
9System Identification

System identification is concerned with the estimation of a system on the basis of observed
data. This involves specification of the model structure, estimation of the unknown model
parameters, and validation of the resulting model. Least squares and maximum likelihood
methods are discussed, for stationary processes (without inputs) and for input-output
systems.

9.1 Identification

In the foregoing chapters we always assumed that the system is known to us, and we
considered the representation, regulation, and prediction of linear systems with given
parameters. In most practical applications the system is not known and has to be estimated
from the available information. This is called the identification problem. The identification
method will depend on the intended model use, as this determines what aspects of the
system are of relevance. The three main choices in system identification are the following.

(i) Data In some situations it is possible to generate a large amount of reliable data by
carefully designed experiments. In other situations the possibilities to obtain data are
much more limited and it is not possible to control for external factors that influence
the outcomes. That is, the magnitude of outside disturbances (’noise’) may differ
widely from one application to another.

(ii) Model Class A model describes relations between the observed variables. For
practical purposes the less important aspects are neglected to obtain sufficiently
simple models. The identified model should be validated to test whether the imposed
simplifications are acceptable.
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(iii) Criterion The criterion reflects the objectives of the modeller. It expresses the
usefulness of models in representing the observed data.

In practice, system identification often involves several runs of the empirical cycle which
consists of the specification of the problem, the estimation of a model by optimization
of the criterion, the validation of the resulting model, and possible adjustments that may
follow from this validation.

In the following we restrict our attention to linear systems, quadratic criteria and data
that consists of observed time series of the system variables. The advantage of this linear
quadratic framework is that it leads to relatively simple identification algorithms. Further,
the ideas and concepts for these methods form the basis for more advanced approaches.

Models are simplifications of reality and therefore they involve errors. It is often
assumed that the data can be decomposed into two parts, a systematic part (related to
the underlying system) and a disturbance part that reflects unmodelled aspects of the
system. By assuming that the disturbances are random variables, the statistical properties
of identification methods can be evaluated. In particular, one considers the properties of
unbiasedness, efficiency, and consistency. Let θ denote the unknown system parameters,
and let θ̂ be an estimator of θ based on the observed data. Because the data are influenced
by the random disturbances, the estimator θ̂ is also a random variable. It is called an
unbiased estimator if E(θ̂) = θ , and it is called an efficient estimator in a class of
estimators if it minimizes the variance var(θ̂ ) = E(θ̂ − E(θ̂))(θ̂ − E(θ̂))T , that is, if
for every other estimator θ̃ in this class var(θ̃ ) − var(θ̂ ) is a positive semidefinite matrix.
To define consistency, let θ̂N denote the estimator based on data that are observed on a
time interval of length N . The estimator is called (weakly) consistent if, for every δ > 0,
there holds

lim
N→∞ P(‖θ̂N − θ‖ ≥ δ) = 0 (9.1)

where ‖ · ‖ denotes the Euclidean norm. This is also written as plim(θ̂N ) = θ . Hereby it
is assumed that the system under investigation belongs to the model class, but this can be
generalized to the situation where θ is the optimal (but not perfectly correct) model within
the model class.

9.2 Regression Models

In this section we consider single input, single output systems with a finite impulse
response (FIR), that is,

y(t) = β1u(t − 1) + · · · + βku(t − k) + ε(t) (9.2)
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We assume that y is observed for t = 1, . . . , N , and u for t = 1 − k, . . . , N − 1 with
N ≥ k. Let x(t) := (

u(t − 1), . . . , u(t − k)
)T and let y = (

y(1), · · · , y(N)
)T , X =

(
x(1), . . . , x

)T , ε = (
ε(1), . . . , ε(N)

)T and β = (β1, . . . , βk)
T . Then (9.2) can be written

as the regression model

y = Xβ + ε. (9.3)

In the sequel, whenever necessary, we shall write XN instead of X to emphasize the
dependence of X on N .

From the data, y and X, we have to estimate the parameters β. The least squares
estimator β̂ minimizes the sum of squared errors

N∑

t=1

ε2(t) = ‖ε‖2 = ‖y − Xβ‖2.

This is obtained by projecting y onto the column space of X, so that
XT (y − Xβ̂) = 0. Assuming that rank(X) = k, the solution is given by

β̂ = (XT X)−1XT y (9.4)

In order to investigate under which conditions this is a good estimator, we make the
following assumptions.

Assumptions
The data satisfy the relation y = Xβ + ε, where

A1 all entries of the matrix X are non-random, and rank(X) = k;
A2 all entries of the (unobserved) disturbance vector ε are outcomes of random variables

with E(ε) = 0, E(ε2(t)) = σ 2 (equal variance), and E(ε(t)ε(s)) = 0 for all t �= s (no
serial correlation).

Definition 9.2.1 We call an estimator linear if it is of the form β̃ = Ay, with A a non-
random matrix, and it is called a best linear unbiased estimator (BLUE) if it is unbiased
with minimal variance in the class of all linear unbiased estimators.

The following result is called the Gauss-Markov theorem.

Theorem 9.2.2 Under assumptions A1 and A2, the least squares estimator (9.4) is BLUE
with var(β̂) = σ 2(XT X)−1. A sufficient condition for consistency is that

lim
N→∞ λmin(XT

NXN) = ∞,
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where XN is the regressor matrix in (9.3) for the first N observations and λmin denotes
the smallest eigenvalue.

Proof It follows from (9.3) and (9.4) that β̂ = β + (XT X)−1XT ε. As X is non-random,
E(ε) = 0 and var(ε) = σ 2I , it follows that E(β̂) = β and

var(β̂) = (XT X)−1XT var(ε)X(XT X)−1 = σ 2(XT X)−1.

