

θ θ θ θ

θ θ

π

π

− +⎛
⎝⎜

⎞
⎠⎟

+

∫

∫

   = 2

3
4

3
12

2
2

0

2

0

2

a ·
cos cos cos

sin

− + −⎡
⎣⎢

⎤
⎦⎥

+⎡
⎣⎢

⎤
⎦⎥

θ θ θ

θ θ

π

π
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   = 2 2
3
4 2

1
12

3
2

0 3
4

0 1
12

0

2
1
2

a ·
cos cos cos cos cos cos− + − + − +⎛

⎝⎜
⎞
⎠⎟

+

π π π

π ssin sin sinπ − −⎛
⎝⎜

⎞
⎠⎟

0 1
2

0

   = 2
0 0 0 1 3

4
1

12

2
0 0 0

a ·
− + − + − +⎛

⎝⎜
⎞
⎠⎟

+ − −⎛
⎝⎜

⎞
⎠⎟

π
  = 2

4
12

2

a ·

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π

 or x  = 
4
3

a
π

Similarly, the distance of the centroid of the strip from the x

  y  = 

y dA

dA
2

⎛
⎝⎜

⎞
⎠⎟∫

∫
As the centroid of the area dA lies a distance (y/2) from the x

 or y  = 

y y dx

ydx

a

a

20

0

⎛
⎝⎜

⎞
⎠⎟∫

∫

·
 (dA = ydx)

   = 
1
2

2

0

0

·
y dx

ydx

a

a

∫

∫

   = 
1
2

2

2
2 2

0

2 2

0

·
( )b

a
a x dx

b
a a x dx

a

a

−

−

∫

∫
 (on substituting y from equation (2))

   = 
b
a

a x dx

a x dx

a

a2

2 2

0

2 2

0

·
( )−

−

∫

∫
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   = 
b
a

a a a d

a a a dx
2

2 2 2

0

2

2 2 2

0

2

·
( sin ) cos

sin cos

−

−

∫

∫

θ θ θ

θ θ

π

π  (using equation (4))

   = 
b
a

a a d

a a d
2

2 2

0

2

0

2

·
cos · cos

cos · cos

θ θ θ

θ θ θ

π

π

∫

∫

   = 
b

d

d
2

3

0

2

2

0

2

·
cos

cos

θ θ

θ θ

π

π

∫

∫

   = 
b

d

d
2

3 3
4

1 2
2

0

2

0

2

·

cos cos

cos

θ θ θ

θ θ

π

π

+⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

∫

∫
 (cos3  = 4cos3  – 3cos )

   = 
b

d

d
4

3 3

1 2

0

2

0

2

·
cos cos

cos

θ θ θ

θ θ

π

π

+( )

+( )

∫

∫

 

   = 
b
4

3
3

3

2
2

0

2

0

2

·

sin sin

sin

θ θ

θ θ

π

π

+⎡
⎣⎢

⎤
⎦⎥

+⎡
⎣⎢

⎤
⎦⎥

   = 
b
4

1
3

3
2

3
2

0
3

3 0

2
1
2

0 0
2

·
sin sin sin sin

sin sin

× + − −⎛
⎝⎜

⎞
⎠⎟

+ × − −⎛
⎝⎜

π π

π π ⎞⎞
⎠⎟
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   = 
b
4

1
3

1 3 1 0 0

2
1
2

0 0 0
·

( )× − + × − −⎛
⎝⎜

⎞
⎠⎟

+ × − −⎛
⎝⎜

⎞
⎠⎟

π

   = 
b
4

1
3

3

2

·
− +⎛

⎝⎜
⎞
⎠⎟

π  = 
b
4

8
3

2

·

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π

 or y  = 
4
3

b
π

x , y ), that is, 4
3

4
3

a b
π π

,⎛
⎝⎜

⎞
⎠⎟

.

Table 3.1

Figure Centroid Area

                

x  = 
h a b

a b
( )
( )

2
3

y  = ( )a b
a ab b

3
2 2

+
+ +

( )a b h
2

Triangle

              

x  = 
( )a b

3

y  = h
3  

1
2

bh

Rectangle

             

x  = b
2  

y  = d
2  

bd
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Parallelogram

           

x  = 
( cos )a bθ +

2

y   = 
a sin

2

ab sin 

Semi-circle  

        

x   = 0 

y   = 
4
3

r
π

π r2

2

Quarter-circle

         

x  =  
4
3

r
π

y   = 
4
3

r
π

π r2

4

Semi-parabola

         

x   = 
3
8

a   

y   = 
2
5

h

2
3
ah

Parabola

      

x   = 0 

y   = 
2
5

h
4

3
ah
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Quarter-ellipse

    

x  = 
4
3

a
π

 

y   = 
4
3

b
π

π ab
4

Parabolic segment 
 (2nd degree)

       

x   = 
3
4

a

y  = 
3

10
h  

ah
3

 

General spander

                

x   = 
n
n

a+
+

⎛

⎝
⎜

⎞

⎠
⎟

1
2

y   = 
n
n

h+
+

⎛

⎝
⎜

⎞

⎠
⎟

1
2 1 2

ah
n( )1

3.3 MOMENT OF INERTIA  

The moment of inertia is of two types:

  Mass moment of inertia

  Area moment of inertia, also called Second moment of area

3.3.1 Mass Moment of Inertia
If a particle of mass m is located at a distance r I 

  I  = mr2  ...(3.10)

 If m1, m2, m3 r1, r2, r3 ... are their 
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Fig. 3.12

  I = m1 r1
2 + m2 r2

2 + m3 r3
2 +   = mr2 ... (3.11)

 If the mass is continuously distributed in the body, then

  I  = r dm2∫   ... (3.12)

where dm r
rotation.

3.3.2 Radius of Gyration w.r.t. Mass Moment of Inertia 
The radius of gyration, K

 

  I  = MK2   = mr2  ... (3.13)
where M is the total mass of the body.

  K  = I
M

 ... (3.14)

3.3.3 Second Moment of Area
The moments of inertia of a plane area, with respect to the xy

  Ix = y dA2∫  ... (3.15)

and Iy = x dA2∫  ... (3.16)

where x and y are the coordinates of the differential elements of area dA. Because dA is multiplied by 
the square of the distance, the moments of inertia are also called second moments of the area. Further, 
the integrals Ix and Iy are also referred to as rectangular moments of inertia, as they are computed from 
the rectangular coordinates of the element dA
possible in many applications to select elements of area dA

4, and their dimension is [L4].
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3.3.4 Radius of Gyration w.r.t. Second Moment of Area

  I  = AK2

or   K  = 
I
A

  ... (3.17)

 For the x

  Kx  = 
I
A
x   ... (3.18)

 For the y

  Ky  = 
I
A
y   ... (3.19)

beams, columns etc.

3.4 PRODUCT OF INERTIA 
The product of inertia of a plane area is also called the product second moment of area or the product 

xy

  Ixy  = xydA
A
∫  ... (3.20)

As each element of the area dA is multiplied by the product of its coordinates, hence the product of 

x or y
As most of the structural members used in bending applications consist of cross-sections of a 

addition of the Ixy
4 and dimension [L4]. 

3.5 PRINCIPAL AXES AND PRINCIPAL MOMENTS OF INERTIA 

moment of inertia.
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The expression for the principal moments of inertia can be obtained using the expression for the principal 
stresses given below.

  1, 2 = 
σ σ σ σ

τx y x y
xy

+
±

−⎛
⎝⎜

⎞
⎠⎟

+
2 2

2
2  ... (3.21)

Substituting x =  Ix , y = Iy and xy = Ixy in equation (3.21), we can write the expression for the principal 
moments of inertia as

  I1, I2 = 
I I I I

Ix y x y
xy

+
±

−⎛
⎝⎜

⎞
⎠⎟

+
2 2

2
2  ... (3.22)

where
 I1  =  Maximum principal moment of inertia
 I2  =  Minimum principal moment of inertia
 Ix  =  Moment of inertia of the section about the x-axis
 Iy  =  Moment of inertia of the section about the y-axis. 
 Ixy  =  Product moment of inertia of the section with respect to x and y axes.

    tan 2 p = –
2I

I I
xy

x y−
 ... (3.23)

  The two values of p
corresponds to the maximum moment of inertia and the other corresponds to the minimum moment of 
Inertia. There are no shear stresses on the principal planes, hence the product of inertia is zero with respect 
to the principal axes.

3.6 MOHR’S CIRCLE FOR SECOND MOMENTS OF AREA 
The transformation equations for the normal and shear stresses for a plane stress condition can be 
represented in a graphical form, known as Mohr’s circle, as discussed in the chapter of principal 
stresses. The coordinates of each point on the circle correspond to the normal and shear stresses acting 

to represent the transformation equations for the second moments of area and the product of inertia of 
area, and the coordinates of each point on the circle represent the moment of inertia and the product of 

b)), the 
second moments of area are plotted on the horizontal axis (the x-axis) and the product of inertia on the 
vertical axis (the y-axis). Two points, say A and B are considered. Point A with coordinates (Ix , Ixy) is 
plotted above the horizontal axis, if Ixy is positive. Similarly, point B with its coordinates (Iy , – Ixy) is 
plotted below the horizontal axis. The two points A and B are now joined by a straight line, and a circle 
is constructed with this line (AB) as the diameter. The resulting circle is called Mohr’s circle for second 
moments of area with centre C. OR (IP2

) and OS (IP1
) are the principal second moments of area with 

axis, say the neutral axis (NA), which is inclined at an angle  to the x-axis, a point N is chosen on the 
circle such that < ACN = 2 in the counterclockwise direction. The horizontal coordinate of N gives the 
value of second moment of area about the neutral axis, that is, INA.
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 (a) Mohr’s circle for a plane stress condition     (b)  Mohr’s circle for second moments of area 

Fig. 3.13 Comparison of Mohr’s circles of plane stress and second moment of area.

xy is associated with – Ixy. The point A with its coordinates (Ix, Ixy b) is plotted 
above the horizontal axis, if Ixy is positive. In contrast, the corresponding point P with its coordinates 
( x , – xy a) is plotted below the horizontal axis for positive xy. Otherwise, the procedure 
to construct Mohr’s circle for the second moments of area is identical to Mohr’s circle for plane stress. 

3.7 PARALLEL-AXES THEOREM 

to its centroidal axis. Consider an area A with its centroid G having coordinates ( x , y ) as shown in  
x -axis, which is parallel to the x-axis and the vertical 

centroidal axis is the y -axis, which is parallel to the y dA is considered, 
where x and y
  x =  x + x

  y =  y + y

where x  is the x-coordinate of the centroid G, which represents the perpendicular distance between two 
vertical parallel axes, namely the y-axis and the y -axis. Similarly, y is the y-coordinate of the centroid 
G, which represents the perpendicular distance between two horizontal parallel axes, namely the x-axis 
and the x -axis.
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Fig. 3.14

  Ix = I Ayx +
2  (for the x x

  Iy = I Axy +
2  (for the y y

where I x
 = Ix  = Moment of inertia about the centroidal x

              x

  I y  = Iy  = Moment of inertia about the centroidal y
              y

x and y in 

  Ixy = xydA∫
   = ( )( )x x y y dA+ ′ + ′∫
   = ′ ′ + ′ + ′ +∫ ∫ ∫ ∫x y dA x y dA y x dA x y dA

 where ′ ′∫ x y dA  = I xy  = Ix y  = Product of inertia of the cross-sectional area with 
x any y, that is, the 

x  and y .

  ′∫ y dA  = ′∫ x dA
x and y.)

 and dA∫  = A

  Ixy = I xy  + A x y   ... (3.26)
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inertia of an area.

  Jo = Ix + Iy   ... (3.27)

 where Jo = Polar moment of inertia about the origin O.

Ix and Iy from equations (3.24) and (3.25), we get

  Jo = ( I Ayx +
2 ) + ( I Axy +

2)

   = I Ix y+  + A x y( )2 2+

Jo = J ArG + 2    ... (3.28)

 where JG  =  I Ix y+   = Polar moment of inertia of the area about the centroid G

  r 2  =  x y2 2+ , and its square root r = x y2 2+  represents the distance between O and 
G as shown in Fig. 3.14.

moment of inertia of an area.

3.8 MOMENT OF INERTIA OF A RECTANGULAR SECTION 
OABC (Fig. 3.15).

 Let  b

Fig. 3.15

  d  = Depth of the section 
  XX
  YY

x dy at a distance y from the XX-
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 Area of the strip = dA = bdy
 Moment of inertia of the strip about the XX-axis = dA  y2

   = by2 dy
 The moment of inertia of the entire section about the XX-axis is found as

  IXX  = by dy
d

d
2

2

2

−
∫

/

/

   = b 
y

d

d3

2

2

3
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
− /

/

   = 
b d d
3 2 2

3 3
⎛
⎝
⎜

⎞
⎠
⎟ − −⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   = 
b d d
3 8 8

3 3
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   = 
bd 3

12
 ... (3.29)

 The moment of inertia about the YY-axis is given as

  IYY  =  
db3

12  ... (3.30)

 The moment of inertia about the x-axis is given as

  Ix  = IXX + Ah2

   = 
bd 3

12
 + (bd)  

d
2

2
⎛
⎝
⎜

⎞
⎠
⎟  

h d=⎛
⎝⎜

⎞
⎠⎟2

   = 
bd 3

3
 ... (3.31)

 The moment of inertia about the y-axis is given as 

  Iy  = IYY + Ah2

   = 
db3

12  + (bd)  
b
2

2
⎛
⎝
⎜

⎞
⎠
⎟   h b

=⎛
⎝
⎜

⎞
⎠
⎟2  

   = 
db3

3
  ... (3.32)
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3.9 MOMENT OF INERTIA OF A SOLID CIRCULAR SECTION 
 First method 
 Consider a circular section of radius r (Fig. 3.16).
 An elemental strip of thickness dy is considered at a distance y from the x-axis.
 Area of the strip, dA = 2r cos  . dy
 Now  y  = r sin  

  dy  = r cos  d  

 Hence,  dA  = 2r cos  . r cos  d
   = 2r2 cos2 d  

Fig. 3.16

The moment of inertia of the section about the centroidal axis XX is given as 
  IXX  = y dA2∫

   = ( sin ) . cos
/

/

r r dθ θ θ
π

π
2 2

2

2
22

−
∫

   = 4 4 2

0

2
2r dsin cos

/

θ θ θ
π

∫

   = 
π r4

4
 = 

π
4 2

4d⎛
⎝⎜

⎞
⎠⎟  = 

πd 4

64
      (d = 2r)  ... (3.33)

where d is the diameter of the circular section. 

Similarly,  IYY = 
πd 4

64
 ... (3.34)

Also Ix = IXX and Iy = IYY

and  Iz  = 
πd 4

32
  ... (3.35)
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 Second method 
dx at a radius x ( Fig. 3.17).

 Area of the elemental ring,
  dA  = 2 xdx

Fig. 3.17

 
(z
  Izring

  = Area of the ring  Radius2

   = 2 xdx  x2

   = 2 x3dx

  Iz = 
0

r

zI∫ ring

   = 2 3

0

πx dx
r

∫

   = 2  x
r4

0
4

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = πr4

2

   = 
πd 4

32
 r d

=⎛
⎝
⎜

⎞
⎠
⎟2

  

 Now  Iz  = IXX + IYY 

   = 2IXX  ( IXX = IYY)

  IXX  = 
Iz

2  = 
πd 4

64
 = Ix ... (3.36)

 Similarly,  IYY  = 
πd 4

64  = Iy ... (3.37)
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3.10 MOMENT OF INERTIA OF A HOLLOW CIRCULAR SECTION 
Refer Fig. 3.18.

Fig. 3.18

  IXX  = IYY  (also Ix = Iy , Ix = IXX and Iy = IYY)

   = 
π
64

 D4 – 
π
64

 d4 

   = 
π
64

 (D4 – d4) ... (3.38)

and  Iz  = 
π
32

 (D4 – d4) ... (3.39)

where  D  = 2R 
  d  = 2r

3.11 MOMENT OF INERTIA OF A SEMI-CIRCLE 
Refer Fig. 3.19.

  Ix  = 
π

128
4d   ... (3.40)

Also  Iy  = 
π

128
4d  ... (3.41)

Fig. 3.19
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and  IZ  = 
πd 4

64
 ... (3.42)

where  d  = 2r  
  Ix = IXX + Ah2

or   IXX  = Ix – Ah2

   = 
π

128
 d4 – 1

2 4
2π d⎛

⎝
⎜

⎞
⎠
⎟   4

3 2

2

π
×⎛

⎝
⎜

⎞
⎠
⎟

d

   = 0.00686d4 = 0.11r4  ... (3.43)

3.12 MOMENT OF INERTIA OF A QUARTER-CIRCLE 
Refer Fig. 3.20.

Fig. 3.20

  Ix  = 
1
2

  
π

128
4d⎛

⎝
⎜

⎞
⎠
⎟

   = 
π

256
d4 = Iy ... (3.44)

  Ix = IXX + Ah2

  IXX  = Ix – Ah2

   = 
π

256
 d4 – 1

4
  

π
4

2d⎛
⎝
⎜

⎞
⎠
⎟   4

3 2

2

π
×⎛

⎝
⎜

⎞
⎠
⎟

d

   = 0. 00343d4 = 0.0549r4 = IYY ... (3.45)

and  Iz  = 
πd 4

128
 ...(3.46)
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Table 3.2

 Figure  Second moment of area 
 Triangle 

 IXX  = 
bh3

36
 

 IYY  = 
hb3

48

 Ix  = 
bh3

12
 Ellipse 

 Ix  = 
π
4

3ba

 Iy  = 
π
4

3ba

 Iz  = 
πab a b

4
2 2( )+

 Parabola 

 Ix  = 
2
15

3ah

 Iy  = 
16

15

3a h

 Quarter-ellipse 

 Ix  = 
πab3

16

 Iy  = 
πba3

16

 Parallelogram 

 Ix  = 
a b2 3

3
sin

 Iy  = 
ab

6 sin
 

  (2a2 cos2  + 3ab cos  + 2b2)
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Example 3.9 
Find the second moment of area of an L XX and YY as shown in 
Fig. 3.21.
Solution: Refer Fig. 3.21. x  and y

  x   = 25.24 mm   
 and    y   = 90.24 mm
 The moment of inertia of the section about the XX

  IXX =  IXX1  +  IXX2
 

    = 1
12

15 250 250 15 250
2

90 243
2

× × + × × −⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.            

    +  
1

12
120 15 15 120 15 15 90 24 15

2
3

2

× − × + − × × −⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) {( ) } .  

   = 30.47  106 mm4  Ans.

Fig. 3.21

The moment of inertia of the section about the YY
  IYY =  IYY1  +  IYY2

 

    = 
1

12
250 15 250 15 25 24 15

2
3

2

× × + × × −⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

    + 
1

12
15 105 105 15 67 5 25 243 2× × + × × −⎡

⎣⎢
⎤
⎦⎥

( . . )

   = 55.1  105 mm4 Ans.
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Example 3.10 
Find the second moment of area of a T XX and YY.
Solution: Refer Fig. 3.22. The section is symmetrical about the YY
  x   = 0   

and    y  = 201.36 mm
Using th XX-
  IXX =  IXX1  +  IXX2

 

    = 
1

12
200 30 200 30 265 201 363 2× × + × × −⎡

⎣⎢
⎤
⎦⎥

( . )

    + 
1

12
20 250 250 20 201 36 1253 2× × + × × −⎡

⎣⎢
⎤
⎦⎥

( . )

   = 7.99  107 mm4 Ans.

 Fig. 3.22

 The moment of inertia of the section about the YY-
  IYY =  IYY1  +  IYY2

 

    = 1
12

30 200 1
12

250 203 3× × + × ×⎛
⎝
⎜

⎞
⎠
⎟  = 2.016  107 mm4 Ans.

Example 3.11 
Find the second moment of area of an I XX and YY.
Solution: Refer Fig. 3.23.

The section is symmetrical about the YY

  x   = 0

and y   = 95.64 mm
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XX
 IXX =  IXX1  +  IXX2

 

   = 
1

12
150 20 150 20 240 95 643 2× × + × × −⎡

⎣⎢
⎤
⎦⎥

( . ) + 
1

12
25 200 200 25 130 95 643 2× × + × × −⎡

⎣⎢
⎤
⎦⎥

( . )

    + 
1

12
250 30 250 30 95 64 153 2× × + × × −⎡

⎣⎢
⎤
⎦⎥

( . )

  = 7.55  107 mm4  Ans.

 Fig. 3.23

 The moment of inertia of the section about the YY
  IYY =  IYY1  +  IYY2

 

   = 
1

12
20 150 1

12
200 25 1

12
30 2503 3 3× × + × × + × ×⎡

⎣⎢
⎤
⎦⎥

 = 4.49  107 mm4 Ans.

 Since IXX > IYY , hence the section is more stronger about the XX

Example 3.12 

Fig. 3.24

Find the second moment of area of the shaded 
section shown in Fig. 3.24 about its centroidal 

Solution:
about the YY
made of two triangles and one square minus one 
semi-circle as shown in Fig. 3.25. Let XX and YY 
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Fig. 3.25

 x  = 0

 Calculation of y

Part (1) Part (2) Part (3) Part (4)

 Area, a1  = 
1
2

× 25 × 50

               =  625 mm2

 a2  = 625 mm2  a3  = 50 × 50

      = 2500 mm2

 a4 = 
1
2

×    252

      = 981.74 mm2

Distance of C.G. from AB

        y1  = 
50
3

             = 16.67 mm 

      y2 = 
50
3

           = 16.67 mm

  y3  = 
50
2

 

  = 25 mm

  y4 = 
4 25

3
×
π

 

  = 10.61 mm

The distance of the centroid of the section from AB

  y   = 
a y a y a y a y

a a a a
1 1 2 2 3 3 4 4

1 2 3 4

+ + −
+ + −

   = 
( . ) ( . ) ( ) ( . . )625 16 67 625 16 67 2500 25 981 74 10 61

625 625 25
× + × + × − ×

+ + 000 981 74− . mm

   = 26.34 mm

 The second moment of area of the section about the XX
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 IXX =  IXX1  +  IXX2 
+  IXX3

 

   = 2   
25 50

36
1
2

25 50 26 34 50
3

3 2× + × × × −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. + 50 50
12

50 50 26 34 25
3

2×
+ × × −

⎡

⎣
⎢

⎤

⎦
⎥( . )  

    – 0 11 25 25
2

26 34 4 25
3

4
2 2

. .× +
×

× −
×⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π
π

 mm4

   = 5.3  105 mm4 Ans.

Example 3.13 
Find the second moment of area of the section shown in Fig. 3.26 about its centroidal axes.

Fig. 3.26

Solution: The section is symmetrical about both XX and YY axes. 
 The second moment of area of the section about the XX-axis is given as 
  IXX  = IXX for I-section + IXX for two plates

   =  1
12

70 10 70 10 70 1
12

10 130 03 2 3× × + × ×⎛
⎝
⎜

⎞
⎠
⎟ + × × +⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢  + 

1
12

70 10 70 10 703 2× × + × ×⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥

      + 2 1
12

90 5 90 5 65 10 5
2

3
2

× × + × × + +⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   =  1.41 × 107 mm4  Ans.
 The second moment of area of the section about the YY-axis is given as
  IYY  = IYY for I-section + IYY for two plates

   = 2 1
12

10 70 1
12

130 10 2 1
12

5 903 3 3× ×⎛
⎝
⎜

⎞
⎠
⎟+ × ×

⎡

⎣
⎢

⎤

⎦
⎥ + × ×⎡

⎣⎢
⎤
⎦⎥

 = 1.19  106 mm4 Ans.
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Example 3.14 
Find the expressions for the moments of inertia of a rectangle shown in Fig. 3.27 about the x-axis, the 
y-axis, the horizontal centroidal axis (XX) and the vertical centroidal axis (YY).
Solution:

Fig. 3.27

An elementary  area dA (horizontal) is considered as shown in Fig. 3.27.
The moment of inertia of the rectangle about the x-axis is given as

  Ix = y dA2∫

   = y b dy
o

h
2.∫  (where dA = b.dy)

   = b y dy
o

h
2∫

   = b y

o

h3

3
⎡

⎣
⎢

⎤

⎦
⎥  = 

bh3

3
  Ans.

For moment of inertia of the rectangle about the y-axis, we consider a vertical elementary area dA .

Hence, Iy = x dA2 ′∫

   = x h dx
o

b
2.∫

   = h x dx
b

2

0
∫  = h x

o

b3

3
⎡

⎣
⎢

⎤

⎦
⎥  = 

hb3

3  Ans.
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IXX), we use parallel-

  Ix = IXX + Ad 2

where  d
IXX = Ix – Ad 2

   = 
bh bh h3 2

3 2
− ⎛

⎝⎜
⎞
⎠⎟

.

   = 
bh bh3 3

3 4
 = 

bh3

12
 Ans.

IYY
  IYY = Iy – Ad 2

   = 
hb b h b3 2

3 2
− ⋅ ⋅ ⎛

⎝
⎜

⎞
⎠
⎟

   = 
hb hb3 3

3 4
= 

hb3

12
 Ans.

Example 3.15 

Solution: Refer Fig. 3.28.
dA.

  dA = rd dr

  IXX =  y dA2∫

   = ( sin )r rd drθ θ2 ⋅ ⋅∫∫

   = sin2 3
2

θ θ
π

⋅ ⋅∫∫ d r dr
oo

R

   = 1 2
2

3
2 −⎛
⎝⎜

⎞
⎠⎟

⋅∫∫ cos θ θ
π

d r dr
oo

R
sin cos2 1 2

2
θ θ= −⎛

⎝⎜
⎞
⎠⎟

  =  
1
2

2
22

3d d r dr
ooo

R

θ θ θ
ππ

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅∫∫∫ cosFIG. 3.28
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   = 
1
2

2
2

2
3θ θ π

−⎡
⎣⎢

⎤
⎦⎥

⋅∫ sin

oo

R

r dr  = 
1
2

2 3π ⋅∫ r dr
o

R

   = π r dr
o

R
3∫  = π

r

o

R4

4
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = 

πR4

4
 Ans.

  IYY = x dA2∫

   = ( cos )r rd drθ θ2 ⋅ ⋅∫∫  = r dr d
o

R

o

3 2
2

⋅∫∫ cos θ θ
π

   = r dr d
o

R

o

3
2 1 2

2
⋅ +⎛
⎝⎜

⎞
⎠⎟∫∫ cos θ θ

π
 cos cos2 1 2

2
θ

θ
=

+⎛
⎝
⎜

⎞
⎠
⎟

   = R d
o

42

4
1
2

1 2⋅ ⋅ +( )∫ cos θ θ
π

 = 
R d d

oo

4 22

8
2θ θ θ

ππ

+ ⋅
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫∫ cos

   = 
R

o

4 2

8
2

2
θ

θ π

+⎡
⎣⎢

⎤
⎦⎥

sin
 = 

R4

8
2⋅ π  = πR4

4
 Ans.

IXX = IYY = πR4

4
 = πD4

64
 (D = 2R)

Example 3.16 

Solution: Refer Fig. 3.29.

Fig. 3.29
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 Consider a triangle of base b and height h. G represents its centroid.
An elemental area dA, parallel to the base of the triangle, is considered.
 dA = x dy ... (1)

From similar triangles OCD and ABC, we have 

 
b
x  = 

h
h y( )

 x = 
b h y

h
( )

On substituting x in equation (1), we get

 dA = 
b h y

h
dy( )−
⋅

Now the moment of inertia of the triangle about its base is given as
  Ix = y dA2∫

   = y b h y
h

dy
o

h
2 ⋅

−
⋅∫

( )
 = 

b
h

h y dy y dy
o

h

o

h
2 3∫ ∫−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   = 
b
h

h y y

o

h

o

h3 4

3 4
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 = 
b
h

h h h
⋅ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3 4

3 4

   = 
bh bh3 3

3 4
−  = 

bh3

12
 Ans.

Using parallel-axes theorem, we have
  Ix = IXX + A.h 2 
 where h  = Perpendicular distance between the x-axis and the XX-axis

 A = Area of the triangle
Now IXX = Ix – A.h 2

   = 
bh b h h3 2

12
1
2 3

− × × × ⎛
⎝
⎜

⎞
⎠
⎟

   = 
bh bh3 3

12 18  = 
3 2

36

3 3bh bh
 = 

bh3

36
 Ans.

The moment of inertia of the triangle about the axis passing through its vertex IV , using parallel-axes 
theorem, is given by 
  IV = IXX + Ah 2

where h  = Perpendicular distance between the axis passing through vertex and the XX-axis

   = 
2
3
h
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  IV = 
bh h

b h
3 2

36
1
2

2
3

+ ⎛
⎝
⎜

⎞
⎠
⎟× × ×

   = 
bh bh

3
3

36
2
9

   = 
bh bh3 38

36
 = 

bh3

4
 Ans.

Example 3.17 
Find the moment of inertia of the area shown in Fig. 3.30 about the x-axis.
Solution:
Consider an elemental area dA parallel to the x
  dA = (30 – x) dy

The moment of inertia of the area about the x-axis is given as

  Ix = y dA2∫

   = 
30

2 (30 )
o

y x dy−∫  

Fig. 3.30

   = 30
30

2 2
2

0

30

0

30

y dy y y dy− ⋅ ⋅∫∫  x y
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

2

30
 

   = 30
3

1
30 5

3

0

30 5

0

30
y y⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = 270000 – 162000 = 108000 cm4 Ans.
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Example 3.18 
Find the moment of inertia of the shaded section shown in Fig. 3.31 about its centroidal axes.

Fig. 3.31

Solution:
The section is symmetrical about both x and y axes, hence these two axes are also the centroidal axes 
with O Ix and Iy.
  Diameter of each semi-circle = 2 × 70 = 140 mm
Calculation of Ix
The moment of inertia of the shaded section about the horizontal centroidal axis is given as
  Ixsection

 = IXX square ABCD
 – IXX semi-circle EFG

 – IXX semi-circle HIJ
 

   = 
1

12
200 2

128
1404 4× − × ×( ) ( )π

 I IXX XXEFG HIJsemi-circle semi-circle
= = × ×⎛

⎝⎜
⎞
⎠⎟

1
2 64

140 4π ( )

   = 1.14 × 108 mm4 Ans.
Calculation of Iy

  IYY square
 = 

1
12

200 4× ( )

   = 1.34 × 108 mm4

The moment of inertia of the semi-circle EFG about its diameter EG is

  IEG = 
1
2

140
64

4

× ×π ( )
 = 9.43 × 106 mm4
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The distance of the centroid of the semi-circle EFG from EG is

  h = 4
3

r
π

 (r = Radius of the semi-circle)

   = 
4 70

3
×
π

 = 29.7 mm

The area of the semi-circle EFG is

  A = 
πr2

2

   = 
π × ( )70

2

2

 = 7696.9 mm2

The moment of inertia of the semi-circle EFG about its vertical centroidal axis Y1Y1, using parallel-axes 

theorem, is given as

  IEG = IY1Y1
 + Ah2 (h = Distance between EG and Y1Y1)

 or IY1Y1
 = IEG

 – Ah2

   = 9.43 × 106 – 7696.9 × (29.7)2

   = 2.64 × 106 mm4

Now the moment of inertia of the semi-circle EFG about the y-axis, that is, the vertical centroidal axis 
YY, is given as

  IYYEFG
 = IY1Y1

 + Ah1
2 (h1 = Distance between YY and Y1Y1)

   = 2.64 × 106 + 7696.9 × (100 – 29.7)2 (h1 = 100 – h)

   = 4.06 × 107 mm4

 Also IYYHIJ
 = IYYEFG

 = 4.06 × 107 mm4

Finally, the moment of inertia of the shaded section about the vertical centroidal axis is given as

  IYYsection
 = IYYsquare

 – IYY semi-circles

   = (1.34 × 108 – 2 × 4.06 × 107) mm4

   = 5.28 × 107 mm4 Ans.
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Example 3.19 
Calculate the product of inertia Ixy for the plane area (an angle section) with respect to the axes x and y 
as shown in Fig. 3.32

Fig. 3.32

Solution:
The angle section consists of two rectangles (1) and (2) having dimensions of 20 mm × 150 mm and  
170 mm × 20 mm respectively.
The product of inertia Ixy for each rectangle is calculated separately and then they are added to get Ixy 
for the angle section, that is,
  (Ixy) section = (Ixy)1 + (Ixy)2 

Ixy for rectangle (1)
  (Ixy)1 = ( )I A x yxy 1 1 1 1+  (using parallel-axes theorem)
where ( )I xy 1  is the product of inertia of the rectangle about its own centroidal axes, and x–1 and –y1 are 
the distances of its centroid from y and x axes respectively.
Since the rectangle is symmetrical about its both centroidal axes, hence
   ( )I xy 1  = 0
 Hence, (Ixy)1 = 0 + (150 × 20) × (10) × (75) = 2.25 × 106 mm4 
Ixy for rectangle (2)

It is also symmetrical about its both centroidal axes, hence its

  ( )I xy 2  = 0

 Now (Ixy)2 = ( )I xy 2  + A2 x
–

2 
–y2

   = 0 + (170 × 20) × (105) × (10) = 3.57 × 106 mm4

 Hence, (Ixy) section = (Ixy)1 + (Ixy) 2

   = (2.25 × 106 + 3.57 × 106) mm4

   = 5.82 × 106 mm4 Ans.
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Example 3.20 
Determine the product of inertia Ixy of the Z-section with respect to the axes x and y as shown in Fig. 3.33.

Fig. 3.33

Solution:
The Z-section is split into three rectangles (1), (2) and (3) having cross-sections (90 mm × 10 mm),  
(10 mm  × 250 mm) and (90 mm × 10 mm) respectively, and their areas are found as
  A1 = 90 × 10  =  900 mm2

  A2 = 10 × 250  =  2500 mm2

  A3 = 90 × 10  =  900 mm2

The product of inertia Ixy of each rectangle is calculated separately and they are added to get Ixy for the 
Z-section, that is,
  (Ixy)section = (Ixy)1 + (Ixy)2 + (Ixy )3

Ixy for rectangle (1)

  (Ixy)1  = (Ixy)1 + A1 x
–

1 
–y1

where (Ixy)1 is the product of inertia of the rectangle about its own centroidal axes, and  x–1 and –y1 are the 

distances of its centroid from y and x axes respectively. 

 Since the rectangle (1) is symmetrical about its own centroidal axes, hence (Ixy)1 = 0

 Now (Ixy)1  = 0 + (90 × 10) × (50) × (120) (using parallel-axes theorem)

   = 5.4 × 106 mm4
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Ixy for rectangle (2)

Ixy)2 = 0. Also, the centroid 
O of the Z-section coincides with the centroid of the rectangle, that is,  x–2 = 0 and –y2 = 0.

Ixy)2  = (Ixy)2 + A2 x
–

2 
–y2

   = 0 + (10 × 250) × (0) × (0)

   = 0

Ixy for rectangle (3)

Ixy)3 = 0.

Ixy)3  = (Ixy)3 + A3 x
–

3 
–y3

   = 0 + (90 × 10) × (– 50) × (–120)

   = 5.4 × 106 mm4

Therefore, the product of inertia Ixy of the entire Z-section is calculated as

  (Ixy)section = (Ixy)1 + (Ixy)2 + (Ixy)3

   = 5.4 × 106 + 0 + 5.4 × 106

   = 10.8 × 106 mm4 Ans. 

 1. What is the difference between centre of gravity and centroid?

 2. What is the significance of radius of gyration?

 3. What is centroidal axis? Do the centroidal axis same as the neutral axis?

 4. Why is the area moment of inertia also called the second moment of area?

 5. What is product of inertia? What is its value about a principal axis?

 6. What is the use of parallel-axes theorem?

 7. What is principal moment of inertia?

SHORT ANSWER QUESTIONS
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1.  The centroid of a hollow cone of height h and radius r placed on its base lies at the following distance.

 (a) h
3

 from the base    (b) 
h
4

 from the base 

 (c) 
2
3
h

 from the base    (d) 
2
3
h

2. The centroid of a solid cone of height h and radius r placed on its base lies at the following distance.

 (a) h
3

 from the base    (b) 
h
4

 from the base 

  (c) 
2
3
h

 from the base    (d) 
2
3
h

3. The centroid of a semi-circle of radius r lies at the following distance from its base.

 (a)  3
4r

 (b) 4
3

r
π

 (c) 4
3
π
r

 (d) 3
4

r
π

.

4. The centroid of an equilateral triangle of side l lies at the following distance (perpendicular) from 
any side.

 (a)  
2
3

l  (b) 2 3
l

 (c) l
2 3

 (d) 3
2

l .

5. The centroid of a right-angled triangle with base b and height h is

 (a) 2
3

1
3

b h,⎛
⎝⎜

⎞
⎠⎟

 (b) b h
3 2

,⎛
⎝⎜

⎞
⎠⎟

 (c) 
b h
3 3

,⎛
⎝⎜

⎞
⎠⎟  (d)  1

3
1
3

b h,⎛
⎝⎜

⎞
⎠⎟

.

6. The moment of inertia of a triangular section of base b and height h
to its base is

 (a) b h3

36
 (b) b h3

18
 (c) 

bh3

36
 (d) bh3

18
 .

7. The moment of inertia of a square section of side a

 (a) 
a4

4  (b) a4

12
 (c) 

a4

8
 (d) 

a4

16
.

ANSWERS
 1. (a) 2. (b) 3. (b) 4. (c) 5. (c) 6. (c) 7. (b).

MULTIPLE CHOICE QUESTIONS  
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EXERCISES

1. Find the centroid of the Z-section shown in Fig. 3.34.

 

Fig. 3.34

  (Ans. x  = 39.23 mm, y  = 44.62 mm).

2. Find the centroid of the channel section shown in Fig. 3.35.

Fig. 3.35

  (Ans. x  = 38.75 mm, y  = 110 mm).
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3. Find the centroid of the angle section shown in Fig. 3.36.

Fig. 3.36

  (Ans. x  = 13.82 mm, y  = 43.82 mm).

4. Find the centroid of the shaded portion of the section shown in Fig. 3.37 after a square is cut out 
from it.

 Fig. 3.37

 (Ans. y  = 45.74 mm).
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5. Find the centroid and the area moment of inertia of the I-section shown in Fig. 3.38 about its 

 

 Fig. 3.38

(Ans. x  = 0, y  = 45.64 mm, IXX = 1.47  107 mm4, IYY = 2.31  106 mm4).

6. Find the coordinates of the centroid of a quarter-ellipse shown in Fig. 3.39, using direct integration 

method.

xO

y

b
x
a

2

2
y
b

2

2+ = 1

a

Fig. 3.39

  (Ans. x  = 
4
3

a
π , y  = 

4
3

b
π

).
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7. Find the centroid of the shaded area formed by a straight line y = mx and a curve y = kx2 as shown 
in Fig. 3.40, using direct integration method.

Fig. 3.40

  (Ans. x  = 
a
2

, y  = 
2
5
b ).

8. Determine the second moment of area of a triangle of base b and height h about its centroidal axes 
and base.

  (Ans. IXX = 
bh3

36
, IYY = 

hb3

48
, Ibase = 

bh3

12
).

9. Determine the second moment of area of a semi-circle of radius r about its horizontal centroidal 
axis. (Ans. 0.11r4).

10. Find the moment of inertia of the shaded area shown in Fig. 3.41 about the x-axis and the horizontal 
centroidal axis. 

Fig. 3.41

(Ans. 6.16 × 105 mm4, 5.76 × 105 mm4).
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11. Find the product of inertia Ixy of the I-section shown in Fig. 3.42. .

Fig. 3.42

(Ans. – 3.23 × 105 mm4).

12. Determine the product of inertia Ixy of the Z-section shown in Fig. 3.43. 

Fig. 3.43

(Ans. 5.85 × 106 mm4).



Figure shows a simple beam, one of the widely used statically determinate beams loaded with a central 
point load W.

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

Shear Forces and Bending  
Moments in Beams

4
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4.1 WHAT IS A BEAM?  
Beam i
beams. Many shafts of machinery act simultaneously as torsion members and as beams. Application 

Beams are usually long, straight prismatic bars placed horizontally. There are two important points 
in the design of a beam; one is the determination of shear forces and bending moments as a result 

sections of the beam to resist shearing forces and bending moments.

4.2 CLASSIFICATION OF BEAMS 

  A simple beam is supported at its two ends. One end is hinge supported and the other end is 
roller supported.

  A pin or hinge support is capable of resisting a force acting in any direction of the plane, that is, 

rotate in the plane. Such support has two reaction force components, one in the horizontal and 

moment reaction. Roller and pin supports taken together are termed as simple supports.
  An overhanging beam

sides.
  A continuous beam has more than two supports.
  A cantilever beam
  A 

  A 

its resistance to bending must be taken into consideration. The shear force and bending moment 
diagrams are drawn for statically determinate beams only.

a b c), beams are hinge  
supported at A and roller supported at B, C, and B e), and 
f A, A and B, and A
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Fig. 4.1 Types of beams.

4.3 TYPES OF LOADINGS 
  A  is acting at a poin a

SI units.
  A b

intensity of loading per unit length, say w SI
certain part of the beam, it is said to be uniformly distri ).

Fig. 4.2 Types of loadings.

 implies the increase or decrease of loading intensity at a constant rate 
along the length of the beam. Distributed load may be represented by a parabolic, cubic or a higher 

b) and Fig. 4.3).
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Fig. 4.3 Types of uniformly-varying loads.

4.4 CALCULATION OF BEAM REACTIONS 
The beam reactions are calculated by using the three fundamental equations of static equilibrium.
  Fx = 0
 Fy = 0 
and    Mz  = 0

The beam is usually placed horizontally, so it is the x-axis and the load on the beam is placed verti-
cally, so it is the y-axis.

4.5 SHEAR FORCES IN A BEAM 

Consider a section XX of the beam at its certain distance (Fig. 4.4). The part to the left of the section is 
in equilibrium under the action of three forces: the vertical reaction force at A, that is, RA, the external 
load W1, and force V induced at the section. For the equilibrium of the part to the right of the section, 
an opposite force V acts at the section, so that its equilibrium is decided by the reaction force at B 
i.e., RB, the external load W2, and the force V. The force V is called vertical shear force. Numerically, 
the shear force is equal to the algebraic sum of all the vertical components of the external forces 
to the left or to the right of the section. Whether the right-hand segment or the left-hand segment is 
used to determine the shear force at a section is immaterial and only arithmetical simplicity governs. 

Fig. 4.4 Shear force in a beam.
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4.6 BENDING MOMENTS IN A BEAM 

is produced to satisfy the static equilibrium condition for moment. Magnitude of the internal resisting 

sum of moments to the left or to the right of the section.

4.7 SIGN CONVENTIONS FOR SHEAR FORCE AND BENDING MOMENT 
a) For shear force: 

Fig. 4.5

b) For bending moment: 

compression and the lower part in tension, thereby increasing the length of the bottom surface 
and decreasing the length of the top surface of the beam. On the other hand, if bending moment 

Fig. 4.6
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4.8 SHEAR FORCE AND BENDING MOMENT DIAGRAMS (SFD AND BMD) 
Shear force and bending moment diagrams are the pictorial representation of shear forces and  

The bending moment M dx
dM  = 0. Thus at sections where shear 

There may be a point in the bending moment diagram, where the bending moment is zero and the sign 

The shear force diagram consists of horizontal straight lines in case of point loads and inclined 
straight lines in case of uniformly distributed loads. The corresponding portions in the bending 

loads.

4.9 POINT OF CONTRAFLEXURE 

point.

4.10 SFD AND BMD FOR CANTILEVER BEAMS 
4.10.1 Cantilever Beam carrying a Point Load at its Free End

a). AB is the length of the beam.
Calculations for shear forces 
Consider a section XX of the beam at a distance  from the free end B.

     Shear force at the section is V = + W and it is independent of the distance 
b)).

Calculations for bending moments
Bending moment at the section is
 M  = – 

 Bending moment at the free end, MB  = 0)
MA = – Wl  = l)

The equation of B.M. at the section represents a straight line, hence the bending moments at A and 
B c)).
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Fig. 4.7

Alternative method (for bending moment)
A section of the beam may be selected at a distance 

Bending moment at the section is, M  = – W l – )
A, MA = – W l – 0) = – Wl  = 0)

Fig. 4.8

Bending moment at the free end B, MB = – W l – l  = l)

4.10.2 Cantilever Beam carrying Uniformly Distributed Load (udl) throughout the Span 
a).

Consider a section XX of the beam at C, a distance  from the free end B a)).  
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Calculations for shear forces
    Shear force at the section is  V  = + 

Shear force at the free end B,  VB  = 0)
A,  VA  = + wl  = l)

The equation of the shear force at the section represents a 
A 

and B b)).

Calculations for bending moments 
Bending moment at the section is

   M  = –  = – 
wx

Bending moment at B,  MB  = 0)

Bending moment at A,  MA  = –
wa

 = l)

The equation of the bending moment at the section represents 
A and B c)).

Alternative method
Calculations for shear forces 
Consider a section XX of the beam at a distance A

Fig. 4.10

Shear force at the section is 
 V = + w l – )

Shear force at the free end,  VB  = + w l – l  = l)
 VA  = + wl  = 0)

Calculations for bending moments 
Bending moment at the section is

 M  = – w l – )
( )l x

2
 = – 

w l x( )2

2
Bending moment at the free end is

 MB = 
w l l( )2

2
 = l)

Fig. 4.9



Shear Forces and Bending Moments in Beams   151

 MA = 
w l( )0

2

2

 = – 
wl

 = 0)

4.10.3 Cantilever Beam carrying Uniformly Distributed Load over a certain Length 
from the Free End

a).
Consider a section XX of the beam at a distance  from the free end B a)).

Fig. 4.11
Calculations for shear forces
Shear force at the section is
 V = + 

Shear force at the free end,  VB  = 0)
Shear force at C is
 VC = + wa  = a)

The shear force between A and C remains constant at wa
B and C is shown by an inclined straight line and between A and C by a horizontal straight line 

b)).
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Calculations for bending moments 
Bending moment at the section is

 M  = –   = – 
wx

Bending moment at free end, MB  = 0)
Bending moment at C is

 MC = – 
wa

 = a)

 MA = – wa l a−⎛
⎝⎜

⎞
⎠⎟

B and C
A and C c)).

4.10.4 Cantilever Beam carrying Uniformly Distributed Load over a certain Length 
from the Fixed End

Consider a section XX of the beam at a distance  from C a)).

Calculations for shear forces 
    Shear force at the section is
 V = + 

Shear force at C, VC  = 0)

Fig. 4.12
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Shear force at A, VA = wa  = a)
A and C is shown by an inclined straight line and there is no shear 

force for the portion BC b)).

Calculations for bending moments 

   Bending moment at the section is 

 M  = –   = – 
wx

Bending moment at C, MC  = 0)

Bending moment at A, MA = – 
wa

 = a)

A and C is parabolic and there is no bending mo
ment on BC c)).

4.10.5 Cantilever Beam carrying Uniformly Distributed Load over its Entire Span  
and a Point Load at its Free End

a).
Calculations for shear forces 
Consider a section XX of the beam at a distance  from the free end B a)).

Fig. 4.13
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Shear force at the section is

 V  + W)
Shear force at B is

 VB w . 0 + W) = + W  = 0)
A is

 VA wl + W  = l)

The SFD b).

Calculations for bending moments 

   Bending moment at the section is

 M  = – Wx w x x
+ ⋅ ⋅⎛

⎝
⎜

⎞
⎠
⎟

  = – Wx wx
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Bending moment at B is

 MB = – W w
⋅ +

⋅⎛

⎝
⎜⎜

⎞

⎠
⎟⎟0 0

2

2

 = 0)
Bending moment at A is

 MA = – Wl wl
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 = l)

Since the equation for bending moment at the section represents a parabola, hence the bending 
A and B c)).

4.10.6 Cantilever Beam carrying several Point Loads
Let us consider that three point loads W1, W  and W3 l1, l  and l 

A a)).

Part BD
Consider a section XX of the beam between B and D, at a distance 1 from free end B. Shear force at 
the section is V = + W3 and it remains constant between B and D.

 Bending moment at the section is
 M  = – W3 1

Bending moment at B, MB 1 = 0)
Bending moment at D, MD = – W3 l – l 1 = l – l )

B and D is shown by a horizontal straight line and that of 
bending moment by an inclined straight line.

Part CD
Consider a section XX of the beam between C and D, at a distance  from B.
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Shear force at the section is 

 V W  + W3), and it remains constant between C and D.

Fig. 4.14

Bending moment at the section is 

 M  = – [W3  + W  { l – l )}]
Bending moment at C is

 MC = – [W3 l – l1) + W  {l – l1 – l + l  = l – l1)

  = – [W3 l – l1) + W l  – l1)]
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Part AC
Consider a section XX of the beam between A and C, at a distance 3 from B.

Shear force at the section is

 V W1 + W  + W3), and it remains constant between A and C.
Bending moment at the section is 

 M  = – [W3 3 + W  { 3 l – l )} + W1 { 3 l – l1)}]
Bending moment at A is

 MA = – [W3 l + W  {l – l + l } + W1 {l – l + l1 3 = l)

  = – [W3 l + W  l  + W1 l1]

The SFD and the BMD b c

4.10.7 Cantilever Beam carrying Uniformly Varying Load
w

a)).

Calculations for shear forces

Consider a section XX of the beam at a distance  from the free end B.
  s ABC and BDE

 
AC
DE

 = 
AB
BD

or DE = .
AB

AC BD  = .
l

w x  

Shear force at the section is

 V  = + Triangular load BDE

  = + × ×
1
2

base height

  = + × ×
1
2

x wx
l

 = +
wx

l

Shear force at B, FB  = 0)
Shear force at A is

  VA = +
wx

l
 = l)
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Fig. 4.15

Calculations for bending moments
Bending moment at the section is

 M  = – Triangular load BDE  
3

  = –
wx

l
x2

2 3
= –

wx
l

3

6

Bending moment at the free end, MB  = 0)
A is

 MA = –
wl2

6
 = l)

A and B
b c



158  Strength of Materials

Example 4.1 

a).

Solution: Calculations for shear forces
Shear force at G is

 VG E.

Shear force just to the right of D

Fig. 4.16
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Shear force just to the left of D

Shear force at C is
 VC

B.
Shear force just to the left of B

A.

C and D, and between D and E are shown by inclined straight 
b)).

Calculations for bending moments
 Bending moment at G is

 MG = 0

Bending moment just to the right of F
  = –  1)  = – m

Bending moment just to the left of F
  = – m is acting at F)

  = – m
Bending moment at E is

 ME = – – m

Bending moment at D is

 MD = – 2 3 20 2 1 1
2

× + + × ×⎡
⎣⎢

⎤
⎦⎥

 = – m

Bending moment at C is

 MC = – 2 4 20 2 2 2
2

3 1× + + × × + ×⎡
⎣⎢

⎤
⎦⎥

  = – m

Bending moment at B is

 MB = – 2 5 20 2 2 1 2
2

3 2× + + × × +⎛
⎝
⎜

⎞
⎠
⎟ + ×

⎡

⎣
⎢

⎤

⎦
⎥   = – m

Bending moment at A is

 MA = – 2 6 20 2 2 2 2
2

3 3 5 1× + + × × +⎛
⎝
⎜

⎞
⎠
⎟ + × + ×

⎡

⎣
⎢

⎤

⎦
⎥  = – m

The BMD c).
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Example 4.2 

a). Draw also shear 
force and bending moment diagrams.

Fig. 4.17

Solution: Reaction at A
Total downward load on the beam

A

Taking moments of forces about A
 MR = – 30 E) – 30 B)
  = –

A along with a 
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Calculations for shear forces
Shear force between D and F
Shear force just to the left of D C.
Shear force just to the left of C A.
The SFD b).

Calculations for bending moments
Bending moment at F is

 MF = 0
Bending moment just to the right of E  = – m
Bending moment just to the left of E = – – m

m is acting at E)
Bending moment at D is

 MD = – – m
Bending moment at C is

 MC = –  3 + 10 + 30  1) = – m

Bending moment just to the right of B
  = –  4 + 10 + 30 m

Bending moment just to the left of B

  = – –  
m is acting at B)

Bending moment at A is
 MA = – – m

The BMD c).

4.11 SFD AND BMD FOR SIMPLY SUPPORTED BEAMS 

4.11.1 Simply Supported Beam carrying a Central Point Load
A simply supported beam AB of length l with a point load W acting at its centre is shown in  

a).

Reactions at A and B
A and B, take moments of the forces about A.

 RB  l = W  
l

or RB = 
W

)

Also RA + RB = W = Load on the beam
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or RA = W – RB

  = 
W
2

 ( )

Calculations for shear forces
Consider a section XX of the beam in BC, at a distance x from B.

Shear force at the section is

 V = – 
W
2

Fig. 4.18

Shear force just to the right of C is – W
2

, and it remains constant for the portion BC.

Shear force just to the left of C is – W
2

 + W = + W
2

, and it remains constant for the portion AC.
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Calculations for bending moments
Bending moment at the section is

 M  = +
W

 

Bending moment at B, MB  = 0)

Bending moment at C, MC = 
W l

 = 
l

)

  = + 
Wl
4

Bending moment at A is

 MA = + 
W

 l – W
l

 = 0

The bending moments between B and C, and between A and C are joined by inclined straight lines 
because B.M. at the section represents a straight line.

The SFD and the BMD b c

4.11.2 Simply Supported Beam carrying an Eccentric Point Load
A simply supported beam AB is carrying a point load W at a distance a from A and b from B 

a)).

Reactions at A and B
Taking moments of the forces about A

 RB  l = W  a

or RB = 
Wa

l )

But RA + RB = W

or RA = W – RB

  = 
Wb

l
) 

Calculations for shear forces

Shear force between B and C is – Wa
l

.

Shear force just to the left of C is

  – Wa
l

W+  = 
Wb

l
, and it remains constant for the portion AC.
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Calculations for bending moments
The bending moments at A and B are zero.
Bending moment at C is

 MC = RB  b

  = 
Wab

l  

Fig. 4.19

The SFD and the BMD b c
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4.11.3 Simply Supported Beam carrying Uniformly Distributed Load (udl)  
over its Entire Span

The intensity of loading on the beam is w a)).

Reactions at A and B
Taking moments of the forces about A

 RB  l = w  l  
l

 is w  l i.e. at a distance 
l

 from A.)

or RB = 
wl

)

RA + RB = wl = Total load on the beam

or RA = 
wl

)

Fig. 4.20
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Calculations for shear forces
Consider a section XX  of the beam at a distance  from B.

Shear force at the section is 

 V = – RB +  = – wl wx

Shear force at B, VB = –
wl

 = 0)

Shear force at A, VA = – wl  + wl  = l)  = + 
wl

Shear force at midpoint C of the beam

  = –
wl

 + 
wl

 = 0

The SFD b).

Calculations for bending moments
Bending moment at the section is

 M  = RB  –   

  = 
wl x wx

Bending moment at B, MB  = 0)

Bending moment at A is

 MA = 
wl l wl

 = l) 

  = 0

Bending moment at midpoint C of the beam is

 MC = 
wl l w l

⋅ − ⎛
⎝
⎜

⎞
⎠
⎟  = 

l
) 

  = 
wl2

8

The equation of the bending moment at the section represents a parabola, hence the bending mo
c)).

4.11.4 Simply Supported Beam carrying Uniformly Varying Load which varies 
from Zero at Each End to w per unit length at the Midpoint

The beam is of length l and carries w C a)).



Shear Forces and Bending Moments in Beams   167

Reactions at A and B
Taking moments of the forces about A

 RB  l = 
wl l

wl
, and it acts at a distance 

l
 from A.)

or RB = 
wl
4

)

But RA + RB = 
wl

or RA = 
wl wl
2 4

 = 
wl
4

)

Fig. 4.21
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Calculations for shear forces
Consider a section XX of the beam in BC at a distance  from B.

Shear force at the section is
 V = – RB + Triangular load BEF

Compare s BCD and BFE.

  
CD
BC  = 

EF
FB

  EF = 
CD FB

BC

   = 
wx
l⎛

⎝
⎜

⎞
⎠
⎟

= 
wx
l

 The triangular load BEF = 
1
2 × base × height

    = 1
2

2 2
× × =x wx

l
wx

l

  V = –
wl wx

l4

2

 Shear force at B, VB = –
wl
4

 = 0)

 

 Shear force at C is VC = –
wl w

l
l

4 2

2

+ ⎛
⎝
⎜

⎞
⎠
⎟  = 

l
)

   = –
wl w

l
l

4 4

2
+ ⋅  =  0

 Shear force at A is VA = – 
wl wl
4 2

  = + 
wl
4

The shear force diagram is parabolic, since the equation of the shear force at the section represents 
b)).

Calculations for bending moments
Bending moment at the section is

 M  = RB  – Triangular load BEF  
3

  = 
wl x wx

l
x

4 3

2
− ⋅   = 

wl x wx
l4 3

3
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Bending moments at A and B are:

 MA = 0

 MB = 0

 
d M
d x

x  = 0

 
wl wx

l4

2

 = 0

 = 
l

 = 
l .

Substituting  = 
l

B.M., 

 M  =  MC = 
wl l w

l
l

4 2 3 2

3

⋅ − ⋅ ⎛
⎝
⎜

⎞
⎠
⎟   = + 

wl2

12

The BMD c).

4.11.5 Simply Supported Beam carrying Uniformly Varying Load which varies 
from Zero at One End to w per unit length at Other End

a). Load at A is zero and at B is w per unit length.

Reactions at A and B
Taking moments of the forces about A

 RB  l = 
w l l

2
2
3

2
3
l

or RB = 
wl
3

)

and RA + RB = 
wl

or RA = 
wl

 – 
wl
3

 = 
wl

)
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           Fig. 4.22

Calculations for shear forces
Consider a section XX of the beam at a distance  from A. Shear force at the section is 
 V = + RA – Triangular load ADE

Compare s ABC and ADE.

 
BC
AB

 = 
DE
AE

 DE = 
BC AE

AB  = 
wx
l
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 V = + 
wl x wx

l6
1
2

− × ×   = + 
wl wx

l6 2

2

Shear force at A is

 VA = 
wl

 = 0)

Shear force at B is

 VB = + 
wl w

l6 2
. l  = l) = – 

wl

, equate F  to zero.

 = 
l
3

b)).

Calculations for bending moments
Bending moment at the section is 

 M  = RA   – Triangular load ADE 
3

  = 
wl x wx

l
x

6 2 3

2
− ⋅  = wl x wx

l6 6

3

Bending moment at A, where  = 0, is

 MA = 0

and MB  = l)

 = 
l
3

.

 M  = 
wl l w

l
l

6 3 6 3

3

⋅ −
⎛

⎝
⎜

⎞

⎠
⎟

  = 
wl wl2 2

6 3 18 3
 = 

wl2

9 3

c)).
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4.11.6 Simply Supported Beam subjected to a Couple 
The couple is acting at point C a)).
Reactions at A and B

Take moments of the forces about B.
 RA  l = M

    or RA = 
M
l

    But RA + RB = 0  or  RB = – RA

Calculations for shear forces
Consider a section of the beam at a distance  from A.
Shear force at the section is

 V = + RA

The shear force between A and B remai ns constant at + 
M
l

.

The SFD b).

Fig. 4.23
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Calculations for bending moments
Bending moment at the section is 

 M  = + RA  = + 
M
l

 

Bending moment at A is 
 MA  = 0)

Bending moment at C is

 MC = + 
Ma
l

 = a)

Bending moment just to the right of C

  = 
Ma
l

 – M = 
M a l

l
( )−

 = – 
M
l

l – a) = – 
Mb
l

Bending moment at B is

 MB = RA l – M = 
M
l

l M− = 0

The bending moments between A and C, and between B and C are shown by inclined straight lines 
c)).

Example 4.3 

a).

Solution: Reactions at A and B
Take moments of the forces about A.
 RB  1 + 10 

or RB = 
80
4

)

and RA + RB

or RA )

Calculations for shear forces
Consider a section XX of the beam at a distance  from A. The shear force at the section is

 V = + RA 

The shear force between A and C
Shear force just to the right of C



174  Strength of Materials

Fig. 4.24

The shear force remains zero for the portion CD.
Shear force at B is

 VB

  = –

The shear force between A and C is connected by a horizontal straight line and between B and D 
by an inclined straight line due to b)).

Calculations for bending moments
Bending moment at the section is 

 M  = + RA  

Bending moment at A is
 MA  = 0)

Bending moment at C is
 MC  = 1 m)

m
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Bending moment at D is
 MD  1

m
Bending moment at B is

 MB  ⎛
⎝
⎜

⎞
⎠
⎟ = 0

The bending moment for AC is shown by an inclined straight line, for CD by a horizontal straight 
line and for BD c)).

Example 4.4 

a).

Solution: Reactions at A and D
Take moments of the forces about A.

 RD  0 5 2
2

. +⎛
⎝
⎜

⎞
⎠
⎟

     or RD = 
45
4 5.

⎛
⎝
⎜

⎞
⎠
⎟ )

But RA + RD

or RA )

Calculations for shear forces 
Consider a section XX of the beam at a distance  from A.

Shear force at the section is
 V = + RA

The shear force for the portion AB
Shear force at C is

 VC

The shear force between C and D
The shear force for AB and CD are shown by two horizontal lines and for BC, by an inclined 

b)).

Calculations for bending moments 
Bending moment at the section is

 M  = + RA  
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Fig. 4.25

Bending moment at A is

 MA  = 0)

Bending moment at B is
 MB = + RA 

m

Bending moment at C is

 MC = + RA  

m
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Bending moment at D is 

 MD = + RA +⎛
⎝
⎜

⎞
⎠
⎟  = 0

Location of zero shear force
Compare s MNO and OPQ.

 
MN
MO

 = 
PQ
OP

 
20
y

 = 
10

2( )y

or y = 1.33 m

= A.
O

 MO = M  

  = + RA m

The BMD c).

Example 4.5 

a).

Solution: Reactions at A and B
Take moments of the forces about A.

 RB  3 = + 70 

RB )

But RA + RB

or RA )

Calculations for shear forces
The shear force between A and C remains constant at RA

Shear force just to the right of C

–
Shear force at B is

 VB

  = –
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Fig. 4.26

The SFD b).

Calculations for bending moments
The bending moments at A and B are zero, since the beam is simply supported.

 MA = MB = 0

Bending moment at C is
 MC = + RA  1

 1

m

The BMD c).
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Example 4.6 

a).

Fig. 4.27

Solution: Reactions at A and B
Take moments of the forces about A.

 RB   + 10  +⎛
⎝
⎜

⎞
⎠
⎟

 RB )

But RA + RB

or RA = 30 – RB )
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Calculations for shear forces
Shear force at A is 

 VA = + RA

Sear force at C is
 VC = + RA

Shear force at B is 
 VB = + RA

The SFD b).

Calculations for bending moments 
The bending moments at A and B are zero.

 MA = MB = 0

Bending moment at C is

 MC = + RA  

m

Location of zero shear force

Compare s MNO and OPQ.

 
MN
NO

 = 
PQ
OP

 
2 5.
y

 = 
17 5
2

.
y

y, we get
 y

A.

O

                              MO = M   = + RA  
2
2

0 25+⎛
⎝⎜

⎞
⎠⎟

.  – 10  
0 25

2
.

                 

m

The BMD c).
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Example 4.7 

a).

Solution:

Fig. 4.28

Reactions at A and E
Take moments of the forces about A.

 RE 
or RE )

RA + RE = 7

or RA )
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 Calculations for shear forces

Shear force at A is
 VA = + RA

The shear force between A and B
Shear force just to the right of B

 The shear force between B and E
 The SFD b).

Calculations for bending moments 
Bending moments at A and E are zero, because the beam is simply supported.

 MA = ME = 0

Bending moment at B is 
 MB = + RA m

Bending moment at C is

 MC = + RA  3 – 7 m

Bending moment just to the right of C
Bending moment at D is

 MD = + RA m

Bending moment just to the right of D m
The BMD c).

There are two points where bending moments are zero, one point lies between B and C and other 
between C and D.

Compare s MNO and OPQ.

 
MN
NO

 = 
PQ
OP

 
MN
NO  = 

PQ
NP NO

 
4 25.
NO

 = 
1 25

2
.
NO

or NO

A.
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s PRS and STU.

 
PR
PS

 = 
UT
ST

 
3 75.
PS

 = 1 75
2

.
PS

or PS

A.

Example 4.8 

Solution:

ing load with zero at B A.
Reactions at A and B

Take moments of the forces about A.

 RB  10 = 3  10  10
2

 + 
1
2   4  10  

10
3

or RB )

Also RA + RB = 3  10 + 
1
2

  4 

or RA )

Calculations for shear forces
Consider a section XX of the beam at a distance  from B.

4
10

.
Shear force at the section is 

 V = – RB + 3  + Triangular load at the section

  = – RB + 3  + 
1
2

4
10

 

Shear force at B is
 VB = – RB  = 0)

Shear force at A is
 VA

 The SFD c).
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Calculations for bending moments
Bending moment at the section is 

 M  = + RB  – 3    
2

1
2

4
10 3

− × × × 3

Fig. 4.29
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For shear force to be zero

 
dM
dx

x  = 0

 = 0

 = –
i.e., at 

 M 3 m

The bending moments at A and B are zero.

 MA = MB = 0

The BMD ).

Example 4.9 

a).

Solution:

Reactions at A and B

from A m are acting at C.
Take moments of the forces about A.

 RB  4

or RB )

Also RA + RB

or VA )

Calculations for shear forces
Shear force at A is 

 VA = + RA

The shear force between A and C
The shear force just to the right of C
The shear force between B and C
The SFD c).
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Fig. 4.30

Calculations for bending moments
The bending moments at A and B are zero.

 MA = MB = 0

Bending moment just to the left of  C  = + RA  4 
m

Bending moment just to the right of  C
m

The BMD ).
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4.12 RELATIONS AMONG LOAD, SHEAR FORCE AND BENDING MOMENT  
AB is a simple beam supported at A and B w

Fig. 4.31

End A is chosen as the origin. A section CDPQ of length  of beam is considered.

 W = 
dV
dx

i.e., the rate of change of shear force at any section is equal to the rate of loading at that section.

 V = 
dM
dx

that section.

4.13 SFD AND BMD FOR OVERHANGING BEAMS 

4.13.1 Overhanging Beam with equal Overhangs on Each Side and loaded with 
Point Loads at the Ends

The beam is supported at B and C l a a)].

Reactions at B and C
Take moments of the forces about B.

 W  a + RC  l = W l + a)

or RC = W )

But RB + RC = W + W W

or RB = W )

Calculations for shear forces
Consider a section XX of the beam at a distance  from A.
Shear force at the section is

 V = – W
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The shear force between A and B remains constant at – W.
Shear force just to the right of B

  = – W + RB = – W + W = 0

Fig. 4.32

The shear force remains zero between B and C.
  

  = 
M
l

l M. − = 0
Shear force at C is 

 VC = 0 + RC = + W

The shear force between C and D remains constant at + W.
The shear forces between A and B, and between C and D are connected by horizontal straight lines 

b)).
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Calculations for bending moments 
Bending moment at the section is 

 M  = – 

Bending moment at A, where  = 0, is

 MA = 0

Bending moment at B, where  = a, is

 MB = – Wa

Bending moment at C is
 MC = – W a + l) + RBl

  = – Wa – Wl + Wl 

  = – Wa

Bending moment at D is

 MD = – W a + l + a) + RB l + a) + RCa

  = – Wa – Wl – Wa + Wl + Wa + Wa = 0

The bending moment diagrams between A and B, and between C and D are shown by inclined 
c)).

4.13.2 Overhanging Beam with equal Overhangs on Each Side and loaded with a 
Uniformly Distributed Load over its Entire Span

a).

Reactions at B and C
Take moments of the forces about B.

 w  a  a  + RC  l = w l + a) ( )l a
2

 
wa

 + RC l = 
w

 [l  + a la]

or RC = 
w l a( )2

2
)

But RB + RC = w l a)

or RB = 
w l a( )2

2
)
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Fig. 4.33
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Calculations for shear forces
Consider a section XX of the beam at a distance  from A. Shear force at the section is 

 V = – 
Shear force at A,

 VA  = 0)
Shear force at B, 

 VB = – wa  = a)
Shear force just to the right of B

  = – wa + RB

  = – wa + 
w

l a) 

  = 
w

l

Shear force at C is

 VC = 
w

 l – wl  

  = –
wl

Shear force just to the right of C  

  = – 
wl

 + RC

  = – 
wl

 + 
w

l a) 

  = wa
Shear force at D is

 VD = wa – wa = 0 
The SFD b).
Calculations for bending moments
Bending moment at the section is

 M  = − w x x. .
2

Bending moment at A, MA  = 0)
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Bending moment at B is

 MB = – w  a a
2

  = – 
wa2

2
Bending moment at C is

  MC = – w (a + l) ( )a l
2

 + RB  l

  = – 
w
2

 (a + l)2 + w
2

 (l + 2a)  l

  = – 
w
2

a2

Bending moment at D is

 MD = 0

The shear force is zero at a distance a l
+⎛

⎝
⎜

⎞
⎠
⎟2

 from A. It is the position of the maximum bending 
moment. 

 The maximum bending moment is given as

 Mmax = − +⎛
⎝⎜

⎞
⎠⎟
⋅ +⎛
⎝⎜

⎞
⎠⎟
⋅ + + −⎛

⎝⎜
⎞
⎠⎟

w a l a l R a l aB2 2
1
2 2

  = − +⎛
⎝
⎜

⎞
⎠
⎟ + + ⋅

w a l w l a l
2 2 2

2
2

2

( )  

  = 
w l a
2 4

2
2−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Case I

When a < l
2

, then Mmax will be positive.

Case II

When a = l
2

, then Mmax = 0

 
w l a
2 4

2
2−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = 0
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or a = ± l             
w
2

0≠⎛
⎝
⎜

⎞
⎠
⎟

a = + −⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

l l
2 2

because carries no meaning.

Case III

a > l , then M

The BMD c e).

Example 4.10 

a).

Solution:

Reactions at B and E
Take moments of the forces about B. 

 4 – 3 4 4 8
2

+ +⎛
⎝
⎜

⎞
⎠
⎟  + RE 

or RE )

Also RB + RE

or RB  )

Calculations for shear forces
Shear force at A is

 VA = –

The shear force between A and B
Shear force just to the right of B

  = – RB

The shear force between B and C
Shear force just to the right of C

  = + 74.13 – 70
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Fig. 4.34

The shear force between C and D
Shear force at E is

 VE = + 4.13 – 3 

Shear force just to the right of E

RE

The SFD b).
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Calculations for bending moments
The bending moments at A and E are zero.

 MA = ME = 0

Bending moment at B is

 MB = – – m

Bending moment at C is

 MC = – RB  4

m

Bending moment at D is

 MD = – RB  4

  = –

m

The BMD c).

Location of zero shear force
Compare two triangles MNO and OPQ.

 
MN
NO

 = PQ
OP

 
MN
NO  = 

PQ
NP NO

 
4 13.
NO

 = 
19 87

8
.
NO

or NO = 1.37 m

E.

O

 M  = MO = +RE  6 63
2
.

 6 63
2
.

m
The BMD c).
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Example 4.11 

Draw the shear force and bending moment diagrams for the beam shown in Fig. 4.35(a).

Fig. 4.35

Solution:

Reactions at B and D
Taking moments of the forces about A, we have

 RB  2.5 + RD  7.5 = 40  5.5 
  = 220 … (1)

and RB + RD = 20 + 40 = 60 kN … (2)
From equation (2)

 RB = 60 – RD
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Substituting RB in equation (1), we get
 (60 – RD)  2.5 + RD  7.5 = 220

or  RD = 14 kN ( )

On using equation (2), we get

 RB = 60 – 14 = 46 kN ( )
Calculations for shear forces
Consider a section XX of the beam at a distance x from A. Shear force at the section is

 V = – 20 kN

The shear force between A and B is constant at – 20 kN.

Shear force just to the right of B

  = – 20 + RB = – 20 + 46 = + 26 kN

The shear force between B and C is constant at 26 kN.

Shear force just to the right of C = + 26 – 40 = – 14 kN

The shear force between C and D is constant at – 14 kN.

The shear force diagram is shown in Fig. 4.35 (b).

Calculations for bending moments

Bending moment at the section is 

 Mx = – 20x

Bending moment at A is

 MA = 0 (for x = 0)

Bending moment at B is
 MB = – 20  2.5 (for x = 2.5 m)

  = – 50 kN m

Bending moment at C is
 MC = – 20  (2.5 + 3) + RB  3
  = + 28 kN m

Bending moment D is
 MD = – 20  (2.5 + 3 + 2) + 46  (3 + 2) – 40  2
  = 0

The bending moment diagram is shown in Fig. 4.35 (c).
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type.

 1.

a

b

c

) none of these.

 2. W
beam of length l, is

a) 
Wl

b) Wl
4

c) Wl ) Wl .

 3.

SHORT ANSWER QUESTIONS

MULTIPLE CHOICE QUESTIONS
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 4.  of intensity w

a) wl
4 b) wl2

8
c) wl ) – 

wl .

 5.  of intensity w

a b) a second degree parabola

c ) an ellipse.

 6.
the free end is shown as

 7.
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 8. The 

a) Wl b) Wl2

4
c) Wl

4
) Wl . 

 9. The shear force diagram for a simply supported beam carrying a 
as

10.  of intensity 
w

a) wl2

6
b) wl3

24
c) 

wl2

8
) wl2

12
.

11. The reactions at the two supports of a simply supported beam carrying a  of intensity w

a) 
w w
2 2

, b) wl wl
4 4

, c) wl wl,
2

) wl wl
2 2

, .

12. The load and shear force relationship is

a) F = b)  = c)  = ) F = 

13. The shear force and bending moment relationship is

a) F = 
d M
dx

b) M = 
d F
dx

c) M = 
dF
d x ) F = 

dF
d x

.

14.
zero at each end to w

a) 
wl2

8
b) wl3

12
c) wl2

12
) 

wl2

24
.
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15.

a) wl wl
4 2

, b) wl wl
4 4

, c) 
wl wl
8 8

, ) wl wl
8 4

, .

16.
zero at one end to w

a) wl2

24
b) wl2

8
c) 

wl2

9 3
) wl2

8 3
.

ANSWERS

 1. a) 2. c) 3. c) 4. ) 5. b) 6. c) 7. b) 8. c)  9. b)

 10. c) 11. ) 12. c) 13. ) 14. c) 15. b) 16. c). 
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EXERCISES

1.

Fig. 4.36

Ans. M m at 3 m from E A).

2. Draw the shear force and bending moment diagrams for the beam shown in Fig. 4.37.

Fig. 4.37

Ans. MC = M m).

3.  

Fig. 4.38

Ans. M B;  M m, 1.333 m left of C).
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4. Draw the shear force and bending moment diagrams for the beam shown in Fig. 4.39.

Fig. 4.39 

  Ans F w l x
lo. cos= ⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟π

π ; M = wo l
π

⎛
⎝
⎜

⎞
⎠
⎟  sin 

π x
l

⎛
⎝
⎜

⎞
⎠
⎟ ; M  = wo l

π
⎛
⎝
⎜

⎞
⎠
⎟ , at  = 

l ⎞
⎠
⎟ .

5. Draw the shear force and bending moment diagrams for the beam shown in Fig. 4.40.

Fig. 4.40

Ans. B.M. just to the left of C m; B.M. just to the right of   C m).
6. Draw the shear force and bending moment diagrams for the beam shown in Fig. 4.41.

Fig. 4.41

Ans. B.M. just to the right of D m; B.M. just to the left of D m).
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7.

Fig. 4.42

Ans. MB = M m).

8. Draw the shear force and bending moment diagrams for the beam shown in Fig. 4.43.

Fig. 4.43

Ans. M m).

9. Draw the shear force and bending moment diagrams for the beam shown in Fig. 4.44.

Fig. 4.44

Ans. M m).
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10. 

Fig. 4.45

Ans. MC m; MD m; ME m).
11.

Fig. 4.46

Ans. B.M. just to the left of C m
  B.M. just to the right of C m
  MD m, ME m).
12.  Draw the shear force and bending moment diagrams for the beam shown in Fig. 4.47.

Fig. 4.47
Ans. MC m; MD = m).

13.

Fig. 4.48

Ans. MC m, B.M. just to the right of D m
  B.M. just to the left of D m).
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14.  Draw the shear force and bending moment diagrams for the beam shown in Fig. 4.49.

Fig. 4.49
Ans.  FB FA

For AC
For BC

MA = MB = 0 
M D

M D M
MC 

15.

Fig. 4.50

Ans. FB = 
For BD

F D
For CD

F C
For AC

MA = MB = 0).
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Moscow to St. Petersburg. He developed the now widely used approximate 
theory for shear stresses in beams, also called the shear formula and applied 
his theory to various shapes of beams.
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5.1 PURE BENDING IN BEAMS  
When external loads are applied on a beam, it bends in a curve due to bending moments produced. 
Stresses produced in the beam may be shear and bending. If only bending stresses are considered and 
shear force is neglected, the beam is said to be under pure bending or simple bending. Bending stresses 
may be tensile and compressive. If a cantilever beam is loaded as shown in Fig. 5.1(a), its upper layer 
is under tension and the bottom layer is in compression as is shown in Fig. 5.1(b). In between the two 
layers, there is a plane where no stress is acting. Such a plane is known as neutral plane. The magnitude 
of bending stress at any depth of a beam is proportional to its distance from the neutral plane.

Fig. 5.1

5.2 SIMPLE BENDING THEORY 
The beam upon loading bends in the form of a curve, known as elastic curve. Following assumptions 
are considered for the simple bending equation: 
   The material of the beam is isotropic and homogeneous.
   The transverse sections of the beam, which were plane before bending remain so even after 

bending.
   The Young’s modulus of elasticity of the beam material remains same in tension as well as 

in compression.
   The stresses produced are within the elastic limits.
   The radius of curvature of the beam is very large as compared to its cross-sectional 

dimensions.
   There is no resultant push or pull on the cross-section of the beam.

 The loads are applied in the plane of bending.

 Let us consider certain portion of a beam being subjected to pure bending as shown in Fig. 5.2, where 
GH represents the neutral plane. The beam bends in a curve of radius R, known as radius of curvature. 
The two transverse sections AC and BD meet at point O, known as centre of curvature, making an angle  
between them.
 A layer EF of beam at a distance y from the neutral plane is considered.
  GH = R
 and  EF  = (R + y) 
 The strain produced in EF is given as

   = 
EF GH

GH
−

 = 
( )R y R

R
+ −θ θ

θ
 = 

y
R   ... (5.1)
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Fig. 5.2

 From Hooke’s law, we have

  
Stress
Strain

 = E

   
σb

∈
  = E

 = 
σb

E
 ...(5.2)

 where  b  = Bending stress
  E  = Modulus of elasticity of the beam material
 From equations (5.1) and (5.2), we have

  y
R

  = 
σb

E

 or   
σb

y
  = 

E
R

  ... (5.3)

 For a given loading condition, E
R

 is constant. Hence, the bending stress varies directly proportional to 

its distance from the neutral plane. Bending stress is maximum at outermost layer of beam, where y is 
maximum and zero at neutral plane, where y is zero.
 The transverse section of beam is shown in Fig. 5.2 (b). An elemental area a is considered at a distance 
y from the neutral axis.

Force acting on the elemental area
   = b  a

Moment of this force about the neutral axis (NA)
   = b  a  y

   = 
E
R

 y2 a  (using equation (5.3))
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The moment of resistance is 

   
E
R∑ y2 a

The moment of resistance is equal to bending moment M.

   M  = 
E
R∑  y2 a = 

E
R

y a2 δ∑

where y a2 δ∑  = Second moment of area about the neutral axis = I

Hence, M  = 
E
R

 . I

or  
M
I

  = 
E
R

  ... (5.4)

 Comparing equations (5.3) and (5.4), we have

  
σb

y
  = 

E
R

 = 
M
I

  ... (5.5)

Equation (5.5) is known as simple bending equation or .

5.3 POSITION OF THE NEUTRAL AXIS 
Let us consider the cross-section of a beam (Fig. 5.2 (b)). For equilibrium of the section, net force acting 
on it must be zero.
 Force acting on the elemental area

   = E
R

 y a 

Total force on the beam section

   = 
E
R∫ y a = 

E
R

y aδ∫

For equilibrium  E
R

y aδ∫   = 0

or   y aδ∫   = 0 

since 
E
R

 is a constant quantity.

 In the above equation, a  0 but y = 0, indicating that the distance from the neutral axis to the centroid 
of the cross-sectional area must be zero. Hence, the neutral axis always passes through the centre of the 
area i.e., its centroid.
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5.4 SECTION MODULUS 
From bending equation, we have

  
M
I

  = 
σb

y
 The bending stress is maximum, when y is maximum.

  
M

bσ max

 = 
I

ymax
 = S

where  S  = Section modulus = 
I

ymax

 The unit of S is 3, and it is a measure of strength of beam section. The bending stress can be 
expressed as

  bmax
  = 

M
S

  ... (5.6)

5.5 COMPOSITE BEAM 

and iron. One of the materials of the beam is called reinforcing material and is used to increase the strength 
of the beam. The basic assumptions of simple bending theory are applicable to composite beams.
 A composite beam consisting of a wooden beam and two steel plates is shown in Fig. 5.3. The two 
materials are rigidly connected and hence they have the same radius of curvature and same strains are 
produced in both of them. 

Fig. 5.3

 Let  s  = Stress produced in the steel plate
  w  = Stress produced in wood
  Es  = Modulus of elasticity of steel
  Ew  = Modulus of elasticity of wood
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 Now Strain in steel = Strain in wood

   
σs

sE
  = 

σw

wE

or  
σ
σ

s

w
  = 

E
E

s

w
 =   ... (5.7)

where   = Modular ratio

 The moment of resistance of the steel plate is given as

  Ms  = s 
I
y
s   ... (5.8)

where  Is = Moment of inertia of the steel plate about the neutral axis (NA)

  y  = distance from neural axis

 The moment of resistance of wood is given as

  Mw  = w
I
y
w   ... (5.9)

where  Iw  = Moment of inertia of the wooden section

 The moment of resistance of the composite beam is the sum of the two moments of resistance.
  M  = Ms + Mw  ...(5.10)

   = s
I
y
s  + w

I
y
w  = 

1
y

 [ s Is + w Iw]  ...(5.11)

   = 
σw

y
 [ s + Iw] (using equation (5.7)) ... (5.12)

But  Iw  = bd 3

12

  Is  = 2. td 3

12
 = td 3

6

and y = 
d
2

 

 Using Is, Iw and y in equation (5.11), we have

  M  = σwd 2

6
 (b + 2 )  ... (5.13)
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or  M  = 
σsd

2

6
 

b
m

t+⎛
⎝⎜

⎞
⎠⎟

2  ... (5.14)

 Hence, the moment of resistance of the composite beam is similar to that of a wooden beam of width 
(b + 2 ) and depth d. The resulting wooden beam is called equivalent beam. Alternatively, it is also 

similar to that of an equivalent steel beam of width 
b
m

t+⎛
⎝⎜

⎞
⎠⎟

2  and depth d.

5.6 BEAMS OF UNIFORM STRENGTH 
We have seen that bending moment is maximum at the centre and zero at the two support ends of a 
simply supported beam. If the beam is designed in such a way that it has uniform bending stress over the 
entire span so that it has uniform strength throughout its length, then the resulting beam is called a beam 
of uniform strength. For that, beam is expected to have minimum cross-section at the two supports and 
gradually increasing towards the centre of the beam, thus preventing wastage of material. The change 
in cross-section is made effective by
 (a) Keeping width of beam constant, but reducing its depth
 (b) Keeping depth of beam constant, but reducing its width
 (a) When width is constant and depth is varying.
  Consider a simply supported beam of length l carrying a point load W at the centre (Fig. 5.4). 

The reactions at the two supports are found as

  RA  = RB = 
W
2

Fig. 5.4

 Let D be a point at a distance  from A, where depth is required to be found.
 The bending moment at D is given as

  MD  = 
W x
2

 The moment of resistance is   
2bd

6
D  . (using bending equation)
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 where dD represents the diameter of the beam at D.

 Equating the two moments, we have

    
2bd

6
D   = 

W
2

or  dD  = 
3Wx

bσ   ... (5.15)

Since W,  and b are constants for a given beam, hence depth at any section is proportional to , 
thereby indicating that the variation of depth is parabolic between points A and B.

The depth at C  (where   = 
l
2

) is

  d  = 
3
2
Wl

bσ   ... (5.16)

 (b) When depth is constant and width is varying.

  Consider the same loading condition. Depth and width are shown in Fig. 5.5. The bending moment at 

D is again W
2

.

Fig. 5.5

The moment of resistance is   b dD
2

6
.

On equating the two moments, we have

   b dD
2

6
  = 

W
2

×  

or bD  = 
3

2
Wx
dσ

  ... (5.17)



Stresses in Beams  215

W, , and d are constants for the beam, hence width at any section is proportional to .

The width at C where x l=⎛
⎝⎜

⎞
⎠⎟2  is

  b  = 
3

2 2
Wl
dσ

  ...(5.18)

Example 5.1  
A 5 m cantilever beam of cross-section 150 mm  300 mm weighing 0.05 kN/m carries an upward 
concentrated load of 30 kN at its free end (Fig. 5.6). Determine the maximum bending stress at a section 
2m from the free end.

  Fig. 5.6

Solution: The bending moment at the section (2 m from the free end) is given as

  M  = 30  2 – 0 50 2 2
2

. × ×⎛
⎝⎜

⎞
⎠⎟

   = 59 kN.m = 59  106 N.mm

The moment of inertia of the beam section about the neutral axis (NA) is given as

  I  = 
1

12
  150  3003 = 3.375  108 mm4

Using bending equation, we have

  
σ b

y   = 
M
I

or  b  = 
M
I

.  y

   = 
59 10

3 375 10

6

8

×
×.

 . 
300

2
⎛
⎝⎜

⎞
⎠⎟

  =  26.22 N/mm2 Ans.

 The top layer of the beam is under compression and the bottom layer is in tension. Both layers are 
subjected to an equal stress of 26.22 N/mm2.
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Example 5.2 
A 5m long steel beam having an I-section is simply supported at its ends (Fig. 5.7). The tensile stress in 
beam does not exceed 25 MPa. Determine the safe uniformly distributed load to be placed on the entire 
span of the beam.

   

Fig. 5.7

Solution: The moment of inertia of the beam section about the neutral axis is given as
  I  = M.I. of rectangle 250 mm  400 mm – 2 (M.I. of

             rectangle 105 mm  320 mm)

   = 
1

12
  250  4003 – 2  1

12
  105  3203 mm4

   = 7.598  10–4 m4

 If w kN/m be the uniformly distributed load to be placed on the entire beam, then the bending 
moment under this condition is

  M  = 
wl2

8
 = 

w× 25
8

 kN m

 Using bending equation, we have

  
M
I

  = 
σb

y

  
w× 25

8   
1

7 598 10 4. × −   = 
25 10

10 400
2

10

6

3 3

×

× ×⎛
⎝⎜

⎞
⎠⎟

−

Solving for w, we get  w = 30.392 kN/m Ans.
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Example 5.3 
A simple steel beam of 4 m span carries a uniform load of 6 kN/m over its entire span and a point load 

assuming depth to be twice of breadth.
Solution: Given, 
 Length of the beam,  l = 4 m
 Uniform load,  w  = 6 kN/m = 6  103 N/m
 Point load,  W  = 2 N = 2 kN = 2  103 N
 Bending stress,  b  = 100  106 N/m2

 Let Width of the beam   = b
 Depth of the beam   = d
  d  = 2b (Given) 

The maximum bending moment due to udl and point load is given as 

  M  = 
wl2

8
 + 

Wl
4

   = 
6 10 4

8
2 10 4

4

3 2 3× × + × ×
 = 14000 N m

The moment of inertia of the beam section about the neutral axis is calculated as

  I  = 
1

12  bd3 = 
1

12
2 3. . ( )b b  = 

2
3

b4

  y  = 
d
2

 = 
2
2
b

 = b

Using bending equation, we have 

  
M
I

  = 
σb

y

  
14000

2
3

4b
  = 

100 106×
b

Solving for b, we get  b = 0.0594 m = 59.4 mm
and  d  = 2b = 118.8 mm
 Hence, the cross-section of the beam is 59.4 mm  118.8 mm. Ans.

Example 5.4 
A simply supported beam of cross-section 50 mm by 50 mm having a length of 800 mm is capable of 
carrying a point load of 3 kN at its centre. This beam is required to be replaced by a cantilever beam of 
the same material having cross-section 50 mm by 100 mm and length 1500 mm. Determine the maximum 
point load that can be placed at the free end of the cantilever. 
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Solution:
For simply supported beam

Load on the beam,  W1  = 3 kN

Length of the beam,  l1  = 800 mm

Width of the beam,  b  = 50 mm

Depth of the beam, d  = 50 mm

The distance of the neutral axis from the outermost layers is

 y1  = 
50
2

 = 25 mm

The moment of inertia of the beam section about the neutral axis is obtained as

 I1  = 
1

12
  50  503  = 520833.33 mm4

The bending moment is given as 

 M1  = 
W l1 1

4  = 
3 800

4
×

 = 600 kN mm

Using bending equation, we have

  
σb

y1
  = 

M
I

1

1

or  b  = 
M
I

1

1
 . y1 = 

600 25
520833 33

×
.

 = 0.0288 kN/mm2

 For cantilever beam 

 Load on the beam,  W2  = ?

 Length of the beam,  l2  = 1500 mm

 Width of the beam,  b  = 50 mm

 Depth of the beam, d  = 100 mm

 The distance of the neutral axis from the outermost layer is 

  y2  = 
100

2  = 50 mm

 The moment of inertia of beam section about the neutral axis is

  I2  = 
1

12
  50  1003  = 4166666.7 mm4

 The bending moment is found as 

  M2  = W2 l2 = 1500 W2 kN mm

 Since both beams are made of the same material, hence equal bending stresses will be developed 
in both of them.
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 Again using bending equation, we have

  
σb

y2
  = 

M
I

2

2

  
0 0288

50
.

  = 
1500 W

4166666.7
2

or  W2  = 1.6 kN  Ans.

Example 5.5
A simple beam of length 5 m carries two types of loads : a udl of 6 kN/m is acting over the entire span 
and a point load of 2 kN at a distance 2 m from the left support. Cross-section of the beam is shown in 
Fig. 5.8. Calculate the maximum bending stress at a distance 3.5 m from the left support.
Solution: Support reactions at A and C 
 Taking moments of the forces about A, we get

  RC  5  = 2  2 + 6 5 5
2

× ×⎛
⎝⎜

⎞
⎠⎟

or  RC = 15.8 kN ( )

 But  RA + RC = 2 + (6  5)  = 32 kN

           

Fig. 5.8

or  RA  = 32 – RC = 32 – 15.8 

   = 16.2 kN ( )

 Bending moment at the desired section XX
 The bending moment at the section is given as 

  M = RA  3.5 – 2  (3.5 – 2) – 6  3.5 3 5
2
.  = 16.95 kN m
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 Calculation of moment of inertia

Component Area ‘a’ of the 
component (mm2)

Distance ‘y’ of the 
centroid of component 

from PQ (mm)

ay 
(mm3)

Rectangle (1) 400 × 250 = 100000            400
2

 = 200 20000000

Circle (2) π
4

× 1502 = 17671.46(–) (400 – 100) = 300 5301437.6 (–)

Total a∑  = 82328.54 — a∑ y =14698562

The distance of the centroid of the whole section or the neutral axis from PQ is given as 

  y   =
ay
a

∑
∑  

   =
14698562
82328 54.

 = 178.5 mm

Hence,  yt  = 178.5 mm

  yc  = (400 – 178.5) mm = 221.5 mm

Now  INA  = Irectangle – Ihole

   =
1

12
250 400 250 400 200 178 53 2× × + × × −⎧

⎨
⎩

⎫
⎬
⎭

⎡
⎣
⎢ ( . )  

    –
π π
64

150
4

150 221 5 1004 2 2× + × × −⎧
⎨
⎩

⎫
⎬
⎭
⎤
⎦
⎥( . )   10–12 m4

   = 1.093  10–3 m4

 Bending stress at XX
 Using bending equation, we have

  
σb
y

  = 
M
I

or  b  = 
M
I

. yc   (since yc > yt )

   = 
16 95 10
1 093 10

3

3
.

.
×
× −   221.5  10–3 N/m2  = 3432343.1 N/m2

   = 3.43 MPa  Ans.
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Example 5.6 
Compare the weights of two equally strong beams of circular sections made of same material, one 

being of solid section and the other of hollow section with inside diameter being 2
3

 of outside 
diameter.

Solution: Let diameter of the solid cicular beam = D

Inside diameter of the hollow circular beam = Di

Ouside diameter of the hollow circular beam = D0

Given,  Di = 2
3

 D0 

The section modulus of the solid beam is given as

  SS  = 
1
y

 = 
π
64

D
D

4

2
⎛
⎝⎜

⎞
⎠⎟

 = π
32

 D3

The section modulus of the hollow beam is given as

  SH  = 
π
64

 (D0
4 – Di

4)/ 
D0
2

 = 
πD D

D
i

o

0
3 4

32
1−

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   = 
πD0

3 4

32
1 2

3
− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = 
65
32 81

0
3πD

×

 Since the beams are of equal strength, hence their section modului are equal.

  SS  = SH

  
π D3

32  = 
65
32 81

0
3πD

×

  D
D0

⎛

⎝
⎜

⎞

⎠
⎟

3

  = 
65
81

or  
D
D0

  = 0.9292 

 Being same material for the two beams, their bending stresses are equal. In other words, ratio of 
their weights is equal to the ratio of their cross-sectional areas.

If  WS  = Weight of the solid beam

  WH  = Weight of the hollow beam

Then  
W
W

S

H
  = π

4
D2 π

4
 (D0

2 – Di
2)
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   = D
D Do i

2

2 2( )−
 = 

D

D D
Do

i

o

2

2
2

1−
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 Using ratios D
D0

 and D
D

i

0

, we get

  
W
W

S

H
 = 

( . )0 9292

1 2
3

2

2
− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = 1.55

  WS  = 1.55 WH  Ans.

Example 5.7
A wire of diameter d is wound round a cylinder of diameter D. Determine the bending stress produced on 

circular and of high tensile steel can be bent without undergoing permanent deformation. Take yield stress 
= 1700 N/mm2 and E = 200 GPa. What is the magnitude of bending moment necessary for this?
Solution: Using bending equation, we have

  
σb
y

 = 
E
R

  
σb

d( / )2
 = 

E
D( / )2

 
y d R D= =⎛

⎝⎜
⎞
⎠⎟2 2

and

  b = E d
D

×   Ans.

 or D = 
E d

b

×
σ

   = 200 10 10 10
1700 10

9 3

6
× × ×

×

−
m  

σb

d
=
=

⎛

⎝⎜
⎞

⎠⎟
1700

10
N/mm

mm

2

   = 1.17647 m  = 1176.47 mm

 Now R = 
D
2

 = 
1176 47

2
.

  = 588.23 mm  Ans.

 Again using bending equation , we have

  M = 
σb

d
I

( / )2
×  = 

2
64

4σ πb
d

d×

   = 
π 3d
32

 × b = 
π× × × ×−( )10 10 1700 10

32

3 3 6
 = 166.9 N.m  Ans.
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Example 5.8 

The shear force diagram for a rectangular cross-section beam AD is shown in Fig. 5.9. Width of the beam 
is 100 mm and depth is 250 mm. Determine the maximum bending stress in the beam.
Solution: Given,

Width of the beam, b = 100 mm

Depth of the beam, d = 250 mm

Fig. 5.9 shows that shear force at D is zero and it gradually increases to 5 kN (15 kN – 10 kN) at C 
indicating that there is a udl of intensity 5 kN/m between C and D. At C, the shear force increases 
further by 5 kN. There is no load on BC, hence the SFD between B and C remains constant. At B, 
the shear force further increses by 5 kN so that between A and B, the shear force remains constant at 
15 kN. The loaded beam is shown in Fig. 5.10.

             

 Fig. 5.9  Shear Force Diagram (SFD). Fig. 5.10  Loaded Beam.

The bending moments at different points are given as

  MD = 0

  MC = − × ×5 1 1
2

   = – 2.5 kN.m

  MB = − × − × × +⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥5 1 5 1 1 1

2

   = – 12.5 kN.m

  MA = − × − × + − × + +⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥5 1 5 1 1 5 1 1 1 1

2
( )

   = – 27.5 kN.m = Mmax

The moment of inertia of the cross-section of the beam is found as

  I = 
1

12
1

12
100 10 250 103 3 3 3 4bd = × × × ×− −( ) ( ) m

   = 1.302 × 10–4 m4
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The maximum bending stress is given by

b = 
M
I

d
2  (y = d/2)

   =  
− ×

×
×

×
×−

−27 5 10
1 302 10

250 10
2

1
10

3

4

3

6
.

.
 MPa

   = – 26.4 MPa

   = 26.4 MPa (Compressive)  Ans.

Example 5.9

A composite beam is made by placing two steel plates, 10 mm thick and 200 mm deep, one 
each on both sides of a wooden section 100 mm wide and 200 mm deep. Determine moment 

of resistance of the section of beam. Given, E
E

s

w
 = 20. The stress in the wood should not exceed  

7.5 N/mm2.

Solution: The composite beam is shown in Fig. 5.11.

Fig. 5.11

Given, Thickness of the steel plate, t = 10 mm

Depth of the steel plate and the wooden section, d = 200 mm

Width of the wooden section, b = 100 mm

Modular ratio,  = σ
σ

s

w

 = 
E
E

s

w
 = 20

Stress in wood,  w  = 7.5 N/mm2

Stress in the steel plate,  s  = m w

  = 20 × 7.5 = 150 N/mm2
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The moment of resistance of the steel plate is given as

 Ms  = s.
I
y
s  (using equation (5.8))

  = s
2

12

3

. td⎛

⎝
⎜

⎞

⎠
⎟  .

1
2( / )d

 

  = σs td 2

3
 

  = 
150 10 200

3

2× × ( )
 

  = 20000 kN mm
The moment of resistance of the wooden section is given as

 Mw  = w

I
y
w  (using equation (5.9))

  = w 
bd 3

12
. 1

2( / )d
 

  = 
σw bd 2

6
 = 

7 5 100 200
6

2. ( )× ×
 

  = 5000 kN mm
Hence, the moment of resistance of the composite beam is given as

  M  = Ms + Mw 

   = (20000 + 5000) kN.mm

   = 25000 kN mm Ans.

Example 5.10 
 250 mm deep, is reinforced by a steel 

to exceed 8.5 N/mm2.   Take Es = 2  105 N/mm2 and Ew = 104 N/mm2.
Solution:
 For timber joist
 Width,  b  = 80 mm
 Depth,  d  = 250 mm
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Fig. 5.12

Maximum bending stress,

  w  = 8.5 N/mm2

For steel plate
Width,  b  = 25 mm

Depth,  d  = 180 mm

and  = 
E
E

s

w
 = 20

 The stress in the timber at a distance 90 mm from neutral axis (NA) is given as

  w  = 8 5
125

.   90 = 6.12 N/mm2

 Strain in the timber at 90 mm from NA is

  w  = 
′σw

wE  = 6 12
104

.  = 6.12  10–4

 At 90 mm from neutral axis, strains in timber as well as in steel are same.

 Maximum stress in steel is given as

  s  = Es  s

   = 2  105  6.12  10–4  = 122.4 N/mm2 ( s = w)

 The moment of resistance of timber is given as

  Mw  = w
. I

y
w  (using equation (5.9))

   = 8.5  
1

125
1

12
160 250 1

12
25 1803 3× × − × ×⎛

⎝⎜
⎞
⎠⎟

 

   = 13340467 N mm
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 The moment of resistance of steel is given as

  Ms  = s . 
I
y
s  (using equation (5.8))

   = 122.4  
1
90

1
12

25 1803× ×⎛
⎝⎜

⎞
⎠⎟

 = 16524000 N mm

  M  = Mw + Ms

   = (13340467 + 16524000) N mm

   = 29864467 N mm Ans.

5.7 SHEAR STRESSES IN BEAMS 
In the derivation of bending equation, the beam is assumed to be subjected to pure bending and no shear 
force is considered. As a result, only longitudinal stresses, called bending stresses are produced in such 
cases. Now if beam is loaded in the transverse direction, as is the case most common in practice, shear 
stresses and bending moments both are produced. Shear stresses are due to shear force acting along 
depth of the transverse cross-section of beam. For equilibrium of the cross-section, complementary shear 
stresses of equal intensity are considered on longitudinal planes parallel to the axis of beam. Calculation 
of shear stresses are important although shear deformations are relatively small and bending stresses are 
dominating in majority of the cases.

5.8 SHEAR STRESS DISTRIBUTION (GENERAL CASE) 
Let us consider a small length AB =  of the beam (Fig. 5.13).

  M  = Bending moment at left side, that is, at AA

  M + M  = Bending moment at right side, that is, at BB

  

Fig. 5.13
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 Consider an elementary area a at a height y from the neutral axis.
 From bending equation, we have 

  AA   = 
M
I

 y  (bending stress at AA )

     and  BB   = 
( )M M

I
+ δ

 y  (bending stress at BB )

 The force acting on face CC  of the elemental area at A is 

  F1  = 
M
I

 y a

 The force acting on face DD  of the elemental area at B is 

  F2  = ( )M M
I
+ δ  y a

where  a  = b. y

 Net unbalancing force (longitudinal) acting on the elementary area between A and B

   = F2 – F1

   = 
( )M M

I
+ δ

 y a – M
I

 y a = δM
I

 y a

 Total unbalanced force acting on the area between A and B

   = 
δM

Iy

y

1

2

∫  y a

 This force is balanced by shear force (longitudinal) acting on the area between A and B and is 
equal to

   .b.

where    = Shear stress at the section 

 Equating two forces, we have 

   . b .  .  = 
δM

Iy

y

1

2

∫  y a 

or    = 
dM

I bdx
y a

y

y

.
1

2

∫ δ  = 
1

1

2

Ib
dM
dx

y a
y

y
⎛
⎝⎜

⎞
⎠⎟ ∫ δ

   = 1

1

2

Ib
V y a

y

y

δ∫  = 
VQ
Ib

= 
V
Ib

A y   ... (5.19)

where  V  = Vertical shear force at the section
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  y a
y

y

δ
1

2

∫  = First moment of area of the cross-section above C D  about the neutral axis
   = Q
   = A y

  y  = Distance of C.G. of area above the plane C D  where the shear stress is 

 For a given section of beam, I and b are constants. Hence, the variation of shear stress depends 
upon A y . The shear stress is maximum for the maximum value of A y  and is minimum for the 
minimum value of A y . Accordingly, the shear stress is maximum at the neutral axis and zero at 
extreme faces of beam.

5.9 SHEAR STRESS DISTRIBUTION IN A RECTANGULAR CROSS-SECTION 
 Refer Fig. 5.14.
 Let  b  = Width of the beam

  d  = Depth of the beam 

  max  = Maximum shear stress

    = Shear stress at CD

  y  = Distance of plane at CD from the neutral axis

  Ay  = Distance of C.G. of ABDC

  I  = Moment of inertia of cross-section about the neutral axis

   = 
1

12
bd 3

Fig. 5.14
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  A  = Area ABDC = 
d y
2
−⎛

⎝⎜
⎞
⎠⎟

 b

    Ay = y + 
1
2 2

d y−⎛
⎝⎜

⎞
⎠⎟

 = 
1
2 2

d y+⎛
⎝⎜

⎞
⎠⎟

 Hence, the moment of area ABDC about the neutral axis is given as

  Ay  = d y
2
−⎛

⎝⎜
⎞
⎠⎟

b  1
2

d y
2
+⎛

⎝⎜
⎞
⎠⎟

 = 
b d y
2 4

2
2−

⎛

⎝
⎜

⎞

⎠
⎟

 Using equation (5.19), we have

    = 
V
Ib

A y  = 
V
Ib

  
b d y
2 4

2
2−

⎛

⎝
⎜

⎞

⎠
⎟

   = 
V
I

d y
2 4

2
2−

⎛
⎝⎜

⎞
⎠⎟   ... (5.20)

 This is the equation of a parabola, hence the shear stresss variation is parabolic in nature  
(Fig. 5.14 (b)).