Let β̃ = Ay be another unbiased estimator and define � = A − (XT X)−1XT .
Unbiasedness requires that E(β̃) = AXβ = β for every β, so that AX = I and �X = 0.
Then β̃ − Eβ̃ = A(Xβ + ε) − β = Aε and

var(β̃) = E(β̃ − Eβ̃)(β̃ − Eβ̃)T = E(AεεT AT ) = σ 2AAT

= σ 2(��T + (XT X)−1) = σ 2��T + var(β̂).

As ��T is positive semidefinite this shows that β̂ is BLUE.
From now on we emphasize that X = XN and denote β̂ by β̂N .
To prove consistency we use the Markov inequality, that is, for every random variable

z and every c > 0 there holds E(z2) ≥ c2P(| z |≥ c) so that P(| z |≥ c) ≤ c−2E(z2). It
then follows that for every δ > 0

P(‖β̂N − β‖ ≥ δ) ≤ P(| β̂n,i − βi |≥ k− 1
2 δ for some i = 1, · · · , k) ≤

≤ kδ−2E(β̂N,i − βi)
2 = kδ−2var(β̂N,i ) ≤ kδ−2σ 2λmax{(XT

NXN)−1} =
= kδ−2σ 2{λmin(X

T
NXN)}−1

and this converges to zero for N → ∞, by assumption. �	

Returning to the FIR system (9.2), assumptions A1 and A2 mean that the input is not
random but the output is random. This may be relevant in experimental situations where the
input is controlled. However, often the input will be affected by uncertain factors that fall
outside the scope of the model. The above results remain asymptotically valid for random
inputs, provided some conditions are satisfied. We restrict the attention to consistency, and
replace assumption A1 by the following.

A1* The matrix X is random and such that plim( 1
N

XT
NXN) = Q exists with Q

invertible (sufficiency of excitation).

For the FIR system (9.2) there holds 1
N

XT
NXN = 1

N

∑N
t=1 x(t)T x(t), where

x(t) = (
u(t − 1), . . . , u(t − k)

)
, so that Q corresponds to the covariance matrix of the

input and its lags. The excitation condition basically means that the input satisfies no
polynomial equations and that it does not die out when N → ∞.
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Theorem 9.2.3 Under assumptions A1* and A2, the least squares estimator is consistent
if and only if plim( 1

N

∑N
t=1 x(t)T ε(t)) = 0 (orthogonality condition).

Proof The least squares estimator is β̂N = β + ( 1
N

XT
NXN)−1( 1

N
XT

Nε) where 1
N

XT
Nε =

1
N

∑N
t=1 x(t)T ε(t). The definition of convergence in probability gives that if plim(an) = a

and f is a continuous function, then plim(f (an)) = f (a). Therefore plim(β̂N ) = β +
Q−1plim( 1

N
XT

Nε), which proves the result. �	

The orthogonality condition essentially requires that the regressor variables x(t) show
no contemporaneous correlation with the error term ε(t). For the FIR system this means
that the output error in (9.2) is uncorrelated with the past inputs.

Many time series that are observed in practice show trends and seasonal variation. The
modelling of trends and seasonals is discussed in the next chapter. In the current chapter
we will either assume that the data are stationary, which can sometimes be achieved by
appropriate data transformations, or that the model explicitly includes variables for the
nonstationary part.

9.3 Maximum Likelihood

Stochastic models assign (relative) probabilities to the observations of the system vari-
ables. Suppose that the model class consists of a set of probability densities {pθ , θ ∈ 	},
where θ ∈ 	 is the vector of unknown parameters. If the data consists of q time series that
are observed on a time interval of lengthN , then pθ is a probability density on (Rq)N . The
maximum likelihood method chooses the model that assigns the highest probability to the
observed data. If we denote the data by w ∈ (Rq)N , then this means that the likelihood
function L(θ) := pθ (w) is maximized over the parameter set 	.

Maximum likelihood estimation (ML) requires that the probability distribution is
specified as an explicit function of the parameters θ . As an example, we consider the
regression model (9.3) y = Xβ + ε. In this case, the parameters θ are given by (βT , σ 2)T .
We extend assumption A2 as follows.

A2* The disturbance vector ε has the multivariate normal distribution with mean
E(ε) = 0 and covariance matrix E(εεT ) = σ 2I .

Theorem 9.3.1 Under assumptions A1 and A2*, the maximum likelihood estimators in the
regression model (9.3) are given by β̂ = (XT X)−1XT y and σ̂ 2 = 1

N
(y −Xβ̂)T (y −Xβ̂).

Proof Let θ = (βT , σ 2)T denote the vector of the model parameters. As ε = y − Xβ

has the normal distribution, the likelihood function is given by

L(β, σ 2) = pθ (y,X) = (2πσ 2)−
N
2 exp{−(2σ 2)−1(y − Xβ)T (y − Xβ)} (9.5)
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As the logarithm is a monotonic function, maximization of L(β, σ 2) is equivalent to
maximization of

2

N
logL(β, σ 2) = − log(2π) − log(σ 2) − 1

2σ 2

1

N
(y − Xβ)T (y − Xβ).

It follows that the maximum is obtained for β̂ = (XT X)−1XT y and that σ̂ 2 = 1
N

(y −
Xβ̂)T (y − Xβ̂). �	

Theorem 9.3.2 Under assumptions A1 and A2*, the least squares estimator β̂ in (9.4) is
minimum variance unbiased, that is, it is unbiased and if β̃ is another unbiased estimator
then var(β̃) − var(β̂) is positive semidefinite.

Proof Again, let θ = (βT , σ 2)T denote the model parameters. The Cramer-Rao theorem

states that every unbiased estimator θ̂ has a covariance matrix var(θ̂) ≥ [−E(
∂2 logL

∂θ∂θT )]−1,
see [40]. It follows by direct calculation from (9.5) that in this case the lower bound is a
block-diagonal matrix with blocks σ−2(XT X) and (2σ 4)−1N . This implies that for every
unbiased estimator there holds var(β̃) ≥ σ 2(XT X)−1 = var(β̂), see Theorem 9.2.2. �	

Under very general conditions, maximum likelihood estimators have optimal asymptotic
properties, provided that the model is correctly specified. That is, if the data are generated
by a probability distribution pθ0 , with θ0 ∈ 	, and θ̂N is the ML estimate based on N

observations, then under very general conditions there holds that

(i) θ̂N is consistent, that is, plim(θ̂N ) = θ0;
(ii) θ̂N is asymptotically efficient in the class of all consistent estimators, that is,

limN→∞ N(var(θ̃N)−var(θ̂N )) is positive semidefinite for every consistent estimator
θ̃ ;

(iii) θ̂N has an asymptotic normal distribution, in the sense that
√

N(θ̂N − θ0) converges

to a normal distribution with mean zero and covariance matrix [−E(
∂2 logL

∂θ∂θT )]−1.

We refer to , e.g., [25] for a proof of this result. From a computational point of view,
ML estimation requires the maximization of the likelihood function or equivalently, of its
logarithm, both of which are functions of several real variables. The first order conditions
will in general consist of a set of nonlinear equations in θ that can be solved by numerical
methods. Such methods differ in the choice of initial estimates, search strategies, and
convergence criteria. The Newton-Raphson method consists of an iterative linearization
of the stationarity condition for a maximum. Consider this for the maximization of
the logarithm of the likelihood functions. If θ̂i is the current estimate, Gi = ∂logL(θ)

∂θ

the gradient and Hi = ∂2 logL

∂θ∂θT the Hessian in θ̂i , then locally around θ̂i there holds
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∂ logL(θ)
∂θ

≈ Gi + Hi(θ − θ̂i ) by Taylor’s formula. This motivates the iterations

θ̂i+1 = θ̂i − H−1
i Gi (9.6)

A possible disadvantage is that this requires the computation and inversion of the Hessian
matrix. For nonlinear regression models of the form

y(t) = f (x(t), θ) + ε(t) (9.7)

one could use the Gauss-Newton method for the minimization of
∑N

t=1 ε2(t) as an
alternative. This corresponds to maximum likelihood if the disturbances satisfy assumption
A2*. Here x(t) is the vector of regressors at time t , and f is a nonlinear function of the
model parameters θ . If θ̂i is the current estimate, then the model (9.7) is linearized by
f (x, θ) ≈ f (x, θ̂i)+xT

i (θ − θ̂i), where xi = ∂
∂θ

f (x, θ) is the gradient evaluated at (x, θ̂i).

The linearized model gives ε(t) = y(t)−f (x(t), θ) ≈ y(t)−f (x(t), θ̂i)−xT
i (t)(θ−θ̂i ) =

εi(t) − xT
i (t)(θ − θ̂i ), where εi(t) denotes the residuals of (9.7) for the estimate θ̂i and

xi(t) is the gradient of f at (x(t), θ̂i ). The corresponding approximation of the criterion
function gives

∑N
t=1 ε2(t) ≈ ∑N

t=1{εi(t)−xT
i (t)(θ − θ̂i)}2. This is a least squares problem

with estimate θ̂i+1 = (XT
i Xi)

−1XT
i (εi + Xiθ̂i), that is

θ̂i+1 = θ̂i + (XT
i Xi)

−1XT
i εi (9.8)

Here Xi is the matrix with N rows consisting of the gradients xi(t), t = 1, · · · , N , and εi

is the N × 1 vector with the residuals for θ̂i .

9.4 Estimation of AutoregressiveModels

In this section, we suppose that the data consists of observations of a single output variable
y(t), observed for t = 1, · · · , N , and generated by an autoregressive model

y(t) = α1y(t − 1) + · · · + αpy(t − p) + ε(t). (9.9)

Here ε is a white noise process with mean zero, variance σ 2, and finite fourth order
moments, so that assumption A2 is satisfied. We assume that this model is causal, that
is, that the polynomial 1 − ∑p

i=1 αiz
−i has all its roots inside the unit disc. Moreover, we

assume that p is known and correctly specified. In Sect. 9.6.1 we shall discuss methods to
estimate the lag order p from the data.

Theorem 9.4.1 The least squares estimator of (α1, · · · , αp) in a causal autoregressive
model (9.9) is consistent.
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Outline of Proof According to Theorem 9.2.3, it suffices to prove that assumption A1* is
satisfied and that plim( 1

N

∑N
t=1 ε(t)y(t − i)) = 0 for i = 1, · · · , p. As was discussed in

Sect. 6.3, stationarity implies that y(t) can be written as a function of the past disturbances
{ε(s), s ≤ t}. Therefore E(ε(t)y(t − i)) = 0 for all t and i = 1, · · · , p, so that ε(t)

is uncorrelated with all the regressors in (9.9). This means that 1
N

∑N
t=1 ε(t)y(t − i) is

the sample mean of N mutually uncorrelated terms with mean 0 and constant variance
E(ε(t)y(t − i))2 < ∞, because ε has finite fourth order moments. The weak law of large
numbers implies that

plim(
1

N

N∑

t=1

ε(t)y(t − i)) = 0.

As concerns assumption A1*, 1
N

XT
NXN is a p × p matrix with (i, j)-th element

1
N

∑N
t=1 y(t − i)y(t − j). Under the above conditions the process y can be shown to be

ergodic. The proof requires a generalized law of large numbers for the sample mean of N

correlated terms (but with exponentially decaying correlation between y(t − i)y(t −j) and
y(t − i + k)y(t − j + k) for k → ∞). Ergodicity implies that the matrix Q in assumption
A1* exists, and that Qij = E(y(t − i)y(t −j)). Further Q is invertible, because otherwise
there would exist a ∈ R

p such that aT Qa = var(
∑p

i=1 aiy(t − i)) = 0 which contradicts
that the autoregressive process (9.9) has no perfectly predictable component. �

In the model (9.9) the observations have mean Ey(t) = 0. In practice, one may add
regressors to take care of, for example, non-zero mean and trends, so that

y(t) = μ1 + μ2T (t) + α1y(t − 1) + · · · + αpy(t − p) + ε(t). (9.10)

Least squares is also consistent for this model under the conditions of Theorem 9.4.1.