 For maximum shear stress, put y = 0.

 Equation (5.20) reduces to an equation giving maximum value of shear stress as 

  max  = 
V
I2

. d 2

4

   = 
V

bd2
12

3× 1   d 2

4
 = 3

2
V
bd

  ... (5.21)

 For minimum shear stress, put y = 
d
2

 Equation (5.20) reduces to an equation giving minimum value of shear stress as
  min  = 0  ... (5.22)

 Hence, the shear stress is zero at extreme faces of the cross-section for which  y = 
d
2

.

The average shear stress is given as 

  av = 
V
bd

  ... (5.23)

  max  = 
3
2 av ... (5.24)
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5.10 SHEAR STRESS DISTRIBUTION IN A CIRCULAR CROSS-SECTION  
Refer Fig. 5.15.

Let  r  = Radius of the circular section

  I  = Moment of inertia of the beam cross-section about the neutral axis

   = π
4

r4 = 
π
64

d 4, d being diameter

Fig. 5.15

 Consider an elementary strip ABDC of thickness dy at a distance y from the neutral axis.
  b  = Width of the strip 

   = 2 r y2 2−  ...(5.25)

 Moment of the strip about the neutral axis
   = Area of the strip  y
   = bdy  y

   = ( )2 2 2r y dy− ×   y = 2y r y2 2−  dy

 The moment of the area above CD about the neutral axis is Ay, given by 

  Ay   = 2 2 2y r y
y y

y r

−
=

=

∫ dy ...(5.26)

 From equation (5.25)

  b  = r y2 2−
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or  b2  = 4 (r2 – y2)

   = 4r2 – 4y2

 Differentiating both sides w.r.t. y, we have

  2b
db
dy   = 0 – 4  2y 

   = – 8y

or  ydy  = −
bdb

4
 ... (5.27)

  Making necessary changes in the limits of integration, we have 

when  y  = y, b = b

  y = r, b = 0

 Using equations (5.25), (5.27) and changed limits of integration, equation (5.26) changes to 

  A y   = 
b db

b

20

4∫  = –
1
4 3

3 0
b

b

⎛

⎝
⎜

⎞

⎠
⎟  = 

1
12

3b   ... (5.28)

 Using equation (5.19), we have 

    = 
V
Ib

Ay  = 
V
Ib

 1
12

3b  = 
V b

I

2

12

   = 
V

I
r y

12
4 2 2( )−  = 

V
I3

 (r2 – y2)  ... (5.29)

 This is an equation of parabola suggesting that shear stress variation is parabolic in nature. The 
shear stress is maximum, when y = 0 (at the neutral axis).

  max  = 
V
I3

  r2  ... (5.30)

 The shear stress is minimum, when y = r.

  min  = 0 ... (5.31)

 On substituting I

  max  = 
V

r3
4

4× π   r2 

   = 
4
3 2

V
rπ   ... (5.32)
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 The average shear stress is given as

  av  = 
V
rπ 2   ...(5.33)

 Comparing equations (5.32) and (5.33), we have 

  max  = 4
3

 av ... (5.34)

5.11 SHEAR STRESS DISTRIBUTION IN AN I-SECTION 
Refer Fig. 5.16.

Fig. 5.16

Let   D  = Depth  of I-section

 d  = Depth of the web

 B

 b  = Width of the web

 I  = Moment of inertia of I-section about the neutral axis (NA)

 V  = Shear force at the section

 

 For the hatched portion at a distance y from the neutral axis, we have

  A y  = B D y y D y
2

1
2 2

−⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥ + −⎛

⎝⎜
⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥

where y  is the distance of centroid of the hatched portion from the neutral axis.

or  A y  =
B D y
2 4

2
2−

⎛

⎝
⎜

⎞

⎠
⎟   ... (5.35)
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 Using equation (5.19) and making necessary changes, we have

   = 
V
IB

  B
2

D y
2

2

4
−

⎛

⎝
⎜

⎞

⎠
⎟  = 

V
I

D y
2 4

2
2−

⎛
⎝⎜

⎞
⎠⎟   ... (5.36)

y = 
D
2

  u  = 0  ... (5.37)

y = 
d
2

  l  = 
V
I8

 (D2 – d 2)  ... (5.38)

 Shear stress distribution in the web
 Consider Fig. 5.17.
 For any section XX in the web, we have

  A y   = B D d d D d−⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥ + −⎛

⎝⎜
⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥2 2

1
2 2  + b d y y d y

2
1
2 21 1 1−⎛

⎝⎜
⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥ + −⎛

⎝⎜
⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥

Fig. 5.17

   = 
B D d
8

2 2( )−  +
b d y
2 4

2

1
2−

⎛

⎝
⎜

⎞

⎠
⎟   ...(5.39)

Using equation (5.19), we have 

    = 
V
Ib

Ay
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   = V
Ib8

 [B (D2 – d2) + b (d2 – 4y1
2)] ....(5.40)

 The shear stress increases as y1 decreases and is maximum when y1 = 0. The variation of the shear 
stress is parabolic in the web section.

  max  = 
V
Ib8

 [B (D2 – d2) + bd2  ... (5. 41)

y1 = 
d
2

), the shear stress is found to be

  j = 
VB

Ib8
 (D2 – d2) ...(5.42)

The shear stress distributions for some other sections are given in Table 5.1.

Table 5.1

Section

1. Triangular

2.  Thin circular
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Example 5.11 
A T-section beam shown in Fig. 5.18 is subjected to a shear force of 10 kN. Draw the shear stress 
distribution diagram.
Solution: Distance of the neutral axis (NA

   
500 20 10 600 20 300 20

500 20 600 20
× × + × × +

× + ×
( )

 = 179 mm

 Distance of the neutral axis from PQ is  
  620 – 179 mm  = 441 mm

`

  Fig. 5.18

 The moment of inertia of the section about the neutral axis (NA) is given as

  I  = I1 + I2

   = 
500 20

12
500 20 179 10

3
2× + × × −

⎡

⎣
⎢

⎤

⎦
⎥( )  + 

20 600
12

20 600 441 300
3

2× + × −
⎡

⎣
⎢

⎤

⎦
⎥

( ) ( )  

(using parallel-axes theorem)
   = 8.84  108 mm4

  y f   = 179 – 10 = 169 mm

  l  = 
V
Ib  A y   = 

10 10 500 20 169
8 84 10 500

3

8

× × × ×
× ×
( )

.
 = 0.038 N/mm2

 Maximum shear stress 

  Ay   = 500  20  (179 – 10) + (600 – 441)  20 ( )600 441
2
−  = 1.69  106 mm3
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 The maximum shear stress occurs at the neutral axis (NA), given by 

  max  = 
VAy

Ib  = 
10 10 1 69 10

8 84 10 20

3 6

8

× × ×
× ×

.
.

 = 0.955 N/mm2

  0.038  500
20

 = 0.95 N/mm2

 
Fig. 5.19 (b).

Fig. 5.19

Example 5.12
An I-section beam shown in Fig. 5.20 is subjected to a bending moment of 50 kN.m at its certain section. 
Find the shear force at the section, if the maximum stress is limited to 100 N/mm2.
Solution: Refer Fig. 5.20.

  y  = Distance of the C.G

  A

Fig. 5.20
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   = 160  30 = 4800 mm2

  I  = 1
12

  160  3603 – 2 1
12

  72.5  3003 = 2.9583  108 mm4

    = 
VAy

Ib
 = 

V × ×
×

4800 165
2 9583 108.

 = 1.7848  10–4 V  ... (1)

    = 
M
I

y (using bending equation)

   = 
50 10 10
2 9583 10

150
3 3

8
× ×

×
×

.
 = 25.35 N/mm2

The maximum stress (principal) is given as

  100  = σ
2

 + 
σ τ2 24

2
+

   100  = 12.675 + 
642 62 4

2

2. + τ
 

 Solving for , we get

    = 86.4 N/mm2

 Also   = 1.7848  10–4 V (using equation (1))

which gives V = 
86 4

1 7848 10 4
.

. × −  = 4.84  105 N  Ans.

Example 5.13 
A beam of square cross-section is placed on one of its diagonal horizontally (Fig. 5.21(a)). It is subjected 
to a shear force V. Draw the shear stress distribution diagram.

Fig. 5.21
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Solution: Refer Fig. 5.21.
Let a = Side of the square PQRS

  d = Diagonal of the square = 2a
Consider a section XX at a distance y from P.
The Moment of inertia of the square section about the neutral axis (NA) is given as 

 I  = 2  
d d× ⎛

⎝⎜
⎞
⎠⎟2

12

3

 = 
d 4

48

Cross-sectional area above XX, A = 
1
2

  2y  y = y2

The shear stress at XX is given as

    = 
V Ay

Ib
.

 (using equation (5.19))

   = 
V y d y

d y

. .2

4
2

2
3

48
2

−⎛
⎝⎜

⎞
⎠⎟

×

   = 
6

2
2
34

2V
a

a y y−⎛
⎝⎜

⎞
⎠⎟               (in terms of a) ... (1)

 This is the equation of a parabola, suggesting that the variation of the shear stress is parabolic in 
nature.
 For  to be maximum, we have

  
d
dy
τ

  = 0

 which gives  y  = 
3

4 2
a

 = 
3
8
d

 Position of the maximum shear stress from the neutral axis (NA) is 

  3
8
d  – d

8
  = 

a
4 2

 

 Using equation (1), we have

  max  = 
6

2
3

4 2
2
3

9
324

2V
a

a a a. .−
⎛

⎝⎜
⎞

⎠⎟
 = 9

8
 

V
a2  ... (2)

 The average shear stress occurs at the neutral axis, given by

  av  = 
V
a2

 Now  
τ
τ
max

av
  = 

9
8

 = 1.125

 The shear stress distribution is shown in Fig. 5.21 (b).
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Example 5.14
The cross-section (Fig. 5.22) of a steel beam  is subjected to a shear force of 20 kN. Draw the shear 
stress distribution diagram.
Solution: The moment of inertia of cross-section about the neutral axis (NA) is given as

  I  = 1
12

  120  1603 – 
π
64

 (90)4  = 3.77  107 mm4

Fig. 5.22

 The moment of interia is calculated by assuming that given cross-section is made of a rectangu-
lar cross-section 120 mm  160 mm minus two semi circles equivalent to a full circle of diameter  
(45 + 45) mm = 90 mm.
 Shear stresses at L and Y (where y  = 0) are zero.

 Shear stress at Q and S
  Area above Q, A = (120  35) mm2  = 4200 mm2

 Distance of the centroid of this area from the neutral axis (NA) is

  y   = 45 + 
35
2

 = 62 .5 mm

 Now    = 
VAy

Ib
 

   = 
20 10 4200 62 5

3 77 10 120

3

7
× × ×

× ×
.

.
 = 1.16 N/mm2

 This is the shear stress at Q. By symmetry, the shear stress at S = 1.16 N/mm2, that is,  
MN = XZ = 1.16 N/mm2. The variation of the shear stress between L and N, and between Y and Z is 
parabolic in nature.
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 Shear stress at the neutral axis 

  Ay  = 120  80 80
2

 – 
π

π
× × ×⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

45
2

4 45
3

2
 = 323250 mm3

 Now  NA  = max = 
VAy

Ib
 = 

20 10 323250
3 77 10 30

3

7
× ×

× ×.
 = 5.71 N/mm2

 The shear stress distribution is shown in Fig. 5.22 (b).

Example 5.15 
A T
udl

Fig. 5.23

Solution: The beam AB BC
 Support reactions at  A and C

 Using MA 

   RC  6 – 5  2 3 3 2
2

+ +⎛
⎝⎜

⎞
⎠⎟

 3 = 0

or  RC )

 Now  RA + RC

or  RA )

C and D, at a distance x A, the bending moment is

  Mx  = RA x x – 3)

   = 18.33x x +120 = – 21.67x + 120

 Bending moment at D, where x = 3 m, is

  MD  = – 21.67 m = Mmax 

 Bending moment at C, where x = 6 m, is

  MC  = – 21.67  6 + 120 = – m
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 Calculations for bending stresses
 Refer Fig. 5.24(a).

 If the neutral axis is located at a distance of y

   y  = 
150 30 30

2
30 270 30 270

2
150 30 30 270

× ×⎛
⎝⎜

⎞
⎠⎟
+ × × +⎛

⎝⎜
⎞
⎠⎟

× + ×( ) ( )
 = 111.42 mm

 The moment of inertia of whole section about the neutral axis (NA) is given as 

  I  = 
150 30

12

3×
 + 150  30 111 42 30

2

2
. −⎡

⎣⎢
⎤
⎦⎥

    +
30 270

12

3×
 + 30  270 188 58 270

2

2
. −⎛

⎝⎜
⎞
⎠⎟

   = 1.146  108 mm4

  C  = 
M

I
ymax ×

   = 
54 99

1 146 108
.

. ×
  111.42 = 0.0534 MPa  

  

Fig 5.24

 The bending stress at the lower part of the beam is tensile, given by

  t  = 
54 99

1 146 108
.

. ×
  (300 – y )
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   = 
54 99

1 146 108
.

. ×
  (300 – 111.42) = 9.04  10–5 kN/mm2

   = 0.0904 MPa

Calculations for shear stresses
 Since RC > RA, hence maximum shear force is equal to 

  RC  = 31.67 kN, which occurs at C (= V).

  (Ay  30  (111.42 – 15) 

   =  433890 mm3

 ( y
 b  = 150 mm

  l  = 
VAy

Ib
 

   = 
31 67 433890

1 146 10 1508
.

.
×
× ×

 kN/mm2 

   = 8  10–4 kN/mm2  = 0.8MPa

  j  = 
31 67 433890
1 146 10 308

.
.

×
× ×

 kN/mm2  (b = 30 mm)

   = 4  10–3 kN/mm2 = 4 MPa

 The shear stress at the neutral axis is maximum, given by 

  NA  = max 

   = 
31 67 533328 25
1 146 10 308

. .

.
×
× ×

   = 4.91  10–3 kN/mm2 = 4.91 MPa

 [ b = 30 mm and Ay  = 150  30  (111.42 – 15) + 30  (111.42 – 30)  111 42 30
2

. −⎛
⎝⎜

⎞
⎠⎟

 

   = 533328.25 mm2]

 The shear stress distribution diagram is shown in Fig. 5.24 (c) and the bending stress distribution 
diagram in Fig 5.24 (b).
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1. The section modulus is the ratio of
  (a) Moment of inertia and bending stress
  (b) Moment of inertia and the distance from neutral axis
  (c) Moment of inertia and modulus of elasticity
 (d) Modulus of elasticity and moment of inertia. 

2. The section modulus for a circular beam of diameter d is given as

 (a) 
π
64

d4  (b) 
π
64

 d3 (c) 
π
32

 d 3  (d) 
π
64

d 2.

3. The section modulus for a rectangular beam of width b and depth d is given as

 (a) 
1

12
 bd3 (b) 

1
6

bd3 (c) 
1

12
 bd2 (d) 

1
6

bd2.

4. The moment of inertia of a circular section of diameter d about the neutral axis is given as

 (a) 
π
64

d4 (b) π
32

 d4 (c) 
π
64

 d3 (d) π
32

 d3.

5. The bending stress is proportional  to 
 (a) moment of inertia   (b) modulus of elasticity
 (c) its distance from neutral axis (d) radius of curvature.

6. The bending stress is maximum at 
 (a) neutral axis   (b) top layer of beam
 (c) bottom layer of beam (d) top and bottom layer of beam.

  
MULTIPLE CHOICE QUESTIONS

  

SHORT ANSWER QUESTIONS
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7. The bending stress is zero at 
 (a) neutral axis   (b) top layer of beam
 (c) bottom layer of beam (d) top and bottom layer of beam.

8. The strength of a beam depends upon 
 (a) modulus of elasticity  (b) bending moment
 (c) section modulus   (d) radius of curvature.

9. The bending equation is valid for a beam subjected to 
 (a) only bending moment and no shear force (b) combined bending and shear force
 (c) shear force only    (d) normal force only.

10. A composite beam is made of 
 (a) more than one material (b) three materials
 (c) more than one cross-section  (d) plastic material.

11. The shear stress at neutral axis of a rectangular section is
 (a) average shear stress   (b) maximum shear stress
 (c) minimum shear stress (d) none of these.

12.  For a triangular section, the shear stress is maximum at a height of

 (a) H
4

 from the base   (b) 
2
3
H

 from the base

 (c) H
3

 from the base   (d) H
2

 from the apex.

13. The shear stress variation across a rectangular section is

 (a) hyperbolic (b) parabolic (c) circular (d) elliptical.

14. The relationship between maximum shear stress and average shear stress for a rectangular section 
is given as

 (a) av = 1.33 max (b) max = 1.33 av (c) av = 1.5 max (d) max = 1.5 av.

15. The ratio of maximum shear stress and average shear stress for a triangular section is

 (a) 0.66 (b) 1.33 (c) 1.5 (d) 0.75.

16. In the equation of shear stress, y
 (a) two extreme faces of section
 (b) neutral axis and the C.G. of the area above the neutral axis
 (c) neutral axis and the extreme face of the section  
 (d) none of these.
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17. Compared to the bending deformation, the shear deformation is

 (a) large (b) small (c) very large (d) zero.

18. The shear stress varies directly proportional to
 (a) moment of inertia about the neutral axis
 (b) width of the beam
 (c)  distance between the neutral axis and the centroid of the area above the neutral axis
 (d) normal stress.

19. The shear stress is maximum, where the 
 (a) bending stress is minimum 
 (b) bending stress is maximum
 (c) bending stress is zero 
 (d) bending stress is negative.
20. The shear stress variation for an I-section is represented as

               
21. For  a beam of square cross-section and whose one of the diagonals is placed horizontally, the shear 

stress variation is shown as
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22. For a beam of cross-section shown in Fig. 5.25, the shear stress variation is shown as 

Fig. 5.25

ANSWERS

 1. (b) 2. (c) 3. (d) 4. (a) 5. (c) 6. (d) 7. (a) 8. (c)

 9. (a) 10. (a) 11. (b) 12. (d) 13. (b) 14. (d) 15. (c) 16. (b)

 17. (b) 18. (c) 19. (c) 20. (d) 21. (b) 22. (d). 
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EXERCISES

1. An I-section steel beam (Fig. 5.25) is 5 m long and simply supported at ends. Find the permissible  
uniform load to be placed on the beam. The maximum stress in tension does not exceed 25 N/mm2.

  Fig. 5.25

  (Ans. 32.93 N/mm).
2. A simply supported beam of length 4 m carries a point load of 40 kN at the centre and is supported 

at ends. Find the cross-section of beam assuming depth to be twice the width. The maximum  
bending stress in beam is not to exceed 200 N/mm2. (Ans. b = 67 mm, d = 134 mm).

3.  Compare the weights of two equally strong beams of circular sections made of the same material, 
one is solid and the other hollow with inside diameter being 2/5 of outside diameter.

  (Ans. Ws = 1.14 WH).
4. A rectangular section is to be cut from a circular log of wood of diameter D. Find the dimensions of 

the strongest section in bending.

 
Ans b D d D. ,= =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟3

2
3

.

5. A cast iron pipe having inside diameter 300 mm and outside diameter 350 mm is used to carry wa-
 104         

N/m3 and 1.0  104 N/m3 respectively. Determine the maximum bending stress induced in the pipe, 
if  it is running full of water. (Ans. 1.447 N/mm2).

6. A timber beam of rectangular section section 60 mm wide  150 mm deep is reinforced by two steel plates 
having 12 mm thickness on both sides. The composite beam is a simply supported beam of length 2.5 m 
and carries a load of 10 kN at its centre. Find the depth of steel plates. The maximum stress in the timber 
section is not to exceed 12 N/mm2. The modular ratio,  is 14. (Ans. 92.53 mm).

7.  200 mm deep. It is to be reinforced by 
providing a steel plate at its bottom. The steel plate is 150 mm wide and 10 mm thick. The maximum 
stress in wood is not to exceed 8  106 Pa and the modular ratio,  is 15. Determine the moment  of 
resistance of beam. (Ans. 1.33  108 N mm). 
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8.  250 mm deep, is reinforced 

the timber joists. Find the maximum uniformly distributed load to be placed on beam of simply 
supported nature of length 6 m. The maximum stress in timber is not to exceed 10 N/mm2. Given, 
the modular ratio,  is 20. (Ans. 14 kN/m).

9. A T  10 mm and web  
120 mm Ans. 95.1%).

10. An I-section beam shown in Fig. 5.26 is subjected to a shear force of 50 kN. Find the magnitude and 
position of the maximum shear stress.

Fig. 5.26

(Ans. 12.2 N/mm2  at the neutral axis, which is located at 105 mm from the base).

11. A T-section beam shown in Fig. 5.27 is subjected to a shear force of 40 kN. Find the magnitude and 
position of maximum shear stress. Also draw the shear stress distribution diagram.

Fig. 5.27

(Ans. 12.81 N/mm2 at neutral axis, which is located at 76.3 mm  
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12. Find the ratio of the maximum shear stress and mean shear stress for a hexagonal cross-section, 
whose one of the diagonals is placed horizontally. (Ans. 1.2).

13. An ornamental beam in the form of a cross-bar (Fig. 5.28 (a)) has a span of 4 m and carries a udl of 
20 kN/m inclusive of its weight. Determine the maximum shear stress in the cross-section and draw 
the shear stress diagram. 

Fig. 5.28

  (Ans. 14.72 MPa, for second part of the problem refer Fig. 5.27 (b)).

14. A wooden beam of rectangular section 200 mm by 300 mm is used as a simply supported beam 
carrying a udl of w ton/m. What is the maximum value of w, if the maximum shear stress developed 
in the beam section is limited to 5 N/mm2 Ans. 6.66 N/m).
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William Herrick Macaulay, born on 16 November 1853, was a British 
mathematician. He developed the Macaulay’s method, which is used 

William Herrick Macaulay                         
(1853-1936)
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  Macaulay’s method
  Moment-area method
 
 
 

a  
b

Consider two points A and B on the elastic curve.

Let  A

  = Slope at point A

 d A and B

 R
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 dx  =  Small segment between A and B

 AB   = Rd

or 
1
R   = 

d
AB

 = 
d
dx

AB  dx)        ... (6.1)

B  – d dx d
dx

 
1
R

  = – d
dx

 ... (6.2)

Now   
dy
dx

   = – tan   – )

 x

 
d y
dx

2

2   = – d
dx

 = 1
R

   
1
R

 = 
M
EI

 ... (6.4)

 
d y
dx

2

2   = 
M
EI

  or  EI d y
dx

2

2  = M ... (6.5)

EI
or

 
dy
dx

  = 
1

EI
Mdx∫  ... (6.6)

  =
1
EI

Mdx dx( )∫∫  ... (6.7)

 6.3 SIGN CONVENTIONS 
The x and 
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  dy
dx

is positive when measured counterclockwise with respect to the positive x 

  M 

M and B are positive, whereas and A

XX at a distance x A

 Mx  = – W  – x

 EI d y
dx  = M

  = – W  – x
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 EI dy
dx   = – Wlx Wx C+ +

2

12

  = – Wl x Wx C x C
2 3

1 22 6
+ + +

where C1 and C

At A, where x     
dy
dx

C1 C

C1 and C  are reduced to 

 
dy
dx   = 

1
2

2

EI
Wlx Wx− +

⎡

⎣
⎢

⎤

⎦
⎥

and   = 
1

2 6

2 3

EI
Wlx Wx− +

⎡

⎣
⎢

⎤

⎦
⎥

B x = 

 B  = 
dy
dx x l

⎛
⎝
⎜

⎞
⎠
⎟

=

 = 
1

2

2

EI
Wl l Wl− +

⎛
⎝⎜

⎞
⎠⎟

.

  = −
Wl

El

B x = 

B  =  = 
1

2 6

2 3

EI
Wl l Wl− ⋅ +

⎛

⎝⎜
⎞

⎠⎟
= −

Wl
El

3

3

A x
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udl

 Mx  = − − −w l x l x( ) ( )
2

  = –
w l x( )− 2

2

 EI d y
dx  = M

  = – w l x( )2

2
 

 

 
dy
dx

  = –
1

2 3

3

1EI
w l x C−

−
+

⎡

⎣
⎢

⎤

⎦
⎥

( )

 

  = –
1

6 4

4

1 2EI
w l x C x C( )−

+ +
⎡

⎣
⎢

⎤

⎦
⎥

 where C1 and C

At A, where x
dy
dx

and 

 C1  = 
wl3

6
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 C   = −
wl4

24
C1 and C  are reduced to 

 
dy
dx   = –

1
6 6

3
3

EI
w l x wl

− − +
⎡

⎣
⎢

⎤

⎦
⎥( )

and   = –
1

24 6 24

4 3 4

EI
w l x wl x wl( )−

+ −
⎡

⎣
⎢

⎤

⎦
⎥

B, put x = 

 dy
dx x l

⎛
⎝
⎜

⎞
⎠
⎟

=

  = B = –
wl
EI

3

6

B, put x = 

B  = –
1

6 24

3 4

EI
wl l wl

−
⎡

⎣
⎢

⎤

⎦
⎥

  = –
wl
EI

4

8

 Mx = – M  

 EI 
d y
dx

 = M

  = – M
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 EI dy
dx

 = – M  x + C1

  = – M  
x

 + C1 x + C

where C1 and C

At A, where x  
dy
dx

C1 C
C1 and C are reduced to

 
dy
dx

 = –
1
EI

M xo[ ]

  = –
1

2

2

EI
M x

o
⎡

⎣
⎢

⎤

⎦
⎥

B, put x = 

 B = 
dy
dx

M l
EIx l

⎛
⎝⎜

⎞
⎠⎟

= −
=

o .

B, put x = 

 B = −
M l

EI
o
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 Consider a section XX at a distance x A in the portion AC. 

 Mx  = – W a – x

 EI d y
dx

 = M

  = – W a – x

 EI dy
dx

  = 
W a x C( )− +

2

12

– W a x C x C
2 3

3

1 2
( )− + +  

where  C1 and C

At A, where x 
dy
dx

 C1  = –
Wa

 C   = 
Wa3

6
C1 and C  are reduced to

 dy
dx

  = 
1
EI

W a x Wa( )− −
⎡

⎣
⎢

⎤

⎦
⎥

2 2

2 2

  = 
1
EI

− − − +
⎡

⎣
⎢

⎤

⎦
⎥

W a x Wa x Wa( )3 2 3

6 2 6

C, put x = a

 C  = 
dy
dx x a

⎛
⎝
⎜

⎞
⎠
⎟

=
 = –

Wa
EI

 Since there is no load on the portion BC, hence C B
points B and C

 B  = C = –
Wa

EI
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C, put x = a

C  = 
1

2 6

3 3

EI
Wa Wa− +

⎡

⎣
⎢

⎤

⎦
⎥  = –

Wa
EI

3

3
In  B C P

 tan B  = 
PB
PC

′
′

 = 
PB
l a

′
−( )

 tan B  B B)

 PB  – a) B

  = –  – a) 
Wa

EI

B

B  = BP + PB   =  C + PB

 or B  =  = − − −Wa
EI

l a Wa
EI

3 2

3 2
( )  

   = − + −
⎡

⎣
⎢

⎤

⎦
⎥

Wa
EI

l a Wa
EI

3 2

3 2
( )

 Consider a section XX at a distance x A.
 ABC and EBD.

 
AC
ED

 = 
AB
EB

 or ED  = 
AC
AB

EB.  = 
w
l

l x( )−
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 Mx  = – EBD) 
EB
3

  = –
1
2 3

( ) ( ) ( )l x w
l

l x l x
− × − ×

−

  = –
w l x

l
( )− 3

6

 EI d y
dx

  = M = –
w l x

l
( )− 3

6

 EI
dy
dx

 = +
w
l6

. 
( )l x C− +

4

14

 = –
w

l
l x

24 5

5
. ( )−

+ C1 x + C

where C1 and C

At A, where x
dy
dx

 C1  = –
wl3

24

 C   = +
wl4

120
C1 and C  are reduced to

 
dy
dx

  = 
1

24 24
4

3

EI
w

l
l x wl+ − −

⎡

⎣
⎢

⎤

⎦
⎥( )

and   = 
1

120 24 120
5

3 4

EI
w

l
l x wl x wl− − − +

⎡

⎣
⎢

⎤

⎦
⎥( )

B, put x = 

 B  = 
dy
dx x l

⎛
⎝
⎜

⎞
⎠
⎟

=

  = −
wl

EI

3

24
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B x = l

 yB  = −
wl

EI

4

30

6.4.6  Simple Beam carrying a Central Point Load 

Fig. 6.8

 MA

 RB  l  = W  l
2

or RB  = W
2

( )

 RA + RB  = W

or RA  = W – RB = 
W
2

( )

XX x from A

 Mx  = + 
W
2

x

 EI 
d y
dx

2

2  =  M = 
W
2

x 

 EI 
dy
dx

  = 
Wx2

4  + C1  

 EIy  = 
Wx3

12
 + C1 x + C2 

C1 C2
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dy
dx

C x = )

A x

C1  = −
Wl2

16
 and C

C1 and C  are reduced to

 
dy
dx   = 

1
4 16

2
2

EI
W x Wl+ −

⎡

⎣
⎢

⎤

⎦
⎥

  = 
1

12 16
3

2

EI
W x Wl x+ −

⎡

⎣
⎢

⎤

⎦
⎥

A and C.
A, put x

 A = dy
dx x

⎛
⎝
⎜

⎞
⎠
⎟

=
 = –

Wl
EI

2

16

and  B  = – A = 
Wl

EI

2

16
A and 

C, put x = 

C  =  = 
1
EI  + −

⎡

⎣
⎢

⎤

⎦
⎥

Wl Wl3 3

96 32  = –
Wl

EI

3

48

udl
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Support reactions at A and B

Using MA = 0, we have

 RB  l  = w  l  
l
2

or  RB  = 
wl
2

( )

Now   RA + RB  = wl

or  RA  = 
wl
2

( )

 Consider a section XX at a distance x from A within A and C.
 Bending moment at the section is

 Mx  = RA x – wx × 
x
2

 

  = 
wlx wx
2 2

2
−   ... (6.58)

 EI 
d y
dx

2

2   = M

  = 
wlx
2

– 
wx2

2
 ... (6.59)

 On integration, we get

 
dy
dx   = 

1
4 6

2 3
1EI

wl x w x C− +⎡
⎣⎢

⎤
⎦⎥

 ... (6.60)

Further integration gives  y  = 
1

12 24

3 4

1 2EI
wl x wx C x C− + +

⎡

⎣
⎢

⎤

⎦
⎥  ... ( 6.61)

 where C1 and C2 are the constants of integration.
 The boundary conditions are:

 
dy
dx  = 0 at C (for x = 

l
2

)

 y  = 0 at A (for x = 0)

which gives  C1  = –
wl3

24
 and C2 = 0
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 Equations (6.60) and (6.61) on substituting C1 and C2 become

 
dy
dx

  = 
1
EI

wl x w x wl
4 6 24

2 3
3

− −
⎡

⎣
⎢

⎤

⎦
⎥  ... (6.62)

 y  = 
dy
dx

wlx wx wl x
3 4 3

12 24 24
− −

⎡

⎣
⎢

⎤

⎦
⎥  ... (6.63)

A and C.
A x = 0 in equation (6.62).

 A  = 
dy
dx x

⎛
⎝
⎜

⎞
⎠
⎟

= 0
 = – wl

EI

3

24
 ... (6.64)

B = – A = 
wl

EI

3

24  ... (6.65)

A and C.

C x = l
2

 in equation (6.63).

 yC  = ymax = 
1

96 384 48

4 4 4

EI
wl wl wl− −

⎡

⎣
⎢

⎤

⎦
⎥   = –

5
384

4
. wl

EI
 ... (6.66)

Table 6.1

 S.N. Loading condition Slope ( ) (y) Remarks
1.
      

A = 0

B = C 

     = –
wa

EI

3

6

yA = 0 

yC = –
wa

EI

4

8

yB = −
⎡

⎣
⎢

wa
EI

4

8

+ 
wa

EI
l a

3

6
( )−

⎤

⎦
⎥

B and 
C

2. 
A  = 0

B  = –
w
EI6

⎡
⎣⎢

   

  (l3 – a3)]

yA = 0

yB = − ⎡
⎣⎢

w
EI24

  

(3l 4 – 4a3l + a4)]

A 
and B.

Contd...
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 S.N. Loading condition Slope ( ) (y) Remarks

3. 

A = –
7

360

3wl
El

B = 
wl

EI

3

45 

A B =  

 = –
13
2000

4wl
EI

C = –
147
2340

4wl
EI

 

at a distance 
x
A.

    C
beam. 

 

A = –
Wb l b

EIl
( )2 2

6
−

 

B = – B  

    =
Wb l b

EIl
( )2 2

6
−

A = B

C = –
Wa b

EIl

2 2

3

= 

–
Wb l b

EIl

( ) /2 2 3 2

9 3

−

 

at

  x = 
l b2 2

3

5. 

A   = –
5

192

3wl
EI

B  = – A 

     = 
5

192

3wl
EI

C

A = B

C = 

    = –
wl

EI

4

120

 

 = 
wl

 RA = RB = 
wl

6. 

   

A = –
w
EI6

a l a
l

l a
2 4

3

2 4
− − −( )

⎡

⎣
⎢

⎤

⎦
⎥

B = – A = 
1

4

2

EI
wa⎡

⎣
⎢  

     +
wl l a
6

−( )

+ −
⎤

⎦
⎥

wa l wa
l

2 4

12 24
  

A = B

C =  

   = –
0 0056 4. wl

EI

C, 
where  x  – a).
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 and 
E .

Solution: Given, 
  = 3 m

  Load on the beam,  W 3 N
 b

  = 8 mm
b
d

 I  = 1
12

 bd 3

 

 M  = W  
  3 3 = 3  N mm

   = 
M y

I

 5  = 
3 10

2
1

12

7

3

d

bd

or  bd   = 3.6 

  = 
Wl

EI

3

3

 8  = 
10 3 1000

3 2 10
12

4 3

4
3

( )
bd

or  bd 3

 d
and  b Ans.
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E .

Solution:
Given, 

 

 

Load on the beam,  W  N
A,  a
B,  b  = 1.5 m

 I  = 
1

12  3

 mm
A

 A  = –
Wb l b

EIl
( )2 2

6

  = – 2 10 1 5 10 2000 1500
6 2 10 1 5625 10 2000

4 3 2 2

4 9
× × × × −
× × × × ×

. ( )
.

  = –  radian

  = – –3 Ans.
B

 B  = 
Wb l b

EIl
( )2 2

6
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  = –
2 10 1 5 10 2000 1500

6 2 10 1 5625 10 2000

4 3 2 2

4 9
× × × × −
× × × × ×

. ( )
.

  = –  radian

  = – –3 Ans.

C  = –
Wa b

EIl

2 2

3

  = – 
2 10 0 5 1000 1 5 1000

3 2 10 1 5625 10 2000

4 2 2

4 9
( . ) ( . )

.
= – Ans.

  = –
Wb l b

EIl
( ) /2 2 3 2

9 3

  = –
2 10 1 5 1000 2000 1500

9 3 2 10 1 5625 10 2000

4 2 2 3 2

4 9
× × × −

× × × × ×
. ( )

.

/

 = – Ans.

W
W at a distance ‘a

W.

thickness and  = 1.5 m, a W
E

Solution:
Consider a section XX in AC at a distance x

 Mx  = – [Wx W x – a)]



270  Strength of Materials

 EI 
d y
dx

 = Mx

  = – [Wx W x – a)]

 EI 
dy
dx

  = –
Wx

 – W 
( )x a− 2

2  + C1

   = – 
Wx

– W x – a ) + C 
1 

  = – 
W x
2 3

3
.  – W . 

( )x a 3

3
 + C1x + C

  = – Wx
6

3
 – 

W x a( )− 3

3
 + C1x + C

where C1 and C

At A, where 
dy
dx

and 

– Wl
 – W  – a) + C 

1

  = –
Wl

 –  – Wa  + C1

or C1 = 2
3   + Wa  –

– W
6

3 – W
3 – a)3 + 2

3  3 + Wa a + C

   = – W
6

3 – W
3  3 +  3 . W

3  . a – 3 . W
3   + W

3
 a3 + 2

3  3 + Wa  a + C   

   = 3 − − +⎛
⎝⎜

⎞
⎠⎟

1
6

1
3

3
2

 –  a + W
3  a3 + C

   = 3 − − +⎛
⎝⎜

⎞
⎠⎟

1 2 9
6

 –  a + W
3  a3 + C  
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   =  3 –  a + W
3  a3 + C

or   C  = – 3 – W
3  a3 +  a

C1 and C  becomes

   = – W
6 x3 – W

3 x – a)3 +
3
2

22 2Wl Wa Wla+ −⎛
⎝⎜

⎞
⎠⎟  x – 3 – W

3 a3 + 

C x = a

   = 
1

6
3
2

2
3

3 2 3 2 3 3 2

EI
W a Wl a Wa Wla Wl W a Wl a− + + −⎛

⎝⎜
− − + ⎞

⎠⎟

   = 
1 1

6
1 1

3
3
2

1 23 2 2 3

EI
Wa Wl a Wla Wl− + −⎛

⎝⎜
⎞
⎠⎟
+ +⎛

⎝⎜
⎞
⎠⎟
− −⎡

⎣⎢
⎤
⎦⎥

   = 
W
EI

a l a la l
3

2 2 3

2
5
2

2+ − −
⎛

⎝⎜
⎞

⎠⎟
 Ans.

d0 

 = 6 mm

 = 1.5 m

a

b

E 3

 d  = d  

A

  M   = W  – a) 

   = Wa

   = 3 Wa

   = 3W W  and a) 

   W W

   = 3.3W W is assumed to be in N)
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  I = 
π
64

do – d )

   = 
π
64

 – 88

 Now σb

0d⎛
⎝⎜

⎞
⎠⎟

 = 
M
I

  
140
100

2
⎛
⎝⎜

⎞
⎠⎟

 = . ×W
1964991

3 3 103

 or W Ans.

B x

 = –
Wl l a

EI

2 ( )

   = –
1667 3 1 5 10
200 10 1964991

3 2

3
. ( . )× ×
× ×

3 mm

   = – 8.6 mm Ans.

-

 
 
 

x x – a)  such that x x < a and
x x – a) x > a

       where
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  should 

moment is written as
 M  = RA x – W1 x – a) – W x – b) + M x – )

a) the slopes at the two ends,
b

E I = 18 6 mm .

Solution:

Support reactions at A and B

MA

 RB  5  = 5  1 + 15 

or RB )

Now  RA + RB
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or  RA RB

)
BD at a distance x A

as
 Mx  = RA x x x
  = 13x x x

 EI 
d y
dx   = M

  = 13x x x

 
dy
dx

  = 
1 13

2
5 1

2
15 2

2

2

1

2 2

EI
x C x x+ − − − −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) ( )

 

  = 
1 13

6
5
6

1 15
6

23
1 2

3 3

EI
x C x C x x+ + − − − −⎡

⎣⎢
⎤
⎦⎥

( ) ( )

where C1 and C

 At A,  where x C
At B,  where x = 5 m, 

C1

1 13
6

5 5 0 5
6

4 15
6

33
1

3 3

EI
C× + × + − × − ×⎡

⎣⎢
⎤
⎦⎥

C1

 C1  = –

C1

 
dy
dx

 = 
1 13

2
30 5

2
1 15

2
22 2 2

EI
x x x− − − − −⎡

⎣⎢
⎤
⎦⎥

( ) ( )

A, put x

 A  = 
1 13

2
0 30

EI
× −⎡

⎣⎢
⎤
⎦⎥

 = –
30
EI
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Now  EI  = 
90 10

10

9

3   18 6  m  m )

m

Hence,  A  = – 
30

1620

  = – – Ans.
B, put x = 5 m.

  B  = 
1 13

2
5 30 5

2
5 1 15

2
5 22 2 2

EI
× − − − − −⎡

⎣⎢
⎤
⎦⎥

( ) ( )

Ans.
C1 and C

  = 
1 13

6
30 5

6
1 15

6
23 3 3

EI
x x x x− − − − −

⎡

⎣
⎢

⎤

⎦
⎥( ) ( )

C, put x
brackets.

  C  = 
1 13

6
1 30 13

EI
× − ×⎡

⎣⎢
⎤
⎦⎥

  = 
1

1620
13
6

30−⎡
⎣⎢

⎤
⎦⎥

  = –
  = – Ans.

D, put x

D  = 
1 13

6
2 30 2 5

6
2 13 3

EI
× − × − −⎡

⎣⎢
⎤
⎦⎥

( )

  = 
1

1620
104

6
60 5

6
− −⎡

⎣⎢
⎤
⎦⎥

 = –

  = – Ans.

 
dy
dx

1 13 5 15x x x
EI

⎡ ⎤− − − − −⎢ ⎥⎣ ⎦

or   3.5x  – 35x
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x
   x

x A.
x

   = 
1 13

6
2 327 30 2 327 5

6
2 327 1 15

6
2 327 23 3 3

EI
× − × − − − −⎡

⎣⎢
⎤
⎦⎥

( . ) . ( . ) ( . )

   = –
1 44 54
EI

.

   = –
1

1620
 – – Ans.

EI 5 kN m .

 Solution: x A is 

 Mx x x

 EI d y
dx

  = M

  = – x x

 EI 
dy
dx

  = 
15 6

2
5 2

2

2

1

2( ) ( )− + + −x C x

  = – 
15 6

6
5 2

6

3

1 2

3( ) ( )− + + − −x C x C x
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where C1 and C

 
dy
dx

x

 C1  = –

 C

 
dy
dx

  = 
1 15

2
6 280 5

2
22 2

EI
x x−( ) − + −( )⎡

⎣⎢
⎤
⎦⎥

C, put x

 C  = 
dy
dx x

⎛
⎝⎜

⎞
⎠⎟ = 2m

 = 
1 15

2
4 2802

EI
× −⎡

⎣⎢
⎤
⎦⎥

  = – 
1 160

EI
×  = – 

1
10

1605 ×

  = – – Ans.

 B  = 
dy
dx x

⎛
⎝⎜

⎞
⎠⎟ = 6

  = –
280
EI

 = –
280
105

  = –

  = – Ans.

  = 
1 15

6
6 280 546 67 5

6
23 3

EI
x x x− −( ) − + − −( )⎡

⎣⎢
⎤
⎦⎥

.

C, put x

 C  = 
1 15

6
4 280 2 546 673

EI
− × − × +⎡
⎣⎢

⎤
⎦⎥

.

  = –
173 33.

EI
 = – – Ans.
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x

B  =  = 
1

EI

  = –
1133 33

105
.

 = – – Ans.

C and B

EI.

Solution:
Support reactions at A and B

MA

 RB 

or  RB )

Now  RA + RB

or  RA RB )

x A
 upto the point B
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 The bending moment equation at the section is 

  Mx  = RA x – 25 (x – 2) – 3 (x – 4) x −( )4
2

 + 3 (x – 8) 
x −( )8

2
 + 82 (x – 10)0

   = 20x | – 25 (x – 2) | − −( ) + −( )
3
2

4 3
2

82 2x x  + 82(x – 10)0 ... (1)

  EI d y
dx

2

2
 = M  = 20x  | – 25(x –2) | – 

3
2

4 3
2

82 2x x−( ) + −( )  + 82(x –10)0  ... (2)

  EI dy
dx

 = 20
2

25
2

2
3
2

4
3

3
2

8
3

82 10
2

1

2 3 3
. . . .x C

x x x
x+ −

−( )
−

−( )
+

−( )
+ −( )

or  
dy
dx

  = 
1 10 25

2
2 1

2
4 1

2
8 82 102

1
2 3 3

EI
x C x x x x+ − − − − + − + −⎡

⎣⎢
⎤
⎦⎥

( ) ( ) ( ) ( )  ...(3) 

  y  = 
1 10

3
25
2

2
3

1
2

4
4

1
2

8
4

82 103

1 2

3 4 4

EI
x C x C

x x x x
+ + −

−( ) −
−( ) +

−( ) +
−( ). . .

22

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   = 
10
3

25
6

2 1
8

4 1
8

8 41 103
1 2

3 4 4 2x C x C x x x x+ + − −( ) − −( ) + −( ) + −( )⎡
⎣⎢

⎤
⎦⎥

  ... (4)

The boundary conditions are: 
At A x y = 0.

C2
are omitted.

At B x y = 0.
C1

  0  = 
1 10

3
12 12 0 25

6
10 1

8
8 1

8
4 41 23

1
3 4 4 2

EI
C× + × + − × − × + × + ×⎡

⎣⎢
⎤
⎦⎥

C1

 C1 = – 106.44
Substituting C1

  dy
dx

 = 
1 10 106 44 25

2
2 1

2
4 1

2
8 82 102 2 3 3

EI
x x x x x− − −( ) − −( ) + −( ) + −( )⎡

⎣⎢
⎤
⎦⎥

.   ... (5)
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C1 and C

  = 
1 10

3
106 44 25

6
2 1

8
4 1

8
8 41 103 3 4 4 2

EI
x x x x x x− − −( ) − −( ) + −( ) + −( )⎡

⎣⎢
⎤.
⎦⎦⎥

 Determination of slopes at various points using equation (5)

 Slope at A, where x

  A  = – 
106 44.

EI

  Slope at C, where x

 C   = 
dy
dx x

⎛
⎝⎜

⎞
⎠⎟ =

 = 
1

EI
    

   = – 
66 44.

EI
 Slope at D, where x

  D  = 
dy
dx x

⎛
⎝⎜

⎞
⎠⎟ =

 = 
1 10 4 106 44 25

2
22 2

EI
× − − ×⎡

⎣⎢
⎤
⎦⎥

.  = 
3 56.
EI

 Slope at E, where x = 6 m, is

  E  = dy
dx x

⎛
⎝⎜

⎞
⎠⎟ = 6

 = 
1 10 6 106 44 25

2
4 1

2
22 2 2

EI
× − − × − ×⎡

⎣⎢
⎤
⎦⎥

.  = 
49 56.

EI

 Slope at F, where x = 8 m, is

  F  = dy
dx x

⎛
⎝⎜

⎞
⎠⎟ = 8

 = 
1 10 8 106 44 25

2
6 1

2
42 2 3

EI
× − − × − ×⎡

⎣⎢
⎤
⎦⎥

.  = 
51 56.

EI

 Slope at G, where x 

  G  = 
dy
dx x

⎛
⎝⎜

⎞
⎠⎟ = 10

 = 
1 10 10 106 44 25

2
8 1

2
6 1

2
22 2 3 3

EI
× − − × − × + ×⎡

⎣⎢
⎤
⎦⎥

.  = – 
10 44.

EI

 Slope at B, where x

  B  = 
dy
dx x

⎛
⎝⎜

⎞
⎠⎟ = 12

 = 
1 10 12 106 44 25

2
10 1

2
8 1

2
4 82 22 2 3 3

EI
× − − × − × + × + ×⎡

⎣⎢
⎤
⎦⎥

.  = 23 56.
EI
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A, where x

  yC  = 
C, where x

  yC  = 
1 10

3
2 106 44 23

EI
× − ×⎡

⎣⎢
⎤
⎦⎥

.  = – 
79 77.

EI
 

D, where x

  yD  = 
1 10

3
4 106 44 4 25

6
23 3

EI
× − × − ×⎡

⎣⎢
⎤
⎦⎥

.  = – 245 76.
EI

E, where x

  yE  = 
1 10

3
6 106 44 6 25

6
4 1

8
23 3 4

EI
× − × − × − ×⎡

⎣⎢
⎤
⎦⎥

.  = – 187 39.
EI

F, where x

  yF  = 
1 10

3
8 106 44 8 25

6
6 1

8
43 3 4

EI
× − × − × − ×⎡

⎣⎢
⎤
⎦⎥

.  = – 
76 85.

EI
 

G, where x

  yG  = 
1 10

3
10 106 44 10 25

6
8 1

8
6 1

8
23 3 4 4

EI
× − × − × − × + ×⎡

⎣⎢
⎤
⎦⎥

.  = –
24 4.
EI

 

 B, where x

  yB

6.6 MOMENT-AREA METHOD
 

 

EI
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Consider a beam AB CD
dx at a distance x B M.

Let  d CD between C and D

 A and B

 EI 
d y
dx

 = M

or  
d y
dx

  = 
M
EI

A and B, we have 

 dy
dx B

A
⎛
⎝⎜

⎞
⎠⎟

  = −∫ M
EI

dx
B

A

  
dy
dx

dy
dxA B

⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟   = −∫ Mdx

EIB

A

or  A – B  = −∫ Mdx
EIB

A
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or  B – A  = 
Mdx
EIB

A

∫

or    = 
Mdx
EI

l

∫

where  A  = dy
dx A

⎛
⎝⎜

⎞
⎠⎟

 = Slope at A

 B  = 
dy
dx B

⎛
⎝⎜

⎞
⎠⎟ = Slope at B

EI

 B – A  = 1
EI

M dx
B

A

∫
A and B

  = 
Net area of the bending moment diagram between andA B

EI

Second Moment-Area Theorem (Mohr’s Second Theorem): 

which x

 d C and D  

  = Mdx
EI

 LM  = xd

  = x Mdx
EI

. d )

 LM
B

A

∫   = Mxdx
EIB

A

∫
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or  BB   = Mxdx
EI

l

∫

Hence,  = 1

0EI
x Mdx

l
.∫

B w.r.t. A

   = Moment of area of the bending moment diagram between andthe A B
EI

W B .

 A
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B is

  B A and B B to A) 

  B  = 
Area of the bending moment diagram between andA B

EI

   = 
1 1

2EI
Wl l× ×⎡

⎣⎢
⎤
⎦⎥

 = 
Wl

EI

B

B  = 
Moment of the area of between and aboutBMD A B B

EI

   = 
1

2
2
3

2

EI
Wl l×

⎛
⎝⎜

⎞
⎠⎟

 = 
Wl

EI

3

3

udl
w

span.
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 Slope at A  A

and   B  = Slope at B

   = 
Area of between andBMD A B

EI

   = 
1 1

3 2

2

EI
wl l× ×

⎛
⎝⎜

⎞
⎠⎟

= 
wl
EI

2

6

B

 B =  = 1
EI

BMD between A and B about B)

  = 
1

6
3
4

3

EI
wl l×

⎛
⎝⎜

⎞
⎠⎟

 = 
wl
EI

4

8

W C .

Slope at A is A  = Area of between andBMD A C
EI

  = 

1
2 4 2
× ×Wl l

EI  = 
Wl

EI

2

16
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Slope at B is

 B  = Area of between andBMD B C
EI

 

  = 
Wl

EI

2

16

A and B
C is

C  = 
Moment of the area of between and aboutBMD A C A

EI

  = 
Wl

EI
l2

16
2
3 2

× ×⎛
⎝⎜

⎞
⎠⎟  

  = 
Wl

EI

3

48
BMD between A and C

2
3 2
×⎛

⎝⎜
⎞
⎠⎟ A .

udl
w/m .

Slope at A is

 A  = 
BMD A C

EI
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  = 
1 1

2
4
3 2 8

2

EI
l wl× × ×

⎛

⎝⎜
⎞

⎠⎟
 

  = 
wl

EI

3

24

Slope at B is B  = 
Area of  between  and BMD B C

EI
 = 

wl
EI

3

24
 

A and B
C is

C  = 
Moment of the area of  between  and aboutBMD A C A

EI

  = 
wl

EI
l l3

24 2
3
8 2

× − ×⎛
⎝⎜

⎞
⎠⎟  = 

5
384

4wl
EI

C  is

 x   = 
3
8 2
×  = 

3
16

, and its distance A  is 
2

3
16

−⎛
⎝⎜

⎞
⎠⎟  = 5

16
.

 
E I  m .

Solution: 
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 Reactions at A and B

 MA

 RB × 6 =  
6
2

  

or  RB )

and  RA + RB

or RA )

 Bending moment diagram (BMD)
A and B

E  = RB  1.5  1 5
2
. m 

D m

 
C

Slope at A is A  = Area of between andBMD A D
EI

   = 
1 1

2
1 5 106 875

EI
× ×⎛

⎝⎜
⎞
⎠⎟

. . = 

1
2

1 5 106 875

200 10 3 32 106 4

× ×

× × × −

. .

.
 

Ans.
Similarly, the slope at B is

  B Ans.

A and B

D is D  = 
Moment of the area of between and aboutBMD A D A

EI

  = 

1
2

1 5 106 875 2
3

1 5

200 10 3 32 106 4

× ×⎛
⎝⎜

⎞
⎠⎟ × ×

× × × −

. . .

.
–3 m 

Ans.

E is

E Ans.
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C
 yC

Moment of area of between and aboutBMD A C A
EI

1
2

1 5 3 106 875 3 1 5 1 5 3 3
3 1 5 3

200

2 2
× + ×⎡

⎣⎢
⎤
⎦⎥
× − + × +

+
⎡

⎣
⎢

⎤

⎦
⎥

×

( . ) . . .
( . )

110 3 32 106 4× × −.

Ans.

Example 6.8 
udl

EI

Solution: 

Fig. 6.23

RB B b BMD udl
c BMD

udl 



291

B

B  = 
Moment of the area of between and aboutBMD A B B

EI

   = 
1 1

3 2
3
4

2

EI
wl l l× ×

⎛

⎝⎜
⎞

⎠⎟
×

   = 
1

10
1
3

2 3
2

3 3
4

34

2
× × ×

⎛

⎝⎜
⎞

⎠⎟
× × –3

In case, when no 

B   = 
Moment of the area of between and aboutBMD A B B

EI

   = 
1 1

2
2
3EI

R l l lB× × ×⎛
⎝⎜

⎞
⎠⎟
× ×

RB  and its C.G
2
3

 

or   B   = 
1

10
1
2

3 3 2
3

34 × × ×⎛
⎝⎜

⎞
⎠⎟
× ×RB  RB

Since end B B and B  are the same.
  –3  RB

or  RB = 
2 025 10

9 10

3

4
. ×

×

−

− ) Ans.

the part AB EI
Solution: 

M/EI A1, A  and A3

G1 , G  and G3 are located at 2
3

, 4
3

 and 
5
3

C M/EI) areas are

 A1  = 1
2 2

2
× × =Wl

EI
l Wl

EI

 A   = 1
2 2 4

2
× × =Wl

EI
l Wl

EI

and  A3  = 
1
2

3
2

3
4

2
× × =Wl

EI
l Wl

EI
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 A A

C

 C M EI A and C

  = A1 + A  + A3

  = Wl
EI

Wl
EI

Wl
EI

2 2 2

2 4
3
4

+ +  = 
3
2

2Wl
EI

 Ans.

C

M EI A and C about C

  = A l A l A l
1 2 3

2
3

4
3

5
3

× + × + ×

  = 
Wl

EI
l Wl

EI
l Wl

EI
l2 2 2

2
2
3 4

4
3

3
4

5
3

× + × + ×  = 
23
12

3Wl
EI  Ans.
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W = 5 kN, EI = 1  kN m

Solution:

 C  = 
3
2

2Wl
EI

  = 
3 5 2

2 10

2

4
× ×
×

  Ans.

 C  = 
23
12

3Wl
EI

= 
23 5 2
12 10

3

4
× ×
×

Ans.

A.

Solution: M EI
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M EI

 A1  = 
1
3 2

2
×
⎛

⎝⎜
⎞

⎠⎟
×wa

EI
a  = 

wa
EI

3

6

M/EI

 A   = 
1
2 2

2
× ×wa

EI
l

  = 
wa l

EI

2

4

B.
C w.r.t. B

C B M/EI B and C about C

  = 
wa l

EI
l2

4
2
3

×   = 
wa l

EI

2 2

6

 A BA  and BCC we have

 A A   = 
y a

l
wa l

EI
a
l

wa l
EI

C B/ ×
= × =

2 2 3

6 6
A w.r.t. B

 A/B M/EI A and B about A

  = 
wa

EI
a

3

6
3
4

×  = 
wa

EI

4

8

A

A  = A B + A A

  = 
wa

EI
wa l

EI

4 3

8 6
+  = 

wa
EI

a l3

2 4 3
+⎡

⎣⎢
⎤
⎦⎥

 Ans.

M
EI
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Conjugate beam theorem I

Conjugate beam theorem II

M/EI) 
M/EI

Let   RA' = Reaction at A' 
     RB' = Reaction at B' 

 RA  = RB  = 
Total load on the conjugate beam

2  

  = 

1
2 4

2

× ×l Wl
EI  = 

Wl
EI

2

16

 A  = Slope at A

A
Wl

EI

2

16
Similarly  B  = Slope at B

B
Wl

EI

2

16
 

Hence,   A = B  = 
Wl

EI

2

16

C C
C

    = R l l Wl
EI

l
A′ × − × × × ×⎛

⎝⎜
⎞
⎠⎟2

1
2 2 4

1
3 2

    = 
Wl

EI
l Wl

EI

2 3

16 2 96
× −  = 

Wl
EI

3

48
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Support reactions for actual beam AB

 RA  = 
Wb

l
 and RB = 

Wa
l

b).

C is Wab
l

.

).

Support reactions for conjugate beam A B

MA

 RB   = 
1
2

2
3

1
2 3

× ×⎛
⎝⎜

⎞
⎠⎟
× + × ×⎛

⎝⎜
⎞
⎠⎟
× +⎛
⎝⎜

⎞
⎠⎟

a Wab
EIl

a b Wab
EIl

a b

  = 
Wa b

EIl
Wab

EIl
a b

3 2

3 6
3+ +( )  = 

Wab
EIl

a ab b
6

2 32 2[ ]+ +
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or  RB   = 
Wab
EIl

a ab b
6

2 32
2 2[ ]+ +

  = 
Wab

EIl
l a

6
( )+ a + b = )

and  R RA B′ ′+  = 
1
2
× ×l Wab

EIl

 RA   = 
Wab

EIl
l b

6
( )+  

 A  = Slope at A

A

  = Wab
EIl

l b
6

( )+

and  B  = Slope at B

B

  = 
Wab

EIl
l a

6
+( )

 C C

C

  = R b b Wab
EIl

b
B′ × − × × ×1

2 3

  = 
Wab

EIl
l a b Wab

EIl6 6

3
( )+ × −  = 

Wa b
EIl

2 2

3

E  I –5 m .

Solution: 
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Support reactions for the actual beam
MA

 RB  5
or  RB  = )
Now  RA + RB

and   RA )

BMD for the actual beam
C is

 MC  = RB  3 
m

D is
 MD  = RA m

BMD b).
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c))

C  
1
3E I( )

 = 
6 25.
EI

C  = 18 75 1. ×
EI  = 

18 75.
EI

Load intensity at D         = R
E IA × ×4 1

3( )
  = 

3 75 4
3

. ×
EI

= 
5

EI

Support reactions at A  and B

MB

 RA   8  = 1
2

5 6 25 3 5
3

1
2

3 18 75 2
3

3× ×⎛
⎝⎜

⎞
⎠⎟
× +⎛
⎝⎜

⎞
⎠⎟
+ × ×⎛
⎝⎜

⎞
⎠⎟
× ×⎛
⎝⎜

⎞
⎠⎟

. .
EI EI

⎡⎡
⎣⎢

⎤
⎦⎥

  = 
72 91 56 25. .

EI EI
+  = 

129 16.
EI

or  RA   = 
16 14.

EI

and  R RA B′ ′+   = 
1
2

  5  
6 25.
EI

 + 
1
2

  3  
18 75.

EI
 = 

43 75.
EI

or RB  = 
43 75.

EI
 – 

16 14.
EI

 = 
27 61.

EI  

(a)  Slopes at A and B
  Slope at A is

 A A  = RA

  = 
16 14.

EI  = 
16 14

200 10 4 106 5
.

× × × −   

Ans.
   Slope at B is

 B B  = RB

  = 
27 61.

EI  = 
27 61

200 10 4 106 5
.

× × × −   

Ans.
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(b) 
C is

C C

  =  RA  5 – 
1
2

  5  
6 25.
EI

  
5
3

 

  = 
16 14 5 25 6 25

6
. – .

EI EI
× ×

  =  
16 14 5

200 10 4 10
25 6 25

6 200 10 4 106 5 6 5
. – .×

× × ×
×

× × × ×− −

  =  6.83 –3 m = 6.83 mm Ans.

(c) D
D is

 D D

   = RA
1
2

   5
EI

  
4
3

 = 
16 14.

EI
4 40

3
−

EI

  = 
16 14 4

200 10 4 106 5
. ×

× × × −  – 
40

3 200 10 4 106 5× × × × −

–3 Ans.

E
and I –5 m .

Solution:

Support reactions for the actual beam
MA

 RB  3

or RB

Now RA +RB 

and RA
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BMD for the actual beam
D is MD m
C and E are MC = ME m 

BMD b).

C c))

Load at  D    = 
375

2E I( )
 =

375
2EI

 = 
187 5.

EI

C   = 187 5.
EI

 = PC

E  = TE
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C   = 
187 5
2

.
EI

 =
93 75.

EI

E   = SE   

Hence, PQ = QC  = 
93 75.

EI

and TS = SE  = 
93 75.

EI
 

Support reactions at A  and B

 RA   = RB A  PC C QRD

   = 
1
2

1 5 187 5 1
2

93 75 187 5 1 5× ×⎡
⎣⎢

⎤
⎦⎥
+ +⎛

⎝⎜
⎞
⎠⎟
×. . . . .

EI EI EI
 = 

351 5625⋅
EI

D of the actual beam
D is

D D

  =  RA    3 – area  A  PC    1 5 1 5
3

. .+⎛
⎝⎜

⎞
⎠⎟

 – area C QRD   C D′ ′
3

  
QC RD

QC RD
′ + ′
′ + ′

⎛
⎝⎜

⎞
⎠⎟

  =  
351 5625.

EI
  3 – 

140 625.
EI  210 9375.

EI
  

1 5
3
.

  
2 93 75 187 5

93 75 187 5

× +

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. .

. .
EI EI

EI EI

  =  
1054 6875.

EI
 – 

281 25.
EI

 – 
140 625.

EI
 = 

632 8125.
EI

  =  632 8125
200 10

10
300 10

9

3
5

.

–×⎛

⎝⎜
⎞

⎠⎟
× ×

–3   Ans.

 E

 I  m
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Solution: 

Support reactions for the actual beam
MA

 RB 

or RB = 
100

4 )

Now RA + RB

or RA = – RB  = –

)
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BMD for the actual beam

A and B

 MA = MB

C

  = RB m

C = RB 

m

c))

 C    = 50
EI

C    = 
50
EI

Support reactions at A  and B

MA

  RB  
1
2

   
50
EI

  
2
3

 
1
2

  
50
EI

  2 2
3

+⎛
⎝⎜

⎞
⎠⎟

 RB  
200
3EI

  = 
400
3EI

 

or RB  = 
400 200
3 4

−
×EI

 = 
50

3EI
( )↑

and RA  = 
50

3EI

Slope at the support points A and B of the actual beam

 Slope at A A

  = RA

  =
50

3EI

  = 
50

3 200 10
10

250 10
9

3
4× ×⎛

⎝⎜
⎞

⎠⎟
× × −

 = 3.33 –6 radian  Ans.
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Similarly  Slope at B = Shear force at B  of the conjugate beam

  = 3.33 × 10–6 radian  Ans.

C
C is

 yC = Bending moment at C  of the conjugate beam

  = RA  × 2 – 
1
2

 × 2 × 
50
EI  ×

2
3

  = 
50

3EI
 × 2 – 

100
3EI  = 0  Ans.

Example 6.15 
l carrying a point load W at 

its free end.

Solution: Refer Fig. 6.31.

Fig. 6.31
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Slope at B of the actual beam
Slope at B is
 B B

   = 
1
2

Wl
EI

 

  = 
Wl

EI  Ans.

B is

B B

   = 
1
2

Wl
EI

2
3

  = 
Wl

EI

3

3  Ans.

a certain distance 1

Solution: 
Slope at C is

 C C

  = 
1
2 1

Wl
EI

1

  = 
Wl

EI
1
2

2   Ans.
C is

C

  =  
1
2 1

Wl
EI

1 2
3 1 

  = 
Wl

EI
1
3

3
 Ans.
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E I = 1  m .

Solution: 
C is

 MC m
A is

 MA m
B is obtained as  

B B

   = 1
2

2 20 2
3

2× × × ×⎡
⎣⎢

⎤
⎦⎥EI

 + 20 2 2 2
2EI

× × +⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 + 1
2

2 60 2 2
3

2× × × + ×⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥EI

   = 
1
EI

1040
3

 Ans.
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/m 
E I –5 m .

Solution: 
A is

 MA = 
2 3

2

2×
m

A and B is parabolic.

 3
4

B

B B B

  = 
1
3   3 

EI
= EI

  = 
9

200 10
10

2 10
9

3
5×⎛

⎝⎜
⎞

⎠⎟
× × –

Ans.
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B is obtained as

B B

  = 
1
3

3 9 2 25× × ×
EI

.  = 
20 25.

EI

  = 
20 25

200 10
10

2 10
9

3
5

.
×⎛

⎝⎜
⎞

⎠⎟
× × −

–3 Ans.
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Let 1 B due to load W1 only
 B due to load W  only
 3 B due to load W3 only

D
   = 1 +  + 3 

Solution: 

 Let B  and B D due to 3W B)
 C and C D W C)

 D and D  D due to W D)

 B  = 3 2
2

62W
EI

W
EI

× =

 B  = 
3 2

3
2 2

3W
EI B
×

+ × +( )θ  = 
8
3

6 4 80
3

W
EI

W
EI

W
EI

+ × =

 C  = 
2 2 2

2
162W

EI
W

EI
× +( )

=

C  = 
2 2 2

3
2

3W
EI c

× +( )
+ ×θ  = 

128
3

16 2 224
3

W
EI

W
EI

W
EI

+ × =
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 D  = 
W

EI
W

EI
× + +( )

=
2 2 2
2

182

D  = ( )3
3 3D

W W
EI EI

θ
× + +

+ × =

  B + C + D = 6 16 18 40W
EI

W
EI

W
EI

W
EI

+ + =  Ans.

  B + C + D = 80
3

224
3

216
3

W
EI

W
EI

W
EI

+ +  = 
520
3

W
EI

 Ans.
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1.

a b d) plastic curve.

a)  EI d y
dx

M= b) EI dy
dx

M= )  EI d y
dx

M
3

3 = d) EM dy
dx

I= .

a

b

d) unpredictable.

4.

a

b

d

5.

a b

d

a b

d

7.

a b

d

a b) slope 

d

a b d
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a
b

d
11.

a M/EI
b

M/EI
d

a M/EI
b M/EI

d

a b d

 1. ) a) ) 4. d) 5. b) b) 7. ) d) d)

 b) 11. ) b) a).
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1.

a
b

G
a

b

  Ans wl
EI

C.
4

120
at

⎛

⎝⎜
⎞

⎠⎟
.

  
Ans Wl

EI

y Wl
EI

c

c

. θ =

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

7
24
25
72

2

3
.
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4.

  Ans wl.
6

⎛
⎝⎜

⎞
⎠⎟

.

5. A
EI = 1 3 kN m .

D
EI = 1 3 kN m .

7. ABC P w
C
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  Ans wl.
6

⎛
⎝⎜

⎞
⎠⎟

.

A C
IAC IBC

  Ans
EI EI

. ,129
20

63
5

⎛
⎝⎜

⎞
⎠⎟

.

EI and loaded with 
w

  Ans wl
EI

. .
4

120
at midspan

⎛

⎝⎜
⎞

⎠⎟

EI and loaded with 

  
Ans wl

EI
. .

4

30
⎛

⎝⎜
⎞

⎠⎟
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11. EI w as 

  
Ans wl

EI
. .5

768

4
⋅

⎛

⎝⎜
⎞

⎠⎟  
EI due to two point loads, 

W

  
Ans Wa

EI
l a. ( ) .

24
3 42 2−⎛

⎝⎜
⎞
⎠⎟

EI w

  
Ans wl

EI
. .7

64

4
⋅

⎛

⎝⎜
⎞

⎠⎟

14.

E

  



Charles-Augustin de Coulomb, born on 14 June 1736, was a French 
physicist and engineer. He is best known for his Coulomb’s law used in 

The SI unit of electric charge, the Coulomb (C), was named in his honour. 
He derived the torsion formula in about 1775. Coulomb leaves a legacy 

the design of retaining walls. His name is one of the 72 names inscribed 
on the Eiffel Tower.

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

Torsion of Circular Members

7

Charles-Augustin  
de Coulomb
(1736-1806)

© The Author(s) 2021
D. K. Singh, Strength of Materials,
https://doi.org/10.1007/978-3-030-59667-5_7
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7.1 INTRODUCTION  
The members in torsion are subjected to twisting action about their longitudinal axes. It has wide 
engineering applications, most common among them is the transmission shaft which is used to 
transmit power from one point to another e.g., from the prime mover (steam turbine, gas turbine etc.) 
to a machine or from a motor to a machine tool, or from the engine to rear axle of an automobile. 
Solid as well as hollow shafts can be used for the transmission of power.

The torsion formula was derived by a French physicist Charles A. Coulomb in about 1775. His 

Navier were further improved by St.Venant and Prandtl.

7.2 TORSION EQUATION 
The following assumptions are made for circular members under torsion:

  The shaft is straight and has uniform cross-section throughout its length.
  The plane sections remain plane and do not get distorted after being subjected to torsion.
  Stresses induced in the shaft are within elastic limit.
  The twist along the shaft is uniform.
  The shaft material is homogeneous and isotropic.

Consider a solid circular shaft which is rigidly connected at one end. If a torque T is applied to the 
other end, the shaft will twist, with its free end rotating through an angle , called the angle of twist  
(Fig. 7.1). The angle  varies in proportion to T for a certain range of values of T. Also, it is 
proportional to the length of the shaft.

Fig. 7.1 A solid circular shaft subjected to torsion.

l

 R  = Radius of the shaft
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 G  = Modulus of rigidity or shear modulus of the shaft material 

  = Shear strain

   = Shear stress

A at the radial distance shifts to A  making angle  at the 
centre.
   ABA  = 
   AOA  =  

  and  both are expressed in radians.

In  ABA   tan   = 
AA
AB

 = 
AA
l

or    = 
AA
l

 (tan    for small angle)

  AA   = l ... (7.1)

Again  = 
AA
OA

 = 
AA
R

  AA = R ...(7.2)

 From equations (7.1) and (7.2), we have
 l  = R

    = 
R
l

 = max  ... (7.3)
It shows that the shear strain  at a given point of a shaft under torsion is proportional to the angle 

of twist  and is maximum at the surface of the shaft.
Similarly for any point at a radial distance r, we can write

  = 
r
l

 ... (7.4)

It simply means that the shear strain varies linearly with the distance from the axis of the shaft.

  G = 
τ
φ

 ... (7.5)

or   = 
G

 = R
l

          (using equation (7.3)) ... (7.6)

or  max

R
 = G

l
 = 

r
          (using equation (7.4)) ... (7.7)

Equation (7.7) shows that the shear stress varies linearly with the radial distance r, and is maximum 
at the surface of the shaft, but the relation holds good, if Hooke’s law is obeyed (Fig. 7.2).
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Fig. 7.2 

Now consider an elemental ring at a radial distance r from the axis of the shaft (Fig. 7.3). The 

Fig. 7.3

 Shear force acting on the ring = (2  r dr)

 Torque acting on the ring   = (2 r dr  )  r = 2 r2dr  ... (7.8)
 From equation (7.7), we have

   = 
tmax .

R
r

 Using  in equation (7.8), we get

Torque acting on the ring   = 2  max

R
r dr3

 Hence, total torque acting on the entire cross-section is

  T  = 2 3

0

π
τmax

R
r dr

R

∫  = 
2

4

4

0

π τmax

R
r

R
⎛

⎝
⎜

⎞

⎠
⎟
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   = 2
4

4π τmax .
R

R  = 
τ πmax .

R
R4

2
⎛

⎝
⎜

⎞

⎠
⎟  = max .

R
J

where J  = π
2

4R  = Polar moment of inertia of the cross-section

   = IXX + IYY

or  
T
J

  = max

R
 ... (7.9)

From equations (7.7) and (7.9), we have

  
T
J

  = max

R
 = 

G
l

 ... (7.10)

 This is known as torsion equation and is also valid for a hollow circular shaft with suitable changes 
in diameter.

7.3 TORSIONAL RIGIDITY  

  
T
J

  = 
G
l

or  JG = Torsional rigidity = 
Tl

 ... (7.11)

Hence, the product of polar moment of inertia and modulus of rigidity is known as torsional rigid-

of unit length producing unit twist.

7.4 POLAR MODULUS 
From torsion formula, we have

  
T
J

  = max

R

or  
J
R

  = Zp = Polar modulus = 
T

max
 ... (7.12)

 For a solid circular shaft of diameter d, the polar modulus is given as

  Z p
(Solid shaft)   = 

π
32

2

4d

d⎛
⎝
⎜

⎞
⎠
⎟

 = 
π

16
3d  ... (7.13)

 For a hollow circular shaft of external diameter d0 and internal diameter di, the polar modulus is 
given as

  
Z p

(Hollow shaft)   = 

π
32

2

0
4 4

0

( )d d

d

i−

⎛
⎝
⎜

⎞
⎠
⎟

 = 
π
16

0
4 4

0

. ( )d d
d

i−
 ... (7.14)
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7.5 POWER TRANSMITTED BY A SHAFT 

of rotating shafts of solid or hollow circular sections.
N rpm be subjected to a torque T.

Angle turned by the shaft in one rotation = 2  radian
Angle turned by the shaft in N rotations or angle turned per minute = 2 N radians
Power transmitted by the shaft is given as

  P  = Angle turned per minute  torque = 2 NT ... (7.15)
  If we consider angle turned per second and T in N m, then equation (7.15) can be rewritten as

  P  = 
2

60
πNT

   = 
2

60 1000
π NT
×

 = 
πNT
30000

 (7.16)

  If torque is expressed in kgf m and number of revolutions are considered on second basis, then 
equation (7.15) can be expressed as 

  P  = 
2
60 75
π NT
×  = 

2
4500
πNT

 (hp)  (1 hp = 75 kgf.m/s)     ... (7.17)

Example 7.1 
Fig. 7.4  shows the attachment of four pulleys to two different types of shafts. Pulleys B and C are 
connected by a hollow shaft with inside and outside diameters of 50 mm and 80 mm respectively. 
Other pulleys are connected by solid shafts of equal diameters. The torque acting on each pulley is 

 (a) the maximum and minimum shear stress induced in the hollow shaft.
 (b) the diameter of the solid shaft, if the maximum shear stress is not to exceed 50 MPa.

Fig. 7.4

Solution: Given,
Inside diameter of the hollow shaft,  di = 50 mm
Outside diameter of the hollow shaft,  do = 80 mm
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 (a) The net torque acting on the hollow shaft BC is given as

  TBC  = (5 + 10) = 15 kN m (Clockwise)
  The polar moment of inertia of the section is found as

  J  = 
π
32

4 4( )d do i−

   = 
π
32

80
1000

50
1000

4 4
⎛
⎝
⎜

⎞
⎠
⎟ − ⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
m4 = 3.4  10–6 m4

  Using torsion formula, we have

  
T
J
BC   = 

τmax

do

2
⎛
⎝
⎜

⎞
⎠
⎟

  Hence, the maximum shear stress induced in the shaft BC is given as

  max = 
T
J

dBC o

2

  = 
15

3 4 10
80
2

1
10006. ×

× ×⎛
⎝
⎜

⎞
⎠
⎟−  

  =  1.76 × 105 kN/m2 Ans.

  The minimum shear stress induced in the shaft BC is given as

  min = 
T
J

dBC i× ⎛
⎝
⎜

⎞
⎠
⎟2

   = 
15

3 4 10
50
2

1
10006. ×

× ×⎛
⎝
⎜

⎞
⎠
⎟−  = 1.1  105 kN/m2 Ans.

 (b) Shafts AB and CD are solid shafts.

d = Diameter of the two shafts
  Again from torsion formula

  
T
J

  = 
( / )d 2

  Both solid and hollow shafts are subjected to the same torque of 5 kN m.

  
5

32
4π d

  = 
50 10

10
1

2

6

3 ( / )d

  Solving for d, we get

  d  = 0.08 m = 80 mm   Ans.
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Example 7.2 
Three pulleys are connected by two shafts as shown in Fig. 7.5. Assuming that both shafts are solid, 

AB and BC.
Solution: Given,
Diameter of the shaft AB,  d1  = 25 mm

Diameter of the shaft BC,  d2  = 35 mm

 AB   = 1.0 m
BC   = 1.5 m

Fig. 7.5

 The torque exerted on the shaft AB is
  TAB  = 0.5 kN m (clockwise)

Using torsion formula, we have

  
T
J
AB  = 

τmax

d1

2
⎛
⎝
⎜

⎞
⎠
⎟

or  
T

d
AB

π
32 1

4×
  = 

τmax

d1

2
⎛
⎝
⎜

⎞
⎠
⎟

Hence, the maximum shear stress in the shaft AB is given as

  max  = T
d

AB ×
×
32
21

3π

   = 
0 5 32

25
1000

2
3

. ×

× ⎛
⎝
⎜

⎞
⎠
⎟ ×π

 = 162.97 MPa  Ans.

The torque exerted on the shaft BC is TBC = 1.5 kN.m (clockwise).
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The maximum shear stress in the shaft BC is given as

  max  = 
T

d
BC ×

×
32
22

3π

   =  
1 5 32

35
1000

2
3

. ×

× ⎛
⎝
⎜

⎞
⎠
⎟ ×π

= 178.18 MPa  Ans.

Example 7.3 
Four pulleys are connected by solid shafts as the shown in Fig. 7.6. Torque acting on each pulley is 

of that stress.

Fig. 7.6

Solution:  Refer Fig. 7.6.

Given,
 Shaft parameters   Shaft AB  Shaft BC  Shaft CD  Shaft DE  
 Diameter   15 mm  20 mm  25 mm  30 mm

 Torque  5 N m  (20 – 5) = 15 N m  (20 + 40 – 5)  (20 + 40 – 5 – 50)   
           = 55N m  = 5N m
   (clockwise)  (anticlockwise)  (anticlockwise)  (anticlockwise)

Using torsion formula,  is given as

    = 
T
J

d
2

Hence, the shear stress induced in the shaft AB is

  AB  = 
5

32
15

1000

15
2 10004π

× ⎛
⎝
⎜

⎞
⎠
⎟

×
×

⎛

⎝
⎜

⎞

⎠
⎟

    = 7.54 MPa
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Similarly, the shear stress induced in the shaft BC is

  BC  = 
15

32
20

1000

20
2 10004π

× ⎛
⎝
⎜

⎞
⎠
⎟

×
×

⎛

⎝
⎜

⎞

⎠
⎟  = 9.55 MPa

Shear stress in the shaft CD is

  CD  = 
55

32
25

1000

25
2 10004π

× ⎛
⎝
⎜

⎞
⎠
⎟

×
×

⎛

⎝
⎜

⎞

⎠
⎟  = 17.92 MPa

 And the shear stress in the shaft DE is

  DE = 
5

32
30

1000

30
2 10004π

× ⎛
⎝
⎜

⎞
⎠
⎟

×
×

⎛

⎝
⎜

⎞

⎠
⎟  = 0.94 MPa

Since CD is the biggest among all the values, hence the maximum shear stress is induced in the 
shaft CD and its magnitude is 17.92 MPa.    Ans.

Example 7.4 
An electric motor exerts a torque of 2.5 kN m at D as shown in Fig. 7.7. Find the maximum shear 
stress induced in the shafts AB, BC and CD, assuming that they are all solid.
Solution: The details of each shaft are given below.

Fig. 7.7

 Shaft parameters  Shaft AB  Shaft BC  Shaft CD 
Diameter   30 mm  35 mm  40 mm 

Torque  0.6  kN m  (0.6 + 0.7) = 1.3 kN m  (0.6 + 0.7 + 1.2) = 2.5 kN m
  (clockwise)  (clockwise)  (clockwise) 
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For shaft AB
The maximum shear stress induced in the shaft is

   = 
T
J

d
2

   = 
0 6

32
30

1000

30
2

1
10004

.
π

× ⎛
⎝
⎜

⎞
⎠
⎟

× ×⎛
⎝
⎜

⎞
⎠
⎟  as  =

32
J dπ 4⎛

⎝
⎜

⎞
⎠
⎟

   = 113.17 MPa Ans.

For shaft BC
The maximum shear stress induced in the shaft is

   = 
1 3

32
35

1000

35
2

1
10004

.
π

× ⎛
⎝
⎜

⎞
⎠
⎟

× ×⎛
⎝
⎜

⎞
⎠
⎟  

   = 154.42 MPa  Ans.

For shaft CD 
 The maximum shear stress induced in the shaft is

   = 
2 5

32
40

1000

40
2

1
10004

.
π

× ⎛
⎝
⎜

⎞
⎠
⎟

× ×⎛
⎝
⎜

⎞
⎠
⎟  = 198.94 MPa  Ans.

Example 7.5 
An electric motor running at 600 rpm exerts a torque of 3 kN m at D as shown in Fig. 7.8. Find angle 
of twist between (a) B and C and (b) between B and D. Take G = 80 GPa.

Fig. 7.8
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Solution: Refer Fig. 7.8.
The details of each shaft are given below.

 Shaft  parameters  Shaft BC  Shaft CD 
 Diameter   40 mm  60 mm 

 Torque  1.2 kN m (clockwise)  1.2 + 1.8 = 3 kN m (clockwise)

  G  = 80 GPa = 80 10
10

80 10
9

3
6× ×= kPa

Using torsion formula,  is given as

   = 
Tl
JG

Hence, the angle of twist produced in the shaft BC is given as

  BC  = 
1 2 2

32
40

1000
80 10

4
6

. ×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

π
 

     = 0.1193 radian = 6.84o      (anticlockwise)  Ans.
The angle of twist produced in the shaft CD is given as

    CD = 
3 1 5

32
60

1000
80 10

4
6

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

.
π

 

     = 0.0442 radian = 2.53o      (anticlockwise) Ans.

Hence, the angle of twist between B and D is
    BD = BC + CD

     = (6.84 + 2.53)o = 9.37o   (anticlockwise) Ans.

Example 7.6 
Find angle of twist between A and B and between A and C for the arrangement  of pulleys and shafts 
shown in Fig. 7.9. Take G = 80 GPa.

Fig. 7.9
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Solution: Refer Fig. 7.9.
The details of each shaft are given below.

 Shaft parameters    Shaft AB  Shaft BC 
 Diameter   40 mm  50 mm 
 Length  2.5 m  3.5 m 
 Torque  2 kN m (clockwise)  3 kN m (clockwise)

  G  = 80 GPa = 
80 10

10

9

3  = 80  106 kPa

 Using torsion formula, the angle of twist for the shaft AB is given as

  AB  = 
Tl
JG

   = 
2 2 5

32
40

1000
80 10

4
6

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

.
π

   = 0.248 radian = 14.25o (clockwise) Ans.

The angle of twist for the shaft BC is given as 

  BC  = 
3 3 5

32
50

1000
80 10

4
6

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

.
π

 

   = 0.214 radian = 12.25o (clockwise) 
Hence, the angle of twist between A and C is given as

  AC  = AB + BC = 14.25o + 12.25o = 26.5o  (clockwise)  Ans.

Example 7.7 
Determine angle of twist between A and C and between A and E for the problem given in  
Example 7.3. Take G = 220 GPa.
Solution: The angles of twist for different shafts are given in the following table.
      Shaft          Angle of twist ( ) 

       AB   AB  = 
5 1.8

32
15

1000
220 10

180 using  = 4
9

×

× ⎛
⎝⎜

⎞
⎠⎟ × ×

× ⎛
⎝⎜

⎞
⎠⎟π π

θ Tl
JG

    = 0.471o (anticlockwise) 

      BC  BC  =  
15 1.2

32
20

1000
220 10

180
4

9

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

×
π π

 = 0.298o (clockwise) 

Contd...
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        CD  CD  = 
55 1.0

32
25

1000
220 10

180
4

9

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

×
π π

 = 0.373o (clockwise)

       DE  DE  = 
5 1.0

32
30

1000
220 10

180
4

9

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

×
π π

 = 0.016o (clockwise)

The angle of twist between A and C is given as
  AC  = AB – BC

   = (0.471– 0.298)o = 0.173o (anticlockwise) Ans.

The angle of twist between A and E is given as
  AE  = AB – ( BC + CD + DE)
   = 0.471o – (0.298o + 0.373o + 0.016o)
   = – 0.216o = 0.216o (clockwise) Ans.

Example 7.8 
A stepped steel shaft is shown in Fig. 7.10. A torque of 100 N m is acting at C and another torque of 
200 N m is acting at a distance 2 m from A. Determine angular displacement of the free end, if the 
maximum shear stress in the shaft is limited to 50 MPa. Take G = 100 GPa.

Fig. 7.10

Solution:

For shaft BC
l1  = 3 m

Diameter, d1  = 40 mm
Torque, T1  = 100 N m (clockwise)

Using torsion equation, we have

  
T
J

 = 
G
l

or   BC  = 
T l
J G

1 1

1
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   = 
100 3

32
40

1000
100 10

180
4

9

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

×
π π

degree = 0.684o (clockwise)

For shaft AB
l2 = 4 m

Diameter, d2 = 80 mm
Torque, T2 = (200 – 100) = 100 N m  (anticlockwise)

Now AB = 
T
J G
2

2

2
 (Since torque is acting at a distance of 2 m from A )

   = 
100 2

32
80

1000
100 10

180
4

9

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

×
π π  degree

   = 0.028o (anticlockwise)

Hence, the angular displacement of the free end or angle of twist between A and C is given as
  AC  = (0.684 – 0.028)o 

   = 0.656o (clockwise)   Ans.

Example 7.9 
A stepped steel shaft shown in Fig. 7.11, is subjected to a torque of 100 N m (anticlockwise) at C and 
another torque of 200 N m (clockwise) at B. Determine angle of twist at the free end. Shear stress in 
the shaft is not to exceed 60 MPa and modulus of rigidity is 84 GPa.

Fig. 7.11

Solution:
For shaft BC

l1 = 2 m
Diameter, d1 = 40 mm
Torque, T1  = 100 N m (Anticlockwise)

Using torsion equation, the angle of twist in the shaft BC is given as

 BC = 
T l
J G

1 1

1
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  = 
100 2

32
40

1000
84 10

180
4

9

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

×
π π

 = 0.542o (anticlockwise)

For shaft AB
l2  = 4 m

Diameter, d2  =  80 mm
Torque, T2  = 200 – 100 = 100 N m (clockwise)

The angle of twist in the shaft AB is given as

 AB  = 
T l
J G

2 2

2

  = 
100 4

32
80

1000
84 10

180
4

9

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

×
π π

 = 0.067o (clockwise)

Hence, the net angle of twist at the free end of the shaft
   = BC – AB = (0.542 – 0.067)o = 0.475o (anticlockwise)  Ans.

Example 7.10 
A and C. A torque of 100 N m is applied 

at point B (Fig. 7.12). Determine the following:
 (a) the resisting torques induced at the supports
 (b) the maximum shear stress induced in each shaft.

   Take Gs = 80 GPa and GAl = 30 GPa.

Fig. 7.12

Solution:
For shaft AB

lS  = 4 m
Diameter, dS  = 80 mm
For shaft BC

lAl = 2 m
Diameter, dAl  = 40 mm
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 TA and TC be the torques induced (anticlockwise) at ends A and C respectively.
Given, TA + TC  = 100 N m ... (1)

  C/A  = Angle of twist of end C  w.r.t. A
   = 0

  
T l
J G

T l
J G

l
J G

C Al

Al Al

C S

S S

S

S S

×
+

×
−

×100
 = 0 ... (2)

  TC
2

32
40

1000
30 10

4

32
80

1000
80 10

4
9

4
9π π

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

+

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

⎡

⎣

⎢
⎢
⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 = 
100 4

32
80

1000
80 10

4
9

×

× ⎛
⎝
⎜

⎞
⎠
⎟ × ×

π

On solving, we get  TC  =  4.47 N m  Ans.

 From equation (1), we have
  TA  = 100 – TC

   = 100 – 4.47 = 95.53 N m  Ans.

The maximum shear stress induced in the aluminium part is given as

  Al  = 
T d

J

C
Al

Al

× ⎛
⎝
⎜

⎞
⎠
⎟2

   = 
4 47 40

2000

32
40

1000

4

. × ⎛
⎝
⎜

⎞
⎠
⎟

× ⎛
⎝
⎜

⎞
⎠
⎟

π
 = 3.55  105 Pa  Ans.

   The maximum shear stress induced in the steel part is given as

  s  = 
T d

J

A
s

s

× ⎛
⎝⎜

⎞
⎠⎟2

   = 
95 53 80

2000

32
80

1000

4

. × ⎛
⎝
⎜

⎞
⎠
⎟

× ⎛
⎝
⎜

⎞
⎠
⎟

π
 = 9.50  105 Pa  Ans.
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Example 7.11 
 

1000 rpm. Find thickness of the shaft, if the maximum shear stress in shaft is limited to 40 MPa.  
Take G = 80 GPa.
Solution: Given,

  l  = 3 m

Outside diameter of the shaft,  d0  = 75 mm

Power to be transmitted,  P

Revolutions per minute,  N  = 1000

Maximum shear stress in the shaft,  max  = 40 MPa

Using power equation, T is given as

  T  = 
P

N
× ×60 1000

2π

   = 
150 60 1000

2 1000
× ×
×π

 = 1432.4 N m

 Now  
T
J

  = 
τmax

d0

2
⎛
⎝
⎜

⎞
⎠
⎟

   
T

d do i
π
32

4 4( )−
  = 

τmax

d0

2
⎛
⎝
⎜

⎞
⎠
⎟

or  
1432 4

32
75

1000

4
4

.

π ⎛
⎝
⎜

⎞
⎠
⎟ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

di

 = 
40 10

75
2 1000

6×

×
⎛

⎝
⎜

⎞

⎠
⎟

 = 1.06 × 109

 Solving for di, we get
  di  = 0.0651 m = 65.1 mm
 Hence, the thickness of the hollow shaft is

  t = 
d do i

2
  = 

75 65 1
2

.
 = 4.95 mm  Ans.

Example 7.12 

that maximum shear stress in the shaft is limited to 25 MPa and angle of twist is not to exceed 5o. 
Take G = 80 GPa.
Solution: Given,

 l = 3 m
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Power being transmitted,  P
Revolutions per minute,  N  = 1200
Maximum shear stress, max  = 25 MPa = 25  106 Pa

Angle of twist,    = 5o = 
π

180
5×  = 0.087 radian

Modulus of rigidity,  G  = 80 GPa = 80  109 Pa

d be diameter of the shaft. Using power equation, T is given as

  T  = 
P

N
× ×60 1000

2π
 = 

15 60 1000
2 1200
× ×

×π  = 119.36 N m

Using torsion formula, we have

  
T
J

  = G
l

  
T

dπ
32

4
  = G

l

   
119 36

32
4

.
π d

 = 80 10 0 087
3

9 .

Solving for d, we get  d  = 26.9 mm

 Again  
T
J

  = 
τmax

d
2

⎛
⎝
⎜

⎞
⎠
⎟

  
T

dπ
32

4
  = 

2×τmax

d

   
T

d
× 32

3π   = 2  max

   
119 36 32

3

. ×
πd

  = 2  25  106

Solving for d, we get
  d  =  29 mm

Of the two calculated values of d  
is 29 mm.     Ans.
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Example 7.13 
A solid shaft of length 3.5 m and diameter 25 mm rotates at a frequency of 40 Hz. Find the maximum 
power to be transmitted by the shaft, assuming that maximum shear stress in the shaft is limited 
to 40 MPa and angle of twist does not exceed 6o. Take G = 80 GPa.
Solution: Given,

 l  = 3.5 m
Diameter of the shaft,  d  = 25 mm
Revolutions per minute,  N  = 40  60 = 2400
Maximum shear stress,  max  = 40 MPa = 40  106 Pa

Angle of twist,    = 6o = 
π

180
6×  = 0.104 radian

Modulus of rigidity,  G  = 80 GPa = 80  109 Pa
From torsion formula, we have

   
T
J

  = 
G
l

  T  = 
JG

l
 = 

π
θ

32
4d G

l

× ×

   = 

π
32

25
1000

80 10 0 104

3 5

4
9× ⎛

⎝
⎜

⎞
⎠
⎟ × × × .

.
 = 91.16 N m

Again

  
T
J

  = max

( / )d 2

 or T  = 
J

d
× ×2 τmax

   = 

π
τ

32
24d

d

× × max
 = 

π
τ

32
23d × × max

   = 
π
32

25
1000

2 40 10
3

6× ⎛
⎝
⎜

⎞
⎠
⎟ × × ×  = 122.71 N m 

Of the two calculated values of T, we take the lowest one i.e., the accepted torque is 91.16 N m.

 Now  P  = 
2

60 1000
π NT
×

   = 
2 2400 91 16

60 1000
π× ×

×
.

Ans.
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Example 7.14 

angle of twist. Take G = 80 GPa.
Solution:  Given,

 l = 3 m
Power to be transmitted,  P
Revolutions per minute,  N  = 2000
Maximum shear stress,  max   = 50 MPa
Modulus of rigidity,  G  = 80 GPa = 80  109 Pa

T be the torque applied on the shaft. Using power equation, T is given as

  T  = P
N

× ×60 1000
2π

 

   = 
20 60 1000

2 2000
× ×
×π

 = 95.5 N m

Using torsion formula, we have 

  
T
J

  = max

( / )d 2  (where, d is diameter of the shaft)

or  
T

dπ
32

4
  = max

d
2

or  
95 5

32
4

.
π d

  = 
50 10

2

6

( / )d

Solving for d, we get
  d  = 21.34 mm  Ans.

 Again  
T
J

  = 
G
l

  
T

dπ
32

4
  = 

G
l

  
95 5

32
21 34
1000

4

.
.π ⎛

⎝
⎜

⎞
⎠
⎟

  = 
80 10

3

9× × θ

Solving for , we get
   = 0.175 radian = 10o  Ans.
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Example 7.15 
 

by the replacement, if both shafts are of equal length, made of the same material, being subjected to 

Solution: Given,
Power to be transmitted,   P
Revolutions per minute,  N  = 1500
Maximum shear stress,  max  = 70 MPa = 70  106 Pa.

T be the torque applied on the shaft. Using power equation, T is given as

  T  = 
P

N
× ×60 1000

2π

   = 
100 60 1000

2 1500
× ×
×π  = 636.62 N m ... (1)

From torsion formula, we have

  
T
J

  = max

( / )d 2

   
T

dπ
32

4
  = 

2× τmax

d

   
636 62

32
3

.
π d

  = 2  70  106

Solving for d, we get
  d  = 35.91 mm   Ans.

 do  = Outside diameter of the hollow shaft
  di  = Inside diameter of the hollow shaft
  di  = 0.75do (Given)

Since two shafts are transmitting the same power at equal speed, hence they are being subjected 
to same torque.

For hollow shaft

  TH  = 
J

do

× ×τmax 2

   = 

π
τ

32
20

4 4

0

( ) maxd d

d

i− × ×
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   = 

π
τ

32
1 20

4

0

4

0

d d
d

d

i−
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× ×max

   = 
π
32

1 0 75 70 10 20
3 4 6d − ( )⎡
⎣

⎤
⎦ × × ×.  = 9395632.3d0

3

 Now 9395632.3 d0
3 = 636.62 (using equation (1))

 Solving for do, we get 
  d0 = 40.76 mm
and di = 0.75 d0 = 30.57 mm

If density of the material for the two shafts is , then
WH = Density  Area  length  g

   = ρ
π

× − × ×
4 0

2 2( )d d l gi

WS = ρ
π

× × ×
4

2d l g

The percentage saving in the weight is 

   
W W

W
S H

S
  100

   = 
d d d

d
i

2
0
2 2

2 100− −
×

( )

   = 
( . ) ( . . )

( . )
35 91 40 76 30 57

35 91
100

2 2 2

2

− −
×  = 43.63% Ans.

Example 7.16 
A hollow shaft of diameter ratio 0.6 running at 150 rpm is required to drive a screw propeller fitted 
to a vessel, whose speed is 10 m/s for an expenditure of 12000 shaft horse power. The efficiency 
of the propeller is 70%. Determine the shaft diameter, if the maximum shearing stress in the 
shaft is 80 N/mm2.
Solution: Given  
Revolution per minute, N =  150 rpm
Speed of the vessel, V = 10 m/s
Power consumption, P =  12000 HP

 =  70% = 0.70
Maximum shear stress, max =  80 N/mm2
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The power equation is
   P =  

2
4500

1π
η

NT
×

   12000 =  
2 150

4500
1

0 70
π× ×

×
T

.

 or  T =  
12000 4500 0 70

2 150
× ×
×

.
π

kgf.m

    =  40107 kgf.m
    =  40107 × 9.81 N.m =  393449.7 N.m

  do   =  Outside diameter of the shaft
  di  =  Inside diameter of the shaft

  
d
d

i

o
  = 0.6  (Given)

The polar moment of inertia of the shaft is found as

  J =  
π
32 0

4 4( )d di−

   =  
π
32

10
4

0

4

d d
d

i−
⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

   =  
π
32

1 0 60
4 4d { ( . ) }−  =  0.0854 d0

4

 The maximum shear stress is given as

  max = 
T
J

d0

2
 

 or 80 = 
393449 7 1000

0 0854 20
4

0.
. d

d

 Solving for d0, we get d0 =  306.5 mm Ans.

  di =  0.6 d0

   = 183.9 mm Ans.

Example 7.17 
Two shafts are made of same material and are of equal lengths. One of them is solid and another one 
is hollow. The ratio of inside and outside diameters for the hollow shaft is 0.65.  They are subjected 
to the same torque and same maximum shear stress.  Compare the weights of the two shafts.
Solution:  d =  Diameter of the solid shaft
  do   =  Outside diameter of the hollow shaft
  di  =  Inside diameter of the hollow shaft
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d
d

i

o
  = 0.65  (Given)

 From torsion formula, we have

  
T
J

  = max

R
Since the torque and maximum shear stress for the two shafts are same, hence

  
T

max
  = 

J
R

 = Constant

In terms of respective diameters, we have

  
J
d

S

2
⎛
⎝
⎜

⎞
⎠
⎟

  = 
J
d

H

o

2
⎛
⎝
⎜

⎞
⎠
⎟

  

π
32

2

4d

d⎛
⎝
⎜

⎞
⎠
⎟

  = 

π
32

2

4 4( )d d

d

o i

o

−

⎛
⎝
⎜

⎞
⎠
⎟

  d3  = d d
do

i

o

3
4

1−
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  
d
do

⎛

⎝
⎜

⎞

⎠
⎟

3

 = 1 – (0.65)4 = 0.821

or  
d
do

 = 0.936 ... (1)

For the same material and same length, weight is proportional to the cross-sectional area of the 
respective shaft.

  
W
W

S

H
  = 

π

π
4

4

2

2 2

d

d do i( )−

   = 
d

d d
do

i

o

2

2
2

1−
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

   = 
( / )d d

d
d

o

i

o

2

2

1−
⎛

⎝
⎜

⎞

⎠
⎟

 = 
( . )

( . )
0 936

1 0 65

2

2  (using equation (1)) 

   = 1.517 Ans.
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Example 7.18 
A solid circular shaft 200 mm in diameter has the same cross-sectional area as a hollow circular shaft 
of the same material with inside diameter of 150 mm. For the same maximum shear stress, determine 
the ratio of torque transmitted by the hollow shaft to that by the solid shaft. Also, compare the angle 
of twist in the above shaft for equal length and same maximum shear stress. From the above results, 

Solution:  Given,
Diameter of the solid shaft, d = 200 mm
Inside diameter the hollow shaft, Di = 150 mm

D0 = Outside diameter of the hollow shaft
   l
   G = Modulus of rigidity for the two shafts
   TS = Torque transmitted by the solid shaft
   TH = Torque transmitted by the hollow shaft
   S = Angle of twist produced in the solid shaft
   H = Angle of twist produced in the hollow shaft
   max = Maximum shear stress for the two shafts
   JS = Polar moment of inertia for the solid shaft
   JH = Polar moment of inertia for the hollow shaft
The cross-sectional areas of the solid and hollow shafts are equal.

   π
4

2d  = 
π
4 0

2 2( )D Di−

   d2 = D0
2 – Di

2

   2002 = D0
2 – 1502

 Solving for D0, we get D0 = 250 mm
The torque transmitted by the solid shaft is given as

   Ts = max

( / )
·

d
Js2

 using T
J d
=

⎛
⎝⎜

⎞
⎠⎟

τmax

( / )2

    = 
π

τ
d 3

16 max  ... (1)

The torque transmitted by the hollow shaft is given as

   TH = 
τmax ·
D

JH
0

2
⎛
⎝
⎜

⎞
⎠
⎟

    = 
π

τ
( )

max
D D

D
i0

4 4

016
−

 ... (2)
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Dividing equation (2) by equation (1), we have

   
T
T

H

S
 = 

D D
D d

i0
4 4

0
3·

    = 
250 150
250 200

4 4

3
−
×

 = 1.7 Ans.

Now   S = 
τmax

( / )d
l
G2

×

and   H = τmax

( / )D
l
G0 2

×

Hence,   H

S
 = 

d
D0

= 
200
250  = 0.8 Ans.

Conclusions:
 (a)  More torque transmission means more stronger the shaft is. Hence, the hollow shaft is 1.7 times 

stronger than the solid shaft.
 (b H  < S, hence 

the hollow shaft is stiffer than the solid shaft.

Example 7.19 
A solid steel shaft of diameter 40 mm is placed inside an aluminium tube and both of them 

by a rigid plate as shown in Fig. 7.13. Find maximum torque to be applied to the plate, if 
maximum shear stresses in the steel shaft and the aluminium tube are limited to 110 MPa and  
65 MPa respectively. Take GS = 80 GPa and GAl = 28 GPa.

Fig. 7.13

Solution:  Given,
  For steel shaft       For aluminium tube 
 Diameter,   d  =  40  mm  Outside diameter,  d0  =  60 mm
 Shear modulus,  GS =  80 GPa   Thickness,  t   =  5  mm 
   =  80  109 Pa  Inside diameter,  di  = do – 2t 
       = 60 – 2  5 =  50  mm

Contd...
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 Maximum shear stress,       Shear modulus,  GAl  =  28 GPa 
  maxs

  =  110 MPa     =  28  109 Pa                    
   =  110  106 Pa   Maximum shear stress, 
      maxAl

  =  65 MPa  
       = 65  106 Pa 

 ls  lAl  = 450  mm

 The torque applied is distributed to the shaft and tube.
 T1 = Torque exerted by the tube on the plate

  T2 = Torque exerted by the shaft on the plate
  T = Net torque to be applied on the plate
  1 = Angle of twist produced in the tube
  2 = Angle of twist produced in the shaft
  J1 = Polar moment of inertia of the tube
  J2 = Polar moment of inertia of the shaft

  J1  = 
π
32

4 4( )d do i−

   = 
π
32

60 50 104 4 12 4( )− × − m  = 6.58  10–7 m4

  J2  = 
π
32

4d  = 
π
32

40 104 12× × − m4 = 2.51  10–7 m4 

 Now  T = T1 + T2 ... (1)
and  1  = 2 ... (2)

From torsion formula, we have

   = 
Tl
JG

  T l
J G

Al

Al

1

1
 = 

T l
J G

S

S

2

2

  
T1

7 9

450
1000

6 58 10 28 10

× ⎛
⎝
⎜

⎞
⎠
⎟

× × ×−.
 = 

T2

7 9

450
1000

2 51 10 80 10

× ⎛
⎝
⎜

⎞
⎠
⎟

× × ×−.

or T1  = 0.917 T2 ... (3)

Check for shear stresses
Using torsion formula, the torque

  T1  = 
2 1× ×τmax Al

J
do

 = 
2 65 10 6 58 10

60 10

6 7

3
× × × ×

×

−

−
.

 = 1427.3 N m
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The corresponding value of T2, by using equation (3), is given as

  T2  = 
T1

0 917.  = 
1427 3
0 917

.
.  = 1556.48 N m

The maximum shear stress induced in the shaft, by using T2, is given as

  maxs
  = 

T d
J

2

22

   = 
1556 48 40 10

2 2 51 10

3

7
.

.
× ×

× ×

−

−  N/m2  = 124 MPa  

Since 124 MPa > 110 MPa i.e., maximum shear stress induced in the shaft is more than its allow-
able value, which is wrong. Hence, we accept maxs = 110 MPa.  

T2 corresponding to maxs = 110 MPa

  T2  = 
2 2× ×τmaxs

J
d

 

   = 
2 110 10 2 51 10

40 10

6 7

3
× × × ×

×

−

−
.

 = 1380.5 N m

and  T1  = 0.917T2 = 0.917  1380.5 = 1265.9 N m (using equation (3))

Hence, the net torque to be applied on the plate is
  T  = T1 + T2 

   = (1265.9 + 1380.5) = 2646.4 N m  Ans.

Example 7.20  

couples of 50 kN.m clockwise and 75 kN.m counter clockwise act at 5 m and 9 m from the left end 

Fig. 7.14

Solution:  Refer Fig. 7.14. 
l = 12 m

   Couple at B, TB = 50 kN.m (Clockwise)
   Couple at C, TC = 75 kN.m (Anticlockwise)

T1 and T2 be the reactive torques at A and D respectively.
Hence, T1 + T2 = 75 – 50 = 25 kN.m ... (1)
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Using torsion formula, we have   = Tl
JG

Angle of twist at C (from left end) is

  1 = 5 50 41 1T
JG

T
JG

+
+ ×( )

Angle of twist at C (from right end) is

  2 = 3 2T
JG

Now 1 = 2

  5 50 41 1T
JG

T
JG

+
+ ×( )  = 3 2T

JG
  5T1 + 4T1 + 200 = 3T2

or 9T1 – 3T2 + 200 = 0 ... (2)
and T1 + T2 – 25 = 0 (from equation (1))
Solving equations (1) and (2), we get
  T2 = 35.42 kN.m
and T1 = – 10.42 kN.m
The negative sign associated with T1 is indicative of its anticlockwise nature.

x (in BC) from A, angular twist is zero, which means

  − ×
+

− × −10 42 5 50 10 42 5. ( . ) ( )
JG

x
JG

 = 0

  – 52.1 + 39.58x – 197.9 = 0
or x = 6.32 m
Hence, the shaft suffers no angular twist at 6.32 m from A.  Ans.

Example 7.21  
For the shaft loaded as shown in Fig. 7.15, calculate the maximum shear stress induced and the angle 
of twist for cross-section at A. The modulus of rigidity is G.

Fig. 7.15
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Solution:  The algebraic sum of the torques acting on the shaft is zero. TA and TB are the reactive 
torques at A and B respectively.

   TA + M – 4M + TB =  0
or   TA + TB =  4M – M = 3M ... (1)
Using principle of superimposition, angular twists produced independently by M, 4M and TB are 

considered. Then these twists are added algebraically to get the total twist of ‘free end’ B
end A. This should be zero as the end B

   T l
J G

T l
J G

T l
J G

T l
J G

M l
J G

M l
J G

M l
J

B B B B×
+

×
+

×
+

×
+

×
−

×
−

×

1 2 3 4 4 3 4

2 2 2 4 2 4 2
GG

  = 0

or   l
G

T
J

T
J

T
J

T
J

M
J

M
J

M
J

B B B B

1 2 3 4 4 3 4

2 2 2 8 8
+ + + + − −

⎡

⎣
⎢

⎤

⎦
⎥  = 0

   T
J

T
J

T
J

T
J

M
J

M
J

M
J

B B B B

1 2 3 4 4 3 4

2 2 2 8 8
+ + + + − −  = 0

   T
J J J J

M
J J JB

1 1 2 2 2 8 8

1 2 3 4 4 3 4
+ + +

⎛

⎝
⎜

⎞

⎠
⎟ + − −

⎛

⎝
⎜

⎞

⎠
⎟  = 0

 T
d d d d

M
d

B
1

32
3

1

32
2

2

32
2

2

32

2

32
4 4 4 4 4π π π π π( ) ( ) ( )
+ + +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+ −− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

8

32
2

8

32
4 4π π( )d d

 = 0

   T MB
1
81

1
16

2
16

2 2 8
16

8+ + +⎛
⎝
⎜

⎞
⎠
⎟ + − −⎛

⎝
⎜

⎞
⎠
⎟  = 0

   2.1998 TB – 6.5 M = 0
Hence, TB = 2.954 M
and   TA = 3M – TB (using equation (1))
    = 0.046 M
Since TB > TA , hence maximum shear stress is induced on account of TB .

The maximum shear stress is max = 
T
J

dB

4 2

    = 
T

d

dB
π
32

24
×  

    =  2 954 32
2 3

. M
d
×

π
 = 

15 04
3

. M
d

 Ans.
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The angle of twist is A = 
T l

J G
B 2

4
 =  T l

d G

B ×

×

2

32
4π

    = 32 2
4

× ×T l
d G

B

π
 

    = 
64 2 954

4
× ×. M l

d Gπ
 (on substituting TB)

    = 60 18 4. Ml
Gd

  Ans.

Example 7.22  

The compound shaft shown in Fig. 7.16 is built-in at the two ends. It is subjected to a twisting moment 
T T1 and T2

Fig. 7.16

Solution:  Refer Fig. 7.16.
   T1 + T2 = T (Given) ... (1)

produced by T and T2 independently, and then add them together algebraically to get the total twist 
of ‘free end’ B A. This should be zero, as the end B

   T l
J G

T l
J G

Tl
J G

2

2

2

1 1
+ −  = 0

   l
G

T
J

T
J

T
J

2

2

2

1 1
+ −

⎡

⎣
⎢

⎤

⎦
⎥  = 0 

   T
J

T
J

T T
J

2

2

2

1

1 2

1
+ −

+  = 0 (using equation (1))

   T
J

T
J

T
J

T
J

2

2

2

1

1

1

2

1
+ − −  = 0
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T
J

T
J

2

2

1

1
 = 0

or   
T
T

1

2
 =  

J
J

1

2
=  

π

π
32

32
2

4

4

d

d( )
 =  

1
16

  Ans.

7.6 EFFECT OF STRESS CONCENTRATION 
In case of stepped shaft, where cross-section of the shaft abruptly changes at any point along its 
length, stress concentrations are found to occur near the discontinuity (Fig. 7.17).

Fig. 7.17  

A and B are the locations of high stress concentration. These are the weakest points 
in the shaft. A factor, known as stress-concentration factor (K), is introduced in the torsion analysis 

cross-section takes place gradually. The stress concentration factor depends upon two factors.
 (a) The ratio of the diameters of the shaft at two ends (D/d), and 

 (b r
d

⎛
⎝
⎜

⎞
⎠
⎟ .

Fig. 7.18 
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  max = 
K T. d

J
. 
2

 ... (7.18)
where K = Stress-concentration factor

  d = Diameter at smallest end of the shaft
  J = Polar moment of inertia based on smallest diameter of the shaft
  T = Torque

Equation (7.18) is valid only if Hooke’s law is obeyed, that is, the maximum shear stress does not 
exceed the proportional limit of the shaft material.

Example 7.23 
A stepped shaft shown in Fig. 7.19 is subjected to a torque of 500 N m. Find the maximum shear stress 

Fig. 7.19

Solution: Refer Fig. 7.16. 
     Given,

Diameter at the bigger end,  D  = 50 mm
Diameter at the smallest end,  d  = 25 mm

 r  = 2.5 mm
Torque to be applied,  T  = 500 N m

The ratio  
r
d

  = 
2 5
25
.

 = 0.10

The ratio  D
d

  = 
50
25  = 2.0

Corresponding to 
r
d

 = 0.10 and 
D
d

 = 2.0, the value of stress concentration factor, K from Fig. 7.15 

is 1.45. Hence, the maximum shear stress induced in the shaft is given as

  max  = 
K T d

J
. .
2

 (using equation (7.18))

   = 
1 45 500 25 1000

2
32

25
1000

4
. ( / )× ×

× × ⎛
⎝
⎜

⎞
⎠
⎟

π
 = 236.31 MPa Ans.
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Example 7.24 

permissible radius of the fillet, assuming that maximum shear stress in the shaft is limited to  
60 MPa.

Fig. 7.20

Solution: Given,
Diameter at the bigger end,  D  = 60 mm
Diameter at the smaller end,  d  = 50 mm
Revolutions per minute,  N  = 850
Power to be transmitted,  P
Maximum shear stress,  max  = 60 MPa = 60  106 Pa

T be the torque applied on the shaft.
    The equation of power is

  P  = 
2

60 1000
π NT
×

or  T  = 
P

N
× ×60 1000

2π
 = 

100 60 1000
2 850
× ×

×π
 = 1123.44 N m

 The maximum shear stress in the shaft is

  max  = 
K T d

J
. .
2

  60 × 106  = 
K × ×⎛

⎝
⎜

⎞
⎠
⎟

× × ⎛
⎝
⎜

⎞
⎠
⎟

1123 44 50
1000

2
32

50
1000

4

.

π
 

 Solving for K, we get
  K = 1.31

 The ratio 
D
d

 = 
60
50

 = 1.2

 Corresponding to K = 1.31 and 
D
d

 = 1.2, ratio 
r
d

 is found to be 0.11.  (using Fig. 7.15)

  
r
d

 = 0.11

 or r = 0.11  d  = 0.11  50 = 5.5 mm

 Ans.
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7.7 TORSION OF A TAPERED SHAFT 
Consider a tapered shaft of diameter d1 at the bigger end and diameter d2 at smaller end  
(Fig. 7.21).

1 = Shear stress at the bigger end
  2 = Shear stress at the smaller end
  G = Shear modulus of the shaft material
  T = Torque applied at the two ends
  l

Fig. 7.21

Consider a small length dx of diameter d at a distance x from bigger end.
The entire section of shaft is subjected to same torque T.

  
π

τ
16 1

3
1d  = 

π
τ

16 2
3

2d  = 
π

τ
16

3d

where  = Shear stress at x

  d1
3

1  = d2
3

2  = d3  ... (7.19)
The angle of twist produced in the length dx is

  d  = Tdx
JG

 
using T

J
G
l

=⎛
⎝⎜

⎞
⎠⎟

θ

   = 
Tdx

d Gπ
32

4
 = 

32
4
T

d G
dx

π  ... (7.20)

The diameter d can be expressed as

  d = d1 – 
d d x

l
1 2−( )

   = d1 – Kx, where K = 
d d

l
1 2−⎛

⎝
⎜

⎞
⎠
⎟
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On substituting d, equation (7.20) becomes

  d  = 
32

1
4

T dx
d Kx Gπ −[ ]

The total angle of twist for the entire shaft of length l is

   = 
32

1
4

0

T
G

dx
d Kx

l

π −( )
∫  = 

32
1

4

0

T
G

d Kx dx
l

π
−( )

−
∫

   = 
32

3
1

3

0

T
G

d Kx
K

l

π
−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

 = 
32

3 1
3

0

T
GK

d Kx
l

π
−( )⎡

⎣
⎤
⎦

−

   = 
32

3 1
3

1
3T

GK
d Kl d

π
−( ) −⎡

⎣
⎤
⎦

− −  

   = 
32

3 1 2
1

1 2
3

1
3Tl

G d d
d d d

l
l d

π ( )
)

−
−

−
⋅⎛

⎝
⎜

⎞
⎠
⎟ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
−  

   = 
32

3 1 2
2

3
1

3Tl
G d d

d d
π −( )

−⎡
⎣

⎤
⎦

− −  = 
32

3
1 1

1 2 2
3

1
3

Tl
G d d d dπ −( )

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
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   = 
32

3 1 2

1
3

2
3

1
3

2
3

Tl
G d d

d d
d dπ −( )
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   = 
32

3 1 2

1 2 1
2

1 2 2
2

1
3

2
3

Tl
G d d

d d d d d d
d dπ −( )

− + +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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   = 
32
3

1
2

1 2 2
2

1
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2
3

Tl
G

d d d d
d dπ

+ +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ... (7.21)

Maximum shear stress is induced at smaller end of the shaft because of smallest diameter at that 
point, and its value is given as

  max = 
16

2
3

T
dπ

 ... (7.22)

7.8 TORSION OF A THIN CIRCULAR TUBE 
Consider a circular tube of outside diameter d0 and inside diameter di, being subjected to a  
torque T (Fig. 7.22).

Thickness of the tube is

  t = 
d di0

2
The polar moment of inertia of the cross-section is found as

  J = 
π
32 0

4 4( )d di−  = 
π
32

20
4

0
4d d t− −⎡⎣ ⎤⎦( )
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Fig. 7.22

   = 
π
32

1 2
0
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0
4
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⎥
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   = 
πd t

d
0
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⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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...

   = 
πd t

d
0
4

032
8

×  (ignoring higher powers of t)

   = 
πd t0

3

4
The torque T is given as

  T = 
2

0

× ×τmax J
d

 (using torsion formula)

   = 
2

4
0
3

0

× ×
×

τ πmax d t
d

 (on substituting J)

   = 
π
2 0

2d  t max ... (7.23)

The angle of twist produced in the tube is given as

   = 
Tl
JG

 = 
Tl

d t Gπ 0
3

4
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟×

 (on substituting J)

   = 
4

0
3
Tl

d t Gπ  ... (7.24)

7.9 STRAIN ENERGY DUE TO TORSION 
The strain energy or the workdone due to torsion is given by

  U = 
1
2
× ×T θ  ... (7.25)

where torque is assumed to be applied gradually and is increasing from zero to its maximum value.
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From torsion formula, for a solid circular shaft, we have

  T
J

 = G
l

 = max

( / )d 2

Hence, Ts = 
J

d
× τmax

( / )2

   = 
π τ
32

24d
d

×
×max  = 

π
τ

d 3

16 max

and s =  
τmax

( / )
×

×
l

G d 2 = 
2× ×τmax l

Gd

Substituting Ts and s in equation (7.25), we have for a solid shaft

  Us = 
1
2 16

23
× ×

× ×π
τ

τd l
Gdmax
max

   = 
τ πmax

2
2

4 4G
d l×⎛

⎝
⎜

⎞
⎠
⎟ = 

τmax
2

4G
VS×  ... (7.26)

where Vs =  
π
4

2d l× = Volume of the solid shaft

For a hollow shaft of inside diameter di and outside diameter do, the values of T and  are:

  TH = 
π

τ
d d

d
i

o

0
3 4

16
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⎛

⎝
⎜
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⎟

⎡

⎣
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⎤

⎦
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and H  = 
2

0

× ×τmax l
Gd

Substituting T and  in equation (7.25), we get
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1
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 where VH = 
π
4

2 2( )d d lo i− ×  =  Volume of the hollow shaft
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 and d d
d

o i

o

2 2

22
 =  1, when do ~ di

Hence, UH = 
τmax

2

2G
VH×  ... (7.27)

twice strain energy as compared to a solid shaft, and it is a very important point in favour of a hollow 
shaft.

Example 7.25  
A shaft circular in section (Fig. 7.23) and of length l is subjected to a variable torque given by  
Kx2/l2, where x is the distance measured from one end of the shaft and K is a constant. Find the angle 
of twist for the shaft by use of Castigliano’s theorem. Torsional rigidity of the shaft is G.

Solution:  The torque is T = 
Kx
l

2

2
. 

Consider a small length dx of the shaft at a distance x from the right end.
The angle of twist, using the Castigliano’s theorem, is given by

Fig. 7.23

    = 
Tdx
JG

l

0
∫  = 1

0JG
Tdx

l

∫  

    = 
1 2

2
0JG

Kx
l

dx
l

∫  (on substituting T)

    = 
K

JGl
x dx

l

2
2

0
∫  

    = 
K

JGl
x Kl

JG

l

2

3

0
3 3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =     Ans.
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 1. 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 

 8. 
 9. 
 10. 

 1.  The shear stress produced in a circular shaft due to pure torsion is
    (a) proportional to radius of the shaft
    (b) inversely proportional to diameter of the shaft
    (c) inversely proportional to radius of the shaft
    (d) inversely proportional to the square of radius of the shaft.
 2.
    (a) product of torque and length
    (b) product of polar moment of inertia and modulus of rigidity
    (c) sum of polar moment of inertia and modulus of rigidity
    (d) product of polar moment of inertia and angle of twist.
 3.
    (a) ratio of torque to angle of twist
    (b) product of torque and angle of twist
    (c) sum of modulus of rigidity and angle of twist
    (d) ratio of torque to polar moment of inertia.

SHORT ANSWER QUESTIONS

  MULTIPLE CHOICE QUESTIONS   
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 4. The torsion equation is

    (a) 
T
I

 = 
G
L

 =  
r

   (b) 
T
J

 =   
G
L

 =  
r

    (c)  T
J

 =   G
L

 =  D    (d) 
J
T

G
L r

= =
θ τ .

  where the symbols have their usual meanings.

 5.

diameter of the shaft, if G = 8  104 N/mm2 

    (a) 68.7  mm   (b) 82.55  mm 

    (c) 67.8  mm   (d) 65.7  mm.

 6. The ratio of the torques transmitted by a hollow and a solid shaft, both made of same material, 
length and weight is

    (a)  
n

n n

2

2

1

1
 (b) 

n

n n

2

2

1

1

+

−  (c)  
n

n n

2 1
1  (d) 

n
n n

2 1
1

−
+

  where  n = d
d

o

i

.

 7. The ratio of the weights of two shafts in Question No. 6 is

    (a)  1 1 1 1
2 4

2 3

−⎛
⎝
⎜

⎞
⎠
⎟ −⎛
⎝
⎜

⎞
⎠
⎟n n

/
/

 (b) 1 1 1 1
2 4

2 3

−⎛
⎝
⎜

⎞
⎠
⎟ +⎛
⎝
⎜

⎞
⎠
⎟n n

/
/

    (c)  1 1 1 1
2 4

2 3

+⎛
⎝
⎜

⎞
⎠
⎟ −⎛
⎝
⎜

⎞
⎠
⎟n n

/
/

 (d) 1 1 1 1
2 4

2 3

+⎛
⎝
⎜

⎞
⎠
⎟ +⎛
⎝
⎜

⎞
⎠
⎟n n

/
/

.

 8. The power transmitted by a shaft is given as

    (a) NT
30
π b) NT

4500
π  (hp) (c) NT

75
2π (hp)  (d) NT

30
π

    where the symbols have their usual meanings.

 9. L being 
subjected to a torque T is

    (a)  
TL

G
r r r r

r r3
21 2 1 2

1 2
3π

+ +⎡

⎣
⎢

⎤

⎦
⎥

( )
 (b)  

TL
G

r r r r
r r3

21 2 1 2

1 2
3π

+ +⎡

⎣
⎢

⎤

⎦
⎥

( )

    (c)  
2
3

1
2

2
2

1 2

1 2
3
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r r r r
r rπ
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⎣
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⎤

⎦
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( )  (d) 
3
2

1
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2
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1 2

1 2
3
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r r r r
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⎦
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( )
 .

  where r1 and r2 are the radii at smaller and bigger end respectively. 
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 10. For a stepped shaft where two or more shafts are connected end-to-end, the angle of twist 
produced and the torques transmitted are given respectively as

    (a)  1 – 2, T1 + T2     (b) 1 + 2, T1 = T2

    (c)  θ θ1 2

2
+ , T1 = 

T2

2     (d) θ θ1 2

2
− ,  T1 = T2 .

11. For a composite shaft made of two concentric shafts one solid and other hollow, the torque 
T is given as

    (a) T1 – T2  (b) 
T T1 2

2
 (c)  T1 + T2  (d) 

T T1
22

.

 12. For the composite shaft in Question No. 11, the angle of twist produced is equal to 

    (a)   = 1 + 2  (b)  = 1 – 2 (b)  =  
θ θ1 2

2
−

 (d)  = 1 = 2.

13. For a shaft being subjected to a torque T, the variation of the shear stress w.r.t. its radius is
    (a) linear  (b)  parabolic (c) hyperbolic  (d) none of these.

 14. The shear stress for a shaft being subjected to a torque T is minimum at
    (a) half of radius from the axis (b) axis of the shaft
    (c) equal radial distances from the axis (d) its both ends.

 15. The polar modulus of a shaft of diameter d is given as

   (a)  d
32

3π   (b) d
64

4π  (c) d
16

3π  (d) d
32

4π .

 16. The shear strain in a circular shaft varies
    (a) linearly with the distance from axis of the shaft
    (b) inversely proportional to the distance from axis of the shaft
    (c) inversely proportional to the square of the distance from axis of the shaft
    (d) linearly with the square of the distance from the shaft.

 17. The shear strain is maximum 
    (a) at a distance equal to one-third from axis of the shaft
    (b) at the centre of shaft
    (c) on the surface of shaft
    (d) none of these.

ANSWERS
 1. (a) 2. (b)  3. (a) 4. (b) 5. (b) 6. (b) 7. (a) 8. (a) 9. (c)

 10. (b) 11. (c) 12. (d) 13. (a) 14. (b) 15. (c) 16. (a) 17. (c)
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 1. Find the lo

twist. Take G = 80 GPa. 

     (Ans. 972.5 rpm, 6.82o).

 2.

if solid shaft is replaced by a hollow shaft with inside diameter being equal to 0.6 times 
the outside diameter. Both shafts are of equal length, made of same material and are being 
subjected to the same maximum shear stress. 

     (Ans. 122.15  mm, 29.72%).

 3. A hollow shaft of inside diameter 80 mm and outside diameter 120 mm is twisted by 1.5o. Find 

surfaces of the shaft. Take G = 80 GPa. 

     (Ans. 17 kN m, 41.6 MPa, 62.85 MPa).

 4. (a)  A hollow circular shaft of inner radius 30 mm and outer radius 50 mm and length 1 m is 
subjected to a twisting moment so that the angular twist in the shaft is 0.57o. Find  the 
maximum shear angle in the shaft.

  (b)  A hollow shaft of outer radius 100 mm and inner radius 40 mm is subjected to a twisting 
moment. The maximum shear stress developed in the shaft is 50 MPa. Find the shear stress 
at the inner radius of the shaft. 

     (Ans. (a)  0.028o;  (b)  20 MPa).

 5.
Find its inside diameter, if the maximum shear stress in the shaft is limited to 50 MPa.

     (Ans.  82.96 mm).

 6. Two pulleys are attached to different shafts as shown in Fig. 7.24. The motor attached exerts 
a torque of 3.0 N m at C. Find the maximum shear stress induced in the shafts AB and BC, 
assuming them to be solid. 

     

EXERCISES
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Fig. 7.24

(Ans. 0.586 MPa,  0.356 MPa).

 7. Part AB of the shaft shown in Fig. 7.25 has 25 mm diameter and is subjected to a maximum shear 
stress of 75 MPa. Part BC has 60 mm diameter and is subjected to a maximum shear stress of 

T1 applied at A and the 
reaction torque exerted by the support.

Fig. 7.25

     (Ans. 230 N m, 2120.5 N m (anticlockwise)).

 8. Two shafts, one solid and another hollow, are made of same material and are of equal length. 
They are subjected to same torque. The ratio of inside and outside diameters for the hollow 
shaft is 0.75. If both shafts are subjected to the same maximum shear stress, compare their 
weights.

     
Ans. W

W
S

H
=

⎛

⎝
⎜

⎞

⎠
⎟1 77. .

 9. Find the maximum torque that can be applied safely to a shaft of diameter 300 mm. The 
permissible angle of twist is 1.5o in a length of 7.5 m and the maximum shear is limited to  
42 MPa. Take G = 84.4 GPa. 

     (Ans. 222.6 kN m).
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 10.
couples of 50 kN m clockwise and 75 kN m anticlockwise act at 5 m and 9 m from the left 

angular twist.
  (Ans. 10.42 kN m,  Clockwise (left end);
   35.42 kN m, Anticlockwise (right end);
   6.32  m  from the left end).
 11. A solid circular shaft is subjected to an axial torque T and a bending moment M. If M = kT, 

k. Find 
the power transmitted by a 50 mm diameter shaft at a speed of 300 rpm, when k = 0.4 and the 
maximum shear stress is 75 MPa.

  
Ans k

k
.

( )
, . .1

1
57 6

2
+

+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

kW
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8

Robert Hooke, born on 18 July 1635, was an English inventor, 
microscopist, physicist, surveyor, astronomer, biologist and polymath. 
He founded the law of elasticity, widely known as Hooke’s Law, in 1660, 
which forms the basis of design for many engineering structures and 
components. He originated the word ‘Cell’ in biology, which describes 
the tiniest component of a living system. He is the inventor of the iris 
diaphragm in cameras, the universal joint used in the motor vehicles and 
the balance wheel in a watch. He discovered the red spot of Jupiter and 

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

Robert Hooke
(1635-1703)
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8.1 INTRODUCTION 
A spring is a device used to absorb or store energy and release it when required. The deformation 
produced in the spring is not of permanent nature and vanishes on removal of load due to its elastic 

automobile elements etc.

8.2 SPRING TERMINOLOGY 
  Proof Load : It is the maximum load a spring can be subjected without undergoing permanent 

deformation.
  Proof stress : It is the stress corresponding to the proof load.
  Resilience : It is the strain energy stored in the spring when loaded within elastic limit. Once the 

load is removed, the energy is given up or released.
  Proof resilience : It is the maximum strain energy stored in the spring when loaded within elastic 

limit.
  Modulus of Resilience : It is the maximum strain energy stored per unit volume.
  Stiffness

8.3 CLASSIFICATION OF SPRINGS 
Various types of springs are employed for different applications. Important types are discussed 
below.
 Helical springs are in the form of a helix made of a rod of circular, square or rectangular cross-
section, but the circular section is most frequently used. Square or rectangular sections are used in 
heavy duty springs. The main disadvantages of non-circular wire section springs include non-uniform 
stress distribution and less energy absorbing capacity of the spring.
 Helical springs are also known as torsion springs, because they are subjected to torsion. Helical 
springs may be in the cylindrical or conical form.
 Cylindrical helical springs are subjected to tension or compression. A conical helical spring is used 
where there is a space problem or a single spring with a variable stiffness is desired. They are used for 

 In the close coiled helical spring, angle of helix is very small and can be approximated to zero so 
that plane of the coil is at right angle to the axis of the spring.
 In the open coiled helical spring, plane of the coil of the spring makes certain angle with the 
horizontal.
 Depending upon the nature of applications, helical springs can be of compression and tension type.
 Laminated springs or leaf springs are made of a number of thin curved plates of uniform thickness 
but different lengths which are placed over each other and clamped together at the centre. They may 
be of cantilever, semi-elliptical or elliptical type. The most common type of leaf spring is semi-
elliptical leaf spring. For very heavy loads to be supported, it can be elliptical leaf spring. Laminated 

axles of cars, trucks, trains etc. Sometimes they are also known as bending springs because being 
subjected to bending only.
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 Flat springs 

act as a structural member as well as an energy absorbing device.
 Spiral spring 
major stresses produced in the spring are tensile and compressive due to bending by the applied load.
 Various types of springs are shown in Fig. 8.1.

Fig. 8.1 Types of springs.

Sometimes springs are used to support a body that has vibrational problems. Sofa springs are the 

buckling during the use.

8.4 LOAD-DEFLECTION CURVE 

will also be doubled (Fig. 8.2). The straight relationship is valid only if the spring is stressed within 
elastic limit. It is equally applicable in case when a torque or moment is acting in place of a load and 
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Fig. 8.2

8.5 LEAF SPRING 
A leaf spring, also called laminated spring, is shown in Fig. 8.3. The long leaf or plate fastened to 
the supports is called the main leaf or master leaf. Its ends are bent to form an eye. If heavy loading 
is to be applied, one or more full length leaves are provided below the master leaf. The bundle of 
leaves having same thickness but different length are clamped together at the centre. All the leaves are 
bent to same curvature. The spring rests on the axle of the vehicle and is pin jointed to the chasis at  
the eyes.

   

Fig. 8.3 A leaf spring.

Consider a leaf spring hinged at both ends and carrying a load W at the centre. The load W is 
distributed equally at the two eyes.
 Let  Span of the spring (biggest leaf) =  l

 b
  Thickness of each plate = t
  Number of plates in the spring =  n
  Bending stress in the plate = b

  Radius of curvature of each plate =  R
 The bending moment is maximum at the centre and goes on decreasing towards the ends (eyes); 
therefore maximum resistance of moment is required at the centre and less towards the ends. That 
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is why leafs of gradually reducing lengths are used in the spring. The law of variation of bending 
moment is linear.
 Using bending equation, the moment of resistance is found to be

 Mr  = 
n btb

2

6
 ... (8.1)

 The maximum bending moment due to load applied on the spring is given as

 M  = 
Wl
4  ... (8.2)

 Equation (8.2) is obtained on comparing the spring with a simply supported beam loaded with a 
point load at the centre.
 From the two equations (8.1) and (8.2), we have

 
Wl
4

  = 
n btb

2

6

or b  = 
3

2 2
Wl
nbt  ... (8.3)

 The radius of curvature can be obtained by considering Fig. 8.4.

Fig. 8.4

 l
2

2⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟  + (R – )2  = R2

or   = 
l
R

2

8
 ... (8.4)

 From bending equation

 b

t( / )2  = 
E
R

 

or R = 
Et

b2  ... (8.5)

 Substituting R in equation (8.4), we get

  = bl
Et

2

4
 ... (8.6)
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where       E  = Modulus of elasticity of the spring material

b in equation (8.6) as

 = 
3

8

3

3
Wl

n Ebt
 ... (8.7)

 The strain energy stored in the spring is due to the work done by the load acting on it, given by

 U  = 1
2

  W  ... (8.8)

 Substituting  in equation (8.8), we get strain energy as

 U  = 
1
2

× W × 
3

8

3

3
Wl

n Ebt

or U  = 
3

16

2 3

3
W l
n Ebt

... (8.9) 

 The strain energy can also be expressed in terms of bending stress and volume of spring, given by

 U  = b

E

2

6
 × Volume of the spring ... (8.10)

where Volume of spring  = 
n lbt
2

Example 8.1 
A steel carriage spring is 800 mm long and carries a central load of 6 kN. The plates are 70 mm wide 
and 5 mm thick. Determine the number of plates in the spring to sustain a maximum bending stress 
of 200 N/mm2

E = 200 kN/mm2.
Solution: Given,

Length of the biggest plate, l  = 800 mm
Central load on the spring, W  = 6 kN = 6000 N

b  = 70 mm
Thickness of the plate, t  = 5 mm
Bending stress induced in the spring, b = 200 N/mm2

Modulus of elasticity of spring material, E  = 200 kN/mm2 = 2 × 105 N/mm2

Let
Number of plates in the spring  = n

=
Radius of curvature of each plate  = R

 Using equation (8.3) for bending stress, we have

b = 
3

2 2
Wl

nbt
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 200  = 
3 6000 800
2 70 52n

or n  = 20.57
 Hence, the number of plates can be taken to be 21.       

Ans.

 = 
3

8

3

3
Wl

n E bt

or   = 
3 6000 800

8 21 2 10 70 5

3

5 3

× ×( )

× × × × ×
= 31.34 mm  Ans.

 For the radius of curvature, use equation (8.4).

  = 
l
R

2

8

or R  = 
l2

8
 = 

800
8 31 34

2
( )
× .

 = 2.552 m  Ans.

Example 8.2 
A laminated steel spring of length 900 mm carries a central proof load of 8 kN. The maximum 

2. Determine 
the thickness, width, number of plates, and the radius to which the plates should be bent. Assume the 
plate width to be ten times its thickness. Take E = 200 kN/mm2.
Solution: Given,
 Length of the biggest plate, l = 900 mm
 Load on the spring, W  = 8 kN = 8000 N

  = 60 mm
 Bending stress induced in the spring, b  = 0.5 kN/mm2 = 500 N/mm2

 Modulus of elasticity, E  = 200 kN/mm2 = 2 × 105 N/mm2

b
  Thickness of the plate  = t
 Number of plates in the spring = n
 Given, b  = 10t ... (1)

  = 3
8

2

3
Wl

nEbt

 60  = 
3 8000 900

8 2 10 10

3

5 3

× ×( )

× × × ×n t t
or nt4  = 18225 ...(2)
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 Using equation (8.3) for bending stress, we have

b  = 3
2 2

Wl
nbt

 500  = 
3 8000 900
2 10 2n t t

or nt3  = 2160 ...(3)

 Dividing equation (2) by equation (3), we get

 t  = 
18225
2160

 = 8.43 mm

 Hence, the thickness of the plate can be chosen to be 8 mm.  Ans.
  From equation (1)
 b  = 10t = 10 × 8 = 80 mm Ans.

 From equation (3)

 n  = 
2160

83  = 4.21

  Hence, the number of plates can be 5.    Ans.

p  = 
3 8000 900

8 5 2 10 80 8

3

5 3

× ×( )

× × × × ×( )
 = 53.4 mm (using equation (8.7))

 The radius of curvature is found by using equation (8.4).

 R  = 
l

p

2

8δ

  = 
900

8 53 4

2
( )
× .

 = 1.896 m

Hence, the radius of curvature of each plate = 1.896 m.   Ans.

Example 8.3 
A steel carriage spring of length 1.5 m having plate width 150 mm and thickness 10 mm is subjected 
to a bending stress of 200 N/mm2. The spring during its straightening absorbs 150 joule of energy. 
Find the number of plates and their radius of curvature. Take E = 200kN/mm2.
Solution: Given,
 Length of the biggest plate, l  = 1.5 m = 1500 mm

b  = 150 mm
 Thickness of the plate, t = 10 mm
 Modulus of Elasticity of spring material,  E = 200 kN/mm2 = 2 × 105 N/mm2
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 Bending stress induced in the spring, b  = 200 N/mm2

 Strain energy stored in the spring, U  = 150 joules
 Let, Number of plates,  = n
 Radius of curvature of each plate,  = R

 The strain energy stored in the spring is given by the equation (8.10) as

 U  = b

E
n lbt

2

6 2

 150 × 103  = 
200 1500 150 10

6 2 10 2

2

5
( ) × × × ×

× × ×

n

or n  = 4   Ans.

 R  = 
Et

b2
2 10 10

2 200

5
=
× ×
×  = 5 m  Ans.

Example 8.4  
A steel carriage spring of length 1 m has 15 leaves, each 150 mm wide and 10 mm thick. It is subjected 
to a maximum bending stress of 300 N/mm2. Find the curvature of each leaf.
A load of 200 N is dropped on the spring without exceeding the given bending stress. Neglecting the 

E = 200 kN/mm2.

Solution: Given,
 Length of the biggest leaf,  l  = 1 m = 1000 mm
 Number of leaves in the spring,  n  = 15
 Width of the leaf,  b  = 150 mm
 Thickness of the leaf,  t  = 10 mm
 Bending stress induced in the spring, b  = 300 N/mm2

 Load to be dropped on the spring,  W  = 200 N
 Modulus of elasticity,  E  = 200 kN/mm2 

   = 2 × 105 N/mm2

 Let
 Radius of curvature of each plate  = R
 Height of load  = h

 The radius of curvature R can be found by using equation (8.5).

 R  = 
Et

b2
2 10 10

2 300

5
=
× ×
×

  = 3.34 m  Ans.
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  = 
1000

8 3 34 10

2

3
( )

× ×.
  = 37.5 mm

 The potential energy at a height h is given as

 P.E  = W (  + h) = 200 (37.5 + h) ... (1)

 The potential energy is stored in the spring as strain energy given by equation (8.10).

 U  = b

E
n lbt

2

6 2
 

  = 
300

6 2 10
15
2

2

5
( )

× ×
×  × 1000 × 150 × 10 = 843.75 joule ... (2)

 Equating equations (1) and (2), we have

 200 (37.5 + h)  = 843.75 × 103

or h  = 4.18 m  Ans.

8.6 QUARTER-ELLIPTIC LEAF SPRING  
The analysis of a quarter-elliptic leaf spring (also called cantilever laminated spring) can be made by 
comparing the spring with a cantilever beam loaded with a point load at its free end (Fig. 8.5). In this 
case, maximum bending moment is given as

  M  = Wl ... (8.11)

Fig. 8.5 

 Using equations (8.1) and (8.11), we get the equation for maximum bending stress.

bmax  = 
6

2
Wl

nbt
 ... (8.12)

where the symbols have their usual meanings.
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  = 
6 3

3
Wl

nE bt
 ... (8.13)

 Radius of curvature of each leaf is found to be

 R  = 
l Et

b

2

2 2δ σ
max

  ... (8.14)

Example 8.5 
A quarter-elliptic leaf spring has 10 leaves with cross-section of each leaf being 100 mm × 10 mm. 
The spring is 500 mm long. The bending stress is not to exceed 300 N/mm2. Determine the following 
parameters of the spring. 
 (a) the maximum load which can be applied on the spring
 (b
 (c) the radius of curvature of leaves
  Take E = 200 kN/mm2.

Solution: Given,
 Number of leaves in the spring,  n  = 10

 b  = 100 mm
 Thickness of the plate,  t  = 10 mm
 Lenth of the biggest plate,  l  = 500 mm
 Maximum bending stress induced in the spring, bmax  = 300 N/mm2

  Modulus of elasticity, E = 200kN/mm2 = 2 × 105 N/mm2

 (a) Use equation (8.12) to get the load W acting on the spring.

bmax  = 
6

2
Wl

nbt

 300  = 
6 500

10 100 102
W

or W  = 10 kN  Ans.

 (b

  = 
6 6 10 10 500

10 2 10 100 10

3

3

3 3

5 3
Wl

nE bt
=

× × ×( )

× × × ×
 = 37.5 mm  Ans.

 (c) Use equation (8.14) for the radius of curvature.

 R = 
l2 2

2
500

2 37 5δ
=
× .

 = 3.34 m  Ans.
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Example 8.6 

of 100 mm. The cross-section of the spring is 70 mm × 10 mm. Determine the following parameters 
of the spring:
 (a) the number of leaves in the spring
 (b) the maximum bending stress induced in the spring and
 (c) the height through which if the given load is dropped on the spring, is to produce a maximum 

bending stress of 1 kN/mm2 
 Take E = 200 kN/mm2.

Solution: Given,

 Length of the biggest plate,  l  = 700 mm
 Load on the spring,  W  = 3 kN = 3 × 103 N

 = 100 mm
 Modulus of elasticity, E = 200 kN/mm2 = 2 × 105 N/mm2

b = 70 mm
 Thickness of the plate,  t = 10 mm

 (a) Use equation (8.13) for number of leaves in the spring.

  = 
6 3

3
Wl

nE bt

 100  = 
6 3 10 700

10 2 10 70 10

3 3

5 3

× × ×( )

× × × ×
 or  n  = 4.41
 Hence, the number of leaves can be chosen to be 5.  Ans.

 (b) The maximum bending stress induced in the spring can be obtained by using equation (8.12).

bmax  = 
6 6 3 10 700

5 70 102

3

2
Wl

nbt
=
× × ×

× ×
 = 360 N/mm2   Ans.

 (c) If We is the equivalent gradually applied load to produce the given bending stress. Equation (8.12) 
We.

 1000  = 
6 700

5 70 102
We

or We  = 8.34 kN

 This is the equivalent impact load corresponding to the given load of 3 kN. 

e  = 
6 8 34 10 700
5 2 10 70 10

3 3

5 3

× × ×( )

× × × ×

.
 = 245 mm.
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Using principle’s of energy, we have

 Loss of potential energy  = Gain of strain energy

 W (h + e)   = 
1
2

We e

where, h is the height through which the load falls.

 3 × 103 (h + 245)  = 
1
2

8 34 10 2453.

or h  = 95.2 mm  Ans.

8.7 SPIRAL SPRING 

to produce torsion on the axle to which one of its end (inner one) is attached. If a force W, acting at 
a radius x, is applied to the axis of the spring, a twisting moment Wx is set up.
 Let 
 Bending stress induced in the spring    = b

 b
 Length of spring strip   = l
 Thickness of spring strip   = t
 The maximum bending stress in the spring is found to be 

bmax = 
12

2
Wx

bt
 (using bending equation)   ...(8.15)

 = 
12

2
M

bt
 ...(8.16)

where  M  = Wx

 (radian)  =  
Wxl
EI

Ml
EI

  ...(8.17)

where E  = Modulus of elasticity of the spring material

 I  = Moment of inertia of the spring cross-section
 The strain energy stored in the spring is given as

 U  = 
1
2

M

  = 
1
2

Wx Wxl
EI

 ...(on substituting ) 

  = 
W x l

EI

2 2

2
 ...(8.18)
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 The number of turns given to the spindle is given as

 n  = 
θ
π2

 ...(8.19)

Example 8.7  

2. Find 
the following parameters of the spring:
 (a) the maximum turning moment applied to the spindle
 (b) the number of turns and
 (c) the strain energy stored in the spring
  The modulus of elasticity of the spring material can be taken to be 200 kN/mm2.

Solution: Given,

b = 10 mm

 Thickness of the spring section,  t  = 0.5 mm

 Length of the spring,  l  = 5 m = 5 × 103 mm

 Bending stress induced in the spring,   bmax = 0.5 kN/mm2 = 500 N/mm2

 Modulus of elasticity of spring material,  E  = 200 kN/mm2 = 2 × 105 N/mm2

 (a) The maximum turning moment applied to the spindle is given by equation (8.16).

 bmax  = 
12

2
M

bt

 500  = 
12

10 0 5 2
M

( . )

      or M  = 104.16 N.mm   Ans.

 (b  of the spring is given by using equation (8.17).

  = 
Ml
EI

  = 
104 16 5 10

2 10 1
12

10 0 5

3

5 3

.

( . )

× ×

× × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = 25 radian

     For number of turns, use equation (8.19).

 n  = 
θ
π π2

25
2

 = 3.97

     Hence, the number of turns can be chosen to be 4.      Ans.



Springs  379

 (c) Strain energy stored in the spring can be found by using equation (8.18).

 U  = 
1
2

M

  = 
1
2

104 16 25.   

  = 1.3 joules Ans.

Example 8.8 

of 1 kN/mm2 E = 200 kN/mm2, determine the 
following parameters of the spring:
 (a) the maximum torque required
 (b) the number of turns given to the spindle and
 (c) the length of the spring.

Solution: Given,
b  = 20 mm

 Thickness of the spring section, t  = 0.5 mm
 Maximum bending stress, bmax = 1 kN/mm2 = 1000 N/mm2

 Energy stored in the spring, U  = 10 Joule

 (a) The maximum torque required can be obtained by using equation (8.16).

bmax  = 
12

2
M

bt

 1000  = 
12

20 0 5 2
M
( . )

 or M  = 416.6 N mm

  Hence, the required torque is 416.6 N mm.  Ans.
 (b) The strain energy is given as

 U  = 
1
2

M

 10 × 103  = 
1
2

416 6.

 or   = 48 radian

  The number of turns is given by equation (8.19).

 n = 
θ
π π2

48
2

 = 7.64  Ans.
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 (c) The length of the spring can be found by using equation (8.17).

  = 
Ml
EI

 48  = 
416 6

2 10 1
12

20 0 55 3

.

( . )

×

× × × ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

l

 or l = 4.8m Ans.

8.8 HELICAL SPRING 

8.8.1 Close Coiled Helical Spring subjected to an Axial Load
Fig. 8.6 shows a close coiled helical spring subjected to an axial load W.
 Let R  = Mean radius of the coil
  d  = Diameter of the spring wire
  n  = Number of turns or coils in the spring
   = Angle of twist produced in the spring wire
 W
   = Shear stress induced in the wire of spring
  G  = Modulus of rigidity of spring material

Each section of the wire of spring is subjected to torsional shear stress and hence such springs are 
also called torsion springs. Bending effect, on account of its negligible value is neglected. Effect of 
direct stress is also neglected due to similar reasons.
Total length of the spring wire, l = 2  Rn

 

Fig. 8.6 
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Using torsion formula, we have

 
T
J  = 

G
l  ... (8.20)

where  T  = WR  = Torque applied on the spring

 J  = Polar moment of inertia of the spring wire

  = 
π
32

4d

Substituting T, J and l in equation (8.20), we have

  = 
64 2

4
WR n
Gd

 ...(8.21)

This is the required expression for the angle of twist expressed in radian.
Shear stress induced in the spring is found by using torsion formula.

 
T
J   = 

r
where r is radius of the spring wire.
 On substituting T and J
wire as

  = 
16

3
WR
dπ

 ...(8.22)

equation, the effect of the curvature of the wire is neglected. This is true only when the spring is 
subjected to static loads, because yielding of the spring material will relieve the stresses. Also, the 
effect of direct stress has been neglected.
 Curvature of the spring wire in the calculation of maximum shear stress was introduced by A.M. 

max  = 
8

3
WD
d

KWπ
 ... (8.23)

where  KW

  = 
8 1
4 4

0 615C
C C
−
−
+

.

 C  = Spring index = 
D
d

 for circular spring wires

The strain energy stored in the spring is given as

 U  = 
1
2

T
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  = 
1
2

64 322

4

2 3

4WR WR n
Gd

W R n
Gd

× =   ... (8.24)

 The strain energy in terms of shear stress can be expressed as

 U  = 
2

4G
 × Volume of the spring ... (8.25)

 The workdone on the spring is equal to the strain energy stored in it.

 U  = 
1
2

1
2

W Tδ θ   ... (8.26)

or    = 
2U
W

  = 2 32 2 3

4W
W R n
Gd

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

 (on substituting U)

  = 
64 3

4
WR n
Gd

 ... (8.27)

W.
 Axial stiffness of the spring, K

 K  = W Gd
R n

4

364
  ... (8.28)

8.8.2 Close Coiled Helical Spring subjected to an Axial Twist
Let the spring shown in Fig. 8.7 is subjected to an axial couple at its free end. The effect of this may 
be to open or close the spring, resulting in change in number of turns/coils of the spring. The number 
of turns in the spring increases if the torque resulting from the applied couple closes the spring and 
number of turns decreases if the torque opens the spring. During the analysis of such spring, effect 
of torsional shear stress is neglected and only bending stress is considered.

 Fig. 8.7 
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 The length of the spring is obtained as
 l  = 2 R1 n = 2 R2 n ...(8.29)

where  R1 and R2

  n and n

 Length of the spring remains constant, but radius of coil and number of coils change when axial 
couple is applied.
 Using bending equation, the bending moment M is given as

 M  = EI
R R
1 1

1 2
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  ...(8.30)

 Using equation (8.29), equation (8.30) transforms to

 M  = 
2πEI

l
 [n – n ] ... (8.31)

 The angle of twist (in radian) at the free end of spring is given as 
   = 2  (n – n ) ... (8.32)

 to be 

   = 
Ml
EI

 ... (8.33)

 If the spring is made of circular wire of diameter d, then

 I  = 
π
64

4d  

 Equation (8.33) on using equations (8.29) and (8.31) becomes

  = 
128

4
MRn

Ed
   (R1 R2 = R) ... (8.34)

 The angular stiffness of the spring is given as 

 K1  = 
M EI

lφ

  = 
Ed

Rn

4

128
 ... (8.35)

 The bending stress induced in the spring is calculated by using bending equation.

 
M
I

  = b

y
where b  = Maximum bending stress induced in the spring 

 y  = 
d
2

 

  Hence, b  = 
32

3
M
dπ

 ... (8.36)
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 The strain energy stored in the spring is given as

 U  = 
1
2

Mφ

  = 
64 2

4
M Rn
Ed

 ... (8.37)

 The strain energy can also be expressed in terms of bending stress, given as

 U  = b

E

2

8
 × Volume of the spring ... (8.38)

8.8.3 Open Coiled Helical Spring subjected to an Axial Load
W is similar to as shown 

in Fig. 8.6. The load produces two types of moments, one has twisting action and another has bending 
effect. The two moments are :

     
Twisting moment, cos
Bending moment, sin

T = WR  
M = WR  

⎫
⎬
⎪⎪⎪
⎭⎪⎪  ... (8.39)

where   = Angle of helix
 The equivalent twisting moment is obtained as

 Te  = T M2 2

  = W R W R2 2 2 2 2 2cos sin  = WR ... (8.40)

 The equivalent bending moment is obtained as

 Me  = 
1
2

2 2[ ]M T M

  = 
1
2

2 2 2 2 2 2[ sin cos sin ]WR W R W R

  = 
1
2

[ sin ]WR WRα +

  = 
WR

2
1[ sin ]  ... (8.41)

 The maximum direct stress induced in the spring wire is given as

b  =  
32

3
M
d

e

π
 (using bending equation ) ... (8.42)

 The maximum shear stress induced in the spring wire is given as

  = 
16

3
T
d

e

π
  (using torsion equation) ... (8.43)

 The total length of wire in the spring is given as
 l  = 2 nR sec  ... (8.44)
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 The strain energy stored in the spring is due to torsion and bending effect both.
 The strain energy due to torsion is given as

 Ut  = 
1
2 2

2
T T l

GJ
θ    (using torsion equation) ... (8.45)

where   = Angle of twist produced in the spring wire

  = 
64 1 22

4
WR n

d G E
sin

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  ... (8.46)

 The strain energy due to bending moment is found as

 Ub  = 
1
2

Mθ

  =  
M l

EI

2

2
 using andM

I
E
R

l
R

= =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟θ ... (8.47)

 The total strain energy stored in the spring is given as
 UT  = Ut + Ub

  = 
l T

GJ
M
EI2

2 2
+

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
 ... (8.48)

   = 
W R l

GJ EI

2 2 2 2

2
cos sin

+
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
  ... (8.49)

  1
2

W  = UT ... (8.50)

 as 

  = WR l
GJ EI

2
2 2cos sin
+

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
 ... (8.51)

 For a spring made of circular wire of diameter d, we have

     I = 
πd 4

64
and J = πd 4

32
Now equation (8.51) changes to

  = 
64 23

4

2 2WR n
d G E

sec cos sinα α α
+

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
 ... (8.52)

 On comparing this equation with close-coiled helical spring, where  is zero, equation (8.52) 
reduces to equation (8.27).
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8.8.4 Open Coiled Helical Spring subjected to an Axial Twist
Let an open coiled helical spring be subjected to a torque M which produces both twisting and 
bending.

  
Twisting moment, sin
Bending moment, cos

T' = M  
M' = M  

⎫
⎬
⎪⎪⎪
⎭⎪⎪  ... (8.53)

 The equivalent twisting moment is found as

 Te  = T M' '2 2

  = M M2 2 2 2sin cos  = M ... (8.54)

 The equivalent bending moment is found as

 Me  = 
1
2

2 2[ ]M T M' ' '

  = 
1
2

2 2 2 2[ cos sin cos ]M M M

  = 
M
2

1[ cos ]  ... (8.55)

 The maximum direct stress induced in the spring is given as

b  = 
32

3
M
d

e

π
  (using bending equation) ... (8.56)

 The maximum shear stress induced in the spring is given as

  = 
16

3
T
d

e

π
  (using torsion equation) ... (8.57)

 The total strain energy stored in the spring is given as

 UT  = 
1
2

1
2

T M′ ′+ ′ ′θ φ  ... (8.58)

where  and  are the angles of twist due to T  and M  respectively, and are expressed as

  = 
T l
GJ

 and  = 
M l
EI

 ... (8.59)

 Also  UT  = 
1
2

M  ... (8.60)

where  is the net angle of twist because of the combined effects.

 Comparing equations (8.58) and (8.60) and using equations (8.53) and (8.59), we have

  = 
64 2

4

2 2MRn
d G E

sec sin cos
+

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
  ... (8.61)

   (on using l = 2  Rn sec )
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 On comparing this equation with close coiled helical spring, where  = 0 and subjected to an axial 
twist M

  = 
64 1 22

4
MR n

d G E
sin

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  ...(8.62)

Example 8.9 
A close coiled helical spring of circular section having a mean coil diameter of 60 mm is subjected 
to an axial load of 80 N applied at the end of spring producing a shear stress of 100 N/mm2 and a 

strain energy stored in the spring. Take G = 80 kN/mm2.

Solution: Given,
Mean diameter of the coil,  D  = 60 mm
Axial load on the spring,  W  = 80 N
Shear stress induced in the spring,    = 100 N/mm2

  = 50 mm
Modulus of rigidity of spring material,  G  = 80 kN/mm2 = 8 × 104 N/mm2

 The diameter of the spring wire can be found by using equation (8.22).

  = 
16

3
WR
dπ

or d  = 
16 1 3WR
πτ

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

/

  = 
16 80 60

2
100

1 3

× ×

×

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
π

/

 = 4.96 mm

  
 Hence, the diameter of the spring wire is 4.96 mm.   Ans.
 Using equation (8.27), number of coils in the spring can be found.

  = 
64 3

4
WR n
Gd

 50  = 
16 80 60

2
8 10 4 96

3

4 4

× ×
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟ ×

× ×

n

( . )
or n  = 17.5   Ans.

 The length of the spring wire is given by
 l = 2 Rn

  = 2 60
2

π  × 17.5 = 3.29 m  Ans.
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 The strain energy stored in the spring can be found using equation (8.24).

 U  = 
32 2 3

4
W R n
Gd

  = 
32 80 60

2
17 5

8 10 4 96

2
3

4 4

× ×
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟ ×

× ×

.

( . )
 = 1.99 joule  Ans.

Example 8.10  
A close coiled helical spring made of steel wire of diameter 6 mm has 15 coils. The spring has mean 
coil diameter of 100 mm and is subjected to an axial load of W producing a maximum shear stress 
of 100 N/mm2. Find the load W

G = 80 kN/mm2.

Solution: Given,
Spring wire diameter,  d  = 6 mm
Number of coils,  n  = 15
Mean coil diameter,  D  = 100 mm
Shear stress induced in the spring,   = 100 N/mm2

Modulus of rigidity of the spring material,  G  = 80 kN/mm2 = 8 × 104 N/mm2

Load W can be calculated by using equation (8.22).

  = 
16

3
WR
dπ

 100  = 
16 100

2
63

× ×
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

×

W

π

or W  = 84.8 N   Ans.

  = 
64 3

4
WR n
Gd

  = 
64 84 8 100

2
15

8 10 6

3

4 4

× ×
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟ ×

× ×

.
 = 98.1 mm   Ans.

 The workdone on the spring is given as

 
1
2

W   = 
1
2

84 8 98 1. .  = 4.16 Joule  Ans.
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Example 8.11 
A close coiled helical spring made of steel wire of diameter 7 mm has an axial stiffness of 6 N per 
mm and an angular stiffness of 100 N mm per degree angle of twist. Find the mean radius of the coil, 
the number of turns in the spring and its length. Take E = 200 kN/mm2 and G = 80 kN/mm2.
Solution: Given,
 Spring wire diameter,  d  = 7 mm
 Axial stiffness of the spring,  K  = 6 N/mm
 Angular stiffness of the spring,  K1  = 100 N mm/degree

 The axial stiffness of the spring is given by using equation (8.28).

 K  = 
W Gd

R n

4

364

 6  = 
8 10 7

64

4 4

3R n

or  R3n  = 500208.33 ...(1)

 The angular stiffness is given by equation (8.35).

 K  = 
M Ed

Rnφ
π

= ×
4

128 180

 100  = 
2 10 7
128 180

5 4

Rn
π

 

or Rn  = 654.77 ...(2)

 Using equations (1) and (2), we get
or  R  = 27.64 mm Ans.

 From equation (2)

 n  = 
654 77.

R
  = 23.7 Ans.

 The length of the spring wire is given as
 l  = 2 Rn = 2  × 27.64 × 23.7 = 4.11 m Ans.

Example 8.12 
A close coiled helical spring made of 15 mm steel wire is subjected to an axial load of 200 N. The 

and the strain energy stored in the spring per unit voulme.
 Now the axial load is replaced by an axial torque of 11 N m. Find the axial twist, the maximum 
bending stress and the strain energy stored per unit volume of the spring. 
 Take G = 80 kN/mm2 and E = 200 kN/mm2.
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Solution: Given,

Diameter of the spring wire,  d = 15 mm
Axial load on the spring,  W  = 200 N
Number of coils in the spring,  n  = 15
Mean radius of the coil,  R  = 100 mm
Axial torque on the spring,  M  = 11 N m
Modulus of rigidity,  G  = 80 kN/mm2 = 8 × 104 N/mm2

Modulus of elasticity,  E  = 200 kN/mm2 = 2 × 105 N/mm2

  = 
64 3

4
WR n
Gd

  = 
64 200 100 15

8 10 15

3

4 4  = 47.4 mm  Ans.

  = 
16 3

3
WR
dπ

 = 
16 200 100

153π
= 30.18 N/mm2   Ans.

 Use equation (8.25) for the strain energy stored in the spring.

 U  = 
2

4G
 × Volume of the spring (V)

or 
U
V

 = 
2 2

44
30 18

4 8 10G
=
( )

× ×

.
 = 2.84 × 10–3 N mm/mm3   Ans.

 Use equation (8.34) for the axial twist in the spring.

  = 
128

4
MRn

Ed

  = 
128 11 10 100 15

2 10 15

3

5 4 = 0.208 radian = 11.95o  Ans.

 For the bending stress in the spring, use equation (8.36).

b  = 
32

3
M
dπ

 = 
32 11 10

15

3

3π
 = 33.19 N/mm2   Ans.

 Use equation (8.38) for the strain energy stored in the spring.

 U  = b

E

2

8
 × Volume of the spring (V)

or  
U
V

 = 
( . )33 19

8 2 10

2

5× ×
= 6.88 × 10–4 N mm/mm3  Ans.
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Example 8.13 
A close coiled helical spring made of steel wire is subjected to an axial load of 50 N. The maximum 
shear stress induced in the spring is limited to 100 N/mm2. The stiffness of the spring is 0.8 N/mm of 
compression and its solid length is 50 mm. Determine the following parameters:
 (a) the diameter of the spring wire
 (b) the mean radius of the coil and
 (c) the number of coils in the spring

  Take G = 80 kN/mm2.
Solution: Given,

Axial load on the spring,  W  = 50 N

Maximum shear stress in the spring,   = 100 N/mm2

Stiffness of the spring,  K  = 0.8 N/mm

Modulus of rigidity of spring material,  G  = 80 kN/mm2 = 8 × 104 N/mm2

Let d = Diameter of the spring wire
 n  = Number of coils in the spring

 Given, solid length of the spring, nd = 50 mm

 (a) Use equation (8.28) for the stiffness of the spring.

 K  = 
Gd

R n

4

364

 or 0.8  = 
8 10

64

4 4

3
d

R n
 ... (1)

  Use equation (8.22) for the shear stress in the spring.

  = 
16

3
WR

nd

  100  = 
16 50

3
R

nd
 or R  = 0.392d3 ... (2)
 Since nd  = 50 

 or  n  = 
50
d

  Using n and R in equation (1), we have

 0.8 = 
8 10

64 0 392 50

4 4

3 3

× ×

× ×
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟

d

d
d

( . )
  Solving for d, we get
 d  = 4.76 mm  Ans.
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 (b) Using equation (2), we have
 R  = 0.392d3

  = 0.392 × (4.76)3 
  = 42.4 mm  Ans.
 (c) The number of coils in the spring is given as

 n  = 
50 50

4 76d .
 = 10.5  Ans.

Example 8.14 
A close coiled helical spring made of steel wire of 4 mm diameter has mean coil radius of 30 mm. 
The number of turns in the spring is 5 and its pitch, when no load is acting on it, is 20 mm. Find the 
axial load to be applied gradually on the spring so that the pitch reduces to minimum i.e, coils touch 
each other. An impact load of 10 N is allowed to fall on the spring through a certain height so that 
again the pitch is minimum. Find the height. Take G = 80 kN/mm2.

Solution: Given,
 Diameter of the spring wire,  d  = 4 mm

 Mean coil radius of the spring,  R  = 30 mm
 Number of turns in the spring,  n  = 5
 Pitch while unloaded   = 20 mm
 Impact load on the spring,   = 10 N

 Modulus of rigidity of spring material,  G  = 80 kN/mm2  = 8 × 104 N/mm2

  = Pitch – Spring wire diameter

  = 20 – 4 = 16 mm

 Fig. 8.8

   = 
64 3

4
WR n
Gd
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 16  = 
64 30 5
8 10 4

3

4 4
W

 W  = 37.9 N  Ans.

t

  = 16 × 5 = 80 mm
The strain energy stored in the spring is given as

 U  = 
1
2

1
2

37 9 80W t = × ×.  

  = 1516 N mm = 1.51 joule ...(1)

Loss in potential energy, when load of 10 N is released from a height h, is
  = 10 (h + 80) ...(2)

Equating equations (1) and (2), we have
 10 (h + 80)  = 1516
or h  = 71.6 mm
 Hence, the height of the load is 71.6 mm.  Ans.

Example 8.15 
A close coiled helical spring of free length 200 mm and mean coil radius 40 mm is subjected to a 
maximum stress of 100 N/mm2. Find the diameter of the spring wire and the number of turns in the 
spring, assuming that the spring can store a maximum strain energy of 30 joule, when the pitch is 
reduced to a minimum. Take G = 80 kN/mm2.

Solution: Given,
 Mean coil radius of the spring, R  = 40 mm
 Maximum shear stress induced in the spring,   = 100 N/mm2 
 Free length of the spring,   = 200 mm
 Strain energy stored in the spring,  U  = 30 joule
 Modulus of rigidity of spring material,  G  = 80 kN/mm2 = 8 × 104 N/mm2

 Free length of the spring is its total length in uncompressed state. The solid length is its total length 
in compressed state. They are related to each other as

  nd +   = Free length
or  nd  = 200 – ... (1)

The shear stress is given by equation (8.22).

  = 
16

3
WR
dπ
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 100  = 
16 40

3
W

dπ

or W  = 0.49d3 ... (2)

The strain energy stored in the spring is given by equation (8.25).

 U  = 
2

4G
 × Volume of the spring (V)

 30 × 103  = 
( )100

4 8 10

2

4  × V

or V  = 96 × 104 mm3 ... (3)

But volume of the spring is given as

 V  = Length of the spring × Cross-sectional area of the spring wire

  = 2
4

2π πRn d

 96 × 104 = 2  × 40 × n × 
π
4

 d2

 nd 2  = 4863.4

or n  = 
4863 4

2
.

d
 ... (4)

The strain energy is also given as 

 U = 
1
2

 W

 30 × 103 = 
1
2

 × 0.49d 3 ×  (on substituting W from equation (2))

  = 
122448 98

3
.

d
 

On substituting n and  in equation (1), we have

 
4863 4

2
.

d
d  = 200 – 122448 98

3
.

d
Solving for d, we get  d  = 25.3 mm  Ans.

From equation (4)

 n  = 
4863 4
25 3

7 62
.

.
.

( )
=  Ans.
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Example 8.16 
A body of mass 25 kg moving with a velocity of 3 m/sec is to be stopped by using a close coiled 
helical spring of 6 mm wire diameter and having a mean coil radius of 30 mm. The maximum shear 
stress induced in the spring is limited to 500 N/mm2. Find the number of turns in the spring and the 

G = 80 kN/mm2.
Solution: Given,

 Diameter of the spring wire,  d  = 6 mm

 Mean radius of the coil,  R  = 30 mm

 Maximum shear stress induced in the spring,

  = 500 N/mm2

 The strain energy stored in the spring is given as

    U  = 
2

4G
 × Volume of the spring (V)

 The kinetic energy of the mass is given as

    K.E.  = 
1
2

mV2 = 
1
2

 × 25 × 32 = 112.5 jolues

 Equating the two energies, we have

 112.5 × 103  = 
( )500

4 8 10

2

4 V

or  V  = 1.44 × 105 mm3

  Also V  =  2
4

2π πRn d

  1.44 × 105  = 2  × 30 × n × 
π
4

 × 62

or  n  = 27  Ans.

applied gradually on the spring may cause the given shear stress.
 Using equation (8.22), we have

  = 
16

3
WR
dπ

 500  = 
16 30

63
W
π

or W = 706.8 N 
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 The strain energy stored in the spring is equal to kinetic energy of the moving mass, given as

 U  = 
1
2

W  × = 112.5 × 103

or   = 
2 112 5 10

706 8

3.
.

 = 318.3 mm   Ans.

Example 8.17 
An open coiled helical spring of 8 mm wire diameter has 10 turns and mean coil radius of 60 mm. It 

 (a) the maximum direct and shear stress induced in the spring wire 
 (b) the angle of twist and
 (c
      Take E = 200 kN/mm2 and G = 80 kN/mm2.
Solution: Given,
 Diameter of the spring wire,  d  = 8 mm
 Number of turns in the spring,  n  = 10
 Mean coil radius of the spring,  R  = 60 mm
 Axial load on the spring,  W  = 150 N
 Pitch of the spring,  p = 70 mm

The angle of helix  is found using Fig. 8.9.

Fig. 8.9

 tan   = 
p
R2π

 

  = 
70

2 60π
 = 0.185

or  = 10.51o

 Twisting moment,  T  = WR cos 
 Bending moment, M  = WR sin 
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 The equivalent twisting moment is given by equation (8.40).
 Te  = WR
  = 150 × 60 = 9000 N mm
 The equivalent bending moment is given by equation (8.41).

 Me  = 
WR

2
1[ sin ]

  = 
150 60

2
1 10 51×
+[ sin . º ]  = 5320.8 N mm

 (a) The maximum direct stress in the spring wire is given by equation (8.42).

b  = 
32

3
M
d

e

π

  = 
32 5320 8

83
.

π
 

  = 105.8 N/mm2   Ans.
  The maximum shear stress in the spring wire is given by equation (8.43).

  = 
16

3
T
d

e

π
 = 

16 9000
83π

 = 89.5 N/mm2  Ans.

  (b) The angle of twist of spring wire is given by equation (8.46).

  = 64 1 22

4
WR n

d G E
sin

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  = 
64 150 60 10 10 51

8
1

8 10
2

2 10

2

4 4 5
× × × ×

×
−
×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sin . º

  = 0.038 radian = 2.20o  Ans.

 (c

  = 
64 23

4

2 2WR n
d G E

sec cos sin
+

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

  = 
64 150 60 10 10 51

8
10 51

8 10
2 10 51

2 10

3

4

2

4

2

5
× × × × °

×
+

×

⎡sec . cos . º sin . º

⎣⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

  = 63.9 mm  Ans.

8.9 COMBINATION OF SPRINGS 
Springs may be combined together in two ways.
   Series combination
   Parallel combination
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8.9.1 Series Combination
The combination of springs in series is shown in Fig. 8.10 (a). Each spring carries the same load.

Fig. 8.10

Let W  = Load applied on the spring  
 K1 and K2  = Stiffnesses of springs (1) and (2) respectively
 K  = Stiffness of the combined spring
 1 and 2  = Extensions produced in two springs respectively

the two springs.
 = 1 + 2 ... (8.63)

1  = 
W
K1

 ... (8.64)

2  = 
W
K2

 ... (8.65)

 Adding the two equations (8.64) and (8.65), we have

1 + 2  = W
K K
1 1

1 2
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

or   = W
K K
1 1

1 2
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  ... (8.66)

 If the two springs are replaced by a single spring of stiffness K , then

  = 
W
K

 ... (8.67)
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 Comparing equations (8.66) and (8.67), we get

  
W
K

 = W
K K
1 1

1 2
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

or  1
K

 = 
1 1

1 2K K
 ... (8.68)

8.9.2 Parallel Combination
Two springs connected in parallel are shown in Fig. 8.10 (b). Here, each spring carries different 
load and the load applied on the combined spring is the sum of the loads shared by the two springs. 

spring.
 Let  W1  = Load shared by the spring (1)
  W2  = Load shared by the spring (2)
 Then  W  = W1 + W2 ... (8.69)
  K = K1 + K2

or K = K1 + K2 ... (8.70)

Example 8.18 
Two close coiled helical springs are connected in series. Both springs have 15 turns and the same 
mean coil diameter of 50 mm. Find the diameter of spring wire of one of the two springs if the 

shear stress is limited to 150 N/mm2. Given G = 80 kN/mm2.

Solution: Given,

Number of turns in both springs,  n1  = n2 = 15

Mean coil radius of both springs,  R1  = R2 = 
50
2  = 25 mm

 d1  = 5 mm
Stiffness of equivalent spring,  K  = 0.5 N/mm
Maximum shear stress induced in the equivalent spring,   = 150 N/mm2

Let  Diameter of wire in the second spring  = d2

 Load on equivalent spring  = W

W, which will be acting on the 

1 is given as

1  = 
64 1

3
1

1
4

WR n
Gd

 (using equation (8.27))
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  = 
64 25 15

8 10 5

3

4 4
W

 = 0.3 W

2 is given as

2  = 
64 2

3
2

2
4

WR n
Gd

  = 
64 25 15

8 10
187 53

4
2
4

2
4

× × ×

× ×
=

W
d

W
d

( ) .
 

  = 1 + 2

  = 0.3W + 
187 5

2
4
. W

d
 ... (1)

 But   = 
W
K

W
0 5.

 ... (2)

 Comparing equations (1) and (2), we have

  
W
0 5.

 = W
d

0 3 187 5

2
4. .

+
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

  1
0 5

0 3
.

.−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟   = 

187 5

2
4
.

d

or  d2  = 3.24 mm  Ans.

 Using equation (8.22), we have

  = 
16

2
3

WR
dπ

 150  = 
16 25

3 24 3
W

π ( . )

or W  = 40 N  Ans.

mean coil diameter of the equivalent spring is also the same as for the two springs.

  = 
W
0 5

40
0 5. .

 = 80 mm  Ans.
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Example 8.19 
Two close coiled helical springs are connected in parallel to take a load of 1500 N. Both springs have 
16 coils and are made of equal wire diameter of 15 mm. Their mean coil diameters are 60 mm and  
80 mm respectively. Find the loads shared by the two springs and the maximum shear stresses induced 

G = 80 kN/mm2 for both springs.
Solution: Given,
 Load on the equivalent spring,  W  = 1500 N
 Number of coils in two springs, n1  = n2 = 16

 d1  = d2 = 15 mm

R1  = 
60
2

 = 30 mm

 Mean coil radius of the second spring, R2  = 
80
2

 = 40 mm

The total load acting on the equivalent spring is the sum total of the loads shared by both springs. Let 
W1 and W2 are the respective loads on the two springs. Then,
 W  = W1 + W2

or  1500  = W1 + W2 ... (1)

  = 1 = 2

  = 
64 641 1

3
1

1
4

2 2
3

2

2
4

W R n
Gd

W R n
Gd

   ... (2)

or W1 × 303  = W2 × 403  ( n1 = n2 = 16 and d1 = d2 = 15 mm)

 W1  = 
64
27 2W

 Substituting W1 in equation (1), we have

 1500  = 
64
27 2 2W W

or W2  = 445 N  Ans.

W1.

 1500  = W1 + 445
or  W1  = 1055 N   Ans.

1  =  
16 16 1055 40

15
1 1

1
3 3

W R
dπ π
=
× ×
×

 = 47.76 N/mm2  Ans.
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 The shear stress in the second spring is given as

2  = 
16 16 455 40

15
2 2

2
3 3

W R
dπ π

=
× ×
×

 = 26.86 N/mm2  Ans.

 From equation (2), we have

  = 
64 1 1

3
1

1
4

W R n
Gd

 = 
64 1055 30 16

8 10 15

3

4 4  = 7.2 mm

Ans.

Example 8.20 
A composite spring made of two close coiled helical springs is subjected to an axial load of 100 N. 
One of the two springs is placed inside the other and both springs are concentric. The inner spring 
has 10 coils and is 15 mm shorter than the outer spring of 4 mm wire diameter with number of coils 
12 and mean coil diameter 50 mm. The radial clearance between the two springs is 1 mm. Find the 
stiffness and the wire diameter of the inner spring, if the axial load applied on the composite spring 

G = 80 kN/mm2 for both springs.
Solution: Given,
 Axial load on the composite spring,  W = 100 N
 Number of coils in the inner spring,  n1  = 10
 Number of coils in the outer spring,  n2  = 12
 Mean coil diameter of the outer spring,  D2  = 50 mm

 d2  = 4 mm

2 = 30 mm

 The axial load applied on the composite spring is shared by the two springs. Let W1 and W2 be the 
load shared by the inner and outer spring respectively, then 
 W  = W1 + W2

or  W1 + W2  = 100 N (Given) ... (1)

 Use equation (8.27) to get the load (W2
30 mm.

2  = 
64 2 2

3
2

2
4

W R n
Gd

or W2  = 2 2
3

2
3

264
G d
R n

 = 51.2 N 

 and W1 = (100 – 51.2) N = 48.8 N (using equation (1))   

W1 in the inner spring is given as
 1  = (30 – 15) = 15 mm
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 The stiffness of the inner spring is given as

 K1  = 
W1

1

48 8
15

.
 = 3.25 N/mm   Ans.

 The mean coil diameter of the inner spring is given as

 D1  = D2 – d2 – 2 × 1 – d1 = 50 – 4 – 2 × 1 – d1 = 44 – d1

 Again using equation (8.27) for the inner spring, we have

1  = 
64 1 1

3
1

1
4

W R n
Gd

   
W1

1
 = K1 = 

Gd
R n

1
4

1
3

164
 = 

8 10

64 44
2

10

4
1
4

1
3

×

×
−⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ ×

d
d

 

  = 
8 10 8
640 44

4
1
4

1
3

× × ×

−

d
d( )

or 3.25  = 
10

44

3
1
4

1
3

d
d( )

 (using K1)

 Solving for d1, we get

 d1  = 3.8 mm  Ans.

SHORT ANSWER QUESTIONS
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1. The deformation produced in the spring is said to be

 (a) semi-elastic (b) plastic (c) elastic (d) visco-elastic.

2.
 (a) load and angle of twist  (b
 (c) load and strain energy   (d) load and strain.

3. In a close-coiled helical spring, the 
 (a) plane of the coil and axis of the spring are closely attached
 (b) angle of helix is large
 (c) plane of the coil is normal to the axis of the spring
 (d

4. A conical helical spring is used, where
 (a) space is a problem 
 (b) more stiffness is required
 (c) more load is to be taken
 (d

5.
 (a) upto yield point 
 (b) upto ultimate point
 (c) upto failure point 
 (d) within the elastic limit.

6.  The strain energy stored in a leaf spring is given as

 (a) 3
16

2 3

3
W l
nEbt

    (b) 5
16

3

3
Wl
nEbt

 (c) 
3

16

2

3
W l
nEbt

    (d) 
3

16

2 3

2
W l
nEbt

.

  where the symbols have their usual meanings.

7. The maximum bending stress developed in the wire of spiral spring is

 (a) 
12M

bt
  (b) 

6
2

M
bt

 (c) 
12

2
M

bt
  (d) 

12
2
M

b t
.

  where the symbols have their usual meanings. 

  MULTIPLE CHOICE QUESTIONS   
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8.

 (a) 
64 3

4
W Rn
Gd

   (b) 
64 3

4
WR n
Gd

 

 (c) 
64 3

4
WR n
G d

   (d) 64 2 2

4
WR n
G d

.

 where the symbols have their usual meanings.  

9.
 (a) increase the number of coils in the spring
 (b) take care of extra load on the spring
 (c) take care of curvature of spring wire 
 (d) take care of extra stiffness in the spring.

10.
 (a
 (b) mean coil diameter and spring wire diameter
 (c) load and angle of twist
 (d) mean coil diameter and length of spring wire.

11.
 (a

individual spring.
 (b) The total weight is the sum of the weights acting separately on the two springs.
 (c) The equivalent stiffness is the sum of the individual stiffness.
 (d) The equivalent stiffness is the product of the individual stiffness.

12. The equivalent stiffness, when two springs are connected in series, is given by the expression

 (a) 1 1 2

1 2K
K K

K K
=

+
    (b) K K K

K K
2 1 2

1 2
=

+

 (c) K K K
K K

=
+
1 2

1 2
    (d) K = K1 + K2 .

13.
  (a) The equivalent stiffness is the sum of the individual stiffness.
  (b) The equivalent load is the sum of the individual load.
  (c
  (d
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14. For parallel combination of two springs, the expression for the equivalent stiffness is

 (a)  
1 1 2

1 2K
K K

K K
=

+      (b) 
1 1 2

1 2K
K K

K K
=

+

 (c) K = K1 + K2    (d) K = K K1 2 .

ANSWERS
 1. (c) 2. (b) 3. (c) 4. (a) 5. (d) 6. (a) 7. (c) 8. (b) 9. (c)

 10. (b) 11. (a) 12. (c) 13. (a) and (b) 14. (c)
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1. A quarter-elliptic laminated spring of length 700 mm is loaded with a load of 3 kN producing a 

the following:
 (a) the number of leaves in the spring

 (b) the maximum stress induced in the spring and

 (c) the height through which the load is released, giving a maximum stress of 1 kN/mm2

 Take E = 200 kN/mm2.
    (Ans. (a) 13 (b) 282.57 N/mm2  (c) 269.3 mm).

2. A close coiled helical spring of mean coil radius equal to 6 times the wire diameter is subjected 

maximum stress in the spring is not to exceed 80 N/mm2. Find the mean coil diameter, the wire 
diameter, the number of turns in the spring and the length of the spring. Take G = 80 kN/mm2.

  (Ans. 55 mm, 4.58 mm, 18.42,  3.18 m).

3. A close coiled helical spring of mean coil diameter 100 mm is subjected to a torque of 6.5 N m 
producing angular twist of 60o

250 N is 120 mm. Find Poisson’s ratio of the spring wire. (Ans. 0.191).

4. A close coiled helical spring of 10 mm wire diameter has 15 turns with mean coil diameter 
of 120 mm. It is subjected to an axial load of 500 N. Find the shear stress in the spring wire  
(a) neglecting correction factor and (b) considering correction factor.

  (Ans.  (a) 152.78 N/mm2 (b) 171.03 N/mm2).

5. An open coiled helical spring of 8 mm wire diameter has mean coil radius of 120 mm and 10 
turns. The angle of helix is 20o. It is subjected to an axial torque of 3 N m. Find the following:

 (a) the maximum direct and shear stress induced in the spring wire and

 (b) the angle of twist. Take G = 80 kN/mm2 and E = 200 kN/mm2.

  (Ans. (a) 57.88 N/mm2, 29.84 N/mm2  (b) 17.65o).

6.
coiled helical spring. Given, angle of helix = 30o and E/G = 4.0. Assume all the parameters of the 
two springs to be same. (Ans. 1% (negative)).

7. A close coiled helical spring is of 80 mm mean coil diameter. The spring extends by 37.75 mm 
when loaded axially by a weight of 500 N. There is an angular rotation of 45° when the spring is 
subjected to an axial couple of magnitude 20 N m. Determine Possion’s ratio of the material of 
the spring. (Ans. 0.2016).

EXERCISES
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8. A truck weighing 25 kN and moving at 2.5 m/s has to be brought to rest by a buffer. Find how 
many springs each of 25 coils will be required to store energy of motion during compression 
of 0.2 m. The spring is made of 25 mm diameter steel rod coiled to a mean diameter of 0.2 m. 
Take G = 100 GPa. (Ans. 16.3).

9. A close coiled helical spring is made of 10 mm diameter steel wire, the coil consisting of 
10 complete turns with a mean diameter of 120 mm. The spring carries an axial pull of 200 N. 
Determine the shear stress induced in the spring neglecting the effect of stress concentration. 

modulus of rigidity of spring material is 80 GPa.
  (Ans. 61.11 MPa, 34.56 mm, 5787 N/m, 3.456 joules).

10.

  Mean diameter of the spring = 100 mm

  Diameter of the spring steel wire = 20 mm

  Number of coils = 30

  Modulus of rigidity of steel = 85 GPa.

  (Ans. 338.87 MPa, 187.87 mm).

11. A close coiled helical spring made of 6 mm wire diameter and mean coil diameter 100 mm 

rotates through 90º under a torque of 5.7 N.m. Calculate the value of Poisson’s ratio for the 
material. (Ans. 0.3).

12. Find the load required to produce an extension of 8 mm in an open coiled helical spring made of 
6 mm wire diameter, having 10 coils of mean diameter 76 mm with a helix angle of 20º. Also, 
calculate the bending and shear stresses produced in the surface of the spring wire. What would 
be the angular twist at the free end of the spring, when subjected to an axial torque of 1.5 N.m? 
Take E = 210 GPa and G = 70 GPa.

  (Ans. 20 N, 12.3 MPa, 16.8 MPa, 17.3°).

13. A compound spring is made of two close coiled helical springs connected in series, where each 
spring has 12 coils at a mean diameter of 25 mm. Find the diameter of the wire in one of the 
springs, if the diameter of wire in the other spring is 2.5 mm and the stiffness of the compound 
spring is 700 N/m. Estimate the greatest load that can be carried by the composite spring and the 
corresponding extension for a maximum shearing stress of 180 MPa. 

  (Ans. 63.2 mm, 44.2 N).



Strain Energy
9

Carlo Alberto Castigliano, born on 9 November 1847, was an Italian 
mathematician and physicist. He is well known for his Castigliano’s 
theorem, which is used for determining the displacements in a linear-elastic 
system using the partial derivatives of strain energy.

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

Carlo Alberto Castigliano
(1847-1884)
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9.1 INTRODUCTION  

law which states that within this limit, stress is directly proportional to strain. The internally induced 
force acting on unit area of the body is called stress. Energy is stored in the body during deformation 
process and this energy is called strain energy. The workdone to produce the deformation is equal to 
the strain energy stored in the body.

9.2 STRAIN ENERGY DUE TO DIRECT LOADS 
The load acting on a body may be of the following types:
 (a) Gradually applied load (b)  Suddenly applied load (c)  Impact load

9.2.1 Strain Energy due to Gradually Applied Load
Consider a bar of length l placed vertically and one end of it is attached at the ceiling (Fig. 9.1). This 
is the most general case.

Fig. 9.1

Let P  = Gradually applied load

 l  = Length of the bar

 A  = Cross-sectional area of the bar

  l

  
compressive, depending upon if the bar under consideration is 
under tension or compression load.

 E  = Modulus of elasticity of the bar material
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The work done by the load is given as

 W  = 
1
2

 P  l ... (9.1)

  = 
P
A

or P  =  A

From Hooke’s law l = Pl
AE

l
E
σ

On substituting l, equation (9.1) becomes

 W  = 1
2

2P l
AE

 (in terms of P) ... (9.2)

   = 1
2

2σ Al
E

   (in terms of ) ... (9.3)

   = 
1
2

2V
E

   (in terms of  and V) ...(9.4)

where V  = Volume of the bar = Al

The strain energy stored in the bar is equal to the workdone by the load.

 U  = 
2

2E
 ×V ...(9.5)

  =  
1
2

 × × 
E

 × V = 
1
2

 × Stress × Strain × Volume ...(9.6)

The strain energy stored per unit volume is known as strain energy density, given as

 U
V

 = Strain energy density = 
2

2E  ...(9.7)

e Pe for the 

Fig. 9.2
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 If the bar is not of uniform cross-sectional area as shown in Fig. 9.3, then strain energy stored in 
the bar is not represented by equation (9.6).
 The strain energy under this condition is given by the Equation (9.8) as

 U = 
1
2

2

0

P
E

dx
A

l

 ...(9.8)

Fig. 9.3

9.2.2 Strain Energy due to Suddenly Applied Load

 W  = P  l ... (9.9)

 The applied load has the same value during the deformation of the bar, hence average load is P and 
not P

2
. The workdone by the load is shown in Fig. 9.4.

Fig. 9.4
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The strain energy stored in the bar is given by equation (9.5).

 U  = 
2

2E
 × V

Equating equations (9.5) and (9.9), we have

 P l = 
2

2E
 × V

 P σ ⋅⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

l
E

 =  
2

2E
 × Al 

δ σl l
E

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 P = 2
A

or   = 
2P
A

 ... (9.10)

 Hence, the stress induced by the suddenly applied load is two times the stress produced by the 
same load but applied gradually.

9.2.3 Strain Energy due to Impact or Shock Load
Consider the situation, when a load P is allowed to fall freely on the collar attached to the lower end 
of a bar.
Let, h  = Height through which the load falls on the collar

 The workdone by the falling load is given as 
 W  = P (h + l) ... (9.11)
 It is important to note here that the load does not change and the same load acts throughout the 
process (Fig. 9.5).

Fig. 9.5
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 Equating workdone to the strain energy stored in the bar, we have

 P (h + l) = 
2

2E
V   ... (9.12)

 P h l
E

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

σ
  = 

σ2

2E
Al  δ σl l

E
V Al= =

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟and

or  
Al
E

Pl
E

Ph
2

2⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟ −

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟ −σ σ  = 0 ...(9.13)

This is a quadratic equation in terms of  Its two values are given as 

  = 
P
A

AEh
Pl

1 1 2
± +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 ...(9.14)

 The effect of the load is to elongate the bar, hence it produces tensile stress in the bar. Therefore, 
possibility of negative stress does not arise. Equation (9.14) accordingly reduces to

 =
P
A

AEh
Pl

1 1 2
+ +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 ...(9.15)

when h = 0, then equation (9.15) becomes

   = 
2P
A

 ...(9.16)

 The equation is same as equation (9.10). Hence, in case of zero height, stress induced in the bar is 
equal to stress produced by the same load but applied suddenly.

l is very small as compared to height h, equation (9.12) reduces 
to 

 Ph  = 
σ2

2E
Al

or   = 
2EPh

Al
 ...(9.17)

9.3 STRAIN ENERGY DUE TO SHEAR 
Consider a cube ABCD of side l being subjected to a shear force P which is applied tangentially to 
the side CD. As a result, side CD changes to C  D  (Fig. 9.6).

Let   = Angle turned by the side AD as a result of P being applied
  = Shear stress induced on the side CD

  A = Area of each side
  = l 2

 G  = Modulus of rigidity of the cube material
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Fig. 9.6

The shear force P is given as
 P  =  A = l2 ...(9.18)
In   ADD  

 tan  = 
DD
AD

'

 is very small

 tan     = 
δl
l

 = Shear strain

or l  = l ...(9.19)

The workdone by the shear force  is given as

 W  = 
1
2

1
2

2P l l lδ τ φ= × ×  (on substituting P and l )

  = 1
2

1
2

3 3× × × = × × ×τ φ τ τl
G

l  
φ

τ
=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟G

  = 
τ2 3

2
l
G

 ...(9.20)

Hence, the strain energy stored in the cube is given as

 U  = 
2

2G
V  ...(9.21)

where V  = l3 = Volume of the cube.

9.4 STRAIN ENERGY DUE TO PURE BENDING  
Consider a small length dx of the beam at a distance x from A. Let the bending moment acting on the 
length be M. (Fig. 9.7).
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Fig. 9.7

 Bending stress acting on the elementary area (dA) at a distance y NA) is given 
by using bending equation as 

   = 
M
I

y  ... (9.22)

where I NA)

 The strain energy stored in the elementary area is

  =  
2

2E
 × Volume of the elementary area

  = 
2

2E
 dx  dA

  = 
M
I

y
E

2

2

2

2
 dx  dA (on substituting  from equation (9.22))

 The strain energy stored in the beam between 1 and 2 is given as

 dU  = 
M
EI

dx y dA
2

2
2

2

  = 
M
EI

dx I M
EI

dx
2

2

2

2 2
⋅ =  ( )I y dA=∫ 2

 The strain energy stored in the entire beam is obtained as

 U  = dU
l

0

 

  = 
M
EI

dx
l 2

0
2

 ...(9.23)

 Strain energy stored in different beams due to bending under different loading conditions are given 
in Table 9.1.
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Table 9.1 Strain energy due to Bending

Loaded beam

1. A simple beam with a point 
load not at its centre P l l

EIL

2
1
2

2
2

6
 (l1 > l2)

2. A simple beam with a point 
load at its centre P l

EI

2 3

96

3. A simple beam with udl over 
the entire span P l

EI

2 3

240

where, P  = wl = Total load 
on the beam

4. A cantilever beam with a point 
load at free end P l

EI

2 3

6

5. A cantilever beam with udl 
over the entire span P l

EI

2 3

40

where, P = wl = Total load 
on the beam
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9.5 STRAIN ENERGY DUE TO PRINCIPAL STRESSES  
Consider a cube of side l being subjected to three mutually perpendicular principal stresses 1, 2 and 

3 along x, y and z axes respectively. (Fig. 9.8).

Fig. 9.8

If 1, 2 and 3 are the strains produced in x, y and z directions respectively due to 1, 2 and 3, then

               

∈ = − −

∈ = − −

∈ = − −

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪

1
1 2 3

2
2 3 1

3
3 1 2

E
v

E
v

E

E
v

E
v

E

E
v

E
v

E

⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪

 ...(9.24)

where v  = Poisson’s ratio
 E  = Modulus of elasticity

 The strain energy stored in the cube is given as

 U  = 1
2

 × Stress × Strain × Volume

  = 
1
2 1 1 V + 

1
2 2 2 V + 

1
2

 3 3 V

  = V
2

 ( 1 1 + 2 2 + 3 3) ...(9.25)

where V  = Volume of the cube  = l3

Substituting 1, 2 and 3 in equation (9.25), we have

 U  = 
V
E

v
2

21
2

2
2

3
2

1 2 2 3 3 1+ + − + +( )⎡
⎣⎢

⎤
⎦⎥  ...(9.26)
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Strain energy stored per unit volume of the cube is given as

 U
V

  = 
1

2
21

2
2
2

3
2

1 2 2 3 3 1E
v+ + − + +( )⎡

⎣⎢
⎤
⎦⎥  ...(9.27)

 Equation (9.27) does not contain any shear stress term because principal planes do not have shear 
stresses.
For a uniaxial stress system

2  = 0

3  = 0

and 1  = 

Equation (9.26) reduces to 

 U  = 
2

2E
 × V

For a biaxial stress system

3  = 0
Equation (9.26) reduces to 

 U  = 
V
E

v
2

21
2

2
2

1 2+ −⎡
⎣⎢

⎤
⎦⎥  ...(9.28)

9.6 STRAIN ENERGY DUE TO VOLUMETRIC STRAIN 
Refer Fig. 9.9.

Let V  = Volumetric strain produced in the cube
 K  = Bulk modulus of elasticity
 1 = 2 = 3= = Stress of equal intensity applied on all sides of the cube

Fig. 9.9

 The volumetric strain is produced as a result of changes in all sides of the cube due to 1, 2  
and 3.
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 K  = 
v

But V  = 1 + 2 + 3 = 3  = 
3
E

 (1 – 2v)
   (using equation (9.24))...(9.29)

 Strain produced in all the sides of the cube is same, since equal stress intensity is acting on them.
The workdone in any of the three directions is given as

 W  = 
1
2

  = 1
2

×   l 2 × l = 
1
2

  ×  × l 3 ∈=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

δl
l

The total workdone is given as

 Wt = 3W = 
3
2

 ×  ×  × l 3

  = 
2

3× ∈×V

  = 
2

3
E

  (1 – 2v) × V (using equation (9.29))

  = 
3
2

2

E
(1 – 2v) × V ...(9.30)

But E = 3K(1 – 2v)

or 
E

v3 1 2−( )
 = K ...(9.31) 

 Substituting K in equation (9.30), we get

  Wt = 
1
2

1
2

2
2

× × × = ×
K

V
K

V

Hence, the strain energy stored in the cuble is given as

 U  = Wt = 
2

2K
 × Volume ...(9.32)

9.7 SHEAR STRAIN ENERGY DUE TO PRINCIPAL STRESSES
Let a rectangular body be subjected to three mutually perpendicular principal stresses (Fig. 9.10).

 Strain energy stored in the body is given as

 
U
V

 = 
1

2
21

2
2
2

3
2

1 2 2 3 3 1E
v+ + − + +( )⎡

⎣⎢
⎤
⎦⎥

   (using equation (9.27))
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Fig. 9.10

The average stress is given as

av = 1 2 3

3
 ...(9.33)

If 1 = 2 = 3 = , then the strain energy equation reduces to

 
U
V

 = 
3
2

2
av

E  (1 – 2v) ... (9.34)

 Equation (9.34) is same as equation (9.32) and it gives the strain energy due to change in volume 
of the body.
 The volumetric strain energy due to av is given as

 
U
V

 = 
3
2

2
av

E
 (1 – 2v)

  = 
3

2 3
1 2 3

2

E
+ +⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  (1 – 2v) (using equation (9.33))

  = 
1

6E
 ( 1 + 2 + 3 )2  (1 – 2v)

  = 
1 2

6
21

2
2
2

3
2

1 2 2 3 3 1
−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ + + + + +( )⎡
⎣⎢

⎤
⎦⎥

v
E

 ... (9.35) 

 On per unit volume basis, we have
 Shear strain energy = Total strain energy – Volumetric strain energy  ... (9.36)
 Using equations (9.27) and (9.35), the shear strain energy per unit volume is

    Us  = 
1
6 1 2

2
2 3

2
3 1

2+⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ − + − + −⎡
⎣⎢

⎤
⎦⎥

v
E

( ) ( ) ( )  ... (9.37)

   But   E  = 2G (1 + v)
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 On substituting E in equation (9.37), equation (9.37) becomes

     Us =  
1

12 1 2
2

2 3
2

3 1
2

G
( ) ( ) ( )− + − + −⎡
⎣⎢

⎤
⎦⎥  ... (9.38)

 This is the required expression for the shear strain energy on per unit volume basis.

     If 2  = 3 = 0 

and 1  = 

Hence, the shear strain energy per unit volume is

 Us = 
2

6G  ... (9.39)

9.8 CASTIGLIANO’S THEOREM 
The Castigliano’s theorem is named after the Italian engineer Alberto Castigliano (1847-1884), 

There are two statements of this theorem as discussed below.

First theorem
The partial derivative of the strain energy with respect to any displacement produced within elastic 
limit, as a result of the application of external forces on a given member, gives forces in the direction 
of displacements. Mathematically,

 Pk  = 
U

k
 ... (9.40)

where U = Strain energy

 k  = Displacement in the direction of k

 Pk  = Force in the direction of k

Second theorem
The partial derivative of the strain energy with respect to a force produced, within elastic limit, gives 
the displacement in the direction of force. Mathematically,

k  = 
U
Pk

 ... (9.41)

Example 9.1 

stresses induced in the rod if the load is applied (a) gradually (b) suddenly and (c) with impact after 

E 2.
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Solution: Given,

Length of the steel rod, l = 5 m = 5 × 1000 mm

d = 10 mm

P  = 5 kN = 5 × 103 N

Height of the impact load,  h  = 150 mm

 (a

  = 
P
A

 where  A  = Cross-sectional area of the rod

  = 
π π
4 4

102 2d = ×  = 78.54 mm2 

  Hence, the stress in the rod is

  = 
5 10
78 54

3

.
  = 63.66 N/mm2   Ans.

  The strain energy stored in the rod is given by Equation (9.3).

 U  = 1
2

2σ Al
E

  = 
1
2

63 66 78 54 5 1000
2 10

2

5
( . ) .

N mm

  =  3978.88 N mm = 3.978 joule   Ans.

 (b

  = 2 P
A

  = 
2 5 10

78 54

3

.
 =  127.32 N/mm2   Ans.

  The strain energy stored in the rod is

 U  = 
2

2E
V

  = 
( . ) .127 32 78 54 5 1000

2 2 10 10

2

5 3  (V = Al)

  = 15.91 joules Ans.
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 (c

  = 
P
A

AEh
Pl

1 1 2
+ +
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

  = 5 10
78 54

1 1 2 78 54 2 10 150
5 10 5 10

3 5

3 3
×

+ +
× × × ×

× × ×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥.

.  

  =  940 N/mm2   Ans.

  The strain energy stored in the rod is given as

 U  = 
σ2 2 3

5 32
940 78 54 5 10

2 2 10 10E
V× =

× × ×

× × ×

( ) .

                  = 867.47 joules  Ans.

Example 9.2 

strain energy stored in the cube and modulus of resilience. Take G = 80 kN/mm2.
Solution: Given,

 Side of the cube,  l  = 100 mm

 Shear force applied,  P  = 50 kN = 5 × 104 N

 Volume of the cube,  V  = l3

   = (100 mm)3 = 106 mm3

 The shear stress produced,   = 
P
A
=

×
×

5 10
100 100

4

 = 5 N/mm2

 The strain energy stored in the cube is given by equation (9.21).

 U  = 
2

2G
V

  = 
5

2 8 10
10

2

4
6 N mm  = 156.25 N mm 

  = 0.156 joule   Ans.

 The modulus of resilience is the strain energy stored per unit volume of the cube, given by

 
U
V

 = 
156 25

106
.

 N mm/mm3 

  = 1.5625 × 10–4 N mm/mm3 Ans.
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Example 9.3 
A rod of diameter 10 mm and length 1.5 m hangs vertically from the ceiling of a roof. A collar is 
attached at its lower end on which a load of 250 N falls from a height of 200 mm. Find the strain 

E = 200 kN/mm2.
Solution: Given,

 d  = 10 mm

 Length of the rod,  l  = 1.5 m = 1.5 × 1000 = 1500 mm

 Impact load to be applied,  P  = 250 N
  Height through which the load falls, h = 200 mm
 The cross-sectional area of the rod A given by

 A  = 
π
4

2d

  = 
π
4

102  = 78.54 mm2

 The stress induced in the rod is given by equation (9.15).

  = 
P
A

AEh
Pl

1 1 2
+ +
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  = 
250

78 54
1 1 2 78 54 2 10 200

250 1500

5

.
.

× + +
× × × ×

×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  = 415.22 N/mm2   Ans.

 The strain energy stored in the rod is given by equation (9.5).

 U  = 
σ σ2 2

2 2E
V

E
A× = × l  

  = 
415 22 78 54 1500

2 2 10 10

2

5 3

. .( ) × ×

× × ×

  = 50.77 joules Ans.

L  = 
σl
E

  = 
415 22 1500

2 105
.

 = 3.11 mm   Ans.
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Example 9.4 
A rectangular block is subjected to three mutually perpendicular tensile stresses of magnitude 
60, 70 and 80 N/mm2. Calculate strain energy and shear strain energy. The Poisson’s ratio 
is 0.3. Take E = 200 kN/mm2.

Solution: Given,
 Tensile stresses, 1  = 60 N/mm2

2  = 70 N/mm2

3  = 80 N/mm2

 Poisson’s ratio,  v  = 0.3

 The strain energy stored per unit volume of the block is given by equation (9.27).

   
U
V

 = 
1

2
21

2
2
2

2
3

1 2 2 3 3 1E
v[ ( )]+ + − + +

   = 
1

2 2 10
60 70 80 2 0 3 60 70 70 80 80 605

2 2 2

× ×
+ + − × × + × + ×[ . ( )]

   =  0.0153 N mm/mm3     Ans.

 The relationship between E and G is given as

 E  = 2G (1 + )

or  G  = 
E

v2 1
2 10

2 1 0 3

5

( ) ( . )+
=

×
+

  = 7.7 × 104 N/mm2

 The shear strain energy per unit volume is given by equation (9.38).

  
U
V

 = 
1

12 1 2
2

2 3
2

3 1
2

G
[( ) ( ) ( ) ]− + − + −

  = 
1

12 7 7 10
60 70 70 80 80 604

2 2 2

× ×
− + − + −

.
[( ) ( ) ( ) ]

  = 6.5 × 10– 4 N mm/mm3    Ans.

Example 9.5 
Find the weight which falls through a height of 5 m on a collar attached to the lower end of a vertical 

Take E = 200 GPa.
Solution: Given,

 Height of the weight,  h  = 5 m
 Diameter of the vertical rod,  d  = 40 mm
 Length of the rod,  l  = 3 m

 l  = 5 mm
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 The cross-sectional area of the rod is A, given by 

 A  = 
π π
4 4

40
1000

2
2

d = ×
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

  = 1.256 × 10–3 m2

 The instantaneous stress produced in the rod is given as 

 = 
E l

l
δ

  = 
200 10 5 10

3

9 3× × × −

  = 3.34 × 108 N/m2

 Using equation (9.15), we have

  = 
P
A

AEh
Pl

1 1 2
+ +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 3.34 × 108  = 
P

P1 256 10
1 1 2 1 256 10 200 10 5

33

3 9

.
.

×
+ +

× × × × ×
×

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢−

−

⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

 Solving for P, we get  P  = 210 N   Ans.

Example 9.6 
A cantilever beam of length l carries a udl of intensity w per unit length over its entire span and a 
point load P  Castigliano’s theorem.

Solution:  Refer Fig. 9.11.
The bending moment due to load P at a distance x from the free end is given as
 M1  = – Px
The bending moment due to udl at x is given as

 M2  = –
wx2

2

Fig. 9.11

The combined bending moment at x is given as

 M  = – Px wx
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

2

2
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 The strain energy stored in the beam is given as

 U  = 
M dx

EI

l 2

0
2

  = 
U
P

  = 

∂
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∂
= ⋅

∂
∂
⋅

∫
∫

M dx
EI

P
M
EI

M
P

dx

l

l

2

0

0

2 2
2

 

 But 
M
P

 = – x

 Hence,   = 
M
EI

x dx
l

( )−∫
0

   = 1
2

2

0
EI

Px wx x dx
l

− +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
−∫ ( )  (on substituting M)

   = 
1

2
2

3

0
EI

Px wx dx
l

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟∫

   = 1
3 8

1
3 8

3 4

0

3 4

EI
Px wx

EI
Pl wl

l

+
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
= +

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

  Ans.

 when P = 0, then

  = 
wl
EI

4

8

 1. 
 2. 
 3. T and produces 

an angle of twist 
 4. 
 5. 

SHORT ANSWER QUESTIONS
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1. Energy stored in a material during its deformation is known as

 (a) elastic energy (b) plastic energy (c)  strain energy (d) potential energy.

2. Strain energy stored per unit volume in a bar subjected to a gradually applied load P on its 
cross-section A is given as

 (a) 
P
A E

2

22
  (b) P

AE

2

2
 (c)  P

A E2 2
 (d) 2

2
P

A E
.

3. P l is given as

 (a) P . l  (b) P lδ
2

 (c) P l2

2
δ  (d) P lδ 2

2
4.
 (a) resilience   (b) modulus of resilience
 (c) proof resilience   (d) potential energy.

5.  The workdone by a suddenly applied load P l is given as

 (a) P lδ
2

 (b) P  l (c) P l2

2
δ  (d) P  l2.

6.  The strain energy stored in a shaft of length l subjected to a torque T with its polar moment of 
inertia J is

 (a)  
T l
JG

2

2
 (b) 

T l
JG

2
 (c) 2 2T l

JG
  (d) 

Tl
JG2

.

7.  The strain energy stored in a simply supported beam of span l loaded with a central point load P 
and moment of inertia I is

 (a) 
Pl

EI

3

48
  (b) 

P l
EI

2 2

96
 (c) 

P l
EI

2 3

96
  (d) 

P l
EI

2 3

24
.

8.  The strain energy stored in a cantilever beam of span l carrying a point load P at its free end with 
moment of inertia I is

 (a) 
P l

EI

2 3

48
  (b) P l

EI

2 3

6
 (c) 

P l
EI

2 3

24
  (d) 

P l
EI

2 3

96
.