Theorem 9.4.2 If in the autoregressive model (9.9) the noise ε satisfies assumption A2*
(normality), then the least squares estimator is consistent, asymptotically efficient, and
asymptotically normally distributed.

Proof It is sufficient to prove that under these conditions least squares is asymptotically
equivalent to maximum likelihood. The likelihood function of (9.9) can be written, by
conditioning, as

L(α1, · · · , αp) = p(y(1), · · · , y(N))

= p(y(1), · · · , y(p))
N
t=p+1p(y(t) | y(1), · · · , y(t − 1))

= p(y(1), · · · , y(p))
N
t=p+1p(y(t) | y(t − p), · · · , y(t − 1))

= p(y(1), · · · , y(p))
N
t=p+1p(ε(t)).
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As p(ε(t)) = (2πσ 2)− 1
2 exp{−(2σ 2)−1ε(t)2} this gives

1

N
logL = 1

N
log(p(y(1), · · · , y(p))) + 1

N

N∑

t=p+1

logp(ε(t))

= 1

N
log(p(y(1), · · · , y(p))) − 1

2
log(2πσ 2) − (2σ 2)−1

N

N∑

t=p+1

ε(t)2.

Apart from the first term, that vanishes for N → ∞, this shows that the ML estimates of
α1, · · · , αp are obtained by minimizing

∑N
t=p+1 ε(t)2. �	

There is a close connection between least squares and the so-called Yule-Walker
equations. As E(ε(t)y(t − i)) = 0 for i = 1, · · · , p, it follows from (9.9) that the
autocovariancesR(k) = E(y(t)y(t − k)) of the process y satisfy

⎛

⎜
⎜
⎜⎜
⎝

R(1)

R(2)
...

R(p)

⎞

⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎝

R(0) R(1) · · · R(p − 1)

R(1) R(0) · · · R(p − 2)
...

...
...

R(p − 1) R(p − 2) · · · R(0)

⎞

⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜⎜
⎝

α1

α2
...

αp

⎞

⎟
⎟
⎟⎟
⎠

. (9.11)

If we replace R(k) by R̂(k) = 1
N

∑N
t=k+1 y(t)y(t − k) then (9.11) can be solved for

the parameters αi, i = 1, · · · , p. For numerical reasons, the autocovariances are often
scaled by using the correlations ρ̂(k) = R̂(k)/R̂(0) in (9.11) instead of R̂(k). That is, one
considers estimates α̂j obtained by solving the following set of linear equations:

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

ρ̂(1)

ρ̂(2)
...
...

ρ̂(p)

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ρ̂(1) · · · · · · ρ̂(p − 1)

ρ̂(1) 1
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . ρ̂(1)

ρ̂(p − 1) · · · · · · ρ̂(1) 1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

α̂1

α̂2
...
...

α̂p

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

. (9.12)

The structure of the matrix in the right hand side of this equation is a very special one: it is
symmetric positive definite, but also it is a Toeplitz matrix: along diagonals the same entry
occurs. Fast methods to solve sets of equations of this kind for α̂1, . . . , α̂p are important,
in particular in cases where p is large. One such fast algorithm is known as the Levinson
algorithm; it requires considerably fewer numerical operations than the O(p3) operations
needed for Gaussian elimination. See, e.g., [20].
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To discuss the estimation of σ 2 resulting from the estimates for the αj we use the fact
that

ε(t) ≈ ε̂(t) = y(t) − α̂1y(t − 1) − · · · − α̂py(t − p).

Note that σ 2 = E(ε(t)2) = E(ε(t)y(t)). Replacing in the latter formula ε(t) by ε̂(t) we
arrive at the following estimate σ̂ 2 for σ 2:

σ̂ 2 = E(ε̂(t)y(t)) = R̂(0) − α̂1R̂(1) − · · · − α̂pR̂(p).

One can check that the estimates resulting from solving (9.12) are approximately equal
to the least squares estimates (where the summations run from t = p + 1 to N instead of
from t = k + 1 to N).

Next we consider autoregressive models with inputs, that is,

y(t) =
p∑

i=1

αiy(t − i) +
q∑

i=0

βiu(t − i) + ε(t) (9.13)

Such a model is also called an ARX model, that is, an autoregressive model with
exogenous variables. We assume that

∑p

i=1 αiy(t − i) + ∑q

i=0 βiu(t − i) is the optimal
linear predictor of y(t), in the sense that it minimizes the mean squared prediction error
E(y(t)− ŷ(t))2 over the class of all linear predictors of the type ŷ(t) = ∑

i≥0(aiy(t − i −
1)+biu(t−i)). Optimality implies thatE((y(t)−ŷ(t))ŷ(t)) = 0, so thatE(ε(t)y(t−i)) =
0 for all i ≥ 1 and E(ε(t)u(t − i)) = 0 for all i ≥ 0. Further we assume that the
uncontrolled system with input u(t) = 0 is causal, that is, that 1 − ∑p

i=1 αiz
−i has

all its roots inside the unit disc. We use the notation θ = (α1, · · · , αp, β0, · · · , βq)T ,
x(t) = (y(t − 1), · · · , y(t − p), u(t), u(t − 1), · · · , u(t − q))T , and

QN =
(

QN(yy) QN(yu)

QN(uy) QN(uu)

)

= 1

N

N∑

t=m

x(t)x(t)T

where m = max{p, q}. So [QN(yy)]ij = 1
N

∑N
t=m y(t − i)y(t − j) = R̂y(i − j),i, j =

1, · · · , p, are the sample autocovariances of the output, and similarly for the other entries
of the matrix QN .

Theorem 9.4.3 Under the above conditions, the least squares estimators of the param-
eters in the ARX system (9.13) are consistent if the inputs are sufficiently excited in the
sense that plimQN(uu) = Q(uu) exists and is invertible.