9.  The strain energy stored per unit volume in a body subjected to two mutually perpendicular 
principal stresses 1 and 2 with Poisson’s ratio v is

 (a)  
1

2
21

2
2
2

1 2E
v( )+ −  (b) 

1
1 2 1 2E

( )σ σ σ σ

 (c)  
1 21

2
2
2

1 2E
v( )+ −   (d) 

1
1 2 1 2E

( )+ − .

 MULTIPLE CHOICE QUESTIONS   
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10.  The strain energy stored per unit volume in a cube subjected to a stress intensity  on its all sides 
with bulk modulus K is

 (a)  
2K

 (b) 
2 2K

 (c) σ2

2K
  (d) 

2

2K
.

11. The strain energy stored per unit volume in a cube subjected to three mutually perpendicular 
principal stresses 1, 2 and 3 with 1, 2 and 3 being the strains produced in the respective 
directions of the stresses is 

 (a) 1 1 + 2 2 + 3 3   (b) 1
2

( 1 1 + 2 2 + 3 3)

 (c) 1
2

( 1
2

1 + 2
2

2 + 3
3

3)   (d) 1
2

( 1 1
2 + 2 2

2 + 3 3
2).

12. The stress produced by a suddenly applied load is how many times the stress produced by the 

 (a) four times (b) three times  (c) two times (d) eight times.
13. The stress produced in a bar of length l and cross-section A when a load P is dropped on it from 

a height h

 (a) 
2EPh

Al   (b) 
EPh
Al  (c) 

EPh
Al2   (d) 

EPh
Al3

.

14. The strain energy stored per unit volume in a body subjected to a shear stress  is given as

 (a)  2 2

G
 (b) 

2

2G
 (c) 

2 2G
  (d) 

2

G
.

15. Two bodies of equal cross-sections and equal lengths absorb equal strain energy when loaded 
P and the other one is acting as a cantilever 

beam with a point load P at its free end. The stresses produced in the two bodies are related as

 (a) 1 = 2

3
  (b) 1 = 2 (c) 1 = 2

2
   (d) 1 = 2

2

2
.

16. For a straight bar of length l being subjected to a tensile load P, the strain energy is given as

 (a) 
Pl
AE

2

2  (b) 
P l
AE

2

2
 (c) 

Pl
AE

2

2  (d) 
Pl

A E2
.

17.  For a bar of length l being subjected to a bending moment M, the strain energy is given as

 (a)  
M l

EI

2

2
 (b) 

Ml
EI

2

2  (c) 
Ml
EI

2

 (d) 
Ml
EI

2
.

ANSWERS
 1. (c) 2. (a) 3. (b) 4. (c) 5. (b) 6. (a) 7. (c) 8. (b) 9. (a)

 10. (c) 11. (b) 12. (c) 13. (a) 14. (b) 15. (a) 16. (b) 17. (a).
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1.
of mass 5 kg at its upper end with a certain velocity V
in the bar. Find V. Take E = 200 GPa. (Ans. 3.61 m/s).

2.
of its length is 30 mm and for the other half 60 mm. Calculate the strain energy stored in the bar. 
Take E = 200 GPa. (Ans. 2.76 joules).

3. Show that the strain energy stored in a beam of length l having rectangular cross-section 

supported at the ends and loaded with a central point load P is given as P l
EI

2 3

96
, where the symbols 

have their usual meanings.

4. A load of 20 kN falls through a height of 1 m on a rectangular beam of length 1 m with cross-
section 20 mm wide × 30 mm deep supported at the ends. Find the instantaneous stress developed 
and the strain energy stored in the beam. Take E = 200 GPa. (Ans. 12747.18 N/mm2, 27 kJ).

5. A load of 2 kN is allowed to fall freely from a height of 1 m at the centre of a circular 
 

Take E = 200 GPa. (Ans. 77.65 mm).

6.
length l carrying a triangular load which varies from zero at one end to w/unit length at another 
end.

  Ans wl
EI

.
.

1
156 25

4⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

.

7.

stress of . Show that the strain energy stored in the shaft on per unit volume basis is given by 5
16

2

G
,  

where G is the shear modulus of the shaft material. 
8.

area of cross-section of the bar is 2 × 10–4 m2 over a length of 0.95 m and for the central 0.05 m 
length the sectional area is equal to 1 × 10–4 m2. Assuming that E for the bar material is 200 GPa, 
calculate the strain energy stored in the bar. (Ans. 2.953 joules).

9. A 500 mm × 180 mm rolled steel beam is simply supported over a span of 6m. A load of 20 kN is 

45218 × 10–8 m4 and the Young’s modulus is 200 GPa. (Ans. 6.026 mm, 36.715 MPa).

10.
supported beam which carries a uniformly distributed load  of intensity w over the full span l. The 

EI of the beam is constant and only strain energy of bending is to be considered.

  Ans wl
EI

. 5
384

4⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

.

EXERCISES
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11.  A steel tube having outside and inside diameter of 100 mm and 60 mm respectively is bent into 
the form of a quadrant of 2 m radius as shown in Fig. 9.12. One end is rigidly attached to a 
horizontal base plate to which a tangent to that end is perpendicular, and the free end supports 

using the Castigliano’s theorem.  Take E = 200 GPa.

Fig. 9.12
  (Ans. 7.353 mm, – 4.681 mm).

12. A shaft circular in section (Fig. 9.13) and of length l is subjected to a variable torque given by 

kx
i

2

2
, where x is the distance measured from one end of the shaft and k is a constant. Find the 

angle of twist for the shaft using Castigliano’s theorem. Torsional rigidity of the shaft is JG.

Fig. 9.13
  Ans kl

JG
.

3
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

.
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Henri Edouard Tresca, born on 12 October 1814, was a French mechanical 
engineer. He discovered the Tresca yield criterion, also called maximum 
shear stress theory, which is one of the two main failure criteria used today 
for ductile materials along with von Mises yield criterion. He became 
an honorary member of the American Society of Mechanical Engineers 
(ASME) in 1882. He is called the ‘father of plasticity’ for his contribution 

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

Henri Edouard Tresca
(1814-1885)
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10.1  INTRODUCTION 
When a material is stressed, there is a possibility for it to fail. Sometimes it fails without giving any 
indication and sometimes the failure is delayed. The analysis of failure of materials helps to know 

them give the exact reason of failure because of the complexity of compound stress system under 
multiaxial loading. Yield point is the stage in the material, beyond which permanent deformation 
occurs, and it is the most important failure criteria. The different theories of failure, also called failure 
criteria, are discussed below.

10.2 MAXIMUM NORMAL STRESS THEORY 

Scottish civil engineer William John Macquorn Rankine (1820–1872). It is the oldest, as well as the 
simplest, of all the theories of failure, and applies well to brittle materials in all ranges of stresses, 
provided a tensile principal stress exists. According to this theory, a material fails, when the maxi-
mum principal stress developed due to external load reaches the ultimate strength of the material 
under uniaxial tension condition.

Consider a rectangular body being subjected to two normal stresses x and y along x and y 
directions respectively (Fig. 10.1). Let u be the ultimate stress in simple tension.

Fig. 10.1

The principal stresses are given as

 1, 2  = 
σ σx y+

2
 ± 

( )σ σ τx y− +2 24

2
 ...(10.1)

The maximum principal stress is given as

 1  = 
σ σx y+

2
 + 

( )σ σ τx y− +2 24

2
 ...(10.2)

The minimum principal stress is given as

 2  = 
σ σx y+

2
 – 

( )σ σ τx y− +2 24

2
 ...(10.3)
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According to this theory, 1 = u

  
σ σx y+

2
 + 

1
2

4
2 2σ σ τx y−( ) +  =  u ...(10.4)

The normalised form of the Rankine’s theory for a plane stress condition is

 
σ
σ

1

u
 = ± 1 or  

σ
σ

2

u
 = ± 1 ...(10.5)

and is graphically represented as shown in Fig. 10.2, where 1  and 2 are the principal stresses and 
u 

criterion. The material is safer for the principal stresses lying within the square, but fails when the 
stresses lie on or outside the square.

Fig. 10.2 Plotting of the maximum normal stress theory.

10.3 MAXIMUM NORMAL STRAIN THEORY
This theory is also  called maximum principal strain theory or Saint Venant’s criterion in honour 
of  a French mathematician Saint Venant. The theory holds reasonably well for cast iron (a brittle 
material), but is not generally used these days as other theories give better result. According to this 
theory, a material fails, when the maximum principal strain reaches the strain at the yield point in the 
simple tension test. 

Consider a complex stress system in which a body is subjected to three mutually perpendicular 
stresses x, y and z (Fig. 10.3). Let the major principal strain occurs in the direction of x and yp 
is the yield point stress.

Fig. 10.3
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Principal strain in the direction of x is given as

 
σx
E

v
σ y

E
v
σ z
E

where
 E = Modulus of elasticity
 v = Poisson’s ratio
According to this theory,

 
σx
E

v
σ y

E
v
σ z
E

 = 
σ yp

E
or x v ( y + z) = yp

10.4 MAXIMUM TOTAL STRAIN ENERGY THEORY 
This theory is also called Haigh’s criterion. According to this theory, for a body being subjected to a 
complex stress system, failure occurs, when the total strain energy per unit volume reaches the total 
strain energy at the yield point in the simple tension test. The theory gives fairly good results for 
ductile materials, but is not used these days as other improved theories are available.

The strain energy per unit volume under the loading condition is given as

 
U
V

 = 
1

2E
 [σx

2  + σ y
2  + σ z

2 v ( x y + y z + z x

The strain energy per unit volume at the yield point, when yp is the yield stress, is given as

 
U
V

yp  = 
σ yp

E

2

2
According to this theory,

 
1

2E
 [σx

2  + σ y
2  + σ z

2 v ( x y + y z + z x)] = 
σ yp

E

2

2

or σx
2  + σ y

2  + σ z
2 v ( x y + y z + z x) = 2

yp 

10.5 MAXIMUM SHEAR STRESS THEORY
This theory is also known as Tresca’s yield criterion, named after a French engineer Henri Edouard 

obtained are very near to experimental values, hence oftenly used for ductile materials in machine 
design and is one of the widely used laws of plasticity. According to this theory, a material fails, when 
the maximum shear stress developed in the material equals to the maximum shear stress at the yield 
point in the uniaxial tension test.

Consider a body being subjected to two mutually perpendicular normal stresses x and y and a 
shear stress 
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Fig. 10.4 

The maximum shear stress is given as

 max  = ± 
σ σ1 2

2
−

  = ± 
1
2 σ σx y−( ) +

2 24τ

where 1  = Major principal stress 

  = 
σ σx y+

2
 + 

( )σ σ τx y− +2 24

2
 2 = Minor principal stress

  = 
σ σx y+

2

( )σ σ τx y− +2 24

2
The maximum shear stress, when the body is subjected to a stress yp, is given as

 maxyp  = 
σ yp

2
According to this theory,

  max = maxyp

  ± 
σ σ1 2

2
−

 = 
σ yp

2

  ± 
1
2

 σ σ τx y−( ) +
2 24   

σ yp

2

or  ± σ σ τx y−( ) +
2 24  = yp

The normalised form of the Tresca's yield criterion for a plane stress condition is

 
σ
σ

1

yp
 = ± 1 or 

σ
σ

2

yp
 = ± 1 or σ

σ
1

yp

σ
σ

2

yp
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where 1 and 2 are the principal stresses and yp is the yield point stress in the uniaxial tension test.

Fig. 10.5 Plotting of the maximum shear stress theory.

stresses within the hexagon, but fails when the stresses lie on or outside the hexagon.

10.6 MAXIMUM DISTORTION ENERGY THEORY

theory, and is the most popular theory for predicting yielding in ductile materials. According to this 
theory, a material begins yielding, when the maximum shear strain energy (also called distortion 
energy) per unit volume equals to the shear strain energy per unit volume at the yield point in the 
uniaxial tension test.

 
U
V

s  = 
1

12G
[( 1  2)2 + ( 2 )2 + ( 1)2

where 1, 2 and  are three mutually perpendicular principal stresses.
The shear strain energy at the yield point, when the body is subjected to a stress yp, is given as

 
U
V

yp   = 
σ yp

G

2

6
According to this theory,

 
U
V

s  =
U
V

yp

 
1

12G
 [( 1 2)2 + ( 2 )2 + ( 1)2] = 

σ yp

G

2

6
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or ( 1 2)2 + ( 2 )2 + ( 1)2 = 2
yp 

The normalised  form of the maximum distortion energy theory for a plane stress condition is

  
σ
σ

σ
σ

σ
σ

σ
σ

1
2

2
2

1 2

yp yp yp yp

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟  = 1 

but fails if the stresses lie on or outside the ellipse. The corresponding Tresca's hexagon is shown by 
dashed lines. 

Fig. 10.6 Plotting of the maximum distortion energy theory.

Example 10.1 
Two direct stresses are acting at two mutually perpendicular planes in a material. Both of 

2 2 respectively. Find the shear stress acting 
on the planes to consider the material’s failure according to maximum principal stress theory, 
maximum shear stress theory and shear strain energy theory. Take yield stress to be equal to  

2.
Solution: Given,

 Direct stress in x  x
2 (Tensile)

Direct stress in y y 
2 (Tensile)

Yield stress, yp 
2

The major principal stress 1 is given as

 1  = 
σ σx y+

2
 + 

( )σ σ τx y− +2 24

2
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  = 
150 80

2
+

 + 
150 80 4

2

2 2−( ) + τ

4900 4
2

2+ τ
 ...(1)

The minor principal stress 2 is given as

 2 = 
σ σx y+

2

( )σ σ τx y− +2 24

2

4900 4
2

2+ τ
 ...(2)

According to the maximum principal stress theory, we have
 1 = yp 

2  

4900 4
2

2+ τ

Solving for , we get
 2   Ans.

The maximum shear stress max  is given as

 max  = 
σ1 2

2
− σ

Using equations (1) and (2), we get

 max = 4900 4 2+ τ   

According to the maximum shear stress theory, we have
 max  = yp 

2  

or 4900 4 2+ τ

Solving for , we get
 2      Ans.

The shear strain energy per unit volume, for a biaxial stress system, is given as

 
U
V

s  = 
1

12G
 [( 1 2)2 + 2

2 + 2
1] (

  = 
1

6G
 [ 2

1 + 2
2 1 2] 
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According to the shear strain energy theory, we have

 
1

6G  [ 2
1 + 2

2 1 2] = 
σ yp

G

2

6

 2
1 + 2

2 1 2 = 2
yp

2 

or   115
4900 4

2

2
2

+
+⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

τ
 + 115

4900 4
2

2
2

−
+⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

τ
 

115
4900 4

2

2
+

+⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

τ
115

4900 4
2

2
−

+⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

τ 4

Solving for , we get
 2   Ans.

Example 10.2
mm 

mm. Find the factor of safety of the shaft using maximum shear 
2.

Solution: Given,
Diameter of the shaft, d
Bending moment, M mm
Twisting moment,     T mm

Yield stress of the shaft, yp  
2

The major principal stress is given as

 1  = 
16

3πd
 [M + M T2 2 ]

  = 
16

50 3π× ( )
[ ( ) ( )3 10 5 105 2 5 2× + × ] 2

The minor principal stress is given as

 2  = 
16

3πd [M M T2 2 ]

  = 
16

50 3π× ( )
 [ ( ) ( )3 10 5 105 2 5 2× + × ]

2

v
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2.
The maximum shear stress is given as

 max  = 
σ σ1 2

2
−

 = 
36 11 53

2
. 2

The working simple stress corresponding to max is given as
 w  = 2 max 

2

Hence, the factor of safety is

 n  = 
σ
σ

yp

w
= 

90
47 52.

 Ans.

Example 10.3 
For a complex stress system, three principal stresses are 2 . The stress in simple 

2. Find the value of  according to (a) the maximum principal 
stress theory (b) the maximum principal strain theory (c) the total strain energy theory (d) the 
maximum shear stress theory and (e
Solution: Given,

Major principal stress, 1  = 2
Minor principal stress, 2

Third principal stress, 
Stress at the elastic limit, e

2

Poisson’s ratio, v
The minor principal stress is compressive because of negative sign associated with it.

 (a) Using the maximum principal stress theory, we have
  Major principal stress 1  = Stress at the elastic limit e
 1 

 2
 or 2     Ans.

 (b) Using the maximum principal strain theory, we have

 
σ σ σ1 2 3
E E

v
E

− −v   = 
σe
E

  (On replacing x, y and z by 1, 2 and 
 or  1 v 2 v   = 
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 or     2

  On solving, we get
  2  Ans.
 (c) Using the total strain energy theory, we have

 σ σ σ υ σ σ σ σ σ σ1
2

2
2

3
2

1 2 2 3 3 12+ + − + +( )  = 2
e

  (On replacing x, y and z by 1, 2 and 

    

( ) ( ) ( . ) . [( ( )
( ) ( . )

2 1 1 5 2 0 25 2 1
1 1 5

2 2 2σ σ σ σ σ
σ σ

′ + − ′ + ′ − × ′ × − ′
+ − ′ × ′ + (( . ) )]1 5 2σ σ′ × ′ 2

  On solving, we get
 2  Ans.

 (d) The maximum shear stress is given as

 max  = 
σ σ1 2

2
−

  = 
2 1

2
σ σ′ − − ′( )

  According to the maximum shear stress theory, we have

 max  = 
σe
2

 = 
200
2

 or 2   Ans.

 (e) Using the distortion energy theory, we have

 1
2 1 2

2
2 3

2
3 1

2[( ) ( ) ( ) ]σ σ σ σ σ σ− + − + −  = e
2

 or  
1
2

2 1 1 1 5 1 5 22 2 2[( ) ( . ) ( . ) ]σ σ σ σ σ σ′ + ′ + − ′ − ′ + ′ − ′ 2

  On solving, we get
 2   Ans.

Example 10.4

the bending moment being four times the twisting moment. Find the allowable twisting moment 
according to (a) the maximum principal stress theory (b) the maximum shear stress theory and 
(c 2 and the factor 
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Solution: Given,

Diameter of the shaft, d

Elastic limit stress,  e
2

Factor of safety,  n

T  = Twisting moment
   M  = Bending moment
    M  = 4T (Given)
The major principal stress is given as

 1 = 
16

3πd
(M + M T2 2 )

  = 
16

803π× ( )
( ( ) )4 4 2 2T T

  = 
16

80 3
T

π× ( )
(4 + 17 ) = 8 T

The minor principal stress is given as

 2  = 
16

80
4 173

T
π×

−
( )

( )  =  1.22 T

The working stress at the elastic limit is given as

 w  = 
σe
n

= 
4
3

2

 (a)  Using the maximum principal stress theory, we have

 1  = w

 8  T

  On solving, we get 
 T 4 mm   Ans.

 (b)  The maximum shear stress is given as

 max  = 
σ σ1 2

2
−

 = 
8 10 1 22 10

2

5 6× + ×− −T T.
 T

   Using the maximum shear stress theory, we have

 max  = 
σw
2

 T  = 
1 33

2
.
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  On solving, we get 
 T 4 mm    Ans.

 (c)  For a biaxial stress system, the distortion energy theory reduces to

 σ σ σ σ1
2

2
2

1 2+ −   = 2 
w

 ( ) ( . ) ( . )8 10 1 22 10 8 10 1 22 105 2 6 2 5 6× + − × − × × − ×− − − −T T T T 2

   Solving for T, we get

 T 4 mm   Ans.

Example 10.5

Find the relationship between the two moments assuming that they are causing failure alone 
according to (a) the maximum principal stress theory (b) the maximum principal strain theory  
(c) the total strain energy theory (d) the maximum shear stress theory and (e) the distortion 

Solution: Given,
Diameter of the shaft, d
Poisson’s ratio, v

 M  = Bending moment
 T  = Twisting moment
 e  = Stress at the elastic limit
 1  = Major principal stress
 2  = Minor principal stress

The bending stress, due to bending moment M acting alone, is given as

     b  = 
32

3
M

dπ
The maximum shear stress, due to twisting moment, that is, torque T acting alone, is given as

       = 
16

3
T

dπ
 Principal stresses are
     1, 2  = ± 16

3
T

dπ
 (a)  Using the principal stress theory, we have
     1  = e

     
16

3
T

dπ
  = 

32
3

M
dπ

    (here e = b = bending stress)

  or  T  = 2 M    Ans.
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 (b)  For a biaxial stress system, the maximum principal strain theory is expressed as

     1 v 2  = e

  (On replacing x and y by 1 and 2

     
16 0 25 16

3 3
T

d
T

dπ π
− −⎛

⎝
⎜

⎞
⎠
⎟.   = 

32
3

M
dπ     (Here e = b = Bending stress)

     T M     Ans.

 (c)  The total strain energy theory, for a biaxial stress system, is expressed as

     σ σ σ σ1
2

2
2

1 22+ − v   = e
2

x and y by 1 and 2 respectively.)

  
16 16 2 0 25 16 16

3

2

3

2

3 3
T

d
T

d
T

d
T

dπ π π π
⎛
⎝
⎜

⎞
⎠
⎟ + −⎛

⎝
⎜

⎞
⎠
⎟ − × × × −⎛

⎝
⎜

⎞
⎠
⎟.  = 

32
3

2M
dπ

⎛
⎝
⎜

⎞
⎠
⎟

     T M     Ans.

  (d)  Using the maximum shear stress theory, we have

   = 
σe
2

 = b
2

   
16

3
T

dπ
  = 

1
2

32
3×

M
dπ

 or  T  = M   Ans.

  (e) For a biaxial stress system, the distortion energy theory is expressed as

 σ σ σ σ1
2

2
2

1 2+ −   = e
2

 
16 16 16 16

3

2

3

2

3 3
T

d
T

d
T

d
T

dπ π π π
⎛
⎝
⎜

⎞
⎠
⎟ + −⎛

⎝
⎜

⎞
⎠
⎟ − ⎛

⎝
⎜

⎞
⎠
⎟ −⎛
⎝
⎜

⎞
⎠
⎟  = 

32
3

2M
dπ

⎛
⎝
⎜

⎞
⎠
⎟

 T M  Ans.
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Example 10.6
Find the maximum principal stress developed in a cylindrical shaft 8 cm in diameter and subjected 

2, determine the factor of safety according to the maximum shearing stress 
theory of failure.
Solution: Given,

Diameter of the shaft, d

Bending moment, M

Twisting moment,  T

Yield stress, yp
2

The bending stress is given as

 b = 
32

3
M

dπ
 = 

32 25 10
0 08 10

3

3 6
× ×

× ×π ( . )
2 2

The shear stress is given as

  = 
16

3
T

dπ

  = 
16 4 2 10

0 08 10

3

3 6
× ×

× ×

.
( . )π

2 2

The maximum principal stress is given as

 1 = 
σ σ τb

b2
+ +1

2
42 2 (  x = b and y

  = 
49 73

2
1
2

49 73 4 41 782 2. ( . ) ( . )+ + ×

2 Ans.
The maximum shear stress is given as

 max = 
1
2

42 2σ τb +

  = 
1
2

49 73 4 41 782 2( + ×. ) ( . ) 2

According to the maximum shear stress theory, failure occurs when max
yield stress. Hence, the factor of safety is

 n = 
σ
τ
yp

2 × max
 = 

300
2 48 62.

Ans.
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Example 10.7
A thin walled circular tube of wall thickness t and mean radius r is subjected to an axial load P and 
a torque T
 (a) Determine the state of stress exising in the tube in terms of P and T.
 (b) Using the von Mises failure criterion, show that the failure takes place, when 

σ τ2 23+  = yp

where yp is the yield stress in uniaxial tension,  and  are respectively the axial and torsional 
shearing stresses in the tube.
Solution:

 σ σ σ σ1
2

2
2

1 2+ −  = yp
2 ... (1)

where 1 and 2 are the two principal stresses and yp is the yield stress in uniaxial tension.

The direct stress due to axial load P is given as

  = 
P
A

P
r

=
π 2  ... (2)

The shear stress due to torque T is

  = 
T
J

r

Substituting J = 
π
2

4r  in the shear stress equation, we get

  = 
2

3

T
rπ

The principal stresses w.r.t. two axes system are given as

 1 = 
σ σ σ σ τx y x y xy+

+
− +2

2

4

2

2( )

and 2 = 
σ σ σ σ τx y x y xy+

−
− +2

2

4

2

2( )

But y x =  and xy = 

Hence, 1 = 
σ σ τ
2

4
2

2 2
+

+
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Fig. 10.7

and 2 = 
σ σ τ
2

4
2

2 2
−

+

Substituting 1 and 2 in equation (1), we have

σ σ τ σ σ τ σ σ τ σ σ τ σ σ2 2 2 2 2 2 2 2 2 2 2 2

4
4

4
2

2
4

4 4
4

4
2

2
4

2 4
4

+
+

+
+

+ +
+

−
+

− −
+· · · · ττ2

4
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = yp

2

 
σ σ τ2 2 2

4
3 4

4
+

+·  = yp
2

 
σ

σ
τ2

2
2

4
3
4

3
4

+ +
4·  = yp

2

2 2 = yp
2

Hence, σ τ2 23+   = yp Proved.

Example 10.8

in internal diameter. One of these tubes was tested in tension and the limit of proportionality was 

estimate the torque at which the two specimens would fail.

Solution: Given,

 di

External diameter of the tube, d

Bending moment, M
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The area of the tube is 

 A = 
π
4 0

2
1
2( )d d−

  = 
π
4

37 5 31 252 2( . . )− 2

 J = 
π
32

4 4( )d do i−

  = 
π
32

37 5 31 254 4( . . )− 4

The stress at the limit of proportionality is given as

 e = 
70 10
337 47

3

.
2

2

According to the maximum shear stress theory, the maximum shear stress is given by

 max = 
σe
2

  = 
207 42

2
. 2

The equivalent torque Te is given by

 Te = M T2 2

M T2 2  = 
τmax ×
⎛
⎝
⎜

⎞
⎠
⎟

J
d0
2

 (using torsion equation)

  = 
103 71 100517 7 2

37 5
. .

.

or ( )350 103 2 2× +T

Solving for T, we get

 T Ans.
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Example 10.9
T. 

causing yielding of the shaft material according to (a) the maximum principal stress theory, (b) the 
maximum shear stress theory and (c) the maximum distortion strain energy theory.
Solution: Given,

Diameter of the shaft, d
Bending moment, M
Yield point stress, yp

2

The bending stress is given by

 b = 
M
I

y  (using bending equation)

  = 2 10 1

64
50

50
2

6

4
× ×

×
×

π
2 2

The shear stress is given by

  = 
T
J

d
2

 (using torsion equation)

  = T ×
×

×
1

32
50

50
24π

2 T 2

where T

The maximum principal stress is given by

 1 = 
σ σ1 2

2
−

  = 
162 975

2
162 975 4 4 07 10

2

2 5 2 2. ( . ) ( . )
+

+ × × − T

  = 81 488 26560 85 6 626 10
2

9 2
. . .

+
+ × − T

The minimum principal stress is given by

 2 = 81 488 26560 85 6 626 10
2

9 2
. . .

−
+ × − T
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The maximum shear stress is 

 max = 
σ σ1 2

2
−

  = 
26560 85 6 626 10

2

9 2. .+ × − T

 (a) According to the maximum principal stress theory, we have

   1 = yp

  or  81 488 26560 85 6 626 10
2

9 2
. . .

+
+ × − T

  Solving for T, we get

   T Ans.

 (b) According to the maximum shear stress theory, we have

   max = 
σ yp

2

  or 
26560 85 6 626 10

2

9 2. .× × − T
 = 

200
2

  Solving for T, we get

   T Ans.

 (c) According to the distortion energy theory, we have

   ( )σ σ σ σ1 2
2

1
2

2
2− + +  = 2 yp

2 (  

  or          26560 85 6 626 10 81 488 26560 85 6 626 10
2

9 2
9 2

. . . . .
+ × + +

+ ×⎛

⎝
⎜
⎜

⎞

⎠
⎟−

−
T T

⎟⎟

2

   + −
+ ×⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−
81 488 26560 85 6 626 10

2

9 2
2

. . . T 2

  Solving for T, we get

   T Ans.
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Example 10.10
a) Determine the principal stresses 1, 2 and 

. (b

Solution:

Fig. 10.8

Side of the cube, a
Yield strength,  yp

2

Area of each face of the cube  = a2 2

 (a x

   x = 
2000

25
2

y

   y = 
1000

25
2

z

   z = 
500
25

2

  Shear stress in xy plane is

   xy = 
800
25

2

planes.

  Hence,  = z
2 Ans.
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  The other two principal stresses are given as

   1, 2 = 
σ σ σ σ τx y x y xy+

±
− +

2

4

2

2 2( )
 

    =
80 40

2
80 40 4 32

2

2 2+
±

− + ×( ) 2

  Hence, 1
2  

2 Ans.
  and 2

2   
2 Ans.

 (b 1 2)2 + ( 2 )2 + ( 1)2

   2 2 2

2

  and 2 yp
2 2  2

  Since ( 1 2)2 + ( 2 )2 + ( 1)2 > 2 yp
2, , hence according to the von Mises theory, the 

yielding will occur.   Ans.

 

SHORT ANSWER QUESTIONS
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1. The most important point in the consideration of a material’s failure is
 (a) ultimate point   (b) yield point 
 (c) failure point   (d) elastic limit.

2. The maximum principal stress theory is also known as
 (a) Haigh’s theory   (b) St.Venant’s theory
 (c) Rankine’s theory   (d) von Mises theory.

3.
 (a) ultimate stress to working stress (b) working stress to ultimate stress
 (c) yield stress to ultimate stress (d) lateral strain to longitudinal strain.

4. The principal stresses are given as

 (a) 
σ σ σ σ τx y x y+

±
− +

2

4

2

2 2( )
  (b) 

σ σ σ σ τx y x y−
±

+ −

2

4

2

2 2( )

 (c) 
σ σ σ σ τx y x y+

±
− −

2

4

2

2 2( )
  (d) σ σ

σ σ τ
x y

x y
+ ±

− +( )2 24

2
.

5. Hooke’s law is valid for
 (a) brittle materials    (b) ductile materials
 (c) isotropic materials   (d)  isotropic and homogenous materials.

6. For a body being subjected to three mutually perpendicular stresses x, y and z, principal strain 
in the x

 (a) 
σ

υ
σ

υ
σx y z

E E E
− +      (b) 

σ
υ
σ

υ
σx y z

E E E
+ +

 (c) 
σ

υ
σ

υ
σx y z

E E E
− −    (d) 

σ υ
σ σx

y zE
− +

2
( ) .

7. The maximum shear stress theory gives better results for
 (a) brittle materials   (b) ductile materials
 (c) brittle and ductile materials both (d) nonmetallic materials.

8. For a biaxial stress system, the strain energy per unit volume is

 (a) 
1

2
22 2

E x y x y( )σ σ υ σ σ− +   (b) 
1

2
22 2

E x y x y( )σ σ υ σ σ+ −

 (c) 
1

2
22 2

G x y x y( )σ σ υ σ σ+ −   (d) 
1

2
22 2

G x y x y( )σ σ υ σ σ− + .

 MULTIPLE CHOICE QUESTIONS   
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9.  According to the Tresca’s theory, the failure occurs, when the
 (a) major principal stress exceeds the elastic limit stress
 (b) maximum principal strain exceeds the elastic limit strain
 (c) maximum shear stress exceeds the maximum shear stress at the elastic limit
 (d) distortion energy per unit volume exceeds the distortion energy per unit volume at the elastic 

limit.

10. The shear strain energy per unit volume, for a biaxial stress system, in which 1 and 2 are the 
major and minor principal stresses respectively, is given as

 (a) 
1

12 1
2

2
2

1 2G
[ ]σ σ σ σ+ −    (b) 

1
6 1

2
2
2

1 2G
[ ]σ σ σ σ+ −

 (c) 
1

6 1
2

2
2

1 2G
[ ]σ σ σ σ− +    (d) 

1
6 1

2
2
2

1 2G
[ ]σ σ σ σ− + .

11.

 (a) σ σ σ σ1
2

2
2

1 2− +     (b) σ σ σ σ1
2

2
2

1 2+ −

 (c) σ σ σ σ1 2 1 2+ −    (d) σ σ σ σ1 2 1 2− +  .

  where 1 and 2 are the major and minor principal stresses respectively.

12. The maximum shear stress is given as

 (a) 
σ σ1 2

2
+

    (b) 
σ σ1 2

2
−

 (c) 
σ σ1

2
2
2

2
+

    (d) 
( )σ σ1 2

2

2
+ .

where 1 and 2 are the major and minor principal stresses respectively.

13.

 (a) Rankine’s and St. Venant’s theory (b) Tresca’s and Rankine’s theory
 (c) Tresca’s and von Mises theory (d) Rankine’s and von Mises theory.

14. The shear strain energy per unit volume at the elastic limit for a body being subjected to a stress 
 is

 (a) 
2

6E
    (b) 

2

6G

 (c) σ2 1
6

1
6E G

+⎛
⎝
⎜

⎞
⎠
⎟     (d) 

G
.
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15. The maximum shear stress at the elastic limit for a body being subjected to a stress  is

 (a) 2     (b)  

 (c) 
2

    (d) .

ANSWERS

 1. (b) 2. (c) 3. (a) 4. (a) 5. (d) 6. (c) 7. (b) 8. (b) 9. (c)

 10. (b) 11. (b) 12. (b) 13. (c) 14. (b) 15. (c)
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1. 2 in uniaxial tension. The 

occurs according to (a) the maximum shear stress theory and (b) the distortion energy theory.
  (Ans. (a 2 (b 2).

2. For a biaxial stress system, x
2 and y

2. Find the equivalent stress at the 
elastic limit assuming that the failure occurs due to the maximum principal strain theory. Take 

Ans. 2).

3. 2. Find the 

2

  (Ans.
4.

2 4 2. Calculate the factor 
of safety according to (a) the maximum shear stress theory and (b) the distortion energy theory.

  (Ans. (a b) 2.18).

5. m and an axial thrust. For a factor 
a) the maximum shear stress 

theory and (b 2 at the 
elastic limit. (Ans.  (a 4 b 4

6. 
a) the maximum principal stress theory and 

(b
  (Ans.

7.

u yt ys
MPa is recommended for its use. Determine the factor of safety according to (a) the maximum 
principal stress theory and (b) the maximum shear stress theory. (Ans.

8.
withstand an internal pressure of 4 MPa. Find the thickness of the vessel taking a factor of safety 

 (a) the maximum shear stress theory.

 (b) the shear strain energy theory. (Ans.
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Leonhard Euler, born on 15 April 1707, was a great Swiss mathematician 

algebra and number theory. He introduced several notations used in 
mathematics such as the letter e

i to denote imaginary unit. 
f(x

f applied to a quantity x
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11.1 INTRODUCTION 

Columns are long, slender structural members designed to support axial compressive loads. Vertical 

11.2 IMPORTANT TERMINOLOGY 
  Buckling or crippling or critical load is the maximum limiting load at which the column 

the maximum loading condition and it depends upon the length and cross-sectional area  

  Slenderness ratio 

on this ratio. The smaller the slenderness ratio, the higher is the crippling stress.

  Safe load 
given as

= 
Buckling load

Factor of safety ( )n

11.3 CLASSIFICATION OF COLUMNS 

  Short columns have length less than 8 times their least lateral dimension (diameter) or their 

 Long columns have very large lengths as compared to their lateral dimensions and their 

direct compressive stress is almost negligible.

 Medium columns 

11.4 EULER’S THEORY 
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assumptions 
 
 
 

neglected.
  The column has very large length as compared to its lateral dimensions.
 i.e., the load acting on the column are 

within elastic limit.
 
 

end conditions 
 
 
 
 

The equivalent length or the effective length

Table 11.1.

Table 11.1 Effective length of Columns

End conditions Effective length (le )

 Both ends hinged/pinned

 

 

 

 le = l (l 

 le = l/2

 le = 
l

2

 le = 2l

11.4.1 Euler’s Formula (when Both Ends of the Column are Hinged or Pinned)

Consider a long column AB l loaded with an axial compressive load P
position but not in direction) at A and B (Fig. 11.1).

Let P y be the lateral 
x B.

Moment at the distance x is
 M = – Py
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 EI d y
dx

2

2  = M

 EI d y
dx

2

2  = – Py

 Fig. 11.1

 EI d y
dx

Py
2

2  = 0

or 
d y
dx

P
EI

y
2

2 + ⎛
⎝⎜

⎞
⎠⎟  = 0 ...(11.1)

Solving the above equation, we get

 y = C P
EI

x C P
EI

x1 2cos sin
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  ...(11.2)

where C1 and C2

At B, where x = 0,  y = 0

On substituting boundary condition in equation (11.12), we have

 0 = C P
EI

C P
EI1 20 0cos sin×

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + ×

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  = C1  1 + C2  0 = C1

which gives  C1 = 0

Also at A, where x = l,  y = 0
On substituting boundary condition in equation (11.12), we get

 0 = C P
EI

l2 sin
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  
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For LHS to be zero, either C2 or sin 
P
EI

l
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ C2

occurs in the column, and hence C2 can not be zero.

 sin 
P
EI

l
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = 0

which means  
P
EI

l  = 0, , 2 , 3 , ...

Zero value is not admissible and values other than 

 
P
EI

l  = 

Squaring both sides, we have

 P
EI

l2  = 2

or P = 
π2

2

EI
l  = Pcr  ... (11.3)

x = 
l
2

.

11.4.2 Euler’s Formula (when Both Ends of the Column are Fixed)
Consider a column AB l
a crippling load P
But there are restraint moments say M at each end.

XX is considered at a distance x B, where the lateral 
y. The net bending moment at x is M – Py.

Hence, EI d y
dx

2

2  = M – Py

 
d y
dx

2

2  = 
M
EI

P
EI

y

or 
d y
dx

P
EI

y
2

2 + ⎛
⎝
⎜

⎞
⎠
⎟  = 

M
EI

 ...(11.4)

 y = C P
EI

x C P
EI

x M
P1 2cos sin

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +  ...(11.5)



464  Strength of Materials

Fig. 11.2

where C1 and C2

x, we get

 
dy
dx

 = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟C P

EI
P
EI

x C P
EI

P
EI

x1 2sin cos  ...(11.6)

 At B, where x =  0, 
dy
dx

 = 0

From equation (11.6), we have

  0 = 0 2C P
EI

 

or C P
EI2  = 0

 But 
P
EI   0, as P  0 

or C2 = 0

Also at B, where x = 0,  y = 0.
From equation (11.5), we have

 0 = C M
P1

or C1 = 
M
P

Equation (11.5) on substituting C1 and C2 becomes

 y = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

M
P

P
EI

x M
P

cos  ...(11.7)
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And at A, where x = l,  y = 0

 0 = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

M
P

P
EI

l M
P

cos

 cos P
EI

l
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = 1

or 
P
EI

l  = 0, 2 , 4 , 6 , ...

 
P
EI

l  = 2

Squaring both sides, we have

 P
EI

l2  = 4 2

or P = 
4 2

2

π EI
l  = Pcr ...(11.8)

l
2

 with both ends hinged. At the same time, on comparing equation (11.8) 

as compared to a column with both ends hinged.

11.4.3 Euler’s Formula (when One End of the Column is Fixed and Other End Hinged)
Consider a column AB l which is hinged at A B (Fig. 11.3). Let M be restraint 
moment at B F at 
point A.

The bending moment at a distance x B y, is F (l – x) – Py.

 Hence, EI d y
dx

2

2  = F (l – x) – Py

or 
d y
dx

Py
EI

2

2  = 
F l x

EI
( )−

 ...(11.9)

 y = C P
EI

x C P
EI

x F
P

l x1 2cos sin ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + −  ...(11.10)

where C1 and C2
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At B, where x = 0,  y = 0.
From equation (11.10), we have

 0 = C Fl
P1  

or C1 = 
Fl
P

 Fig. 11.3

Differentiating equation (11.10) w.r.t. x, we get

 
dy
dx

 = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −C P

EI
P
EI

x C P
EI

P
EI

x F
P1 2sin cos  ...(11.11)

 Also at B, where x =  0, dy
dx

 = 0.

 From equation (11.11), we have

  0 = C P
EI

F
P2

or C2 = 
F
P

EI
P

And at A, where x = l,  y = 0
Equation (11.10) on substituting the above boundary condition, and C1 and C2 reduces to 

 0 = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Fl
P

P
EI

l F
P

EI
P

P
EI

lcos sin

 
Fl
P

P
EI

lcos
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = 

F
P

EI
P

P
EI

lsin
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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 l P
EI

lcos
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = 

EI
P

P
EI

lsin
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

or tan P
EI

l
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = P

EI
l  ...(11.12)

P
EI

l
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  to hold the above relationship good. These values are 

0 and 4.493 radian.

 But P
EI

l    0, as P  0

or P
EI

l   = 4.493 

Squaring both sides, we have

 P
EI

l2  = 20.187 = 2 2 (approx.)

or P = 2 2

2

π EI
l

 = Pcr ...(11.13)

length l
2

 with both ends hinged will have the same crippling load.

11.4.4 Euler’s Formula (when One End of the Column is Fixed and Other End Free)
Consider a column AB l B A 
(Fig. 11.4).

The bending moment at a distance x B y, is P (d – y), d being 

Hence, EI d y
dx

2

2  = P (d – y) = Pd – Py

or 
d y
dx

Py
EI

2

2  = 
Pd
EI

 ...(11.14)

 y = C P
EI

x C P
EI

x d1 2cos sin
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +  ...(11.15)

where C1 and C2

At B, where x = 0, y = 0
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From equation (11.15), we have 
 0 = C1 + d

or C1 = – d

x, we get

 
dy
dx

 = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟C P

EI
P
EI

x C P
EI

P
EI

x1 2sin cos  ...(11.16)

Also at B, where x = 0, 
dy
dx

 = 0

From equation (11.16), we have

 0 = d P
EI

C P
EI

× +0 2

 C P
EI2  = 0

But P
EI

  0, as P  0     or    C2 = 0

Equation (11.15) on substituting C1 and C2 reduces to

 y = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +d P

EI
x dcos  ...(11.17)

And at A, where x = l, y = d
Equation (11.17) on substituting the above boundary condition becomes

 d = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +d P

EI
l dcos

 d P
EI

lcos
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = 0

But  d  0

 cos P
EI

l
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  = 0

or 
P
EI

l  = 
π π π
2

3
2

5
2

, , ,…

 
P
EI

l  = 
π
2

Fig. 11.4
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Squaring both sides, we get

 
P
EI

l2  = 
π2

4
       or  P = 

π2

24
EI
l  = Pcr    ...(11.18)

l

11.4.5 Crippling Stress

cr.

 cr = 
P
A
cr  = 

π2

2

EI
l A  (using equation (11.3))

  = 
π2 2

2

EAr
l A

  (I = Ar2, where r

  = 
π2

2

E
l r( / )

 ...(11.19)

Where (l/r slenderness ratio
le/r). The equation (11.19) 

r

 Fig. 11.5 cr versus (l/r) plot for structural steel.
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cr is higher than the yield strength Y

11.4.6 Limitations of Euler’s Formula

less than a particular value.

steel, we have
 cr  Y

 
π2

2

E
l r( / )  250  106 (using equation (11.19))

 π2 9

2

210 10× ×
( / )l r

 250  106 (using E = 210 GPa) 

 
π2 9

6

210 10
250 10
× ×

×
  (l/r)2

 8290.46  (l/r)2

 (l/r)  91 ...(11.20)

when the slenderness ratio (l/r) is greater than or equal to 91.

Example 11.1

a) 
b E = 15 GPa.

Solution: Given,
l = 3 m

Compressive stress on the column,  = 10 MPa

 (a) The crippling load is given as
 P
  = 2.5  100

  Using equation (11.3), we have

 P = 
π2

2

EI
l
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or I = 
Pl

E

2

2π

  = 
250 10 3

15 10

3 2

2 9

× ×
× ×π

m4

  = 1.52  10–5 m4

I a is given as

 I = 
a4

12

  = 1.52  10–5

or a = 0.1162 m
  = 116.2 mm

Hence, the acceptable cross-section is 117 mm  117 mm.  Ans.

Check
 The normal stress produced in the column is given as

 d = 
100

0 117 2( . )
  1

103  MPa

  = 7.3  MPa
Since 

  (b) Crippling load is
 P = 2.5  200

I is given as

 I = 
500 10 3

15 10

3 2

2 9

× ×
× ×π

m4

  = 3.04  10–5 m4

  = 
a4

12
or  a = 0.1382 m
  = 138.2 mm

Check
 The normal stress produced in the column is given as

 d = 
200

0 1382 2( . )   
1

103  MPa = 10.47 MPa
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 Since  > 10 MPa, the permissible compressive stress in the column, hence the above cross-
section is not acceptable. In that case, cross-section is found on the basis of given permissible 
compressive stress in the column.

  Area of the cross-section is

 A = 
200
10

  
1

103  m2

  = 0.02 m2

or a = A = 0.1414 m
  = 141.4 mm

Hence, the acceptable cross-section is 142 mm  142 mm.   Ans.

Example 11.2
 A structural steel column is in the form of a tube of thickness 15 mm and external diameter 250 mm 

E = 200 GPa.

Solution: Given,
t = 15 mm

External diameter, d0 = 250 mm
Length of the column, l = 3 m
Let di

di + 2t = d0 

Fig. 11.6

or di = d0 – 2t
  = 250 – 2  15 = 220 mm

 I = 
π
64

250
1000

220
1000

4 4
⎛
⎝
⎜

⎞
⎠
⎟ − ⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 m4  10–5 m4
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 P = 
π2

24
EI
l

 (using equation (11.18))

  = 
π2 9 5

2 3

200 10 7 67 10
4 3

1
10

× × × ×
×

×
−.

 Ans.

End conditions  Crippling load

Both ends hinged  P = 
π2

2
EI

l
 

  = 
π2 9 5

2 3

200 10 7.67 10
3

1
10

× × × ×
×

−

Ans.

 P = 
4 2

2
π EI
l

  = 4
2

2×
⎛

⎝
⎜

⎞

⎠
⎟

π EI
l

  = 4  16822.2 Ans.

 P = 
2 2

2

π EI
l

  = 2  
π2

2

EI
l

⎛

⎝
⎜

⎞

⎠
⎟

  = 2  16822.2 Ans.

Example 11.3

E
proportionality  = 220 MPa.
Solution:  Given,

d = 60 mm = 
60

1000
m = 0.06 m

 I = 
π
64

4d  = 
π
64

0 06 4× ( . ) m4

  = 6.36  10–7 m4
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 P = 
π2

2

EI
l   (using equation (11.3)) 

 σ
π

×
4

2d  = 
π2

2

EI
l

or l = 
4

2

π
σ

EI
d

  = 
4 200 10 6 36 10

220 10 0 06

9 7

6 2

π× × × ×
× ×

−.
( . ) m = 1.42 m.   Ans.

Example 11.4
 A T  20 mm and web dimension 
120 mm 

E = 200 GPa.
Solution:

 Fig. 11.7

l = 2 m
E = 200 GPa = 200  109 Pa

The centroid G YY
Calculation of moment of inertia I

a1 = 100  20 = 2000 mm2

a2 = 120  20 = 2400 mm2

AB is

 y1 = 120 20
2

+⎛
⎝
⎜

⎞
⎠
⎟ mm = 130 mm
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AB is

 y2 = 
120

2  mm = 60 mm

AB is 

 y  = 
a y a y

a a
1 1 2 2

1 2

  = 
2000 130 2400 60

2000 2400
× + ×

+
 = 98.81 mm

XX is given as

 IXX  = 
1

12
100 20 100 20 130 98 813 2× × + × × −⎡

⎣⎢
⎤
⎦⎥

( . )

   + 
1

12
20 120 120 20 98 81 603 2× × + × × −⎡

⎣⎢
⎤
⎦⎥

( . ) mm4

  = 8507217.5 mm4 = 8.507  10–6 m4

YY is given as

 IYY = 
1

12
20 100 1

12
120 203 3× × + × ×⎛

⎝
⎜

⎞
⎠
⎟ mm4

  = 1746666.7 mm4

  = 1.746  10–6 m4

Imin = IYY = 1.746  10–6 m4

 P = 
π2

2

EI
l

min  (using equation (11.3))

  = 
π2 9 6

2 3

200 10 1 746 10
2

1
10

× × × ×
×

−.

Ans.

11.5 EMPIRICAL FORMULAE

cr E
material used, but not on its yield strength yp

cr = yp

Y and E
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l
r
e⎛

⎝
⎜

⎞
⎠
⎟

 
 
  Straight Line Formula

11.5.1 Rankine-Gordon Formula

columns as well as long columns.

 
1
Pr

 = 
1 1
P Pc

 ...(11.21)

where Pr

 Pc

  = c . A ( c

Y and A is 

 P

  = 
π2

2

EI
le

 (using equation (11.3))

Hence, 
1
Pr

 = 
1

c A
 +

1
2

2
π EI

le

⎛

⎝
⎜

⎞

⎠
⎟

  = 
1 1

2 2

2

σ πc

e

A EAr
l

+
⎛

⎝
⎜

⎞

⎠
⎟

 (I = Ar2)

  = 
1 1

2

2

σ πc

e

A EA
l
r

+ ⎛
⎝
⎜

⎞
⎠
⎟

  = 
1 1 1

2

2

A E
l
rc

e

σ π
+ ⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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or A
Pr

 = 
1 1

2

2

σ πc

e

E
l
r

+ ⎛
⎝
⎜

⎞
⎠
⎟

  = 
1 2

2

+
⎛

⎝
⎜

⎞

⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

σ
π
σ

c e

c

E
l
r

 = 
1 1

2

+ ⎛
⎝
⎜

⎞
⎠
⎟K l

r
e

cσ

where K1 = 
σ
π

c

E2
   

or P
A

r  = r = 
σC

eK l
r

1 1

2

+ ⎛
⎝
⎜

⎞
⎠
⎟

 ...(11.22)

where r

or Pr = 
σc

e

A

K l
r

1 1

2

+ ⎛
⎝
⎜

⎞
⎠
⎟

 ...(11.23)

c and K1

Table 11.2 Values of c and K1

Column material
c (MPa) K1 = c/ 2E

Mild steel 320 1/7500

Cast iron 550 1/1600

250 1/9000

Timber 40 1/3000

11.5.2 Johnston’s Parabolic Formula

Pj is given as

 Pj = A K l
rc
eσ − ⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

2

 ...(11.24)

 
P
A

j  = j

  = σc
eK l
r

− ⎛
⎝
⎜

⎞
⎠
⎟2

2

 ...(11.25)
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where K2

  = 
σ
π

c

E

2

24
 = c

E

2

64

11.5.3 Straight Line Formula

 P = A K l
rc
eσ − ⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥3  ...(11.26)

where K3 = Constant depending upon column material
The crippling stress is

 st = 
P
A

 = σc
eK l
r

− ⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥3  ...(11.27)

K2 and K3 are given in Table 11.3.

Table 11.3 Values of K2 and K3

Column material c (MPa) K2 K3

Mild steel 320 0.000057 0.0053

Cast iron 550 0.00016 0.008

250 0.000039 0.0053

Fig. 11.8
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11.6 IS CODE FORMULA (IS: 800-1962) 

 (a) For slenderness ratio 
l
r
e⎛

⎝
⎜

⎞
⎠
⎟  varying between 0 and 160

  The allowable average axial compressive stress, c
given as

 c = 
( / )

. sec

σ

σ
yp

e c

n

l
r

n
E

1 0 20
4

+ ⎛
⎝⎜

⎞
⎠⎟
×

× ′⎡

⎣
⎢

⎤

⎦
⎥

 ...(11.28)

where c 

 yp = Guaranteed minimum yield stress
2 

 n

 (b) For slenderness ratio  160

c is given as

 c = σc
el
r

′ − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥1 2 1

800
.  ...(11.29)

11.7 SECANT FORMULA (FOR ECCENTRIC LOADING)

i.e., the load is acting at a 

Here the given eccentric load is replaced by a centric load P MA = Pe 
(Fig. 11.9).

Consider a section at a distance x A y.
Bending moment at the section   =  MA + Py = Pe + Py

   EI d y
dx

2

2  = – P (y + e) ...(11.30)

   
d y
dx

2

2  = –
P
EI

y e( )

Substituting 
P
EI

 = K2, we have
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 d y
dx

K y
2

2
2  = – K2e ...(11.31)

 y = C1 sin Kx + C2 cos Kx – e ...(11.32)

Fig. 11.9

where C1 and C2

At A, where x = 0,  y = 0
 0 = 0 + C2 – e

or C2 = e
And at B, where x = l,   y = 0

 0 = C1 sin Kl + e cos Kl – e
 C1 sin Kl = e (1 – cos Kl)

 C Kl Kl
1 2

2 2
sin cos  = e 2 sin2

2
Kl

 C Kl
1 2

cos  = e sin Kl
2

 

or C1 = e Kltan
2

Hence, equation (11.32) on substituting C1 and C2 becomes

 y = e Kl Kx e Kx etan sin cos
2

+ −
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  = e Kl Kx Kxtan sin cos
2

1+ −⎡
⎣⎢

⎤
⎦⎥

 ...(11.33)

x = 
l
2

 y  = e Kl Kl Kltan sin cos
2 2 2

1⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥

  = e

Kl Kl

Kl

sin cos

cos

2 2

2 2

2

1

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 = e Klsec
2

1⎛
⎝
⎜

⎞
⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥  ...(11.34)

K = P
EI

 y  = e P
EI

lsec
2

1
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ...(11.35)

y

 P
EI

l
2

 = 
π
2

 ...(11.36)

P

 P = 
π2

2

EI
l

 = Pcr ...(11.37)

 EI = 
P lcr

2

2π
EI

 y  = e P
Pcr

sec π
2

1
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ...(11.38)

i.e x l
=⎛

⎝
⎜

⎞
⎠
⎟2 , 
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 max = 
P
A

M C
I

+
×max  ...(11.39)

where C

 Mmax = Pymax + MA

  = P (ymax + e) (MA = Pe)
and I = Ar 2

Substituting Mmax and I in equation (11.39), we have

 max = 
P
A

y e C
r

1 2+
+⎡

⎣⎢
⎤
⎦⎥

( )max  ...(11.40)

Substituting ymax

 max = P
A

eC
r

P
EI

l1
22+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sec  ...(11.41)

The above equation gives the maximum stress induced in a column with its both ends hinged and 
an eccentricity e

Using I = Ar2 

 max = 
P
A

eC
r

P
EA

l
r
e1 1

22+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sec  ...(11.42)

sec term present in the above equation.
l
r
e⎛

⎝
⎜

⎞
⎠
⎟.

max containing critical load is

 max = 
P
A

eC
r

P
Pcr

1
22+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sec π
 ...(11.43)

Equation (11.43) is obtained by substituting equation (11.38) in equation (11.40).

Example 11.5

2 1
650

.

Solution: Given,
l = 2.5 m

Outside diameter, do = 40 mm



Buckling of Columns  483

Inside diameter, di = 25 mm

Constant, K1 = 
1

650

 c
2

The cross-sectional area, A = 
π
4

40 252 2( )−

  = 243.75  mm2

 I = 
π
64

40 254 4( )−  = 33896.48  mm4

I  = Ar2

or r = 
I
A  = 

33896 48
243 75

.
.

π
π  

  = 11.79 mm

le = l
2

 = 2 5
2
.  = 1.25 m

 Pr = 
σc

e

A

K l
r

1 1

2

+ ⎛
⎝
⎜

⎞
⎠
⎟

  = 
500 243 75

1 1
650

1 25 1000
11 79

2

×

+ ×
×⎛

⎝
⎜

⎞
⎠
⎟

.
.

.

π

 Ans.

Example 11.6

(a b E = 120 GPa.
1

600
2.

Solution: Given,
d = 60 mm
l = 2 m
n = 3
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K1 = 
1

600
Crushing stress, c

2

 le = 2l = 2  2 m = 4 m

 A = 
π
4

602×  = 2827.43 mm2

I = 
π
64

604×  = 636172.51 mm4

I = Ar2, r 

or r = 
I
A

 = 
636172 51
2827 43

.
.

 = 15 mm

 Pr = 
σc

e

A

K l
r

1 1

2

+ ⎛
⎝
⎜

⎞
⎠
⎟

  = 
300 2827 43

1 1
600

4 1000
15

2

×

+ ×
×⎛

⎝
⎜

⎞
⎠
⎟

.
 

7 097
3

.
Ans.

 P = 
π2

2

EI
le

  = 
π2 9 12

2

120 10 636172 51 10
4

× × × × −.

47 09
3
.

Ans.
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Example 11.7  

 

K1 = 
1

1600
2.

Solution: Given,
n  = 3

P
Pr  = P × n = 50 

Cross-sectional area,  A = 50  50 = 2500 mm2

I = 
50
12

4

 = 520833.33 mm4

I = Ar2, r

 r = 
I
A

 = 
520833 33

2500
.

 = 14.43 mm 

 Pr = 
σc

e

A

K l
r

1 1

2

+ ⎛
⎝
⎜

⎞
⎠
⎟

 150  103 = 
400 2500

1 1
1600 14 43

2

×

+ × ⎛
⎝
⎜

⎞
⎠
⎟

le

.

On solving, we get le = 1374 mm = 1.374 m

Under the given end condition

le = 
Actual length

2

2 le  = 1.94 m Ans.

Example 11.8

is 2500 mm2  106 mm4. (a

(b a

E = 210 GPa and C = 60 mm.
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Fig. 11.10

Solution: Given,
l = 3 m

Cross-sectional area, A = 2500 mm2

I = 3.8  106 mm4

n = 2
Eccentricity, e = 20 mm

 C = 60 mm
E = 210 GPa = 120  109 Pa

 le = 2l = 2  3 = 6 m
r is given as

 r = 
I
A

 = 
3 8 10

2500

6.
 = 39 mm

 Pcr = 
π2

2

EI
le

  = π
2 9 6 12

2 3

210 10 3 8 10 10
6

1
10

× × × × ×
×

−.
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Allowable centric load  = 
P
n
cr

  = 
218 8

2
.

Ans.

Allowable normal stress  = 
109 4 10

2500

3. 2

2 = 43.76 MPa Ans.

(b

 ymax = e P
Pcr

sec π
2

1−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (using equation (11.38))

  = 20
2

109 4
218 8

1sec .
.

π
×

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

mm

  = 20 (2.252 – l) mm = 25 mm Ans.

The maximum normal stress in the column is given as

 max = 
P
A

eC
r

P
Pcr

1
22+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sec π
 (using equation (11.43))

  = 
109 4 10

2500
1 20 60

39 2
109 4
218 8

3

2

. sec .
.

×
+

×
×

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π

2 = 121.51 MPa Ans.

Example 11.9

e
a) the distance e, and (b) the maximum stress in 

E = 200 GPa.

Solution: Given,
d = 35 mm
l = 750 mm

Axial load on the rod, P

 (a) The rod is supposed to be hinged at both ends. 
le = l = 750 mm



488  Strength of Materials

 

 ymax = 0.75 mm
 Using equation (11.35), we have

  ymax = e P
EI

lsec
2

1
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P
EI

l
2

 = 
90 10

200 10
64

35
1000

50
2 1000

3

9
4

×

× × × ⎛
⎝
⎜

⎞
⎠
⎟

×
7
×π

 = 0.926 radian = 53.1o

 Hence, ymax = e[sec 53.1o – 1]

or e = 
ymax

(sec . )53 1 1o  = 
0 75

1 665 1
.

( . )  

  = 1.13 mm    Ans.

 (b
 I = π

64
4d

  = π
64

354× mm4 

  = 73661.75 mm4

 Cross-sectional area,  A  = 
π
4

2d  = 
π
4

352×  = 962.11 mm2

r = I
A

   = 73661 75
962 11

.
.

 = 8.75 mm

 The maximum stress in the rod is given by equation (11.41).

  max = 
P
A

eC
r

P
EI

l1
22+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sec

  = 
90 10
962 11

1 1 13 35
2

1
8 75

53 1
3

2

×
+ × ⎛

⎝
⎜

⎞
⎠
⎟ × ×

⎡

⎣
⎢

⎤

⎦
⎥.

.
( . )

sec . o   C =⎛
⎝
⎜

⎞
⎠
⎟

35
2

2 
  = 133.78 MPa Ans.
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Example 11.10

a b) the maximum 
E = 100 GPa.

Solution: Given,
l = 0.5 m

Load on the column, P
Eccentricity, e = 5 mm

 A = 25 mm  25 mm = 625 mm2

I = 
5

12

4

 = 32552 mm4

r = 
I
A

 = 
32552

625
 = 7.21 mm

le = 2l = 2  0.5 m = 1 m

P
EI

l
2

 = 
20 10

100 10 32552 10
1
2

3

9 12

×
× × ×

×−

  = 1.239 radian = 71o

(a

 ymax = e P
EI

lsec
2

1
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  =  5 [sec 71o – l] 

  = 10.36 mm   Ans.

(b)  The maximum stress in the rod is given as

 max = 
P
A

eC
r

P
EI

l1
22+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sec

  = 
20 10

625
1 5 25

2
1

7 21
71

3

2

×
+ × ⎛

⎝
⎜

⎞
⎠
⎟ × ×

⎡

⎣
⎢

⎤

⎦
⎥( . )

sec o  C =⎛
⎝
⎜

⎞
⎠
⎟

25
2

2 
  = 150.2 MPa Ans.
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1.
 (a) strut (b) beam (c d) lever.

2.
 (a) short column (b) medium column 
 (c) long column (d) short and long columns both.

3.
 (a) short column (b) medium column 
 (c) long column (d) short and long columns both.

 (a) 4 2

2

π EI
l

   (b) 
2 2

2

π EI
l

 

 (c) π2

24
EI
l

   (d) 
π2

2

EI
l

.

5. equal to
 (a)  the actual length   (b

 (c)   two times the actual length (d) 
1
2

 times the actual length.

SHORT ANSWER QUESTIONS

MULTIPLE CHOICE QUESTIONS
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6.
 (a b
 (c) slenderness ratio   (d

7.
 (a) long columns   (b) short columns 
 (c) medium columns   (d) short and medium columns both.

8.
 (a
 (b) compressive stress
 (c
 (d) tensile stress.

9.
 (a) 25 mm (b) 50 mm (c) 12.5 mm (d) 20 mm.

10. The crippling stress varies 
 (a) directly proportional to the slenderness ratio
 (b) inversely proportional to the slenderness ratio
 (c
 (d

11.
 (a) more than its yield strength
 (b) less than its yield strength
 (c) equal to its yield strength
 (d) equal to its ultimate strength.

12. For a long column, the slenderness ratio is greater than
 (a) 30   (b) 90
 (c) 120   (d) 200.

ANSWERS

 1. (a) 2. (c) 3. (b) 4. (d) 5. (b) 6. (c) 7. (b) 8. (b) 9. (c)

 10. (d) 11. (b) 12. (c). 
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1. 2. Knowing that the 

E = 200 GPa. (Ans.

2.

 (a
 (b) using E

 Fig. 11.11

    (Ans. (a) 7.47 mm; (b

3. Find the dimension d

              
 Fig. 11.12

EXERCISES
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 E1  = 210 GPa

 E2  = 80 GPa

 1  = 6  103 3

 2  = 3  103 3

   (Ans.

4. A circular rod shown in Fig. 11.13 is used as a compressive member. Find (a
b E = 150 GPa.

Fig. 11.13

(Ans. (a) 2.56 mm,  77.82 MPa).

5.  20 mm is acting as a column whose 
e

a) the distance e and  (b) the maximum stress in the rod. 
E = 210 GPa. 

(Ans. 8.12 mm,  162.75 MPa).

6.
P P

P at which the maximum allowable stress reaches 120 MPa.



494  Strength of Materials

Fig. 11.14
  (Ans

7.
60 mm 

Ans. 1.54 m).

8.

2.
  (Ans.
9. m is applied at 

P
P so that the horizontal 

P shall be equal (i) when the 
ii

Ans

10. A tubular steel strut is 6.5 cm external diameter and 5 cm internal diameter. It is 2.5 m long and 
has hinged ends. The load is parallel to the axis but is eccentric. Find the maximum eccentricity 

E = 210 GPa.

  (Ans. 5.57 mm).

11.  5 mm section is compressed longitudinally 

E = 210 GPa.
  (Ans. 138 mm).
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12.1 INTRODUCTION 

d/t

12.2 STRESSES IN A THIN CYLINDRICAL SHELL 

r
t p a

l

h) acting along its c

Fig. 12.1

dx b
h and l are treated as 

h l

h t  dx)  – p rdx) = 0

h t  = pr

or h  = 
pr
t

  = 
pd

t2
where d
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l rt) – p r2)  = 0 

r2 rt

or l  = 
pr
t2

  = 
pd

t
 

l  = h

2
or h  = 2 l

  =  
σ σh l

2

  = 

pr
t

pr
t pr

t

−
=2

2 4

  = 
pd

t8

 h

 l

h  = 
pd
t

pr
tl l2 η η

  and l  = 
pd
t

pr
th h4 2η η

p
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h

w is the allowable stress, then

h  w

  
pr
t

 w

or  t  pr

w

12.3 VOLUMETRIC STRAIN FOR A THIN CYLINDRICAL SHELL 

Let  l
 r
 t
 v
 p
 E

h  = h l

E
v

E

  = 
pd
tE

v pd
tE2 4

 

  = 
pd
tE

v pd
tE2

1
2 4
−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟=

 d d)  = h × d 

 l  = l h

E
v

E

  = 
pd
tE

v pd
tE4 2

= 
pd
tE

v pd
tE2

1
2 4
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟= v

 dl  = l × l 
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 V  = 
π
4

2d l

 V dV  = 
π

[d + d]2 l dl) 

where dV

dV is

V dV) – V  = 
π π
2 4

2ld d d d dl⋅ + ⋅( )

  Volumetric strain  = 
Change in volume

Initial volume

or  V  = 

π π

π
2 4

4

2

2

ld d d d dl

d l

⋅ + ⋅( )
 = 2 d d

d
dl
l

( )

 h  = 
Change in circumference

Initial circumference

  = 
Changed circumference Initial circumference

Initial circumfeerence

  = 
π π

π
[ ( )] ( )d d d d

d
d d

d
+ −

=

V  = 2 h l 

where l  = 
dl
l

V  = 2
4

2
4

1 2× − + −
pd
tE

v pd
tE

v( ) ( )

  = 
pd
tE

v v pd
tE

v
4

4 2 1 2
4

5 4[ ] ( )− + − = −
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12.4 WIRE WOUND THIN CYLINDERS 

i.e

Fig. 12.2

Example 12.1 

Solution:
 d  = 750 mm

 p

h

h  = 
pd

t2

or  t  = 
pd

h2

  = 10 × 10  ×
750

1000
1

2 120 106

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟× × ×

m

 Ans.

Example 12.2

to a certain height h
h
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Solution:
 t  = 5 mm

 d  = 8 m
 h  = 25 m

 u
 n

h = pd
t2

 = u

  = 
p×

× × −

8
2 5 10 3( )

p, we get
 p

 ps  = 
p
n

 = 
487500

3 5.
Now ps  = gh

h )

 h  Ans.

Example 12.3 

Solution:
  d

  t     = 5 mm

h

l

h  = 
pd
t l2 η

 90  = 
p 450

2 5 0 65.

or  p
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l  = 
pd
t hη

 90  = 
p 450

4 5 0 35.
or  p

  Ans.
 Note: p h

h = 
1 4 450

2 5 0 65
.

.

Example 12.4 

a) the change in length
b
c) the change in diameter
d
e
f
g

 E v
Solution:

 l
d  = 500 mm = 500 × 10  m

 t  = 5 mm = 5 × 10  m
 p

E 9

 v

 h  = 
pd

t2
 

  = 
1 5 10 500 10

2 5 10

6 3

3
. × × ×

× ×

−

−
7
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 l  = h

2
 

  = 
7 5 10

2

7. 7

 h  = h l

E
v

E

  = 
7 5 10
210 10

0 25 3 75 10
210 10

7

9

7

9
. . .×

×
−

× ×

×

l  = l h

E
v

E  

  = 
3 75 10
210 10

0 25 7 5 10
210 10

7

9

7

9
. . .×

×
−

× ×

×
–5

a
 dl  =  l  × l

–5  Ans.

b
 lf  = l dl

 Ans.

c
 d d)  = h × d

 Ans.

d
 df  = d d d)

 Ans.

e
V  = 2 h l

–5
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 V  = 
π
4

2d × l

  = 
π

 5002  mm 8 mm

 dV  = V × V

× 10  × × 108 mm   Ans.

f

 Vf = V dV

× 108 × 108 mm  Ans.

g

  = h l

2
 

  = 
7 5 10 3 75 10

2
1

10

7 7

6
. .× − ×

×  Ans.

Example 12.5 

Solution:

h

l

h  = pd
t l2 η

  = 
1 5 500 10
2 5 10 0 7

3

3
.

.
× ×
× × ×

−

−

l = 
pd
t hη

  = 
1 5 500 10
4 5 10 0 5

3

3
.

.
× ×
× × ×

−

−
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h  = h l

E
v

E

  = 
107 14 10

210 10
0 25 75 10

210 10

6

9

6

9
. .×
×

−
× ×
×

 Longitudinal strain is

 l  = l h

E
v

E

  = 
75 10

210 10
0 25 107 14 10

210 10

6

9

6

9
×
×

−
× ×
×

. .

a  dl = l × l

 mm
 Ans.

b) Final length,  lf  = l dl

 Ans.
c d d)  = h × d

 × 500 mm

d)  Final diameter,   df  = d d d)

Ans.
e

  Volumetric strain,  V  = 2 h l

  = 2 × × 10 × 10

× 10

 V × 108 mm

  dV  = V × V

× 10  × × 108 mm

  Ans.
f  Vf  = V dV

× 108  
× 108 mm   Ans.
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g = h l

2

    = 
107 14 75

2
.

 Ans.

Example 12.6 
 

a
b

Fig. 12.3

Solution:
 l

 t
Outside diameter,  d0

 
 p

 d  = d0 – 2t

h  = 
pd

t2

  = 
3 5 444 10

2 3 10

3

3
. × ×

× ×

−

−

 l  = h

2

  = 
259
2
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 The average stress is given as

av  = h l

2

  = 
259 129 5

2
.

 = 194.25 MPa

h and l are the principal stresses. We draw the Mohr’s circle taking these two stresses (Fig. 12.4).
Scale :  2 cm on x-axis  = 64.75 MPa
Radius of Mohr’s circle,  R  = 64.75 MPa

Fig. 12.4

 (a) The normal stress perpendicular to the weld is given as
W  = av – R cos 2

  = 194.25 – 64.75 cos (2 × 20º) = 144.65 MPa   Ans.
 (b) The shear stress parallel to the weld is given as

W  = R sin 2
  = 64.75 sin (2 × 20º) = 41.62 MPa   Ans.

Example 12.7 
A thin cylinder of 300 mm inside diameter contains water at 1.5 MPa. Find the thickness of the cylinder, 
if the circumferential and longitudinal stresses are limited to 30 MPa and 20 MPa respectively.
Solution: Given,

Diameter of the cylinder,  d  = 300 mm
Circumferential stress, h  = 30 MPa = 30 × 106 Pa
Longitudinal stress, l  = 20 MPa = 20 × 106 Pa
Pressure of water, p = 1.5 MPa = 1.5 × 106 Pa
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The  circumferential stress is given as

h  = 
pd

t2
  

 30 × 106  = 
1 5 10 300 10

2

6 3. × × ×
×

−

t

or  t  = 7.5 mm

 The longitudinal stress is given as

l  =  
pd

t4

 20 × 106  = 
1 5 10 300 10

4

6 3. × × ×
×

−

t
or  t  = 5.62 mm

 Hence, the thickness of the cylinder is 7.5 mm (highest of the two values).       Ans.

Example 12.8 
A cast iron thin cylinder of inside diameter 250 mm and thickness 10 mm is closely wound by a 
single layer of steel wire of diameter 5 mm under a tension of 60 MPa. Find the stresses induced in 
the cylinder and the steel wire, if water under a pressure of 4 MPa is admitted in the cylinder.

Take  ECI  = 105 MPa,  ES = 2 × 105 MPa and v = 0.25.

Solution: Given,
Inside diameter of the cylinder,  d  = 250 mm

Thickness of the cylinder,  t  = 10 mm

Diameter of the steel wire,  dw  = 5 mm

Tensile stress in the steel wire, w  = 60 MPa = 60 × 106 Pa

Pressure of water in the cylinder,  p  = 4 MPa = 4 × 106 Pa

When there is no water in the cylinder 
The compressive force induced in the cylinder is equal to the tensile force in the steel wire. Consider 
1 m length of the cylinder.

The compressive force developed in the cylinder is
  2 × h × t × 1

where h  = Compressive circumferential stress in the cylinder

The tensile force exerted by wire per unit length is

  2 × 
π
4

 dw
2 × w × n 
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where  n

  = 
1

dw

n

2 h × t  = 2 × 
π

 × dw
2 × w × 

1
dw

h  = 
π

σ
d
t
w

w  

  = 
π× ×
× ×

−

−
5 10

4 10 10

3

3

When water is admitted in the cylinder

p
Let l

h

w

p × 
π

 d 2 = l × dt

or l  = 
pd

t
 = 

4 10 250 10
4 10 10

6 3

3
× × ×

× ×

−

−  = 25 × 10

  p × d × 1 = pd l = 1 m)

 p × d × 1  = h × 2t w × 2 × 
π

 × dw
2 × n

or  pd  = h × 2t
πdw

2
 × w n

dw
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

1

 × 250 × 10   = h
π× × −5 10

2

3

 × w

 10 h w
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 Now for compatibility, we have 
 Circumferential strain in the cylinder  = Circumferential strain in the wire

  
σ σ′
−

′h

CI

l

CIE
v

E
 = 

σw
Es

 On substituting different values, we have

 
σ′ ×
×

−
× ×
×

h 10
10 10

0 25 25 10
10 10

6

5 6

6

5 6
.

 = 
σ′

× ×
w

2 10 105 6

or 10 h – 0.5 × 10–5
w = 62.5  ...(2)

Solving equations (1) and (2), we have
w = 127.38 MPa

and h  = 69.94 MPa
The resultant stress (hoop) in the cylinder is
  = h  – h

  = (69.94 – 23.56) MPa = 46.38 MPa (Tensile)  Ans.

The resultant stress in the wire is
  = w + w

  = (60 + 127.38) MPa = 187.38 MPa (Tensile)   Ans. 

12.5 STRESSES IN A THIN SPHERICAL SHELL 
Refer Fig. 12.5.

Fig. 12.5

Let d = Inside diameter of the shell
 t = Thickness of the shell
 p = Fluid pressure inside the shell
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 Fb = p × A  = p × 
π

d2  A

 F2 = l A = l × dt

 Fb = F2

 p × 
π

 d 2 = l × dt 

or l = 
pd

t

h = l =   = 
pd

t

h pd
t2 8

 

Fig. 12.6

i.e.

h = l = 
pd
t
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12.6 VOLUMETRIC STRAIN FOR A THIN SPHERICAL SHELL 
Let d
 t
 v
 p
 E

 V = 
pd
t

 V dV = 
π
6

3[ ( )]d d d  

where dV
 d d

V = 
Change in volume

Initial volume

  = 
( )V dV V

V
dV
V

+ −
=

  = 

π

π
6

6

3 3

3

[{ ( )} ]d d d d

d

+ −

  = 3 d d
d
( )

h 

where h = 
d d

d
( )

h = 
E

v
E h = l = )

  = 
pd
tE

v
4

1( )

V = 
dV
V

pd
tE

3
4

v
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 dV = 
3
4
pd
tE

v) × V

  = 
πpd

tE

4

8
V

Example 12.9 

Solution:
d = 500 mm
p

h

 h = 
pd
t

 = 
2 10 500 10

4 0 8

6 3× × ×
× ×

−

t .
t, we get

 t  Ans.

Example 12.10 

5 mm
E v

Solution:
d = 1 m
t = 5 mm

E 9 N/m2

v

 dV = 
πpd

tE
v

4

8
1( )

 2 × 105 × 10–9 = 
π× × × −
× × × ×−

p 1 1 0 25
8 5 10 200 10

4

3 9
( . )
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p, we get
 p 5 N/m2  Ans. 

h = l = 
pd

t

  = 
6 79 10 1
4 5 10

5

3
. × ×

× × −  N/m2

7N/m2 Ans.

Example 12.11 

E
and v 
Solution:

d
t = 10 mm
p
E 9

v

h = 
pd
tE

v
4

1( )

  = 2 10 1 5 1 0 3
4 10 10 200 10

6

3 9
× × × −

× × × ×−

. ( . )

h = 
d d

d
( )

where d d
or d d) = h × d

Ans.
 Volumetric strain is

V h

V = 
dV
V

where V

  = 
π
6

3d   = 
π
6

1 5 3( . )
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dV = V × V
9 mm  

 Ans.

Example 12.12 

Solution:
t = 10 mm

p

h = l

h = l = 
pd
t

 = 
1 5 10

4 10 10 0 7

6

3
.

.
× ×

× × ×−
d

d, we get 
 d Ans.

12.7 CYLINDRICAL SHELL WITH HEMISPHERICAL ENDS 

Fig. 12.7

Let p
 t1

  t2

 d
 v
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For cylinder part

h = 
pd
t2 1

Longitudinal stress, l = 
pd
t4 1

h = 
pd
t E

v
4

2
1

( )

For hemispherical ends

h = 
pd
t4 2

h = pd
t E

v
4

1
2

( )

 
pd
t E

v
4

2
1

( )  = 
pd
t E

v
4

1
2

( )

or t
t
1

2
 = 

2
1

v
v

t1 is 
always greater than t2

 
pd
t2 1

 = 
pd
t4 2

or 
t
t
1

2

Example 12.13 

a
b E  v

Solution:
 d

 t1  = 10 mm

E 9

v

Let t2
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a

 
t
t
1

2
 = 

2
1

v
v

 

or 
10

2t
 = 

2 0 25
1 0 25

.
.

t2, we get
 t2 Ans.

b

 
t
t
1

2

or t2 = 
t1
2

10
2

  = 5 mm    Ans.

12.8 STRESSES IN THICK CYLINDERS (LAME’S THEORY) 
i.e.

 

 

 

 

 l

 R1

 R2

 p1

 p2

r dr
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Fig. 12.8

Let r

r d r

h

l

r and h p1 acting at the radius R1
i.e R1, radial stress r

 l  = 
σ σ σl r h
E

v
E

v
E

+ −

  = 
1
E

vl h r[ ( )]σ σ σ

l , v and E are constants, hence
 h – r

     h  = 2A 

where A
 h  = 2A r
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 l  = 
p R
R R

p R
R R

1 1
2

2
2

1
2

1 1
2

2
2

1
2

×
−

=
−

π
π( )

b

 r 2rl r d r r dr) l
  = – 2 r dr l – 2d r r l

  2 hldr

 – 2 r drl – 2d r rl  = 2 h l dr
 – r dr – d r r  = h dr

or  h  = – r – r 
d
dr

r

 – r – r 
d
dr

r   = 2A r

  – r 
d
dr

r   = 2A r A r)

 2
dr
r

   = – 
d

A
r

r

 2 
dr
r

 = 
d

A
r

r+∫
 2 loge r = – loge A r e B

where loge B
 loge r

2 = – loge A r e B

 loge A r) = loge B – loge r
2 = loge 

B
r2

⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟

 A r = 
B
r2

or r = 
B
r2  – A 
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 h = 
B
r2 A 

Lame’s equations
A and B

12.8.1 General Case (when Internal and External Pressures both are acting)
r = R1, r = p1

when r = R2, r = p2

 p1 = 
B
R1

2  – A

and p2 = 
B
R2

2  – A

p1 – p2) = 
B
R

B
R

B R R
R R1

2
2
2

2
2

1
2

1
2

2
2− =

−⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

or B = 
R R

R R
p p1

2
2
2

2
2

1
2 1 2( )

and A = 
p R p R

R R
1 1

2
2 2

2

2
2

1
2

A and B

 r = 
1
2

1
2

2
2

2
2

1
2 1 2r

R R
R R

p p( )  – 
p R p R

R R
1 1

2
2 2

2

2
2

1
2

  = 
R R

r
p p
R R

p R p R
R R

1
2

2
2

2
1 2

2
2

1
2

1 1
2

2 2
2

2
2

1
2

( )

and h = 
R R

r
p p
R R

p R p R
R R

1
2

2
2

2
1 2

2
2

1
2

1 1
2

2 2
2

2
2

1
2

( )−

−
+

−

−

12.8.2 When only Internal Pressure is acting
r = R1, r = p1

when r = R2, r = p2

 p1 = 
B
R1

2  – A  and 0 = 
B
R2

2  – A
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 Solving these two equations, we get

 B = p1 
R R

R R
1
2

2
2

2
2

1
2  

and A = p1 
R

R R
1
2

2
2

1
2  

 Substituting values of A and B in equations (12.42) and (12.43), we have

r = 
1
2 1

1
2

2
2

2
2

1
2 1

1
2

2
2

1
2r

p R R
R R

p R
R R

  = 
p R

R R
R
r

1 1
2

2
2

1
2

2
2

2 1
−

−
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
 ...(12.46)

and h = 
p R

R R
R
r

1 1
2

2
2

1
2

2
2

2 1
−

+
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
 ...(12.47)

 It has been observed that r and h are maximum at inner surface of the cylinder i,e., at r = R.
or rmax

 = p1 ...(12.48)

 It is compressive in nature and is taken to be positive.

  Fig. 12.9

and hmax = p1 
R R
R R

2
2

1
2

2
2

1
2

+

−
 ...(12.49)

 It is tensile in nature and is taken to be positive.
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r and h i e r = R2

r

and h = 2p1 2 1
1
2

2
2

1
2p R

R R
h and r

12.8.3 When only External Pressure is acting

r = R1, r = 0
 when r = R2, r = p2

 0 = 
B
R1

2  – A

and p2 = 
B
R2

2  – A

 B = – p2 
R R

R R
1
2

2
2

2
2

1
2  

and A = – p2 
R

R R
2
2

2
2

1
2  

A and B

r = −
−

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

p R R
R R2

1
2

2
2

2
2

1
2 p2 

R
R R

2
2

2
2

1
2

  = – p R
R R

R
r

2 2
2

2
2

1
2

1
2

2 1
−

−
⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

and h = – 
p R

R R
R
r

2 2
2

2
2

1
2

1
2

2 1
−

+
⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

h r = R1

 h  = – 2 2
2
2

2
2

1
2p R

R R

h
is, at r = R2

h = −
+

−
p R R

R R2
2
2

1
2

2
2

1
2
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 The radial stress r is maximum at the outer surface of the cylinder i.e., at  r = R2, given by 

rmax
 = p2 (Compressive) ...(12.56)

 The minimum radial stress occurs at the inner surface of the cylinder i.e., at r = R1, given by 

rmin
 = 0 ...(12.57) 

 The distribution (parabolic) of h and r across thickness of the cylinder is shown in Fig. 12.10.

Fig. 12.10

12.8.4 When a Solid Circular Shaft is subjected to External Pressure
Shaft is considered as a thick cylinder with no inner hole. In this case, r1 = 0 and  p1 = 0. To avoid 

r and h, constant B has to be zero. Hence, from equations (12.42) and 
(12.43), we have

r =  – A ...(12.58)

h =  A ...(12.59)

12.9 LONGITUDINAL STRESS 
The longitudinal stress is zero, when the cylinder is open at both ends as in the case of a gun barrel. 
The same situation can be visualized in a piston-cylinder arrangement where equal pressure acts on 
both sides of the piston. However, when the cylinder is closed at its both ends and is subjected to 
pressures p1 and p2, being internal and external respectively, then longitudinal stress l is induced, 
which is given by considering horizontal equilibrium of the forces acting on the cylinder as
 p R p R1 1

2
2 2

2π π  = σ πl R R( )2
2

1
2
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or l = 
p R p R

R R
1 1

2
2 2

2

2
2

1
2

A

r, h and l
with h r h l

r

 = h r( )
2

 = h r

2
 

h and r

 = 

B
r

A B
r

A2 2

2

+ + −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

= 
B
r2

 occurs at r = R1 i.e. absolute maximum 
shear stress

absolute
 < B

R1
2

Example 12.14 

Solution:
 R1  = 

200
2

 = 100 mm

 R2  = 
300

2
 = 150 mm

p1

p2

 p1 = 
B
R1

2  – A

or 50 = 
B

( )100 10 3 2× −  – A 

and  p2 = 
B
R2

2  – A

or 15 = 
B

( )150 10 3 2× −  – A 
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 B

and A

 hr R2
 = 

B
R1

2  A

  = 
0 63

100 10 3 2
.

( )× − Ans.

 hr = 150 mm
 = 

0 63
150 10 3 2

.
( )× −  Ans.

i e r = 
100 150

2

 hr = 125 mm  = 
0 63

125 10 3 2
.

( )× − Ans.

 rr = 125 mm
 = 

0 63
125 10 3 2

.
( )× − Ans.

Fig. 12.11
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Example 12.15 

Solution:
 R1  = 

300
2

 = 150 mm

 R2  = 
450
2

 = 225 mm

p1

R1, h

h = 
B
r2 A

B
( )150 10 3 2× − A 

 r = 
B
r2  – A

or 15 = 
B

( )150 10 3 2× −  – A r = R1, r = p1) 

 B
and A = 10

 p2 = 
B
R2

2  – A r = R2, r = p2)

  = 
0 5625

225 10 3 2
.

( )× −  Ans.

Example 12.16 

Solution:
 R1 = 

250
2

 = 125 mm

p1

h 
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r = 
B
R1

2  – A 

and h = 
B
R1

2 A

r = R1

B
( )125 10 3 2× −  – A 

and 75 = 
B

( )125 10 3 2× − A

 B
and A

r

r = 
B
r2  – A

or 0 = 
0 70

2
2

.
R

 – r = R2)

 R2

 t = R2 – R1

 Ans.

Example 12.17 

Solution:

 R1  = 
150

2
 = 75 mm

 R2  = 
300

2
 = 150 mm

p1

p2
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r = 
B
r2  – A

B
( )75 10 3 2× −  – A

and 20 = 
B

( )150 10 3 2× −  – A

 B
and A

r = R1

h  = 
B
R1

2 A

  = 
0 3

75 10 3 2
.

( )× −  –  Ans.

 = h r

2

  = 
46 67 60

2
.

h = h  and r = r  = p1)

 Ans.

Example 12.18 

Solution:

R1 = 
100

2
 = 50 mm

p1

h

r = 
B
r2  – A

or 70 = 
B

( )50 10 3 2
× −

 – A r = p1 and r = R1)
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 Let  R2

 0 = 
B
R2

2  – A r = 0 at r = R2)

 B = 
0 175

0 0025
2
2

2
2

.
.
R

R

and  A = 
0 175

0 00252
2

.
.R

h = 
B
r2 A 

A and B

h = 
1 0 175

0 0025
0 175

0 00252
2
2

2
2

2
2r

R
R R

.
.

.
.−

+
−

  = 
0 175

0 0025
1

2
2

2
2

2
.

.R
R
r−
+

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

h r = R1

h =  
0 175

0 0025 50 10
1

2
2

2
2

3 2
.

. ( )R
R

− ×
+

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

−

  = 70 ×  
0 175

0 0025 50 10
1

2
2

2
2

3 2
.

. ( )R
R

− ×
+

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

−

h

or 
100
70

 = 
R
R

2
2

2
2

0 0025
0 0025
+

−

.

.
R2 = 119 mm

On the basis of maximum shear stress

 = h r

2

  = 
1
2

70 0 0025
0 0025

702
2

2
2×
+

−
+

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

R
R

.

.
 

  = 
70
2

0 0025
0 0025

12
2

2
2×
+

−
+

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

R
R

.

.
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 80 = 
70
2

0 0025
0 0025

12
2

2
2×
+

−
+

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

R
R

.

.
 

R2, we get
 R2

R2 R2

t = R2 – R1

 Ans.

12.10 STRAINS IN THICK CYLINDERS 

h = 
Change in circumference
Original circumference

  = 
π π

π
[ ( )] ( )d d d d

d
d d

d
+ −

=

h = h r l

E
v

E
v

E
+ −

  = 
1
E

 [ h v r – l

h = 
R R

r
p p
R R

p R p R
R R

v R1
2

2
2

2
1 2

2
2

1
2

1 1
2

2 2
2

2
2

1
2

( )−

−
+

−

−

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
+ 11

2
2
2

2
1 2

2
2

1
2

R
r

p p
R R
( )−

−

⎧
⎨
⎪⎪

⎩⎪⎪

⎡

⎣

⎢
⎢
⎢

  
−

−

−
−

−

−

⎫
⎬
⎪⎪

⎭⎪⎪

⎤

⎦

⎥
⎥
⎥

p R p R
R R

p R p R
R R

1 1
2

2 2
2

2
2

1
2

1 1
2

2 2
2

2
2

1
2

  = 
( ) ( )1 1

2
2
2

2
1 2

2
2

1
2

+ −

−

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

v
E

R R
r

p p
R R

( )1 2 1 1
2

2 2
2

2
2

1
2

+ −

−

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

v
E

p R p R
R R

r = 1
E

vr h l[ ( )]
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On substituting r, h and l, we have

r = 
1
E

 
R R

r
p p
R R

p R p R
R R

v R1
2

2
2

2
1 2

2
2

1
2

1 1
2

2 2
2

2
2

1
2

( )−

−
−

−

−

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
+ 11

2
2
2

2
1 2

2
2

1
2

R
r

p p
R R
( )−

−

⎧
⎨
⎪⎪

⎩⎪⎪

⎡

⎣

⎢
⎢
⎢

+
−

−
+

−

−

⎫
⎬
⎪⎪

⎭⎪⎪

⎤

⎦

⎥
⎥
⎥

p R p R
R R

p R p R
R R

1 1
2

2 2
2

2
2

1
2

1 1
2

2 2
2

2
2

1
2

  = 
( ) ( )1 1

2
2
2

2
1 2

2
2

1
2

+ −

−

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

v
E

R R
r

p p
R R

 – 
( )1 2 1 1

2
2 2

2

2
2

1
2

− −

−

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

v
E

p R p R
R R

 ...(12.67)

V = 
Change in volume
Original volume  = 

dV
V

Volume of cylinder,  V  = r2l = f (r, l)
where l = Length of the cylinder

  r = Radius of the cylinder

 dV =  dV
dr

dr V
l

+
∂
∂

 dl 

  = 2 2π πrl dr r dl

  = πr l dr
r

dl
l

2 2 +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟  = V 2 dr

r
dl
l

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟  

or 
dV
V

 = 2 dr
r

dl
l

 V = 2 2
2
dr
r

dl
l

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
+

 V = 2 d d
d

dl
l

( )   (d = 2r and 2dr = 2d (d))

  = 2 h + l ...(12.68)
The longitudinal strain l is also expressed as

l = 
1
E

vl r h[ ( )]+ −  ...(12.69)

Example 12.19 
Find the ratio of thickness to internal diameter for a tube subjected to internal pressure, when the 

its internal diameter is 250 mm and the internal pressure is 100 MPa.
Take  E = 2 × 105 MPa and v = 0.3.
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Solution: Let
 t

 p1 

 R1

 R2

 h

 p

h

1

max

 hmax  = 
p1

0 4
100
0 4. .

 hmax  = p R R
R R1

2
2

1
2

2
2

1
2

+

−

 h

p
max

1
 = 

R R
R R

2
2

1
2

2
2

1
2

+

−

R R
R R

2
2

1
2

2
2

1
2

+

−

or R2 R1

Now  R2 – R1 = t

R1 = t

 
t

R1

or t
R2 1

 = 
t

D1
 Ans.

l

l = 
p R

R R
1 1

2

2
2

1
2 p2 = 0)

  = 2 × 100 × 
100 125 10

190 10 125 10

3 2

3 2 3 2
× ×

× − ×

−

− −

( )
( ) ( )

h = 
1
E

vh r l[ ( )]+ −
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  = 
1

2 105 h = h  and r = p1)

R1

h = 2p1 R
R R

1
2

2
2

1
2

  = 2 × 100 × 
( )

( ) ( )
125 10

190 10 125 10

3 2

3 2 3 2
×

× − ×

−

− −

  = 
1
E

vh l( ) r = p2 = 0)

  = 
1

2 105

R2

 Ans.

Example 12.20 

E = 5 × 10 v K

Solution:

R1 = 5
2

R2 = 
10
2

l
p1

h = h  = p1
R R
R R

2
2

1
2

2
2

1
2

+

−
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  = 20 5 2 5
5 2 5

2 2

2 2
.
.

h = 1
E h vp1) 

r = p1 and l = 0)

  = 
1

5 104
Longitudinal strain is

l = 1
E

v h vp1)

  = 
1

5 104

 vtube  = 2 h + l

 vwater  = p
K

1

  = 
20

1000

 vtotal   = vtube vwater

 V =  R1
2 × l

  = 2

 dV = V × vtotal

   Ans.

12.11 COMPOUND CYLINDERS 
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12.11.1 Stress due to Shrinkage

Fig. 12.12

Let ps i.e

h = 
B
r2 A

Radial stress, r = 
B
r2  – A

For outer cylinder

r = R2, r = 0

and at r = R , r = ps

 0 = 
B
R2

2  – A

and ps = 
B
R3

2  – A
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 B = ps
R R

R R
2
2

3
2

2
2

3
2  

and A = ps
R

R R
3
2

2
2

3
2

 

A and B

h = 
R R

r
p

R R
p R

R R
s

s
2
2

3
2

2
2
2

3
2

3
2

2
2

3
2−

+
−

  = 
p R

R R
R
r

s 3
2

2
2

3
2

2
2

2 1
−

+
⎡

⎣
⎢

⎤

⎦
⎥

and r = 
p R

R R
R
r

s 3
2

2
2

3
2

2
2

2 1
−

−
⎡

⎣
⎢

⎤

⎦
⎥

r = R  is

σhr R=
 =  

p R
R R

R
R

s 3
2

2
2

3
2

2
2

3
2 1

−
+

⎡

⎣
⎢

⎤

⎦
⎥

  = ps
R R
R R

2
2

3
2

2
2

3
2

+
−r = R2 is

 σhr R= 2
 = 

R
R R

3
2

2
2

3
2 2ps

For inner cylinder

r = R1, r = 0
and at r = R , r = ps

 0 = 
B
R1

2  – A

and ps =  
B
R3

2  – A

 B = – ps
R R

R R
1
2

3
2

3
2

1
2  

and A = – ps
R

R R
3
2

3
2

1
2  
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A and B

h = 
R R

r
p

R R
p R

R R
s

s
1
2

3
2

2
3
2

1
2

3
2

3
2

1
2

  = – ps
R

R R
R
r

3
2

3
2

1
2

1
2

2 1
−

+
⎛

⎝
⎜

⎞

⎠
⎟

and r = ps 
R

R R
R
r

3
2

3
2

1
2

1
2

21
−

−
⎛

⎝
⎜

⎞

⎠
⎟

r = R1 is

σhr R= 1  = – 2 3
2

3
2

1
2p R

R Rs

r = R  is

σhr R=  = – p R R
R Rs

3
2

1
2

3
2

1
2

+
−

Fig. 12.13 Hoop stress distribution due to shrinkage in a compound cylinder.

12.11.2 Stresses due to Fluid Pressure

pi
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r = R1, r = pi

and at r = R2, r = 0

 pi = 
B
R

A
1
2

 0 =  
B
R2

2 – A

 B = pi
R R

R R
1
2

2
2

2
2

1
2

 

and A = pi
R

R R
1
2

2
2

1
2

A and B

h =  R R
r

p
R R

p R
R R

i
i

1
2

2
2

2
2
2

1
2

1
2

2
2

1
2−

+
−

  = 
p R

R R
R
r

i 1
2

2
2

1
2

2
2

2 1
−

+
⎛

⎝
⎜

⎞

⎠
⎟

and r = 
p R

R R
R
r

i 1
2

2
2

1
2

2
2

2 1
−

−
⎛

⎝
⎜

⎞

⎠
⎟

Fig. 12.14
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r = R1 is  σhr R= 1  = p R R
R Ri

2
2

1
2

2
2

1
2

+
−

r = R  is
σhr R=  = 

p R
R R

R
R

i 1
2

2
2

1
2

2
2

3
2 1

−
+

⎛

⎝
⎜

⎞

⎠
⎟

r = R2 is

 σhr R= 2  = 2 1
2

2
2

1
2p R

R Ri  

12.11.3 Resultant Stresses

For outer cylinder
r = R  is

 σhr R= 3 resultant  =  σhr R= due to pi σhr R=
due to ps

  = 
p R

R R
R
R

p R R
R R

i
s

1
2

2
2

1
2

2
2

3
2

2
2

3
2

2
2

3
21

−
+

⎛

⎝
⎜

⎞

⎠
⎟ +

+
−

 

r = R2 is

 σhr R= 2 resultant  =  σhr R= 2
due to pi σhr R= 2

due to ps

  = 2pi 
R

R R
p R

R Rs
1
2

2
2

1
2

3
2

2
2

3
22

−
+

−
For inner cylinder

r = R1, is

 σhr R= 1
resultant  =  σhr R= 1 due to pi σhr R= 1

due to ps

  = p R R
R R

p R
R Ri s

2
2

1
2

2
2

1
2

3
2

3
2

1
22+

−
+ −

−
⎛

⎝
⎜

⎞

⎠
⎟

  = p R R
R R

p R
R Ri s

2
2

1
2

2
2

1
2

3
2

3
2

1
22+

−
+ −

−
⎛

⎝
⎜

⎞

⎠
⎟  

r = R  is

 σhr R= 3 resultant  =  σhr R= due to pi
σhr R= due to ps

  = 
p R

R R
R
R

p R R
R R

i
s

1
2

2
2

1
2

2
2

3
2

3
2

1
2

3
2

1
21

−
+

⎛

⎝
⎜

⎞

⎠
⎟ + −

+
−

⎛

⎝
⎜

⎞

⎠
⎟

  = 
p R

R R
R
R

p R R
R R

i
s

1
2

2
2

1
2

2
2

3
2

3
2

1
2

3
2

1
21

−
+

⎛

⎝
⎜

⎞

⎠
⎟ −

+
−
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Fir. 12.15 Resultant hoop stress distribution in a compound cylinder.

12.11.4 Shrinkage Allowance

Let R
 dR2 R

 dR R

 dR

  = dR2 dR
 E1
 E2
 v1
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 v2 = Poisson’s ratio for the outer cylinder

Fig. 12.16 Shrinkage allowance.

Hoop strain at R3 in inner cylinder is given by

 
dR
R
′3
3

 = 
1

1
1

3 3E
vh rr R r R

[ ]σ σ
= =

−

  = 
1

1

3
2

1
2

3
2

1
2 1E

p R R
R R

v ps s−
+
−

+
⎡

⎣
⎢

⎤

⎦
⎥  (using equation (12.77) and  rr = R3

 = – ps)

  = –  p
E

R R
R R

vs

1

3
2

1
2

3
2

1
2 1

+
−

−
⎡

⎣
⎢

⎤

⎦
⎥  ...(12.87)

R3 in outer cylinder is given by

 
dR
R
′2
3

 = 
1

2
23 3E

vh rr R r R
[ ]σ σ

= =
−

  =  
1

2

2
2

3
2

2
2

3
2 2E

p R R
R R

v ps s
+
−

+
⎡

⎣
⎢

⎤

⎦
⎥  (using equation (12.72) and rr = R3

 = – ps)

  = 
p
E

R R
R R

vs

2

2
2

3
2

2
2

3
2 2

+
−

+
⎡

⎣
⎢

⎤

⎦
⎥

Now  
dR
R

dR
R

′ + ′2

3

3

3
 = 

p
E

R R
R R

v p
E

R R
R R

vs s

2

2
2

3
2

2
2

3
2 2

1

3
2

1
2

3
2

1
2 1

+
−

+
⎡

⎣
⎢

⎤

⎦
⎥ +

+
−

−
⎡

⎣
⎢

⎤

⎦
⎥

dR
R
′2
3

 and dR
R
′3
3

.

or dR2 + dR 3 = 
p R
E

R R
R R

v p R
E

R R
R R

vs s3

2

2
2

3
2

2
2

3
2 2

3

1

3
2

1
2

3
2

1
2 1

+
−

+
⎡

⎣
⎢

⎤

⎦
⎥ +

+
−

−
⎡

⎣
⎢

⎤

⎦
⎥⎥

or   dR3  = ps R3 
1 1

2

2
2

3
2

2
2

3
2 2

1

3
2

1
2

3
2

1
2 1E

R R
R R

v
E

R R
R R

v+
−

+
⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

+
−

−
⎛

⎝⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ...(12.89)
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i.e E1 = E2 = E and v1 = v2 = v

 dR  = 
p R

E
R R
R R

R R
R R

s 3 2
2

3
2

2
2

3
2

3
2

1
2

3
2

1
2

+
−

+
+
−

⎛

⎝
⎜

⎞

⎠
⎟  

Example 12.21 

a
b
c

Solution:
R1 = 

2
70

R  = 
120

2

R2 = 
180

2
 = 90 mm

ps

Fig. 12.17

pi
Stresses due to shrinkage
For hoop

 r = 
B
r2  – A



Pressure Vessels  543

r = R r = ps

and at r = R2 = 90 mm, r = 0

B
( )60 10 3 2× −  – A

and 0 = 
B

( )90 10 3 2× −  – A

 B
and A

r = R

 h = 
B
r2 A

  = 
0 1944

60 10
243 2

.
( )×

+−

For cylinder

r = R r = ps

and at r = R1 r = 0

B
( )60 10 3 2× −  – A

and 0 = 
B

( )35 10 3 2× −  – A

 B = –

and A = –

 r  = R1

 h = 
B
r2 A

  = −
×

−−

0 0557
35 10

45 473 2

.
( )

.

  = –
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r = R1 r = pi

and at r = R2 = 90 mm, r = 0

 80 = 
B

( )35 10 3 2× −  – A

and 0 = 
B A

( )90 10 3 2×
−−  

 B
and A

r = R1

 h = 
B
r2 A

  = −
×

+−

0 115
35 10

14 23 2

.
( )

.

r = R

 h = −
×

+−

0 115
60 10

14 23 2

.
( )

.

Radial stress at r = R

 r = 
B
r2  – A

  = 
0 115

60 10
14 23 2

.
( )

.
×

−−

a

 Ans.

b

Ans.
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c

   ps

Ans.

Example 12.22 

a) the radial stress between the cylinders,
b
c
d) draw the stress distribution diagram

E = 2  105 v

Solution:

Fig. 12.18

R2  = 
200
2

 = 100 mm

R   = 
170

2
 = 85 mm

R1  = 
110

2
 = 55 mm

r = R , h

Outer cylinder

 h = 
B
r2 A

and r = 
B
r2  – A
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r = R  = 85 mm, h = h

and at r = R2 = 100 mm, r = 0

 90 = 
B

( )85 10 3 2× − A

and 0 = 
B

( )100 10 3 2× −  – A

 B

and A

a

 rr = R
  = 

B
R3

2  – A

  = 
0 377

85 10
37 73 2

.
( )

.
×

−−  Ans.

b r = R2

 hr = R2
 =  

B
R2

2 A

  = 
0 377

100 10
37 73 2

.
( )

.
×

+−  

 Ans.

 h = 1
E h v rr = R

 l = 0)

  = 
1

2 105

Inner cylinder 

r = R  = 85 mm, r

and at  r = R1 = 55 mm, r = 0
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B
( )85 10 3 2× −  – A

and 0 = 
B

( )55 10 3 2× −  – A

 B = –

and A = –
r = R1

 σhr R= 1
 = 

B
R

A
1
2

  = 
−
×

−−

0 0753
55 10

24 93 2

.
( )

.  

  = –  Ans.

r = R

 σhr R=  = 
B
R3

2 A

  =  −
×

−−

0 0753
85 10

24 93 2

.
( )

.

  = –  Ans.

 h = 
1

3 3E
vh rr R r R

( )σ σ
= =

+

  =  
1

2 105

  = –

inner cylinder is

   

( ) ( )1 2
2

  =  
0 08 0 026

2
. .

 Ans
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Fig. 12.19 Hoop stress distribution diagram.

Example 12.23 

Eb = 105 Es = 2  105 vb = vs

Solution:
 R2 = 

130
2

 R1  = 
50
2

 = 25 mm

R   = 
90
2

Let  ps

Outer cylinder

r = R r = ps

and at r = R2 r = 0

 ps =  
B

( )45 10 3 2× −  –  A
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and 0 =  
B

( )65 10 3 2× − – A

Fig. 12.20

 B ps

and A ps

r = R

 
σhr R=  = 

B
( )45 10 3 2× − A

  =  
0 00388
45 10 3 2

.
( )

ps

× − ps ps

r = R  is

 h = 
1

3 3E
v

b
h b rr R r R

[ ]σ σ
= =

+

  = 
1

3E
v p

b
h b sr R

[ ]σ
=

+ r = R , r = ps)

  = 
1

105 ps ps  10–5 ps

  = h  90

 10–5 ps  90

 10  ps
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Inner cylinder

r = R r = ps

and at r = R1 = 25 mm, r = 0

 ps = 
B

( )45 10 3 2× −  – A

and 0 = 
B

( )25 10 3 2× −  – A

 B = – ps

and A = – ps

r = R1

 h  =  
B
R1

2 A

  =  
−

× −

0 0009
25 10 3 2

.
( )

ps  – ps = – ps

r = R

 σhr R=  = 
−

× −

0 0009
45 10 3 2

.
( )

ps  – ps = – ps

r = R

 h = 
1

3 3E
v

s
h s rr R r R

[ ]σ σ
= =

+

  = 
1

3E
v

s
h s sr R

p[ ]σ
=

+ r = ps)

  = 
1

2 105 ps ps] = –  10  ps

  h  90
 10  ps  10  ps

 10  ps  10  ps) mm

ps
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r = R
ps

 Ans.

r = R1
ps

  = –

  = –  Ans.

Example 12.24 

a
b
c

Es = 2  105 vs s  10–5/
 Eb = 1  105 vb b  10–5/

Solution:

 

Fig. 12.21

R1 = 
50
2  = 25 mm

R1 = 
90
2

25 mm

R2 = 
B
r2
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Bronze casing

 h = 
B
r2 A

and r = B
r2  –  A

r h

and at r r = 0

B
( )45 10 3 2× − A

and 0 =  
B

( )45 10 3 2× − – A

 B
and A = 15

a

 25
25rr mm  = 

B
( )25 10 3 2× −  – A

  = 
0 03

25 10
153 2

.
( )×

−−  

 Ans.

r

  25
25rr mm  =  

B
( )25 10 3 2× − A

   = 
0 03

25 10
153 2

.
( )×

+−

  h = 
1

25 25E
v

b
h b rr r

[ . ]σ σ
= =

+
mm mm

   = 
1

1 105  10

  h  10  
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 Steel rod
r

  h = −
=

σrr 25
= –

  h = 
1

25E
v

s
h s rr

[ ]σ σ+
= mm

   =  
1

2 105  10

  h  50
 10

b

0 04265
2

.
 Ans.

c) Let T

  50 b – s)  T

  50  10–5  10–5 )  T

  T = 122  Ans.

12.12 STRESSES IN A THICK SPHERICAL SHELL 
R1 and outside radius R2

p

Fig. 12.22 A thick spherical shell.
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r dr is 
d

r r u) and dr changes to 
dr du

 h = 
2 2

2
π π

π
( )r u r

r
+ −

 = r
u  

 r = 
( )dr du dr

dr
+ −

  = 
du
dr

 = 
d
dr

r h u)

   = h r d
dr

h∈

Let   h r
 r = Radial stress at radius r
 r d r r dr)

    r2
r – r dr)2

r d r)
  = – r r dr r d r

  h r  dr

 – r r dr r d r) = h r dr
 – 2 r dr – r d r = 2 hdr

or h = − −σ
σ

r
rr d

dr2
.  

r

 
d
dr

h  = – d
dr

d
dr

r d
dr

r r rσ σ σ
− +

⎛

⎝
⎜

⎞

⎠
⎟

1
2

2

2.  

r

   Radial stress, r

  h

  h
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 r = – 
σ σ σr h h

E
v

E
v

E
− − = – 1

E r v h

 h = 
σ σ σr h h

E
v

E
v

E
− −

  = 
1
E

v) h v r

r and h

 – 1
E r v h) = 

1
E v) h r r d

dr
v

E
v

E
h r( )1− +⎡

⎣⎢
⎤
⎦⎥

σ σ

v) r v) h r v) 
d
dr

rv d
dr

h rσ σ
+  = 0  

Now,  substituting h and d
dr

h

 r d
dr

d
dr

r r
2

2 4σ σ
+  = 0 

d
dr

r = R

 r dR
dr

R = 0

or 
dR
R

dr
r

  = 0

 loge R e r e C1

where C1

 loge R = – loge r e C1 

 loge R e r  = loge C1

 loge R r ) = loge C1

 R r  = C1

 R = 
C
r

1
4

or 
d
dr

r  = 
C
r

1
4  
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 r = – C
r

1
33

C2 

where C2

r and d
dr

r
h

 h = 
C
r

C r C
r

1
3 2

1
43 2

  = 
C
r

C C
r

1
3 2

1
33 2

  = – 
C
r
1
36

– C2 

C1 B and C2 = – A, we get 

 r =  2
3

B
r

– A

and h = 
B
r

A

r = R1 and the radial stress zero at r = R2

A and B are 

Example 12.25 

Solution:
R1  = 

2
200  = 100 mm

p

h

 h =  
B
r

A

 r =  
2

3

B
r

– A

r = R1 = 100 mm, r

and at r = R1 = 100 mm, h = h
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 180  = 
B

( )100 10 3 3× − A

and  80  = 
2

100 10 3 3

B
( )× − – A

 B
and  A
Now at  r  = R2, r = 0

  0  = 
2 0 0866

2
3

.
R

 R2

 t = R2 – R1

 Ans.

 1. 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
 8. 
 9. 
 

SHORT ANSWER QUESTIONS
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1.

a b c d
2.

a b c d
3.

a b
c d

4.
a b
c d

5. d t p, 

a) pd
t

b) pd
t8

c) pd
t2

d) 
pd

t
6.

a) pd
t

b) pd
t8

c) pd
t2

d) pd
t

7.
a b
c d

8.
a b) bending stress
c d

9.

a b c) 90 d) 180
10.

diameter d t p, is

a) pd
t

b) pd
t16

c) pd
t8

d) pd
t

11.

a) pd
t

b) pd
t16

c) pd
t8

d) 
pd

t

MULTIPLE CHOICE QUESTIONS   
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12. 

a
b
c
d

13. d t v) and 
p) is

a) pd
tE

v
4

1( ) b) 
pd
tE

v
4

1 2( ) c) pd
tE

v
4

2( ) d) 
pd
tE

v
4

1( )

14.

a) pd
tE

v
4

1( ) b) 
pd
tE

v
4

1 2( ) c) 
pd
tE

v
4

2( ) d) 
pd
tE

v
4

1( )

15.

a) 
pd
tE

v
4

5 3( ) b) 
pd
tE

v
3

5 4( ) c) pd
tE

v
4

5 4( ) d) 
pd
tE

v
4

5 4( )

16.

a

b

c

d

17. d t) and 
v p) is 

a) 
pd
tE

v
4

1( ) b) 
pd
tE

v
4

5 4( ) c) 
3
4

1pd
tE

v( ) d) 
3
4

1pd
tE

v( )

18.

a) 
pd

t2
b) 

pd
t

c) 
pd

t8
d) 

pd
t

19.

a b c d

20.
v

a) 1
2

v
v

b) 2
1

v
v

c) 2 1
1
v

v
d) 

1
2
+
−

v
v

21. A

a b c d
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22. B

a b

c d

23.

a b

c d

24.

a

b

c

d

25.

a b

c d

26.

a b

c d

27.

a b

c d

28.

a b

c d

29.

a)  σ σh r+
2

b)  
σ σh r−

2 c)  
σ σh l+

2
d)  

σ σh l−
2

  where  h 

   r = Radial stress

   l
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30.

a

b) Volumetric strain = 2 

c) Longitudinal strain = 2 

d

31.

a b c d

32.

a b

c d

33.

a b c d

 ANSWERS

 1. b) 2. a) 3. c) 4. b) 5. c) 6. d) 7. d) 8. d) 9. c)

 10. a) 11. c) 12. c) 13. c) 14. b) 15. c) 16. d) 17. c) 18. d)

 19. c) 20. b) 21. d) 22. a) 23. b) 24. b) 25. c) 26. a) 27. b)

 28. b) 29. a) 30. b) 31. c) 32. d) 33. b
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1.

Ans.

2.

Ans.

3.

Ans.

4.  
 

E v Ans.  105 mm

5.
E  

v Ans.

6.
E v

Ans 

7.

E v Ans.

8.

Ans.

9.

Ans.

10.

EXERCISES
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a
b
c

Ans. a b

11.

Ans.

12.

E = 2  105

Ans.

13.

a
b
c

Ans. a b c

14.

Es ECI vs = vCI Ans.

15.

Ans.

16.

Ans 2
1
−
−

v
v

 , v

17.

 
Ans
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18.

 and 2  105

Ans

19.

Ans

20.

Ans

21.

E v Ans

22.

Ans

23.

Ans

24.
p  m

p E  
v Ans



Plane Trusses

13

James Clerk Maxwell, born on 13 June 1831, was a famous Scottish 
mathematician and physicist. He is widely acknowledged as the nineteenth 

His contributions are ranked with Newton’s laws of motion and Einstein’s 
theory of relativity as the most fundamental contributions to physics. He 
formulated important physical and mathematical theories; one which 
is widely known is Maxwell’s electromagnetic theory that describes 
electricity, magnetism and optics. He developed the kinetic theory of 
gases with Clausius and is credited for Maxwell-Boltzmann distribution, 
a statistical means to describe the behaviour of the gases in motion. He 
is also known for his Maxwell diagram used in strength of materials as 
a graphical means to analyse the rigidity of members in a truss, which is 
widely used in bridges and power and communication towers. He also 

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

James Clerk Maxwell                                                               
(1831-1879)

© The Author(s) 2021
D. K. Singh, Strength of Materials,
https://doi.org/10.1007/978-3-030-59667-5_13
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13.1 INTRODUCTION 
A structure consists of a truss or a frame. Trusses lend strength to structures. A truss consists of 

of long span in buildings, bridges or a railway platform. The members of the truss which are steel 

A truss consisting of members which lie in a plane and are loaded in the same plane is called 
plane truss
of bridges or on the roofs of the workshops. A space truss is made of non-coplanar members, and its 
examples include shear legs, a TV tower, mobile phone tower or transmission line tower.

Frames and machines are structures containing multiforce members, that is, the members are acted 
upon by three or more forces, unlike a truss where each member is a two-force member. Frames are 
designed to support loads and are usually stationary and fully constrained structures. Machines or 
mechanisms are designed to transmit and modify forces and may or may not be stationary but contain 
moving parts having motion relative to each other.

13.2 TYPES OF TRUSSES 

  Rigid truss    Non-rigid truss
A  rigid or perfect truss is one which does not collapse and remains in equilibrium under the action 

For a truss to be rigid, the following condition must exist.
 m = 2j – 3 ...(13.1)

where   m  = Number of members
 j

requirement or has surplus member. Accordingly it is said to be an under-rigid or over-rigid truss.
Rigid and non-rigid trusses are shown in Fig. 13.1.
For Fig. 13.1 (a)

 j  = 3
and m  = 2j – 3 = 2  3 – 3 = 3

Fig. 13.1
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Hence, the truss is rigid.
For Fig. 13.1 (b)

 j = 4
and m = 2 
But the truss has only four members, hence it is an under-rigid truss.
For Fig. 13.1 (c)

 j = 4
and m = 2 
But the truss has six members making it an over-rigid truss (redundant). Some of the standard 

types of trusses are shown in Fig. 13.2.

Fig. 13.2 Common types of trusses.

Of the two supports provided in a truss, one is a hinged support and the other a roller support. 
There are two reactions for the hinged support, vertical and horizontal. For roller support, there is 
only one normal reaction. Roller support can accomodate small changes in length of the members.

13.3 FORCES IN THE TRUSS 
Each member of a truss is a two-force member, meaning thereby each member is acted upon by only 
two forces, one at each end. These forces have the same magnitude, same line of action-along 
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the axis of the beam but have opposite sense. The force is only applied at the joints. The weights 
of the members are also assumed to be applied at the joints, half of the weight of each member being 
applied to each of the two joints the member connects.

The members in tension or compression are shown in Fig. 13.3. In Fig. 13.3 (a), the forces tend 
to pull the member apart, and the member is in tension, while in Fig. 13.3 (b), the forces tend to 
compress the member, and the member is in compression. The reaction (R) of the members are shown 

will push the joint. Tension forces are assigned positive value and compression forces negative.
 

Fig. 13.3 Forces in a truss member.

13.4 ANALYSIS OF TRUSSES 

The usual assumptions made in the analysis of trusses are:
  The weights of the members are negligible in comparison to the applied loads.

  The joints behave as smooth pins.

  All the loads are applied at the joints only.

  The weight of every member is divided equally on the connecting joints, for the purpose of 
considering their weights in the analysis.

 Under these assumptions, each member of the truss is an axially loaded bar.

The internal forces in the members of the truss are obtained by the method of joints or the method 
of sections.

13.4.1 Analysis of Trusses by Method of Joints

This method is based on the equilibrium of forces at the joints. During the analysis, a joint is separated 
from the entire truss and its equilibrium is considered with the help of its free-body diagram. Since 
the entire truss is in equilibrium, each joint must also be in equilibrium. The equations of equilibrium, 
Fx = 0 and Fy

joint.

The reactions at the supports are determined by considering the entire truss as a free body and 
using the equations of equilibrium of a rigid body. The method is illustrated through the following 
examples.
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Example 13.1 
a loaded warren truss is shown. Each triangle is an equilateral one having 5 m side. Find 

the forces in all the members of the truss.

Fig. 13.4

Solution: D and E A, C and B
D and E respectively.

 Support reactions at A and B
Using MA = 0, we have

 RB  (5 + 5) = 25  
5
2

+ 50  5 5
2

+⎛
⎝⎜

⎞
⎠⎟

  = 
875

2

or RB  = 43.75 kN ( )

and RA + RB = 25 + 50  = 75 kN

or RA  = 75 – RB

  = 31.25 kN ( )

Forces in members AD and AC
A. Assume a tension force in the desired member. The tension force is directed away 

 Using Fy = 0, we have

 31.25 + FAD sin 60°  = 0

or FAD  = – 
31 25

60
.

sin °
 = – 36.08 kN = 36.08 kN (C)

Because of compressive force in the member AD A is pushed by it and hence for equilibrium 
D.
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Using  Fx = 0, we have
 FAC + FAD cos 60° = 0

or FAC  = – FAD cos 60°  = – (– 36.08) cos 60° = 18.04 kN (T)

Fig. 13.5

Forces in members DE and DC
D

Using Fy = 0, we have

 25 + FDC cos 30° – FAD cos 30° = 0
 25 + 0.866 FDC – 31.24  = 0

or FDC  = 7.21 kN (T)

Fig. 13.6

Using Fx  = 0, we have
 FAD sin 30° + FDE + FDC sin 30°  = 0

or 18.04 + FDE + 3.605  =  0
 FDE  = – 21.641 kN = 21.641 kN (C)

Forces in members EC and EB
E FDE E 

because it is compressive in nature.
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Using Fy = 0, we have

 FEC sin 60° + FEB sin 60° + 50  = 0

or 0.866FEC + 0.866FEB + 50  = 0  ...(1)

Fig. 13.7

Using Fx = 0, we have

 FDE + FEB cos 60° – FEC cos 60°  = 0

or 21.645 + 0.5 FEB – 0.5 FEC  = 0  ...(2)

Solving equations (1) and (2), we get

 FEB  = – 50.51 kN = 50.51 kN (C)

and FEC  = – 7.22 kN = 7.22 kN (C)

Force in member CB

C (Fig. 13.8).

Using Fx = 0, we have

Fig. 13.8

 FCB – FAC – FDC cos 60° – FEC cos 60°  = 0

 FCB – 18.04 – 7.21  cos 60° – 7.22 cos 60°  = 0

or FCB  = 25.25 kN (T)
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The complete result is shown in Fig.13.9. 

Fig. 13.9

Example 13.2  
Find the forces in all the members of the loaded truss shown in Fig. 13.10. D and F are the middle 
points of AE and BE respectively.

   

Fig. 13.10                  

Solution:  The CAE can be calculated by considering  ACE.

 tan  = 
3
3  = 1

or  = 45°
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Support reactions at A and B
Using MA = 0, we have

 RB  (3 + 3) – 2  1.5 – 3  1.5 = 0

or RB  = 1.25 kN ( )
The vertical component of reaction at A is

 VA = 3 – RB 

  = 3 – 1.25 

  = 1.75 kN ( )

The horizontal component of reaction at A is

 HA = 2 kN ( )
Hence, the reaction at A is

 RA  =  V HA A
2 2

  =  ( . ) ( )1 75 22 2+

  = 2.65 kN

Direction of RA

Refer Fig. 13.11.

Fig. 13.11

 tan   = 
V
H

A

A
 =  

2.00
1.75

or   = 41.18°

Forces in members AD and AC
A



574  Strength of Materials

     Fig. 13.12 

 Using Fy = 0, we have
 FAD sin 45° + VA  = 0
 0.707 FAD + 1.75  = 0

or FAD  = – 2.47 kN = 2.47 kN (C)

Using Fx = 0, we have
 FAC + FAD cos 45° – HA  = 0
 FAC – 2.47  0.707 – 2  = 0

or FAC  = 3.74 kN (T)

Forces in members DE and DC
D. Refer Fig. 13.13.

Using Fy = 0, we have

Fig. 13.13

  3 – FDE sin 45° + FDC sin 45° – FAD sin 45° = 0
  3 – 0.707FDE + 0.707 FDC – 2.47  0.707 = 0 
  1.25 – 0.707FDE + 0.707FDC  = 0 ...(1)

Using Fx = 0, we have
  FAD cos 45° + FDC cos 45° + FDE cos 45°  = 0
  2.47  0.707 + 0.707FDC + 0.707 FDE  = 0
  1.75 + 0.707FDC + 0.707FDE  = 0 ...(2)
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Solving equations (1) and (2), we get
 FDC  = – 2.12 kN = 2.12 kN (C)

and FDE  = – 0.35 kN = 0.35 kN (C)

Forces in members BF and BC
B. Refer Fig. 13.14.

Using Fx = 0, we have

 FBC + FBF cos 45° = 0
 FBC + 0.707 FBF  = 0 ...(3)

Fig. 13.14

Using Fy = 0, we have
 RB + FBF sin 45° = 0
 1.25 + 0.707 FBF  = 0 
 FBF   = – 1.76 kN = 1.76 kN (C)

Substituting FBF in equation (3), we have
 FBC  = – 0.707 FBF

  = – 0.707  (– 1.76) = 1.24 kN (T)
Forces in members FE and FC

Fig. 13.15
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Using Fx = 0, we have
  2 – FFC cos 45° – FFE cos 45° – FBF cos 45° = 0

  2
45cos °

 – FFC – FFE – FBF = 0

  2.82 – FFC – FFE – 1.76 = 0
  1.06 – FFC – FFE  = 0  ...(4)

Using Fy = 0, we have
  FFE sin 45° + FBF sin 45° – FFC sin 45°  = 0
  FFE + FBF – FFC  = 0
  FFE – FFC + 1.76  = 0 ...(5)

Solving equations (4) and (5), we get

 FFE  = – 0.35 kN = 0.35 kN (C)

and FFC  = 1.41 kN (T)

Force in member EC
E. Refer Fig. 13.16.

  

  Fig. 13.16

Using Fy = 0, we have
 – FEC + FDE sin 45° + FFE sin 45° = 0
 – FEC + 0.35  0.707 + 0.35  0.707 = 0

or FEC  = 2  0.35  0.707 = 0.49 kN (T)

The complete result is shown in Fig. 13.17.

Fig. 13.17
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Example 13.3  
Find the forces in each member of the loaded truss shown in Fig. 13.18. All the forces are acting 
normal to BD.

Fig. 13.18

Solution: Support reactions at A and B
Using MB = 0, we have
 RA  7  = 20  3 + 10  (3 + 3) = 120
or RA  = 17.14 kN ( )
Resolving forces in the horizontal and vertical direction, we have 

 HB = Horizontal component of the reaction at B
  = (10 + 20 + 10) cos 60° = 20 kN ( )
 VB  = Vertical component of the reaction at B
  = (10 + 20 + 10) sin 60° – RA = 17.5 kN ( )

Hence, the reaction at B is
 RB  = ( ) ( . )20 17 52 2  = 26.57 kN

Direction of RB

RB makes an angle  with the horizontal as shown in Fig. 13.19.

Fig. 13.19
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 tan  = 
V
H

B

B
 = 0.875

Hence,   = 41.18°

Forces in members AD and AC
A

Using Fy = 0, we have
 RA + FAD sin 60° = 0
 17.14 + 0.866 FAD  = 0

or FAD  = – 19.79 kN = 19.79 kN (C)

 

Using Fx = 0, we have
 FAC + FAD cos 60°  = 0
 FAC – 19.79 cos 60°  = 0

or FAC  = 9.89 kN (T)

Forces in members DC and DE
D. Refer Fig. 13.21.

Fig. 13.21

Using Fx = 0, we have
 FAD cos 60° + FDC cos 60° + FDE cos 30° – 10 cos 60° = 0
 19.79  0.5 + 0.5 FDC + 0.866 FDE – 5  = 0
 0.5 FDC + 0.866 FDE + 4.895  = 0 ...(1)

Using Fy = 0, we have
 FAD sin 60° – FDC sin 60° – FDE sin 30° – 10 sin 60°  = 0
 19.79  0.866 – 0.866 FDC – 0.5 FDE – 8.66  = 0
 0.866 FDC + 0.5 FDE – 8.478  = 0 ...(2)

Fig. 13.20
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Solving equations (1) and (2), we get
 FDE  = – 16.95 kN = 16.95 kN (C)

and FDC  = 19.56 kN (T)

Forces in members BE and BC
B. Refer Fig. 13.22.

Fig. 13.22

Using Fx = 0, we have
 FBC + FBE cos 30° + 10 cos 60° = 0

 FBC + 0.866 FBE + 5 – HB = 0

 FBC + 0.866 FBE + 5 – 20 = 0

 FBC + 0.866 FBE – 15 = 0 ...(1)

Using Fy = 0, we have

 FBE sin 30° – 10 sin 60° + VB  = 0

 0.5 FBE – 8.66 + 17.5  = 0

 0.5 FBE + 8.84  = 0

or FBE  = – 17.68 kN = 17.68 kN (C)

 From equation (1), we have
 FBC  = 15 – 0.866 FBE

  = 15 – 0.866  (– 17.68)  = 30.31 kN (T)

Force in member EC
E. Refer Fig. 13.23.
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Fig. 13.23

 FEC + 20 = 0 (along the direction of 20 kN)

or FEC  = – 20 kN  = 20 kN (C)

The complete result is shown in Fig. 13.24.

Fig. 13.24

Example 13.4 
Find the forces in all the members of the loaded truss shown 
in Fig. 13.25.
Solution: ADB = 

   tan  = 6
4

m
m  = 0.667

 Hence,    = 33.7º

Fig. 13.25
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 Forces in members CD and DE
D. Refer Fig. 13.26. 

Fig. 13.26

 Using Fx = 0, we have 
   FCD + FDE cos 33.7º = 0 …(1)

 Using Fy = 0, we have
   FDE sin 33.7º + 20 = 0
   FDE = – 

20
33 7sin . °

 = – 36.04 kN

                        =  36.04 kN (C)
 Substituting FDE in equation (1), we have 

   FCD = – FDE  cos 33.7º
    = – (– 36.04) cos 33.7º
    = 29.98 kN (T) 

Forces in members AC and CE
C. Refer Fig. 13.27.

Fig. 13.27

 Using Fx = 0, we have
   FAC = FCD

    = 29.98 kN (T)
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 Using Fy = 0, we have

   FCE + 20 = 0

 or FCE = – 20 kN

    = 20 kN (C)

Forces in members AE and BE

E. Refer Fig. 13.28.

Fig. 13.28

 Using Fx = 0, we have

   FAE sin  + FBE cos  + FDE cos   = 0 

   FAE sin 33.7º + FBE cos 33.7º  = – FDE cos 33.7º

    = – (36.04) × cos 33.7º

    = – 29.98

 or  0.554 FAE + 0.832 FBE  = – 29.98 …(1)

 Using Fy = 0, we have

   FDE sin  + FCE + FBE sin   = FAE cos  

   36.04 sin 33.7º + 20 + FBE sin 33.7º  = FAE cos 33.7º

   19.99 + 20 + 0.554 FBE = 0.832 FAE 

   39.99 + 0.554 FBE  = 0.832 FAE 

  or 0.832 FAE – 0.554 FBE = 39.99  … (2)

 Solving equations (1) and (2), we get

   FBE = – 47.13 kN

    =  47.13 kN (C)

   FAE = 16.66 kN (T)
 The complete result is shown in Fig. 13.29.
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Fig. 13.29

Example 13.5 
Find the forces in all the members of the loaded truss shown in Fig. 13.30.

Fig. 13.30

Solution: CDE
     tan  = 

1
2

m
m

 = 0.5

  Hence,   = tan–1
 (0.5) = 26.56º

 Forces in members CD and DE
D. Refer Fig. 13.31. 

 Using Fx = 0, we have 
     FCD + FDE cos  = 0                   ... (1)

 Using Fy = 0, we have 
   FDE sin  + 25 = 0 Fig. 13.31
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  or FDE = – 25
sinθ

 = – 
25
26 56sin . °

    = – 55.91 kN = 55.91 kN (C) 
 From equation (1), we have

   FCD = – FDE cos 
= – (– 55.91) cos 26.56º

    = 50 kN (T)  
Forces in members CE and BE

E. Refer Fig. 13.32.

Fig. 13.32

 Using Fx = 0, we have
   FBE + FDE cos   = 0
   FBE  = – FDE cos  
    = – 55.91 cos 26.56º
    = – 50 kN = 50 kN (C) 
 Using Fy = 0, we have
   FCE  = FDE sin  
    = 55.91 sin 26.56º
    = 24.99 kN (T) 

 Forces in members AC and BC 
C. Refer Fig. 13.33.

Fig. 13.33
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 Using Fx = 0, we have
   FBC cos  + FAC cos   = FCD
   FBC cos 26.56º + FAC cos 26.56º  = 50
  or 0.894 (FBC + FAC)  = 50
  or FBC + FAC = 55.92 …(1)  

 Using Fy   = 0, we have 
   FBC sin  + FCE  = FAC sin 
   (FBC – FAC) sin  = – FCE
   (FBC – FAC) sin 26.56º = – 24.99
   FBC – FAC  = – 55.89 

or   FAC – FBC  = 55.89 …(2)    
 Solving equations (1) and (2), we get 

   FAC  = 55.905 kN (T)
  and FBC = 0.015 kN = 0 kN

 The complete result is shown in Fig. 13.34.

Fig. 13.34

Example 13.6 
Find the forces in all the members of the loaded truss shown in Fig. 13.35.

 
Fig. 13.35
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Solution: Reactions at A are VA and HA , and reaction at D is RD.
 Using MA = 0, we have 

   RD × (3 + 3 + 3) = 10 × 3 + 5 × (3 + 3)
   RD × 9 = 30 + 30
 or RD  = 6.67 kN
 Now  10 + 5 = RD + VA

 or VA  = 15 – RD 
    = 15 – 6.67 = 8.33 kN
 and  HA  = 0 

 CDE
   tan   = 

4m
3m

 = 1.33 

 Hence,   = tan–1 (1.33) = 53.06º

 Forces in members CD and DE
D. Refer Fig. 13.36.

 Using Fx = 0, we have   
     FDE + FCD cos  = 0
   FDE + FCD cos 53.06º = 0
 or FDE + 0.6 FCD  = 0 …(1)

 Using Fy = 0, we have   
   FCD sin  + RD  =  0

   FCD  = – 
RD

sin
 = – 

6 67
53 06
.

sin .
    = – 8.345 kN
    = 8.345 kN (C)

 Using equation (1), we get 
   FDE = – 0.6 FCD

    = – 0.6 × (– 8.345)
    = 5 kN (T)

 Forces in members CE and FE
E. Refer Fig. 13.37.

 Using Fx = 0, we have
   FFE = FDE

    = 5 kN (T)

Fig. 13.36

Fig. 13.37
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 Using Fy = 0, we have
   FCE = 5 kN (T) 

 Forces in members BC and CF 

 Using Fx = 0, we have   
   FCF cos  + FBC + FCD cos   = 0
   FCF cos 53.06º + FBC + FCD cos 53.06º = 0
   0.6 FCF + FBC + 0.6 FCD  = 0
   0.6 FCF  + FBC + 0.6 × 8.345 = 0
   0.6 FCF + FBC + 5 = 0
  or 0.6 FCF + FBC  = – 5 ... (1)

 Using Fy = 0, we have
   FCE + FCF sin  = FCD sin 
   5 + FCF sin 53.06º  = FCD sin 53.06º
   5 + 0.799 FCF  = 8.345 × 0.799
   5 + 0.799 FCF = 6.66
     or   FCF = 2.07 kN (T)

 Using equation (1), we get 
   FBC = – 5 – 0.6 FCF

    = – 5 – 0.6 × 2.07
    = – 6.24 kN
    = 6.24 kN (C)

 Forces in members AB and BF
B. Refer Fig. 13.39.

Fig. 13.39

Using Fx = 0, we have
   FAB + FBC = 0
   FAB = – FBC

    = – 6.24 kN
    = 6.24 kN (C)

 Using Fy = 0, we have 
   FBF = 0 kN

Fig. 13.38
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 Force in member AF

Fig. 13.40

A, Refer Fig. 13.40.
 Using Fx = 0, we have

   HA + FAF cos  = FAB

   0 + FAF cos 53.06º  = 6.24
  Hence,  FAF = 10.38 kN (T)

 The complete solution is shown in Fig. 13.41.

Fig. 13.41

Example 13.7
Find the forces in all the members of the loaded truss shown in Fig. 13.42.
Solution:    

ABD tan 30° = 
AB
AD

or   AD = 
2 5

30
.

tan
m
°

 = 4.33 m

Fig. 13.42
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Support reactions at A and D
   RA + HD = 0
and   VD = 20 kN + 10 kN = 30 kN
Taking moments of the forces about A, we have
      – 10 × (2.5 + 5) – 20 × 5 + HD × 4.33 = 0
or   HD = 40.41 kN
and   RA = – 40.41 kN
The reaction RA is acting opposite to the selected direction.
Forces in members AB and AD

 A. Refer  Fig. 13.43.
   FAB = 40.41 kN (T) 
and    FAD  = 0

 Fig. 13.43  Fig. 13.44

Forces in members DB and DE
 D. Refer Fig. 13.44.

Using Fy = 0, we have
   VD + FDB sin 60° = 0

Hence, FDB = −
°
= −

VD

sin .60
30

0 866
 

    = – 34.64 kN 
    = 34.64 kN (C)
Using Fx = 0, we have

   HD + FDE +  FDB cos 60° = 0
   40.41 + FDE + 0.5 × (– 34.64) = 0
or   40.41 + FDE – 17.32 = 0
Hence, FDE = – 23.09 kN 
    = 23.09 kN (C)
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Fig. 13.45

Forces in members BC and BE

Cons  B. Refer Fig. 13.45.

Using Fy = 0, we have

  FBE sin 60° = FDB sin 60°

Hence, FBE = FDB  = 34.64 kN (T)

Using Fx = 0, we have

FBC  + FBE cos 60° + FDB cos 60° =  FAB

FBC  + 34.64 × cos 60° + 34.64 × cos 60° =  40.41 kN

Hence, FBC = 5.77 kN (T)

Force in member EC

 E. Refer Fig. 13.46.

Fig. 13.46

Using Fx = 0, we have

   FEC cos 60° + FDE – FBE cos 60° = 0

or   0.5 FEC + 23.09 – 0.5 × 34.64 = 0 

Hence, FEC = – 11.55 kN 

    = 11.55 kN (C)

The complete result is shown in Fig. 13.47.
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Fig. 13.47

Example 13.8  
Find the forces in all the members of the loaded simply-supported truss shown in Fig. 13.48.
Solution:  

Support reactions at A and C
 HA and VA be the reactions at A, and RC be the reaction at C. 

                  
Fig. 13.48

   VA + RC = 20 ... (1) 
and   HA + 15  = 0
Hence, HA = – 15 kN = 15 kN ( )
The actual direction of HA is opposite to the selected one.
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Taking moments of forces about A, we have
   Rc × 10 = 20 × 5 + 15 × 5 
    = 100 + 75
    = 175
Hence, Rc = 17.5 kN ( )
From equation (1) VA = 20 – Rc = (20 – 17.5) kN = 2.5 kN ( )
Forces in members AD and AB

 A. Refer Fig. 13.49.
   FAB = HA  = 15 kN (T)
and   FAD + VA = 0
or   FAD   = – VA

    = – 2.5 kN
    = 2.5 kN (C)

 Fig. 13.49  Fig. 13.50

Forces in members DE and DB
 D. Refer Fig. 13.50.

Using Fy = 0, we have
   FAD = FDB sin 45°

Hence, FDB = 
FAD

sin 45°
 = 3.53 kN (T)

Using Fx = 0, we have
   FDE + FDB cos 45° = 0
or   FDE = – 3.53 × cos 45°
    = – 2.5 kN
    = 2.5 kN (C)
Forces in members BE and BC

 B. Refer Fig. 13.51.
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 Fig. 13.51 Fig. 13.52

Using Fx = 0, we have
   FBC = FDB cos 45° + FAB 
    = 3.53 × cos 45° + 15  = 17.5 kN (T)
Using Fy = 0, we have
   FBE + FDB sin 45° = 0
Hence, FBE = – 3.53 × sin 45° = – 2.5 kN  = 2.5 kN (C)
Forces in members EF and EC

 E. Refer Fig. 13.52.
Using Fy = 0, we have
   FEC sin 45° + 20 = FBE

or   FEC sin 45° = FBE – 20 
    = 2.5 – 20 = – 17.5
Hence, FEC = – 24.75 kN = 24.75 kN (C)
Using Fx = 0, we have
   FEF + FDE + FEC cos 45° = 0
or   FEF = – FDE – FEC cos 45° 
    = – 2.5 – (–24.75) ×  cos 45° 
    = 15 kN (T)
Force in member FC

 F. Refer Fig. 13.53.
Using Fy = 0, we have
 FFC = 0

Fig. 13.53
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The complete result is shown in Fig. 13.54.

Fig. 13.54

Example 13.9  

weighs 50 N.

Fig. 13.55

Solution: The truss is supported at points A and B. There is only one reaction at A which is RA, and 
two reactions at B include HB (in the horizontal direction) and VB

-

members.

Force consideration due to weight forces of members at various joints

   WAB = WBC = WCD = WAD = WAC = 50N
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Joint A
Three members AB, AC and AD A A. They 
are:
  the horizontal reaction at A, that  is, RA

  the one-half of weight of member AB, that is, WAB
2

= 
50
2

 = 25 N

  the one-half of weight of member AC, that is, WAC
2

 = 
50
2

= 25N 

  the one-half of weight of member AD, that is, 
WAD

2
 = 

50
2

= 25N

A are shown in Fig. 13.56. The total force due to weights of the three members 
acting in the vertically downward direction is (25 + 25 + 25) N, that is, 75 N.

Fig. 13.56 
Weight forces at A.

Joint B
Two members AB and BC B B. They are:

HB

VB

B

WBC
2

WAB
2

Fig. 13.57
Weight forces at B.

  the horizontal reaction at B, that is, HB

  the vertical reaction at B, that is, VB

  the one-half of weight of member AB, that is, WAB
2

 = 
50
2

= 25N 

  the one-half of weight of member BC, that is, 
WBC

2
 = 

50
2

= 25N

B are shown in Fig. 13.57. The total force due to weights of 
the two members acting in the vertically downward direction is (25 + 25)N, that 
is, 50 N.
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Joint C

Fig. 13.58 
Weight forces at C

Three members BC, AC and CD are connected to the joint C. The forces at the 
joint C are because of the weights of the members. They are:

   the one-half of weight of member BC, that is, 
WBC

2
 = 

50
2

= 25N

   the one-half of weight of member AC, that is, 
WAC

2
= 

50
2

= 25N 

   the one-half of weight of member CD, that is, 
WCD

2
 = 

50
2

= 25N

The forces at joint C are shown in Fig. 13.58. The total force due to 
weights of the three members acting in the vertically downward direction is  
(25 + 25 + 25) N, that is, 75 N. 

Joint D
Two members AD and CD are connected to the joint D. Three forces are acting at joint D. They are:
  the externally applied load of 600 N

Fig. 13.59 
Weight forces at D.

   the one-half of weight of member AD, that is, 
WAD

2
 = 

50
2

= 25N

   the one-half of weight of member CD, that is, 
WCD

2
 = 

50
2

= 25N

The forces at joint D are shown in Fig. 13.59. The total force due to 
weights of the two members acting in the vertically downward direction is  
(25 + 25) N, that is, 50 N.
There is no force acting in the horizontal direction at any joint because of the 
weight of any member.

Support reactions at A and B
Using  MB = 0, we have
 RA × 1 =   Moment of weight forces at C +
   Moment of  weight forces at D +
   Moment of the force 600N

  = 
W W W W WBC AC CD CD AD

2 2 2
1

2 2
1 600 1+ +⎛

⎝⎜
⎞
⎠⎟
× + +⎛

⎝⎜
⎞
⎠⎟
× + ×  

  =  (25 + 25 + 25) × 1 + (25 + 25) × 1 + 600 × 1
  =  75 + 50 + 600 = 725 N
or RA =  725 N ( )
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Forces due to one-half weights of the members AB, AC and AD A and forces due to 
one-half weights of the members AB and BC B have the same line of action along AB 
in the downward direction, hence moments of all these forces are not considered.
Also   RA + HB = 0
or   HB = – RA = – 725 N
    = 725 N ( )
Now

A B C D + VB + 600 = 0
W W W W W W W WAB AC AD AB BC BC AC CD

2 2 2 2 2 2 2 2
+ +⎛

⎝⎜
⎞
⎠⎟
+ +⎛
⎝⎜

⎞
⎠⎟
+ + +⎛
⎝⎜

⎞
⎠⎟
+ WW W VCD AD

B2 2
600+⎛

⎝⎜
⎞
⎠⎟
+ +  = 0

(25 + 25 + 25) + (25 + 25) + (25 + 25 + 25) + (25 + 25) + VB + 600 = 0
   75 + 50 + 75 + 50 + VB + 600 = 0
or    850 + VB = 0
Hence,   VB = –

Forces in members AD and CD

D. Refer Fig. 13.60. The one-half of weights of the members AD and CD, that is, 
WAD

2
 

and 
WCD

2
are assumed to act at D in the vertically downward direction.

Fig. 13.60

Using Fx = 0
 FAD = 0
Using  Fy = 0
 FCD = 600 + 25 + 25 = 650 N (T)
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Forces in members BC and AC

C C. Refer Fig. 13.61. The one-half of weights of the members BC, AC and CD, that is, 
WBC

2
, WAC

2
 and WCD

2
 are assumed to act at C in the downward direction.

Fig. 13.61

Using  Fx = 0
 FBC + FAC cos45º = 0 ... (1)
Using  Fy = 0
               FCD + FAC sin 45º + 25 + 25 + 25 = 0 
 FCD + FAC sin 45º + 75 = 0 ... (2)
From equation (2), we have
 FAC sin 45º = – (FCD + 75)
  = – (650 + 75) N = – 725 N

Hence, FAC = −
725

45sin º
N = – 1025.3 N

  = 1025.3 N (C)
From equation (1), we have
 FBC = – FAC cos 45º
  = – (–1025.3) cos 45º = 725 N (T)

Force in member AB
AB, that is, FAB A B

calculating FAB
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When joint A is considered, the one-half of weights of three members AB, AC and AD, that is WAB
2

,  
WAC

2
 and 

WAD
2

 are assumed to act at A in the vertical direction as shown in Fig. 13.62. 

Fig. 13.62

Using Fy = 0, we have
 FAB = FAC sin 45º + 25 + 25 + 25 = (1025.3) sin 45º + 75 = 800 N (T)

When joint B is considered, the one-half of weights of two members AB and BC, that is, WAB
2

 and 
WBC

2
are assumed to act at B in the vertical direction as shown in Fig. 13.63.

Fig. 13.63
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Using Fy = 0, we have
 FAB + 25 + 25 = VB = 850
 FAB + 50 = 850
Hence, FAB = (850 – 50) N = 800 N (T) (for check)
The complete result is shown in Fig. 13.64.

Fig. 13.64

13.4.2 Analysis of Trusses by Method of Sections
This method is based on dividing the entire truss into two parts by a section line. The section must 
pass through the members in which forces are required to be determined. The equilibrium of the part 
either to the left or to the right of the section is considered by treating it as a free body. A vertical 
or inclined section can be chosen. A horizontal section is usually avoided because it will cut many 
members of unknown forces. The section should be chosen in such a way that the members cut 
by the section are as less as possible and have maximum three unknowns. The method of joints is 
most effective when forces in all the members of a truss are required to be determined. Calculation 
of forces in various members can’t be made independently. The method of sections can be used to 

members. The method is illustrated by the suitable examples.

Example 13.10  
Find the forces in the members BF and AF of the loaded truss shown in Fig. 13.65.
Solution: Refer Fig. 13.65.

Support reactions at A and B
Using MA = 0, we have

 RB  5 = 3  2.5 + 5  3 = 7.5 + 15 = 22.5

or RB  = 4.5 kN ( )

Now VA + 3  = RB
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or VA  = RB – 3 = 4.5 – 3 = 1.5 kN ( )
and HA  = 5 kN ( )

Forces in the desired members are initially assumed to be tension, that is, positive.

Fig. 13.65

Force in member BF
Take a section XX which cuts the desired member BF and consider the equilibrium of the part 
right to the section. Select E as centre of moment. Forces in the members EC, EB and EF, and  
3 kN are passing through E and hence their moments about that point are zero. The only unknown 
force left is FBF. FBF  B. 
Moment of the  force in member BC about the point E
of the forces about E, we have

 FBF  3 = RB  2.5

or FBF  = 
RB 2 5

3
.

= 
4 5 2 5

3
. .

  = 3.75 kN (T) Ans.

Force in member AF
Take another section YY which cuts the member AF and consider the equilibrium of the part left to 
the section. Again E is considered as centre of moment. Moment of the force in member AD about 
the point E
 FAF  3 + VA  2.5 = HA  3

or FAF  = 
H VA A× − ×3 2 5

3
.

  

  = 
5 3 1 5 2 5

3
× − ×. .

 = 3.75 kN (T) Ans.

(Forces 3 kN and 5 kN are passing through E, hence their moments are not considered.)
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Example 13.11 
Find the forces in the members EF, DF and CD of the loaded cantilever truss shown in Fig. 13.66.

Fig. 13.66

Solution:  Consider a section XX which cuts the members CD, EF and DF in which forces are 
desired (Fig. 13.67). Consider equilibrium of the part right to the section.

   

Fig. 13.67

Force in member CD
The perpendicular distance between EF and CD is 1.25 tan 60  = 2.165 m.
Taking moments of the forces about F, we have

 FCD  2.165 + 25  2.5 = 0
or FCD  = – 28.86 kN 

  = 28.86 kN (C) Ans.
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Forces in members EF and DF are passing through F and hence their moments about that point 
are zero. 

Force in member EF
Taking moments of the forces about D, we have

 FEF  2.165 – 25  1.25 = 0
or FEF = 14.43 kN (T)   Ans.

Force in member DF
The perpendicular distance of point E from FD is

 2.5 sin 60° = 2.165 m
Taking moments of the forces about E, we have

 FDF  2.165 + FCD  2.165 = 0
 FDF  2.165 + (–28.86)  2.165 = 0

or FDF = 28.86 kN (T)  Ans.

Forces 25 kN and FEF are passing through E, hence their moments about that point are zero.

Example 13.12
Find the forces in the members CD and DE of the loaded truss shown in Fig. 13.68.

Fig. 13.68

Solution: 
Support reactions at A and B
Using MA = 0, we have
 RB × (3 + 3 + 3 + 3) = 10 × 3 + 15 × 3 + 10 × (3 + 3) + 20 × (3 + 3 + 3) + 10 × (3 + 3 + 3)
  = (30 + 45 + 60 + 180 + 90) kN = 405 kN
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or   RB = 33.75 kN ( ) 
Now   RA + RB = (15 + 10 + 10 + 20 + 10) kN   = 65 kN
or   RA = 65 – RB = (65 – 33.75) kN  = 31.25 kN ( )

Force in member DE
Consider a section XX , which cuts both members CD and DE. To determine force in member DE, 
choose C as the centre of moment. Moments of the forces in the members AC and CD about that point 
are zero and the only unknown force left is the force in the member DE. Considering equilibrium of 
the part left to the section, the equation of moment can be written as

   RA × 3 = FDE × 5

or   FDE = 
RA 3

5
 = 

31 25 3
5

. kN  

    = 18.75 kN (T)  Ans.
Force in member CD
To determine FCD, choose A as the centre of moment. Forces in members DE and AC and reaction RA 
are passing through the point A, hence their moments about that point are zero. Again considering the 
same section and the left part of the section, the moment equation is

   FCD × 3 = 10 × 3
or   FCD = 10 kN (T)  Ans.

Example 13.13  
Find the  forces in the members IJ, JE and DE of the loaded truss shown in Fig. 13.69.

Fig. 13.69

Solution: 
Support reactions at A and G

Using MA = 0, we have
   VG × (3 + 3 + 3 + 3 + 3 + 3) = 10 × 3 + 10 × (3 + 3) + 15 × (3 + 3 + 3)
    = (30 + 60 + 135) kN = 225 kN
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or   VG = 
225
18

 = 12.5 kN ( )

Now   RA + VG = (10 + 10 + 15) kN = 35 kN
or   RA = 35 – RG = (35 – 12.5) kN = 22.5 kN ( )
Geometrical calculations

DGJ tan  = 
3
9

Hence,  = 18.43°

EGP sin  = 
x1

6
or   x1 = 6 sin 18.43° = 1.897 m

EGI tan  = 
IE
6

or   IE = 6 tan 18.43° = 2 m

OEI sin 45° = 
x
IE

2

or   x2 = 2 × sin 45° = 1.414 m
Force in member DE

Consider a section XX , which cuts the members IJ, JE and DE. Choose J as the centre of moment, 
and consider the equilibrium of the part right to the section. Moments of the forces in the members  
IJ and JE about J are zero, since the forces are passing through that point. Hence, the moment 
equation is

   FDE × 3 = RG × 9

or   FDE = 
12 5 9

3
.

 = 37.5 kN (T)  Ans.
Force in member IJ

This time choose E as the centre of moment, and consider the part right to the section. Forces in 
the member DE and JE have no contribution in the equation of moment. The moment equation is

   FI J × x1 + RG × 6 = 0

or   FIJ = 
12 5 6
1 897

.
.

 kN = 39.53 kN (C)  Ans.
Force in member JE

Choose I as the centre of moment, and consider the part right to the section. Force in member IJ 
has no contribution in the moment equation, given by

   FJE × x2 + FDE × IE = RG × 6
   FJE × 1.414 + 37.5 × 2 = 12.5 × 6
or   FJE = 0  Ans.
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Example 13.14 
Find the forces in the members CE, CD and BD of the loaded truss shown in Fig. 13.70.

Fig. 13.70

Solution:  
Support reactions at C and E
Using MC = 0, we have
   VE × 3 = 5 × 3
or   VE = 5 kN ( )
Now   RC = 5 + VE = (5 + 5) kN = 10 kN ( )
Geometrical calculations

ADE tan  = 
6
3

Hence,  = 26.56°
On comparing s ABC and ADE, we have

   
BC
DE  = 

AC
AE

or   BC = 
AC DE

AE  = 
3 3

6  = 1.5 m

CDE CD = 3 32 2  = 4.24 m

ACF ACF = 90° –  = (90 – 26.56)° = 63.44°

and   sin  = 
x

AC
1
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or   x1 = AC sin  

    = 3 × sin 26.56° 

    = 1.34 m

In BCG sin 45° = 
x
BC

2

or   x2 = BC sin 45° 

    = 1.5 × sin 45° 

    = 1.06 m

Force in member CE

Consider a section XX , which cuts all the desired members. Choose D as the centre of moment and 
consider right part of the section. The moment equation is

   FCE × 3 = VE × 0  (VE is passing through D)

or   FCE = 0 kN  Ans.

Force in member CD

Choose B as the centre of moment. The equation of moment is

   FCE × BC + FCD × x2 + RE × 3 = 0

   0 + FCD × 1.06 + 5 × 3 = 0 (  FCE = 0)

or   FCD = –
15

1 06.
  

    = – 14.15 kN 

    = 14.15 kN (C)  Ans.

Force in member BD

Choose C as the centre of moment. The equation of moment is

   FBD × x1 = VE × 3

or   FBD = 
3

1

V
x

E  = 
3 5
1 34.

kN   

    = 11.2 kN (T)    Ans.
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Example 13.15
Find the forces in all  the members of the loaded truss shown in Fig. 13.71.

Fig. 13.71

Solution:  
Support reactions at A  and D

   VA + RD  = 10 kN ... (1)

 Using MA = 0, we have

   RD × (0.5 + 0.5 + 0.5)  = 10 × (0.5 + 0.5)

Hence, RD = 6.66 kN ( )

From equation (1), we have

   VA = (10 – 6.66) kN

    = 3.34 kN ( )

henceforth.
 Take a section XX that cuts members AB, EF and CD, and consider the equilibrium of the right 

A as the centre of moment.
 Using  MA = 0, we have

  FEF × 0.75  = 10 × (0.5 + 0.5) + FCD × (0.5 + 0.5 + 0.5)
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  FAB passes through A, hence does not appear in the equation of moment.

 or  0.75 FEF   = 10 + 1.5 FCD

 or  FEF      – 2 FCD  = 13.33 ...(1)

 Now, take B as the centre of moment, and consider the equilibrium of the right part of the truss.

 Using MB = 0, we have

   FEF × 0.75 + 10 × (0.5 + 0.5) + FCD × (0.5 + 0.5 + 0.5) = 0

 All the moments are in the clockwise direction.
 or  0.75 FEF + 1.5 FCD  = – 10

 or  FEF + 2 FCD  = – 13.33 ...(2)

 Solving equations (1) and (2), we get

   FEF  = 0

 From equation (1), we get

   FCD  = – 6.66 kN

    = 6.66 kN (C)

 Now, take D as the centre of moment, and consider the equilibrium of the right part of the truss.

 Using MD = 0, we have

   FAB × (0.5 + 0.5 + 0.5) + 10 × 0.5 + FEF × 0.75 = 0

 All the moments are in the anti-clockwise direction.

 or  1.5 FAB + 5 + 0 × 0.75  = 0 (as FEF = 0)

 or  1.5 FAB + 5  = 0

 Hence, FAB  = – 3.33 kN

    = 3.33 kN (C)

 Now, take another section Y Y that cuts members AD, DE and CD, and consider the equilibrium of 
the right part of the truss. Take E as the centre of moment. 

 Using ME = 0, we have

   FAD × 0.75  = RD ×( 0.5 + 0.5) + FCD × (0.5 + 0.5)

 FDE passes through E, hence does not appear in the equation of moment.

 or  0.75 FAD = 6.66 × 1 + (– 6.66) × 1

    = 6.66 – 6.66

    = 0

 Hence, FAD = 0
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 Force in member AE
A. Refer Fig. 13.72.

Fig. 13.72

   tan  = 
0 75. m
0.5 m

 Hence, °
 Using Fx = 0, we have
   FAE cos FAD  = 0
   FAE cos ° + 0  = 0   (as FAD = 0) 
 Hence, FAE 

Force in member DE
D. Refer Fig. 13.73.

   tan 0 75. m
(0.5 + 0.5) m

Hence, °
 Using Fx = 0, we have

Fig. 13.73

   FDE cos FAD  = 0
 or   FDE cos ° = 0  (as FAD = 0)
 Hence, FDE 

Forces in members BF and CF
F. Refer Fig. 13.74.

   tan  = 
0 75. m
0.5 m

 Hence,  = °

 and tan 
0 75. m

(0.5 + 0.5) m

 Hence,  = °

Fig. 13.74
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 Using Fx = 0, we have

   FBF  cos FEF  = FCF  cos 

 or   FBF cos ° =  FCF cos ° (as FEF = 0)

    0.8 FBF  = 0.554 FCF 

 or   FBF  = 0.693 FCF ...(3) 

 Using Fy = 0, we have

   FBF sin FCF sin 

 or   FBF sin ° FCF sin °  = 10

    0.6 FBF + 0.83 FCF  = 10

    0.6 × 0.693 FCF + 0.83 FCF  = 10 (using equation (3))

    0.415 FCF + 0.83 FCF  = 10

 or   1.245 FCF  = 10

 Hence, FCF  = 8.03 kN (T) 

 From equation (3), we get

   FBF  = 0.693 × 8.03

    = 5.56 kN (T)

 Force in member BC

B. Refer Fig. 13.75.

Fig. 13.75

 Using Fx = 0, we have

   FBC FBF cos °  = 0

 or   FBC + 5.56 × cos 36.8°  = 0

 Hence, FBC  = – 4.45 kN

    = 4.45 kN (C)
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 The complete result is tabulated below.

S.No. Member Force in Member (kN) Nature of Force
1. AB 3.33 Compression
2. AD 0 —
3. AE 0 —
4. BC 4.45 Compression
5. EF 0 —
6. CF 8.03 Tension
7. CD 6.66 Compression
8. DE 0 —
9. BF 5.56 Tension

13.5 ZERO-FORCE MEMBERS 
A member having no or zero force is called a zero force member. There are two important statements 

These statements are:
 

of three members, if two members are collinear, the third member will be a zero-force member.

 
then both members will be zero-force members.

force members.

Fig. 13.76

B, D, E, F, H and I are non-loaded 
I consists of three members AI, BI and 

HI. Of these, AI and HI are collinear members, hence 
BI must be a zero-force 

H consists of three members 
HI, HG and HB of which HI and HG are collinear 
members, hence HB
the absence of zero-force members BI and HB B 
consists of three members, namely AB, BC and BG. Out 
of these, AB and BC are collinear members, and hence 
BG must be a zero-force member. Joint D consists of two non-collinear members CD and DE. These 
are zero-force members according to second statement. Joint E consists of two non-collinear 
members CE and EF, assuming DE to be missing on account of its zero force nature. Therefore, 
CE and EF F consists of two members GF and CF and 
both of them are non-collinear, assuming EF to be missing; therefore GF and CF must be zero-force 
members.
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 2. Give a few examples of plane and space trusses.

1.
 (a b) on the member
 (c d
2.
 (a) two forces are applied on the members
 (b
 (c) the member is under shear force and normal force
 (d) none of these.
3.  For a truss to be rigid, the condition is
 (a) 2j = m – 3 (b) j = 2 m + 3 (c) m = 2j – 3 (d) m = 2j + 3.
     where  m = Number of members
  j

4.
 (a) under-rigid (b) over-rigid (c) rigid (d) non-rigid.
5.
 (a) forces in all the members (b) forces in few members
 (c) forces at the supports   (d) bending moments in members.
6.  Tension force in a member is assumed to be positive, if it is
 (a b
 (c) bending the member   (d) pushing the member.

SHORT ANSWER QUESTIONS

 MULTIPLE CHOICE QUESTIONS
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7. The method of sections is useful, when
 (a) forces in every member is required
 (b) force in few members are required
 (c) forces in few members as well as on the supports are required
 (d) none of these.

ANSWERS
 1. (a) 2. (b) 3. (c) 4. (b) 5. (a) 6. (b) 7. (b).
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 1.

Fig. 13.77

  (Ans.  FAB = 3.6 kN (C), FAC = 3.9 kN (T), FBC = 4.5 kN (C)).

 2.

Fig. 13.78
  (Ans. FAD  = 20 kN (T)
  FAE  = 26 kN (C)
  FDE  = 0
  FAB  = 26 kN (T)
  FBE  = 10 kN (T)
  FBC  = 34.7 kN (T)
  FBF  = 10.41 kN (C)
  FEF  = 24 kN (C)
  FCF  = 6.67 kN (T)).

EXERCISES
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 3.

Fig. 13.79
  (Ans. AE, DE, BD, CD).

 4.

  Fig. 13.80

(Ans.  VA = 600 N ( ), HC = 600 N ( ), VC = 200 N ( ), FAB = 750 N (C), FAD = 450 N (T), 
FBD = 250 N (T), FCD = 200 N (C), FBC = 600 N (C)).

 5. Members AB and BC can support a maximum compressive force of 800 N, and members AD, DC 
and BD y = 10 m, determine the greatest load 
P the truss shown in Fig. 13.81 can support. 

  Fig. 13.81  (Ans. 849 N).
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 6.
as shown in Fig. 13.82.

Fig. 13.82
  (Ans.  FAB = 15.59 kN (C), FAE = 8.66 kN(T),

FBC = 15.01 kN (C), FBD = 5.19 kN (C),
FBE = 4.04 kN (C), FCD = 7.50 kN(T),

FDE = 6.35 kN (T)).

 7. KC, KJ, CJ and JI of the loaded truss shown in Fig.13.83.

Fig. 13.83

  (Ans.    FKC = 2.69 kN (T)
  FKJ = 1.78 kN (C)
  FCJ = 0.79 kN (C)
  FJI = 0.59 kN (C)).
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 8. HG, GC and CD of the loaded truss shown in Fig. 13.84.

Fig. 13.84

  (Ans. FHG = 1.29 kN (C)
  FGC  = 1.25 kN (T)
  FCD  = 1.125 kN (T)).

 9. Find the forces in the members BC, BE and FE of the loaded cantilever truss shown in  
Fig. 13.85.

 

Fig. 13.85

  (Ans. FBC = 17.32 kN (T)
  FBE = 0
  FFE  = 20 kN (C)).
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 10. ne the force in member BF of the loaded truss shown in Fig. 13.86.

Fig. 13.86

(Ans.  FBF = 2.66 kN (C)).

 11. AB and GH of the loaded truss shown in Fig. 13.87.

Fig. 13.87

(Ans.  FAB = 53.33 kN (T) , FGH = 66.67 kN (C)).
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 12. BC and CD of the simply supported truss shown in Fig. 13.88.

Fig. 13.88

(Ans.  FBC = 14.14 kN (T) , FCD = 10 kN (C)).

 13.
their weights of 50 N each.

Fig. 13.89

  (Ans.   VA HA RD 
FAB = 0, FBC = 1485 N (T), 

FCD = 1050 N (C), FDE = 1050 N (C), 
FAE = 975 N (C), FBD = 2200 N (C), 

FBE = 1485 N (T)).
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William John Macquorn Rankine, born on 5 July 1820, was a Scottish 
civil engineer, physicist and mathematician. He is widely known for his 
contributions in both civil and mechanical engineering. Rankine was a 
founding contributor in thermodynamics, and developed the Rankine 
cycle, which gives the analysis of an ideal heat engine used in most 
of the power plants. He worked on the properties of steam, gases and 
vapours, and established relationship between saturated vapour pressure 
and temperature. He also established relationship between temperature, 
pressure and density of gas, and found expressions for the latent heat 
of evaporation of the liquid. In 1859, he proposed the Rankine scale 
of temperature, an absolute or thermodynamic scale whose degree 
is equal to a Fahrenheit degree. He served as the regius professor of 
civil engineering and mechanics at the University of Glasgow between 
1855 and 1872. The Rankine method of earth pressure analysis in soil 
mechanics is named after him, which relates to the stabilization of 

retaining walls. He is also known for Rankine-Hugoniot equation, which governs the behavior of shock 

recognition of his achievements. 

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

William John  
Macquorn Rankine

(1820-1872)

© The Author(s) 2021
D. K. Singh, Strength of Materials,
https://doi.org/10.1007/978-3-030-59667-5_14
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14.1 INTRODUCTION  
Structural members subjected to single type of loading are discussed in the previous chapters. For 
example, chapter 1 deals with an axially loaded bar under tension or compression, which produces 
normal stresses of tensile or compressive nature on the cross-section of the bar. The stress is constant 
at every section of a prismatic bar. Similarly, chapter 5 discusses the effect of pure bending in 
beams in which bending stresses of tensile and compressive nature are produced at the section of the 
beam. And chapter 7 discusses the torsional effect on the circular shaft in which the cross-section of 
the shaft is subjected to shear stress, which varies linearly from zero at the axis of the shaft to the 
maximum value at its surface. In all these cases, stresses produced in the members remain within 

However, in many engineering applications, members are subjected to more than one type of 
loading, thus forming the case of combined loadings. For example, a shaft in torsion may also be 
subjected to bending due to weights of the pulley, couplings, self-weight of the shaft and belt tension. 
Also a shaft experiences an axial load in addition to the  twisting moment because of  external axial 
loads, or due to the weight of the components attached to the shaft or due to thermal loading produced 
by the temperature change during service. Similarly, a beam may be subjected to the simultaneous 
action of bending moments and axial forces as shown in Fig. 14.1, where a cantilever beam AB 
is supported by a pin at A and the cable CD. The beam carries a vertical force P at its free end B, 

Fig. 14.1 A cantilever beam supported by a cable.

which causes bending and the cable produces axial force in the beam. The stress analysis of a member 

the resultant stresses caused by all the loadings acting simultaneously. In all these cases, the objective 
is to identify the stress elements in the members which are associated with high stress levels due to 
various loadings. Further principal stresses and maximum shear stresses are found by using the stress 

deformations produced are considered small.

14.2 COMBINED BENDING AND AXIAL LOADS 
Many structural and machine members are subjected to combined loadings of axial forces and bending 
moments. Both loads produce normal stresses along the longitudinal direction of the members. The 

stresses using the principle of superposition. Crane, timber beam and hacksaw are a few examples 
which involve combined stresses caused by axial force and bending moment. 
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Consider a simple beam loaded with a uniform load and an axial force P as shown in Fig. 14.2. 
The stress analysis is carried out by considering two points A and B on the cross-section of the 
beam. The point A lies on the bottom side and point B lies on the top side of the beam.

Fig. 14.2

Normal Stress due to Axial Force P
The axial force P produces direct tensile stress at the cross-section of the beam, given by

 d = 
P
A

  ... (14.1)

where A is the cross-sectional area of the beam. The direct stress is uniform across the cross-section 
of the beam. 

Bending Stress due to Uniform Load w
The uniform load produces bending moment M, which in turn, produces normal stresses at points A 
and B

 
σb

y
 = 

M
I

 =  
E
R

which gives

 b  = 
M
I

y.  = 
M
S

 ... (14.2)

where  M =  Bending moment due to uniform load 
 I

 =  
π
64

d 4 for a solid circular section 

 d =  Diameter of the cross-section
 y =  Distance from the neutral axis
 S =  Section modulus of the cross-section 

 =  
I
y
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The bending moment M is maximum at the midspan (l/2) of the beam and and its value is equal to 

wl2

8
. It produces tensile normal stress at A and compressive normal stress at B. 

Resultant normal stresses
The resultant normal stresses due to combined loadings are calculated using the principle of 
superposition as follows:
Normal stress at point A is

A = Normal tensile stress due to axial force P + Tensile bending stress due to uniform load w

     = 
P
A

M
S

+    ... (14.3)

Normal stress at point B is

B = Normal tensile stress due to axial force P + Compressive bending stress due to uniform load  w

     = P
A

M
S

+ −⎛
⎝⎜

⎞
⎠⎟

    = 
P
A

M
S

−    ... (14.4)

Example 14.1 
A 4 m  long simple steel beam having a symmetrical I-section is subjected to a uniform load 
of instensity 150 kN/m over its entire span and an axial tensile force of 600 kN as shown in 
Fig. 14.3. Determine the normal stresses at points A and B, and plot the normal stress variation 
between A and B.

Fig. 14.3
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Solution: Given,
 Uniform load, w  =  150 kN/m = 150 × 103 N/m
 Axial load, P  =  600 kN = 600 × 103 N
 Length of the beam, l  = 4 m

 Distance from the neutral axis, y  = 
400
2

mm = 200 × 10–3 m

 The total area of cross-section of the beam is
 A  =  (250 × 40) + (320 × 40) + (250 × 40) 
  =  3.28 × 104 mm2

  =  3.28 × 104 × 10–6 m2

  =  3.28 × 10–2 m2

 I  =  I of rectangle 250 mm × 400 mm
                          –  2× (I of rectangle 105 mm × 320 mm)

  =  1
12

250 400 2 1
12

105 320 103 3 12 4× × − × × ×⎡
⎣⎢

⎤
⎦⎥
× − m

  =  7.598 × 10–4 m4

The beam is subjected to combined loadings of an axial tensile force and the bending moment 
caused due to uniform load. Axial force produces direct normal stress (tensile stress), which remains 
constant throughout the beam. The uniform load on the beam produces maximum bending moment 
at the centre of the beam.

The maximum bending moment due to uniform load is given as

 M  = 
wl2

8
 

 =  
150 10 4

8

3 2× ×

 =  3 × 105 N.m
It is the positive bending moment, which causes tension at point A and compression at point B.
The bending stress is found as

 b =  
M
I

y⋅

 =  
3 10 200 10

7 598 10
1

10

5 3

4 6
× × ×

×
×

−

−
( )

.
MPa

 =  78.97 MPa  Ans.
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It is of equal magnitude at both points A and B, but is tensile at A and compressive at B.
The direct stress due to axial load is

 d =  
P
A

= 
600 10

3 28 10
1

10

3

2 6

×
×

×−.
MPa

 =  18.29 MPa  Ans.

The direct stress is tensile and is always positive.
The normal stress due to combined loadings at A is 

 A =  d + b

 = (18.29 + 78.97) MPa

 =  97.26 MPa  Ans.

Hence, the tensile stress occurs at point A.
The normal stress due to combined loadings at point B is

 B = d – b

 = (18.29 – 78.97) MPa

 = – 60.68 MPa  Ans.

Hence, the compressive stress occurs at point B.
The distributions of axial, bending and combined stresses across the cross-section of the beam are 

shown in Fig. 14.4. It is important to note that when the beam is subjected only to bending stresses, 
the neutral axis (NA) passes through the centroid of the cross-section. Further, when the beam is 
subjected to combined stresses due to both axial force and bending moment, the line of zero stress 
shifts upward.

Fig. 14.4 Stress distribution across the cross-section.
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14.3 COMBINED BENDING AND TORSION OF CIRCULAR SHAFTS
Let us consider a solid circular shaft of diameter d and length l be subjected to combined loadings of 
torsion and bending as shown in Fig. 14.5. The shaft is loaded by a twisting moment  (torque) and a 
bending force P at its free end. These loads produce a bending moment M, a vertical shear force V 
and a twisting moment T at every cross-section of the shaft (Fig. 14.6), which in turn, individually 
produces stresses over the section.

Fig. 14.5 A solid circular shaft under combined bending and torsion.

Fig. 14.6 Three loads (M, T and P) acting on the cross-section of the shaft at ‘a’.

To start the stress analysis, we consider two points A and B on the cross-section of the shaft at a 
distance ‘a’ from its free end as shown in Fig. 14.5. Point A is on the top of the shaft and point B on 
the left side at the neutral axis.

Effect of twisting moment T
The torsional shear stress 1 produced due to twisting moment T is given as

 1
 =  

Tr
J

= 
2

3

T
rπ = 

16
3

T
dπ  (using torsion formula) ... (14.5)

where r =  Radius of the shaft
 J = Polar moment of inertia of the shaft cross-section

 =  
πr4

2
 = 

π
32

4d

 d = Diameter of the shaft = 2r
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Since the torsional shear stress acts on the surface of the shaft, hence it acts at both points A and 
B. The shear stress acts in the horizontal direction (xz-plane) at point A and in the vertical direction 
at point B as B is located on the side of the shaft.

Effect of bending moment M  

The bending moment M caused due to load P produces  a bending tensile stress at point A, given by

 A =  
Mr
I

= 
4

3

M
rπ

= 
32

3

M
dπ

    (using bending formula) ... (14.6)

where  I =  Moment of inertia of the shaft cross-section about the neutral axis (the z-axis). 

However, no bending stress is produced at point B by the bending moment M as point B is located 
on the neutral axis.

Effect of vertical shear force V

The vertical shear force arising from the bending force P produces no shear stress at point A as it is 
located at the top surface of the shaft, but produces the shear stress at point B, given by

2  = 
4
3
V
A

= 
4

3 2

V
rπ

= 
16
3 2

V
dπ

  (using equation (5.32))   ....(14.7)

where  A  = Cross-sectional area of the shaft

   =  r2 

  = 
πd 2

4

Representation of stresses

All the stresses produced by M,  and V are shown in Fig. 14.7.

Fig. 14.7 Stresses acting at points A and B.
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Stress elements at points A and B

The stresses A and 1 acting at point A are shown in Fig. 14.8 (a) on a stress element A, which has 
been cut out from the top surface of the shaft at point A, and the corresponding plane stress condition 
is shown in Fig. 14.8 (b). For the purpose of calculating the principal stresses and the maximum shear 
stress, the x and y axes are drawn through the element, where x-axis is parallel to the longitudinal 
axis of the shaft and y-axis is horizontal. Hence, it is a case of plane stress condition in which  

x = A, y = 0 and xy = – 1.

Fig. 14.8

Similarly, another element at point B, which has been cut out from the left side of the shaft at point 
B is shown in Fig. 14.9 (a). Only shear stress is acting on this element, which has the largest value 
of ( 1+ 2). Hence, the point B is in a state of pure shear. The plane stress system for the element B 
is shown in Fig. 14.9 (b).
Hence,  x =  y = 0 and xy = – ( 1 + 2)

Fig. 14.9
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Principal stresses and maximum shear stress due to combined loadings
The maximum and minimum normal stresses at point A are the maximum and minimum principal 
stresses respectively, given as 
 1 =  Maximum principal stress

 = 
σ σ τx x

xy2 2

2
2+ ⎛

⎝⎜
⎞
⎠⎟

+

 =  
σ σ τA A

2 2

2

1
2+ ⎛

⎝⎜
⎞
⎠⎟

+   ( x = A and xy = 1)

On substituting the values of A and 1 in the above equation, we have

 1 =  
1
2

32 1
2

32 16
3 3

2

3

2

× + ×⎛
⎝⎜

⎞
⎠⎟
+ ⎛
⎝⎜

⎞
⎠⎟

M
d

M
d

T
dπ π π

 = 
16 16 16

3 3

2

3

2M
d

M
d

T
dπ π π

+ ⎛
⎝⎜

⎞
⎠⎟
+ ⎛
⎝⎜

⎞
⎠⎟

 =  
16

3
2 2

πd
M M T+ +⎡
⎣⎢

⎤
⎦⎥  ... (14.8)

 =  
32

23

2 2

πd
M M T+ +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 =  
32

3

M
d

e

π

where   Me =  
1
2

2 2M M T+ +⎡
⎣

⎤
⎦

      acting alone, will produce the same maximum direct stress as
      produce d  by the combined bending moment and torque acting together.
and  2 =  Minimum principal stress

 = 
σ σ τx x

xy2 2

2
2− ⎛

⎝⎜
⎞
⎠⎟

+

 =  
σ σ τA A

2 2

2

1
2− ⎛

⎝⎜
⎞
⎠⎟

+  

 =  
16

3
2 2

πd
M M T− +⎡
⎣

⎤
⎦  ... (14.9)
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The maximum shear stress is calculated as

 max =  
σ σ1 2

2
−

 = σ τx
xy2

2
2⎛

⎝⎜
⎞
⎠⎟

+  =  σ τA

2

2

1
2⎛

⎝⎜
⎞
⎠⎟

+

On substituting the values of A and 1 in the above equation, we have

 max =  
16

3
2 2

πd
M T+  ... (14.10)

 = 
16

3
T
d

e

π
where  Te  = M T2 2+

maximum shear stress as produced by the combined bending moment and torque acting 
together.

If  be the angle of inclination of the principal plane with the transverse section of the shaft, measured 
in the anticlockwise direction, then 

 tan 2  =  
τ
σ

1

2
A⎛

⎝⎜
⎞
⎠⎟

 = 
2 1τ
σA

 = 
T
M

 (on substituting A and 1)

These maximum stresses, both principal and shear, can be compared with their design values to 
ensure the safety criteria of the shaft.

Critical points in the shaft
The normal stresses due to bending are maximum where maximum bending moment occurs. It means 
that the normal stresses are maximum, when element A is located at the support end of the shaft, 
where the bending moment M has its maximum value. Hence, points on the top and bottom of the 
shaft at its support end are the critical points. Another critical point is B itself, where the shear stress 
is maximum given by the sum of 1 and 2, but the bending stress x is zero. The value of the shear 
stress does not change, if point B is moved anywhere along the shaft in the longitudinal direction. 

Example 14.2 
A hollow shaft of inside diameter equal to one-half of the outside diameter is subjected to a torque 
of 35 kN m and a bending moment of 20 kN m. If the maximum shear stress is limited to 70 MPa, 

Solution: Given,

Torque,  T  =  35kN m
Bending moment,  M   =  20 kN m
Maximum shear stress,  max   =  70 MPa =  70  106 Pa
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 Let 
  Outside diameter of the shaft  =  do

   Inside diameter of the shaft    =  di  = 
do

2
(Given)

Using equation (14.10), the maximum shear stress for a hollow shaft can be expressed as

 max  = 
16

4 4
2 2d

d d
M To

o iπ( )−
+

 70  106  = 
16 2
2

20 10 35 104 4
3 2 3 2×

−
× + ×

d
d d

i

i iπ[( ) )]
( ) ( )

Solving for di, we get
 di  = 73.12 mm  Ans.

and  do  = 2di = 146.24 mm Ans.

Example 14.3 

 An engine has an overhung crankshaft and its stroke is 300 mm. The centre-line of the crank-pin and 
the connecting rod is 200 mm distant from the centre of the supporting bearing. A thrust of 40 kN 
acts on the crank-pin at right angles to the crank. Determine the diameter of the shaft, if the stresses 
in tension and shear are not to exceed 70 MPa and 40 MPa respectively.

Solution:  Given,
Maximum stress in tension,  = 70 MPa = 70 × 106 Pa
Maximum shear stress,  max = 40 MPa = 40 × 106 Pa
The bending moment at the bearing is given by

   M = 
40 10 200

10

3

3 N.m   = 8000 N.m

The torque at the bearing is given as

   T = 
40 10 150

10

3

3 N.m   = 6000 N.m

The equivalent bending moment is

   Me  = 
1
2

2 2[ ]M M T  

    = 
1
2

8000 8000 60002 2[ ( ) ( ) ]  = 9000 N.m

The equivalent torque is Te = M T2 2 2 28000 6000+ = +( ) ( )   

    = 10000 N.m
Let d be the diameter of the shaft.
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Diameter on the basis of equivalent bending moment

Since   = 
32

3
M
d

e

π
 

or   70 × 106 = 
32 9000

3
×
πd

 

Solving for d, we get d =  0.109 m = 109 mm
Diameter on the basis of equivalent torque

Since  max =  
16

3
T
d

e

π
 

or   40 × 106 = 
16 10000

3
×
πd

 

Solving for d, we get d =  0.108 m = 108 mm
Selecting bigger of the two values, we have
   d = 109 mm  Ans.

Example 14.4  
A shaft transmits 740 kW at 750 rpm. The maximum torque on the shaft exceeds its mean value 

mean twisting moment.
If the maximum allowable stresses for the material of the shaft in tension and shear are 65 MPa 

and 40 MPa respectively, calculate the diameters of the shaft based on these values.

Solution:  Given,
 Power transmitted by the shaft, P = 740 kW
 Rotational speed of the shaft, N = 750 rpm
 Maximum stress in tension,  = 65 MPa = 65 × 106 Pa
 Maximum shear stress, max = 40 MPa = 40 × 106 Pa
 Length of the shaft, l = 3 m
 Central load on the shaft, W = 50 kN = 50 × 103 N

The power transmitted by the shaft is given as

   P = 
πNTav
30 000,

 kW

   740 = 
π× ×750

30 000
Tav

,
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which gives Tav = 9421.97 N.m
The maximum torque is T = 1.8 × Tav = 1.8 × 9421.97 = 16959.5 N.m
The maximum bending moment due to central load W occurs at the centre of the shaft, given by

   Mw = 
Wl
4

50 10 3
4

3
=

× ×
 = 37500 N.m

   Mf = 0.8 × Tav = 0.8 × 9421.97 
    =  7537.57 N.m
The total bending moment acting on the shaft is
   M = Mw + Mf 
    =  37500 + 7537.57 
    =  45037.57 N.m
The equivalent bending moment is given as

   Me  = 
1
2

2 2[ ]M M T  

    = 
1
2

45037 57 45037 57 16959 52 2[ . ( . ) ( . ) ]

    =  46581.24 N.m
The equivalent torque is given as

   Te = M T2 2 2 245037 57 16959 5+ = +( . ) ( . )  

    =  48124.91 N.m
Diameter on the basis of Me

Since   = 
32

3
M
d

e

π
 

where  d = Diameter of the shaft

or   65 × 106 = 
32 46581 24

3
× .
πd

Solving for d, we get d = 0.194 m = 194 mm  Ans.
Diameter on the basis of Te

Since  max = 
16

3
T
d

e

π
 

or   40 × 106 = 
16 48124 91

3
× .
πd

 

Solving for d, we get d = 0.183 m = 183 mm  Ans.
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Example 14.5  
An overhanging pulley of diameter 1 m and weighing 1 kN transmits 45 HP at 140 rpm, the sides of 
the belt being vertical. The ratio of tensions is 2 : 1, and the maximum tensile and shear stresses are 
limited to 120 MPa and 60 MPa respectively. Find the diameter of the shaft. The centre of the pulley is  
0.35 m from the nearest bearing.
Solution:  Given,

Power to be transmitted, P = 45 HP
Radius of the pulley, r = 0.5 m
Weight of the pulley, W = 1 kN = 1000 N
Revolutions per minute, N = 140

Ratio of the two tensions, T
T

2

1
 = 2

Maximum tensile stress,  = 120 MPa = 120 × 106 Pa
Maximum shear stress, max = 60 MPa = 60 × 106 Pa

The power to be transmitted is P = 
2
4500
πNT

    45 = 
2 140

4500
π× ×T

or   T = 230.2 kgf.m 
     =  2258.32 N.m (1 kgf = 9.81 N)

Now   T = (T2 – T1) × r 

     =  T T
T

r2
1

2
1−
⎛

⎝
⎜

⎞

⎠
⎟×

 or   2258.32 = T2 1 1
2

0 5−⎛
⎝
⎜

⎞
⎠
⎟× .  

 Hence, T2  =  9033.28 N

 and   T1 = 
T2

2
9033 28

2
.

 = 4516.64 N

The resultant force on the pulley is  
    R = T1 + T2 + W 
     =  4516.64 + 9033.28 + 1000 
     =  14549.92 N
The maximum bending moment is
    M = R × 0.35 
     =  14549.92 × 0.35 N.m 
     =  5092.47 N.m
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Diameter on the basis of equivalent bending moment
The equivalent bending moment is

    Me  = 
M M T2 2

2

      =  
5092 47 5092 47 2258 32

2

2 2. ( . ) ( . )

     =  5331.61 N.m
Let d be the diameter of the shaft.

Now    = 
32

3
M
d

e

π
 

or   120 × 106 = 
32 5331 61

3
× .
πd

Solving for d, we get d = 0.0768 m = 76.8 mm
Diameter on the basis of equivalent torque

The equivalent torque is Te = M T2 2

     = ( . ) ( . )5092 47 2258 322 2

     = 5570.75 N.m

Now   max = 
16

3
T
d

e

π

or   60 × 106 = 
16 5570 75

3
× .
πd

Solving for d, we get d = 0.0779 m = 77.9 mm
Of the two diameters, we choose the bigger diameter.
Hence, d = 77.9 mm  Ans.

Example 14.6  

600 mm apart, in which the shaft may be assumed to be directionally free. If the shaft is transmitting 
29.6 kW at 360 rpm, calculate the principal stresses and the maximum shearing stresses in the shaft 

Solution:  Given,
W = 6 kN = 6 × 103 N

Diameter of the shaft, d = 80 mm
Distance between the bearings,  l = 600 mm
Power to be transmitted, P = 29.6 kW
Rotational speed of the shaft, N = 360 rpm
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concentrated load is placed centrally on a simply supported beam. The maximum bending moment 
in this case is given as

    M = 
Wl
4

6 10 600
4 10

3

3=
× ×

×
N.m  = 900 N.m

The maximum shear force is given as

    V = 
W
2

6 10
2

3
=

×
 = 3000 N

The torque can be calculated using power equation.

    P = 
πNT

30 000,
kW  

 or   29.6 = π× ×360
30 000

T
,

 

Solving for T, we get T = 785.16 N.m
Calculation of stresses in the shaft at the ends of the vertical diameter
The stress due to bending is
     = 

32 32 900
80 10

1
103 3 3 6

M
dπ π

=
×

× ×
×−( )

MPa = 17.9 MPa

The stress due to torque is  = 
16 16 785 16

80 10
1

103 3 3 6
T

dπ π
=

×
× ×

×−
.

( )
 MPa  = 7.81 MPa

The shear stress due to shear force V is zero.
Hence, the principal stresses are given by

    1, 2  =  
1
2

4 1
2

17 9 17 9 4 7 812 2 2 2[ ] [ . ( . ) ( . ) ]σ σ τ± + = ± + ×

            = 20.83 MPa and – 2.93 MPa
The major principal stress is 1 = 20.83 MPa (Tensile)  Ans.
The minor principal stress is 2 = 2.93 MPa (Compressive)  Ans.

The maximum shear stress is  max = 
σ σ1 2

2
20 83 2 93

2
−

=
− −. ( . )

  

     =  11.88 MPa  Ans.
Calculation of stresses in the shaft at the ends of the horizontal diameter
The shear stress due to torque remain the same.
     = 7.81 MPa
The shear stress due to shear force V is given using equation (5.32) as
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     = 
4
3

4
3

3000

4
80 10

1
103 2 6× = ×

× ×
×

−

V
A π ( )

 MPa  

     = 0.795 MPa
The stress due to bending is zero, because the distance of outermost layer from the neutral axis is 

zero.
Hence, the maximum shear stress is given as
    max =  +  = 7.81 + 0.795 = 8.605 MPa  Ans.
And the principal stresses are given as
    1,2 = ± max = ± 8.605 MPa
    1 = 8.605 MPa (Tensile)
and   2 = 8.605 MPa (Compressive)  Ans.

14.4 COMBINED TORSION AND AXIAL LOADS 
Let us consider a solid circular shaft be subjected to the combined effects of torsion and axial load 
as shown in Fig. 14.10. The shaft of diameter d and length l is loaded by a twisting moment T and 
an axial load P. The state of stress in the shaft is a combination of the shear stress  produced by 
the twisting moment T and the axial normal stress  produced due to axial load P. As the surface of 
the shaft is the location of the most critically stressed part, hence we consider stress element on the 
surface at point A. 

Fig. 14.10

Effect of twisting moment T
The twisting moment T produces torsional shear stress  on the cross-section of the shaft, which 
varies linearly with the distance from the centre of the shaft and is maximum at the surface. The shear 
stress is given as

  =  
16

3πd
  (using torsion formula) ... (14.11)

The shear stress acts in the vertical direction as point A is on the side surface of the shaft.
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Effect of axial load P
The axial load P produces direct tensile stress d at A, which is constant across the cross-section of 
the shaft and is given as

 d = 
P
A

 = 
4

2

P
dπ

 ...(14.12)

where  A =  Cross-sectional area of the shaft

 =  
π
4

2d

 d =  Diameter of the shaft  

Stress element at point A
The stresses A and  acting at point A are shown in Fig. 14.11 (a) on a stress element, which has been 
cut out from the side of the shaft at point A. The x and y axes are drawn through the element, where 
x-axis is parallel to the longitudinal axis of the shaft and y-axis is perpendicular to the longitudinal 
axis. Hence, it is a case of plane stress condition in which x = A, y = 0 and xy = –  as shown in 
Fig. 14.11(b).

Fig. 14.11

Combined stress and Mohr’s circle
The maximum shear stress due to combined loadings in the shaft is obtained as 

 max =  R = 
σ τd

2

2
2⎛

⎝⎜
⎞
⎠⎟
+   ...(14.13)

R is the 
radius of the circle, which represents the maximum shear stress. 
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Fig. 14.12 Mohr’s circle for combined torsion and axial loads.

Example 14.7
A 50 mm diameter shaft is subjected to an axial compressive load of 280 N and a twisting moment 
of 400 N.m. Find the principal stresses and the maximum shear stress due to the combined effect.

Solution: Given,
 Diameter of the shaft, d = 50 mm = 50 × 10–3 m
 Axial load, P = 280 N
 Twisting moment, T = 400 N.m

The axial load P produces direct compressive stress d , which is distributed uniformly over the 
cross-section of the shaft, and is given as

  d =  – 
P
A

 = – 
P

dπ
4

2⎛
⎝⎜

⎞
⎠⎟

 (A is the cross-sectional area)

 = – 
280

4
50 10 3 2π × × −( )

 = – 0.142 MPa

 = 0.142 MPa (Compressive)

The twisting moment T produces shear stress across the section of the shaft, given as

   =  
16

3

T
dπ

 (using torsion formula)

 = 16 400
50 10 3 3

×
× × −π ( )

 = 16.3 MPa
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Calculation of principal stresses

The maximum principal stress 1 is given as

 1  = 
σ σ τd d

2
4

2

2 2

+
+

  =  − +
− + ×0 142

2
0 142 4 16 3

2

2 2. ( . ) ( . )

  =  16.23 MPa (Tensile) Ans.

The minimum principal stress 2 is given as

 2  =  
σ σ πd d

2
4

2

2 2

−
+

  =  
− −

− + ×0 142
2

0 142 4 16 3
2

2 2. ( . ) ( . )
 =  – 16.37 MPa

  =  16.37 MPa (Compressive) Ans.
Calculation of maximum shear stress
The  maximum shear stress max is calculated as

  max  =  
σ σ1 2

2
−

   = 
16 23 16 37

2
. ( . )− −

 = 16.3 MPa Ans.

14.5 COMBINED BENDING, TORSION AND DIRECT THRUST
Marine propeller shafts are usually subjected to direct thrust in addition to torsion and bending 
moment. The direct thrust is produced because of the compressive reaction of the water on the 
propeller as the craft is pushed forward. The bending moment is caused due to the self-weight of 
the shaft between bearings and the torque comes from the rotation of the shaft which is needed to 
produce the required power. The shaft at its every cross-section experiences these loads, which 
produce stresses separately. 

Fig. 14.13  A solid circular shaft under combined bending, torsion and direct thrust.
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Let us consider a solid circular shaft of diameter d and length l being subjected to a twisting moment 
(torque) T, a bending moment M and an axial thrust P exerted at the end as shown in Fig. 14.13.

For stress analysis consideration, we select two points A and B on the cross-section of the shaft 
A is on the top surface of the shaft and point B on the left side at the 

neutral axis.

Effect of direct thrust
The axial thrust P  acts along the longitudinal axis (x-axis) of the shaft and produces a direct 
compressive stress d , which is uniform across the cross-section of the shaft, and is given by 
equation (14.12) as

 d  = 
P
A
′

 = 
4

2
P
d
′

π
where A is the cross-sectional area of the shaft. The direct stress has the same value at both points A 
and B.

Effect of twisting moment T
The torsional shear stress 1 produced due to twisting moment T is given by equation (14.5) as

 1  = 
16

3

T
dπ

The shear stresses are produced at both points A and B as they are positioned on the surface of the 
shaft. The shear stress at A acts in the horizontal plane (xz-plane) and at B in the vertical direction.

Effect of bending moment M
The bending moment M produces tensile or compressive bending stress, given by

 b  = 
Mr
I

= 
4

3

M
rπ

= 
32

3

M
dπ

 (using bending formula) ... (14.14)

where the symbols have their usual meanings. The maximum bending stress is produced at point A 
as it is farthest from the neutral axis, and there is no bending stress produced at point B because of 
its position at the neutral axis.

Effect of vertical shear force V
The vertical shear force V arises from the self-weight of the shaft, which produces no shear stress at 
point A because of its location at the top surface of the shaft. The shear stress produced by V at point 
B is given by equation (14.7) as

 2  =  
4
3
V
A

= 
4

3 2

V
rπ

= 
16
3 2

V
dπ

 (A = Cross-sectional area of the shaft)

   =  r2 = 
π
4

2d
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Superimposition of normal stresses

The direct stress due to thrust is superimposed over the direct stress due to bending to obtain their 
combined effects taking due accounts of their positive or negative signs. 

Representation of stresses

All the stresses acting at points A and B are shown in Fig. 14.14. The bending stress b may be tensile 
or compressive. Here it is assumed to be compressive.

Fig. 14.14

Stress elements at points A and B

The stress element at A lies in the horizontal plane and is shown in Fig. 14.15 (a). The corresponding 
plane stress condition is shown in Fig. 14.15 (b). Here x = – (  + b), y = 0 and xy = – 1.

Fig. 14.15

The stress element at B lies in the vertical plane and is shown in Fig. 14.16 (a). The  corresponding 
plane stress condition is shown in Fig. 14.16 (b). Here x = – d , y = 0 and xy = – ( 1 + 2).
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Fig. 14.16

Critical points in the shaft
Point A which experiences higher stresses due to the combined effect of bending and thrust is 
the most critical point in the shaft. It means that point A or any other point just below point A on  
the bottom surface of the shaft can be critical points. Point B is not as critical as point A because it 
is subjected to only direct stress due to thrust, and has a smaller value compared to other stresses.

Principal stresses and maximum shear stress due to combined effect 

At point A
The maximum and minimum normal stresses at point A are the maximum and minimum principal 
stresses respectively, given as

 1 = Maximum principal stress

 =  
σ σ τx

x xy2
1
2

42 2+ +

 =  
− +( )+ − +( ){ } +

σ σ
σ σ τb d

b d2
1
2

4
2

1
2

On substituting the values of b , d and 1, we have

 1 = 
− + ′⎛
⎝⎜

⎞
⎠⎟
+ + ′⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
32 4

2
1
2

32 4 4 163 3

3 3

2

3

M
d

P d
d M

d
P d
d

T
d

π π
π π π ⎠⎠⎟

2

   where d = 
4 4

2 3
P
d

P d
d

′ = ′
π π
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   or 1 = – 
1

2
32 4 1

2
32 4 4 163 3

2 2

π πd
M P d

d
M P d T( ) ( ) ( )+ ′ + + ′ +

 = − + ′( )⎡
⎣⎢

⎤
⎦⎥
+ + ′ +1 16 2 1 8 163 3

2 2

π πd
M P d

d
M P d T( ) ( )  ... (14.15)

and 2  =  Minimum principal stress

 =  − + ′⎡
⎣⎢

⎤
⎦⎥
− + ′ +1 16 2 1 8 163 3

2 2

π πd
M P d

d
M P d T( ) ( ) ( )  ... (14.16)

Now the maximum shear stress at point A is calculated as

 max =  
σ σ1 2

2
−

 =   
1 8 163

2 2

πd
M P d T( ) ( )+ ′ +  ... (14.17)

At point B
The maximum and minimum principal stresses at point B are given as

 1 =  Maximum principal stress

 =  
σ σ τx

x xy2
1
2

42 2+ +

 =  − + − + − +( ){ }
σ σ τ τd

d2
1
2

42
1 2

2( )

On substituting the values of d , 1 and 2 , we have

 1 =  − × ′⎛
⎝⎜

⎞
⎠⎟
+ ′⎛

⎝⎜
⎞
⎠⎟

+ +⎛
⎝⎜

⎞
⎠⎟

1
2

4 1
2

4 4 16 16
33 3

2

3 3

2P d
d

P d
d

T
d

Vd
dπ π π π

  
as andσ

π π
τ

π πd
P
d

P d
d

V
d

Vd
d

= ′ = ′ = =⎛
⎝⎜

⎞
⎠⎟

4 4 16
3

16
32 3 2 2 3

 =  −
′ + ′ + +⎛

⎝⎜
⎞
⎠⎟

2 2 43 3
2

2P d
d d

P d T Vd
π π

( )
3  ...(14.18)
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and    2  =  Minimum principal stress

 = − ′ − ′ + +⎛
⎝⎜

⎞
⎠⎟

2 2 4
33 3

2
2P d

d d
P d T Vd

π π
( )  ... (14.19)

Now the maximum shear stress at point B is calculated as

 max = σ σ1 2

2
−

 = 
2 4

33
2

2

πd
P d T Vd( )′ + +⎛

⎝⎜
⎞
⎠⎟  ... (14.20)

Example 14.8 
A propeller shaft of diameter 150 mm is subjected to a bending moment of  15 kN m and an end thrust 
of 110 kN. It transmits 1500 kW of power at 200 rpm. Find the following parameters:
 (a) the principal stresses and 
 (b)  the maximum shear stress.

Solution: Given,
Diameter of the shaft  d  = 150 mm
Bending moment,  M = 15 kN m
End thrust,  P  = 110 kN
Power being transmitted,  P = 1500 kW
Revolutions per minute,  N = 200

The power transmitted is P  = 
2

60 1000
πNT
×

which gives  T  = 
P

N
× ×60 1000

2π
 = 

1500 60 1000
2 200
× ×
×π  = 71619.72 N m

The shear stress due to torsion is given as

    = 
16

3
T

dπ
 = 

16 71619 72
150 10 3 3
×

× × −
.

( )π
N/m2 = 108 MPa

The net direct stress due to the combined effect of bending moment and thrust is

  b – d = ± − ′32 4
3 2

M
d

P
dπ π

 

   = ± × ×
× ×

−
× ×

× ×− −
32 15 10

150 10
4 110 10

150 10

3

3 3

3

3 2π π( ) ( )
 =  45.27 MPa – 6.22 MPa

For tension side of the shaft
  d   = (+ 45.27 – 6.22) MPa = 39.05 MPa
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The principal stresses are given as

  1, 2  = 
σ σ τd

d
′

′± +
2

1
2

42 2  ... (1)

   = 
39 05

2
1
2

39 05 4 1082 2. ( . ) ( )± + ×

   = 19.52 ± 109.75  = 129.27 MPa, – 90.23 MPa  Ans.

Hence, 1 = 129.27 MPa,   2 = – 90.23 MPa 

The maximum shear stress is

  maxt
  = 

σ σ1 2

2
−

 = 
129 27 90 23

2
. ( . )

 = 109.75 MPa  Ans.

For compression side of the shaft

  d   = (– 45.27 – 6.22) MPa = – 51.49 MPa
The principal stresses are given as

  1, 2   = –
51 49

2
1
2

51 49 4 1082 2. ( . ) ( )± − + ×  (using  equation (1))

   = – 25.74  111.02 = 85.28 MPa, – 136.76 MPa  Ans.

Hence, 1 = 85.28 MPa,   2 = – 136.76 MPa 

The maximum shear stress is

  maxc  = 
σ σ1 2

2
−

 = 
85 28 136 76

2
. ( . )

  = 111.02 MPa  Ans.

Example 14.9 
A solid shaft of diameter 180 mm transmits 2000 kW of power at 300 rpm and is subjected to 
a bending moment of 20 kN m. Calculate the maximum permissible end thrust on the shaft, if 
maximum shear stress is limited to 75 MPa.

Solution: Given,
Diameter of the the shaft, d = 180 mm
Power being transmitted, P = 2000 kW
Revolutions per minute, N = 300
Bending moment, M = 20 kN m
Maximum shear stress, max = 75 MPa = 75  106 Pa
The power to be transmitted is given by

 P = 
2

60 1000
πNT
×
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or T = P
N

× ×60 1000
2π

 

  = 
2000 60 1000

2 300
× ×
×π N m = 63662 N m

The shear stress is given as

  = 
16

3
T

dπ  = 
16 63662

180 10 3 3
×

× × −π ( )
N/m2 = 55.6 MPa

The maximum shear stress is given as

 max = 
1
2

42 2σ τd +

 75  106 = 
1
2

4 55 6 102 6 2σd + × ×( . )

Solving for d , we get
 d = 108 Pa = 100 MPa

The bending stress is

 b = 
32

3
M

dπ
  = 

3 × ×
× × −

2 20 10
180 10

3

3 3π ( )
N/m2 = 35 MPa

The stress due to end thrust is

 b – d = (35 – 100) MPa 

  = – 65 MPa = 65 MPa (Compressive)

Hence, the end thrust is

 P  = 65  106  
π
4   (180  10–3)2 = 1.65  106 N Ans

14.6 OTHER CASES OF COMBINED LOADINGS 
Some more general cases of combined loadings are considered here, in which members may be 

the combined effect of all these stresses are similar. Examples under this category include eccentric 
loading, masonry dams, chimney and retaining walls.

14.6.1 Eccentric Loading on One Axis (Single Eccentricity)
Eccentric loading is a special case of combined bending and axial loads. For example, the 
eccentric load on a short column produces bending moment as well as direct compressive load. In  
Fig. 14.17 (a), a short column of cross-sectional area A and length l is subjected to an axial load P, 
which passes through the centroid G of the cross-section. The compressive normal stress produced 
in this case is equal to (P/A), which is distributed uniformly over the cross-section of the column. 
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(a) Axial load without eccentricity (e = 0)           (b) Axial load with eccentricity ‘e’

Fig. 14.17

In many examples of engineering applications, the applied load does not pass through the centroid 
of the section. This case is shown in Fig. 14.17 (b), where the axial load P is applied at any point 
that lies on one of the centroidal axes of the cross-section, producing an eccentricity e from another 
centroidal axis. The direct stresses produced in this case are not distributed uniformly over the 
cross-section. At the same time, considerable bending effect is produced. In order to evaluate its 
effect, the eccentric load is replaced by an axial direct load P and a bending moment M about 
the axis, which equals to (P×e) as shown in Fig. 14.18. Hence, when a member is subjected

Fig. 14.18  Equivalence of eccentric loading.
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to an eccentric load, it is equivalent to a member which is subjected to the combined loadings of 
axial load and bending. The axial load produces direct compressive stress  d which remains uniform 
throughout the section and equals to (P/A), where A is the cross-sectional area of the column. The 
bending moment M

 
σb

x
 = 

M
I y

which gives  b  =  
M
I
x
y⎛

⎝⎜
⎞
⎠⎟

= M
S

where  b   = Bending stress 

 S  = Section modulus of the cross-section

 Iy  = Moment of inertia of the cross-section about y-axis

 x  = Distance from the neutral axis

Consider two points A and B at the base of the column as shown in Fig. 14.18. The bending 
moment M produces bending stresses, namely the maximum tensile stress at point A and the 
maximum compressive  stress at point B. The normal stresses at points A and  can be determined by 
superimposing the direct and the bending stresses using the principle of superposition as given below.

The maximum normal stress at A is given as

 A =  – d + b = − +P
A

M
S

 ... (14.21)

or  A =  − +P
A

Pe
S

  (substituting M = Pe)   ... (14.22)

The maximum normal stress at B is given as

 B =  − −P
A

M
S

 =  − −P
A

Pe
S

or B =  − +⎛
⎝⎜

⎞
⎠⎟

P
A

Pe
S  ... (14.23)

It is important to note that the normal stress at B is always compressive, while the normal 
stress at A may be compressive, tensile or zero depending upon the eccentricity of the load. 
Equation (14.23) gives the maximum compressive stress at B. If a material is required to resist 
only compression as in case of concrete, which is very weak in resisting tension, a condition 
of maximum eccentricity is obtained. This condition ensures that no tensile stress is developed 
anywhere in the members, and  can be obtained by equating equation (14.22) to zero and solving 
for e.    
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Now let us consider a rectangular cross-section of the member having width b and depth d as 
shown in Fig. 14.19.

Fig. 14.19

The bending takes place about y-axis. The cross-sectional area A and the section modulus S are 
obtained as
 A  =  bd

 S  = 
I
x
y

   = 

1
12

2

3db

b⎛
⎝⎜

⎞
⎠⎟

 = db2

6

Substituting the values of A and S in equations (14.22) and (14.23), we have

 A  = – 
P

bd
Pe
db

+
⎛
⎝⎜

⎞
⎠⎟

2

6

 =  
P

bd
e

b
− +⎛

⎝⎜
⎞
⎠⎟

1 6
 ... (14.24)

and B  =  –
P

bd
Pe
db

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2

6

  = – �
P

bd
e

b
1 6+⎛
⎝⎜

⎞
⎠⎟

 ... (14.25)

For maximum eccentricity condition, put A = 0 in equation (14.24). It gives 

 e  = 
b
6

 ... (14.26)

This is the maximum eccentricity which ensures that the member is subjected to no tensile stress.
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Example 14.10
A short piller of cross-section 500 mm × 400 mm shown in Fig. 14.20 is subjected to a compressive 
force of 75 kN with an eccentricity of 60 mm. Determine the maximum and minimum normal stresses 
induced in the cross-section.  

Fig. 14.20

Solution: Given,
Compressive load on the pillar, P = 75 kN
Eccentricity of the load, e = 60 mm
Width of the cross-section, b = 500 mm
Depth of the cross-section, d = 400 mm
The area A of the cross-section is found as 

 A =  b × d
 =  500 mm × 400 mm = 2 × 105 mm2

The bending takes place about the y-axis, hence the moment of inertia I of the cross-section about 
the y-axis is given as

 Iy = 
1

12
400 500 3× × ( )  mm4 =  4.16 × 109 mm4

Section modulus,  S = 
I
b
y

2
⎛
⎝⎜

⎞
⎠⎟

 =  
4 16 10

500
2

9. ×
⎛
⎝⎜

⎞
⎠⎟

 = 1.67 × 107 mm3
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The bending moment M is given as

 M =  P × e

 =  75 × 103 × 60 N.mm

 =  4.5 × 106 N.mm

The direct stress due to compressive load P is

 d = – 
P
A

 = – 
75 10
2 10

3

5

×
× N/mm2

 =  – 0.375 N/mm2

 =  0.375 N/mm2 (Compressive)

The bending stress is

 b =  
M
S

 =  
4 5 10

1 67 10

6

7

.
.

×
× N/mm2

 =  0.270 N/mm2

The bending stress is tensile on the face AD and compressive on the face BC.
The maximum stress on the face AD is given as

 AD = – d + b

 =  (– 0.375 + 0.270) N/mm2

 =  – 0.105 N/mm2 Ans.

The maximum stress on the face BC is given as 
 BC = – d – b

 =  (– 0.375 – 0.270) N/mm2

 =  – 0.645 N/mm2 Ans.

Hence, both faces AD and BC are subjected to compressive stress.

14.6.2 Eccentric Loading on Two Axes (Double Eccentricity)
Single eccentricity is produced when the load is applied at any point on one of the centroidal axes 
of the section, but away from other centroidal axis. On the other hand, when the load is applied in 
such a manner that it does not lie on either of the centroidal axes, and is away from both axes, then 
it produces double eccentricity, that is, eccentricity is produced on both axes as shown in Fig. 14.21.
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Fig. 14.21 Double eccentricity on a section.