Details of the proof fall outside the scope of this book, we refer to [21]. The idea
is similar to the proof of Theorem 9.4.1. That is, the least squares estimator is given by
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θ̂N = θ +Q−1
N δN where δN = 1

N

∑N
t=m+1 ε(t)x(t). As plimQN(uu) exists and the system

(9.13) is causal, it follows that also plimQN(yy) = Q(yy) and plimQN(yu) = Q(yu)

exist. Further,Q = plimQN is invertible, because otherwise there would exist a ∈ R
p and

b ∈ R
q+1 such that (aT , bT )Q(aT , bT )T = var(

∑p
i=1 aiy(t − i)+∑q

i=0 biu(t − i)) = 0.
Because Q(uu) is invertible, ai �= 0 for at least one i = 1, · · · , p, and this contradicts
the fact that y(t) is not perfectly predictable from the observations {y(s − 1), u(s), s ≤ t}.
Therefore, plim(θ̂N) = θ+Q−1plim(δN), and plim(δN) = 0. This orthogonality condition
again follows from a weak law of large numbers.

Note that this result does not require that the input is deterministic. It may, for instance,
be generated by feedback, where u(t) depends on the past outputs {y(s), s ≤ t − 1}.
However, the input u(t) may not depend on the current output y(t), as in this case the
orthogonality condition E(ε(t)u(t)) = 0 would be violated. The input condition stated in
Theorem 9.4.3 can be weakened, but some persistency of excitation is needed.

In the foregoing we restricted our attention to systems (9.9) with one output and (9.13)
with one input and one output. Similar results hold true for multivariate systems, with
multiple inputs and outputs.

9.5 Estimation of ARMAXModels

In the foregoing section it was assumed that the disturbances ε(t) in (9.9) and (9.13)
are white noise. If the disturbances are correlated over time then this indicates that the
dynamic specification of the model is not correct. This can be repaired by increasing the
lag orders of the model, but this may lead to a large number of parameters. It may then be
preferable to estimate more parsimonious models. For example, for single-input, single-
output systems one can use ARMAX models defined by

y(t) =
p∑

i=1

αiy(t − i) +
q∑

i=0

βiu(t − i) + ε(t) +
r∑

i=1

γiε(t − i) (9.14)

If the inputs are u(t) = 0, then this is an ARMA model. We assume that this model
is coprime, causal and invertible, i.e., the equations 1 − ∑p

i=1 αiz
−i = 0 and 1 +∑r

i=1 γiz
−i = 0 have all their solutions in | z |< 1 and the equations have no common

solutions. The white noise process ε(t) then has the interpretation of the one-step ahead
prediction errors, see Sect. 6.3.

Theorem 9.5.1 For an ARMAX system (9.14) with p �= 0 and r �= 0, the least squares
estimate in the regression model (9.13) is in general not consistent.

Proof The disturbances in the model (9.13) are given by ε(t) + ∑r
i=1 γiε(t − i). If

p �= 0 �= r , then these are in general correlated with the output regressors in (9.13).
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Therefore the orthogonality condition is violated, and it follows from Theorem 9.2.3 that
least squares is not consistent.

As a simple example, consider the ARMA(1,1)model y(t) = αy(t−1)+ε(t)+γ ε(t−1)
with α �= 0 �= γ and |α| < 1, |γ | < 1. The least squares estimate of α is given by
α̂N = (

∑N
t=2 y(t)y(t − 1))/(

∑N
t=2 y2(t − 1)). From this it follows that plim(α̂N ) =

α + γ σ 2/var(y(t)). This is inconsistent if γ �= 0. �	

Consistent estimators may be obtained by using so-called instrumental variables. We
formulate this in terms of the regression model (9.3), with plim( 1

N
XT

NεN) �= 0 where XN

is the N × k regressor matrix and εN the N × 1 disturbance vector for sample size N .
The variables zi(t), i = 1, · · · , l, are called instruments if the following conditions are
satisfied, where ZN denotes the N × l matrix with elements zi(t).

plim(
1

N
ZT

NεN) = 0, plim(
1

N
ZT

NZN) = Qzz, plim(
1

N
ZT

NXN) = Qzx

rank(Qzz) = l, rank(Qzx) = k.

(9.15)

The idea is to replace the regressors XN by the instruments ZN , because they satisfy the
orthogonality condition. In order to approximateXN as well as possible, they are regressed
on ZN . Therefore, the instrumental variables estimator θ̂IV is defined by the following two
steps. First regress XN on ZN , with fitted values X̂N = ZN(ZT

NZN)−1ZT
NXN , and then

regress y on X̂N . Let PN = ZN(ZT
NZN)−1ZT

N be the projection operator on the column
space of ZN,, then

θ̂IV = (X̂T
NX̂N)−1X̂T

Ny = (XT
NPNXN)−1XT

NPNy (9.16)

Theorem 9.5.2 The instrumental variables estimator θ̂IV is consistent if the conditions
(9.15) are satisfied, and var(θ̂IV ) is approximately given by σ 2(XT

NPNXN)−1.

Proof By filling in (9.4) into (9.16) it follows that

θ̂IV = θ + {XT
NZN(ZT

NZN)−1ZT
NXN }−1XT

NZN(ZT
NZN)−1ZT

NεN .

Consistency now follows immediately from the assumptions in (9.15). The expression for
the variance follows from Theorem 9.2.2, replacing X by X̂N . �	

For the ARMAX model (9.14), assuming that the input u(t) only depends on the past
outputs {y(s), s ≤ t}, one can choose instruments from the set {y(s), u(s), s ≤ t − r − 1}
as these are uncorrelated with the composite disturbance term ε(t)+∑r

i=1 γiε(t − i). The
resulting IV estimator is consistent, but it may be far from efficient.