In order to evaluate the effect of  double eccentricity, the eccentric load P is replaced by an equivalent 
centroidal force and moments of the eccentric load about both centroidal axes. The equivalent centroidal 
force is P and its bending moments about the axes are Mx and My. Using the principle of superposition, 

normal stress. For any point A (x, y) on the section, the equation of the combined normal stress  is given as
   = – d ± b

  = – 
P
A

M
S

M
S

x

x

y

y
± ±  ... (14.27 (a))

  =  – 
P
A

Pe
I
y

Pe
I
x

y

x

x

y
±
⎛
⎝⎜

⎞
⎠⎟

±
⎛
⎝⎜

⎞
⎠⎟

Hence,   = − ± ±P
A

P y e
I

P x e
I

y

x

x

y
 ... (14.27 (b))

where d  =  Direct stress due to axial load which is always compressive 
 b  =  Bending stress along the two centroidal axes
 A  =  Cross-sectional area of the section
 Mx  =  Bending moment about the x-axis
  =  Pey

 My  =  Bending moment about the y-axis
  = Pex 
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 Sx  =  Section modulus along the x-axis
 Sy  =  Section modulus along the y-axis
 Ix  = Moment of interta of the section about the x-axis
 Iy  =  Moment of interta of the section about the y-axis
 ex  = Eccentricity on the x-axis
 ey  =  Eccentricity on the y-axis

Example 14.11
A load of 5 kN is acting at one of the corner points D of a rectangular section ABCD as shown in  
Fig. 14.22 (a). Determine the normal stresses at all the corner points.

(a) Load with double eccentricity            (b) Equivalent load P and moments Mx and My

Fig. 14.22

Solution: Given,

Eccentric load,  P = 5 kN
Width of the cross-section,  b = 40 mm
 =  40 × 10–3 m
Depth of the cross-section,  d = 60 mm
 = 60 × 10–3 m

Eccentricity on x-axis,  ex = 
40
2

 =  20 mm

 = 20 × 10–3 m

Eccentricity on y-axis,  ey =  
60
2

 = 30 mm

 =  30 × 10–3 m
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The eccentric load is converted into an axial compressive force P and bending moments Mx and 
My as shown in Fig. 14.22 (b). 

The bending moments Mx and My are given as

 Mx = P × ey

 =  5 × 30 × 10–3 = 0.15 kN.m

 My = P × ex

 = 5 × 20 × 10–3  = 0.1 kN.m

The cross-sectional area A is given as

 A =  b × d

 =  (40 × 10–3) × (60 × 10–3) = 2.4 × 10–3 m2

The moments of inertia of the cross-section about x and y axes are given as

 Ix =  
1

12
40 10 60 103 3 3

× × × ×( )− −( )  = 7.2 × 10–7 m4

 Iy =  
1

12
60 10 40 103 3 3× × × ×− −( ) ( )  = 3.2 × 10–7 m4

The section moduli of the cross-section about x and y axes are given as

 Sx =  
I
y
x

 =  
7 2 10
30 10

7

3
. ×
×

−

− = 2.4 × 10–5 m3

 Sy =  
I
x
y

 =  
3 2 10
20 10

7

3

. ×
×

−

−  = 1.6 × 10–5 m3

Now the normal stresses at the corner points A, B, C and D of the cross-section are obtained using 
equation (14.27 (a)) as given below:

 A = − + −P
A

M
S

M
S

x

x

y

y

 =  −
×

+
×

−
×− − −

5
2 4 10

0 15
2 4 10

0 1
1 6 103 5 5.

.
.

.
.
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 =  (– 2083.34 + 6250 – 6250) kN/m2

 =  – 2083.34 kN/m2

 =  2083.34 kN/m2 (Compressive) Ans.

The direct compressive stress (P/A) is uniform across the cross-section.

 B = – 
P
A

M
S

M
S

x

x

y

y
+ +

 = (– 2083. 34 + 6250 + 6250) kN/m2

 = 10416.66 kN/m2 (Tensile) Ans.

 C = − − +P
A

M
S

M
S

x

x

y

y

 =  (– 2083.34 – 6250 + 6250) kN/m2 = – 2083.34 kN/m2

 =  2083.34 kN/m2 (Compressive) Ans.

 D =  − − −P
A

M
S

M
I

x

x

y

y

 =  (– 2083.34 – 6250 – 6250) kN/m2 =  – 14583.34 kN/m2

 =  14583.34 kN/m2 (Compressive)  Ans.

14.6.3  Biaxial Bending
The biaxial bending involves bending of a member along two axes. It occurs when the applied load 
is inclined at an angle with the vertical plane of symmetry (xy-plane) as shown in Fig. 14.23.

Fig. 14.23
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A point load P is applied at the free end of the member at an angle  with the y-axis of symmetry. To 
Py and Pz along y and z axes respectively, 

which also happen to be the axes of symmetry of the section of the member. Both Py and Pz contribute 
in the bending of the member by producing bending moments about the two axes. The load Py bends 
the member about the horizontal axis (x-axis) and the load Pz bends the member about the vertical 
axis (y-axis). The bending stresses are produced by the bending moment components along the 
longitudinal direction. Using the principle of superposition, these stresses are added algebraically     

Example 14.12 
A  4 m long simple beam having cross-section 200 mm × 250 mm carries a central point load of  
15 kN and is supported at the ends in the tilted position as shown in Fig. 14.24. Determine the 
maximum bending stresses produced in the beam.

Fig. 14.24

Solution: Given,
Point load,  W = 15 kN
Angle of tilt of the beam,   = 30°
Width of the beam,  b =  200 mm
Depth of the beam,  d =  250 mm

Calculation of Moments of Inertia
The moment of inertia of the cross-section of the beam about the z-axis is found as

 Iz =  
1

12
3×bd

 =  
1

12
200 250 3× × ( )

 =  2.6 × 108 mm4
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 =  2.6 × 108 × 10–12 m4

 =  2.6 × 10–4 m4

The moment of inertia of the cross-section about the y-axis is given as

 Iy =  1
12

3× db

 = 
1

12
250 200 3× × ( )

 =  1.67 × 108 mm4

 =  1.67 × 108 × 10–12 m4

 =  1.67 × 10–4 m4

Calculation of section modulus
The section modulus of the cross-section along z and y axes are given as

 Sz =  
I
y
z

 =  
2 6 10
250 10

2

4

3
. ×

×⎛
⎝⎜

⎞
⎠⎟

−

−  =  2.08 × 10–3 m3

 Sy =  
I
z
y

 =  
1 67 10
200 10

2

4

3

. ×
×⎛

⎝
⎜

⎞

⎠
⎟

−

−  =  1.67 × 10–3 m3

Load and bending moment components
The point load W is resolved into components Wy and Wz along y and z axes respectively as
 Wy =  W cos 30°
 =  15 × cos 30°
 =  13 kN
 Wz =  W sin 30°
 =  15 × sin 30°
 =  7.5 kN

Since the maximum bending moment due to point load W is 
Wl
4

, which occurs at the midspan of 

the beam, hence the bending moment components My and Mz about the axes are given as

 My = 
W lz

4
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 =  
7 5 4

4
. ×

 =  7.5 kN.m

My produces tension on the face AD and compression on the face BC of the beam.

 Mz =  
W ly

4
 =  

13 4
4
×

 =  13 kN.m

Mz produces tension in the layer CD and compression in the layer AB of the beam.

Calculation of bending stresses
The maximum bending stress due to bending about the z-axis is given as

 1 =  
M
S

z

z

 =  
13 10

2 08 10
1

10

3

3 6

×
×

×−.
MPa

 =  6.25 MPa

The maximum bending stress due to bending about the y-axis is given as

 2 =  
M
I

y

y

 =  
7 5 10

1 67 10
1

10

3

3 6

.
.

×
×

×− MPa

 =  4.5 MPa
Now the bending stresses at the corner points A, B, C and D of the cross-section of the beam at the 

midspan are found using the principle of superposition as

 A =  – 1 + 2

 =  (– 6.25 + 4.5) MPa

 =  – 1.75 MPa

 =  1.75 MPa (Compressive)

 B = – 1 – 2

 =  (– 6.25 – 4.5) MPa

 =  – 10.75 MPa

 = 10.75 MPa (Compressive)
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 C = + 1 – 2

 =  (+ 6.25 – 4.5) MPa

 =  + 1.75 MPa (Tensile)

 D = + 1 + 2

 =  (+ 6.25 + 4.5) MPa

 =  + 10.75 MPa (Tensile)

Hence,

Maximum tensile bending stress = D = 10.75 MPa Ans.

Maximum compressive bending stress = B = 10.75 MPa Ans.

14.6.4 Loading on a Chimney

smoke to the atmosphere.  It has a hollow circular, square or rectangular cross-section. The chimney  
forms a case of combined bending and axial loads. It is subjected to horizontal wind pressure which 
causes bending and its self-weight produces direct stress. The normal stresses due to bending and 
direct loads are superimposed by using the principle of superposition taking due accounts of positive 

The common cross-sections of a chimney are shown in Fig. 14.25.

 (a) A circular  section  (b) A square section (c) A rectangular section

Fig. 14.25

Let us consider a cylindrical chimney of height H, outer diameter D and inner diameter d, being  
subjected to a wind pressure p as shown in Fig. 14.26. The wind pressure acts horizontally on 
the chimney and its intensity depends on the shape of the exposed projected area and height of  
the chimney. It tends to bend the chimney, and the maximum bending moment is produced at the base 
of the chimney, which forms the most critical point.
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Fig. 14.26 A cylindrical chimney.

The force P produced by the wind pressure is found as 
 P  =   p × Ap × C ...(14.28)
where p =  Wind pressure = K.yn

 K =  A constant
 y =  Height component
 n =  A positive exponent
 Ap  =  Projected area 
 C

The maximum bending moment due to the wind force P

 M = P × 
H
2

 ...(14.29)

 b = 
M D

I y

× ⎛
⎝⎜

⎞
⎠⎟2
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where   Iy =   Moment of inertia of the cross-section of the chimney about the centroidal  
axis (the y-axis)

    = 
π
64

4 4( )D d−

On substituting M and Iy in the equation of bending stress, we get 

   b = 
16

4 4
PHD

D dπ ( )−    ...(14.30)

Effect of self-weight
The self-weight W of the chimney acts through its centre of gravity (G). It produces direct stress, 
which is uniformly distributed across the cross-section of the chimney, and is always compressive, 
given as

   d  = 
W
A

= 
4

2 2

W
D dπ ( )−    ...(14.31)

where  d  =  Direct compressive stress
 A  =  Cross-sectional area of the chimney

  =  
π
4

2 2( )D d−

The self-weight of the chimney can be found as

 W  =  ρ
π× − × ×
4

2 2( )D d H g    ...(14.32)

where    =  Density of the masonry material
 g  =  Acceleration due to gravity  =  9.8 m/s2

W ) in kN/m3 or N/m3.

Example 14.13
A 25 m high masonry cylindrical chimney having outside diameter 2.5 m and inside diameter 1.25 m 
is subjected to a horizontal wind pressure that varies as y2/3, where y is the height above the ground. 
If the unit weight of masonry is 22.4 kN/m3

at a height of 30 m is 1.5 kN/m2, determine the maximum and minimum stresses induced at the base 
of the chimney.

Solution: Given,

Height of the chimney,  H  = 25 m
Outside diameter of the chimney,  D  = 2.5 m
Inside diameter of the chimney,  d  = 1.25 m
Shape factor,  C
Unit weight of masonay  m  = 22.4 kN/m3
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 The cross-sectional area A of the chimney is found as 

 A =  π
4

2 2( )D d−

 =  
π
4

2 5 1 252 2( . ) ( . )−⎡⎣ ⎤⎦  =  3.68 m2

The moment of inertia of the cross-section of the chimney about the centroidal axis is determined 
as 

 Ix = Iy = 
π
64

4 4( )D d−   =  
π
64

2 5 1 254 4( . ) ( . )−⎡⎣ ⎤⎦  =  1.8 m4

Calculation of direct stress
The weight of the chimney W is given as
 W =  Unit weight of masonry × Volume of the chimney
 = m × A × H
 =  22.4 × 3.68 × 25 kN =  2060.8 kN

Fig. 14.27

The direct stress d due to the weight of the chimney is 
compressive, given as

 d =  – 
W
A

 = −
2060 8
3 68

.
.  

 =   – 560 kPa

 =  560 kPa (Compressive)

Calculation of bending stress
The wind pressure can be expressed as

 p  =  K.y2/3   
 1.5  =  K . (30) 2/3

which gives
 K  =  0.155
Hence,  p  =  0.155 y2/3

Now consider a chimney element of thickness dy at a height y 
from the base of the chimney as shown in Fig. 14.27. Two points 
A and B are considered at the base of the chimney.

The force exerted on the element by the wind pressure p can be expressed as

 dP =  p × Ap × C
 =  0.155 y2/3 × 2.5 × dy × 0.6  (as Ap = D × dy)
 =  0.2325 y2/3 dy
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The moment of the force on the element about the base of the chimney is

 dM =  0.2325 y2/3 dy × y

 =  0.2325 y5/3 dy

Hence, the total moment of the wind pressure about  the base is given as

 M =  dM
0

25

∫  =  0 2325 5 3

0

25

. /y dy∫  =  0 2325 5 3

0

25

. /y dy∫

 =  0 2325
5
3

1

5 3 1

0

25

.
/y +

+⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 =  0 2325 8
3

8 3

0

25

.
/y

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 =  
0 2325 3

8
258 3. /× ×

 =  465.9 kN.m

Now the bending stress b is determined as

 b =  
M
I

D

y
× ⎛
⎝⎜

⎞
⎠⎟2

  =  
465 9
1 8

2 5
2

.
.

.×⎛
⎝⎜

⎞
⎠⎟

 =  323.54 kPa

The tensile bending stress is produced at A and compressive bending stress at B.
Hence,
The maximum normal stress at B is

 max =  B = – d – b

 =  (– 560 – 323. 54) kPa = – 883.54 kPa

 =  883.54 kPa (Compressive) Ans.

The minimum normal stress at A is

 min =  A = – d + b =  (– 560 + 323.54) kPa

 =  – 236.46 kPa  =  236.46 kPa (Compressive) Ans.

14.6.5  Loading on a Dam
A dam is a vertical engineering structure, which is constructed across a river to retain water for the 
purpose of irrigation or electricity generation. It is usually of rectangular or trapezoidal section, and 
is made of earth, masonry or cement concrete.
Loading on a dam is another case of combined bending and axial loads. It is subjected to water 
pressure and its self-weight.
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Let us consider a trapezoidal dam of unit length having cross-section ABCD as shown in Fig. 14.28 
with the following details.

Fig. 14.28 A trapezoidal dam subjected to water pressure of height h.

         Let H =  Height of the dam
 l =  Length of the dam = 1 m (assumed)
 a = Top width of the dam
 b = Base width of the dam
 h = Height or depth of water retained  by the dam
 w

   =  w g  = 9800 N/m3

 w = Density of water = 1000 kg/m3

 g =  Acceleration due to gravity = 9.8 m/s2

 m

 = m g 
 m = Density of the dam material
 P = Water pressure

Weight consideration
The weight of the dam acts in the downward direction through its centre of gravity G. The distance 
of the C.G. from the vertical face AD of the dam is x , given as  

 x =  
a ab b

a b

2 2

3
+ +

+( )
 (see Table 3.1)...(14.33)
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The weight per metre length of the dam is given as
 W × Volume of the dam 

  =  γm a b H× × + × ×1
2

1( )  (l = 1 m)

  = 
γm a b H( )+

2
   ... (14.34)

The weight of the dam produces direct stress d at the base, and is given as

 d  =  −
×

W
b l

= −
×

W
b 1

= –
W
b

 ... (14.35)

The stress is uniformly distributed across the base, and is always compressive.

Pressure consideration
Water exerts horizontal pressure on the dam. The pressure is zero at the free surface of water and 
increases linearly with increase in depth to become maximum at the base of the dam. The total water 
pressure P acts in the horizontal direction at one-third height of water (h/3) from the base of the dam, 
because of the triangular pressure distribution, and is given as 
   P  =  Area of the triangular pressure distribution

 =  
1
2
× ×γ wh h   =  

γ wh2

2  ...(14.36)

In the above equation, the base of the pressure triangle is the water pressure at the base, which 
is wgh = wh. P causes sliding of the dam. To balance it, the maximum frictional resistance W is 
setup at the base of the dam, where 
Similarly, P also produces an overturning moment, which can overturn the dam about the point B, 
called toe. The weight of the dam W provides a restoring moment about B.

Combined effect
The weight W, which constitutes the stabilizing moment, can be transferred to act at points O, using 
the principle of transmissibility so that both forces W and P are acting at O, and their resultant force 
R cuts the base of the dam at point E.

Let  EF =  x = Distance between the line of action of W and E 

Using  ME =  0, we have

 W × x = P h×
3

which gives x = 
Ph
W3

 ... (14.37)

The vertical component of R, that is, the weight W, while acting at E forms a case of eccentric 
loading on the base along with producing a direct compressive stress d at the base of the dam as 
given by equation (14.35). The eccentric loading produces bending moment, which in turn, produces 
bending stress at the base.
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The bending moment M about the centre of the base, that is, point H is given as
 M = We ...(14.38)

The bending stress b produced on the base on 1 m length is given as

 b =  
M
I

y.  (using bending formula)

 =  
We b

b

×

× ×
2

1
12

1 3

 = 
6

2
We
b

 ...(14.39)

The bending stress is tensile at A and compressive at B.
Hence,
The maximum normal stress produced at B is

 max = – d – b ...(14.40)

 = – 
W
b

We
b

− 6
2

 =  – 
W
b

e
b

1 6+⎛
⎝⎜

⎞
⎠⎟  ...(14.41)

The minimum normal stress produced at A is

 min =  – d + b ...(14.42)

 = – 
W
b

We
b

+ 6
2 =  – W

b
e

b
1 6−⎛
⎝⎜

⎞
⎠⎟

 ...(14.43)

The normal stress at B is always compressive, whereas the normal stress at A may be tensile or 
compressive both. The development of tensile normal stress at A is not desirable as the dam material 
cannot resist tension. At the same time, the maximum normal stress at B must be less than the 
permissible value of the compressive stress of the dam material, otherwise the dam will be crushed. 

Eccentricity
The eccentricity e is expressed as

 e =  ( )x x b+ − ⎛
⎝⎜

⎞
⎠⎟2  ... (14.44)

In case x x+( ) is greater than b
2

⎛
⎝⎜

⎞
⎠⎟

, the eccentricity is given by equation (14.44), and when x x+( )  

is less than b
2

⎛
⎝⎜

⎞
⎠⎟

, then the eccentricity can be given as

 e =  
b x x
2

⎛
⎝⎜

⎞
⎠⎟
− +( )  ...(14.45)
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For no tension to develop  at point A on the base of the dam, equation (14.43) is equated to zero, 
which gives
 e = b

6
  ...(14.46)

Hence, for the dam to be safer in tension, e b≤
6

.

Safety check for the dam
A dam is tested for four parameters, namely the maximum compressive stress at base, no tension 

 The maximum compressive stress max developed at the base of the dam, as given by equation 
(14.40), must be less than the permissible compressive stress of the dam material to prevent 
crushing of the dam.  

 Eccentricity e b≤
6

 to ensure that no tension is developed at the base of the dam. 

 Factor of safety (n) against sliding = 
μW
P

≥1 5. , wher
dam material and earth.

 Factor of safety (n) against overturning = 
Resisting moment

Overturning moment
= −

× ⎛
⎝⎜

⎞
⎠⎟
≥W b x

P h
( )

3

2

Example 14.14
A masonry dam of trapezoidal section has a top width of 2.5 m, base width of 5 m and a height of  
12 m. It retains water to a depth of 10 m. Determine the maximum and the minimum stress induced 

3 3. 

Solution: Refer Fig. 14.29.

Fig. 14.29
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Given,
Height of the dam,  H  = 12 m
Top width of the dam,  a  = 2.5 m
Base width of the dam,  b  = 5 m
Height of water retained,  h  = 10 m

w  = 10 kN/m3 = 10 × 103 N/m3

m  = 20 kN/m3 = 20 × 103 N/m3

Let us consider 1 m length of the dam.
The cross-sectional area of the dam is

 A  = 
1
2
× + ×( )a b H

  = 
1
2

2 5 5 12× + ×( . )  =  45 m2

The moment of inertia of the base section per metre length of the dam is given as

 I  =  
1

12
1 3× × b  =  

1
12

1 53× ×  =  10.42 m4

The weight per metre length of the dam is

 W  = 
γ m a b H( )+

2
 =  

20 2 5 5 12
2

× + ×( . )
 =  900 kN

The distance x at which the weight W acts, is given as

 x  = 
a ab b

a b

2 2

3
+ +

+( )
 (using equation (14.33)) 

  = 
( . ) ( . ) ( )

( . )
2 5 2 5 5 5

3 2 5 5

2 2+ × +
+  = 1.944 m

The horizontal water pressure P per metre length is obtained using equation (14.36) as

 P  =  
γw h2

2   =  
10 10

2

2× ( )
 =  500 kN 

P acts at 
h
3

= 
10
3

=  3.34 m from the base.

Using ME = 0, we have

 W × x = P × 3.34

 x =  
P

W
×3 34.

 =  
500 3 34

900
× .

 =  1.855 m
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Now  ( x x+ ) =  1.944 + 1.855 = 3.8 m

and  
b
2

  = 
5
2

= 2.5 m

The eccentricity e is given as
 e =  x x b+( ) −

2
 = 3.8 – 2.5 m =  1.3 m

The bending moment M is given as

 M =  We (using equation (14.38))
 =  900 × 1.3  =  1170 kN.m
The bending stress is

 b =  
6

2
We
b

 (using equation (14.39))

 =  
6 900 1 3

52

× × .
 =  280.8 kN/m2  =  280.8 kPa

The direct stress due to weight W is

 d =  −
W
b

 (using equation (14.35))

 =  −
900

5
 =  – 180 kN/m2  =  180 kPa (Compressive)

Hence,
The maximum normal stress at B is 
 max = – ( d + b) (using equation (14.40))
 = – (180 + 280.8) kPa = – 460.8 kPa
 =  460.8 kPa (Compressive) Ans.
The minimum normal stress at A is 
 min = – d + b (using equation (14.42))
 = (– 180 + 280.8) kPa 
 =  100.8 kPa (Tensile) Ans.

14.6.6 Loading on Retaining Walls
Retaining walls are the engineering structures which are used to retain earth, soil, sand etc. and 
sustain their lateral pressures. Basement walls and dams are the examples of retaining walls. Loading 
on retaining walls is a case of combined bending and axial loads. The walls are subjected to active 
soil pressure that acts horizontally. The design analysis of the retaining walls involves ensuring their 

at their base. The trapezoidal section is the most commonly used cross-section for the retaining walls. 
A trapezoidal retaining wall is shown in Fig. 14.30 showing all the relevant parameters.
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Fig. 14.30 A trapezoidal retaining wall.   

The stress analysis of a retaining wall is similar to that of a dam. We have seen in case of a dam 
that water retained exerts horizontal pressure on the dam, but here it is soil which the wall retains, 
and exerts lateral active pressure on the vertical face of the retaining wall in the horizontal direction. 
It is equivalent to a single horizontal force that acts as a resultant, and is called lateral thrust.

Considering 1 m length of the retaining wall, the total lateral thrust P
theory, is given as

 P =  
γ φ

φ
sh

2

2
1
1
⋅ −

+
sin
sin

  ...(14.47)

where  h = Height of the soil retained

 =  Height of the retaining wall (H)

 s

  =  Angle of repose of soil

The soil pressure distribution diagram is triangular, hence the thrust P acts at one-third height of 
the pressure diagram, and has the tendency to rotate the wall about the point B, called toe. Resistance 
to this rotation is offered by the weight of the wall itself and by the weight of the soil above the base.

The distances x and x are found by using equations (14.33) and (14.37) respectively. Equations 
(14.35) and (14.39) are used to determine direct and bending stresses respectively. The maximum 
and minimum pressure intensities at the base of the wall are determined by using equations (14.40) 
or (14.41) and equations (14.42) or (14.43) respectively. 
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Example 14.15
A masonry retaining wall of trapezoidal section is 9 m high, 2 m wide at top and 4 m wide at the 
bottom. The vertical face of the wall retains soil of unit weight of 12 kN/m3 to a full height. Determine 
the maximum and minimum pressure intensities at the base of the wall. The unit weight of masonry 
is 20 kN/m3 and the angle of repose of soil is 30°.

Solution : Refer Fig. 14.31.
Given,

 Height of the retaining wall,  H  = 9 m
 Height of the soil retained,  h  = H = 9 m
Top width of the retaining wall,  a  = 2 m
Base width of the retaining wall,  b  = 4 m,
Unit weight of masnory,  m  = 20 kN/m3

Unit weight of soil,  s  = 12 kN/m3

Angle of repose of soil,    = 30°
Let us consider 1 m length of the retaining wall. The weight of the retaining wall is given as

 W  = γ m a b H× × + × ×1
2

1( )  

  = 20 1
2

2 4 9× × + ×( )  =  540 kN

Fig. 14.31 
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The weight of the retaining wall acts at its centre of gravity G. The distance of the C.G. from the 
vertical face AD of the wall is x , given as

 x =  
a ab b

a b

2 2

3
+ +

+( )
 =  

2 2 4 4
3 2 4

2 2+ × +
+( )  =  1.56 m

 The lateral pressure of the soil exerted on the vertical face AD is 

 P = 
γ φ

φ
sH 2

2
1
1
⋅ −

+
sin
sin

 = 
12 9

2
1 30
1 30

2× × − °
+ °

sin
sin  =  162 kN

The lateral pressure P and weight W produce a resultant force R, which cuts the base at point E as 
shown in Fig. 14.31.

Using  ME = 0, we have

 W × x = P H×
3

or x = 
P H

W
×

3

 = 
162 9
3 540

×
×

 = 0.9 m

H is the midpoint of the base, that is, AH = BH = 
b
2

 = 
4
2

 = 2 m

Now ( x + x) = (1.56 + 0.9) m = 2.46 m

The eccentricity e is given as

 e =  x x b+( ) −
2

 =  (2.46 – 2) m  =  0.46 m

Point A on the base of the retaining wall experiences tension because of eccentric loading  by the 
weight of the wall and point B experiences compression. 

Hence,
The maximum pressure intensity produced at B is

 max =  − +⎛
⎝⎜

⎞
⎠⎟

W
b

e
b

1 6
   (using equation (14.41))

 =  − + ×⎛
⎝⎜

⎞
⎠⎟

540
4

1 6 0 46
4

.
 =  – 228.15 kN/m2

 =  228.15 kN/m2 (Compressive) Ans.



Combined Loadings  675

The minimum pressure intensity produced at A is

 min =  − −⎛
⎝⎜

⎞
⎠⎟

W
b

e
b

1 6
  (using equation (14.43))

 =  − − ×⎛
⎝⎜

⎞
⎠⎟

540
4

1 6 0 46
4

.
 =  – 41.85 kN/m2

 =  41.85 kN/m2 (Compressive) Ans.

Example 14.16
Determine the base width of a masonry trapezoidal retaining wall of 8 m height and 2 m top width to 
retain earth upto the top. Weight of soil and masonry are 18 kN/m3 and 22 kN/m3 respectively. Angle 

the maximum base pressure at the known base width.
Solution:  Refer Fig. 14.32.  

Fig. 14.32

H  =  8 m
h  =  H = 8 m
a  =  2 m

s  =  18 kN/m3

m  =  22 kN/m3

  = 30°
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Let b be the base width which ensures no tension at the base of the retaining wall. Consider 1 m length 
of the retaining wall.

The total thrust exerted by soil, which acts horizontally on the vertical face AD of the wall is

 P =  
γ φ

φ
sH

2

2
1
1
⋅ −

+
sin
sin

 =  18 8
2

1 30
1 30

2× × − °
+ °

sin
sin

 = 192 kN

The weight of the retaining wall W is given as

 W =  γ m a b H× × + × ×1
2

1( )

 =  22 1
2

2 8 1× × + × ×( )b  =  88 (2 + b) kN

The distance x is calculated as

 x = – a ab b
a b

2 2

3
+ +

+( )

 = – 
2 2

3 2

2 2+ +
+
b b

b( )  =  
4 2

3 2

2+ +
+
b b

b( )

Using  ME =  0, we have

 W × x =  P H×
3

which gives  x =  PH
W3

 =  
192 8

3 88 2
×

× +( )b
 =  

5 82
2

.
( )+ b

Now ( )x x+  =  
4 2

3 2
5 82
2

2+ +
+

+
+

b b
b b( )

.
( )

 =  
4 2 3 5 82

3 2

2+ + + ×
+

b b
b
( . )

( )
 =  21 46 2

3 2

2.
( )
+ +
+

b b
b

The eccentricity e is given as

 e =  ( )x x b+ −
2

 =  
21 46 2

3 2 2

2.
( )
+ +
+

−b b
b

b
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For no tension to develop at the base of the retaining wall, we have

 e  =  
b
6

 (using equation (14.46))

 
21 46 2

3 2 2

2.
( )
+ +
+

−b b
b

b
  =  

b
6

 
21 46 2

3 2

2.
( )
+ +
+

b b
b

 =  
b b
6 2
+ = 

2
3
b

 64.38 + 6b + 3b2  =  12b + 6b2

 6b2 – 3b2 + 12b – 6b – 64.38  = 0
 3b2 + 6b – 64.38  =  0

which gives  b  =  
− ± − × × −

×
6 6 4 3 64 38

2 3

2( ) ( . )

  =  
− ±6 28 43

6
.

  =  3.74 m   or  – 5.74 m

Negative value of b does not carry any meaning, therefore it is neglected.
 Accept b =  3.74 m
Hence, the base width of the retaining wall is b = 3.74 m  Ans.
Now the maximum compressive pressure at the base of the wall is given as

 max =  
W
b

e
b

1 6+⎛
⎝⎜

⎞
⎠⎟

 (using equation (14.41))

 =  
88 2 1 6( )+ +⎡

⎣⎢
⎤
⎦⎥

b
b

e
b

 =  
88 2 3 74

3 74
1 6 3 74

3 74 6
( . )

.
.

.
+ + ×

×
⎡
⎣⎢

⎤
⎦⎥

 e b=⎛
⎝⎜

⎞
⎠⎟6  

 =  270.11 kN/m2  Ans.

Example 14.17
A 5 m high masonry retaining wall has top width of 1 m and base width of 3 m. Upto what height 
a soil weighing 15 kN/m3 can be retained by the wall so that the maximum pressure at the base is  
1.2 times the minimum pressure at the base. The weight of masonry is 20 kN/m3 and the angle of 
repose of soil is 30°.
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Solution: 
Refer Fig. 14.33.

Fig. 14.33

Given, 
Height of the retaining wall,  H  = 5 m
Top width of the retaining wall,  a  = 1 m
Base width of the retaining wall,  b  = 3 m
Unit weight of masonry,  m  = 20 kN/m3

Unit weight of soil,  s  = 15 kN/m3

Angle of repose of soil,    = 30°
Let h be the height of soil retained against the vertical face AD of the retaining wall and consider  
1 m length of the wall.

The distance x from the face AD, where the centre of gravity of the weight of the retaining wall 
acts, is given as

 x =  
a ab b

a b

2 2

3
+ +

+( )
 (using equation (14.33))

 =  
1 1 3 3

3 1 3

2 2+ × +
+( )

 =  
1 3 9

3 4
+ +
×

 =  1.083 m

The total thrust due to pressure of soil of height h exerted on the face AD is given as

 P =  
γ φ

φ
sh

2

2
1
1
⋅ −

+
sin
sin
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 =  
15

2
1 30
1 30

2h × − °
+ °

sin
sin  =  2.5 h2

The weight of the retaining wall is 

 W =  γ m a b H× × + × ×1
2

1( )

 =  20 1
2

1 3 5 1× × + × ×( )  =  20 1
2

4 5× × ×  =  200 kN

Using  ME =  0, we have

 W × x =  P h×
3

 x =  
Ph
W3

 ...(1)

On substituting P and W in equation (1), we get 

  = 
2 5
3 200

2. h h×
×

 =  
2 5
600

3. h

The eccentricity e is calculated as

 e =  ( )x x b+ −
2

 =  1 083 2 5
600

3
2

3

. .+ −h

 =  
2 5
600

0 417
3. .h −  ...(2)

The maximum pressure (ignoring sign) exerted at the base of the retaining wall is 

 max =  
W
b

e
b

1 6+⎛
⎝⎜

⎞
⎠⎟  (using equation (14.41))

The minimum pressure (ignoring sign) exerted at the base of the retaining wall is

 min =  
W
b

e
b

1 6−⎛
⎝⎜

⎞
⎠⎟  (using equation (14.43))

Given,  max =  1.2 min

or 
W
b

e
b

1 6+⎛
⎝⎜

⎞
⎠⎟  = 1 2 1 6. × −⎛

⎝⎜
⎞
⎠⎟

W
b

e
b
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 1 6+ e
b

  = 1 2 7 2. .− e
b

6 7 2e
b

e
b

+ .
= 1.2 – 1

 
( . )6 7 2+ e

b
 = 0.2

 
13 2. e

b
 = 0.2

 13.2 e  = 0.2 × b

  = 0.2 × 3 =  0.6 (on substituting b)

which gives

 e = 0.0454 m

On substituting the value of e in equation (2), we have

 0.0454 =  
2 5
600

0 417
3. .h −

or 
2 5
600

3. h
=  0.0454 + 0.417 = 0.4624

 h3 =  
0 4624 600

2 5
.

.
×

 =  110.976

which gives 

 h =  4.8 m

Hence, the height of soil filled up, h = 4.8 m Ans.

Example 14.18
A masonry retaining wall of trapezoidal section has a height of 4.5 m. Its top width is 0.6 m and base 
width is 2.4 m. The vertical face of the wall retains soil of unit weight of 12 kN/m3 to a full height. 
Angle of repose of soil is 30°. If no tension in the wall is to be permitted, check the safety of the wall 
at the base. If unsafe, calculate the height upto which the wall at the top with a width of 0.6 m should 
be raised so that no tension develops at the base. Unit weight of masonry is 20 kN/m3.
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Solution: Refer Fig. 14.34.

Fig. 14.34

Given, 
Height of the retaining wall,  H  = 4.5 m
Height of the soil retained,  h  = H = 4.5 m
Top width of the retaining wall,  a  = 0.6 m
Base width of the retaining wall,  b  = 2.4 m
Unit weight of soil,  s  = 12 kN/m3

Unit weight of masonry,  m  = 20 kN/m3

Angle of repose of soil,    = 30°.
Consider 1 m length of the retaining wall.
The total thrust P exerted by soil on the vertical face AD of the wall is given as

 P =  
y Hs

2

2
1
1
⋅ −

+
sin
sin

φ
φ

 =  
12 4 5

2
1 30
1 30

2× × − °
+ °

. sin
sin

 =  40.5 kN

The weight of the retaining wall W is given as

 W = γm a b H× × + × ×1
2

1( )

 =  20 1
2

0 6 2 4 4 5 1× × + × ×( . . ) .  =  135 kN
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The distance x  is calculated as

 x =  
a ab b

a b

2 2

3
+ +

+( )

 =  
( . ) ( . . ) ( . )

( . . )
0 6 0 6 2 4 2 4

3 0 6 2 4

2 2+ × +
× +

 =  0.84 m

Using  ME = 0, we have

 W × x =  P H×
3

which gives  x = 
PH
W3

 =  
40 5 4 5

3 135
. .×
×

 =  0.45 m

  The eccentricity e is given as

 e =  ( )x x b+ −
2

 =  ( . . ) .0 84 0 45 2 4
2

+ −  =  0.09 m

Safety check
For no tension to develop at the base of the retaining wall, we have

 e = 
b
6

 = 
2 4
6
.

= 0.4 m

Since 0.09 m < 0.4 m, hence the wall is safe in tension at the base of the wall. Ans.

Example 14.19
A 6 m high masonry retaining wall of top width 1 m and base width 3 m retains earth level with the 
top on its vertical back. Safe bearing capacity of soil is 18 t/m2

wall and earth = 0.6, unit weight of soil is 1920 kgf/m3 and unit weight of masonry is 2500 kgf/m3. 
Angle of repose of soil is 30°. Examine the stability of the wall. 
Solution: 
Refer Fig. 14.35.

Given,
Height of the retaining wall,  H  = 6 m
Height of the soil retained,  h  = H = 6 m
Top width of the retaining wall,  a  = 1 m
Base width of the retaining wall,  b  = 3 m
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Unit weight of soil,  s  = 1920 kgf/m3

 Unit weight of masonry,  m  = 2500 kgf/m3

Angle of repose of soil,    = 30°

Fig. 14.35

Considering 1 m length of the retaining wall, the total lateral thrust P acting on the vertical face of 

 P =  
y hs

2

2
1
1
⋅ −
+

sin
sin

φ
φ

 =  
1920 6

2
1 30
1 30

2× × − °
+ °

sin
sin  =  11520 kgf

The weight of the retaining wall is given as

 W =  γm a b H× × + × ×1
2

1( )

 =  2500 1 3 6 1× × + × ×1
2

( )  =  30,000 kgf

The weight of the retaining wall acts at its centre of gravity G  
x , given as

 x =  
a ab b

a b

2 2

3
+ +

+( )  =  
1 1 3 3

3 1 3

2 2+ × +
+( )
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 =  
1 3 9

3 4
+ +
×

 =  1.083 m

Using  ME =  0, we have

 W × x =  P h×
3

which gives  x =  
Ph
W3

 =  
11520 6
3 30 000

×
× ,  = 0.768 m

The eccentricity e is calculated as

 e =  ( )x x b+ −
2

 =  1 083 0 768 3
2

. .+ −  =  0.351 m

Safety check against crushing
The maximum compressive stress developed at the base of the wall is given as

 max =  
W
b

e
b

1 6+⎛
⎝⎜

⎞
⎠⎟

   (using equation (14.41))

 = 
30 000

3
1 6 0 351

3
, .+ ×⎛

⎝⎜
⎞
⎠⎟

 = 17020 kgf/m2

The bearing capacity of soil is 18 t/m2 = 18,000 kgf/m2.

Since the maximum compressive stress developed at the base is less than the bearing capacity of 
soil, hence the retaining wall is safe against crushing.

Safety check against sliding
The maximum frictional resistance setup at the base of the retaining wall is

 μW =  0.6 × 30,000 =  18,000 kgf

 The factor of safety (n) =  
Maximum frictional resistance (μ )W

P

 =  
18 000
11520

,
 =  1.5625

Since n > 1.5, hence the retaining wall is safe against sliding.
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Safety check against overturning

The resisting moment  =  W ( )b x−
 =  30,000 × (3 – 1.083) =  57510 kgf.m

The overturning moment  =  P h×
3

 =  11520 6
3

×  =  23040 kgf.m

The factor of safety (n)  =  
Resisting moment

Overturing moment

 =  
57510
23040

 =  2.496

Since n > 2, hence the retaining wall is safe against overturning.

Safety check against no tension at base
For no tension to develop at the base of the wall, we have

 e  = 
b
6

= 
3
6

= 0.5 m

The calculated value of e = 0.351 m, which is less than 0.5 m. Hence, the wall is safe against no 
tension at the base.

Example 14.20
A masonry retaining wall of trapezoidal section and with a vertical face is 8 m high. Its top width is  
1 m and bottom width is 4 m. The weight of masonry is 20 kN/m3 and that of soil is 15 kN/m3. The 
angle of repose of soil is 30°. If the wall retains earth to its full height against the vertical face, 
determine the stresses developed at the base. What is the additional height up to which soil can be 

Solution:
Refer Fig. 14.36.

Given,
Height of the retaining wall,    = 8 m
Top width of the retaining wall,  a  = 1 m
Base width of the retaining wall,  b  = 4 m
Unit weight of masonry,  m  = 20 kN/m3

Unit weight of soil,  s  = 15 kN/m3

Angle of repose of soil,    = 30°
Initial height of soil retained = h = H = 8 m
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Fig. 14.36

Considering 1 m length of the retaining wall, the total thrust P acting on the vertical face of the 
retaining wall is given as

 P =  
γ φ

φ
sh

2

2
1
1
⋅ −

+
sin
sin

  =  
15 8

2
1 30
1 30

2× × − °
+ °

sin
sin  =  160 kN

The weight of the retaining wall is given as

 W =  γ m a b H× × + × ×1
2

1( )

 =  20 1
2

1 4 8 1× × + × ×( ) =  400 kN

The distance x =  
a ab b

a b

2 2

3
+ +

+( )
 =  

1 1 4 4
3 1 4

2 2+ × +
+( )  =  1.4 m

Using  ME =  0, we have

 W × x = P h×
3

which gives x = 
Ph
W3

 =  
160 8
3 400

×
×

 =  1.067 m

The eccentricity e is found as

 e =  ( )x x b+ −
2

 = 1 4 1 067 4
2

. .+ −  =  0.467 m
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Now 
b
6

=  
4
6 = 0.667 m

Since e = 0.467 m < 0.667 m, hence the wall develops no tension at the base.

The maximum compressive stress developed at the base of the wall is given as

 max =  
W
b

e
b

1 6+⎛
⎝⎜

⎞
⎠⎟  (using equation (14.41))

 =  
400
4

1 6 0 467
4

+ ×⎛
⎝⎜

⎞
⎠⎟

.

 =  170.05 kN/m2 Ans. 

The minimum stress developed at the base of the wall is given as 

 min = − −⎛
⎝⎜

⎞
⎠⎟

W
b

e
b

1 6
  (using equation (14.43))

 =  − − ×⎛
⎝⎜

⎞
⎠⎟

400
4

1 6 0 467
4
.

 =  – 29.95 kN/m2

 =  29.95 kN/m2 (Compressive) Ans.

Let h  be the additional height of the soil retained so as to develop no tension at the base of the wall.
Now the total height of the soil retained = (h + h )
The new total thrust P  is now given as

 P  = 
γ φ

φ
s h h( ) . sin

sin
+ ′ −

+

2

2
1
1

 = 
15 8

2
1 30
1 30

2× + ′ × − °
+ °

( ) sin
sin

h
 =  2.5 (8 + h )2

P  acts at  
h h'+⎛

⎝⎜
⎞
⎠⎟3 =  

8
3
+⎛

⎝⎜
⎞
⎠⎟

h'
from the base of the wall.

The weight of the wall corresponding to its new height (H + h ) is given as 

 W  =  y a b H h'm × × + × + ×1
2

1( ) ( )

 =  20 1
2

1 4 8 1× × + × + ×( ) ( )h'  =  50 ( 8 + h )

Using  ME = 0, we have

 W  × x1 =  P' h h'× +( )
3

 (for additional height of soil)
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which gives  x1 =  
P' h'

W'
( )8
3
+

 =  2 5 8 8
3 50 8

2. ( ) ( )
( )

+ × +
× +

h' h'
h'

 

 =   0.0167 (8 + h )2 (on substituting P  and W )

Now the eccentricity e is given as

 e =  ( )x x b+ −1 2
 =  1.4 + 0.0167 (8 + h )2 − 4

2
 (as x = 1.4 m will remain same)

 =  0.0167 (8 + h )2 – 0.6

 For no tension at the base of the wall, we have 

 e =  
b
6

 0.0167 (8 + h )2 – 0.6 = 0.667

 (8 + h )2 =  
0 667 0 6

0 0167
. .

.
+

 =  75.87

Solving, we get
 h  =  0.71 m

Hence, the additional height of the soil retained in order to have no tension at the base of the wall 
is 0.71 m. Ans.

 1. 
 2. 
 3. Give a few examples where a member is subjected to combined bending and axial load.
 4. Give a few examples where a member is subjected to combined bending and torsion.
 5. 
 6. 
 7. 

SHORT ANSWER QUESTIONS
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 1. The eccentric load on a column can produce 
   (a) direct tensile stress
   (b) direct compressive stress
   (c) direct compressive stress and bending moment both
   (d) direct compressive stress and shear stress both.  
 2. Consider the following statements about eccentric loading:
   1. It is a special case of combined bending and axial loads.
   2. Eccentricity occurs when the load line deviates from the axis of the member.
    3. For  no tension to develop at the base of a column, the value of the maximum eccentricity 

equals to one-sixth of the width of the section.
   4. An eccentric load can be suitably replaced by a centric load and a moment. 

   Of  these statements:
   (a) 1 and 2 are true   (b)  2 and 4 are true
   (c) 2, 3 and 4 are true   (d) 1, 2, 3 and 4 are true.
 3. The maximum value of the eccentricity which ensures that no tension is developed at the base 

of a column, when subjected to an eccentric load, is equal to 

   (a) one-third of the width (b) one-half of the width
   (c) one-sixth the width   (d) one-fourth of the width.
 4. A chimney is subjected to combined
   (a) bending and torsion loads (b) bending and axial loads
   (c) torsion and axial loads (d) bending, torsion and direct thrust.
 5. A marine propeller shaft is subjected to combined
   (a) bending and torsion loads (b) bending and axial loads
   (c) torsion and axial loads (d) bending, torsion and direct thrust.
 6. The horizontal water pressure at the base of a dam of height H is ( w

h = height of water column)

   (a) 
γ wh

2  (b) wh (c) 
γ wh

3
 (d) wH.

 7. A dam is designed for
   (a) maximum crushing stress (b) maximum bending stress
   (c) maximum shear stress (d) maximum eccentricity. 

MULTIPLE CHOICE QUESTIONS   
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 8. Consider the following statements:
   1. A retaining wall is used to sustain lateral pressures of soil or earth.
   2. A retaining wall is subjected to both active and passive pressures.
   3. Active and passive pressures act in opposite directions.
   4. Active pressure tends to slide away the retaining wall from the retained earth.
   Of these statements:
   (a) 1 and 2 are true 
   (b) 1, 3 and 4 are true
   (c) 1, 2 and 3 are true
   (d) 1, 2, 3 and 4 are true.
 9. The Rankine’s earth pressure acting on a retaining wall is (  = Unit weight of the earth,  

H = Height of the retaining wall, h  = Angle of repose of soil)  

   (a) 
γ φ

φ
h
2

1
1
⋅ −

+
sin
sin    (b) γ φ

φ
H 2

2
1
1
⋅ −

+
sin
sin

   (c) 
γ φ

φ
h2

2
1
1
⋅ −

+
sin
sin

   (d) 
γ φ

φ
h2

3
1
1
⋅ −

+
sin
sin

.

 10. The horizontal thrust on the vertical face of the retaining wall acts at a height of (h = height of 
the retaining wall)

   (a) 
h
2

 above the base   (b) 
h
3  above the base 

   (c) 
h
4

 above the base   (d) 2
3
h  above the base.

 11.  
(  = Angle of repose of soil)

   (a) 
1
1
−
+

sin
cos

φ
φ  (b) 

1
1
+
−

sin
cos

φ
φ

 (c) 
1
1
−
+

cos
cos

φ
φ  (d) 

1
1
−
+

sin
sin

φ
φ

.

 1. (c) 2. (d) 3. (c) 4. (b) 5. (d) 6. (b) 7. (a) 8. (b)

 9. (c) 10. (b) 11. (d)

ANSWERS
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1. A solid steel shaft of 100 mm diameter is subjected to a torque of 19.62 kN.m and a bending 
moment of 0.981 kN.m. Determine the maximum and minimum principal stresses and the 
maximum shear stress induced in the shaft.  (Ans. 161.9 MPa (T), 61.7 MPa (C), 111.8 MPa).

2.  A solid shaft of 50 mm diameter transmits 50 kW at 1000 rpm.  The shaft is subjected to an end 
thrust of 50 kN and a bending moment M. If the maximum compressive stress in the shaft is not 

M. (Ans. 0.98 kN.m).
3.  d P and an axial torque T. Show that the 

value of the principal stresses at any point on the surface of the shaft can be expressed as:  

 1, 2 = 
2 1 1 64

2

2

2 2
P
d

T
P dπ

± +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4.  A solid circular shaft of diameter 50 mm is subjected to a twisting moment of 50 kN.m and a 
bending moment of 100 kN.m. Determine the principal stresses and the maximum shear stress.

     (Ans. 8.63 kN/mm2 (T), 0.481 kN/mm2 (C), 4.56 kN/mm2). 
5. A solid rectangular column 200 mm wide and 150 mm thick carries a vertical load of 10 kN at an 

eccentricity of 50 mm in a plane bisecting the thickness. Determine the maximum and minimum 
stresses developed in the section.              (Ans. 0.833 MPa (C), 0.161 MPa (T)).

6. A 20 m high cylindrical chimney having outside diameter 4 m and inside diameter 2.5m is 
subjected to a wind pressure of 1.8 kPa. If the unit weight of masonry is 22 kN/m3 and the 

base of the chimney.  (Ans.  max = 629.15 kPa (C), min = 250.6 kPa (C).
7. A 6 m high masonry retaining wall, trapezoidal in section, is 1 m wide at top. Its earth retaining 

face is vertical  and smooth. The retained earth having unit weight of 1500 kgf/m3 and angle of 
shearing resistance of 30° is level with the top of the wall. Assuming unit weight of masonry as 
2100 kgf/m3, calculate the minimum bottom width of the wall so that no tension is induced at the 
base. Also, calculate the maximum base pressure at this width.    (Ans. 2.63 m, 17390.9 kgf/m2).

EXERCISES
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Augustin-Louis Cauchy, born on 21 August 1789, was a great French 
mathematician who worked under Lagrange, Laplace, Fourier and 
Poisson. He became a professor at the Ecole at the age of 27 and a 

His major works in pure mathematics were in group theory, number 
theory, series, integration, differential equation and analytical functions. 

equations of theory of elasticity and introduced the notion of principal 
stresses and principal strains.

 

LEARNING OBJECTIVES
After reading this chapter, you will be able to answer some of the following questions:

Augustin-Louis Cauchy
(1789-1857)
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15.1 SYMMETRICAL BENDING AND SIMPLE BENDING THEORY  
The theories of pure bending of beams are restricted to beams having a plane of symmetry through 
their longitudinal axis and loads applied act in that plane. Bending takes place about an axis (called 
neutral axis), which is perpendicular to the plane of symmetry. It is assumed that beams are made of 
linearly elastic materials, which implies that neutral axis of the beam’s cross-section passes through 
its centroid. A beam of this kind showing the related terminology is shown in Fig. 15.1.

Fig. 15.1 A symmetrical beam with point loads acting in the plane of symmetry.

The plane of symmetry is xy-plane. The applied point loads W1 and W2 lie in the plane of symmetry 
(also called the plane of bending) and are pendicular to the axis of the beam (the x-axis), which lies 

y direction. The  y-axis (the axis 
of symmetry) and the z-axis (the neutral axis of beam’s cross-section which is perpendicular to the 
y-axis) are the two principal axes of beam’s cross-section, which are also the centrodial  axes, as the 
centroid of the section passes through them. The second moments of area of a cross-section, about its 
principal axes are found to have maximum and minimum values, while the product second moment 
of area ( xydA) is found to be zero. Hence, principal axes are the axes about which the product second 
moment of area is zero. Simple bending can then be taken as bending which takes place about a 
principal axis and moments are applied in a plane parallel to one such axis. Under these conditions, 
the normal bending stresses acting on the cross-sections vary linearly with the distance from the 

15.2 UNSYMMETRICAL  BENDING
The unsymmetrical or asymmetrical bending of beams occurs when their cross-sections are not 
symmetric about any axis or when the beams are symmetric about one or two axes, but they are 
subjected to skew loading, that is, when the loads do not lie in a plane of symmetry.

Some cross-sections of beams having one and two axes of symmetry and subjected to skew 
loading are shown in Fig. 15.2, where y and z are the two principal axes, G is the centroid of the  
cross-section, and Mb is the applied moment about the b-axis produced due to skew loading. In 
general, moments are applied about a convenient axis in the cross-section and the plane containing 
the applied moment may not then be parallel to a principal axis. Beams in unsymmetric bending 
generally are subjected to bending moments acting about both principal axes of the cross-section. With 
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Fig. 15.2 Some singly and doubly symmetric sections with skew loading in which (c) and (d) are singly 
symmetric sections (a) and (b) are doubly symmetric sections and (e) is in a symmetric section.

unsymmetrical sections (for example angle sections, Z-sections etc.), the principal axes are not easily 
recognised. Because Mb is the moment about some axis b which is inclined to the principal axis y 
and z Mb
about the principal axes as My and Mz, where My acts in a horizontal plane and bends the member 
in that plane, whereas Mz
now assumed to take place simultaneously about the two principal axes, and the bending stresses are 

x  =  Bending stress produced by My + Bending stress produced by Mz 

    = 
M z
I

M y
I

y

y

z

z
+      ...(15.1)

where 

 My and Mz  = Bending moments about the principal axes y and z

 Iy and Iz y and z 

 y and z  = Perpendicular distances from the two principal axes

15.3 DOUBLY SYMMETRIC BEAMS WITH SKEW OR INCLINED LOADS  

inclined uniform load w
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Fig. 15.3 A doubly symmetric cantilever beam with an inclined uniform load over its full span.

Another Fig. 15.4 shows a doubly symmetric cantilever beam subjected to an included point load W 
at its free end that acts at an angle  to the positive y-axis.

Fig. 15.4 A doubly symmetric cantilever beam with an inclined load at its free end.

Now consider the cross-section of the beam and resolve the inclined load W, and hence the bending 
moment M caused by the load W into its two components about each of the principal axes of the cross-
section, one acting in each plane of symmetry (Fig. 15.5). The y-axis and z-axis are the principal axes 
of inertia and  is the angle between M and the z-axis.

Fig. 15.5 Cross-section of the beam subjected to bending moments My and Mz.
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On resolving the load W into its two components along y and z directions, we get 
 Wy =  W cos  (along positive y direction)...(15.2)
and  Wz =  W sin  (along negative z direction)...(15.3)

Similarly, on resolving the bending moment M into its two components My and Mz acting on a cross-
section located at a distance x
 My =  Wz (l – x)  = (W sin ) (l – x) =  M sin  (along positive y direction)...(15.4)

and Mz =  Wy (l – x)  = (W cos ) (l – x)  =  M cos  (along positive z direction)...(15.5)

where l is the length of the beam.
Initially, since M y and z
However, if M is resolved into its components My and Mz that act in the planes of symmetry of the 

cross-section as shown in Fig. 15.6.

Fig. 15.6 Normal stress distribution caused by unsymmetrical bending.

Position of the neutral axis
P having coordinates y and z in the cross-section of the beam as shown in 

Fig. 15.7.

Fig. 15.7 Location of the neutral axis.
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My produces tension at P Mz 
produces compression. The total normal bending stress at P

 x =  
M z
I

M y
I

y

y

z

z
−   ...(15.6)

where Iy and Iz are the second  moments of area of the beam’s cross-sectional area with respect to y 
and z

In general, the neutral axis (NA) for unsymmetrical bending is not necessarily parallel to the 
bending moment M (Fig. 15.8). As the neutral axis of the cross-section is a line, where the bending 
stress is zero, its equation can be obtained by equating the bending stress x 

 
M z
I

M y
I

y

y

z

z
− =  0 ...(15.7)

 
y
z

=  
M I
M I

y z

z y
 ...(15.8)

Fig. 15.8

Equation (15.7) represents a straight line. Hence, the neutral axis (NA) is an inclined line that 
passes through the centroid G of the cross-section. The angle between the neutral axis and the z-axis 

 tan  = 
y
z = 

M I
M I

y z

z y
 (using equation (15.8)...(15.9))

where y/z is called slope of the neutral axis. Depending upon the magnitudes and directions of the 
bending moments, the angle 

Also tan 
I
I

z

y
tanθ

where  tan   = 
M
M

y

z
 (using equations (15.4) and (15.5))
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It shows that the resultant bending moment M is at the angle  from the z-axis. Consequently  the 
resultant bending moment is perpendicular to the longitudinal plane containing the load W.

Equation (15.10) shows that unless we have symmetrical bending (  = 0° or 90°), the neutral axis 
will be parallel to the bending moment M, only if Iy = Iz. As the bending stress is proportional to the 
distance from the neutral axis, the maximum bending stress occurs at the point, which is farthest 

bending stress on a cross-section.

Relationship between neutral axis and inclination of applied load
From equation (15.10), it is clear that angle  is generally not equal to angle , which implies that the 
neutral axis (NA) is not perpendicular to the longitudinal plane carrying the applied load.  

 The angles  and  may be equal in the following cases:
 When the load lies in the xy-plane (  = 0° or 180°) implying that the z-axis is the neutral axis.
 When the load lies in the xz-plane (  = ± 90°) implying that the y-axis is the neutral axis.
 When the principal moments of inertia are equal implying that Iy = Iz.

In the last case, all the axes through the centroid are the principal axes, and have the same moment 
of inertia. The plane of loading irrespective of its direction, is always a principal plane, and the 
neutral axis is always perpendicular to it. The cross-sections for which this condition is valid include 
square and circular sections.

Example 15.1 
A 1.2 m long wooden cantilever beam with rectangular cross-section 50 mm × 80 mm is subjected 
to a moment of 150 N.m in a plane forming an angle of 30° with the vertical as shown in Fig. 15.9. 
Determine (a) the maximum stress in the beam and (b) the angle that the neutral surface makes with 
the horizontal plane.

Fig. 15.9

Solution:
Given, 
Length of the beam, l = 1.2 m
Width of the beam,  b = 50 mm
Depth of the beam,  d = 80 mm
Moment applied,    M = 150 N.m
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(a) Maximum stress in the beam
The moment M My and Mz along y and z directions 

My acts in 
a horizontal plane and the moment component Mz

Fig. 15.10 Resolution of the applied moment into My and Mz.
The moment components My and Mz are calculated as 

 My

 Mz

The moments of inertia of the beam’s cross-sectional area about y and z

 Iy = 
1

12
80 50 103 12× × × − m4 –7 m4

and Iz = 1
12

50 80 103 12× × × − m4 –6 m4

The largest tensile stress due to Mz

 1 = 
M
I

yz

z

.

 =  
129 9 40 10

2 13 10
1

10

3

6 6
.
.
× ×
×

×
−

− MPa = 2.44 MPa

The largest tensile stress due to My occurs along AD

 2 =  
M
I

zy

y
⋅

 =  
75 25 10

8 33 10
1

10

3

7 6

× ×
×

×
−

−. MPa 

 =   2.25 MPa
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Now the  largest tensile stress due to combined loading occurs at D, and its value is given as
 max =  1 + 2

 =  (2.44 + 2.25) MPa

 =  4.69 MPa 

The largest compressive stress has the same value equal to the largest  tensile stress, and occurs at B.
Ans.

(b) Angle made by the neutral  surface with horizontal plane

    
Fig. 15.11 Location of the neutral axis.

      Let be the angle made by the neutral axis with the horizontal plane, that is, the z-axis as shown 
in Fig. 15.11. It is given as

 tan  =  
I
I

z

y
tanθ  (using equation (15.10))

 =  
2 13 10
8 33 10

30
6

7

.

.
tan×

×
× °

−

−  = 1.476

Hence,   =  55.8° Ans.

Example 15.2 
An  I-section beam shown in Fig. 15.12 carries a bending moment of 35 kN.m inclined  at 17° to the 
z-axis. Determine the following parameters using the data given below.
 (a) the angle between the neutral axis and the z-axis and
 (b) the largest bending stress acting on the section.

 Take Iz =  71.1 × 106 mm4, Iy = 7.03 × 106 mm4

 Sz =  534 × 103 mm3, Sy = 95.1 × 103 mm3.
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Solution:

Bending moment, M  = 35 kN.m
Angle between M and z-axis, 

                            
 Fig. 15.12                                                     Fig. 15.13

(a) The angle  between the neutral axis (NA) and the z-axis is calculated as

 tan  =  
I
I

z

y
tanθ  (using equation (15.10))

 =  
71 1 10
7 03 10

17
6

6

.
.

tan×
×

× °

 =  3.09 

Hence,  Ans.

(b y 
and z 

 Mz = – M
 = –

 =  – 33.47 kN.m
 My = – M y-axis)
 = –

 = – 10.23 kN.m
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The points A and B as shown in Fig. 15.13 are farthest from the neutral axis, where the largest 
bending stress occurs. It is to be noted that both components of the bending moment cause tension at 
A and compression at B

 max =  A = | B| = 
| |
| |

| |
| |

M
I

z M
I

yy

y

z

z
⋅ + ⋅  (using equation (15.6))

 =  
| |

( / )
| |

( / )
M

I z
M

I y
y

y

z

z
+

 =  
| | | |M

S
M
S

y

y

z

z
+

 =  
10 23 10

95 1 10 10
33 47 10

534 10 10

3

3 9

3

3 9

.
.

.×
× ×

+ ×
× ×

⎡

⎣
⎢

⎤

⎦
⎥− −  Pa

6 Pa

 =  170.25 MPa  Ans.

Example 15.3 

to the z

Fig. 15.14

The properties of the section are as follows:

 Izz
–5 m4, Iyy

–6 m4

 z  =  22.3 mm, y = 120 mm
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Solution: Given,

Bending moment, M   = 3 kN.m
 Angle between M and the z-axis,   = 15°

The z and y axes are  the principal centroidal axes, as the centroid G of the section passes through 
them. The bending moment M is resolved into the components Mz and My along the z-axis and the 
y-axis respectively as shown in Fig. 15.15.
 Mz =  M cos   = 3 × cos 15°  = 2.897 kN.m

 My =  M sin   = 3 × sin 15°  = 0.776 kN.m

The stresses produced by the bending moment M are maximum at the points, which are located 
farthest from the neutral axis, for example, points A and B

 

Fig. 15.15

The maximum bending stress at A is given as

 A = 
M z
I

M y
I

y

yy

z

zz

1 1− .
 (using equation (15.6))

 = 
M z

I
M y
I

y

yy

z

zz

[ ( )]− −
−

85

 = 0 776 85 22 3 10
2 48 10

2 897 120 10
3 6 10

3

6

3

5
. [ ( . )]

.
.

.
× − − ×

×
− × ×

×

−

−

−

− kN/m2

 =  (– 19619.03 – 9656.67) kN/m2  = – 29275.7 kN/m2

 = – 29.27 MN/m2 = – 29.27 MPa

 = 29.27 MPa (Compressive)  Ans.
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Hence, the maximum compressive bending stress is produced at point A.
The maximum bending stress at B is given as

 b =  
M z

I
M y

I
y

yy

z

zz

2 2−  (using equation (15.6))

 =  
M z
I

M y
I

y

yy

z

zz
− −( )

 =  
0 776 22 3 10

2 48 10
2 897 120 10

3 6 10

3

6

3

5

. .
.

. ( )
.

× ×
×

− × − ×
×

−

−

−

− kN/m2

 =  (6977.74 + 9656.66) kN/m2

 =  16634.4 kN/m2 =  16.63 MN/m2

 =  16.63 MPa (Tensile) Ans.
Hence, the maximum tensile bending stress is produced at point B. 
Location of the neutral axis (NA)
The angle  made by the neutral axis (NA) with the z

 tan  =  
I
I

zz

yy
tanθ  (using equation (15.10))

 = 3 6 10
2 48 10

15
5 4

6 4
.
.

tan×
×

× °
−

−
m
m

 = 3.889

Hence,  =  75.58° Ans.

Example 15.4 
A T-shaped 5 m long cantilever beam shown in Fig. 15.16 is subjected to a transverse load W at its 
free end. The beam material yields according to the Tresca’s yield criterion, when the maximum shear 
stress reaches 180 MPa. Determine the maximum load W carried by the beam.

Fig. 15.16
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Solution: 
Given,
Length of the beam,  l  = 5 m
Maximum shear stress,  max  = 180 MPa
The y and z axes are the principal cerntroidal axes, as the centroid G of the section passes through 

them. The applied load W produces bending moment M,
end of the beam. It is resolved into components My and Mz along the y and z axes respectively as 
shown in Fig. 15.17.

Fig. 15.17

When the load W is resolved, we get
 Wy = W cos   (along negative y direction)
 Wz = W sin  (along negative z direction)

When the bending moment M is resolved, we get
 My = M sin   (along negative y direction)
 =  Wz

. l
 =  – W sin  × l
 =  – W sin 30° × l (as  = 30°)

 = – − × ×W 1
2

5  =  – 2.5 W (on substituting l)

 Mz =  M cos   (along positive z direction)
 =  – Wy

. l
 =  – W cos l
 =  – W cos 30° × l

 = –  × ×W l3
2 =  – 4.33 W (on substituting l)

Both My and Mz are negative, as the bending moment is negative for a cantilever beam.
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Position of the centroid G

The T

 a1
2

 a2
2

Total area of the T-section, A  = a1 + a2

 =  (6000 + 5000) mm2 =  11000 mm2

Since the section is symmetrical about the y-axis, hence

 z =  0

and y  =  
a y a y

a a
1 1 2 2

1 2

+
+

= 
a y a y

A
1 1 2 2+

 = 
6000 265 5000 125

11000
× + ×

 =  201.36 mm

Hence, the centroid G of the section is located on the y-axis at a distance of 201.36 mm from the 
lower part of the web.

Calculation of moment of inertia

 Izz =  Izz1
 + Izz2

 = 
1

12
200 30 6000 265 201 363 2× × + × −⎡

⎣⎢
⎤
⎦⎥

( . )  

               +  
1

12
20 250 5000 201 36 1253 2× × + × −⎡

⎣⎢
⎤
⎦⎥

( . )

7 mm4

7 –12 m4 –5 m4

and Iyy =  I Iyy yy1 2
+

 =  
1

12
30 200 1

12
250 203 3× × + × ×

7 mm4 7 –12 m4

–5 m4

Ixy = 0, as the beam is symmetrical about one of the two axes, here it is the y-axis.
The critical points in the cross-section include the positions located at points A, B and C as shown 

in Fig. 15.17. These are the locations where normal stresses due to bending moment are maximum 
because of their farthest positions from the neutral axis.
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Calculation of bending stresses
The maximum bending stress at A is given as

 A =  
M z

I
M y

I
y

yy

z

zz

. .1 1−  ((z1, y1) is the coordinate of point A)

 =  
( . )

.
( . ) ( . )

.
− × ×

×
− − × − ×

×

−

−

−2 5 100 10
2 016 10

4 33 280 201 36 10
7 99

3

5

3W W
110 5−

   (z1 = 100 mm, y = (280 – y ) mm)

 = – 12.4 × 103 W + 4.26 × 103 W = – 8.14 × 103 W

The maximum bending stress at B is given as

 B = 
M z

I
M y

I
y

yy

z

zz

. .2 2−  ((z2, y2) is the coordinate of point B)

 =  
( . ) ( )

.
( . ) ( . )

.
− × − ×

×
− − × − ×−

−

−2 5 100 10
2 016 10

4 33 280 201 36 10
7

3

5

3W W
999 10 5× −

   (z2 = – 100 mm, y2 = 280 – y )

 = 12.4 × 103 W + 4 .26 × 103 W =  16.66 × 103 W

The maximum bending stress at C is given as

 C = 
M z

I
M y

I
y

yy

z

zz

. .3 3−  ((z3, y3) is the coordinate of point C)

 =  
( . ) ( )

.
( . ) ( . )

.
− × − ×

×
− − × − ×

×

−

−

−2 5 10 10
2 016 10

4 33 201 36 10
7 99 1

3

5

3W W
00 5−

   (z3 = – 10 mm, y3 = (280 – y )mm)

 =  1.241 × 103 W – 10.91 × 103 W

 =  – 9.67 × 103 W
These stresses are the values of the maximum principal stresses at the three points which are acting 

along the longitudinal axis of the beam, that is, the x-axis. The maximum bending stress occurs at B, 
and it is tensile in nature. The minimum principal stress at each point is zero.

According to Tresca’s yield criterion, we have

 max =  
( ) ( )σ σ1 2

2
B B−
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 180 × 106 =  
16 66 10

2

3. × W
 (as ( 2)B = 0)

Solving for W, we get

 W =  21608.64 N = 21.6 kN Ans.

15.4 PURE BENDING OF UNSYMMETRICAL BEAMS 
Unsymmetrical beams are those beams, which have unsymmetrical sections or have no axis of 
symmetry. A few examples of unsymmetrical beams include z-section and angle-section beams as 
shown in Fig. 15.18. The bending of unsymmetrical sections removes the restriction of at least one 
axis of symmetry in the cross-section.

Fig. 15.18 Types of unsymmetrical beams.

Consider that an unsymmetrical beam is subjected to a load, which causes a bending moment M on 
the cross-section of the beam. While discussing the effect of this bending moment, we consider two 
perpendicular axes y and z, which happen to be the neutral axes of the cross-section through which 
the centroid G of the section passes, that is, both y and z axes are the principal centroidal axes of the 
cross-section (Fig. 15.19).

Fig. 15.19 Bending of unsymmetrical cross-section.

An element of area dA is now considered at a distance of y from the z-axis and at a distance of  from 
the y M is resolved into its components My and Mz 
along the axes y and z respectively as shown in Fig. 15.20.



710  Strength of Materials

Fig. 15.20 Bending moment components My and Mz about y and z axes respectively.

While considering z-axis as the neutral axis, that is, one of the principal axes of inertia, the plane of 
bending is xy Mz acts in that plane. 
On the other hand, when y-axis is the neutral axes, that is, the other principal axis of inertia, the plane 
of bending is xz My acts in that 
plane. The bending of beam under these two conditions are considered separately. First consider that 
the bending takes place about the z-axis as the neutral axis.

Force acting on the element of area  dA  = x dA

Total force acting on the entire cross-section   = σx dA∫
where  x = Normal stress on the area 

  = (– Ky)Ey

  = – Ky Ey 

 Ky = Curvature (negative) of the bent beam (equals to the reciprocal of the radius of 
curvature) in xy-plane 

 y  = Distance from the z-axis

 E  = Young’s  modulus of the beam material 

The bending moment of the total force about the z-axis is given as

 Mz =  – σx dAy∫
 =  Ky E y dA2∫    (on substituting x)

 =  Ky E Iz ...(15.11)

where  Iz = Second moment of area of the beam’s cross-section about the z-axis

 =  y dA2∫
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The bending moment of the total force about the y-axis is given as 

 My =  σx dA z∫
 =  – Ky E y z dA∫  (on substituting x)
 =  – Ky E Iyz ...(15.12)
where  Iyz = Product of inertia of the beam’s cross-section with respect to y and z axes.

 =  y z dA∫
 z =  Distance from the y-axis

In case of z-axis being the neutral axis, that is, the principal axis, the product of inertia Iyz is equal 
to zero, and the only bending moment left is Mz , which acts in the xy-plane and is represented by 
equation (15.11). Hence, bending of the unsymmetrical beam occurs in a manner analogous to that 
of a symmetrical beam. 

Now consider that bending takes place about the y-axis as the neutral axis. The normal stress x 
acting on the area dA is this time different. The new x is given as
 x  =  (– Kz) E z
 =  – Kz E z

where Kz =  Curvature (negative) of the bent beam in the xz-plane. 

Force acting on the cross-section of the beam

 = σx dA∫
 = −∫ K Ez dAz  (on substituting new x)
The bending moment components are now given as

 My = σx dA z∫  (about the y-axis)

 = – Kz E z dA2∫  (on substituting new x)

 = – Kz E Iy ... (15.13)
where  Iy = Second moment of area of the beam’s cross-section about the y-axis.

 = z dA2∫  
Similarly,

 Mz =  −∫ σx dA y  (about the z-axis)

 =  K E y z dAz ∫  (on substituting new x)

 =  Kz E Iyz ... (15.14)

In case of y-axis being the neutral axis, that is, the principal axis, the product of inertia Iyz is 
again zero, and the only bending moment left is My, which acts in the xz-plane and is represented by 
equation (15.13).
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Hence, we conclude that for an unsymmetrical beam under pure bending, the plane in which 
the bending moment acts is perpendicular to the neutral surface only if y and z axes are the 
principal centroidal axes of the beam’s cross-section, and the bending moment acts in one of 
the two principal planes (xy-plane or xz-plane). Therefore, if a bending moment acts in one  
of the principal planes, this plane will be the plane of bending and the usual bending theory and 
the flexure formula are applicable, which can be used to find the stresses due to the bending 
moments My and Mz acting separately, and then they are superimposed to find the stresses 
produced by the original bending moment M.

Sign conventions for beam curvature

                   (a) Ky in the xy-plane (b) Kz in the xz-plane

Fig. 15.21

Position of the neutral axis (NA)
The bending moment components My and Mz and the neutral axis (NA) are shown in Fig. 15.22. The 
bending moment components are expressed as
 My  = M sin  ...(15.15)
and  Mz  = M cos  ...(15.16)
where M and the z-axis, and  is the angle made by the neutral 
axis with the z-axis.

Fig. 15.22 Bending moment components  My and Mz and the neutral axis (NA).
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The superposition of the bending stresses produced by My and Mz

 x  = 
M z
I

M y
I

y

y

z

z
−    (using equation (15.6))

  =  ( sin ) ( cos )M z
I

M y
Iy z

θ θ−     ...(15.17)

where y and z are the coordinates of the point under consideration.

To know the position of the neutral axis, set x = 0, and simplify.

  
sin cosθ θ
I

z
I

y
y z

−  = 0

sin
cos

θ
θ

= tan  = 
y
z

I
I

y

z
⋅

or tan   =  tanβ
I
I

y

z

 tan   =  
I
I

z

y
tanθ  ...(15.18)

where  tan   = 
y
z

Equation (15.18) clearly shows that two angles  and  are not equal, which implies that the neutral 
axis is generally not perpendicular to the plane in which bending moment M acts. 

15.5 DEFLECTION IN UNSYMMETRICAL BENDING 

  =  
Wl

EI

3

3
    ...(15.19)

y direction and 
z direction are expressed as 

 y =  
( cos )W l

EIz

θ 3

3
 ...(15.20)

and z =  
( sin )W l

EI y

θ 3

3  ...(15.21)



714  Strength of Materials

where  W cos y direction
 W sin z direction
 Iy  = Moment of inertia of the beam’s cross-sectional area about the principal y-axis
 Iz  = Moment of inertia of the beam’s cross-sectional area about the principal z-axis
 l  = Length of the beam
 E  = Modulus of elasticity of the beam material

y and z

  =  δ δy z
2 2+    ...(15.22)

The angle y

 tan  =  
δ
δ

z

y
= 

I
I

z

y
tanθ  ...(15.23)

in a plane that is perpendicular to the neural plane. This condition is shown in Fig. 15.23.

Fig. 15.23 

Example 15.5

a) the 
position and magnitude of the greatest tensile stress in the cross-section and (b
at the free end. Take E = 210 GPa.

Fig. 15.24
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Solution:

Load applied,  W =  7 kN
Length of the beam,  l =  1.5 m

b =  60 mm
Depth of the beam,  d =  90 mm
Modulus of elasticity,  E =  210 GPa

9 Pa
Inclination of the load,  

(a) Maximum tensile stress
It is the case of a doubly symmetric beam subjected to skew loading with its cross-section ABCD 
and centroid G, and the principal centroidal axes y and z
parallel to the two major axis, that is, along the two principal centroidal axes, and then bending theory 

The load of 7 kN, resulting moment M and its components My and Mz are shown in Fig. 15.25.

Fig. 15.25 Load and moment acting on the cross-section.

The load components are found as
 Wy y direction)

 =  6.062 kN
and Wz z direction)

The moment components are found as
 My = M sin  = Wz l y direction)

 =  5.25 kN.m
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and Mz =  M cos  = Wy × l  (along negative z direction)
 =  6.062 × 1.5
 =  9.093 kN.m
The values of My and Mzbeam.
The distances from the neutral axis are calculated as
  =  30 mm = 30 × 10–3 m
 y =  45 mm = 45 × 10–3 m
The moments of inertia of the beam’s cross-section about y and z axes are found as

 Iy =  
1

12
90 60 103 12× × × − m4

 =  1.62 × 10–6 m4

 Iz =  1
12

60 90 103 12× × × − m4

 =  3.645 × 10–6 m4

The bending moment Mz produces tensile stress on AB and compressive stress on CD. Both stresses 
are equal, and their value is

 1 = 
M
I

yz

z
⋅ =  

9 093 45 10
3 645 10

3

6

.
.
× ×
×

−

−

 =  112259. 26 kN/m2 = 112.26 MPa

The bending moment My produces tensile stress on BC and compressive stress on AD. Both stresses 
are equal, and their value is

 2 =  
M
I

zy

y
⋅ = 

5 25 30 10
1 62 10

3

6

.
.
× ×
×

−

−

 =  97222. 22 kN/m2 =  97. 22 MPa

Hence, the maximum tensile stress due to combined loading occurs at point B, where the two 
tensile stresses add, given by

Maximum tensile stress, max =  1 + 2

  =  (112.26 + 97.22) MPa 

 =  209.48 MPa  Ans.

The compressive stress has the same value as tensile stress, and occurs at D. 
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(b) 

  =  
Wl

EI

3

3  (using equation (15.19))

v that occurs along y-axis, is given as

 v = 
W l

EI
y

z

3

3
 = 

6 062 10 1 5
3 210 10 3 645 10

3 3

9 6

. ( . )
.

× ×
× × × × −  m

 =  8.9 × 10–3 m
 =  8.9 mm  Ans.

15.6  SHEAR CENTRE 
Lateral or transverse loads acting on a beam produce both shear forces and bending moments. The 
case of pure bending of beams is discussed in Chapter-5, where beams are subjected to only bending 
moments and the shear stress consideration is neglected. Also in the same chapter in section 5.7, case 
of shear stress in beams is discussed. The applied loads in the latter case act in a plane of symmetry. 

cross-section of a beam without producing twisting, thus eliminating the restriction of pure bending. 
For pure bending theory to be applicable, the shear force must pass through the shear centre. It is 
possible only when the plane of external loading passes through the shear centre, and in that case no 
twisting takes place as shown in Fig. 15.26 (a). If the load does not act at the shear centre or acts at 
other points, then the bending will be accompanied by twisting, that is, the section of the beam will 
get twisted about the shear centre as shown in Fig. 15.26 (b). Because of this reason, the shear centre 

section of a beam, where if a lateral load is applied, it will bend the beam without twisting along the 
longitudinal axis.

  
 (a) Bending of channel section without twisting,  (b)  Bending of channel section with twisting,
 when the load W acts through the shear centre C. when the load W does not act at C but at G, 
  the centroid of the section.

Fig. 15.26
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The shear centre generally does not coincide with the centroid of the cross-section of a beam, but 
like the centroid, it lies on any axis of symmetry of the cross-section. It lies near to the centroid of 
the section and thus the section has high torsional rigidity, and so the effect of twisting can be safely 
neglected by applying the load at or near the centroid. Fig. 15.27 shows the cross-section of a singly 

I-section beam, which is symmetrical about y-axis. 
Both the centroid G and the shear centre C of the cross-section lie on y-axis, which is the axis of 
symmetry.

Fig. 15.27 Shear centre for an unequal I-section.

For a section which is symmetrical about two axes, the shear centre coincides with the centroid of 

which is symmetrical about both y and z axes. Both the shear centre C and the centroid G lie at the 
same point, which is the intersection point of the two axes of symmetry. 

Fig. 15.28 Shear centre for an equal I-section.

For beams having unsymmetric cross-section or no axis of symmetry, such as the Z-section and 

The position of the shear centre is determined by using a term called eccentricity (e
the distance by which the load line positions itself to act at the shear centre of the cross-section.

The shear stress  at any point of the cross-section is obtained by using equation (5.19), given as

  =  VQ
It

  = V
It

Ay  ...(15.24)
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where  V =  Vertical shear force or the load applied
 I =  Moment of inertia of the section about the neutral axis
 t =  Thickness of the section
 Q =  A y = First moment of area about the neutral axis 
 A =  Area of the section above the point, where the shear stress is 
 y =  Distance of the centroid of the area from the neutral axis

The shear stresses are directed along the median line of the cross-section, parallel to the edges of 
the section, and are assumed to be of constant intensity across the thickness t of the section.

15.6.1 Shear Centre for a Channel Section

Let the section be subjected to a shear force V acting vertically downward and parallel to the web 
with an eccentricity e. C is the position of the shear centre. The neutral axis (NA) is the horizontal 
axis of symmetry of the section.

Af   = bt

Area of the web,  Aw  = h t w− ×⎛
⎝⎜

⎞
⎠⎟

≈ hw (as t is very small)

Fig. 15.29

The total shear force carried by the web must be equal to the applied vertical shear force V, thereby 
f . Considering their equilibrium 

and taking moments of the forces about O, we have

 V × e = f h f h
1 12 2
× + ×  =  f  × h

which gives e = f h
V
×

e.
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An elementary area dA is considered at a distance x

  =  
V
It

Ay  (using equation (15.24))...(15.26)

 =  
V
It

t x h⋅ ⋅
2  

A t x y h= =⎛
⎝⎜

⎞
⎠⎟

and
2  

 =  
Vxh

I2  ...(15.27)

 f1 = .dA

 = τ . ( )t dx
b

0
∫  ...(15.28)

where  dA = t dx = Elementary area at x
 b

or f1 = 
Vxh

I
tdx

b

20
∫  (using equation (15.27)

 =  
Vht

I
xdx

b

2 0

⎛
⎝⎜

⎞
⎠⎟∫

 =  
Vhb t

I

2

4
 ...(15.29)

Now I = 
wh bt b t h3

3
2

12
2 1

12 2
+ + × × ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 =  
wh bt bt h3

3
2

12
1
6

2
2

+ + ⎛
⎝⎜

⎞
⎠⎟  

 =  wh bt h3 2

12
2

2
+ ⎛

⎝⎜
⎞
⎠⎟

The middle term on account of its negligible value in comparison to other terms is neglected.

or I  = 1
2

1 1
6

2th b wh
tb

+ ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 =  1
2

1 1
6

2th b A
A

w

f

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 ...(15.30)
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is expressed as

 f1 =  
Vhb t

th b A
A

w

f

2

24 1
2

1 1
6

× +
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 =  
Vb

h A
A

w

f

2
1

1 1
6

+
⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 ...(15.31)

 e =  
Vb

h A
A

h
V

w

f

2
1

1 1
6

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

×  (on substituting f1 from equation (15.31))

 =  
b

A
A

w

f

2
1

1 1
6

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 ...(15.32)

This is the required expression for eccentricity.

Example 15.6 
Find the shear centre for the section shown in Fig. 15.29, if b = 150 mm, t = 20 mm, w = 15 mm, 
h = 250 mm and V 3 N.
Solution:

Area of the web,  Aw =  hw

 =  3750 mm2

Af =  bt
2
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 e =  
b

A
A

w

f

2
1

1 1
6

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 =  
150

2
1

1 1
6

3750
3000

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 = 62 mm Ans.

Example 15.7 
Find the position of the shear centre of the section shown in Figure 15.30.

Fig. 15.30

Solution:
C is the position of the shear centre, where the shear force V NA is the 
neutral axis.
An elementary area dA is considered at a distance x 
The shear forces in the two parts A  and EF are equal but opposite, say f1. The shear forces in the 
parts BD and DE are not required to be calculated as they are passing through O, the point about 

Now f1  = τ . dA∫

  =  τ . tdx
l

0

1

∫
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  =  V
It

Ay tdx
l
⎛
⎝⎜

⎞
⎠⎟
⋅∫

0

1

 (using equation (15.24))...(15.33)

Here Area, A  =  x.t

 y  =  
l2
2

 I t l1 l2
2 + 2 ( )( sin )t dy y

l

⋅ °∫ 45 2

0

2

  =  tl1l 2
2 + t y dy

l
2

0

2

∫

  =  tl1l 2
2 + l t2

3

3

  =  tl l l2
2

1 23
3( )+

On substituting A, y and I

 f1 =  
V
t tl l l

xt l tdx
l

⋅
+

⋅ ⋅ ⋅∫
3

3 22
2

1 20

2
1

( )

 =  
3

2 32 1 2 0

1V
l l l

xdx
l

( )+ ∫

 =  3
2 3 22 1 2

2

0

1V
l l l

x
l

( )+
⎛

⎝⎜
⎞

⎠⎟

 =  
3

2 2 3
1
2

2 1 2

l V
l l l( )+

Taking moments of the shear forces about O

 V e =  2 1× ×f y

  
2

21
2× ×f l

 =  2 3
2 2 3 2

1
2

2 1 2

2×
+

×l V
l l l

l
( )

 =  
3

2 3
1
2

1 2

l V
l l( )+
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or e =  
3

2 3
1
2

1 2

l
l l( )+  ...(15.34)

This is the required expression for eccentricity.

Example 15.8
In Example 15.7, if l1 = 150 mm, l2 = 450 mm and V e.
Solution:

 e =  
3

2 3
1
2

1 2

l
l l( )+

 

 =  
3 150

2 3 150 450

2×
× +( )

 =  37.5 mm  Ans.

15.6.2 Shear Centre for an Equal-leg Angle Section

Consider an equal-leg angle section of uniform thickness as shown in Fig. 15.31. C is the point, where 
V acts.

Fig. 15.31

An elementary area dA is considered at a distance x
 dA =  t dx

Let V C. f1 and f2 are the shear forces induced in the 
parts PQ and PR .
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Now f1  = τ . dA∫
 = 

V
It

Ay dA⎛
⎝⎜

⎞
⎠⎟∫ .  (using equation (15.24))

 = 
V
It

l x t l l x tdx
l

⋅ − ⋅ − −⎧
⎨
⎩

⎫
⎬
⎭

°⎡
⎣⎢

⎤
⎦⎥
⋅∫ ( ) ( ) sin

2
45

0

 = 
Vt
I

l x l x dx
l

( ) ( )− ⋅ + ⋅ ⋅∫ 2
1
20

 = 
Vt

I
l x dx

l

2 2
2 2

0

( )−∫

 = 
Vt

I
l x x

l

2 2 3
2

3

0

−
⎛

⎝⎜
⎞

⎠⎟

 =  
Vt

I
l l

2 2 3
3

3

−
⎛
⎝⎜

⎞
⎠⎟

 = 
Vt

I
l

2 2
2
3

3.

 = 
Vtl

I

3

3 2
 ... (15.35)

The moment of inertia I is calculated as

 I =  2 t dx x
l

⋅ ⋅ °∫ ( sin )45 2

0

 = 2
2

2

0

t dx xl

⋅ ⋅∫

 = t x dx
l

2

0
∫

 = t x
l3

0
3

⎛

⎝⎜
⎞

⎠⎟

 = 
tl3

3
Substituting I

 f1 = 
Vtl

tl

3

33 2
3× = 

V
2
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Similarly,  f2  = 
V
2

 (because of the symmetry of the section)

The resultant of f1 and f2   = f f1
2

2
2+

  =  
V V
2 2

2 2
⎛
⎝⎜

⎞
⎠⎟
+ ⎛
⎝⎜

⎞
⎠⎟

  =  V

  =  Applied vertical shear force at C

Hence, C is the position of the shear centre.

Example 15.9
Find the position of the shear centre of the section of a beam shown in Fig. 15.32.

Fig. 15.32

Solution:
Let V be the applied vertical shear force acting at C. The shear stresses developed in each part of 

BD and GH are equal  
(say f1) and in the parts DE and FG are equal (say f2). f3 is the shear force developed in the part EF. 
The respective thicknesses of the part BD (and GH), DE (and FG) and EF are t1, t2 and t3 respectively.
The shear force f1 is expressed as

 f1 =  τdA∫
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 =  
V
It

Ay t dy
l

1
1

0

1

⋅∫  (dA = t1.dy)

 =  
V
It

l y t h y l y t dy
l

1
1 1

1
1

0 2 2

1

⋅ − ⋅ + + −⎛
⎝⎜

⎞
⎠⎟
⋅∫ ( )

 =  
Vt
I

l y h y l y dy
l

1
1

0

1
1

2 2
−( ) + + −⎛

⎝⎜
⎞
⎠⎟∫

 =  
Vt
I

l h l y l l y hy y l y y dy
l

1 1
1

1
2

1 2 1
2

0 2 2 2 2 2 2

1

+ + − − − − +
⎛

⎝⎜
⎞

⎠⎟∫

 =  Vt
I

l hy l y l y l y hy y l y y
l

1 1 1
2

1
2

1
2 2 3

1
2 3

0
2 2 2 4 4 3 4 6

1

+ + − − − − +
⎛

⎝⎜
⎞

⎠⎟

 =  
Vt
I

l h l l l hl l l l1 1
2

1
3

1
3

1
3

1
2

1
3

1
3

1
3

2 2 2 4 3 3 4 6
+ + − − − − +

⎛

⎝⎜
⎞

⎠⎟

 =  
Vt
I

l h l1 1
2

1
3

4 3
+

⎛

⎝⎜
⎞

⎠⎟
 =  

Vt l
I

h l1 1
2

112
3 4( )+

The shear force f2 is found as

 f2 =  τ dA∫  =  V
It

Ay t dx
l

20
2

2

∫ ⋅

 =  
V
It

l t h l t x h t dx
l

2
1 1

1
2 2

0 2 2 2

2

× +⎛
⎝⎜

⎞
⎠⎟
+ ⋅ ⋅⎡

⎣⎢
⎤
⎦⎥∫ .

 =  
V
I

l t h l t t xh dx
l

1 1 1
2

1 2

0 2 2 2

2

+ +
⎛

⎝⎜
⎞

⎠⎟∫

 = 
V
I

l l t h l l t l t h1 2 1 1
2

2 1 2
2

2

2 2 4
+ +

⎛

⎝⎜
⎞

⎠⎟
 =  

V
I

l l t h l l t l t h1 2 1 1
2

2 1 2
2

2

2 2 4
+ +

⎛

⎝⎜
⎞

⎠⎟

The shear force component f3 is not required to be calculated as it is passing through the point O, 
the centre of moment.
Taking moments of the shear forces about O

 V e + 2 f1 l2  = f h f h
2 22 2
× + ×  = f2 h

or V e   =  f2 h – 2 f1 l2

  =  
Vh
I

l l t h l l t l t h Vt l l
I

h l1 2 1 1
2

2 1 2
2

2 1 1
2

2
12 2 4 6

3 4+ +
⎛

⎝⎜
⎞

⎠⎟
− +( )  (on substituting f1 and f2)
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e = 
l l t h

I
l t h

I
l t h

I
l l t h

I
l l t

I
1 2 1

2
2
2

1 2
2

2
2

1
2

2 1 1
3

2 1

2 2 4 2
2

3
+ + − −

 =  
l l t

I
h l t l h

I
1 2 1

2
1
2

2 2
2 2

2
2
3 4

−
⎛

⎝
⎜

⎞

⎠
⎟ +

The moment of inertia of the section is found as

 I = 2 1
12

2
2 21 1

3
1 1

1
2

× × × + × × × +⎛
⎝⎜

⎞
⎠⎟

t l l t h l

                                                                          + 2 1
12

2
2

1
122 2

3
2 2

2

3
3× × × + × × ×⎛

⎝⎜
⎞
⎠⎟
+ × ×l t l t h t h

On substituting I in the equation of e e in terms of l1, l2, t1, t2, t3 and h.

Example 15.10
In Example 15.9, if l1 = 30 mm, l2 = 90 mm, t1 = 10 mm, t2 =  8 mm, t3 = 5 mm and h
the position of the shear centre.
Solution:
The moment of inertia of the section is found as

 I =  2 1
12

10 30 2 30 10 150
2

30
2

3
2

× × × + × × × +⎛
⎝⎜

⎞
⎠⎟

 

 +  2 1
12

90 8 2 90 8 150
2

1
12

5 1503
2

3× × × + × × ×⎛
⎝⎜

⎞
⎠⎟
+ × ×

 =  (45000 + 4860000 + 7680 + 8100000 + 1406250) mm4 

 =  14418930 mm4

The eccentricity e

 e =  l l t
I

h l t l h
I

1 2 1
2

1
2

2 2
2 2

2
2
3 4

−
⎛

⎝
⎜

⎞

⎠
⎟ +

 = 
30 90 10
14418930

150
2

2 30
3

8 90 150
4 14418930

2 2 2 2× × − ×⎛

⎝
⎜

⎞

⎠
⎟ +

× ×
×

 = 19.94 + 25.28

 = 45.22 mm

Hence, the shear centre is located on the neutral axis at a distance of 45.22 mm from the point O 
(towards left).    Ans.
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Example 15.11
Find the position of the shear centre for a section of uniform thickness as shown in Fig. 15.33.

 
 Fig. 15.33  Fig. 15.34

Solution:
The applied vertical shear force is V acting at the shear centre C. The shear forces in the parts BD 
and FG are equal (say f1) and in the parts DE and EF are equal (say f2). The uniform thickness of the 
section is t.
The shear force f1 is found as

 f1 =  τ dA∫

 =  
V
It

Ay tdx
l

⋅ ⋅∫
0

1

 (dA = tdx)

 =  
V
It

tx y tdx
l

( ) ⋅∫
0

1

 (A = tx) ...(1)

where  y =  l2 sin 45° – l1 sin 45
2

45° + °x sin

 =  
l l x2 1

2 2 2 2
− +

 =  
2 2

2 2
2 1l l x− +

On substituting y in equation (1), we have

 f1 =  V
It

tx l l x tdx
l

( ) ⋅ − +⎛
⎝⎜

⎞
⎠⎟
⋅∫

2 2
2 2

2 1

0

1
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 =  
Vt

I
l x l x x dx

l

2 2
2 22 1

2

0

1

( )− +∫

 = Vt
I

l x l x x
l

2 2
2

2
2

2 32

2

1

2 3

0

1

. .− +
⎛

⎝⎜
⎞

⎠⎟

 =  Vt
I

l x l x x
l

2 2 32
2

1
2

3

0

1

− +
⎛

⎝⎜
⎞

⎠⎟

 =  Vt
I

l l l l
2 2 32 1

2
1
3 1

3

− +
⎛

⎝
⎜

⎞

⎠
⎟

 =  
Vt

I
l l l l

2 2
3 3

3
2 1

2
1
3

1
3− +⎛

⎝
⎜

⎞

⎠
⎟

 =  
Vt

I
l l l

6 2
3 22 1

2
1
3( )−    =  Vtl

I
l l1

2

2 16 2
3 2( )−

The shear force f2 is not required to be determined as it passes through the  point O, the centre of 
moment.

Calculation of moment of inertia
Consider the top half part of the section as shown in Fig. 15.34.
The moments of inertia of the parts BD and FG UU (the horizontal 

VV

 Iuu = 1
12 1

3× ×l t

 Ivv = 
1

12 1
3× ×t l

Now  Ixx =  Iuu cos2 45° + Ivv sin2 45°

 =  
1

12
1
2

1
12

1
21

3
1
3× × × + × × ×l t t l

 = 
l t tl1

3
1
3

24 24
+

 =  
l t t l1 2

1
2

24
( )+

Now the moment of inertia of the part FG NA) is found as

 I1 =  Ixx + l1 t l l
2

1
2

45
2

45sin sin° − °⎛
⎝⎜

⎞
⎠⎟
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 =  
l t t l l t l l1 2

1
2

1
2 1

2

24 2 2 2
( )+ + −⎛

⎝⎜
⎞
⎠⎟

 =  
l t t l l t l l1 2

1
2 1

2 1
2

24 8
2( ) ( )+ + −

 =  
l t t l l t l l l l1 2

1
2 1

2
2

1
2

1 224 8
4 4( ) ( )+ + + −

 =  l t l t t l l t l t l l t1
3

1
3

1 2
2

1
3

1
2

212 3 12
24

+ + + + −

 = l t l t l l t l l t1
3

1
3

1 2
2

1
2

24 12 12
24

+ + −

 =  l t t l l l l1 2
1
2

2
2

1 224
4 12 12( )+ + −

The moment of inertia of the part BD NA) is also equal to I1.
Similarly, the moments of inertia of the parts DE and EF 

U U  and V V  as

 Iu u  =  1
12 2

3× ×l t

  Iv v = 
1

12
× t × l2

3

Now Ix x  =  Iu u  cos2 45° + Iv v  sin2 45°

 =  
1

12
1
2

1
12

1
22

3
2
3× × × + × × ×l t t l

 = 
l t tl2

3
2
3

24 24
+

 =  
l t t l2 2

2
2

24
( )+

 Now the moment of inertia of the part EF NA) is found as

 I2 = Ix x  + l2t l2
245

2
sin °⎛

⎝⎜
⎞
⎠⎟

 = 
l t t l l t l2 2

2
2 2 2

2

24 8
( )+ + ×

 = 
l t tl tl2

3
2
3

2
33

24
+ +
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 = 
l t tl2

3
2
34

24
+

 = 
l t t l2 2

2
2

24
4( )+

The moment of inertia of the part DE NA) is also equal to I2.
NA) is given as

 I =  2I1 + 2I2

 =  
l t t l l l l l t t l1 2

1
2

2
2

1 2
2 2

2
2

12
4 12 12

12
4( ) ( )+ + − + +  ... (2)

Taking moments of the shear forces about O, we have
 V × e =  f1 × l2 + f1 × l2 

 =   2 f1 × l2 = 2
6 2

3 21
2

2 1 2× − ×Vtl
I

l l l( )

which gives e =  
tl l

I
l l1

2
2

2 13 2
3 2( )−

After substituting I e in terms of t1, l1 and l2. 

Example 15.12 
l1 = 30 mm l2 = 45 mm and t

the section.
Solution:
 The moment of inertia of the section is found is

 I =   
l t t l l l l l t t l1 2

1
2

2
2

1 2
2 2

2
2

12
4 12 12

12
4( ) ( )+ + − + +

 =  
30 3

12
3 4 30 12 45 12 30 452 2 2× + × + × − × ×( )  + 

45 3
12

3 4 452 2× + ×( )

 =  87817.5 + 91226.25 =  179043.75 mm4

The eccentricity e is given as

 e =  
tl l

I
l l1

2
2

2 13 2
3 2( )−  =  

3 30 45
3 2 179043 75

2× ×
× .

× (3×45 – 2×30) =  12 mm

O  
(towards left).   Ans.
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Example 15.13
Find the shear centre of the section of uniform thickness as shown in Fig. 15.35.

Fig. 15.35

Solution:
The vertical shear force V is applied at the point C, the shear centre, and t is the uniform thickness 
of the section. Equal shear forces are developed (say f1) in the parts BD and GH. Similarly, the parts 
DE and FG have equal shear forces (say 2). f3 is the shear force developed in the part EF. e is the 
eccentricity and NA 
The shear force f1 is found as

 f1 = τdA∫

 = 
V
It

Ay tdy
l

.
0

1

∫  (dA = t dy)

 = 
V
It

yt h l y tdy
l

⋅ ⋅ − +⎛
⎝⎜

⎞
⎠⎟
⋅∫ 2 21

0

1

 (A = yt)

 = 
Vt
I

h y l y y dy
2 21

2
− +

⎛

⎝⎜
⎞

⎠⎟  =  Vt
I

hy l y y
l2

1
2 3

0
4 2 6

1

− +
⎛

⎝⎜
⎞

⎠⎟

 = 
Vt
I

hl l l1
2

1
3

1
3

4 2 6
− +

⎛

⎝⎜
⎞

⎠⎟
 =  Vt

I
hl l l3 6 2

12
1
2

1
3

1
3− +⎛

⎝⎜
⎞

⎠⎟

 = 
Vt
I

hl l3 4
12

1
2

1
3−⎛

⎝⎜
⎞

⎠⎟

 =  Vtl
I

h l1
2

13 4
12
−⎛

⎝⎜
⎞
⎠⎟
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The shear force f2 is found as

 f2 = τdA∫

 = 
V
It

Ay dA∫ ⋅

 =  
V
It

xt h l t h l tdx
l

2 2 21
1

0

2 ⎛
⎝⎜

⎞
⎠⎟
+ ⋅ −⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
⋅∫  (A = xt and dA = t dx)

 = 
Vt
I

xh l h l dx
l

2 2 2
1 1

2

0

2

+ −
⎛
⎝⎜

⎞
⎠⎟∫  =  Vt

I
x h l hx l x

l2
1 1

2

04 2 2

2

+ −
⎛
⎝⎜

⎞
⎠⎟

 =  Vt
I

l h l l h l l2
2

1 2 1
2

2

4 2 2
+ −

⎛

⎝
⎜

⎞

⎠
⎟

The shear force f3 is not required to be determined as it passes through O, the point about which 
moment is calculated.

NA) is obtained as

 I =  2 1
12 2 21

3
1

1
2

× × + × × −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

t l l t h l

  + 2×
1

12 2
1

122
3

2

2
3× × + × ×⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ × ×l t l t h t h

 =  
tl l th l th l t l t l th th1

3
1

2

1
2 1

3
2

3
2

2 3

6 2 2 6 2 12
+ − + + + +

 =  
2
3 2 6 2 121

3 1
2

1
2 2

3
2

2 3

tl l th l th l t l th th+ − + + +

Taking moments of the shear forces about the point O, we have

 V × e =  2 × f1 × l2 + 2 × f2 × h
2

 =  2 3 4
12

2
4 2 2

1
2

1
2

2
2

1 2 1
2

2× −⎛
⎝⎜

⎞
⎠⎟
× + × + −

⎛
⎝⎜

⎞
⎠⎟
×Vtl

I
h l l Vt

I
l h l l h l l h

22

which gives  e =  
tl l

I
h l th

I
l h l l h l l1

2
2

1
2
2

1 2 1
2

2

6
3 4

4 2 2
( )− + + −

⎛

⎝
⎜

⎞

⎠
⎟

Substituting I e in terms of given parameters.
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Example 15.14 
Find the position of the shear centre of an unequal I-section shown in Fig. 15.36.

Fig. 15.36

Solution:
C is the position of the shear centre, where the vertical shear force V is  applied. XX
of the section, and hence the shear centre lies on it. f1 and f2 are the shear forces developed in the two 

V = f1 + f2. The shear force developed in the web is not required to be 

The shear force f1 is found as

 f1 = τdA∫
 = 

V
It

Ay dA
1

.∫

 = 
V
It

l y t l y y t dy
l

1

1
1

1
1

0

2

2
1
2 2

1

−⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟
+⎧

⎨
⎩

⎫
⎬
⎭
⋅∫ .

/

 = 
Vt
I

l y l y dy
l

1 1 1

0

2

2 4 2

1

−⎛
⎝⎜

⎞
⎠⎟
⋅ +⎛
⎝⎜

⎞
⎠⎟∫

/

 = 
Vt
I

l y dy
l

1 1
2 2

0

2

8 2

1

−
⎛
⎝⎜

⎞
⎠⎟∫

/

 =  Vt
I

l y y
l

1 1
2 3

0

2

8 6

1

−
⎛

⎝⎜
⎞

⎠⎟

/

 = 
Vt
I

l l1 1
3

1
3

16 48
−

⎛

⎝
⎜

⎞

⎠
⎟  = 

Vt
I

l l1 1
3

1
33

48
−⎛

⎝
⎜

⎞

⎠
⎟  =  

Vt l
I

1 1
3

24

Let I1 XX

 =  
1

12 1 1
3× ×t l
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Now  f1 =  
VI

I
1

2  (in terms of I1)

Similarly, f2  is found as

 f2 = Vt l
I

2 2
3

24

Let  I2 XX

 =  
1

12 2 2
3× ×t l

Now f2  =  VI
I
2

2
 (in terms of I2)

Taking moments of the shear forces about the point C, we have

 f1  × e1 =  f2 × e2

 VI
I

e1
12

× =  
VI

I
e2

22
×

 I1 e1 =  I2 e2

or 
e
e

1

2

= 
I
I

2

1

=  
t
t

l
l

2

1

2

1

3
⎛

⎝
⎜

⎞

⎠
⎟×

⎛

⎝
⎜

⎞

⎠
⎟  Ans.

 1. What is meant by unsymmetrical bending? How does it differ from symmetrical bending?
 2. 
 3. 
 4. 
 5. 
 6. What is meant by skew loading?
 7. 
 8. 
 9. What is shear centre? What does it signify?
 10. Why is shear centre also called centre of twist?

SHORT ANSWER QUESTIONS
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 1. Principal axes are those axes about which

   (a) mass moment of inertia is zero

   (b) second moment of area is zero

   (c) product of inertia is zero

   (d) polar moment of inertia is zero. 
 2.

   3. The material must follow Hooke’s law.

  Of these statements:

   (a) 1 alone is true   

   (b) 1 and 3 are true

   (c) 2 and 3 are true   

   (d) 1, 3 and 4 are true.      
 3.

   (a) For a section symmetrical about two axes, the shear centre lies at the centriod of the section.

   (b) For a section symmetrical about one axis only, the shear centre lies along the axis of symmetry. 

   (c

   (d) All of these.
 4.

   (a) Channel section   

   (b) T-section

   (c) Channel and T-section both 

   (d) I-section.
 5. Symmetrical sections such as rectangular and I

   (a) only one axis of symmetry 

   (b) two axes of symmetry

   (c) three axes of symmetry 

   (d) no axis of symmetry.

 MULTIPLE CHOICE QUESTIONS
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 6. The shear centre of a semi-circular ring of mean radius R is located at

   (a) 2R
π

from the centre of the ring

   (b) 
3R
π

from the centre of the ring

   (c) 4R
π

from the centre of the ring

   (d) 5R
π

from the centre of the ring.

 7. The position of the shear centre for a uniform thin-walled narrowly open circular section of 
radius R e = Eccentricity)

   (a) e = R   (b) e = 2R
   (c) e = 3R   (d) e = 4R.
 8. For an I x and y axes, the shear centre lies at 
   (a
   (b
   (c
   (d) none of these.
 9. x-axis, the shear centre lies at
   (a
   (b
   (c
   (d) none of these.
 10. The shear centre is also known as
   (a) centroid   (b) centre of twist
   (c) centre of moment   (d) none of these.

 1. (c) 2. (d) 3. (d) 4. (c) 5. (b) 6. (c) 7. (b) 8. (c)

 9. (c) 10. (b).

ANSWERS
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 1. -

-
ing stresses set up across the section in the beam.

(Ans. 169 MPa (T), 204 MPa (C)). 

 2. A T-shaped 2 m long simple beam shown in Fig. 15.37 is subjected to a central point load of  

the following parameters:
 (a
 (b) the position of the neutral axis and
 (c
   Take  E = 200 GPa

Fig. 15.37

(Ans. (a) max (T) at R = 26.57 MPa, max (C) at Q = 38.63 MPa.

 (b) c) mm).

 3. A T-shaped 2.5 m long simple beam shown in Fig. 15.38 is subjected to a central point load  
W 

W. 

EXERCISES
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 Fig. 15.38 (Ans. 5.82 kN).

 4. Find the shear centre of the channel section shown in Fig. 15.39.

 Fig. 15.39 (Ans.  e = 38.21 mm).

 5. Find  the shear centre of the section shown in Fig. 15.40.

 Fig. 15.40 (Ans.  e = 25 mm).
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 6. Find the position of the shear centre of the section of a beam shown in Fig. 15.41.

 Fig. 15.41 (Ans.  e = 36 mm). 

 7. Show that the shear centre of a semi-circular ring of mean radius R with uniform thickness is 

located at a distance of  4R
π

 from the centre of the ring.

 8. Find the position of the shear centre of the unequal I-section shown in Fig. 15.42.

       
Ans e

e. 1

2
0 281=

⎛
⎝⎜

⎞
⎠⎟

. .

Fig. 15.42

 9. Find the shear centre of the section shown in Fig. 15.43

 Fig. 15.43 (Ans.  e = 44.75 mm). 
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 10. Find the position of the shear centre at a section of uniform thickness (t = 5 mm) shown in  
Fig. 15.44.

       (Ans.  8.846 mm).
Fig. 15.44

 11. Show that the shear centre of a section in the form of a circular arc of mean radius R and of uni-
form thickness, subtending an angle 2

  e = 
2R (sin cos )

( sin cos )
α α α

α α α
−

−   

 (Ans. e = 2R)
 12. Find the shear centre of a section in the form of circular arc of mean radius 75 mm and of uniform 

Ans. e = 83.63 mm). 
 13. Find the shear centre of the section of a beam shown in Fig. 15.45.

Fig. 15.45
       (Ans. 8.55 mm).
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16.1  INTRODUCTION  

Fig. 16.1

A HA VA
MA B HB VB MB. MA MB 

HA HB

Fig. 16.2 
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16.2 SHEAR FORCE AND BENDING MOMENT DIAGRAMS 

16.3  FIXED BEAM CARRYING A CENTRAL POINT LOAD 
AB l W C  

a
Reactions at A and B

 HA =  HB = 0

 VA =  RA VB = RB

 RA = RB = 
W

Calculations for shear forces

A C W C 
W B C

b

Fixing end moments at A and B
MA MB A B

MA = MB l
c

+WL
4
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Fig. 16.3

d

 A

 = 
1
2 4
× ×l Wl

 = 
Wl2

8



   747

 A  =  

 =   MA × l

A  =  A

 Wl2

8
=   MA × l

MA = −Wl
8

MB =  MA = −
Wl
8

Total B.M. Diagram

A MB

e

 XX  AC x a

 Mx =  RA
 x MA = 

W x Wl
2 8

−  

 EI d y
dx

=  M = Mx

or EI d y
dx

= 
W x Wl
2 8

−

 EI dy
dx

= 
Wx Wlx C

2

14 8
− +

where C

 EIy =  
Wx Wlx C x C

3 2

1 212 16
− + +

where C
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A x y = 0

dy
dx = 0

 C C  = 0
C C

 
dy
dx   = 

1
4 8

2

EI
Wx Wlx−
⎡

⎣
⎢

⎤

⎦
⎥

 y  = 
1

12 16

2 2

EI
Wx Wlx−
⎡

⎣
⎢

⎤

⎦
⎥

C

C x = 
l

 yC = y  = 
1

12 2 16 2

3 2

EI
W l Wl l× ⎛

⎝⎜
⎞
⎠⎟

− × ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  = 
1

96 64

3 3

EI
Wl Wl−
⎡

⎣
⎢

⎤

⎦
⎥  = 

1 2 3
192

3 3

EI
Wl Wl−⎡

⎣
⎢

⎤

⎦
⎥

  = 
Wl

EI

3

192

16.4  FIXED BEAM CARRYING AN ECCENTRIC POINT LOAD 
AB l W C as 

a

Fixing end moments at A and B
MA MB A B

c d

 A

 =  
1
2
× ×l Wab

l

 =  
Wab



   749

Fig. 16.4 
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 A

  =  − × + ×1
2

( )M M lA B

 =  −
+( )M M lA B

2
 A = A

 
Wab

=  −
+( )M M lA B

2

or MA + MB =  
Wab

l
A is

 x  = 
( )a l+

3
A is

 x  =  
l M M

M M
A B

A B3
2× +
+

( )
( )

x  = x

 
( )a l+

3
=  

l M M
M M

A B

A B3
2× +
+

( )
( )

 

a + l MA + MB l MA MB

 aMA + aMB +  lMA + l MB = l MA lMB

 aMA + aMB + lMB lMB = 0
 aMA+ aMB lMB = 0
 aMA l a MB = 0
or aMA bMB b l – a

 MA =  Wab
l

 MB =  
Wa b

l

Total B.M. Diagram
MA MB

e
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Reactions at A and B 
RA RB A B

B

 RA × l  MA W × b + MB = 0

 RA =  
M M Wb

l
A B− +

MA MB

 RA =  

Wab
l

Wa b
l

Wb

l

− +

 =  

Wb ab a l
l
l

( )− +2 2

2

 = 
Wb
l

ab a l3
2 2( )− +

 =  
Wb
l

ab a a b3
2 2( ( )− + +⎡⎣ ⎤⎦ l a + b

 =  
Wb
l

ab a a b ab3
2 2 2 2( )− + + +

 =  
Wb
l

ab b3
23( )+  

 =  Wb
l

a b
2

3 3( )+

 =  Wb
l

a l
2

3 2( )+ a + b l

 RB = 
Wa

l
b l

2

3 2( )+

Calculations for shear forces
A is

 VA =  + RA 

 =  + Wb
l

a l
2

3 2( )+
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A C VA.
C RB

B C.

B is 

 VB =   RB

 =  
Wa

l
b l

2

3 2( )+

b

 x A

 Mx =  RAx MA W x a

 =  
Wb

l
a l x Wab

l

2

3

2

22( )+ −  W x a

 EI d y
dx

=  M  =  Mx

 = 
Wb

l
a l x Wab

l
W x a

2

3

2

22( ) ( )+ − − −

 EI dy
dx

=  
Wb

l
a l x Wab

l
x C W x a2

3

2 2

2 1

2
2

2 2
( ) ( )+ × − + − −

where C

 EIy =  Wb
l

a l x Wab
l

x C x C W x a2

3

3 2

2

2

1 2

3

2
6 2 6

( ) ( )+ × − × + + − −

where C

A x y = 0

dy
dx

 = 0

  C
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   C
C

 dy
dx

=  
1

2
2

2

2 2

3

2

2

2

EI
Wb x

l
a l Wab x

l
W x a( ) ( )+ − − −⎡

⎣
⎢

⎤

⎦
⎥

C C

 y =  
1

6
2

2 6

2 3

3

2 2

2

3

EI
Wb x

l
a l Wab x

l
W x a( ) ( )+ − − −⎡

⎣
⎢

⎤

⎦
⎥

AC

 Wb x
l

a l
2 2

32
2( )+ =  

Wab x
l

  x < a

 x = 
al

a l+
x a  l

AC.
x

 y  = 
2

3 2

3 2

2EI
Wa b
a l

×
+( )

 =  
2

3 3

3 2

2EI
Wa b
a b

×
+( )

W at C
W x = a

 y = – Wa b
EIl
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16.5  FIXED BEAM CARRYING UNIFORMLY DISTRIBUTED LOAD (UDL) OVER THE 
ENTIRE SPAN 

AB l udl
a

Fig 16.5
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Reactions at A and B
w

A B RA RB A B

RA = RB = 
wl

Calculations for shear forces
A is 

 VA = + RA

 = + wl

C is 
 VC =  + −R wl

A

 =  + −wl wl = 0

B is
 VB RB

 = − wl

b

Fixing end moments at A and B
MA  MB A B

c

is  wl2

8
C d

 A

 = 
4
3 2 8

2

× ×l wl

 = wl3

12

 A  =

 = MA × l
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A  =  A

 wl3

12
=   MA × l

MA = − wl2

12

 MB = MA = −
wl2

12

Total B.M. Diagram
MA MB

e

XX x A a

 Mx =  RA x MA −
wx

 =  wl x wl wx
2 12 2

2 2

− −

 Mx = 0

 wlx wl wx
2 12 2

2 2

− − =  0

 x lx + l2

6
=  0

x lx + l  = 0

x

 x =  
− − ± − − × ×

×
( ) ( )6 6 4 6

2 6

2 2l l l
 

 = 
6 2 3

12
l l±

l l

or  x l l
l A 

l A l B.
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 EI d y
dx

  =  M = Mx

  = 
wlx wl wx
2 12 2

2 2

− −

 EI dy
dx

  = 
wlx wl x wx C

2 2 3

14 12 6
− − +

where C

 A x  = 0

 
dy
dx

 = 0 

 C  =  0
C

 
dy
dx

= 
1

4 12 6

2 2 3

EI
wlx wl x wx− −

⎡

⎣
⎢

⎤

⎦
⎥

 EIy = 
wlx wl x wx C x C

3 2 2 4

1 212 24 24
− − + +

where C

A x  = 0
 y  = 0

 C  = 0
C  C

 y = 
1

12 24 24

3 2 2 4

EI
wlx wl x wx− −

⎡

⎣
⎢

⎤

⎦
⎥
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 x = l

 y  =  
1

12 2 24 2 24 2

3 2 2 4

EI
wl l wl l w l× ⎛

⎝⎜
⎞
⎠⎟

− × ⎛
⎝⎜

⎞
⎠⎟

− × ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = 
1

96 96 384

4 4 4

EI
wl wl wl− −

⎡

⎣
⎢

⎤

⎦
⎥

 = 
wl

EI

4

384

16.6  FIXED BEAM CARRYING UNIFORMLY VARYING LOAD 
Case I When the load varies from w1/unit length at the left end to w2/unit length at the right 

AB l w A  
w B

Fig. 16.6

dx  x A w

Fixing end moments MA and MB

wdx.
wdx

x A  MA MB

 MA =  Wab
l
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 =  −
× × −

∫
( ) ( )wdx x l x

l

l 2

2
0

 =  −
−

∫
wx l x dx

l

l ( )2

2
0

a = x b l x W = wdx.

 MB = − wa b
l

 = − × × −
∫

( ) ( )wdx x l x
l

l 2

2
0

 

 = − −
∫

w l x x dx
l

l ( ) 2

2
0

where w =  w w w x
l1

2 1+ −( )
or w w w l x

l2
2 1− − −( )( )

AB l w C  
w D CD b a

Fig. 16.7

Fixing end moments MA and MB

MA

 MA =  −
−

=

=

∫
wx l x dx

lx a

x b ( )2

2
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MB

 MB =  −
−

=

=

∫
w l x x dx

lx a

x b ( ) 2

2

where w =  w w w x a
b a1

2 1+ − −
−

( )( )
( )

or w w w b x
b a2

2 1− − −
−

( )( )
( )

w/unit length at the right 

AB l  
A w B a

Free moment diagram

l A w B.  
RA RB A B

A

 RB  × l =  
wl l
2

2
3

×

RB  = wl

RA  + RB

 = 
wl

RA  = 
wl
2

− RB

 = 
wl wl
2 3

−

 =  
wl
6

( )↑

XX x A is 

 Mx =  RA  × x
x

 =  
wl x x wx

l
x

6
1
2 3

× − × × ×

 =  
wlx wx

l6 6

3

−
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Fig. 16.8
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dM
dx

x =  0

 
d
dx

wlx wx
l6 6

3

−
⎛
⎝⎜

⎞
⎠⎟

=  0

or 
wl wx

l6
3

6

2

− =  0

 x =  
l

x

 M  = wl l w
l

l
6 3 6 3

3

× − × ⎛
⎝⎜

⎞
⎠⎟

 = 
wl wl2 2

6 3 18 3
−  = 

wl2

9 3

c

 A  = M dxx

l

0
∫

 = 
wlx wx

l
dx

l

6 6

3

0

−
⎛
⎝⎜

⎞
⎠⎟∫

 = wlx wx
l

l2 4

012 24
−

⎡

⎣
⎢

⎤

⎦
⎥  =  wl wl

l

3 4

12 24
−

 = wl3

24
A is

 x  =  
1

1
0A

x M dxx

l
⋅∫  

 =  1

24
6 63

3

0wl
x wlx wx

l
dx

l

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟∫
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 = 24
6 63

2 4

0wl
wlx wx

l
dx

l
−

⎛
⎝⎜

⎞
⎠⎟∫

 = 24
18 303

3 5

0wl
wlx wx

l

l

−
⎡

⎣
⎢

⎤

⎦
⎥

 = 
24

18 303

4 4

wl
wl wl−

⎡

⎣
⎢

⎤

⎦
⎥

 = 24 2
903

4

wl
wl×  =  

8
15

l

Fixing end moments at A and B

MA MB A B

 A  =  

 = − × +( )×
1
2

M M lA B

 = − +( )M M lA B

2
A  =  A

 wl3

24
=  

( )M M lA B+
2

or MA + MB = − wl2

12
A is

 x  =  
l M M

M M
A B

A B3
2× +
+

( )
( )

x  =  x

 8
15

l =  
l M M

M M
A B

A B3
2

×
+( )
+( )

l MA MB l MA + MB

MA MA MB MB = 0

MA MB
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 MA =  −
wl2

30

 MB =  −
wl2

20

MA MB  
d

e

Shear force diagram
RA RB A B

B

RA × l MA
1
2 3
× × ×l w l + MB = 0

 RA × l − − +wl wl wl2 2 2

30 6 20
= 0

or RA × l 9
60

2wl
=  0

 RA =  
3
20
wl ( )↑

RA + RB

 =  
wl

or  RB =  
wl RA−

 =  wl wl
2

3
20

−

 =  
7
20
wl ( )↑

RA RB b
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XX x A

 Mx  =  RAx MA
1
2 3
× × ×x wx

l
x

  =  3
20 30 6

2 3wl x wl wx
l

− −

 EI d y
dx

 =  M = Mx

  =  
3
20 30 6

2 3wlx wl wx
l

− −

 EI dy
dx

 = 
3

40 30 24

2 2 4

1
wlx wl x wx

l
C− − +

where C

A x  = 0

 
dx
dy

 = 0

 C =  0

C

 
dy
dx

= 
1 3

40 30 24

2 2 4

EI
wlx wl x wx

l
− −

⎡

⎣
⎢

⎤

⎦
⎥

 EIy =  
3
120 60 120

3 2 2 5

1 2
wlx wl x wx

l
C x C− − + +

where C
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A   = 0
 y  =  0

 C   =  0

C C

 y  = 
1 3

120 60 120

3 2 2 5

EI
wlx wl x wx

l
− −

⎡

⎣
⎢

⎤

⎦
⎥

16.7  FIXED BEAM SUBJECTED TO A COUPLE 
AB l M a A

A and B
RA RB MA MB A B

  XX x A

 Mx =  RA x MA | + x a

Fig. 16.9
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 EI d y
dx

 = M = Mx

  =  RA x MA | + M x a

 EI 
dy
dx

 = R x M x CA A

2

12
− +  + M x a

where C

A x  =  0

 
dy
dx

  = 0

 C

C

 dy
dx

 = 
1

2

2

EI
R x M x M x aA

A− + −
⎡

⎣
⎢

⎤

⎦
⎥( )

 EIy  =  
R x M x C x C M x aA

A

3 2

1 2

2

6 2 2
− + + + −( )

where C

A x  = 0
 y  = 0

 C

C C

 y  = 
1

6 2 2

3 2 2

EI
R x M x M x aA A− + −⎡

⎣
⎢

⎤

⎦
⎥

( )

B x  = l

 dy
dx

 = 0
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 R l M l M l aA
A

2

2
− + −( ) = 0

or MAl = M l a R lA( )− +
2

2

B x =  l
 y = 0

 
R l M l M l aA A

3 2 2

6 2 2
− + −( )

 =  0

or M lA =  
M l a R lA( )− +

2 3

2 6

 RA =  −
−6

3
Ma l a

l
( )

 = 
6

3

Ma l a
l
( ) ( )− ↓

RA 

 MA =  
M l a

l
R lA( )− +
2

 =  
M l a

l
l Ma l a

l
( ) ( )− + × − −⎛

⎝⎜
⎞
⎠⎟2

6
3  

 =  
M l a

l
Ma l a

l
( ) ( )− − −3

2

 =  
Ml l a Ma l a

l
( ) ( )− − −3

2

 =  
M l a l a

l
( ) ( )− − 3

2

B

 RA ×  l MA + M + MB = 0

or MB =   RAl + MA M
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RA MA

 MB = − − −⎡
⎣⎢

⎤
⎦⎥
× + − − −6 3

3 2

Ma l a
l

l M l a l a
l

M( ) ( )( )

 = 
6 3

2 2

Ma l a
l

M l a l a
l

M( ) ( )( )− + − − −

 = 
M l a

l
a l a M( ) [ ]− + − −2 6 3  

 =  
M l a

l
l a M( ) ( )− + −2 3

 = 
Ml Mal Mal a M Ml

l

2 2 2

2

3 3+ − − −

 =   
2 3 2

2

Mal a M
l
−

 = 
Ma l a

l
( )2 3

2
−

MA MB
MA MB .

RA + RB =  0

or  RB =   RA

 =  − − −⎡
⎣⎢

⎤
⎦⎥

6
3

Ma l a
l
( )

 =  
6

3
Ma l a

l
( ) ( )− ↑

RA RB b

16.8 SINKING OF A SUPPORT  
AB l
B A

MA MB
MA MB RA RB 
A B RB
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Fig. 16.10

B

 RA × l MA MB =  0

 RA × l M MA = MB = M

or  RA =  
2M

l
( )↑

RA + RB

or  RB =  RA

 = − M
l

 = 
2M

l
( )↓
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l RA RB  
b AC RA

 BC
RB

AC

 
δ

=  
R l

EI

A 2
3

3
⎛
⎝⎜

⎞
⎠⎟

 
as y wl

EI
=

⎛

⎝⎜
⎞

⎠⎟
3

3

 = 
R l

EI
A

3

24

or  =  
R l

EI
A

3

12

RA

  =  
2

12

3M
l

l
EI

×  

 =  Ml
EI

2

6

 M =  
6

2

EI
l
δ

RA RB

 RA = RB = 
M
l

 =  
12

3

EI
l

δ

c
l A

5
6
l⎛

⎝⎜
⎞
⎠⎟ A.
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Example 16.1

EI .
Solution:

a

Fig. 16.11

Reactions at A and B 
RA RB A B

 RA =  RB = 
W

= 
10
2

Calculations for shear forces
A is

 VA = +W
= +

10
2

A C
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C

B C
b

Fixing end moments at A and B
MA MB A B

Wl
4

 = 
10 3

4
×

MA = MB = 
Wl
8

 = − ×10 3
8

 =  

c

 yc =  y  = 
Wl

EI

3

192
 

 =   
10 3

192 1500

3×
×

( )
 

Ans.

Example 16.2 

EI .
Solution: 

a

Reactions at A and B
RA RB A B

 RA =  RB = 
( )15 15

2
+
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Fig. 16.12

Calculations for shear forces
A is

 VA  =  + RA

A C
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B is
 VB =   RB = 

B D
C D SFD b

Fixing end moments at A and B
MA MB A B

 MA =  MB

d
c

C = RA

D = RB

C D
c

 A

 = 
1
2

5 3 15× + ×( )

 A  =  

 =  MA

 = MA

A  =  A

MA

  MA =  −
60
5

= 

MB = MA = 

MA MB  
d e
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x AC A

 Mx =  RA x MA 

x

   Mx =  0
x
 x

XX x A

 Mx = RA x MA x x
x x x

 EI d y
dx =  M = Mx

x x x

 EI dy
dx

=  
15

2
12 15 1

2
15 4

2

2

1

2 2x x C x x− + − − − −( ) ( )

where C

A x =  0

 
dy
dx =  0

 C
C

 
dy
dx

=  
1 15

2
12 15 1

2
15 4

2

2 2 2

EI
x x x x− − − − −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) ( )
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 EIy = 
15

6
12

2
15 1

6
15 4

6

3 2

1 2

3 3x x C x C x x− + + − − − −( ) ( )

A x =  0

 y =  0

 C

C C

 y = 1 5
2

6 5 1
2

5 4
2

3
2

3 3

EI
x x x x− − − − −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) ( )

x

 y  =  
1

2000
5 2 5

2
6 2 5 5

2
2 5 1

3
2 3× − × − × −

⎡

⎣
⎢

⎤

⎦
⎥

( . ) ( . ) ( . )

 = 
1

2000
39 06 37 5 8 43. . .− −[ ]

 = 
1

2000
6 87× .  = 

 =  Ans.

Example 16.3

EI .
Solution: 

l
w

EI
a
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Fig. 16.13

Reactions at A and B

A B.
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 RA = RB = 
wl

 = 15 6
2
×

Calculations for shear forces

A is
 VA =  + RA

C is

 VC =  R wl
A −

 = 0
B is

 VB =   RB

 = 
b

Fixing moments at A and B

MA MB A B

 MA =  MB = −
wl2

12

 =  
15 6

12

2×

  =  

MA MB  
d
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The maximum value of the free bending moment at the centre of the simple beam is

 
wl2

8
 = 

15 6
8

2×
 

  =  67.5 kN.m

The free moment diagram is shown in Fig. 16.13 (c
moment diagrams gives the total bending moment diagram as shown in Fig. 16.13 (e). 

The re  a re  two  po in t s  o f  con t r a f l exure  o f  wh ich  one  occur s  a t  a  d i s t ance  o f  
0.211 l = 0.211× 6 = 1.266 m from A and another occurs at a distance of 1.266 m from B or at a 
distance of  0.789 l = 0.789 × 6 = 4.734 m from A.

 ymax =  
wl

EI

4

384

 = 
15 6

384 4000

4×
×

 = 0.01265 m

 =  12.65 mm  Ans.

Example 16.4 

EI = 3000 kN.m2.
Solution:

l  = 4 m
W  = 20 kN
w  = 15 kN/m

EI  = 3000 kN.m2

The loaded beam is shown in Fig. 16.14 (a). The load 20 kN acts at the centre C of the beam.

A and B
Let RA and RB be the vertical reactions at A and B

 RA = RB =  
Total load on the beam

2
 = 

W wl+
2

  

 =  
20 15 4

2
+ ×( )

 =  40 kN
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Fig. 16.14

Calculations for shear forces
A is

 VA =  + RA
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C
 =  + RA

C
 =  + RA

 = 
B is

 VB =   RB 
 =  

b

free =  + +
⎛
⎝⎜

⎞
⎠⎟

Wl wl
4 8

2

 = + × + ×⎛

⎝
⎜

⎞

⎠
⎟

20 4
4

15 4
8

2

c

Fixing moments at A and B
MA MB  A B

 MA = MB =  − +
⎛

⎝⎜
⎞

⎠⎟
Wl wl
8 12

2

 = − × + ×⎛
⎝⎜

⎞
⎠⎟

20 4
8

15 4
12

2

 = 
 =   
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MA MB
d

XX x A a

 Mx =  RA x MA w x x W x× × − −
2

2( )

 =  40 x − − −15
2

20 2
2x x( )

 =  40 x − − −7 5 20 22. ( )x x

Mx  = 0 

40 x − −7 5 20 22. ( )x x

AC x
 40 x x

x x

 x =  
40 40 4 7 5 30

2 7 5

2± − − × ×
×

( ) .
.

 =  
40 26 46

15
± .

x x A.
A 

B
A.

 EI d y
dx

   = M = Mx

 = 40 30 7 5 20 22x x x− − − −. ( )



784  Strength of Materials

 EI dy
dx

=  
40

2
30 7 5

3
20 2

2

2

1

3 2x x C x x− + − − −. ( )

x x + C x x

 where C

 EIy = 
20

3
30

2
2 5

4
10 2

3

3 2

1 2

4 3x x C x C x x− + + − − −. ( )

x x  + C  x + C x4 x

A x =  0

 
dy
dx

y = 0

 C  =  0
C  = 0

C C

 
dy
dx

=  
1 20 30 2 5 10 22 3 2

EI
x x x x− − − −⎡

⎣
⎤
⎦. ( )

y =  
1 6 67 15 0 625 3 34 23 2 4 3

EI
x x x x. . . ( )− − − −⎡

⎣
⎤
⎦

x.
x

x

 y  =  
1 6 67 2 15 2 0 625 23 2 4

EI
. .× − × − ×⎡⎣ ⎤⎦

 = 
1 53 36 60 10

EI
. − −[ ]

 =  
1 16 64

EI
× .  =  

16 64
3000

.

 = Ans.
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 y  =   Wl
EI

wl
EI

3 4

192 384
+

⎡

⎣
⎢

⎤

⎦
⎥   = 

20 4
192 3000

15 4
384 3000

3 4×
×

+ ×
×

⎡

⎣
⎢

⎤

⎦
⎥

 = 

 =  

Example 16.5 
 
 

EI .

Fig. 16.15

Solution:

l
W
w

RA RB MA MB

XX x A

 Mx =  RA x MA x x ( )x −1
2

 =  RA x MA x x

 EI d y
dx = M = Mx

 =  RA x MA x x
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 EI dy
dx

=  R x M x C x x
A A× − × + − − − −2

1

2 3

2
25 1

2
10 1

3
( ) ( )

where C

 EIy = R x M x C x C x xA A× − × + + − × − − × −
3 2

1 2
3 4

6 2
25
6

1 10
12

1( ) ( )

where C

A x =  0

 dy
dx

y = 0

 C

 C   =
C C

 
dy
dx

 = 
1

2
25 1

2
10 1

3

2 2 3

EI
R x M x x x

A A− − − − −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( ) ( )

 y  = 
1

6 2
25
6

1 5
6

1
3 2

3 4

EI
R x M x x xA A− − − − −
⎡

⎣
⎢

⎤

⎦
⎥( ) ( )

B x
 y  = 0

 0 =  
1 3

6
3
2

25
6

3 1 5
6

3 1
3 2

3 4

EI
R MA A× − × − − − −
⎡

⎣
⎢

⎤

⎦
⎥( ) ( )

 =  
1 4 5 4 5 33 34 13 34

EI
R MA A. . . .− − −[ ]

RA  MA
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B x

 
dy
dx

=  0

 0 =  
1 3

2
3 25

2
3 1 10

3
3 1

2
2 3

EI
R MA A× − × − × − + × −
⎡

⎣
⎢

⎤

⎦
⎥( ) ( )

 = 
1 4 5 3 50 26 67

EI
R MA A[ . . ]− − −

RA MA

 MA Ans.

 RA Ans.

RA + RB

or RB A

Ans.

A

 MB RB 20 2 1 2
2

× × +⎛
⎝⎜

⎞
⎠⎟
− M A = 0

 MB

 MB

 MB

or  MB Ans.

MA MB
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C x

 y =  
1 30 37 1

6
20 1

2

3 2

EI
. × − ×

⎡

⎣
⎢

⎤

⎦
⎥

 = 
1 5 06 10

EI
( . )−

 =  1 4 94
EI

× .

 =  
4 94

15000
.

 = 

 =  Ans.

Example 16.6
AB

A B

Fig. 16.16

Solution:

l  
A w
B w

dx x A w.
wdx
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A

 MA  = −
−

∫
wx l x dx

l

l ( )2

2
0

where w  = w w w x
l1

2 1+ −( )

  = 15 30 15
5

+ −( )x
x 

w

 MA  = −
+ −

∫
( ) ( )15 3 5

5

2

2
0

5 x x x dx

  = − + −∫
3

25
5 5 2

0

5

( ) ( )x x x dx

  = − + × × − +∫
3

25
5 25 10 2

0

5

( ) ( )x x x x dx

  = − + × − +∫
3

25
5 25 102 2

0

5

( ) ( )x x x x dx

  = − − + + − +∫
3

25
125 50 5 25 102

0

5
3 2 3 4( )x x x x x x dx

  = − − − +∫
3

25
125 25 52 3 4

0

5
( )x x x x dx

  = − − − +
⎡

⎣
⎢

⎤

⎦
⎥

3
25

125
2

25
3

5
4 5

2 3 4 5

0

5
x x x x

  = −
× − × − × +

⎡

⎣
⎢

⎤

⎦
⎥

3
25

125 5
2

25 5
3

5 5
4

5
5

2 3 4 5

  = − − − +3
25

1562 5 1041 67 781 25 625( . . . )

  = −
3
25

364 58( . )

  = Ans.
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B

 MB =  w l x x dx
l

l ( )−
∫

2

20

w

 MB =  −
+ −

∫
( )( )15 3 5

5

2

20

5 x x x dx

 = − + −∫
3

25
5 5 2

0

5
( )( )x x x dx  = − −∫

3
25

25 2 2

0

5
( )x x dx

 = − −∫
3

25
25 2 4

0

5
( )x x dx  = − −

⎡

⎣
⎢

⎤

⎦
⎥

3
25

25
3 5

3 5

0

5
x x

 = − × −
⎡

⎣
⎢

⎤

⎦
⎥

3
25

25 5
3

5
5

3 5

 

 =  − −3
25

1041 67 625( . )

 = − ×3
25

416 67.

 = Ans.

Example 16.7 
AB

A B.

Fig. 16.17
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Solution:

l
C  w

D w
a
b

dx x A w.
wdx.
A

 MA =  −
−

=

=

∫
wx l x

l
dx

x a

x b ( )2

2

 w =  w w w x a
b a1

2 1+ − −
−

( )( )
( )

 = 20 40 20 1
3 1

+ − × −
−

( ) ( )
( )

x

x

x

w

 MA =  − + −
∫

( ) ( )10 10 4
4

2

21

3 x x x dx

 = − + −∫
10
16

1 4 2

1

3
( ) ( )x x x dx

 = − + −∫
5
8

42 2

1

3
( )( )x x x dx

 = − + − +∫
5
8

16 82 2

1

3
( )( )x x x x dx  

 = − − + + − +∫
5
8

16 8 16 82 3 4 2 3

1

3
( )x x x x x x dx

 = − + − +∫
5
8

16 8 72 3 4

1

3
( )x x x x dx

 = − + − +
⎡

⎣
⎢

⎤

⎦
⎥

5
8

16
2

8
3

7
4 5

2 3 4 5

1

3
x x x x
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 = − × + × − × + − × − × − × −
⎡

⎣
⎢

⎤

⎦
⎥

5
8

16 3
2

8 3
3

7 3
4

3
5

16 1
2

8 1
3

7 1
4

1
5

2 3 4 5 2 3 4 5

 = − + − + − − + −5
8

72 72 141 75 48 6 8 2 67 1 75 0 2[ . . . . . ]

 = − ×5
8

41 73.

 =  Ans.

B

 MB = − −

=

=

∫
w l x x dx

lx a

x b ( ) 2

2

w

 MB =  −
+ −

∫
( )( )10 10 4

4

2

2
1

3 x x x dx

 = − + −∫
10
16

1 4 2

1

3
( )( )x x x dx

 = − + −∫
10
16

43 2

1

3
( )( )x x x dx

 = − − + −∫
10
16

4 43 4 2 3

1

3
( )x x x x dx

 = − + −∫
10
16

4 32 3 4

1

3
( )x x x dx

 = − + −
⎡

⎣
⎢

⎤

⎦
⎥

10
16

4
3

3
4 5

3 4 5

1

3
x x x

 = − × + × − × − × − × + ×⎡
⎣⎢

⎤
⎦⎥

10
16

4
3

3 3
4

3 1
5

3 4
3

1 3
4

1 1
5

13 4 5 3 4 5

 = − + − − − +10
16

36 60 75 48 6 1 34 0 75 0 2[ . . . . . ]

 = − ×10
16

46 26.

Ans.
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Example 16.8

 
E 

Solution:

l
b

d

E
 Pa

 I = 
1
2

3bd  

 = 
1

12
80 10 170 103 3 3× × × ×− −( ) ( )

4

MA

 MA = 
6

2

EI
l
δ

 = 
6 210 10 3 275 10 12 10

7

9 5 3

2

× × × × × ×− −.

Ans.
MB =   MA

 =  Ans.

A B

 RA = 
12

3

EI
l

δ
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 =  
12 210 10 3 275 10 12 10

7

9 5 3

3
× × × × × ×− −.

Ans.

RB =  RA

 =  

Ans.

 1. 
 2. 
 3. 
 4. 
 5. 

SHORT ANSWER QUESTIONS
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 1.

a b
c d

 2.
a
b

c
d

 3.

a b
c d

 4.
a b
c d

5. l W

a
Wl Wl
8 4

, b Wl Wl
6 8

,

c
Wl Wl
8 8

, d
Wl Wl
4 4

, .     

MULTIPLE CHOICE QUESTIONS   
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6. l udl w

a
wl wl2 2

8 8
, b

wl wl2 2

12 12
,

c wl wl2 2

8 12
, d

wl wl2 2

4 4
, .     

7. l W

a
Wl

EI

2

192
b

Wl
EI

4

384

c
Wl

EI

3

192 d
Wl

EI

3

384
.     

8. l udl w

a
wl

EI

3

192 b
wl

EI

4

384

c
wl

EI

3

384
d

wl
EI

4

192
.     

9. l udl w

a wl wl2 2

8 8
, b wl wl3 3

12 12
,

c
wl wl2 2

12 8
, d

wl wl2 2

12 12
, .     

10. l A w B

a MA = 
wl M wl

B

2 2

15 30
, = b MA = 

wl M wl
B

2 2

20 30
, =

c MA = 
wl M wl

B

2 2

30 20
, = d MA = wl M wl

B

2 2

30 15
, .=    
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 11.

a
12 6

3 3

EI
l

EI
l

δ δ, b
6 6

3 3

EI
l

EI
l

δ δ,

c
12 12

3 3

EI
l

EI
l

δ δ, d
12 12

2 2

EI
l

EI
l

δ δ, .     

 12.

a
6 12

2 2
EI
l

EI
l

δ δ, b
6 6

2 2
EI
l

EI
l

δ δ,

c 6 6
3 3

EI
l

EI
l

δ δ, d
12 6

2 2
EI
l

EI
l

δ δ, .  

 1. d 2. c 3. b 4. b 5. c 6. b 7. c 8. b

 9. d 10. c 11. c 12. b

ANSWERS
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 1. 

 
E

       (Ans
 2. 

(Ans
 3. 

EI
(Ans.  RA = RB MA = MB  

 y
 4. 

EI
(Ans MA = MB y

 5. 

EI
(Ans.  

 6. ABCD A, D
B C  

AB = BC = CD  
EI 

(Ans MA = MD y
 7. 

(Ans RA RB MA MB

 8. 

(Ans RA RB MA MB

EXERCISES



17
Rotating Rings, Discs and Cylinders                                                                                                                                      

Simeon Denis Poisson, born on 21 June 1781, was a great French 
mathematician, geometer and physicist. He worked under two famous 
mathematicians Pierre-Simon Laplace and Joseph-Louis Lagrange, and 
Sadi Carnot, who is called the father of thermodynamics, was his one of 
the famous students. Poisson is most known for applying mathematics to 
solve problems in electricity and magnetism, mechanics and other areas 

theory and probability. In his Poisson equation, also known as potential 
theory equation, he corrected the Laplace’s second order partial differential 
equation for potential. He is also known for Poisson’s ratio, which is 
widely used in strength of materials. The Poisson distribution is extremely 

random occurrence of events in time or space. In 1818, he was elected a 
fellow of the Royal Society and in 1823, a foreign member of the Royal 
Swedish Academy of Sciences. He is among the 72 people whose names 
are inscribed on the Eiffel Tower.

LEARNING OBJECTIVES
 After reading this chapter, you will be able to answer some of the following questions:

Simeon Denis Poisson
(1781-1840)

© The Author(s) 2021
D. K. Singh, Strength of Materials,
https://doi.org/10.1007/978-3-030-59667-5_17

799

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59667-5_17&domain=pdf
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17.1 INTRODUCTION  
Components such as turbine shafts and discs while rotating at high speeds are subjected to large  
centrifugal forces, which in turn, produce large stresses that are distributed symmetrically about 
their axes of rotation. The stress analysis of these components is useful in their safe design so as to 
prevent their failure.

17.2 ROTATING RING
The force analysis of a thin rotating ring can also be applied to a thin rotating cylinder or rim-type 

Consider a thin ring or a thin cylinder rotating with a constant angular velocity  rad/s about its 
axis as shown in Fig. 17.1.

Fig. 17.1 A rotating ring.

Let r = Mean radius of the ring (or cylinder)

 t = Thickness of the ring (or cylinder)

  = Density of the ring or (cylinder material)

Rotational motion produces centrifugal force on the circumference of the ring or on the walls of 
the cylinder, which in turn, produces hoop (or circumferential) stress h. Since the thickness is very 
small, hence there is no variation of the hoop stress along the thickness, that is, the hoop stress may 
be assumed to be constant.

Now consider a small element ABCD of the ring or cylinder making an angle d  at the centre as 

Forces on the element
The following three forces are acting on the element ABCD :
  The centrifugal force caused due to rotation acting radially outward
  The hoop tension force on the face AB caused due to hoop stress h

  The hoop tension force on the face CD caused due to hoop stress h
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Centrifugal force
Considering unit length of the circumference of the element, the mass m of the element can be 
obtained as
 m = Density × Volume of the element
  = Density × Area of the element × Unit length
  =  × rd  × t × 1
  = rt d  ...(17.1)

The centrifugal force is given as

 Fc = 
mV

r

2

 ...(17.2)

  = m 2r  ...(17.3)
  = r2 2t d (on substituting m)...(17.4)
 where V = Linear velocity
  = r

Hoop tension forces on faces AB and CD
The hoop tension forces act perpendicular to faces AB and CD are equal but opposite in direction; one 
is acting in the left direction and another in the right direction. Its magnitude is
  h × t × 1 = h × t  (assuming unit length)

Now the hoop forces are resolved into horizontal and vertical components. The vertical components 
of the hoop forces acting on faces AB and CD are radially inward and both are equal to

  h × t × sin
dθ
2

The horizontal component of the hoop force acting on face AB is directed leftward and the 
horizontal component on face CD is directed rightward and both are equal to

  h × t × cos
dθ
2

Equilibrium of the element
The horizontal components of the hoop tension forces on the faces AB and CD are equal but opposite 
in direction, hence they cancel each other. Their vertical components are added as they are acting in 
the same direction.

Fc is balanced by the 
sum of the vertical components of the hoop tension forces on the two faces.

 Fc = h × t × sin
dθ
2

 + h × t × sin
dθ
2

 r2 2t d   = 2 × h × t × sin
dθ
2

 (using equation (17.4))
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   = 2 × h × t × 
dθ
2

 (as d  is very small, hence sin
dθ
2

  
dθ
2

)

which gives
 h  = 2r2 ...(17.5)
This is the required expression for the hoop stress in a thin rotating ring.

Example 17.1
The thin rim of a 900 mm diameter wheel is made of steel and weighs 7800 kg/m3. Neglecting the 
effect of the spokes, how many revolutions per minute may it make, if the hoop stress is not to exceed 

E = 210 GPa.

Solution: Given,
 Diameter of the wheel,  d = 900 mm
   = 900 × 10–3 m
 Density of the rim material,      = 7800 kg/m3

 Hoop stress,       h  = 150 MPa
   = 150 × 106 Pa
 Modulus of elasticity, E = 210 GPa
   = 210 × 109 Pa

The diameter of the rim is equal to the diameter of the wheel and its radius

  r = 
d
2

 = 
900 10

2

3× −
 = 0.45 m

The hoop stress is given by using equation (17.5) as
  h = 2r2

  150 × 106 = 7800 × 2 × (0.45)2

which gives
   = 308.167 rad/s

Let N be the number of revolutions per minute, then

   = 
2

60
π N

  308.167 = 
2

60
π N

 which gives N =  308 167 60
2

. ×
π

   = 2942.78  Ans.
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 Now the hoop strain is given as

  h = σh
E

   = 
150 10
210 10

6

9

×
×

 = 7.143 × 10–4

 Hence, the increase in diameter of the wheel is
  Hoop strain × Diameter = 7.143 × 10–4 × 900 
   = 0.643 mm  Ans.

Example 17.2

material of the wheel is 8000 kg/m3

Solution: Given,
 Mean diameter of the wheel,  d  = 800 mm
 Rotational speed, N = 2000 rpm
 Density of the wheel material,   = 8000 kg/m3

 The mean radius of the wheel is given as

  r = 
d
2

 = 800
2

 = 400 mm

   = 400 × 10–3 m
 The angular velocity of the wheel is obtained as

  =  
2

60
π N

   = 
2 2000

60
π ×

 = 209.44 rad/s

 Now the hoop stress is given by equation (17.5) as

  h = 2r2

   = 8000 × (209.44)2 × (400 × 10–3)2

   = 56.147 × 106 Pa
   = 56.147 MPa  Ans.

17.3 ROTATING THIN DISC
Consider a thin disc  of inner radius r1 and outer radius r2 rotating at angular speed  rad/s about 
its axis as shown in Fig. 17.2. The thickness of the disc is negligibly small, so there is no variation 
of stress across the thickness, and there is no axial stress (longitudinal stress) in the disc. The two 
stresses acting on the disc include hoop and radial.
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 (a) A rotating disc (b) Forces acting on the element ABCD

Fig. 17.2

Let t = Thickness of the disc

  = Density of the disc material

Now consider an element ABCD of the disc of radial width dr at radius r subtending an angle d

Forces on the element
ABCD:

  The centrifugal force caused due to rotation
  The radial force on face AB caused due to radial stress r

  The radial force on face CD caused due to radial stress r

  The hoop tension force on face AD caused due to hoop stress h

  The hoop tension force on face BC caused due to hoop stress h

Centrifugal force

 (rd ) × dr × t
Now the mass of the element is

 m = Density × Volume of the element

  =  × (rd ) × dr × t
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The centrifugal force acting on the element is

 Fc = m 2r

  = (  × rd  × dr × t) × 2 × r

  = r2 2t d dr ...(17.6)

Hoop tension forces on faces AD and BC

The hoop tension forces act perpendicular to AD and BC and are equal to h × dr × t.

Now the hoop forces are resolved into horizontal and vertical components. The vertical components 
of the hoop forces acting on faces AD and BC are radially inward and both are equal to

 h × dr × t × sin
dθ
2

 = h × dr × t ×
dθ
2

 (for small value of d , sin
dθ
2

dθ
2 )

The horizontal component of the hoop force acting on face AD is directed leftward and the 
horizontal component on face BC is directed rightward and both are equal to

 h × dr × t × cos
dθ
2

 = h × dr × t ×
dθ
2

 (for small value of d , cos
dθ
2

  
dθ
2 )

Radial forces on faces AB and CD

The radial force on AB is equal to r × rd  × t. It acts radially inward.

The radial force on CD acting radially outward is

  ( r + d r) × (r + dr) × d  × t

Equilibrium of the element

The horizontal components of the hoop tension forces on the faces AD and BC are equal but opposite 
in direction, hence they cancel each other. Their vertical components are added as they are acting in 
the same direction.

Balancing the forces in the radial direction, we have

 r × r × d  × t + h × dr × t × sin dθ
2

 +  h × dr × t × sin dθ
2

   = r2 2 tdrd + ( r + d r) × (r + dr) × d  × t

 r × r × d  × t + 2 h × dr × t × dθ
2

 = r2 2 tdrd + ( r + d r) × (r + dr) × d  × t

(for small value of d , sin
dθ
2

=
dθ
2 )
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Eliminating d ×t from both sides of the equation, we have
  r × r + h × dr = r2 2 dr + r r + r dr + rd r + drd r

Eliminating r r from both sides and neglecting drd r because of its small value, we have
  h dr = r2 2 dr + r dr + rd r

  ( h – r) dr = r2 2 dr + rd r

Dividing by dr on both sides, we have

  ( h – r) = r2 2 + r d
dr

rσ  ...(17.7)

Strain in the element
Due to rotation, the radius of the disc increases. Let the radius r changes to (r + u) and dr changes 
to (dr + du).

Now the hoop strain is given as

  h = 
Final circumference Initial circumference

Initial circumfer
−

eence

   = 
2 2

2
π π

π
( )r u r

r
+ −

   = 
u
r

 ...(17.8)

And the radial strain is given as

  r = Final radial witdh Initial radial width
Initial radial width

−

   = 
( )dr du dr

dr
+ −

   = 
du
dr  ...(17.9)

 Also h = 
σh
E

 – v
σr

E
 ...(17.10)

  r = 
σr

E  – v σh
E

 ...(17.11)

On equating equations (17.8) and (17.10), we have

  
u
r  = 

σh
E

 – v
σr

E

   = 
1
E

 ( h – v r) ...(17.12)
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On equating equations (17.9) and (17.11), we have

  
du
dr  = 

σr

E
 – v σh

E

   = 
1
E

 ( r – v h) ...(17.13)

From equation (17.12), we get
  E × u = r × ( h – v r)

Differentiating w.r.t. r, we have

  E
du
dr

 = ( h – v r) + 
d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟  × r

 or 
du
dr

 = 1
E

v r d
dr

v d
drh r

h r( )σ σ σ σ− + −⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥  ...(17.14)

On equating equations (17.13) and (17.14), we have

  r – v h = h – v r + r
d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟

  r + v r = h + v h + r
d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟

  r (1 + v) = h (1 + v) + r
d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟

 or        ( h – r) (1 + v) + r
d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟  = 0 ...(17.15)

On substituting ( h – r) from equation (17.7) in equation (17.15), we have

       ρ ω σr r d
dr

r2 2 +⎛
⎝⎜

⎞
⎠⎟ (1 + v) + r

d
dr

v d
dr

h rσ σ−⎛
⎝⎜

⎞
⎠⎟  = 0

         r2 2 + v r2 2 + r d
dr

rσ  + vr d
dr

rσ  + r
d
dr

hσ – vr d
dr

rσ  = 0

Eliminating r from the above equation, we have

       r 2 + v r 2 + 
d
dr

rσ  + 
d
dr

hσ  = 0

       r 2 (1 + v) + 
d
dr

rσ  + 
d
dr

hσ  = 0

 or 
d
dr

rσ  + 
d
dr

hσ  = – r 2 (1 + v) ...(17.16)
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On integration, we have

  r + h = –  × 
r2

2
× 2 (1 + v) + A

   = 
− +ρ ωr v2 2 1

2
( )

+ A ...(17.17)

where A is a constant of integration.
Now subtracting equation (17.7) from equation (17.17), we get

  2 r = 
− +ρ ωr v2 2 1

2
( )

 + A – r2 2 – r
d
dr

rσ

  2 r + r d
dr

rσ  = – r2 2 1
2

1+ +⎛
⎝⎜

⎞
⎠⎟

v  + A

   = – r2 2 1 2
2

+ +⎛
⎝⎜

⎞
⎠⎟

v
 + A

   = −
+ρ ωr v2 2 3

2
( )

 + A ...(17.18)

 Multiplying by r on both sides, we have

  2 × r × r + r2 d
dr

rσ  = −
+( )ρ ωr v3 2 3

2
 + A × r

  d
dr

(r2 × r) = −
+( )ρ ωr v3 2 3

2
 + A × r

 Integrating both sides, we get

  r2 × r = −
+ ×ρω2 43

2 4
( )v r

 + A × 
r2

2
 + B

where B is another constant of integration.
Dividing by r2 on both sides, we get

  r = −
+ + +ρω2 2

2

3
8 2

r v
r

( ) A B

   = 
A B
2

3
82

2 2

+ − +
r

r vρω ( )
 ...(17.19)

This is the required expression for the radial stress. The constants A and B can be determined 
by using suitable boundary conditions. Now substituting equation (17.19) in equation (17.17), 
we get

  A B
2

3
82

2 2

+ − +
r

r vρω ( ) + h = −
+ρω2 2 1

2
r v( )

 + A
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  h = ρω ρω2 2 2 2

2

3
8

1
2 2

r v r v
r

( ) ( )+ − + + − −A A B

   = 2r2 3
8

1
2 2 2

+ − +⎛
⎝⎜

⎞
⎠⎟
+ −v v

r
A B

   = 2r2 3 4 4
8 2 2

+ − −⎛
⎝⎜

⎞
⎠⎟
+ −v v

r
A B

   = 2r2 × ( )− − + −1 3
8 2 2

v
r

A B

   = − + + −ρω2 2

28
1 3

2
r v

r
( ) A B

   = 
A B

r
r v

2
1 3

82

2 2

− − +ρω ( )
 ...(17.20)

This is the required expression for the hoop stress for a rotating thin disc. The constants A and B 
can be determined by using suitable boundary conditions.

17.3.1 Hoop and Radial Stresses in a Rotating Solid Disc
For a solid disc, there is no inner radius.
 R1 = 0 and R2 = R (say)

r B
r2

B = 0.

Equations (17.19) and (17.20) are now transformed to

  r = 
A
2

−
+( )ρω2 2 3

8
r v

 ...(17.21)

  h = 
A
2

−
+( )ρω2 2 1 3

8
r v

 ...(17.22)

The boundary conditions is

At the outer radius, where r = R, the radial stress is
 r = 0

On substituting the boundary condition in equation (17.21), we get

  
A
2

 = 
ρω2 2 3

8
R v( )+
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Now equation (17.21) on substituting the value of A
2

 becomes

  r = 
ρω2 2 3

8
R v( )+

 – 
ρω2 2 3

8
r v( )+

   = 
ρω ( )3

8
+ v

 (R2 – r2) ...(17.23)

This is the required expression for the radial stress for a rotating thin solid disc. Equation (17.22) 

on substituting the value of A
2

 becomes

  h = 
ρω2 2 3

8
R v( )+

 – ρω
2 2 1 3

8
r v( )+

   = 
ρω2

8
 [(3 + v)R2 – (1 + 3v)r2] ...(17.24)

This is the required expression of the hoop stress for a rotating thin solid disc.

Hoop and radial stresses at the centre
At the centre of the solid disc, where r = 0, both hoop and radial stresses have equal maximum values, 
given by

  rmax = hmax = 
ρω2 2 3

8
R v( )+

 ...(17.25)

Hoop stress at outer radius
At the outer radius, the radial stress r = 0, but the hoop stress is not zero.

The value of the hoop stress at the outer radius is obtained by putting r = R in equation (17.24) as

 h r = R
 = 

ρω2

8
 [R2 (3 + v) – R2 (1 + 3v)]

 = 
ρω2

8
 (3R2  + vR2 – R2 – 3vR2)

 = 
ρω2

8
 (2R2 – 2vR2)

 = 
ρω2

8
× 2R2 (1 – v)

  = ρω
2 2

4
R  (1 – v) ...(17.26)
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The variation of the hoop and radial stresses in a rotating solid disc along the radius is shown in 
Fig. 17.3.

Fig. 17.3 Distribution of the hoop and radial stresses in a rotating solid disc.

17.3.2 Hoop and Radial Stresses in a Rotating Disc with a Central Hole
B is zero in order to have 

B is not zero and its 
value is obtained using suitable conditions.

The radial stress r is zero at both inner and outer radius of the disc.
 i.e. at r = R1, r = 0
 Also at r = R2, r = 0

From equation (17.19), we have

 r  = 
A B
2

3
82

2 2

+ − +
r

r vρω ( )

 0 = 
A B
2

3
81

2

2
1
2

+ −
+

R
R vρω ( )

 ...(1)

     and 0 = 
A B
2

3
82

2

2
2
2

+ −
+

R
R vρω ( )

 ...(2)

Subtracting equation (2) from equation (1), we have

  B B
R R

R v R v

1
2

2
2

2
2
2 2

1
23

8
3

8
− +

+
−

+ρω ρω( ) ( )
 = 0

 or                   
B( )R R

R R
v R R2

2
1
2

1
2

2
2

2

2
2

1
23

8
−

+ + −ρω ( ) [ ]  = 0
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Eliminating (R2
2– R1

2), we have

 
B

R R
v

1
2

2
2

2 3
8

+ +ρω ( )
 = 0

It gives

 B  = − +( )3
8

2
1
2

2
2v R Rρω  ...(17.27)

Now substituting the value of B in equation (1), we get

 0 = 
A

R
v R R R v

2
1 3

8
3

81
2

2
1
2

2
2 2

1
2

+ × + ⎫
⎬
⎭

⎧
⎨
⎪

⎩⎪
− +( ) ( )ρω ρω

  = 
A v R v R
2

3
8

3
8

2
2
2 2

1
2

− + − +( ) ( )ρω ρω

  = A v R R
2

3
8

2

2
2

1
2− + +( ) [ ]ρω

It gives

 A = ( ) ( )3
4

2
2
2

1
2+ +v R Rρω  ...(17.28)

Finally the values of A and B are substituted in equation (17.19) to get the expression for the radial 
stress r as

 r = 
1
2

3
4

1 3
8

2
2
2

1
2

2

2
1
2

2
2

×
+ +

+ × −
+⎧

⎨
⎩

⎫
⎬
⎭

( ) ( ) ( )v R R
r

v R Rρω ρω

– ρω2 2 3
8

r v( )+

 = 
( ) ( ) ( ) ( )3

8
3

8
3

8

2
2
2

1
2 2

1
2

2
2

2

2 2+ + − + − +v R R v R R
r

r vρω ρω ρω

  = 
( ) ( )3

8

2

2
2

1
2 1

2
2
2

2
2+ + − −

⎡

⎣
⎢

⎤

⎦
⎥

v R R R R
r

rρω
 ...(17.29)

This is the required expression for the radial stress for a rotating disc with a central hole.
A and B are substituted in equation (17.20).

 h = 
A B

r
r v

2
1 3

82

2 2

− − +ρω ( )

  = 
1
2

3
4

1 3
8

2
2
2

1
2

2

2
1
2

2
2

×
+ +

− × −
+⎧

⎨
⎩

⎫
⎬
⎭

( ) ( ) ( )v R R
r

v R Rρω ρω
− +ρω2 2 1 3

8
r v( )
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  = 
( ) ( ) ( ) ( )3

8
3

8
1 3

8

2
2
2

1
2 2

1
2

2
2

2

2 2+ +
+

+
− +v R R v R R

r
r vρω ρω ρω

  = 
ρω2

2
2

1
2 1

2
2
2

2
2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +

⎡

⎣
⎢

⎤

⎦
⎥v R R v R R

r
v r  ...(17.30)

This is the required expression for the hoop stress for a rotating disc with a central hole.

Maximum hoop stress (Hoop stress at inner radius)
Equation (17.30) suggests that with increase in the value of radius r, the hoop stress h decreases and 
vice versa. Hence, h is maximum when r is minimum, that is, when r approaches to R1. Substituting 
r = R1 in equation (17.30), we have

 hmax
 = hr = R1

 = 
ρω2

2
2

1
2 1

2
2
2

1
2 1

2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +

⎡

⎣
⎢

⎤

⎦
⎥v R R v R R

R
R v

  = 
ρω2

2
2

1
2

2
2

1
2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +⎡⎣ ⎤⎦v R R v R R v

  = 
ρω2

2
2

1
2

2
2

1
2

2
2

2
2

1
2

1
2

8
3 3 3 3R R vR vR R vR R vR+ + + + + − −⎡⎣ ⎤⎦

  = 
ρω2

2
2

2
2

1
2

1
2

8
6 2 2 2R vR R vR+ + −⎡⎣ ⎤⎦

  = 
ρω2

2
2

1
2

8
2 3 2 1R v R v( ) ( )+ + −⎡⎣ ⎤⎦

  = 
ρω2

2
2

1
2

4
3 1( ) ( )+ + −⎡⎣ ⎤⎦v R v R  ...(17.31)

This is the required expression for the maximum hoop stress for a rotating disc with a central hole, 
which occurs at inner radius of the disc.  

R1 approaches R2 = r, we have from equation (17.31)

 h = 
ρω2

2 2

4
3 1[( ) ( ) ]+ + −v r v r

  = 
ρω2

2 2 2 2

4
3[ ]r vr r vr+ + − = 

ρω2
2

4
4× r

  = 2r2

The above expression is same as equation (17.5), which applies to a thin rotating ring or a thin 
rotating cylinder.
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Hoop stress at outer radius
For hoop stress at outer radius, put r  = R2 in equation (17.30).

 hr = R2
 = 

ρω2

2
2

1
2 1

2
2
2

2
2 2

2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +

⎡

⎣
⎢

⎤

⎦
⎥v R R v R R

R
R v

  = 
ρω2

2
2

1
2

1
2

2
2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +⎡⎣ ⎤⎦v R R v R R v

  = 
ρω2

2
2

1
2

2
2

1
2

1
2

1
2

2
2

2
2

8
3 3 3 3R R vR vR R vR R vR+ + + + + − −⎡⎣ ⎤⎦

  = 
ρω2

2
2

2
2

1
2

1
2

8
2 2 6 2R vR R vR− + +⎡⎣ ⎤⎦

  = 
ρω2

2
2

1
2

8
2 1 2 3R v R v( ) ( )− + +⎡⎣ ⎤⎦

  = 
ρω2

2
2

1
2

4
1 3( ) ( )− + +⎡⎣ ⎤⎦v R v R  ...(17.32)

Maximum radial stress 

r and equate it to zero.

 
d
dr

rσ  = 0

 
d
dr

v R R
R R

r
r( ) ( )3

8

2

2
2

1
2 1

2
2
2

2
2+ + − −

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

ρω
 = 0

 
( ) ( )3

8
0 2 2

2

3 1
2

2
2+ − − −⎡

⎣⎢
⎤
⎦⎥

v
r

R R rρω
 = 0

 
( )3

8
2

2
2

1
2

2
2

3

+ −
⎡

⎣
⎢

⎤

⎦
⎥

v R R
r

rρω
 = 0

which gives

 r = R R1 2  ...(17.33)

Substituting the value of r in equation (17.29), we get

 rmax
 = 

( ) ( )3
8

2

2
2

1
2 1

2
2
2

1 2
1 2

+ + − −
⎡

⎣
⎢

⎤

⎦
⎥

v R R R R
R R

R Rρω

  = ( )3
8

2
2

2
2

1
2

1 2
+ + −⎡⎣ ⎤⎦

v R R R Rρω

  = ( ) ( )3
8

2

2 1
2+ −v R Rρω  ...(17.34)
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This is the required expression for the maximum radial stress for a rotating disc with a central 
hole. 

17.3.3 Hoop and Radial Stresses in a Rotating Disc with a Pin Hole at the Centre
In this case, R1 tends to zero. Substituting R1 = 0 and R2 = R in equations (17.31) and (17.34), we get 
the expressions for the maximum hoop and radial stresses for a rotating disc with a central pin hole.

 hmax
 = 

( )3
4

2 2+ v Rρω
 ...(17.35)

 and rmax
 = 

( )3
8

2 2+ v Rρω
 ...(17.36)

 Comparing equations (17.35) and (17.36), we get
 hmax

 = 2 × rmax
 ...(17.37)

Also, when we compare equation (17.35) with equation (17.25), we observe that the maximum 
hoop stress for a rotating disc with a central pin hole is twice the maximum hoop stress for a rotating 
solid disc.

Example 17.3
A steel disc of diameter 800 mm rotates at 2500 rpm. Calculate the hoop and radial stresses developed 
at the centre and outer radius of the disc. The Poisson’s ratio is 0.25 and the density of the disc 
material is 7800 kg/m3.

Solution: Given,

 Radius of the disc, R = 800
2

 = 400 mm 

  = 400 × 10–3 m

 Rotational speed, N = 2500
 Poisson’s ratio, v = 0.25
 Density of the disc material,  = 7800 kg/m3

The angular speed of the disc is given as

  = 2
60
πN

  = 2 2500
60

π ×  = 261.8 rad/s

Hoop stress at the centre
From equation (17.25), the hoop stress at the centre of the disc is maximum, and is given as

 hmax
 = 

ρω2 2 3
8

R v( )+
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  = 
7800 261 8 400 10 3 0 25

8

2 3 2× × × × +−( . ) ( ) ( . )

  = 34.75 × 106 N/m2

  = 34.75 MPa Ans.

Hoop stress at outer radius
From equation (17.26), the hoop stress at the outer radius is given as

 hr = R
 = ρω

2 2 1
4

R v( )−

  = 
7800 261 8 400 10 1 0 25

4

2 3 2× × × × −−( . ) ( ) ( . )

  = 16.04 × 106 N/m2

  = 16.04 MPa  Ans.

Radial stress at the centre
The radial stress at the centre is maximum, and is equal to the hoop stress at the centre.

 rmax
 = hmax

 = 34.75 MPa Ans.

Radial stress at outer radius
The radial stress at the outer radius of the disc is zero.

 rr = R
 = 0 Ans.

Example 17.4 
A steel disc of diameter 250 mm has a central hole of diameter 50 mm, and rotates at 5000 rpm. 
Calculate the hoop stresses developed at the inner and outer radius of the disc. The Prisson’s ratio is 
0.25 and the density of the disc material is 7800 kg/m3.

Solution: Given,

 Outer radius of the disc, R2 = 
250
2  = 125 mm  = 125 × 10–3 m

 Inner radius of the disc, R1 = 
50
2  = 25 mm = 25 × 10–3 m

 Rotation speed, N = 5000 rpm

 Poisson’s ratio, v = 0.25

 Density of the disc material,  = 7800 kg/m3
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The angular speed of the disc is given as

  = 
2
60
πN

  = 
2 5000

60
π ×

 = 523.6 rad/s

Hoop stress at inner radius
Substituting the values of , , v, R1 and R2 in equation (17.31), we get the hoop stress at the inner 
radius of the disc as

 hr = R1
 = 

ρω2

2
2

1
2

4
3 1[( ) ( ) ]+ + −v R v R

  = 
7800 523 6

4
3 0 25 125 10

2
3 2× × + × × −( . ) [( . ) ( )

+ − × × −( . ) ( ) ]1 0 25 25 10 3 2

  = 27.4 × 106 N/m2

  = 27.4 MPa Ans.

This is also the maximum value of the hoop stress, which occurs at the inner radius of the disc.

Hoop stress at outer radius
Substituting the values of , , v, R1 and R2 in equation (17.32), we get the hoop stress at the outer 
radius of the disc as

 hr = R2
 = 

ρω2

2
2

1
2

4
1 3[( ) ( ) ]− + +v R v R

  = 
7800 523 6

4

2× ( . )
 × [(1 – 0.25) × (125 × 10–3)2 + (3 + 0.25)

× (25 × 10–3)2]

  = 7.35 × 106 N/m2

  = 7.35 MPa Ans.

Example 17.5
A circular saw of thickness 5 mm and diameter 800 mm is secured upon a shaft of diameter  
120 mm. The saw material has the density of 8100 kg/m3 and the Prisson’s ratio is 0.3. Calculate the 

of the radial stress in the saw.

Solution: Given,

 Inner radius of the saw, R1 = 
120

2
 = 60 mm = 60 × 10–3 m
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 Outer radius of the saw, R2 = 
800

2  = 400 mm = 400 × 10–3 m

 Density of the saw material,  = 8100 kg/m3

 Poisson’s ratio, v = 0.3

 Maximum hoop stress, hmax
 = 250 MPa = 250 × 106 Pa

 From equation (17.31), the maximum hoop stress is given as

 hmax
 = 

ρω2

2
2

1
2

4
3 1[( ) ( ) ]+ + −v R v R

Substituting values of the given parameters in the above equation, we have

 250 × 106 = 
8100

4
3 0 3 400 10 1 0 3 60 10

2
3 2 3 2× + × × + − × ×− −ω [( . ) ( ) ( . ) ( ) ]

  = 2025 2 [3.3 × (400×10–3)2 + 0.7 × (60 × 10–3)2]

  = 1074.303 2

or 2 = 
250 10
1074 303

6×
.

which gives  = 482.4 rad/s

 Now          = 
2
60
πN

 or          N = 
ω

π
× 60
2

 = 482 4 60
2
. ×
π

 = 4606.6 rpm Ans.

 From equation (17.34), the maximum radial stress is given as

 rmax
 = 

( ) ( )3
8

2

2 1
2+ −v R Rρω

  = 
( . ) ( . ) {( ) }3 0 3 8100 482 4 400 60 10

8

2 3 2+ × × × − × −

  = 89.88 × 106 N/m2 = 89.88 MPa Ans.

Example 17.6
A thin disc of diameter 900 mm has a central hole of diameter 100 mm. Calculate the maximum hoop 
stress developed in the disc, if the maximum radial stress is 25 MPa. The Poisson’s ratio is 0.25.

Solution: Given,

 Outer radius of the disc, R2 = 
900

2
 = 450 mm

                                                                = 450 × 10–3 m
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 Inner radius of the disc, R1 = 
100

2
 = 50 mm

                                                                 = 50 × 10–3 m
 Poisson’s ratio, v = 0.25
 Maximum radial stress, rmax

 = 25 MPa

                                                 = 25 × 106 N/m2

From equation (17.34), the maximum radial stress is given as

 rmax
 = 

( ) ( )3
8

2

2 1
2+ −v R Rρω

 250 × 106 = 
( . )3 0 25

8

2+ ρω
 × {(450 – 50) × 10–3}2

  = 0.065 2

or 2 = 
25 10

0 065

6×
.

  = 3.84615 × 108 ...(1)
Now the maximum hoop stress, using equation (17.31), is given as

 hmax
 = 

ρω2

2
2

1
2

4
3 1[( ) ( ) ]+ + −v R v R

  = 
3 84615 10

4

8. ×
 [(3 + 0.25) × (450 × 10–3)2 + (1 – 0.25)

   × (50 × 10–3)2]
  = 63.46 × 106 N/m2

  = 63.46 MPa Ans. 

Example 17.7
A steel disc of diameter 300 mm has a central hole of diameter 100 mm and it rotates at 4000 rpm. 
Taking Poisson’s ratio as 0.3 and the density of the disc material to be 7800 kg/m3

parameters :
 (a) the hoop stress at the inner and outer radius of the disc
 (b) the radius at which the radial stress is maximum and
 (c) the maximum radial stress.

Solution: Given,

 Outer radius of the disc, R2 = 
300

2
 = 150 mm  = 150 × 10–3 m

 Inner radius of the disc, R1 = 
100

2
 = 50 mm = 50 × 10–3 m
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 Poisson’s ratio, v = 0.3

 Rotational speed, N = 4000 rpm

 Density of the disc material,  = 7800 kg/m3  

 The angular speed of the disc is obtained as

           = 
2
60
πN

  = 
2 4000

60
π ×

 = 418.88 rad/s

(a) Hoop stress at inner radius  
 The hoop stress at the inner radius is the maximum value of the hoop stress, and is given by equation 
(17.31) as

 hr = R1
 = hmax

 = 
ρω2

2
2

1
2

4
3 1[( ) ( ) ]+ + −v R v R

  = 
7800 418 88

4

2× ( . )
× [(3 + 0.3) × (150 × 10–3)2 + (1 – 0.3) × (50 × 10–3)2]

  = 26 × 106 N/m2

  = 26 MPa Ans.

Hoop stress at outer radius 

The hoop stress at the outer radius is given by equation (17.32) as

 hr = R2
 = 

ρω2

2
2

1
2

4
1 3( ) ( )− + +⎡⎣ ⎤⎦v R v R

  = 
7800 418 88

4

2× ( . )
× [(1 – 0.3) × (150 × 10–3)2 + (3 + 0.3) × (50 × 10–3)2]

  = 8.211 × 106 N/m2

  = 8.211 MPa Ans.

 (b) The radius at which the radial stress is maximum, is given by equation (17.33) as

 r = R R1 2

  = ( ) ( )50 10 150 103 3− × ×− −

  = 0.0866 m

  = 86.6 mm Ans.



Rotating Rings, Discs and Cylinders  821

 (c) The maximum radial stress is  given by equation (17.34) as

 rmax
 = ( ) ( )3

8

2

2 1
2+ −v R Rρω

  = 
( . ) ( . )3 0 3 7800 418 88

8

2+ × ×
× {(150 – 50) × 10–3}2

  = 5.645 × 106 N/m2

  = 5.645 MPa Ans.

Example 17.8
A circular disc of outside diameter 500 mm has a central hole and rotates at a uniform speed about  
an axis through its centre. The diameter of the hole is such that the maximum stress due to rotation 
is 85% of that in a thin ring whose mean diameter is also 500 mm. If both disc and ring are made of 
the same material and rotate at the same speed, determine (a) the diameter of the central hole and (b) 
the speed of rotation, if the allowable stress in the disc is 90 MPa. Take the Poisson’s ratio of 0.3 and 
the density of both disc and ring material as 7800 kg/m3.

Solution: Given,

 Mean radius of the thin ring, r = 500
2

 mm

  = 250 × 10–3 m

 Outside radius of the disc, R2 = 500
2

 mm

  = 250 × 10–3 m
Density of the disc and ring material,

  = 7800 kg/m3

 Poisson’s ratio v = 0.3

 Maximum hoop stress in the disc,
  hmax

  = 90 MPa

  = 90 × 106 Pa

Let h be the maximum hoop stress in the thin ring.

 Given        hmax
  = 0.85 × h

 Hence         h = 
σhmax

.0 85

For  thin ring
The hoop stress in the thin ring is given as
          h = 2r2 (using equation (17.5))
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σhmax

.0 85
 = 2r2 (on substituting h)

 
90 10

0 85

6×
.  = 7800 × 2 × (250 × 10–3)2

 2 = 
90 10

7800 0 85 250 10

6

3 2

×
× × × −. ( )

  = 217194.6

which gives
  = 466 rad/s

Now the rotational speed N is given as

 N = 
60
2
ω
π

  = 
60 466

2
×
π

  = 4450 rpm Ans.

For hollow disc
The maximum hoop stress is given as

         hmax
  = 

ρω2

2
2

1
2

4
3 1[( ) ( ) ]+ + −v R v R  (using equation (17.31))

  90 × 106 = 
7800 217194 6

4
× .

 × [(3 + 0.3) × (250 × 10–3)2 + (1 – 0.3) R1
2]

  = 4.23 × 108 × [3.3 × (250 × 10–3)2 + 0.7 × R1
2]

 
90 10

4 23 10

6

8

×
×.

 = 0.20625 + 0.7 R1
2

 0.2128 = 0.20625 + 0.7 R1
2

 R1
2 = 

0 2128 0 20625
0 7

. .
.
−

 = 9.36 × 10–3

which gives
 R1 = 0.09674 m
  = 96.74 mm

Hence, the diameter of the central hole = 2 × R1 

  = 2 × 96.74

  = 193.5 mm Ans.
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Example 17.9
A steel disc of uniform thickness and of diameter 800 mm has a pin hole at the center. Calculate the 
maximum hoop stress developed in the disc, if it rotates at 3000 rpm. The Poisson’s ratio is 0.25 and 
the density of the disc material is 7800 kg/m3. 

Solution: Given,

 Radius of the disc, R = 
8

2
00

 = 400 mm

  = 400 × 10–3 m

 Rotational speed, N = 3000 rpm

 Poisson’s ratio, v = 0.25

 Density of the disc material,  = 7800 kg/m3

The angular speed of the disc is found as

 Now          = 
2
60
πN

  = 
2 3000

60
π ×

 = 314.16 rad/s

From equation (17.35), the maximum hoop stress is given as

         hmax
  = 

( )3
4

2 2+ v Rρω

   = 
( . ) ( . ) ( )3 0 25 7800 314 16 400 10

4

2 3 2+ × × × × −

  = 108 Pa

  = 100 MPa Ans.

Example 17.10
A thin uniform steel disc of diameter 500 mm rotates at 2000 rpm. Calculate the maximum 
principal stress induced in the disc and also plot the distribution of the hoop stress and the radial 
stress along the radius of the disc. Take Poisson’s ratio as 0.3 and the density of the disc material 
is equal to 7800 kg/m3.

Solution: Given,

 Radius of the disc, R = 
500

2
 = 250 mm

               = 250 × 10–3 m
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 Rotational speed, N = 2000 rpm

 Poisson’s ratio, v = 0.3.

 Density of the disc material,  = 7800 kg/m3. 

 The angular speed of the disc is obtained as

           = 
2
60
πN

  = 
2 2000

60
π ×

  = 209.44 rad/s
The maximum hoop stress is also the maximum principal stress, which can be obtained by using 

equation (17.25) as

         hmax
  = 

ρω2 2 3
8

R v( )+

   = 
7800 209 44 250 10 3 0 3

8

2 3 2× × × × +−( . ) ( ) ( . )

  = 8.821 × 106 N/m2

  = 8.821 MPa Ans.

Distribution of the hoop stress
The hoop stress is given by equation (17.24) as 

         h  = 
ρω2

8
 [(3 + v) R2 – (1 + 3v) r2]

Now we select different values of the radius r and determine the corresponding hoop stresses using 
the above equation. The distribution of the stresses is shown in Table 17.1.

Table 17.1 Distribution of the hoop stress

r (mm) 0 50 100 150 200 250

h (MPa) 8.821 8.618 8.00 7.00 5.570 3.742

Distribution of the radial stress 
The radial stress is given by equation (17.23) as 

         r  = 
ρω2 3

8
( )+ v

 (R2 – r2)

The values of the radial stresses corresponding to the selected values of the radius are determined 
using the above equation, which are shown in Table 17.2.
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Table 17.2 Distribution of the radial stress

r (mm) 0 50 100 150 200 250

r (MPa) 8.821 8.468 7.409 5.645 3.175 0

Plotting of the hoop and radial stresses  
The values of the radius are plotted on x-axis and the values of the hoop and radial stresses on y-axis. 
The resulting curves for the two stresses are shown in Fig. 17.4.

Fig. 17.4

Example 17.11
A steel disc of diameter 400 mm has a central hole of diameter 100 mm and rotates at 8000 rpm. 
Taking Poisson’s ratio as 0.3 and the density of the disc material to be 7800 kg/m3, plot the distribution 
of the hoop and radial stresses along the radius of the disc.

Solution: Given,

 Outer radius of the disc, R2 = 
400
2

 = 200 mm = 200 × 10–3 m

 Inner radius of the disc, R1 = 
100

2
  = 50 mm

                                                               = 50 × 10–3 m
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 Poisson’s ratio, v = 0.3

 Rotational speed, N = 8000 rpm

 Density of the disc material,  = 7800 kg/m3

The angular speed of the disc is obtained as

           = 2
60
πN

  = 2 8000
60

π ×

  = 837.76 rad/s

Distribution of the hoop stress 

The hoop stress is given by equation (17.30) as

         h  = 
ρω2

2
2

1
2 1

2
2
2

2
2

8
3 3 1 3( ) ( ) ( ) ( )+ + + + − +

⎡

⎣
⎢

⎤

⎦
⎥v R R v R R

r
v r

Now we select different values of the radius r and determine the corresponding hoop stresses using 
the above equation. The distribution of the stresses is shown in Table 17.3. 

Table 17.3 Distribution of the hoop stress

r (mm) 50 100 150 200

h (MPa) 183.05 105.55 76.75 49.61

Distribution of the radial stress 

 The radial stress is given by equation (17.29) as 

 r = 
( ) ( )3

8

2

2
2

1
2 1

2
2
2

2
2+ + − −

⎡

⎣
⎢

⎤

⎦
⎥

v R R R R
r

rρω

The values of the radial stresses corresponding to the selected values of the radius are determined 
using the above equation, which are shown in Table 17.4. The radius at which radial stress is 

maximum is R R1 2
3 350 10 200 10= × × ×− −( ) ( )  = 0.1 m = 100 mm.

Table 17.4 Distribution of the radial stress

r (mm) 50 100 150 200

r (MPa) 0 50.80 35.13 0
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Plotting of the hoop and radial stresses
The values of the radius are plotted on x-axis and the values of the hoop and radial stresses on y-axis. 
The resulting curves for the two stresses are shown in Fig. 17.5.

Fig. 17.5

17.4 ROTATING DISC OF UNIFORM STRENGTH
In case of a disc with uniform thickness, the hoop and radial stresses are not uniform and they vary 
along the radius of the disc. On the other hand, a disc of uniform strength has equal values of hoop 
and radial stresses at every radius. Thickness of such a disc is not uniform and varies along the 
axis. Analysis of such a disc is useful in the design of turbine blades rotating at high speeds and are 
required to be subjected to constant stress conditions to prevent their premature failure. 

Consider a rotating disc of uniform strength which is subjected to equal hoop and radial stresses, 
that is, h = r =  and the stresses do not vary with radius. Now consider an element ABCD of radial 
width dr of the disc at a radius r from the axis of rotation making an angle d
in Fig. 17.6.

Let t =  Thickness of the disc at radius r
 t + dt =  Thickness of the disc at radius (r + dr) 
 to =  Thickness of the disc at radius r = 0, that is, at the axis of rotation
  =  Angular speed of the disc
  =  Equal hoop and radial stresses
  =  Density of the disc material 
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Fig. 17.6

Forces on the element 
The following forces are acting on the element ABCD : 
  The centrifugal force caused due to rotation acting radially outward
  The hoop tension force on the face AB caused due to hoop stress 
  The hoop tension force on the face CD caused due to hoop stress 
  The radial force on the face BD caused due to radial stress 
  The radial force on the face AC caused due to radial stress 

Centrifugal force
The mass m of the element can be obtained as
 m = Density × Volume of the element
  =  × (rd dr × t)
  = rtd dr ...(17.38)

The centrifugal force is given as

 Fc = 
mV

r

2

  = m 2r (as V = r)
  = ( rtd dr × 2r) (on substituting m)

  = t 2r2d dr ...(17.39)
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Hoop tension forces on faces AB and CD 

The hoop tension forces act perpendicular to AB and CD and are equal to h × dr × t. 

Now the hoop forces are resolved into horizontal and vertical components. The vertical 
components of the hoop forces acting on faces AB and CD are radially inward and both are equal to 

 × dr × t × sin dθ
2

The horizontal component of the hoop forces acting on face AB is directed leftward

and the horizontal component on face CD is directed rightward, and both are equal to  

 × dr × t × cos dθ
2

Radial force on face BD  

Radial force on BD = × rd t, and its acts radially inward.

Radial force on face AC  

Radial force on AC =  × (r + dr)d t + dt), and it acts radially outward.

Equilibrium of the element

The horizontal components of the hoop tension forces on the faces AB and CD are equal but opposite 
in direction, hence they cancel each other. The vertical components are added as they are acting in 
the same direction (radially inward). 

Considering forces in the radial direction, we have

 × rd t +  × dr × t × sin
dθ
2

 +  × dr × t × sin
dθ
2

 = Fc +  × (r + dr) d t + dt)

or  × rd t + 2  × dr × t × sin
dθ
2

 = Fc +  × (r + dr) d t + dt)

Substituting the value of Fc from equation (17.39) in the above equation and equating sin
dθ
2

 = 
dθ
2

 as 
d

 × rd t + 2  × dr × t × 
dθ
2

 = t 2r2d dr + rtd rd dt + tdrd drd dt

Eliminating d

 × r × t + tdr  = t 2r2dr + rt + rdt + tdr + drdt

Now eliminating rt and tdr from both sides and neglecting (drdt) as being the product of two 

 0 = t 2r2dr + rdt

 or – rdt = t 2r2dr

 
dt
t

 = −
ρω

σ

2rdr
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On integration, we have

 loge t = − +ρω
σ

2 2

2
r Aelog  ...(17.40)

where loge A  is a constant of integration. 
The boundary condition is 

 when          r = 0
 t = to

Substituting the boundary condition in equation (17.40), we get 
 loge to = loge A 
 which gives       A = to

Equation (17.40) on substituting A becomes 

 loge t = − +ρω
σ

2 2

2
r te olog

 loge t – loge to = −
ρω

σ

2 2

2
r

 loge
o

t
t

⎛
⎝⎜

⎞
⎠⎟

 = −
ρω

σ

2 2

2
r

 
t
to

 = e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

which gives

 t = t eo

r

×
−

⎛
⎝⎜

⎞
⎠⎟

ρω
σ

2 2

2  ...(17.41)

This is the required expression for the thickness of the disc, which varies according to the given value 
of the radius r.

Example 17.12
A turbine rotor is to be designed for uniform strength for a tensile stress of 150 MPa . The rotor runs 
at 6000 rpm and its thickness at the centre is 90 mm. If the density of the material of the rotor is  
7800 kg/m3, determine the thickness of the rotor at a radius of 400 mm.

Solution: Given,
 Uniform stress,  = 150 MPa
  = 150 × 106 Pa
 Rotational speed, N = 6000 rpm
 Thickness of the rotor at the center, to = 90 mm
  = 90 × 10–3 m
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Density of the rotor material,  = 7800 kg/m3

 Radius at the required thickness, r = 400 mm
  = 400 × 10–3 m

The angular speed of the rotor is obtained as

           = 2
60
πN

  = 2 6000
60

π ×

  = 628.32 rad/s
From equation (17.41), the expression for the thickness is given as

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

  = 90 × 10–3 × e
− × × ×

× ×

⎛

⎝⎜
⎞

⎠⎟
−7800 628 32 400 10

2 150 10

2 3 2

6
( . ) ( )

  = 90 × 10–3 × e–1.642

  = 90 × 10–3 × 0.193
  = 0.01742 m
  = 17.42 mm Ans.

Example 17.13
The minimum thickness of a steam turbine rotor is 10 mm at a radius of 200 mm and is required to 
be designed for uniform strength under rotational conditions for a stress of 180 MPa. It runs at 10,000 rpm and 
its material weighs 7800 kg/m3. Determine the thickness of the rotor at a radius of 40 mm.

Solution: Given,
 Rotational speed of the rotor, N  = 10,000 rpm
Radius at the desired thickness, r  = 40 mm
   = 40 × 10–3 m

 Uniform stress,   = 180 MPa
   = 180 × 106 Pa 
 Density of the rotor material,  = 7800 kg/m3 

The angular speed of the rotor is obtained as

            = 2
60
πN

    = 2 10 000
60

π × ,

    = 1047.2 rad/s
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The thickness expression is given as

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

At r = 200 mm, t = 10 mm. Substituting these values in the above equation, we have

 10 × 10–3 = to × e
− × × ×

× ×

⎛

⎝
⎜

⎞

⎠
⎟

−7800 1047 2 200 10
2 180 10

2 3 2

6
( . ) ( )

  = to × e– 0.9504

  = to × 0.3866

 which gives
 to = 0.02586 m

  = 25.86 mm

Again using the thickness equation and substituting the value of to, we have 

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

  = 0.02586 × e
− × × ×

× ×

⎛

⎝
⎜

⎞

⎠
⎟

−7800 1047 2 40 10
2 180 10

2 3 2

6
( . ) ( )

  = 0.02586 × e–0.038

  = 0.02586 × 0.9627

  = 0.0249 m

  = 24.9 mm Ans.

Example 17.14
A steam turbine rotor is 160 mm diameter below the blade ring and 5 mm thick, and runs at  
30,000 rpm. If the material of the rotor weighs 7800 kg/m3 and the allowable stress is 160 MPa, 

condition.

Solution: Given,

 Rotational speed of the rotor,

 N = 30,000 rpm

Radius at the desired thickness, r = 60 mm

  = 60 × 10–3 m

 Uniform stress,  = 160 MPa

  = 160 × 106 Pa

 Density of the rotor material,  = 7800 kg/m3
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 The angular speed of the rotor is obtained as 

           = 
2
60
πN

  = 
2 30 000

60
π × ,

 = 3141.6 rad/s

The thickness expressions is given as  

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

where to is thickness of the rotor at the center, that is, at r = 0.
 Now at         r = 80 mm, t = 5 mm

Using these values in the above equation, we have

 5 × 10–3 = to × e
− × × ×

× ×

⎛

⎝⎜
⎞

⎠⎟
−7800 3141 6 80 10

2 160 10

2 3 2

6
( . ) ( )

  = to × e–1.53966

  = to × 0.2144

which gives
 to = 0.0233 m
  = 23.3 mm Ans.

Again using the thickness equation for r = 60 mm, we have

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

  = 23.3 × 10–3 × e
− × × ×

× ×

⎛

⎝⎜
⎞

⎠⎟
−7800 3141 6 60 10

2 160 10

2 3 2

6
( . ) ( )

  = 23.3 × 10–3 × e–0.866

  = 23.3 × 10–3 × 0.4206 = 9.8 × 10–3 m
  = 9.8 mm Ans.

Example 17.15
A steel turbine disc is to be designed so that between radii of 250 mm and 400 mm, the radial and 
hoop stresses are required to be constant at 60 MPa, when running at 3000 rpm. If the axial thickness 

material is 7800 kg/m3.

Solution: Given,
 Uniform stress,  = 60 MPa
  = 60 × 106 Pa
 Rotational speed, N = 3000 rpm
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 Density of the disc material,  = 7800 kg/m3. 

The angular speed of the disc is obtained as

           = 
2
60
πN

  = 
2 3000

60
π ×

  = 314.16 rad/s

The thickness expression is given as

 t = to × e
r−

⎛

⎝⎜
⎞

⎠⎟
ρω

σ

2 2

2

Now at r = 400 mm, t = 12 mm. Substituting these values in the above equation, we have

 12 × 10–3 = to × e
− × × ×

× ×

⎛

⎝⎜
⎞

⎠⎟
−7800 314 16 400 10

2 60 10

2 3 2

6
( . ) ( )

  = to × e–1.0264

  = to × 0.3583

which gives
 to = 0.0335 m

  = 33.5 mm 

Again using thickness equation for r = 250 mm, we have

 t = 0.0335 × e
− × × ×

× ×

⎛

⎝
⎜

⎞

⎠
⎟

−7800 314 16 250 10
2 60 10

2 3 2

6
( . ) ( )

  = 0.0335 × e–0.40095

  = 0.0335 × 0.6697

  = 0.0224 m

  = 22.4 mm Ans.

17.5 ROTATING LONG CYLINDER
The force analysis of a rotating thick cylinder is similar to that of a rotating thin disc except the 
introduction of axial stress. Hence three stresses acting on a rotating thick cylinder include hoop 
stress ( h), radial stress ( r) and axial stress, also called longitudinal stress ( l). It is assumed that 
the transverse sections of the cylinder remain plane even at high speeds of rotation, which implies 
that longitudinal strain is constant. At the same time, all the three stresses acting on the cylinder are 
principal stresses. 
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Consider a small element ABCD of the cylinder at a distance r and of radial thickness dr subtending 
an angle d

Fig. 17.7

Let  h = Hoop strain, also called circumferential strain
 r = Radial strain
 l = Longitudinal strain
  = Angular speed of rotation of the cylinder
 v = Poisson’s ratio
 E = Modulus of elasticity of the cylinder

The strains produced by various stresses are obtained as

 h = 
σ σ σh r l

E
v

E
v

E
− −

  = 
E

 [ h – v ( r + l

 r = 
σ σ σr h l

E
v

E
v

E
− −

  = 
E

 [ r – v ( h + l

 and         l = 
σ σ σl h r

E
v

E
v

l
− −

  = 
E

 [ l – v ( h + r
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Due to rotation, the radius of the cylinder increases. Let the radius r changes to (r + u) and dr 
changes to (dr + du).

Now the hoop strain is also expressed as

 h = 
2 2

2
π π

π
( )r u r

r
+ −

  = 
u
r

 ...(17.45) 

The radial strain is also expressed as

 r = 
( )dr du dr

dr
+ −

  = 
du
dr

 ...(17.46) 

Comparing equations (17.42) and (17.45), we have

 h = 
u
r

 = 
1
E

 [ h – v ( r + l)]

which gives
 Eu = r [ h – v ( r + l)] ...(17.47)

Comparing equations (17.43) and (17.46), we have

 r = 
du
dr

 = 
1
E

 [ r – v ( h + l)] ...(17.48)

Differentiating equation (17.47) with respect to r, we get 

 
du
dr

 = 
1
E

 [ h – v ( r + l)] + 1
E

r d
dr

vr d
dr

d
dr

h r lσ σ σ− +⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 ...(17.49)

Comparing equations (17.48) and (17.49), we get

 r – v ( h + l) = h – v ( r + l) + r d
dr

hσ  – vr
d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟

 r – v h – v l = h – v r – v l + r d
dr

hσ  – vr d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟

Cancelling v l from both sides of the equation and rearranging the terms, we get

 r + v r = h + v h + r d
dr

hσ  – vr d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟

 r (1 + v) = h (1 + v) + r d
dr

hσ  – vr d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟
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 (1 + v) ( r – h) = r d
dr

hσ  – vr d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟

 (1 + v) ( r – h) – r d
dr

hσ  + vr d
dr

d
dr

r lσ σ
+⎛

⎝⎜
⎞
⎠⎟

 

Since l is constant, hence from equation (17.44), we have

 l = 1
E

 [ l – v ( h + r)] = Constant

 or       l – v ( h + r) = Constant (as E is a constant)
Differentiating with respect to r, we have

 
d
dr

lσ – v
d
dr

d
dr

h rσ σ+⎛
⎝⎜

⎞
⎠⎟   = 0

Multiplying all the terms by r, we get

 r
d
dr

lσ – vr d
dr

d
dr

h rσ σ+⎛
⎝⎜

⎞
⎠⎟

 = 0

or r
d
dr

lσ   = vr
d
dr

d
dr

h rσ σ+⎛
⎝⎜

⎞
⎠⎟  ...(17.51)

From equation (17.50), we have 

 (1 + v) ( r – h) – r
d
dr

hσ  + vr d
dr

rσ  + vr
d
dr

lσ  

Substituting equation (17.51) in the above equation, we get

 (1 + v) ( r – h) – r
d
dr

hσ  + vr d
dr

rσ  + v2r
d
dr

d
dr

h rσ σ+⎛
⎝⎜

⎞
⎠⎟  

 (1 + v) ( r – h) – r
d
dr

hσ  + vr d
dr

rσ  + v2r
d
dr

hσ  + v2r d
dr

rσ  

 (1 + v) ( r – h) – r d
dr

hσ  (1 – v2) + vr d
dr

rσ (1 + v) = 0

Eliminating (1 + v) from all the terms, we get

 ( r – h) – r d
dr

hσ (1 – v) + vr d
dr

rσ  = 0

 ( h – r) + r (1 – v) d
dr

hσ  – vr d
dr

rσ  = 0 ...(17.52)

The equilibrium equation of the element can be obtained in a similar manner as in case of a rotating 
thin disc, which is given by equation (17.7) as

 ( h – r) r2 2 + r d
dr

rσ  (from equation (17.7))
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Substituting the above in equation (17.52), we get

r2 2 + r d
dr

rσ  + r (1 – v)
d
dr

hσ – vr d
dr

rσ  = 0

Eliminating r from all the terms and simplifying, we have 

r 2 + 
d
dr

rσ  (1 – v) + (1 – v)
d
dr

hσ  = 0

 or       
d
dr

hσ  + 
d
dr

rσ  = –
ρ ωr

v

2

1( )−
 ...(17.53)

Integration of equation (17.53) gives

 h + r = –
ρ ωr

v

2 2

2 1( )−
 + A ...(17.54)

where A is a constant of integration. 
Now subtracting equation (17.7) from equation (17.54), we get

 h + r – h + r = –
ρ ωr

v

2 2

2 1( )−
 + A – r2 2 – r d

dr
rσ

 2 r + r d
dr

rσ  = – r2 2 1
2 1

1
( )−

+
⎡

⎣
⎢

⎤

⎦
⎥v

 + A

  = – r2 2 
1 2 2
2 1
+ −

−
⎡

⎣
⎢

⎤

⎦
⎥

v
v( )

 + A

  = −
−
−

⎛
⎝⎜

⎞
⎠⎟

ρ ωr v
v

2 2

2
3 2
1

 + A

Multiplying by r on both sides, we get

 2 r r + r2 d
dr

rσ  = −
−
−

⎛
⎝⎜

⎞
⎠⎟

ρ ωr v
v

3 2

2
3 2
1

 + Ar

 d
dr

(r2 × r) = −
−
−

⎛
⎝⎜

⎞
⎠⎟

ρ ωr v
v

3 2

2
3 2
1

 + Ar ...(17.55)

On integration, we have

 r2 × r = −
−
−

⎛
⎝⎜

⎞
⎠⎟
+ρ ωr v

v
Ar4 2 2

8
3 2
1 2

 + B

where B is another constant of integration. 
Dividing throughout by r2, we get

 r = 
A B

r
r v

v2 8
3 2
12

2 2

+ − −
−

⎛
⎝⎜

⎞
⎠⎟

ρ ω
 ...(17.56)
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This is the required expression for the radial stress for a rotating thick cylinder. The constants A 
and B can be determined by using suitable boundary conditions.

Substituting equation (17.56) in equation (17.54), we can obtain the value of h.  

 σ
ρ ω

h
A B

r
r v

v
+ + − −

−
⎛
⎝⎜

⎞
⎠⎟2 8

3 2
12

2 2

 = –
ρ ωr

v

2 2

2 1( )−
 + A

or h = A A B
r

r v
v

r
v

− − + −
−

⎛
⎝⎜

⎞
⎠⎟
−

−2 8
3 2
1 2 12

2 2 2 2ρ ω ρ ω
( )

  = 
A B

r
r

v
v

2 2 1
3 2

4
12

2 2

− +
−

− −⎛
⎝⎜

⎞
⎠⎟

ρ ω
( )

  = 
A B

r
r

v
v

2 2 1
3 2 4

42

2 2

− +
−

− −⎛
⎝⎜

⎞
⎠⎟

ρ ω
( )

  = 
A B

r
r v

v2 8
1 2
12

2 2

− − +
−

⎛
⎝⎜

⎞
⎠⎟

ρ ω
 ...(17.57)

This is the required expression for the hoop stress for a rotating thick cylinder. The constants  
A and B can be determined by using suitable boundary conditions.

17.5.1 Hoop and Radial Stresses in a Rotating Solid Cylinder or a Solid Shaft
r

for the meaningful values of the two stresses, the constant B has to be zero. Now the stresses are 
expressed as 

 r = 
A r v

v2 8
3 2
1

2 2

− −
−

⎛
⎝⎜

⎞
⎠⎟

ρ ω
 ...(17.58)

 and         h = 
A r v

v2 8
1 2
1

2 2

− +
−

⎛
⎝⎜

⎞
⎠⎟

ρ ω
 ...(17.59)

These are the expressions for the radial and hoop stresses respectively at the centre of a rotating 
solid cylinder.

 At the surface of the cylinder, where r = R2 ( = R say),
 r = 0

 Substituting r in equation (17.58), we have 

 0 = 
A R v

v2 8
3 2
1

2 2

− −
−

⎛
⎝⎜

⎞
⎠⎟

ρ ω

 which gives

 
A
2  = 

ρ ωR v
v

2 2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟
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On putting A
2

 in equation (17.58), we have

 r = 
ρ ω ρ ωR v

v
r v

v

2 2 2 2

8
3 2
1 8

3 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟
− −

−
⎛
⎝⎜

⎞
⎠⎟

  = 
ρω2

2 2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

−( )v
v

R r  ...(17.60)

 This is the required expression for the radial stress for any value of r. 

 The expression for the hoop stress on substituting the value of A
2

 in equation (17.59) becomes

 h = 
ρω ρω2 2 2 2

8
3 2
1 8

1 2
1

R v
v

r v
v

−
−

⎛
⎝⎜

⎞
⎠⎟
− +

−
⎛
⎝⎜

⎞
⎠⎟  ...(17.61)

Maximum radial stress 
 The radial stress is maximum at the centre of the cylinder, that is, at r = 0. Putting r = 0 in equation (17.60), 
we get the expression for the maximum radial stress as

 rmax = 
ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 ...(17.62)

Maximum hoop stress 
 The hoop stress is also maximum at the centre of cylinder, that is, at r = 0. Putting r = 0 in equation (17.61), 
we get the expression for the maximum hoop stress as

 hmax = ρω
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 ...(17.63)  

  Hence, 

 rmax
 = hmax = 

ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 ...(17.64)

17.5.2 Hoop and Radial Stresses in a Rotating Hollow Cylinder 
 For a hollow cylinder
 r = 0 at r = R1

 Also         r = 0 at r = R2

Substituting these boundary conditions in equation (17.56), we have

 0 = 
A B

R
R v

v2 8
3 2
11

2

2
1
2

+ − −
−

⎛
⎝⎜

⎞
⎠⎟

ρω
 (where r = R1) ...(1)

 and          0 = 
A B

R
R v

v2 8
3 2
12

2

2
2
2

+ − −
−

⎛
⎝⎜

⎞
⎠⎟

ρω
 (where r = R2) ...(2)



Rotating Rings, Discs and Cylinders  841

 Subtracting equation (2) from equation (1), we have

 B 1 1
8

3 2
11

2
2
2

2

2
2

1
2

R R
v

v
R R−

⎛
⎝⎜

⎞
⎠⎟
+ −

−
⎛
⎝⎜

⎞
⎠⎟

−ρω ( )  = 0

 B R R
R R

v
v

R R2
2

1
2

1
2

2
2

2

2
2

1
2

8
3 2
1

−⎛
⎝⎜

⎞
⎠⎟
+ −

−
⎛
⎝⎜

⎞
⎠⎟

−ρω ( )  = 0

 Eliminating ( )R R2
2

1
2− , we have

 
B

R R1
2

2
2  = −

−
−

⎛
⎝⎜

⎞
⎠⎟

ρω2

8
3 2
1

v
v

 which gives

 B = –
ρω2

1
2

2
2

8
3 2
1

R R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟  ...(17.65)

 Substituting the value of B in equation (1), we have

 0 = A
R

R R v
v

R v
v2

1
8

3 2
1 8

3 2
11

2

2
1
2

2
2 2

1
2

+ × − −
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −

−
−

⎛
⎝⎜

⎞
⎠

ρω ρω
⎟⎟

  = 
A R v

v
R v

v2 8
3 2
1 8

3 2
1

2
2
2 2

1
2

− −
−

⎛
⎝⎜

⎞
⎠⎟
− −

−
⎛
⎝⎜

⎞
⎠⎟

ρω ρω

  = A v
v

R R
2 8

3 2
1

2

1
2

2
2− −

−
⎛
⎝⎜

⎞
⎠⎟

+ρω ( )

which gives

 A = ρω
2

1
2

2
2

4
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

+v
v

R R( )  ...(17.66) 

 Now Substituting the values of A and B in equation (17.56), we get the expression for the radial 
stress as

 r = 
1
2 4

3 2
1

1
8

3 2
1

2

1
2

2
2

2

2
1
2

2
2

× −
−

⎛
⎝⎜

⎞
⎠⎟

+ + × − −
−

⎛
⎝⎜

⎞
⎠⎟

ρω ρωv
v

R R
r

R R v
v

( )
⎡⎡

⎣
⎢

⎤

⎦
⎥

   − −
−

⎛
⎝⎜

⎞
⎠⎟

ρ ωr v
v

2 2

8
3 2
1

  = 
ρω ρω ρ ω2

1
2

2
2

2
1
2

2
2

2

2 2

8
3 2
1 8

3 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟

+ − −
−

⎛
⎝⎜

⎞
⎠⎟
−v

v
R R R R

r
v

v
r( )
88

3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

  = ρω
2

1
2

2
2 1

2
2
2

2
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

+ − −
⎡

⎣
⎢

⎤

⎦
⎥

v
v

R R R R
r

r  ...(17.67)  

This is the required expression for the radial stress for a long rotating hollow cylinder.
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Substituting the values of A and B in equation (17.57), we get the expression for the hoop stress as

 h =
1
2 4

3 2
1

1
8

3 2
1

2

1
2

2
2

2

2
1
2

2
2

× −
−

⎛
⎝⎜

⎞
⎠⎟

+ − × − −
−

⎛
⎝⎜

⎞
⎠⎟

ρω ρωv
v

R R
r

R R v
v

( )
⎡⎡

⎣
⎢

⎤

⎦
⎥

  
− +

−
⎛
⎝⎜

⎞
⎠⎟

ρ ωr v
v

2 2

8
1 2
1

  = 
ρω ρω ρ ω2

1
2

2
2

2
1
2

2
2

2

2 2

8
3 2
1 8

3 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟

+ + −
−

⎛
⎝⎜

⎞
⎠⎟
−v

v
R R R R

r
v

v
r( )
88

1 2
1
+
−

⎛
⎝⎜

⎞
⎠⎟

v
v

  = 
ρω ρω2

1
2

2
2 1

2
2
2

2

2 2

8
3 2
1 8

1 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟

+ +
⎡

⎣
⎢

⎤

⎦
⎥ −

+
−

⎛
⎝⎜

⎞
⎠

v
v

R R R R
r

r v
v ⎟⎟  ...(17.68)  

 This is the required expression for the hoop stress for a long rotating hollow cylinder.

Maximum hoop stress
 Equation (17.68) suggests that the hoop stress is maximum where r is minimum, that is, at r = R1. 
Putting r = R1 in equation (17.68), we obtain the value of the maximum hoop stress for the hollow 
cylinder as

 hmax
 = 

ρω ρω2

1
2

2
2 1

2
2
2

1
2

2
1
2

8
3 2
1 8

1 2
1 2

−
−

⎛
⎝⎜

⎞
⎠⎟

+ +
⎡

⎣
⎢

⎤

⎦
⎥ −

+
−

⎛
⎝

v
v

R R R R
R

R v
v⎜⎜
⎞
⎠⎟

  = 
ρω ρω2

1
2

2
2

2
1
2

8
3 2
1

2
8

1 2
1

−
−

+ − +
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

v
v

R R R v
v

( )  ...(17.69)  

Maximum radial stress

r and equate it to zero.

 
d
dr

rσ  = 0

d
dr

v
v

R R R R
r

rρω2

1
2

2
2 1

2
2
2

2
2

8
3 2
1
−
−

+ − −⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = 0

    ρω
2

1
2

2
2

38
3 2
1

0 0 2 2−
−

+ − − −⎛
⎝⎜

⎞
⎠⎟

×⎡

⎣
⎢

⎤

⎦
⎥

v
v

R R
r

r( )  = 0

or  2 21
2

2
2

3

R R
r

r−  = 0

 which gives

 r = R R1 2  ...(17.70)
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 Hence, the radial stress is maximum at r = R R1 2 . Substituting this value in equation (17.67), we 

obtain the maximum value of the radial stress for a hollow cylinder as

 rmax = 
ρω2

1
2

2
2 1

2
2
2

1 2
1 28

3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

+ − −
⎛
⎝⎜

⎞
⎠⎟

v
v

R R R R
R R

R R

  = 
ρω2

1
2

2
2

1 28
3 2
1

2−
−

⎛
⎝⎜

⎞
⎠⎟

+ −v
v

R R R R( )

  = 
ρω2

2 1
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

−v
v

R R( )  ...(17.71)

 This is the required expression for the maximum radial stress for a hollow cylinder.