From an asymptotic point of view, it is optimal to use maximum likelihood. Denot-
ing the lag operator by (z−1y)(t) = y(t − 1), the model (9.14) can be written as
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α(z−1)y(t) = β(z−1)u(t) + γ (z−1)ε(t). Because the model is assumed to be invertible,
ε(t) = (γ (z−1))−1(α(z−1)y(t) − β(z−1)u(t)) = F(y(s), u(s), s ≤ t) for a function
F that is linear in the observed data but nonlinear in the unknown parameters θ =
(α1, · · · , αp, β0, · · · , βq , γ1, · · · , γr ). Because α(∞) = γ (∞) = 1, this can also be
written in prediction error form

ε(t, θ) = y(t) − f (θ, y(s − 1), u(s), s ≤ t) (9.17)

If the process ε(t) satisfies assumption A2*, then (conditionally on starting conditions in
(9.14)) the maximum likelihood estimators are obtained by minimizing

∑N
t=m+1 ε2(t, θ)

over θ , where m = max{p, q, r}. Note that (9.17) corresponds to a nonlinear regression
model of the type (9.7), so that the parameters θ can be estimated, for instance, by the
Gauss-Newton iterations (9.8).

An alternative is to use the Kalman filter. For given parameter vector θ , the ARMAX
system (9.14) can be expressed in state space form, see Sect. 6.6. The mean μ(t) and
variance σ 2(t) can then be computed by means of the Kalman filter, see Theorem 7.3.1 and
Proposition 7.3.3. In fact, in terms of the notation of Theorem 7.3.1 and Proposition 7.3.3
we have μ(t) = ŷ(t) and σ 2(t) = CP(t)CT + GGT . Considering the inputs as fixed and
using the notation Ut = {u(t), u(t − 1), · · · , u(1)} and similarly for Yt , the likelihood
function can be written by sequential conditioning as logL(θ) = ∑N

t=1 log(p(y(t) |
θ,Ut , Yt−1). Under assumption A2*, the densities p(y(t) | θ,Ut , Yt−1) are normal, with
mean μ(t) = E(y(t) | θ,Ut , Yt−1) and variance σ 2(t), so that

logL(θ) = −N

2
log(2π) − 1

2

N∑

t=1

(y(t) − μ(t))2/σ 2(t) − 1

2

N∑

t=1

log σ 2(t). (9.18)

This can then serve for a numerical optimization algorithm to obtain the maximum
likelihood estimate.

The foregoing results can be generalized to multivariate systems. As mentioned in
Sect. 6.3, the parameters of multivariate VARMAX systems are in general not uniquely
defined. That is, there exist different parameter vectors that describe exactly the same
(stochastic) input-output system. This so-called non-identifiability implies that the likeli-
hood function is constant for such parameters, so that the gradient may be zero in such
directions. This causes numerical problems, that can be solved by choosing a canonical
form for the parameters. We refer to [52].

Identification methods that are based on the prediction errors as in (9.17) are called
prediction error identification (PEI) methods. For multivariate systems, let V (θ) =
1
N

∑N
t=1 ε(t, θ)εT (t, θ) denote the sample covariancematrix of the prediction errors. Least

squares corresponds to the criterion trace(V (θ)), and it can be shown that maximum
likelihood corresponds to the criterion log(det(V (θ)). So, in the case of a single output
these two methods are equivalent, but for multi-output systems this only holds true if V (θ)
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is diagonal and there are no cross-equation parameter restrictions in the equations (9.17).
The consistency and relative efficiency of PEI methods has been investigated under quite
general conditions, see [47].

9.6 Model Validation

Different model specifications may lead to different estimates of the underlying system. In
order to decide about the model structure, and accordingly about the estimation method to
be used, we can estimate different models and perform diagnostic tests on the underlying
model assumptions. In this section we discuss some of the diagnostic tools that may be
helpful in this respect.

9.6.1 Lag Orders

The estimation of ARMAX models requires that the lag orders (p, q, r) in (9.14) have
been specified. If the orders are chosen too large this means that many parameters have
to be estimated, with a corresponding loss of efficiency. On the other hand, if the orders
are too small then the estimates become inconsistent. That is, the choice of the lag orders
involves a trade-off between efficiency and consistency. We illustrate this by an example.

Example 9.6.1 Consider the causal AR(2) model y(t) = α1y(t − 1) + α2y(t − 2) + ε(t),
where ε satisfies assumption A2. First assume that the order is specified too large, that is,
that α2 = 0. Using the variance expression in Theorem 9.2.2, with the regressors x(t) =
(y(t − 1), y(t − 2))T , it follows that α̂1 in the AR(2) model has variance

var(α̂1) = σ 2[(XT X)−1]1,1

= σ 2 ∑
y2(t − 2)

∑
y2(t − 1)

∑
y2(t − 2) − (

∑
y(t − 1)y(t − 2))2

≈ σ 2

NR(0){1 − (R(1)/R(0))2} = 1

N
,

where R(k) denotes the autocovariances of the process y(t). Because α2 = 0, there holds
R(0) = σ 2(1 − α2

1)
−1 and R(1) = α1R(0). In the correctly specified AR(1) model, the

estimator has variance

var(α̂1) = σ 2
∑

y2(t − 1)
≈ σ 2

NR(0)
= 1 − α2

1

N
.
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This shows that too large models lead to inefficient estimators. On the other hand, if an
AR(1) model is estimated while in fact α2 �= 0, then

plim(α̂1) = plim

(
1
N

∑
y(t)y(t − 1)

1
N

∑
y2(t − 1)

)

= α1 + α2
R(1)

R(0)
. (9.19)

So in this case the estimator is inconsistent if R(1) �= 0.

Several methods have been developed for choosing the lag orders. For example, if the
parameters are estimated by maximum likelihood then the results in Sect. 9.3 show that
the estimators are approximately normally distributed. The significance of the parameters
in model (9.14) can then be evaluated by the usual t- and F -tests.

If only a single output is observed, then the order of AR(p) models and MA(q) models
can be based on the (partial) autocorrelations. The autocorrelations of a stationary process
are defined by AC(k) = R(k)/R(0), with corresponding sample estimates SAC(k) =
R̂(k)/R̂(0). If y is an MA(q) process, then AC(k) = 0 for k > q . If y is an AR(p) process
then in the regression model (9.9) of an AR(k) model there holds αk = 0 for k > p. The
sample partial autocorrelations are defined by SPAC(k) = α̂k , the parameter of y(t − k)

in the estimated AR(k) model for the data (including constant, trends and dummies if
needed). As a rule of thumb, estimated values SAC and SPAC are considered significant
if they are (in absolute value) larger than 2/

√
N , where N is the sample size.

An alternative is to use information criteria, for instance the Akaike or Bayes criterion

AIC = log(σ̂ 2) + 2M

N
, BIC = log(σ̂ 2) + M log(N)

N
(9.20)

Here σ̂ 2 is the estimated variance of the residuals of the model, and M is the number of
AR and MA parameters of the model. For instance, for a univariate ARMA(p, q) process
M = p + q , and for the model AR(p) model (9.10) with constant and trend M = p. The
model with the smallest value of AIC or BIC is preferred. These criteria make an explicit
trade-off between bias, measured by the error variance σ̂ 2, and efficiency, measured by the
number of parameters.

9.6.2 Residual Tests

The estimation methods in Sects. 9.4 and 9.5 are based on the assumptions A2 or A2* for
the error terms. If, for example, the lag orders have been misspecified then this may result
in serial correlation of the error terms. And if the data are not appropriately transformed
then the error terms may show changing variance. If the error terms are not normally
distributed, then least squares is no longer equivalent to maximum likelihood. In all these
cases, the methods discussed in Sects. 9.4 and 9.5 may give misleading results.
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Tests of these assumptions are based on the model residuals ε̂(t) = y(t) − ŷ(t),

where ŷ(t) denotes the fitted values. For instance, for the ARMAX model (9.14) ε̂(t) =
y(t) − ∑p

i=1 α̂iy(t − i) − ∑q

i=0 β̂iu(t − i) − ∑r
i=1 γ̂i ε̂(t − i). It is always informative to

make a time plot of the residuals to get an idea of possible misspecification. The sample
autocorrelations SACε(k) = R̂ε(k)/R̂ε(0) give an indication of possible serial correlation,
where R̂ε(k) are the sample autocovariances of ε̂(t). As before, if there exist many values
of k for which | SACε(k) |> 2/

√
N then this is a sign of serial correlation.

A combined test is the Box-Pierce test Qm = N
∑m

k=1(SACε(k))2. Under the null-
hypothesis that the model is correctly specified, this test follows a χ2

(m−p−r) distribution
for large enough sample sizes. The following Ljung-Box test involves an adjustment for
finite sample effects, and also follows an asymptotic χ2

(m−p−r) distribution.

LBm = N(N + 2)
m∑

k=1

(N − k)−1(SACε(k))2. (9.21)

The null hypothesis of no serial correlation is rejected for large values ofLBm. This means
that the model is not correct, and a possible solution is to enlarge the lag orders.

As concerns heteroscedasticity, it may be that the variance is related to the level of the
series or that the variance shows correlation over time. Tests are based on the series of
squared residuals ε̂(t)2. For example, if an ARX(1, 0) model (9.13) is estimated then one
can consider the regressions

ε̂2(t) = λ0 + λ1y(t − 1) + λ2y
2(t − 1) + λ3u(t) + λ4u

2(t), (9.22)

ε̂2(t) = λ0 + λ1ε̂
2(t − 1) + λ2ε̂

2(t − 2). (9.23)

These equations can of course be generalized. The null hypothesis is that λi = 0 for all
i �= 0. In both cases an F -test can be used, and under the null hypothesis the distribution
is approximately χ2

(m) where m is the number of restrictions (m = 4 in (9.22), and m = 2
in (9.23)). If there is significant heteroscedasticity then the data can be transformed, or one
can adjust the identification criterion. More general, the following result holds true.

Theorem 9.6.1 For the regression model (9.3), assume that A1 is satisfied and that
E(ε) = 0 and var(ε) = V with V nonsingular. Then the BLUE estimator is obtained
by minimizing εT V −1ε, with solution β̂ = (XT V −1X)−1XT V −1y and var(β̂) =
(XT V −1X)−1.

Proof As V is a nonsingular covariancematrix, it is positive definite and has a symmetric

square root V
1
2 such that V

1
2 V

1
2 = V . Let y∗ = V − 1

2 y, X∗ = V − 1
2 X and ε∗ = V − 1

2 ε,
then (9.3) implies that y∗ = X∗β + ε∗ with var(ε∗) = I . According to Theorem 9.2.2,
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the BLUE estimator is given by β̂ = (XT∗ X∗)−1XT∗ y∗ with var(β̂) = (XT∗ X∗)−1, and this
corresponds to the minimization of εT∗ ε∗ = εT V −1ε. �	

The technique to transform the data in such a way that the error term satisfies
assumption A2 is called pre-whitening. In practice, the covariance matrix V is unknown
and has to be estimated. In the case of heteroscedasticity, V is a diagonal matrix and the
entries vtt = E(ε2(t)) can be estimated, for example, by models of the type (9.22), (9.23).
The parameters β are then estimated by weighted least squares, with criterion function∑N

t=1 ε2(t)/vtt .
Finally we consider the assumption of normality of the error terms. This can be

tested by considering the standardized third and fourth moments of the residuals. Let
ε̄ = 1

N

∑N
t=1 ε̂(t) and σ̂ 2 = 1

N

∑N
t=1(ε̂(t) − ε̄)2, then μ̂i = 1

N

∑N
t=1(ε̂(t) − ε̄)i/σ̂ i

are the skewness (for i = 3) and kurtosis (for i = 4). It can be shown that, asymptotically
and under the null hypothesis that A2* is satisfied, the Jarque-Bera test

JB = N(
1

6
μ̂2
3 + 1

24
(μ̂4 − 3)2) (9.24)

has the χ2
(2) distribution. The normal distribution is symmetric (skewness zero) and has

kurtosis equal to 3 (a measure of the thickness of the tails of the distribution). Normality
may be rejected, for instance, because there are some excessively large residuals. Theymay
arise because of special circumstances, for instance a measurement error or a temporary
disruption of the process. Because the least squares criterion penalizes residuals by taking
the squares, such outliers may have large effects on the estimates. This can be reduced by
using more robust identification criteria, for example by minimizing

∑N
t=1 | ε(t) |.