Example 17.16
Determine the maximum hoop stress in a long cast iron solid cylinder of diameter 400 mm, which 
rotates at 2000 rpm about its axis. It weighs 7200 kg/m3 and the Poisson's ratio is 0.3.

Solution: Given,

 Radius of the solid cylinder, R = 400
2

 mm

  = 200 × 10–3 m
 Rotational speed, N = 2000 rpm

 Density of the cylinder material,
  = 7200 kg/m3

 Poisson’s ratio, v = 0.3
 The angular speed of the cylinder is obtained as

           = 2
60
πN

  = 2 2000
60

π ×

  = 209.44 rad/s
The maximum hoop stress is obtained using equation (17.63) as

 hmax = ρω
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

  = 7200
8

3 2 0 3
1 0 3

× × × × − ×
−

⎛
⎝⎜

⎞
⎠⎟

−(209.44) (200 10 )2 3 2 .
.

  = 5.41 × 106 Pa
  = 5.41 MPa Ans.
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 Example 17.17

 Calculate the maximum hoop stress in a long hollow cylinder of inside diameter 40 mm and outside 
diameter 200 mm rotating at 3000 rpm. The density of the cylinder material is 7800 kg/m3 and the 
Poisson’s ratio is 0.25.

Solution: Given,

 Inside radius of the hollow cylinder, R1  = 40
2

mm

                                                       = 20 × 10–3 m

 Outside radius of the hollow cylinder, R2  = 200
2

mm

                                                                 = 100 × 10–3 m

 Rotational speed, N = 3000 rpm

 Density of the cylinder material,  = 7800 kg/m3   

 Poisson’s ratio, v = 0.25 

 The angular speed of the cylinder is obtained as

           = 2
60
πN

  = 2 3000
60

π ×

  = 314.16 rad/s

 The maximum hoop stress is obtained using equation (17.69) as

 hmax
 = 

ρω ρω2

1
2

2
2

2
1
2

8
3 2
1

2
8

1 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟

+ − +
−

⎛
⎝⎜

⎞
⎠⎟

v
v

R R R v
v

( )

  = 7800
8

3 2 0 25 20 10 3 2× × − ×
−

⎛
⎝⎜

⎞
⎠⎟
× ×⎡⎣

−(314.16)
1 0.25

2 . ( ) + × × ⎤⎦
− −2 100 10 3 2( )  

    – 7800 20 10
8

1 2 0 253 2× × × × + ×
−

⎛
⎝⎜

⎞
⎠⎟

−(314.16)
1 0.25

2 ( ) .

  = 6543578.3 – 76983.3

  = 6466595 Pa

  = 6.46 MPa Ans.
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 Example 17.18
 Compare the peripheral velocities for the same maximum intensity of stress of (a) a solid cylinder  
(b) a solid thin disc and (c) a thin ring, if they are made of the same material. Take velocity of the 
ring as unity and the Poisson’s ratio 0.3.

Solution:
 For a solid cylinder
 The maximum hoop stress is

 hmax = 
ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 (using equation (17.64)) 

 Since the peripheral velocity is 
 V = R

 Hence, the hoop stress equation for the solid cylinder is

hmax = 
ρV v

v
1
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

  = 
ρV1

2

8
3 2

1 0 3
× − ×

−
⎛
⎝⎜

⎞
⎠⎟

0.3
.

  = 0.428 V 2
1

 or            V 2
1 = 

σ

ρ
h max

.0 428

  = 2.33 × 
σ

ρ
h max  ...(1)

 For a solid thin disc
 The maximum hoop stress is

 hmax
 = 

ρω2 2 3
8

R v+( )
 (using equation (17.25))

  = 
ρV v2

2 3
8
( )+

 (as V2 = R)

  = 
ρV2

2 3 0 3
8

× +( . )

  = 0.4125  V 2
2

 or           V 2
2 = 

σ
ρ

hmax

.0 4125

  = 2.42 × 
σ
ρ
hmax  ...(2)
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 For a thin ring
The maximum hoop stress is

 hmax
 = 2R2 (using equation (17.5))

  = V 2
3 (as V3 = R)

 or            V 2
3 = 

σ
ρ
hmax  ...(3)

 Hence,
 V 2

1 : V 2
2 : V 2

3 = 2.33 : 2.42 : 1

 which gives
 V1 : V2 : V3 = 1.526 : 1.556 : 1 Ans.

 Example 17.19
 A long solid cylinder of diameter 500 mm is rotating at 3500 rpm. Taking Poisson’s ratio as 0.3 and 
the density of the cylinder material to be 7500 kg/m3 a) the maximum stress developed in the 
cylinder and (b) plot the distribution of the hoop and radial stresses along the radius of the cylinder.

Solution: Given,

 Radius of the cylinder, R = 500
2

 mm = 250 × 10–3 m

 Rotational speed, N = 3500 rpm
 Poisson’s ratio, v = 0.3

 Density of the cylinder material,  = 7500 kg/m3

 The angular speed of the cylinder is obtained as

           = 
2
60
πN

 = 
2

60
π  3500×

 = 366.52 rad/s

 The maximum hoop and radial stresses are equal and are given by equation (17.64) as

 hmax = rmax
 = ρω

2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

  

    =  
7500 366 52 250 10

8
3 2 0 3

1 0 3

2 3 2× × × × − ×
−

⎛
⎝⎜

⎞
⎠⎟

−( . ) ( ) .
.

 

    = 26.98 × 106 Pa = 26.98 MPa Ans.

Distribution of the hoop stress
 The hoop stress is given by equation (17.61) as 

   h  = 
ρω ρω2 2 2 2

8
3 2
1 8

1 2
1

R v
v

r v
v

−
−

⎛
⎝⎜

⎞
⎠⎟
− +

−
⎛
⎝⎜

⎞
⎠⎟
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Now we select different values of the radius r and determine the corresponding hoop stresses using 
the above equation. The distribution of the hoop stresses are shown in Table 17.5.

Table 17.5 Distribution of the hoop stress

r (mm) 0 50 100 150 200 250

h (MPa) 26.98 26.26 24.10 20.50 15.47 8.99

Distribution of the radial stress
 The radial stress is given by equation (17.60) as

   r  = 
ρω2

2 2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

−v
v

R r( )

 The values of the radial stresses corresponding to the selected values of the radius r are determined 
using the above equation, which are shown in Table 17.6.

Table 17.6 Distribution of the radial stress

r (mm) 0 50 100 150 200 250

r (MPa) 26.98 25.90 22.67 17.27 9.71 0

Plotting of the hoop and radial stresses
 The values of the radius are plotted on x-axis and the values of the hoop and radial stresses on y-axis. 
The resulting curves for the two stresses are shown in Fig. 17.8.

Fig. 17.8
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Example 17.20
A long hollow cast iron cylinder of inside diameter 50 mm and outside diameter 300 mm is 
rotating at 6000 rpm. Taking Poisson’s ratio as 0.3 and density of the cylinder material to be  
7200 kg/m3 a) the maximum hoop stress (b) the radius at which the radial stress is maximum 
(c) the maximum radial stress and (d) plot the distribution of the hoop and radial stresses along the 
radius of the cylinder.

Solution: Given,

 Inside radius of the hollow cylinder, R1  =  
50
2

 mm

                                                                  =  25 × 10–3 m

Outside radius of the hollow cylinder, R2  =  
300

2
 mm

   =  150 × 10–3 m
   Poisson’s ratio, v =  0.3

  Density of the cylinder material,   =  7200 kg/m3

   Rotational speed, N =  3000

The angular speed of the cylinder is obtained as

           = 
2
60
πN

  = 
2 6000

60
π ×

  = 628.32 rad/s

(a) The maximum hoop stress is obtained using equation (17.69) as

 hmax
 = 

ρω ρω2

1
2

2
2

2
1
2

8
3 2
1

2
8

1 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟

+ − +
−

⎛
⎝⎜

⎞
⎠⎟

v
v

R R R v
v

( )

  = 
7200 628 32

8
3 2 0 3

1 0 3
25 10 2 150 10

2
3 2 3× × − ×

−
× × + × ×⎛

⎝⎜
⎞
⎠⎟

− −( . ) .
.

[( ) ( )) ]2

  − ×( ) × ⎛
⎝⎜

⎞
⎠⎟

× × + ×
−

−7200 628 32
8

1 2 0 3
1 0 3

2
3 2

25 10( . ) .
.

  = 55580232 – 507582.03

  = 55072650 Pa

  = 55.07 MPa Ans.
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(b) The radius at which the radial stress is maximum, is given by equation (17.70) as
 r = R R1 2×

  = 25 10 3 3150 10× − −× ×

  = 0.0612 m
  = 61.2 mm Ans.

(c) The maximum radial stress is given by equation (17.71) as

 rmax
 = 

ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v (R2 – R1)2

  = 
7200 628 32

8
3 2 0 3

1 0 3
150 10 25 10

2
3 3 2× × − ×

−
⎛
⎝⎜

⎞
⎠⎟
× × − ×− −( . ) .

.
( )

  = 19034326 Pa
  = 19.03 MPa Ans.

(d) Distribution of the hoop stress
The hoop stress is given by equation (17.68) as

 h = ρω ρω2

1
2

2
2 1

2
2
2

2

2 2

8
3 2
1 8

1 2
1

−
−

⎛
⎝⎜

⎞
⎠⎟

+ +
⎡

⎣
⎢

⎤

⎦
⎥ −

+
−

⎛
⎝⎜

⎞
⎠

v
v

R R R R
r

r v
v ⎟⎟

Now we select different values of the radius r and determine the corresponding hoop stresses using 
the above equation. The distribution of the hoop stresses is shown in Table 17.7.

Table 17.7 Distribution of the hoop stress

r (mm) 25 50 75 100 125 150

h (MPa) 55.07 33.00 26.65 21.76 16.58 10.66

Distribution of the radial stress
The radial stress is given by equation (17.67) as

 r = 
ρω2

1
2

2
2 1

2
2
2

2
2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

+ − −
⎡

⎣
⎢

⎤

⎦
⎥

v
v

R R
R R

r
r

The values of the radial stresses corresponding to the selected values of the radius r are determined 
using the above equation, which are shown in Table 17.8.

Table 17.8 Distribution of the radial stress

r (mm) 25 50 75 100 125 150

r (MPa) 0 18.27 18.27 14.28 8.04 0
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Plotting of the hoop and radial stresses
The values of the radius are plotted on x-axis and the values of the hoop and radial stresses on y-axis. 
The resulting curves for the two stresses are shown in Fig. 17.9.

Fig. 17.9

 3. Name the stresses that act on a rotating thin disc.

SHORT ANSWER QUESTIONS
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 1. The rotational speed N (rpm) and the angular velocity  (rad/s) are related as

 (a) N = 2
60
πω  (b)  = 2

60
π N  (c)  = π N

60
 (d)  = 3

60
πN .

 2. The expression for the hoop stress for a thin rotating ring is given as (  = Density,  = Angular 
speed and r = Radius)

 (a) r2 (b) 2r (c) 2r2 (d) 2 2r2.
 3. The expression for the hoop stress for a solid rotating disc at any radial distance r is given as 

(  = Density,  = Angular speed, v = Poisson’s ratio, R = Radius).

 (a)  ρω ( )3
8
+ v  (R2 – r2)   (b) ρω2 1

8
( )+ v  (R2 – r2) 

 (c)  ρω2

8
 [(3 + v)R2 – (1 + 3v)r2] (d) ρω2

8
 [(3 + v) R2 – (1 + 3v) r2].

  4. The expression for the radial stress for a solid rotating disc at any radial distance r is given 
as (  = Density,  = Angular speed, v = Poisson’s Ratio, R = Radius).

 (a) ρω ( )3
8
+ v  (R2 – r2)   (b) 

ρω2 1
8
( )+ v

 (R2 – r2) 

 (c) 
ρω2

8
 [(3 + v)R2 – (1 + 3v)r2] (d)  

ρω2

8
 [(3 + v) R2 – (1 + 3v) r2].

 5. The hoop and radial stresses at the centre of a solid rotating disc are expressed as (  = Density, 
 = Angular speed, R = Radius and v = Poisson’s ratio)

 (a) ρω ρω2 2 2 23
8

1
8

R v R v( ) , ( )+ +  (b) ρω ρω2 2 2 23
8

3
8

R v R v( ) , ( )+ +

 (c) 
ρω ρω2 2 2 21

4
3

8
R v R v( ) , ( )− +

 (d)  
ρω ρω2 2 2 21

4
1

8
R v R v( ) , ( )− + .

 6. The hoop stress at the outer radius of a solid rotating disc is (  = Density,  = Angular speed, 
r = Radius and v = Poisson’s ratio)

 (a) 
ρω2 2 3

8
R v( )+

 (b) 
ρω2 2 1

4
R v( )+

 (c) 
ρω2 2 1

4
R v( )−

 (d) 
ρω2 2 1

8
R v( )+ .

 7. The maximum radial stress in case of a hollow disc occurs at a radial distance equal to  
(R1 = Inner radius and R2 = Outer radius)

 (a) R1  (b) R2  (c) R R1 2  (d) 2 1 2R R .

MULTIPLE CHOICE QUESTIONS
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 8. The maximum value of the radial stress for a hollow disc is (  = density,  = Angular speed,  
v = Poisson’s ratio, R2 = Outer radius and R1 = Inner radius)

 (a) 
( )1

4

2+ v ρω
 (R2 – R1)2  (b) 

( )3
8

2+ v ρω
 (R2

2 – R2
1 )2

 (c) 
( )1

8

2+ v ρω
 (R2 – R1)2  (d) 

( )3
8

2+ v ρω
 (R2

2  – R2
1 )2.

 9. The expressions for the hoop and radial stresses in a rotating disc with a central pin hole are  
(  = Density, v = Poisson’s ratio,  = Angular speed and R = Radius)

 (a) 
( ) , ( )3

8
3

4
2 2

2 2+ +v R v Rρω ρω
 (b) 

( ) , ( )1
4

3
8

2 2 2 2+ +v R v Rρω ρω
 

 (c) 
( ) , ( )2

4
3

8

2 2 2 2+ −v R v Rρω ρω
 (d)  ( ) , ( ) .3

4
3

8

2 2 2 2+ +v R v Rρω ρω

 10. Consider the following statements :
 1. The radial stress is zero at both inner and outer radius of a hollow rotating disc.
 2. Both radial and hoop stresses at the centre of a solid rotating disc are maximum and equal.
 3. The radial stress at the outer radius of a solid rotating disc is zero.
 4. The maximum hoop stress for a rotating disc with a central pin hole is twice the maximum 

hoop stress for a rotating solid disc.
  Of these statements:
  (a)  1 and 2 are true   (b) 1, 2 and 4 are true 
  (c) 2 and 3 are true   (d) 1, 2, 3 and 4 are true.
 11. Consider the following statements about a disc of uniform strength :
 1. The hoop and radial stresses do not vary along the radius of the disc.
 2. It has maximum thickness at the centre.
 3. It has uniform thickness throughout.
 4. Its thickness decreases gradually towards its outer edge.
  Of these statements :
  (a)  1 alone is true   (b) 1, 2 and 4 are true
  (c) 1 and 2 are true   (d) 1 and 3 are true.
 12. Consider the following statements about a rotating long cylinder :
 1. It involves three stresses, namely hoop, radial and axial.
 2. The longitudinal strain is constant.
 3. All the stresses are principal stresses.
 4. The radial stress is zero at the surface of the cylinder 
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  Of these statements :
  (a)  1 and 2 are true   (b) 1, 3 and 4 are true
  (c)  2 and 4 are true   (d) 1, 2, 3 and 4 are true.
 13. The maximum radial stress in case of a solid long rotating cylinder is (  = Density,  = Angular 

speed, R = Radius, v = Poisson’s ratio)

  (a) 
ρω2 2

4
3
1

R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟    (b) ρω2 2

4
1
3 2

R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟

 (c)  ρω
2 2

8
3 2
1

R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟    (d) ρω2 2

8
1
3 2

R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟

.

 14. The maximum hoop stress in case of a solid long rotating cylinder is (  = Density,  = Angular 
speed, R = Radius, v = Poisson’s ratio)

  (a) ρω2 2

8
1
3 2

R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟    (b) ρω2 2

8
3 2
1

R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟

 (c)  ρω
2 2

4
3 2
1

R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟    (d) 

ρω2 2

4
1
3 2

R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟

.

 15. The maximum radial stress in case of a hollow long rotating cylinder is

 (a) 
ρω2

4
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 (R2 – R1)2 (b) 
ρω2

8
1
3 2
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 (R2 – R1)2

 (c) 
ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 (R2 – R1)2 (d) 
ρω2

8
3 2
1
−
−

⎛
⎝⎜

⎞
⎠⎟

v
v

 (R2
2 – R1

2).

 1. (b) 2. (c) 3. (c) 4. (a) 5. (b) 6. (c) 7. (c) 8. (b)

 9. (d) 10. (d) 11. (b) 12. (d) 13. (c) 14. (b) 15. (c)

ANSWERS
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EXERCISES

 1. A uniform thin disc of diameter 600 mm has a central hole of diameter 100 mm. Determine the 
maximum hoop stress induced in the disc, if the maximum radial stress is not to exceed 15 MPa. 
Take Poisson’s ratio as 0.25. (Ans. 43.48 MPa).

 2. A uniform thin disc of diameter 700 mm has a pin hole at the centre. Determine the maximum 
hoop stress induced in the disc, if it rotates at 3000 rpm. Take Poisson’s ratio as 0.3 and the 
density of the disc material to be 7800 kg/m3. (Ans. 77.8 MPa).

 3. A hollow steel disc of uniform thickness has outer diameter 500 mm and inner diameter 200 mm 
and it rotates at 3000 rpm. Taking Poisson’s ratio as 0.3 and the density of the disc material to 
be 7800 kg/m3 a) the maximum hoop and radial stresses induced in the disc and (b) the 
radius at which the radial stress is maximum.

       (Ans. (a) 41.04 MPa, 7.14 MPa (b) 158.11 mm).

 4. A thin uniform steel disc of diameter 300 mm rotates at 4000 rpm. Calculate the maximum 
hoop stress induced in the disc and plot the distribution of the hoop and radial stresses along 
the radius of the disc. Take Poisson’s ratio as 0.25 and the density of the disc material equals to 
7800 kg/m3. (Ans. 12.5 MPa).

 5. Derive the expression for the hoop stress at the outer radius of a solid disc of radius R, which 
rotates at  rad/s and is made of material having a density  and Poisson’s ratio v. Hence, prove 
that the hoop stress reduces to zero, if the Poisson’s ratio tends to unity.

 6. A long thick cylinder of inner diameter 150 mm and outer diameter 450 mm rotates at 4000 rpm. 
Find the hoop stresses at its inner and outer surfaces. Take the Poisson’s ratio of 0.3 and the 
density of the cylinder material as 7470 kg/m3.

    (Ans. 57.9 MPa, 11.9 MPa).

 7. A steam turbine rotor is 150 mm diameter below the blade ring and 5 mm thick, and runs at 

allowable stress of 150 MPa and the density of the rotor material to be 7800 kg/m3. Assume 
uniform strength condition.

       (Ans. 14.9 mm, 35.7 mm).

 8. A long solid steel cylinder of diameter 400 mm is rotating at 5000 rpm. Taking Poisson’s ratio 
as 0.3 and the density of the material of the cylinder to be 7800 kg/m3 a) the maximum 
stress developed in the cylinder and (b) plot the distribution of the hoop and radial stresses along 
the radius of the cylinder.

       (Ans. 36.66 MPa).
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 9. A long hollow cast iron cylinder of inside diameter 60 mm and outside diameter 300 mm is 
rotating at 3600 rpm. Taking Poisson’s ratio as 0.3 and the density of the material of the cylinder 
to be 7200 kg/m3

  (a) the maximum hoop stress
  (b) the radius at which the radial stress is maximum, and
  (c) the maximum radial stress.

(Ans. (a) 19.87 MPa (b) 67.08 mm (c) 6.31 MPa).

 10. Prove that the maximum hoop stress at the centre of a long rotating solid cylinder is given as

 hmax
 = ρω

2 2

8
3 2
1

R v
v

−
−

⎛
⎝⎜

⎞
⎠⎟

 where         = Density of the cylinder material
  = Angular speed of the cylinder
 R = Mean radius of the cylinder
 v = Poisson’s ratio.
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Johan August Brinell, born on 21 November 1849, was a Swedish 
mechanical engineer. He invented a method, called Brinell hardness 
test in 1900, which is the oldest method of hardness testing commonly 
used today. The hardness of the material is indicated by a number called 
Brinell hardness number (BHN). He is also known for describing the 
failure mechanism of material surfaces, popularly called Brinelling. He 
became a member of the Royal Swedish Academy of Sciences in 1902 
and a member of the Royal Swedish Academy of Engineering Sciences 
in 1919.

LEARNING OBJECTIVES
 After reading this chapter, you will be able to answer some of the following questions:

Johan August Brinell
(1849-1925)
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18.1 INTRODUCTION 
The mechanical properties of materials have intensive applications in manufacturing processes and 
to the service life of components. They help us in estimating forces required in forming processes 
and in predicting the behaviour of materials in shaping processes. Mechanical properties depend on 
several factors, such as temperature, rate of deformation, surface condition, environment and type of 
material. Important mechanical properties include tension, compression, hardness, torsion, bending, 
fatigue, creep, impact etc. Numerous tests have been developed, by which these properties can be 
measured. These tests are discussed below under different headings.

18.2 HARDNESS TEST 
Three types of hardness tests are important, namely Brinell test, Rockwell test and Vickers test. These 

usually indicative of increased hardness of the material.

18.2.1  Brinell Test
The Brinell test was introduced by J.A. Brinell in 1900. The test specimen, usually in the form 
of a circular disc, is pressed with a load of 500 kg, 1500 kg and 3000 kg against a hardened steel 
or tungsten carbide ball of 10 mm diameter, producing an impression on the specimen. The usual 
time of pressing the specimen is 15 seconds. Subsequently the load is released and the diameter of 
impression, usually a hemispherical cavity, is measured with the help of a travelling microscope. A 
number, called Brinell Hardness Number (BHN), is used to measure the hardness of the material, 

 BHN  =  
Load applied in kgf

Area of the spherical indentation in mm22

  = 
P

D D D dπ
2

2 2− −⎡
⎣⎢

⎤
⎦⎥

 ...(18.1)   

where D = Diameter of the steel ball 

 d  = Diameter of indentation 

The standard unit of BHN is kgf/mm2. 

from the specimen, the deformation i.e., indentation has elastic recovery tendency to a little extent. 

the calculation of BHN. The steel ball gives satisfactory measurement, when BHN is less than 500. 
For higher than this value, steel ball suffers distortion. For thin sheets, the results are reliable if its 
thickness is at least ten times the  depth of impression.  

18.2.2 Rockwell Test
The Rockwell test was developed by S.P. Rockwell in1922. It is based on measuring  depth of 
penetration instead of diameter of indentation as in case of Brinell test. The indentor is pressed 
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in the depths of penetration is a measure of hardness of the material. The test uses three scales for 
measuring the hardness of the materials. Rockwell A is used for case hardened materials; Rockwell B 
for soft materials, such as mild steel, brass and aluminum; and Rockwell C for hard materials, such as 
high carbon steel, high speed steel and tool steels. A diamond indentor, having 120º included angle, 
is used in case of Rockwell A and C; and a hardened steel ball indentor of  0.0625 inch diameter 
for Rockwell B. The load to be applied during testing of materials also varies accordingly to the 
grade of the Rockwell. For example, Rockwell A uses a 60 kg load, Rockwell B, a 100 kg load and  
Rockwell C, a 150 kg load.

18.2.3 Vickers Test
The Vickers test was developed in 1922, and is also known as diamond pyramid hardness test. It 
uses a 136º pyramid-shaped diamond indentor on a square base. On pressing the indentor against 
the surface of test specimen, it produces a square-shaped indentation. The test uses a load varying 
between 1 kg and 120 kg. The hardness, usually expressed in terms of a number, called Vickers 
Pyramid Number (VPN) is expressed as 

 VPN = 
Load appied in kgf

Surface area of the pyramidal indentation in mm2

  = 
1 854

2
. P

D
 ...(18.2)

    where  P  = Load on the test specimen

 D  = Diagonal of the indent

18.3 FATIGUE 
The behaviour of a manufactured part during its expected service life is an important consideration. 
The wings of an aircraft, the crankshaft of an automobile engine, and gear teeth in machinery are all 

to the formation of cracks, which may result in failure of components and the property responsible 
for it is called fatigue. Fatigue failure has brittle nature and probably account for nearly 90% of all 

stress, usually in alternate tension and compression mode or torsion. During testing, stress amplitudes 
(S), and the number of cycles (N) required to produce the failure is recorded. The stress amplitude 

graph is plotted between S and N S-N curve. These curves are based 
on complete reversal of the stress i.e., maximum tension, maximum compression, maximum tension 
and so on as in case of bend
test is also performed on a rotating shaft, with a constant downward load. The endurance limit, also 
known by other names, such as endurance strength or fatigue limit, is the maximum stress before 
fatigue failure, regardless of the number of stress application cycles. Endurance limit depends on the 
ultimate tensile strength of the metals. For example, the endurance limit of steel is about one-half of 
its tensile strength.
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18.4 CREEP 
A turbine disk and 

period of time. In creep, components elongate permanently under applied stresses, which ultimately 
lead to components’  failure. It is a very slow process but of great importance from design point of 

as forging and extrusion also undergo creep.
It has been observed in old houses that a window glass has more thickness at its bottom than at its 

top part. It is because of the reason that  the glass has undergone creep by its own weight over many 
years.

Creep is the characteristics of metals, and certain nonmetallic materials, such as thermoplastics 
and rubber also show this property. It can occur at room temperature or at any temperature. For 

A creep test is conducted on a test specimen, usually a lead wire of length 1m and diameter 2-3 

length, over a regular interval of time. Initially, the extension in the wire is measured at regular  
intervals of 15 seconds and after sometime, say 10 or 15 minutes, at interval of 1 minute. Initially, 

 
necking with a conical shaped fracture. 

 A creep curve (Fig. 18.1), which is usually a plot between strain and time, has three distinct stages, 
namely primary, secondary and tertiary. The creep rate increases with temperature and the applied load.

The primary and tertiary stages are shot-lived, with higher creep rates; and secondary stage is 
rather longer, where creep rate is somewhat linear.

Fig. 18.1   A Creep curve. 

18.5 TENSION TEST 
The tension test is the most commonly used test to know various mechanical properties such as 
strength, ductility and toughness of the material. It is a static test, conducted on a 10 or 12 mm test 
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and original cross-sectional area of the test specimen. 
A universal testing machine (UTM) is usually used to conduct the tension test.

18.6 COMPRESSION TEST 
There are many manufacturing operations such as forging, rolling and extrusion in which material is 

The compression test is conducted by applying a compressive load on a solid cylindrical specimen 

and its starts bulging out with maximum cross-sectional area in the middle. At the maximum load, 
the specimen fails, as it loses its resistance. Again, stress-strain curve is plotted, as is done in case 

some energy is lost in overcoming friction between the specimen and the dies at its two ends, and it 
necessitates the use of increased load during the test.
The true stress-true strain curves are similar for tension and compression tests conducted on a 
ductile material, but the results vary for brittle materials. Brittle materials are more stronger in 
compression than in tension as opposite to ductile materials, which are more stronger in tension than 
in compression. 

18.7 STIFFNESS TEST 
Stiffness of a material is indicated by its modulus of elasticity, E. The higher value of modulus of 
elasticity is indicative of higher stiffness of the material. The modulus of elasticity is the ratio of 
stress to strain in the elastic region, given as

 E = 
Stress
Strain

=
∈
σ

As strain has no unit, units of E and  are the same. Diamond has higher stiffness compared to 
carbides, tungsten, titanium or steel. Generally, a harder material has higher stiffness.

18.8  TORSION TEST  
Torsion is associated with shear strength, which in turn, is connected to the modulus of rigidity (shear 
modulus, G) of the material. Higher modulus of rigidity means increased shear strength. The torsion 
test is used to measure the shear modulus of material and also shear strain encountered with various 
applications, such as during punching of holes in sheet metals and metal cutting.

The test may be conducted on a thin tabular specimen or a solid shaft of certain length by 
i.e. torque.

T) and angular twist ( ) in radian, from the curve, 
drawn between the two, and using polar moment of inertia (J) and length (l) of the test specimen.
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From torsion formula, we have

  
T
J

 = 
G
l
θ

or   G  = 
T l

Jθ
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

.  ...(18.3)

where   J  = 
π
32

4d   (d is diameter of the solid shaft)

The shear stress  is expressed as  

   = 
Shear Force
Shear Area

( )
( )

F
A

s

s
= T

r t2 2π
 ...(18.4)

where  r  = Average radius of the tube 

 t  = Thickness of the tube
Again from torsion formula, we have

 Shear strain,                   = 
r
l

 ...(18.5)

 Dividing equation (18.4) by equation (18.5), we get the value of shear modulus of the shaft 
material.

18.9 BEND TEST 
 

The bend test is conducted on a brittle test specimen of rectangular cross-section, supported at its 
ends and vertically loaded with one or two point loads.

Fig.18.2  A three-point bend test. 

(Maximum bending moment, 
4

Wl  occurs at centre of the beam)
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In case, it uses one point load, the test is called three-point bend test (Fig. 18.2) and on using two 
point loads, the test is called four-point bend test (Fig. 18.3). During bending, the upper surface of 

Fig.18.3  A four-point bend test. 

(Maximum bending moment, Wa is constant for ‘b’ part of the beam)

18.10 IMPACT TEST 
An impact load is the example of dynamic loading, where a load is suddenly applied, as in case of 
drop forging. Its effect is much greater than a steady load of same magnitude. The impact test is used 
to measure the toughness of material, a property, which indicates its capacity to store strain energy 

with voids and discontinuity in its structure, behaves as a brittle material, and this is not indicated 
during its tension test. A brittle material requires less energy to break and hence lacks toughness than 

In Charpy test
and a swinging pendulum is used to provide the impact load (Fig. 18.4). Here, the potential  energy 
of the pendulum is converted into kinetic energy during the release of the load. The load thus applied 
at the notch portion breaks the specimen, and the energy required is absorbed by it.

Fig.18.4  A Charpy test setup.
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In Izod test
(Fig. 18.5). The swinging pendulum is allowed to strike at the notched portion of the specimen. The 
energy needed to break the specimen is obtained, which measures its impact toughness.

Fig. 18.5  An Izod test setup.

 2. Name a few important mechanical properties of a material.

SHORT ANSWER QUESTIONS
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1.  Consider the following parameters:

  (a)  1 and 2   (b) 1 and 3  (c)  2 and 3  (d) 3 and 4.
2.  Consider the following statements:
  1. Brinell test uses a 10 mm diameter steel ball indentor. 
  2.  Brinell test measures depth of indentation on the test specimen.
  3. Rockwell A uses a test load of 100 kg.
  4. The standard unit of BHN is N/m2.
 Of these statements:
 (a)  1 alone is true   (b)  1 and 2 are true
 (c)  1, 2 and 3 are true         (d)  1, 2 and 4 are true.
3. Consider the following statements:
  1.  Brinell test uses spherical impression on the test specimen.
  2.  Vickers test uses a 136° pyramid-shaped diamond indentor.
  3. Vickers test produces a square-shaped indentation.
  4.  Rockwell C uses a test load of 100 kg.
 Of these statements:
 (a)  1 and 2 are true    (b) 2 and 3 are true 
 (c)  1, 2 and 3 are true    (d)  1, 2 and 4 are true.
4.
 (a)  Hardness    (b) Fatigue    (c) Creep    (d) Tension.
5.  Consider the following statements:
  1.  Creep is a time-dependent phenomenon.
  2.  Endurance limit is dependent on tensile strength of the material. 
  3.  Impact test measures toughness. 
  4.  Resistance against scratching is called hardness. 
 Of these statements:
 (a)  1 and 3 are true     (b)  1, 3 and 4 are true 
 (c)  2, 3 and 4 are true     (d)  1,  2, 3 and 4 are true.
6.  Endurance limit of steel is
 (a)  equal to its tensile strength (b)  equal to one-half of its tensile strength
 (c)  equal to two-third of its tensile strength  (d)  independent of its tensile strength.

MULTIPLE CHOICE QUESTIONS
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7.  Consider the following statements about creep:
  1.  It increases with increase in temperature.   
  2.   It decreases with increase in temperature. 
  3.  It is independent of temperature.   
  4.  It increases with applied load. 
 Of these statements:
 (a)  1 alone is true     (b) 1 and 4 are true
 (c)  3 and 4 are true    (d) 2 and 4 are true.
8. Consider the following statements:
  1. In three-point bend test, two point loads are used.

  4.  Impact test measures hardness of a material.
 Of these statements:
 (a)  1 and 2 are true     (b)  2 and 3 are true     
 (c)  3 and 4 are true     (d)  2,  3 and 4 are true. 
9. Consider the following statements:
 1.  For a test specimen loaded in the three-point bend test,  the bending moment diagram is a 

triangle.

surface to tension.

 Of these statements:
 (a)  1 and 2 are true     (b) 1 and 3 are true

 (c)  1, 2 and 4 are true     (d)  1, 2, 3 and 4 are true.

ANSWERS
 1.  (a)  2.  (a)  3. (c)  4.  (c)  5.  (d)  6. (b)  7.  (b)  8.  (b)  9.  (d).



 1. Consider the following statements: 
     1. Bending moment producing downward 

concavity is termed as negative bending 
moment.

 2. Positive bending moment is also called 
sagging.

 3. Simply supported, overhanging and 
cantilever beams are categorized as 
statically determinate beams.

 4. A simple beam has two hinged supports.
        Of these statements:
          (a) 1 and 2 are true
 (b) 1, 2 and 3 are true
         (c)  2, 3 and 4 are true
 (d) 1, 3 and 4 are true.
 2. Consider the following statements:
 1. Roller and pinned supports are termed as 

simple supports. 

called statically indeterminate beams.
     3. A cantilever 
 4. A continuous beam has more than two 

supports.
  Of these statements:
          (a) 1 and 2 are true (b) 1 and 3 are true
         (c)  1 and 4 are true (d) 2 and 3 are true.
 3. Consider the following statements:
 1. Statically determinate beams involve only 

three unknowns.
 2. A support involves two reaction force 

components and a reaction moment.

         3. As compared to a cantilever beam, propped 
cantilever beam has shorter length. 

 4. Triangular loading 
uniformly varying load.

  Of these statements:
        (a) 1 and 3 are true 
 (b) 2 and 4 are true
         (c) 1, 2 and 3 are true 
 (d) 1, 2 and 4 are true.
 4. Consider the following statements:
 1. The shear force diagram (SFD) consists 

of horizontal straight lines in case of 
point loads and inclined straight lines in 
case of uniformly distributed load (udl).

 3. The weight of a simple beam is considered 
to act at one support only. 

case of inclined loads acting on it.
  Of these statements:
      (a) 1 and 2 are true (b) 2 and 3 are true
        (c) 1 and 4 are true (d) 1, 2 and 4 are true.
 5. Match List I with List II and select the correct 

answer using the codes given below the lists:
     List I        List II
              (Beams)  (Conditions)
          A. Simple beam 1. More than two  

  supports

  pinned support

  two rigid supports
          D. Cantilever beam 4. Statically  

  determinate beam
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  Codes: A B C D
               (a) 2 3 4 1
                (b) 2 3 1 4
                (c) 4 3 1 2
               (d) 2 4 1 3.
 6. Uniformly distributed load (udl ) is expressed 

as
         (a) N (b) N/m
          (c) kg/m (d) N.m.
 7. A roller support allows
          (a) Free movement in vertical plane
         (b)  Free movement in horizontal plane
         (c)  Free movement in vertical and horizontal 

planes both
         (d)  No free movement in any direction.
 8. Consider the following statements about 

simple bending theory:
     1. The beam material is isotropic and 

homogeneous.
         2. The elastic modulus of beam material is 

more in tension than in compression.
          3. The radius of curvature is small. 
          4. The loads are applied in a plane perpen-

dicular to the plane of bending.
  Of these statements:
         (a) 1 and 2 are true (b) 1 alone is true
         (c)  2 and 3 are true (d) 2, 3 and 4 are true.
 9. Consider the following statements:
          1. Bending stress in a beam is maximum at its 

extreme faces and minimum  (zero) at the 
neutral axis.

         2. Bending stresses can be tensile or 
compressive.

          3. Shear stress in a beam is maximum at neutral 
axis and zero at its extreme faces. 

         4. Shear stress variation for a circular section 
of a beam is linear in nature. 

        Of these statements:
 (a) 1 and 4 are true
 (b) 2 and 4 are true
         (c) 1, 2 and 3 are true
 (d) 3 and 4 are true.
 10. For a beam being subjected to transverse loads, 

the shear force at a certain section is zero, 
then bending moment at that section will be

          (a) zero (b) maximum
          (c) minimum (d) maximum or
     minimum.
 11. Consider the following statements:
         1. Section modulus and elastic modulus are 

the same.
          2. The SI unit of section modulus is N/m.
          3. Bending stress is also called flexural 

strength. 
          4. The SI unit of bending stress is pascal. 
        Of these statements:
         (a) 1 and 2 are true
 (b) 2 and 3 are true
          (c) 1, 3 and 4 are true
 (d) 3 and 4 are true.
 12. Match List I with List II and select the correct 

answer using the codes give below the lists:
  List I  List II
 A. Moment of 1. Tensile stress
  inertia
 B. Elongation 2. Modulus of rupture
 C. Neutral axis 3. Zero shear stress

  stress
            Codes: A B C D
  (a) 2 1 3 4
                (b) 1 2 3 4 

(c) 3 4 1 2
                (d) 2 1 4 3.
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 13. A beam is designed to support
         (a) horizontal loads
 (b) vertical loads
          (c) vertical loads and moments
 (d) horizontal loads and moments.
 14. The validity of torsion formula for pure 

torsion indicates that
         (a) The shaft is subjected to bending stress 

only
         (b)  The shaft is subjected to shear stress only
         (c)  The shaft is subjected to combined 

bending and shear stresses
          (d) The shaft is not subjected to any stress.
 15. If a circular shaft is subjected to a torque  

T and a bending moment M, the ratio of 

bending moment is given by
        (a) 2M/T (b) T/2M
          (c) 2T/M (d) M/2T.
 16. Consider the following statements:
         1. Stress and pressure have the same unit.
          2. Stress is related to internal force, whereas 

          3. Normal and shear stresses are the same. 
          4. Shear strain is produced by direct force. 
        Of these statements:
          (a) 1 alone is true (b) 1 and 2 are true
         (c) 2 and 3 are true (d) 3 and 4 are true.
 17. Consider the following statements:
          1. Tensile and compressive stresses are 

normal stresses.
          2. Tension force is related to increase in 

length.
          3. True stress is based on original cross-

sectional area of the test specimen. 
          4. Normal strain is the ratio of change in 

length to instantaneous length. 

        Of these statements:
         (a) 1 and 2 are true
 (b) 1, 2 and 3 are true
         (c) 1, 2 and 4 are true
 (d) 2, 3 and 4 are true.
 18. Consider the following statements:
        1. Percentage elongation and percentage 

reduction of area are the measures of 
ductility.

          2. Poisson’s ratio
transverse strain.

         3. A prismatic bar is a bar of varying cross-
section. 

          4. Elastic modulus and shear modulus 
are related as E = 2G (1 + ), where  
v = Poisson’s ratio. 

        Of these statements:
          (a) 1 and 2 are true (b) 1 and 4 are true
          (c) 2 and 3 are true (d) 2 and 4 are true.
 19. Consider the following statements:
         1. Natural strain and normal strain are the 

same.
          2. Strain has no unit.
          3. The value of offset strain is usually 0.2%. 
          4. Normal strain is produced by a shear 

force.
        Of these statements:
 (a) 1 and 2 are true
 (b) 1, 2 and 4 are true
         (c) 2 and 3 are true
 (d) 3 and 4 are true.
 20. Stress-strain analysis is conducted to know 

which of the following properties of material?
         (a) physical properties
 (b) optical properties
          (c) magnetic properties
          (d) mechanical properties.
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 21. If the diameter of a shaft subjected to torque 
alone is doubled, then the horse power can be 
increased to

         (a) 2P (b) 4P

          (c) 8P (d) 16P.

 22. A prismatic bar has

         (a

         (b

         (c)  uniform cross-section

         (d)  varying cross-section.

 23. A material showing similar elastic properties 
in all the directions is called 

         (a) elastic material

 (b) isotropic material

    (c) plastic material

 (d) viscous material.

 24. A load applied at the centre of a carriage 
spring to straighten all its leaves is called

          (a) yield load 

 (b) proof load

         (c) safe load        

 (d) ultimate load.

 25. Two close coiled springs of stiffness K 
and 2K are arranged in series in one case 
and in parallel in another case. The ratio of  
stiffness of spring connected in series to 
parallel is 

         (a)  2 / 3 (b) 1 / 9

 (c) 2 / 9 (d) 1 / 3.

 26. A higher value of  is indicative 
of

         (a

         (b

         (c

         (d

 27. The specimen rod under the tension test has 
the following parameters:

         (a) gauge length = 50 mm, diameter = 15 mm
         (b)  gauge length = 60 mm, diameter = 12 mm
         (c)  gauge length = 25 mm, diameter = 25 mm
         (d)  gauge length = 75 mm, diameter = 20 mm.
 28. The working stress is obtained by
         (a) multiplying ultimate stress with the factor 

of safety
         (b)  dividing ultimate stress by the factor of 

safety
          (c) multiplying yield stress with the factor of 

safety
          (d) adding ultimate stress to the factor of 

safety.
 29. Consider the following statements regarding 

a beam of uniform cross-section simply 
supported at  i ts  ends and carrying a 
concentrated load at one of its third point:

         1. Its deflection under the load will be 

          2. The bending moment under the load will 

          4. The slope at the nearer support will be 

        Of these statements:
         (a) 1 and 3 are true (b) 2 and 4 are true
         (c) 1 and 2 are true (d) 3 and 4 are true.
 30. Which of the following statements is true for 

linear strain?
          1. It is a ratio of two lengths.
          2. It is a dimensionless quantity.
          3. It measures deformation produced in the 

material. 
        Of these statements:
         (a) 1 and 2 (b) 1 and 3 
          (c) 2 and 3 (d) 1, 2 and 3.
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 31. Thermal strain varies
         (a) inversely proportional to change in 

temperature
          (b) directly proportional to change in 

temperature
         (c) inversely proportional to the square of 

change in temperature
          (d) directly proportional to normal strain.
 32. The failure criteria for ductile materials is 

based on the following factor:
          (a) ultimate strength 
 (b) shear strength
          (c) yield strength
 (d) limit of proportionality.
 33. The failure criteria for brittle materials is 

based on the following factor:
         (a) Ultimate strength 
 (b) Shear strength
          (c) Yield strength               
 (d) Limit of proportionality.
 34. Stress-strain curves   are  obtained  by  conducting 

the following tests on the materials:
          1. impact test          2. torsion test
          3. tension test          4. shear test
        Of these:
         (a) 1 alone is true (b) 2 and 3 are true
          (c) 1 and 4 are true (d) 3 alone is true.
 35. The limit of proportionality of a material is 

the
         (a) minimum value of stress for which the 

stress is still proportional to the strain
         (b

stress is still proportional to the strain
         (c) average value of stress for which the stress 

is still proportional to the strain
         (d) average value of strain.
 36. The materials become harder due to strain 

hardening.  Stain hardening in case of 
structural steel occurs

         (a) between yield strength and ultimate 
strength

          (b) between limit of proportionality and yield 
strength

          (c) between ultimate strength and fracture 
point

        (d) at yield point.
 37. Structural steel forms neck before it breaks. 

Neck formation starts
         (a)  before limit of proportionality
 (b) after yield strength
         (c)  before ultimate strength
 (d) at ultimate strength.
 38. Fatigue failure occurs at a stress
          (a) higher than the static breaking strength
         (b)  equal to the static breaking strength
         (c)  much lower than the static breaking 

strength
         (d)  equal to yield strength.
 39. Which of the following materials has zero 

ductility ?
         (a) cast iron (b) brass
         (c) chalk (d) steel.
 40. Which of the following statements is true ?
         (a

strain also increases.
          (b

strain also decreases
          (c

strain decreases.
          (d) There is no relationship between transverse 

 41. 
and Young’s modulus of bar A are twice that 
of bar B, If the temperature of both bars is 
increased by the same amount while preventing 

in bar A to that in bar B will be
          (a) 2 (b) 4
         (c)  8 (d) 16.
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 42. If all the dimensions of a prismatic bar of certain 
cross-section suspended freely from the ceiling 
of a roof are doubled, then the total elongation 
produced by its own weight will increase

         (a)  eight times (b) four times
          (c) three times (d) two times.
 43. Two bars, one of material A and the other of 

material B of same lengths are tightly secured 

A is more than that 
of bar B. When temperature rises, the stresses 
induced are

         (a)  tension in both materials
          (b) tension in A and compression in B
         (c)  compression in A and tension in B
         (d)  compression in both A and B.
 44. A bar of diameter 30 mm is subjected to a 

on a gauge length of 200 mm is 0.09 mm and 
the change in diameter is 0.0045 mm, then the 
Poisson’s ratio will be

         (a) 1/4 (b) 1/3
         (c)  1/5 (d) 1/2.
 45. In terms of bulk modulus (K) and modulus 

of rigidity (G), the Poisson’s ratio can be 

         (a) (3K – 2G) / (6K + 4G)
 (b) (3K + 4G) / (6K – 4G)
         (c)  (3K – 2G) / (6K + 2G)
 (d) (3K + 2G) / (6K – 2G).
 46. Match List I with List II and select the correct 

answer using the codes given below the lists:
   List I          List II
                 (Bar)     (Elongation)
            A. Uniform bar 1. 4PL/pDdE
            B. Square tapered bar 2. PL/AE
            C. Circular tapered bar 3. PL/DdE
             [where  A = Cross-sectional area
                D, d = Diameters or sides at two points
                    E = Elastic modulus
                    L = Length]

   Codes: A B C        
                (a) 2 3 1         
                (b) 3 2 1         
                (c) 1 2 3         
                (d) 2 1 3.
 47. The property of a material to undergo large 

uniform elongation before fracture (in tension), 
is called 

          (a) superelasticity (b) superplasticity
          (c) viscoelasticity (d) viscoplasticity.
 48. A given material has Young’s modulus  

E, modulus of rigidity G and Poisson’s 
ratio 0.25. The ratio of Young’s modulus to 
modulus of rigidity of the material is

          (a) 3.75 (b) 3.0
         (c)  2.5 (d) 1.5.
 49. For mild steel, the ratio of Young’s modulus  

of elasticity in tension and compression is 
equal to

         (a) 0.5 (b) 1.0
         (c)  1.2 (d) 1.3.
 50. Ductile fracture generally takes place along 

planes on which the shear stress is 
          (a b) minimum
          (c) positive (d) negative.
 51. Fatigue failure is basically of 
         (a)  brittle nature            
 (b) ductile nature
         (c)  combination of brittle and ductile nature
         (d)  none of these.
 52. Consider the following statements about  

          1. It is independent of the temperature 
change.

          2. It is a material constant.
          3. It has the unit of per degree Celsius. 
        Of these statements:
         (a) 1 alone is true (b) 2 and 3 are true
         (c)  1 and 3 are true (d) 1, 2 and 3 are true.
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 53. In tension test, fracture takes place along a 
crystallographic plane, on which the normal 

called 
         (a) shear plane (b) neutral plane
         (c)  cleavage plane (d) normal plane.
 54. The percentage reduction in area during the 

tension test on a cast iron test specimen is 
          (a) 5 to 10 % (b) 10 to 15 %
         (c)  0 to 3 % (d) 0 to 5 %.
 55. The phenomenon under which the strain in a 

material varies under constant stress is called 
          (a) strain hardening
 (b) Bauschinger’s effect
          (c) creep 
 (d) fatigue.
 56. A material loaded in tension beyond yield point 

is unloaded and then loaded in compression. 
Its yield strength in compression is found to 
be reduced. This effect is known as

        (a) inelasticity  (b) Bauschinger’s effect
          (c) hysteresis effect (d) fatigue.
 57. The usual value of gauge length is 
          (a) 100 mm (b) 75 mm
          (c) 50 mm (d) 25 mm.                             

modulus of a material is equal to its shear 
modulus. The Poisson’s ratio is 

         (a) 0.125 (b) 0.250
         (c) 0.375 (d) 0.500.
 59. For a material, Poisson’s ratio is 0.25. The ratio 

of elastic modulus to shear modulus is 
          (a) 2.55 (b) 2.5
          (c) 3.0 (d) 1.5.
 60. The ratio of Elastic modulus to Bulk modulus 

for the Poisson’s ratio of 0.25 is 
         (a) 2.55 (b) 2.5
         (c) 3.0 (d) 1.5.

 61. The limiting values of Poisson’s ratio are 
         (a)  0 to (+ 0.5) (b) 0 to (– 0.5)
        (c) 1 to (+ 0.5) (d) –1 to (+ 0.5).
 62. Consider the following statements:
          1. The proportional sign thermal stress 

E . . T ,  where  
T, 

the difference in temperatures and E, the 
modulus of elasticity.

          2. The volumetric strain is the algebraic 
sum of normal strains.

          3. The value of gauge length is usually  
50 mm.

          4. Neck formation begins just after yield 
point. 

        Of these statements:
         (a) 1 and 2 are true
 (b) 1, 2 and 3 are true
         (c)  3 and 4 are true
 (d) 4 alone is true.
 63. A ratio of moment carrying capacity of a 

circular beam of diameter D and square beam 
of side D is

          (a) /4 (b) 3 /8
          (c) /3 (d) 3 /16.
 64. Match List I with List II and select the correct 

answer using the codes given below the lists:
  List I  List II
            A.  Shear centre 1. Tension
            B.  Principal plane 2. Slope

            D.  Middle third rule 4. Twisting
            Codes: A B C D
  (a) 4 3 2 1
                (b) 3 1 4 2
                (c) 4 1 2 3
                (d) 4 2 3 1.
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 65. The value of Poisson’s ratio for cork is 
          (a) 0.25 (b) 0.30
          (c) 0 (d) 0.50.
 66. A beam of channel cross-section with vertical 

web loaded with a concentrated load at mid-
span in a plane perpendicular to the plane 
of symmetry passing through the centroid 
subjected to

        1. bending moment
          2. twisting moment
          3. shear force

        Of these:
       (a) 1 and 2 are true
 (b) 1, 2 and 3 are true
         (c) 1 and 3 are true
 (d) 4 alone is true.
 67. The bending stress in terms of bending 

moment (M) and section modulus (S) is 

         (a) 2M/S (b) M/S
          (c) S/M (d) M/2S.
 68. A beam has a triangular cross-section having 

base b and altitude h. If a section of the beam 
is subjected to a shear force V, then the shear 

section is given by 
          (a) 4V/3bh (b) 3V/4bh
         (c)  8V/3bh (d) 3V/8bh.
 69. Consider the following statements about close-

coiled helical spring:

of the spring.

are closely attached.
        Of these statements:
          (a) 1 alone is true (b) 1, 2 and 3 are true
         (c)  2 and 3 are true (d) 3 alone is true.

 70. Consider the following statements about spring 
constant:

          1. It is the force required to produce unit 
torque.

          2. It is the force required to produce a 
deformation of one unit length in the 
spring.

 3. It is the force required to produce unit 
angular twist.

        Of these statements:
         (a) 1 alone is true (b) 2 alone is true
         (c) 2 and 3 are true (d) 3 alone is true.
 71. Match List I with List II and select the correct 

answer using the codes given below the lists:
          List I      List II
              (Loaded Cantilever  (Shape of B.M.  

beam)  Diagram)
 A. Linearly varying 1. Parabola
                load from zero at
  its free end to

            B. Uniformly  2.  Rectangle
  distributed
  load over entire 
  span
            C. Concentrated load 3. Cubic parabola
  at its free end
            D. Free end is 4. Triangle
  subjected to a couple
  Codes: A B C D
               (a) 1 2 3 4
                (b) 4 3 2 1
                (c) 3 1 4 2
                (d) 1 3 4 2.
 72. The variation of shear stress with respect to 

radius in a circular shaft is shown by a 
          (a) parabola (b) cubic curve
          (c) straight line (d) hyperbola.                             
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 73. The effect of arching a beam is to
          (a) make the bending moment uniform 

throughout.
          (b) reduce the bending moment throughout
         (c)  increase the bending moment throughout
          (d) increase the shear force throughout.
 74. If a solid circular shaft and a hollow circular 

shaft have the same torsional strength, then
         1. the weight of the hollow shaft will be less 

than that of the solid shaft.
          2. the external diameter of the hollow shaft 

will be greater than that of the solid shaft.
         3. the stiffness of the hollow shaft will be 

equal to that of the solid shaft.
        Of these statements:
          (a) 1, 2 and 3 are true 
 (b) 2 and 3 are true
         (c) 1 and 2 are true
 (d) 1 alone is true.
 75. A shaft runs at 150 rpm under a torque of 

1500 N-m. The power transmitted is 
         (a) 15   kW (b) 10   kW
      (c) 7.5   kW (d) 5   kW.
 76. Consider the following statements:
          1. The hoop stress acts along the circum- 

ferential direction and is tensile in nature.
          2. The longitudinal stress acts along the 

longitudinal direction and is equal to 
one-half of the hoop stress.

vessels is much smaller as compared to 
hoop and longitudinal stresses.

        Of these statements:
         (a) 1, 2 and 3 are true
 (b) 2 and 3 are true
          (c) 1 and 2 are true
 (d) 1 alone is true.

 77. The design of the cylindrical shell is based on 
         (a) bending stress (b) longitudinal stress
          (c) hoop stress (d) shear stress.
 78. Which of the following statements is true 

about a thin cylinder?
         (a) Hoop stress is one-half of the longitudinal 

stress.
          (b) Longitudinal stress is constant across the 

thickness.
          (c) Hoop stress is constant across the thickness.
          (d) Hoop stress is equal to longitudinal stress.
 79. Which of the following statements is true 

about the effective length of a pinned ended 
column?

         (a)  It is equal to its actual length.
          (b) It is one-half of its actual length.
          (c) It is two times of its actual length.

          (d) It is 1/ 2  times of its actual length.
 80. Which of the following statements is true about 

the effective length of a  column?
         (a)  It is equal to its actual length.
         (b)  It is one-half of its actual length.
          (c) It is two times of its actual length.

         (d)  It is 1/ 2  times of its actual length.
 81. The critical load is the load at which the 

column
         (a)  breaks
 (b) loses its strength
        (c) buckles
 (d) can take minimum load.
 82. Which of the following statements is true 

about the buckling of column ?
         (a) It usually occurs about the axis w.r.t which 

the moment of inertia is the maximum.
        (b) It usually occurs about the axis w.r.t which 

the moment of inertia is the least.
          (c) It usually occurs about the axis w.r.t which 

the moment of inertia is zero.
         (d)  It is independent of moment of inertia.
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 83. Consider the following statements about the 
Johnston formula of column:

          1. It is a semi-empirical formula.
          2. It involves inelastic buckling.
          3. It is basically an equation of a parabola. 
        Of these statements:
          (a) 1, 2 and 3 are true 
 (b) 2 and 3 are true
         (c)  1 and 2 are true
 (d) 1 alone is true.                            
 84. Consider the following statements:

principal stresses, there will be no 
tangential stress.

          2. The shear stresses on mutually perpendicular 
planes are numerically equal.

and minimum principal stresses. 
        Of these statements:
         (a) 1, 2 and 3 are true
        (b) 1 and 2 are true
         (c)  1 and 3 are true
         (d) 1 alone is true.
 85. The Johnston formula of column is used for
          (a) short columns 
 (b) long columns
          (c) short and intermediate columns both
 (d) intermediate columns.
 86. A cast-iron pipe of 1 m diameter is required 

to withstand a 200 m head of water. If the 
limiting tensile stress of the pipe material is 
20 MPa, then the thickness of the pipe will be

          (a) 25 mm (b) 50 mm
          (c) 75 mm (d) 100 mm.
 87. In a rectangular element being subjected to 

two like principal tensile stresses in two 
mutually perpendicular directions  and y, the 

         (a) plane normal to 
 (b) plane normal to y
         (c) plane at 45 degree to y-direction   
 (d) plane at 45 degree and 135 degree to 

y-direction.
 88. Two closed thin vessels, one cylindrical and 

other spherical with equal internal diameter 
and wall thickness are subjected to equal 
internal fluid pressure. The ratio of hoop 
stresses in the cylindrical to that of spherical 
vessel is 

         (a) 4.0 (b) 2.0
         (c)  1.0 (d) 0.5.
 89. Which of the following statements is true 

about a continuous beam?
         (a) It is supported on three or more roller 

supports.
          (b) It is supported on three or more hinge 

supports.
         (c)  It is supported on one hinge support and 

two or more roller supports.
          (d) It requires no support.                               
 90. Consider the following statements:
          1. The slope of the shear force diagram 

(SFD) at any section of the beam is equal 
to the load intensity at that section.

          2. The slope of the shear force diagram 
(SFD) at any section of the beam is equal 
to the bending moment at that section.

          3. The slope of the bending moment 
diagram (BMD) at any section of the 
beam is equal to the shear force at that 
section.

          4. The slope of the bending moment 
diagram (BMD) at any section of the 
beam is equal to the load intensity at that 
section.

        Of these statements:
          (a) 1 alone is true (b) 2 and 3 are true
          (c)  1 and 3 are true (d) 4 alone is true.
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 91. Poisson’s ratio
         (a
 (b) longitudinal strain to lateral strain
          (c) lateral strain to longitudinal strain
 (d
 92. For a 12 mm diameter steel rod test specimen, 

the suitable gauge length is
         (a)  24 mm (b) 36 mm
         (c) 72 mm (d) 60 mm.
 93. The stress produced on a surface normal to 

the load applied is called
          (a) shear stress (b) bending stress
         (c)  normal stress (d
 94. The deformation of a uniform section bar 

P is given by (where 
symbols have their usual meanings)

          (a) PL/AE (b) 2PL/AE
         (c)  PL/2AE (d) PL/3AE.
 95. Tensile load results in
         (a)  contraction (b) elongation
         (c)  bending (d) twisting.
 96. Factor of safety 
         (a) shear stress to working stress
 (b) bending stress to shear stress
         (c)   ultimate stress to working stress
 (d) working stress to ultimate stress.                             
 97. The relationship between E and G is
          (a) E = 2G (1 – ) (b) E = 2G (1 + )
         (c)  E = 2G (1 – 2 ) (d) E = 2G (1 + 2 ).
 98. The relationship between E and K is
         (a)  E = 3K (1 – 2 ) (b) E = 3K (1 + 2 )
         (c)  E = 2K (1 – 2 ) (d) E = 2K ( 1 + 2  ).
 99. The relationship between E, G and K is
         (a)  E = 3 KG / (2K + G)
 (b) E = 9 KG / (3K + G)
         (c)   E = 5 KG / (2K + G)
 (d) E = 9 KG / (3E + K).

 100. Shear stress
         (a) acts normal to the surface
 (b) acts tangential to the surface
          (c)  is equal to the tensile stress
 (d) is equal to the compressive stress.         
 101. Modulus of rigidity
          (a) shear strain to volumetric strain
 (b) shear stress to shear strain
         (c)   normal stress to shear strain
 (d) normal stress to linear strain.   
 102. During the tightening of a nut on a bolt, the 

stress induced in the bolt is
         (a)   compressive (b) shear
         (c)  tensile (d) bending.
 103. Stresses are said to be compound, when
         (a) normal and shear stresses are acting 

simultaneously
         (b)  torsion and bending stresses are acting 

simultaneously
         (c)  normal and bending stresses are acting 

simultaneously
         (d)  shear and bending stresses are acting 

simultaneously.
 104. Principal planes are planes of
         (a
 (b) minimum shear stress
         (c
 (d) zero shear stress.

 105. The principal stresses are basically

         (a)  shear stresses (b) bending stresses

         (c)   normal stresses (d) hoop stresses. 

 106. The planes 
located at the following angle to the principal 
planes

         (a)  90°                     (b)  45°

         (c)  60°                     (d) 30°.
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 107. The principal planes are separated by
         (a)  90°                     (b) 45°
         (c)  60°                     (d) 180°. 
 108. The maximum shear stress is equal to
         (a)  one-half the algebraic difference of 

principal stresses
         (b)   difference of principal stresses
         (c)   sum of principal stresses
         (d)   algebraic difference of principal stresses.
 109. For uniaxial loading condition, the maximum 

shear stress is equal to
          (a) uniaxial stress
 (b) two times the uniaxial stress
         (c)   three times the uniaxial stress
 (d) one-half of uniaxial stress.
 110. The radius of Mohr’s circle indicates
         (a)   maximum principal stress
 (b) minimum principal stress
         (c)   maximum shear stress
 (d) minimum shear stress.
 111. In case one principal stress is zero, the other 

principal stress is equal to
          (a)   maximum principal stress 
 (b) two times the maximum shear stress
         (c)   maximum shear stress
         (d)   three times the maximum shear stress.
 112. The maximum bending moment, when a point 

load W is acting at the free end of a cantilever 
beam of length L, is

         (a)  WL/2 (b) WL/4
         (c)  WL/3 (d) WL. 
 113. The variation of bending moment for a 

cantilever beam carrying a udl of intensity  
w/unit length over its entire span is shown 
by a/an

          (a)  straight line
 (b) second degree parabola
          (c)  third degree parabola
 (d) ellipse.

 114. The bending stress is proportional to
          (a) moment of inertia
 (b) modulus of elasticity
          (c)   its distance from the neutral axis
 (d) radius of curvature. 
 115. For a complex stress system, the total number 

of principal planes is
          (a)  two (b) four
         (c)   three (d
 116. The bending stress is maximum at the 
         (a)  neutral axis       
   (b) top layer of beam
         (c)  bottom layer of beam 
 (d) none of these.
 117. The ratio of maximum shear stress and average 

shear stress for a triangular section is 
          (a)  0.66 (b) 1.33
         (c)  1.5 (d) 0.75.                              
 118. Compared to the bending deformation, the 

shear deformation is 
         (a)  large (b) small
         (c)  very large (d) zero. 
 119. The bending stress is zero at the
          (a)  neutral axis
 (b) top layer of beam
         (c)   bottom layer of beam
 (d) none of these.
 120. The shear stress varies in direct proportion to
         (a)  moment of inertia about the neutral axis
         (b)  width of the beam
 (c)  distance between neutral axis and centroid 

of the area above the neutral axis
          (d)  normal stress.
 121. The shear stress is maximum, where
          (a)   bending stress is minimum
 (b)  bending stress is maximum
         (c)   bending stress is zero
 (d)  bending moment is positive.
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rectangular section is 

          (a) average shear stress
 (b
         (c)   minimum shear stress
 (d) none of these.  
 123. The modulus of section is a ratio of 
          (a) moment of inertia and bending stress
          (b)   moment of inertia and the distance from 

         (c)    moment of inertia and modulus of 
elasticity

         (d)   moment of inertia and modulus of 
rigidity. 

 124. The strength of a beam depends upon
         (a) modulus of elasticity
 (b) bending moment
         (c) section modulus
 (d)  radius of curvature. 

bending  is called 
          (a b) bent surface
          (c)   elastic curve (d) plastic curve.
 126. The bending equation is valid for a beam 

subjected to
          (a) bending moment and no shear force
          (b) combined bending and shear force
          (c) shear force only
          (d) shear stress only.
 127. A composite beam is made of
          (a) more than one material
 (b) more than one cross-section
         (c)  plastic material
 (d) composite material. 

          (a
         (b
 (c
 (d) unpredictable.

 129. The  is the product of
         (a) modulus of elasticity and mass moment of 

inertia
          (b) modulus of rigidity and area moment of 

inertia
          (c)   modulus of rigidity and mass moment of 

inertia
          (d)  modulus of elasticity and area moment of 

inertia. 
 130. Shear stress variation across a rectangular 

section is 
         (a)  hyperbolic (b) parabolic
         (c)  circular           (d) elliptical.
 131. The slope and 

cantilever beam are
 (a
 (b) zero, zero
 (c
 (d
 132. The slope and  at the centre of a 

simple beam carrying a central point load are
          (a) ero, zero
 (b) 
 (c) M
 (d) M
 133. The torsion equation is
         (a)  T/I  = G /L =  /r
 (b) T/J = G /L =  /r
         (c)  T/J = G /L =  /D
 (d) J/T = G /L =  /r.
134. Which of the following methods uses Mohr’s 

theorem 
beam?

         (a) Macaulay’s method
 (b) Integration method
          (c)   Moment area method
 (d) Conjugate beam method. 
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 135. The slope at any section of a beam is equal to 
which parameter of the conjugate beam? 

          (a) bending moment 
 (b) slope
         (c
 (d) shear force.
 136. The  at any section of a beam is 

equal to which parameter of the conjugate 
beam? 

          (a)   bending moment
 (b) slope
         (c
 (d) shear force.
 137. The conjugate beam method is the most 

         (a
beam

          (b
sectional beam

         (c)   slope of a uniform sectional beam
         (d
 138. According to moment area method, change in 

slope between any two sections of a beam is 
equal to

         (a) moment of area of (M/EI) diagram between 
two sections

          (b)   area of bending moment diagram between 
two sections

 (c) area of (M/EI) diagram between two 
sections

         (d)   area of shear force diagram between two 
sections. 

 139. According to moment area method
at any section of a beam w.r.t. a reference point 
is equal to 

         (a) moment of area of (M/EI) diagram between 
section and reference point

          (b)   area of bending moment diagram between 
section and reference point

          (c)  area of (M/EI) diagram between section 
and reference point

          (d)  area of shear force diagram between 
section and reference point.

 140. If the diameter of a circular sectional beam is 
doubled, its  is reduced by

          (a) 16 times (b) 4 times
          (c)   8 times (d) 32 times.
 141. For a shaft being subjected to a torque T, 

variation of shear stress w.r.t its radius is
          (a) linear (b) parabolic
          (c)  hyperbolic       (d) cubic curve.
 142. The shear stress produced in a circular shaft 

due to pure torsion is
          (a)  directly proportional to the radius of the 

shaft
          (b)  inversely proportional to the diameter of 

the shaft
         (c)   inversely proportional to the radius of the 

shaft
         (d)   directly proportional to normal stress.
 143. The torsional rigidity 
         (a)  ratio of torque and angle of twist
          (b)  product of polar moment of inertia and 

modulus of rigidity
          (c) sum of modulus of rigidity and angle of 

twist
 (d) ratio of torque and polar moment of inertia. 
 144. Shear stress for a shaft being subjected to a 

torque T is minimum at
         (a
       (b
         (c
         (d) its both  ends.
 145. Shear strain in a circular shaft varies 
         (a

the shaft
          (b)  linearly with the square of the distance 

          (c) inversely proportional to the distance from 

          (d) inversely proportional to the square of the 
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 146. The shear strain
         (a)  at a distance equal to one-third from the 

         (b)  at the centre of the shaft
          (c)   on the surface of the shaft
          (d)  at a distance equal to one-half from the 

 147. The stiffness
of 

          (a) load and angle of twist
 (b
          (c)  load and strain energy
 (d) load and strain. 
 148. The deformation produced in the spring is 

said to be
          (a) semi-elastic 
 (b) plastic
          (c) elastic 
 (d) visco-elastic.
 149. The  stored in a body 

at the elastic limit is called 
          (a) resilience
 (b) modulus of resilience
         (c)  proof resilience
 (d) potential energy. 
 150. In a close-coiled helical spring, 
          (a

closely attached
          (b
         (c

the spring
          (d
 151. A conical helical spring is used,  where
         (a) space is a problem
 (b)  more stiffness is required
          (c)   more load is to be taken
 (d

 152. The load-deflection curve of a spring is a 
straight line, only if 

          (a)  spring is stressed up to yield point
          (b)  spring is stressed up to ultimate point
          (c)  spring is stressed up to failure  point
          (d)  spring is stressed within the elastic limit. 
 153. The Wahl’s correction factor is introduced to
          (a) increase the number of coils in the spring
          (b
          (c)   take care of the curvature of spring wire
          (d
 154. The  
          (a
          (b) mean coil diameter to spring wire diameter
          (c)   load to angle of twist
          (d)  mean coil diameter to length of spring 

wire.
 155. Energy stored in a material during its 

deformation is called
         (a)   elastic energy 
 (b) plastic energy
         (c)   strain energy 
 (d) potential energy.
 156. For two springs being connected in series, the 

following statement is correct? 
         (a)  Deflection produced in the equivalent 

spring is the sum of the deflections 
produced in the individual spring.

          (b)  Total weight is the sum of the weights 
acting separately on the two springs.

          (c)   Equivalent stiffness is the sum of the 
individual stiffnesses.

          (d)   Equivalent stiffness is the product of the 
individual stiffnesses.

157. For two springs being connected in parallel, 
the following statement is correct? 

          (a)   Equivalent load is the sum of the 
individual loads.
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 (b

 (c

          (d

stress 

          (a b
         (c d

 
         (a b
          (c d

maximum principal stress theory 

          (a
 (b
         (c
 (d

Hooke’s law 
         (a
 (b
          (c
 (d

maximum shear stress theory 

         (a
 (b
         (c
 (d

maximum shear stress

         (a)  2  (b) /3
         (c)  /2 (d) 
 Tresca’s theory

         (a

         (b

         (c

         (d

         (a
         (b
         (c
         (d

Euler’s formula
          (a
 (b
          (c
 (d

Rankine-Gordon formula 
          (a
 (b
          (c
 (d

         (a b
          (c d

          (a
 (b
         (c
 (d

both 
 

         (a
          (b
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         (c)   two times the actual length
         (d)   1/ 2  times the actual length.
 171. The slenderness ratio is less than 30 for
         (a) short columns
 (b) long columns
          (c)   medium columns
 (d) short and medium columns both. 
 172. A short column fails mainly due to
         (a) buckling         
 (b) compressive stress
         (c) combined effect  of  buckl ing and 

compressive stress
         (d) tensile stress.
 173. Consider the following statements:
          1. In three-point bend test, two point loads 

are used. 
          2. In four-point bend test, the bending 

moment diagram is a trapezium. 
          3. Izod test uses a vertically placed test 

specimen. 
          4. Impact test measures hardness of a 

material. 
         Of these statements:
          (a) 1 and 2 are true (b) 2 and 3 are true
          (c) 3 and 4 are true (d) 2, 3 and 4 are true.
 174. The crippling stress varies
          (a) directly proportional to slenderness ratio
          (b) inversely proportional to slenderness ratio
          (c) inversely proportional to the cubic power 

of slenderness ratio 
          (d) inversely proportional to the square of 

slenderness ratio.
 175. The radius of gyration of a circular section of 

diameter 50 mm is
          (a) 25 mm (b) 50 mm
          (c) 12.5 mm (d) 20 mm.
 176. For a long column, the slenderness ratio is 

greater than
          (a) 30 (b) 90 
          (c)  120 (d) 200.

 177. For Euler’s formula to be valid, crippling 
stress of the column is

         (a)  more than its yield strength
 (b)  less than its yield strength
         (c)   equal to its yield strength
 (d)  equal to its ultimate strength. 
 178. Consider the following statements:
          1. For a test specimen loaded in three-point 

bend test, the bending moment diagram 
is a triangle. 

          2. In the bend test, the upper surface of the 
specimen is subjected to compression 
and the lower surface to tension. 

          3. Charpy test uses a horizontally placed test 
specimen. 

          4. A compression 
conduct than a tension test. 

         Of these statements:
         (a) 1 alone is true
 (b) 1 and 3 are true
          (c) 1 and 2 are true
 (d) 1, 2, 3 and 4 are true.
 179. Consider the following statements:
         1. Creep is a time-dependent phenomenon. 
          2. Endurance limit is dependent on tensile 

strength of the material. 
          3. Impact test measures toughness. 
          4. Resistance against scratching is called 

hardness. 
          Of these statements:
          (a) 1 and 3 are true
 (b) 1, 3 and 4 are true
         (c)  3 and 4 are true
 (d) 1, 2, 3 and 4 are true.
 180. Consider the following statements:
          1. Brinell test uses a spherical impression on 

the test specimen. 
          2. Vickers test uses a 136 degree pyramid-

shaped diamond indentor. 
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         3. Vickers test produces a square-shaped 
indentation. 

          4. Rockwell C uses a test load of 100 kg. 
         Of these statements:
          (a) 1 and 2 are true (b) 1, 2 and 3 are true
         (c)  2 and 3 are true (d) 1, 2 and 4 are true.
 181. Which of the following mechanical properties 

is connected to time ?
          (a) hardness (b) fatigue
          (c)   creep (d) tension.
 182. Consider the following statements:
          1. Brinell test uses a 10 mm diameter steel 

ball indenter. 
          2. Brinell test measures depth of indentation 

on the test specimen. 
          3.  Rockwell A uses a test load of 100 kg. 
          4. The standard unit of BHN is N/m2. 
        Of these statements:
         (a) 1 and 2 are true (b) 1 alone is true
          (c)   2 and 3 are true (d) 1, 2 and 4 are true.
 183. For a thin cylindrical shell of diameter d and 

thickness t
p, the hoop stress is given by

          (a)  pd/3t (b) pd/8t
         (c)  pd/2t (d) pd/t.
 184. Consider the following parameters:
          1. Hardness 
          2. Toughness 
          3. Density 

        Which of the above parameters can be placed 
under mechanical property ?

          (a) 1 and 2 (b) 1 and 3
          (c) 2 and 3 (d) 3 and 4.
 185. Creep
          1. increases with increase in temperature 
          2. decreases with increase in temperature 
          3. is independent of temperature 
          4. increases with applied load 

        Of these:
          (a) 1 alone is true (b) 1 and 4 are true
          (c) 3 and 4 are true (d) 2 and 4 are true.
 186. For a thin-walled shell, the diameter-thickness 

ratio is
          (a)   less than 20 (b) greater than 20
          (c)   equal to 20 (d) equal to 10.                              
 187. For a thick-walled shell, the diameter-

thickness ratio is
         (a)   less than 20 (b) greater than 20
         (c) equal to 20 (d) equal to 10.
 188. For a thin cylindrical shell of diameter d and 

thickness t
p, the hoop stress is given by

          (a)  pd/3t (b) pd/8t
          (c)  pd/2t (d) pd/4t.
 189. For a thin cylindrical shell of diameter d and 

thickness t
p, longitudinal stress is given by

         (a) pd/3t (b) pd/8t
          (c) pd/2t (d) pd/4t.
 190. The hoop stress is also known as
          (a) longitudinal stress
 (b) circumferential stress
          (c) bending stress
 (d) compressive stress. 
 191. Thin and thick walled pressure vessels are 

subjected to two types of stresses, namely
          (a)  hoop stress and longitudinal stress
          (b)  tensile stress and compressive stress
         (c)  bending stress and shear stress 
         (d)  hoop stress and bending stress.
 192. For a thin cylindrical shell, longitudinal 

stress is equal to
         (a) hoop stress
 (b) two times the hoop stress
         (c) three times the hoop stress
 (d) one-half of hoop stress.
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 193. The hoop stress is considered as
         (a) minor principal stress
 (b) major principal stress
          (c)   bending stress
 (d) compressive stress. 
 194. The difference of the hoop stress and the 

longitudinal stress, for a thin cylindrical shell 
of diameter d and thickness t, being subjected 
to a pressure p, is

         (a)  pd/4t (b) pd/16t
          (c)  pd/8t (d) pd/3t.

thin 
cylindrical shell of diameter d and thickness 
t, being subjected to a pressure p, is

         (a) pd/4t (b) pd/16t
         (c) pd/8t (d) pd/3t.
 196. Which is the correct relationship ?
         (a) Gauge pressure + Atmospheric pressure 
  = Absolute pressure
         (b)  Gauge pressure – Vaccum pressure 
   = Absolute pressure
 (c) Gauge pressure + Absolute pressure 
  = Atmospheric pressure
 (d) Gauge pressure + Vacuum pressure 
  = Absolute pressure. 
 197. For a thin spherical shell
         (a) hoop stress is two times the longitudinal 

stress
          (b) longitudinal stress is two times the hoop 

stress
         (c)  hoop stress is equal to one-half of the 

longitudinal stress
          (d)  hoop and longitudinal stresses are equal.
 198. The hoop stress and the longitudinal stress 

act at the following angle to each other. 
          (a) 45 degree 
 (b) 60 degree
          (c) 90 degree 
 (d) 180 degree.

 199. The hoop strain for a thin cylindrical shell of 
diameter d, thickness t, Poisson’s ratio v and 
being subjected to a pressure p, is

         (a)  pd (1 – ) / 4tE (b) pd (1 –  2v) / 4tE
         (c)  pd (2 – ) / 4tE (d) pd (1 + ) / 4tE.
 200. The longitudinal strain for a thin cylindrical 

shell of diameter d, thickness t, Poisson’s ratio 
v and being subjected to a pressure p, is

          (a) pd (1 – ) / 4tE (b) pd (1 –  2  ) / 4tE
          (c) pd (2 – ) / 4tE (d) pd (1 + ) / 4tE.
 201. The volumetric strain for a thin cylindrical 

shell of diameter d, thickness t, Poisson’s 
ratio v and being subjected to a pressure p, is

         (a)  pd (5 – 3 ) / 4tE 
 (b) pd (5 –  4 ) / 3tE
         (c)   pd (5 – 4 ) / 4tE 
 (d) pd (5 + 4 ) / 4tE.

thin 
spherical shell of diameter d, thickness t, 
Poisson’s ratio v and being subjected to a 
pressure p, is

         (a)  pd/2t (b) pd/3t
          (c) pd/8t (d) pd/4t.
 203. For a thin cylindrical shell with hemispherical 

ends, the ratio of thicknesses of the cylindrical 
part and hemispherical ends, being subjected 
to equal  hoop stress, is

          (a) 0.5 (b) 1.5
          (c) 2.0 (d) 2.5.
 204. In case of a thin cylindrical shell with 

hemispherical ends, if no distortion occurs 
at the junction of the two parts, the ratio 
of thicknesses of the cylindrical part and 
hemispherical ends, for a Poisson’s ratio n, is 
given as

         (a) (1 – n) / (2 – n) (b) (2n  – 1) / (1 – n)
         (c)  (2 – n) / (1 – n) (d) (1 + n) / (2 – n).
 205. The unit of the constant A in the Lame’s 

equation is
         (a)  newton (b) newton-meter
         (c) newton-sec (d) pascal.
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 206. Lame’s equations
         (a
 (b
         (c
 (d
 207. Lame’s equations
         (a
         (b
         (c

         (d

         (a
 (b
         (c
 (d

B Lame’s 
equation

         (a b
         (c d

internal

          (a
 (b
         (c
 (d

thick cylinder

          (a
 (b
          (c
 (d

volumetric  
hoop longitudinal  

         (a

         (b

         (c

         (d

 thick cylinder 

          (a b
          (c d

compounded to
         (a
         (b

         (c)  
         (d

  

         (a
 (b
          (c
 (d

   stress at outer 

        (a b
          (c d
 217. Neck formation
        (a b
          (c d
 218. Poisson ratio
         (a
          (b
          (c
          (d

Poisson ratio?
         (a b
          (c) Rubber (d) Wood.
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 220. Tensile load produces
         (a)  contraction (b) elongation
         (c)   bending (d) no effect.
 221. The highest stress that a material can withstand 

deformation is called
          (a) fatigue strength
 (b) endurance strength
         (c)   creep strength
 (d)  creep rupture strength.
 222. Match List I with List II and select the 

correct answer using the codes given below 
the lists:

        List I       List II
  
  Cross-section)  Shear Stress)

 A. Rectangular 1.  4
3 av

 B. Thin circular tube 2.  3
2 av

 C. Circular 3. 2 av

 Codes: A B C
 (a) 1 2 3
 (b) 2 1 3
 (c) 2 3 1.
 223. The equation representing shear stress 

distribution in a beam, is given by

 (a) F
IA

bys  (b) F
Ab

I ys

 (c) F
Ib

Ays  (d) F
I y

Abs .

    (where
 Fs = Shear stress
 I = Moment of inertia of beam’s cross-section
 A = Cross-sectional area
 b = Width of cross-section
 y =  Distance of centroid of area from the 

 224. The equivalent bending moment in case of a 
shaft being subjected to bending moment M 
and twisting moment T is

 (a) M T2 2  +

 (b) 1
2

2 2M T  +

 (c) 1
2

2 2M M T    + +⎡
⎣⎢

⎤
⎦⎥

 

 (d) 1
2

2 2M M T− +⎡
⎣

⎤
⎦
  .

 225. The equivalent torque in case of a shaft being 
subjected to bending moment M and twisting 
moment T is

 (a) 1
2

2 2M T  +

 (b) M T2 2  +

 (c) 1
2

2 2M M T    + +⎡
⎣⎢

⎤
⎦⎥

 

 (d) 1
2

2 2M M T− +⎡
⎣

⎤
⎦

.  

 226. A shaft of diameter d is subjected to bending 
moment M and twisting moment T. The 
developed principal stresses will be

 (a) ± +16
3

2 2

πd
M T  

 (b) 16
3

2 2

πd
M M T[ ]± +

 (c) ± +32
3

2 2

πd
M T  

 (d) 32
3

2 2

πd
T M T[ ]± + .
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 227. A section of solid circular shaft with diameter 
d is subjected to bending moment M and 
torque T
section is given as

 (a) 16
3

2 2

πd
M T+  

 (b) 32
3

2 2

πd
M T+

 (c) 16
3

2 2

πd
M M T[ ]+ +  

 (d) 32
3

2 2

πd
M M T[ ]+ + .

 228. The strain energy stored in a solid shaft 
 is 

given by

 (a) τmax
2

2G
V  ×  (b) τmax

2

3G
V  ×

 (c) τmax
2

4G
V  ×  (d) τmax

4G
V  × .

229. The strain energy stored in a hollow shaft 
 is 

given by

 (a) τmax
2

2G
V  ×  (b) τmax

2

4G
V  ×

 (c) τmax

2G
V  ×  (d) τmax

4G
V  × .

shaft of diameter d subjected to equivalent 
bending moment Me and equivalent torque  
Te is given as

 (a) 16
3

M
d

e

π
 (b) 16

3

T
d

e

π

 (c) 32
3

M
d

e

π
 (d) 32

3

T
d

e

π
.

 231.
of diameter d subjected to equivalent bending 
moment Me and equivalent torque Te is  
given as

 (a) 16
3

M
d

e

π
 (b) 16

3

T
d

e

π

 (c) 32
3

T
d

e

π
 (d) 32

3

M
d

e

π
.

 232. Luders linesare connected to
 (a)  brittle materials
  (b)  ductile materials
   (c)  both brittle and ductile materials
  (d)  plastic materials.
 233. Poisson’s ratiorelates
  (a
  (b)  lateral strain and shear strain
 (c)  lateral strain and longitudinal strain
  (d)  lateral strain and volumetric strain.                                                                                        
 234. A prismatic baris a bar of
 (a)  circular cross section
 (b)  rectangular cross section
   (c)  uniform cross section
 (d)  non-uniform cross section.                                                                                         
 235. Hooke’s lawis related to
 (a) stress and strain
 (b) work and energy
 (c) coplanar forces
  (d) collinear forces.                                                                                        
 236. Consider the following statements about 

theoretical and actual stresses:
           1.  The theoretical stress is based on the 

actual cross sectional area.
           2. The actual stress is based on the original 

cross sectional area.
 3. The actual stress is lesser than the 

theoretical stress.
 4. The theoretical stress is lesser than the 

actual stress.
   Of these statements:
  (a)  1 and 4 are true                     
 (b)  2 and 3 are true
   (c)  1, 2 and 4 are true 

 (d)  4 alone is true.



Model Multiple Choice Questions for Competitive Examinations  889

 237. Consider the following statements:
 1. Elastic limitand limit of proportionalityare 

same.
          2.  Yield pointindicates the elastic state of 

the material.
 3.  Actual stressis always higher than the 

theoretical stress.
 4.  Ultimate pointindicates the highest load 

bearing capacity of the material.
  Of these statements:
  (a)  1 and 2 are true                     
 (b)  1, 2 and 3 are true
 (c)  1, 3 and 4 are true                 
 (d)  3 and 4 are true.
 238. Shear modulusis also called
 (a)  Bulk modulus of elasticity
 (b)  Modulus of rigidity
 (c)  Modulus of elasticity
 (d)  Torsional rigidity.                                                                                         
 239. Combined stressesinclude
 (a
 (b)  torsion and bending
 (c
 (d)  all of the above.                                                                                         
 240. Which of the following methods is employed 

two or more different types of loading?
 (a)  Moment area method
 (b)  Method of superposition
 (c)  Macaulay’s method
 (d
 241. A circular shaftis usually subjected to the 

following stresses:
 (a
 (b
 (c)  torsion and bending
 (d)  none of the above.                                                                                         

 242. Structural membersare usually subjected to 
stresses produced by

 (a

 (b

 (c

 (d)  bending moment and torsion.                                                                                         

 243. A hack sawmay be subjected to stresses 
produced by

 (a

 (b

 (c)  torsion and bending

 (d)  bending only.                                                                                         

 244. Consider the following statements:

elastic limit.

           2.  Deformations produced should be small.

 3.  Load should always act in the vertical 
direction only.

  While using method of superposition, which 
of the above statements should be valid?

 (a)  1 alone (b)  1 and 2 

 (c)  2 and 3 (d)  1, 2 and 3.

 245.  In case of thick-walled cylindrical pressure 

radius by

  (a)  less than 5%                                  

 (b)  more than 5% 

 (c)  more than 10%                              

 (d)  less than 10%.

 246.  Pure torsion produces direct stresses on 
planes inclined to the shaft at the following 
angle:

  (a)  30° (b)  45° 

 (c)  60° (d)  90°.
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ANSWERS

 1. (b) 2. (c) 3. (d) 4. (c) 5. (b) 6. (b) 7. (b) 8. (b)

 9. (c) 10. (d) 11. (d) 12. (d) 13. (b) 14. (b) 15. (b) 16. (b)

 17. (c) 18. (b) 19. (c) 20. (d) 21. (c) 22. (c) 23. (b) 24. (b)

 25. (c) 26. (a) 27. (b) 28. (b) 29. (b) 30. (d) 31. (b) 32. (c)

 33. (a) 34. (d) 35. (b)  36. (a) 37. (d) 38. (c) 39. (c) 40. (c)

 41. (b) 42. (b) 43. (c) 44. (b) 45. (c) 46. (a) 47. (b) 48. (c)

 49. (b) 50. (a) 51. (a) 52. (d) 53. (c) 54. (c) 55. (c) 56. (b)

 57. (c) 58. (a) 59. (b) 60. (d) 61. (d) 62. (b) 63. (d) 64. (a)

 65. (c) 66. (c) 67. (b) 68. (c) 69. (a) 70. (b) 71. (c) 72. (c)

 73. (b) 74. (c) 75. (c) 76. (a) 77. (c) 78. (c) 79. (a) 80. (b)

 81. (c) 82. (b) 83. (a) 84. (c)  85. (c) 86. (b) 87. (d) 88. (b)

 89. (c) 90. (c) 91. (c)  92. (d) 93. (c) 94. (a) 95. (b) 96. (c)

 97. (b) 98. (a)  99. (b) 100. (b) 101. (b) 102. (c) 103. (a) 104. (d)

 105. (c) 106. (b) 107. (a) 108. (a) 109. (d) 110. (c) 111. (b) 112. (d)

 113. (b) 114. (c) 115. (c) 116. (d) 117. (c) 118. (b) 119. (a) 120. (c)

 121. (c) 122. (b) 123. (b) 124. (c) 125. (c) 126. (a) 127. (a) 128. (c)

 129. (d) 130. (b) 131. (b) 132. (b) 133. (b) 134. (c) 135. (d) 136. (a)

 137. (b) 138. (c) 139. (a) 140. (a) 141. (a) 142. (a) 143. (b) 144. (b)

 145. (a) 146. (c) 147. (b) 148. (c) 149. (c) 150. (c) 151. (a) 152. (d)

 153. (c) 154. (b) 155. (c) 156. (a) 157. (a) 158. (c) 159. (b) 160. (c)

 161. (d) 162. (b) 163. (c) 164. (c) 165. (c) 166. (c) 167. (b) 168. (a)

 169. (c) 170. (b) 171. (a) 172. (b) 173. (b) 174. (d) 175. (c) 176. (c)

 177. (b) 178. (d) 179. (d) 180. (b) 181. (c)  182. (b) 183. (c) 184. (a)

 185. (b) 186. (b) 187. (a) 188. (c) 189. (d) 190. (b) 191. (a) 192. (d)

 193. (b) 194. (a) 195. (c) 196. (a) 197. (d) 198. (c) 199. (c) 200. (b)

 201. (c) 202. (d) 203. (c) 204. (c) 205. (d) 206. (b) 207. (b) 208. (c)

 209. (a) 210. (a) 211. (b) 212. (b) 213. (b) 214. (b) 215. (d) 216. (c)

 217. (b) 218. (b) 219. (a) 220. (b) 221. (c) 222. (c) 223. (c) 224. (c)

 225. (b) 226. (b) 227. (c) 228. (c) 229. (a) 230. (c) 231. (b) 232. (b)

 233. (c) 234. (c) 235. (a) 236. (d) 237. (d) 238. (b) 239. (d) 240. (b)

 241. (c) 242. (b) 243. (b) 244. (b) 245. (c) 246. (b) 



IMPORTANT MATHEMATICAL RELATIONS 

  ALGEBRA

A quadratic equation having highest power of variable 2 is represented by
   ax2 + bx + c = 0
 Its two roots are expressed as
   x = 

− ± −b b ac
a

2 4
2

 The mathematical expression for binomial theorem is given as

 (a) (1 + x)n = 1 1
2

1 2
3

2 3+ +
−

+
− −

+nx n n x n n n x( ) ( ) ( ) ...

  where |x| < 1 and n can be any number; positive, negative or a fraction. In case, n is a 
positive integer, the expansion will have (n + 1) terms and in other cases, the number of 

 (b) (1 + x)n = 1 + nx, when |x| is very small.

 TRIGONOMETRY

 Quadrant System (Fig. A.1)

Fig. A.1 Four quadrants with their angle ranges.

Appendix  A
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Ist quadrant has the angle range of 0° – 90° and all the trigonometrical ratios namely sin ,  
cos  and tan , and their respective reciprocals cosec , sec  and cot  are positive in this quadrant.

IInd quadrant has the angle range of 90° – 180°. sin and its reciprocal cosec  are positive and 
rest are negative in this quadrant.

IIIrd quadrant has the angle range of 180° – 270°. tan  and its reciprocal cot  are positive and 
rest are negative in this quadrant.

IVth quadrant has the angle range of 270° – 360°. cos  and its reciprocal sec  are positive and 
rest are negative in this quadrant.

   sin (90° + ) = cos 

   cos (90° + ) = – sin 

   tan (90° + ) = – cot 

   sin (180° + ) = – sin 

   cos (180° + ) = – cos 

   tan (180° + ) = tan 

   sin (270° + ) = – cos 

   cos (270° + ) = sin 

   tan (270° + ) = – cot 

   sin (90° – ) = cos 

   cos (90° – ) = sin 

   tan (90° – ) = cot 

   sin (180° – ) = sin 

   cos (180° – ) = – cos 

   tan (180° – ) = – tan 

   sin (270° – ) = – cos 

   cos (270° – ) = – sin 

   tan (270° – ) = cot 

   sin (– ) = – sin 

   cos (– ) = cos 

   tan (– ) = – tan 
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 T-Ratios of Some Standard Angles

 Angle ( ) 0° 30° 45° 60° 90° 120° 135° 150° 180°

 sin 0 1
2

 
1
2

 3
2

 1 
3
2

 
1
2

 
1
2

 0

 cos  1 3
2

 1
2

 1
2

 0 – 1
2

 – 1
2

 – 3
2

 1

 tan  0 1
3

 1 3   – 3  – 1 – 1
3

 0

Important Trigonometrical Relations

    radian = 180°

   sin  = 
1

cosec 

   cos  = 1
sec 

   tan  = 
1

cot 
   sin2  + cos2  = 1
   1 + tan2  = sec2 
   1 + cot2  = cosec2 

   sin 2  = 2 sin  cos  = 
2

1 2
tan
tan

θ
θ+

   cos 2  = cos2  – sin2  = 2 cos2  – 1 = 1 – 2 sin2  = 1
1

2

2
−
+

tan
tan

θ
θ

   tan 2  = 
2

1 2
tan
tan

θ
θ−

   sin 3  = 3 sin  – 4 sin3 
   cos 3  = 4 cos3  – 3 cos 

   tan 3  = 
3

1 3

3

2
tan tan

tan
θ θ

θ
−

−

Note: The angle  is taken to be positive, if it is measured anticlockwise and is negative if 
measured clockwise.

   sin–1 x = cos–1 1 2x  = tan–1 
x

x1 2

   cos–1 x = sin–1 1 2x  = tan–1 1 2x
x
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   cosec–1 
1
x  = 

cot 1 21 x
x

   sin (A ± B) = sin A cos B ± cos A sin B
   cos (A ± B) = cos A cos B  sin A sin B

   tan (A ± B) = 
tan tan

tan tan
A B

A B1

   cot (A ± B) = 
cot .cot
cot cot

B A
B A

1

   sin A + sin B = 2 sin A B
2

 cos A B
2

   sin A – sin B = 2 cos A B
2

 sin A B
2

   cos A + cos B = 2 cos  A B
2

cos A B
2

   cos A – cos B = 2 sin A B
2

  sin A B
2

   sin 15° = 
3 1

2 2

   cos 15° = 
3 1

2 2

   tan 15° = 2 3

   cot 15° = 2 3

   sin 18° = 
5 1
4

 = cos 72°

   cos 18° = 
10 2 5

4
= sin 72°

   sin 36° = 
10 2 5

4
 = cos 54°

   cos 36° = 
5 1
4

 = sin 54°
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 Important Logarithmic Relations
   log (mn) = log m + log n

   log m
n

⎛
⎝
⎜

⎞
⎠
⎟  = log m – log n

   log mn = n log m

   logb m = 
log
log

a

a

m
b

 CO-ORDINATE GEOMETRY

Conic Section
Conic section or conic is the locus of a point moving in a plane in such a way that the ratio of its 

focus directrix
distances is called eccentricity (e  

The line passing through the focus and perpendicular to the directrix is called the axis
vertex

Standard Equation of the Ellipse (Fig. A.2)

   
x
a

y
b

2

2

2

2 a > b and b2 = a2 (1 – e2)

Fig. A.2  An ellipse.

V1 and V2

a
b
F1 and F2

L1 L1 and L2 L2
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Equation of a Circle
Standard Forms

1.   (x – h)2 + (y – k)2 = r2

where (h, k) is the centre and r is the radius.
2.   x2 + y2 = r2

where origin (0, 0) is the centre and r is the radius of the circle.
General Form

   x2 + y2 + 2gx + 2fy + c = 0

where centre is (–g, – f) and radius is g f c2 2+ − .
Diameter Form

 (x – x1) (x – x2) + (y – y1) (y – y2) = 0
where (x1, y1) and (x2, y2) are the co-ordinates of the ends of the diameter.

Parametric Form

   x = h + r cos 
   y = k + r sin , 0    2
where centre is (h, k) and r is the radius.

Standard Equation of the Parabola (Fig. A.3)
   y2 = 4ax
The parabola is symmetrical about the x-axis.

Fig. A.3 A parabola.

Focus is F (a, 0).
Vertex is origin O (0, 0).
XOX  is the axis of parabola.
LL  is the latus rectum = 4a.
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Standard Equation of the Hyperbola

      
x
a

y
b

2

2

2

2  = 1

 CALCULUS

Important Differential Relations

 If     y = f (x),

  then   dy
dx

 = lim
( )

Δ

Δ
Δx

f x x f x
x→

+( )−
0

 = lim
Δ

Δ
Δx

y
x→0

  d c
dx
( ) = 0, where c = Constant

 If y = uv and u = f (x), v = f (x),
  then   dy

dx
 = u dv

dx
v du

dx

 If y =  
u
v

and u = f (x), v = f (x),

  then   
dy
dx  = 

v du
dx

u dv
dx

v2

 If y = u ± v ± w and u, v and w are functions of x,

  then   
dy
dx

 = 
du
dx

dv
dx

dw
dx

 If y = xn, where n is a real number

  then  
dy
dx

= nxn–1

 If y = un, and u = f (x)

  then   dy
dx

 = nu du
dx

n 1

  
d x

dx
(sin )

= cos x,  
d x

dx
(cos )

= – sin x

 
d x

dx
(tan )

 = sec2 x,  
d x

dx
(cot )

= – cosec2 x

  
d x

dx
(sec )

 = sec x tan x,  d x
dx

( )cosec = – cosec x cot x

  d e
dx

x( ) = ex
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d x

dx
e(log )

= 
1
x

  
d a

dx

x( )
= ax loge a

  
d x

dx
a(log )

= 
1
x

ealog

Important Integral Relations

  x dx x
n

cn
n

∫ =
+

+
+1

1
, n  – 1

  e dx e cx x∫ = +

  a dx a
a

cx
x

e
∫ = +

log
  sin x dx∫ = – cos x + c

  cos x dx∫ = sin x + c

  sec2 x dx∫ = tan x + c

  cosec2x dx∫ = – cot x + c

  sec x x dxtan∫  = sec x + c

  cosec x x dxcot∫ = – cosec x + c

  
1

1+∫ sin x
dx  = tan x – sec x + c

  1
1−∫ sin x

dx  = tan x + sec x + c

  1
1+∫ cos x

dx  = – cot x + cosec x + c

  1
1−∫ cos x

dx  = – (cot x + cosec x) + c

Note: In all the above integrals, c is the constant of integration.



Appendix B

IMPORTANT SI UNITS 

 Quantity Unit

 Acceleration m/s2

 Angle rad

 Angular acceleration rad/s2

 Angular velocity rad/s

 Area m2

 Density kg/m3

 Energy or Work J (joule = N.m)

 Force N

 Frequency Hz

 Impulse N.s

 Length m

 Mass kg

 Moment N.m

 Power W (watt = J/s)

 Pressure or Stress Pa (pascal = N/m2)

 Time s

 Velocity m/s

 Volume m3

© The Author(s) 2021
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IMPORTANT CONVERSIONS 

 1 kgf = 9.81 N

 1 lbf = 4.448 N

 1 cm = 10 mm

 1 m = 100 cm = 1000 mm

 1 kg = 1000 g

 1 lb = 0.453 kg

 1 hp = 740 W

 1 Psi (lb/inch2) = 6.895 kPa

 1 GPa = 109 Pa

 1 MPa = 106 Pa

 1 kPa = 103 Pa

 1 cm2 = 10–4 m2

 1 mm2 = 10–6 m2

 1 km = 1000 m

 1 gal = 3.785 litre
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A

Area moment of inertia 109

B

Beam 144
Beams of uniform strength 213
Bending equation 210
Bending moments in a beam 147
Bend test 862
Biaxial bending 657
Brinell test 858
Buckling load 460
Buckling of columns 459
Bulk modulus of elasticity 9

C

Cantilever beam 144, 145, 148, 149, 151, 152, 
153, 154, 156, 254, 256, 257, 258, 260, 284, 285
Castigliano’s theorem 422
Centre of gravity 89, 90
Centroid 89, 90
Charpy test 863
Close coiled helical spring 366, 380, 382
Columns 459, 460

Combination of springs 397
Combined bending and axial loads 622
Combined bending and torsion 627
Combined bending, torsion and direct thrust 641
Combined loadings 621
Combined torsion and axial loads 638
Composite beam 211
Compound cylinders 534
Compression test 861
Conjugate beam method 294
Conjugate beam theorem I 295
Conjugate beam theorem II 295
Continuous beam 144, 145
Creep 860
Crippling load 460
Crippling stress 469
Cylindrical shell 515

D

Double eccentricity 653
Double integration method 254
Ductility 6
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E

Eccentric loading 648, 653
Elastic constants 9, 10, 11, 12, 13
Euler’s formula 461, 463, 465, 467
Euler’s theory 460

F

Factor of safety 14
Fatigue 859
Fixed beam 144, 145, 743, 745, 748, 754, 758, 
766
Flat spring 367
Flitched beam 211
Forces in the truss 567

H

Hardness test 858
Helical spring 366, 367, 380, 382, 384, 386

I

Impact test 863
Izod test 864

J

Johnston’s parabolic formula 477

L

Lame’s theory 517
Leaf spring 366, 367, 368, 374
Limitations of Euler’s formula 470
Loading on a chimney 661
Loading on a dam 665
Loading on retaining walls 671
Longitudinal stress in pressure vessels 523

M

Macaulay’s method 272
Mass moment of inertia 109
Maximum distortion energy theory 438
Maximum normal strain theory 435
Maximum normal stress theory 434
Maximum shear stress theory 436
Maximum total strain energy theory 436
Mechanical testing of materials 857
Methods of joints 568
Method of sections 568, 600
Method of superposition 310
Mohr’s circle for second moment of area 112
Mohr’s circle of plane stress 73

Mohr’s second theorem 283
Moment-area method 281

N

Non-rigid truss 566

O

Open coiled helical spring 366, 384, 386
Other cases of combined loadings 648
Overhanging beam 144, 145, 187, 189

P

Parallel-axes theorem 113
Plane trusses 565
Poisson’s ratio 6
Polar modulus 323
Power transmitted by a shaft 324
Pressure vessels 495
Principal axes 111
Principal moments of inertia 111
Principal plane 54, 55
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Principal stresses 53, 54
Product of inertia 111
Propped cantilever beam 144, 145
Pure bending in beams 208

R

Radius of gyration 110, 111
Rankine-Gordon formula 476
Rigid truss 566
Rockwell test 858
Rotating cylinders 799, 834, 839
Rotating disc of uniform strength 827
Rotating rings 799, 800
Rotating thin disc 799, 803, 809, 811, 815

S

Secant formula 479
Second moment of area 109
Section modulus 211
Shear centre 693, 717, 719
Shear forces in a beam 146
Shear stress and shear strain 7
Shear stresses in beams 227, 229, 231, 233, 235
Shrinkage allowance 540
Simple beam 144, 145, 161, 163, 165, 166, 169, 
172, 262, 263, 286, 287, 295, 297
Simple bending theory 208
Sinking of a support 769
Slenderness ratio 460, 469
Spherical shell 510, 512, 553
Spiral spring 367, 377
Springs 365
Spring terminology 366
Stiffness test 861

Straight-line formula 478
Strain energy 409, 410, 412, 413, 414, 415, 417, 
418, 419, 420
Stress concentration 351

Stress-strain curves in tension 3, 4, 5

T

Tension test 2, 860
Thermal stress and strain 35, 36
Torsion 319, 354, 355
Torsion equation 320
Torsional rigidity 323
Torsion test 861
True stress-strain curves 4, 5
Truss 565
Types of beams 145
Types of loading 145
Types of trusses 566, 567

U

Unsymmetrical bending 693, 694, 713

V

Vickers test 859
Volumetric strain 8, 498

W

Wire wound thin cylinders 500

Z

Zero-force members 612
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