9.6.3 Inputs and Outputs

For multivariable systems, the question arises how many equations should be estimated
and what are the properties of the error process. It is usual to model either all the variables
as a multivariate stochastic process or to model some of the variables (the outputs) in terms
of the others (the inputs). This is also the basis for the methods described in Sects. 9.4
and 9.5. Here we will not discuss alternative modelling approaches, but we give two
examples indicating the importance of these questions.

Example 9.6.2 In this example we analyse the effect of incomplete model specification.
Assume that three variables are observed that actually consist of one input and two outputs,
related by the equations

y1(t) = α1y2(t) + β1y1(t − 1) + γ1u(t) + ε1(t),

y2(t) = α2y1(t) + β2y2(t − 1) + γ2u(t) + ε2(t),
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where (ε1, ε2)
T is a white noise process with covariance matrix I . Suppose that we do not

know that y2 is an output and that we estimate only the first equation for y1, seen as an
ARX(1, 0) model with output y1 and inputs u and y2. This model structure suggests to
estimate the parameters by least squares, see Sect. 9.4. However, this gives inconsistent
estimates. The result in Theorem 9.4.3 does not apply, because the regressor y2(t) is
correlated with ε1(t) if α2 �= 0. More precisely, assume that the processes y1, y2 and u are
all stationary, and let θ = (α1, β1, γ1)

T and x(t) = (y2(t), y1(t−1), u(t))T . Then the least
squares estimator θ̂N in the equation for y1 has the property that plim(θ̂N) = θ + V −1δ,
where V = var(x(t)) is invertible and δ ∈ R

3 has as first entry E(y2(t)ε1(t)). Taking into
account the two model equations, it follows that E(y2(t)ε1(t)) = α2/(1−α1α2) �= 0. This
is called the simultaneity bias, that arises when some of the system equations are missing
in the model.

Example 9.6.3 Next we analyse the consequences of a wrong specification of the proper-
ties of the error process. Suppose that the system consists of a single input and a single
output that are both measured with error, for instance,

y(t) = y∗(t) + ε1(t), u(t) = u∗(t) + ε2(t), y∗(t) = βu∗(t − 1) + ε3(t).

Here the underlying system for the unobserved variables (y∗, u∗) is ARX(0, 1). We assume
that εi are independent white noise processes with zero mean and variance σ 2

i , i = 1, 2, 3,
and that u∗ is a stationary process with mean zero and variance σ 2∗ that is independent of
εi , i = 1, 2, 3. In terms of the observed input and output, the ARX(0, 1) model y(t) =
θu(t − 1) + ε(t) is correctly specified, in so far as the lag order is correct, the input
and output are chosen correctly, and the errors satisfy assumption A2. Indeed, actually
y(t) = βu(t − 1) + ε(t) where ε(t) = ε1(t) − βε2(t − 1)+ ε3(t) is a white noise process.
However, the least squares estimator is not consistent because the orthogonality condition
of Theorem 9.2.3 is not satisfied. AsE(ε(t)u(t−1)) = −βσ 2

2 andE(u2(t−1)) = σ 2∗ +σ 2
2 ,

it follows that

plim(θ̂N) = β − βσ 2
2

σ 2∗ + σ 2
2

= β(1 − 1

S + 1
),

where S = σ 2∗ /σ 2
2 is the so-called signal-to-noise ratio for the input. This shows that a

wrong specification of the error assumptions may lead to inconsistent results. Especially
when the noise is relatively large, that is, when S is small, the estimates may be very
unreliable. Note that the orthogonality condition can not be checked by computing the
correlation between the regressor u(t − 1) and the residuals ε̂(t) = y(t) − θ̂u(t − 1),
because plim( 1

N

∑N
t=1 ε̂(t)u(t − 1)) = E(y(t)u(t − 1)) − plim(θ̂N )E(u2(t − 1)) = 0.
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9.6.4 Model Selection

In system identification one is confronted with the choice of data, model class, estimation
method, and tools for evaluating the model quality. The validation techniques for the lag
orders and the residuals discussed in Sects. 9.6.1 and 9.6.2 are of help. Further, the intended
model use may suggest additional evaluation criteria. For instance, if forecasting is the
objective then the models can be compared with respect to their forecast performance. The
standard deviation

σ̂ = { 1
N

N∑

t=1

ε̂(t)2} 1
2 (9.25)

is an indication of this. However, in least squares the data are first used to minimize σ̂ , so
that this may underestimate the future forecast errors. A more reliable criterion is σ ∗ =
{ 1
N

∑N
t=1 ε∗(t)2} 1

2 , where ε∗(t) = y(t) − y∗(t) is the residue corresponding to the model
that is estimated using the data {y(s−1), u(s), s ≤ t}. The disadvantage is that this requires
the estimation of a sequence of models, a new one for every additional observation. One
can also considerm-step-ahead prediction, where only the data {y(s−1), u(s), s ≤ t −m}
are used to estimate a model to forecast y(t). Instead of quadratic criteria one can also
consider the absolute errors 1

N

∑N
t=1 | ε(t) | or the relative errors 1

N

∑N
t=1(| ε(t) | / |

y(t) |). For input-output systems that allow experiments with the inputs, one can also
compare the simulated outputs of the model with the outputs that result in reality.
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