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We dedicate this book to Christoph Bandt
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and Stochastics’ since its beginning in 1994,
and major drivers of the work on fractal
geometry in Germany and beyond for over 30
years. Both their mathematics and their
engagement with the community continue to
be a great inspiration for all of us.



Preface

The conference ‘Fractal Geometry and Stochastics VI’ with 122 participants
from 20 different countries took place in Bad Herrenalb, Baden-Württemberg,
Germany, from September 30 to October 6, 2018. It was the sixth in a series
of conferences, initiated by Christoph Bandt, Siegfried Graf and Martina Zähle
with the first conference in 1994. Since then, the mathematics of fractal structures
has experienced a rapid expansion and a growing diversification. Aiming to cover
most recent developments while representing a broad spectrum of topics, ‘Fractal
Geometry and Stochastics’ has become widely recognized as one of the world’s
leading conference series in the field, and it continues to provide a vibrant platform
for the exchange of new ideas. The main contributions of each single conference
have been published by Birkhäuser in their series ‘Progress in Probability’.

Continuing the tradition of the earlier conferences, we invited the representatives
of particularly active areas of research to give keynote and invited talks, including
promising young colleagues. The chapters collected in this volume address a wide
range of different topics. Some are expositional, while others contain original
results, but in style they all follow the philosophy of these conference proceedings
to present material highly interesting for specialists while remaining as accessible
as possible to newcomers in the field and to experts from related disciplines.

We express our gratitude to the Deutsche Forschungsgemeinschaft for their
essential financial support for the conference and gratefully acknowledge additional
support from the cluster of excellence SimTech, University of Stuttgart, and the
Karlsruhe Institute of Technology, Karlsruhe. We thank our Scientific Committee
(Christoph Bandt, Kenneth Falconer, Jun Kigami, Marc Pollicott and Martina Zähle)
for their advice, constant support and encouragement, and we thank a number of
referees for their generous help in preparing this volume.

Chemnitz, Germany Uta Freiberg
Oxford, UK Ben Hambly
Bielefeld, Germany Michael Hinz
Karlsruhe, Germany Steffen Winter
July 2020
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Introduction

This book presents some of the recent developments in various areas of modern
mathematics naturally connected to ‘Fractal Geometry and Stochastics’, although
the variety of ideas and results collected here goes well beyond the scope of this
modest label. The book consists of four parts, which are detailed in what follows.

Part I of the book contains four chapters on topics at the heart of fractal
geometry. The chapter by J. Fraser discusses new ideas in dimension theory,
namely the Assouad spectrum, which interpolates between the upper box and the
Assouad dimension, and the intermediate dimensions, which interpolate between
the Hausdorff and box dimensions. It is followed by a chapter by J. Lehrbäck on
upper and lower Assouad dimensions and their connections to the integrability
of distance functions, to Muckenhoupt weights and to thickness and thinness
conditions for the validity of Hardy–Sobolev inequalities on Euclidean open sets.
The chapter by S. Seuret explains some of the latest results related to the idea of
finding objects with prescribed multifractal properties, such as local dimensions for
measures, or singularity or multifractal spectra for functions and measures. Some
connections to function spaces are highlighted. A panorama of classical renewal
theorems in probability and the discussion of a contemporary renewal theorem in
symbolic dynamics are the subjects of the chapter by S. Kombrink, along with
applications to counting problems and Minkowski measurability in fractal geometry.

Part II of the book consists of two chapters relating to random discrete structures.
The first one, by M. Heydenreich, reviews different dimension concepts for integer
lattices and more general graphs, such as fractal dimension (in the sense of
volume growth), spectral dimension and mass dimension. It also characterizes
the various dimensions for the incipient infinite cluster of (bond) percolation on
integer lattices. In the second one, M. Hino surveys recent results and new ideas
in the homology theory of random simplicial complexes. A particular result is
the asymptotic behaviour of time integrals of Betti numbers for Linial–Meshulam
complex processes, which may be seen as higher-dimensional analogues of Erdös–
Renyi graph processes.

xi



xii Introduction

The two chapters in Part III are related to trees and hyperbolicity. In an expository
chapter, M. Bonk and H. Tran consider the continuum self-similar tree as the
attractor of an iterated function system in the complex plane, show that trees in
certain classes are always homeomorphic to each other and provide an explicit
proof of the fact that the topology of the continuum random tree is almost surely
constant. The chapter by N. Shanmugalingam is a survey on p-hyperbolicity and
p-parabolicity on metric measure spaces of bounded geometry. It characterizes
p-hyperbolicity via p-singular functions and discusses relationships with the p-
modulus of a family of curves connecting a ball to infinity and to the existence of
non-constant p-harmonic functions.

Part IV presents four chapters on physical models (in a broad sense). The chapter
by O. Ovdat and E. Akkermans considers phase transitions in physics in which
continuous scale invariance is broken into discrete scale invariance, and the latter is
observed to have fractal features. These phase transitions are discussed in detail
for the Hamiltonian of a quantum particle in an attractive square potential (for
which the Efimov physics in the supercritical regime was repeatedly confirmed in
experiments) and for a massless Dirac Coulomb system (for which comprehensive
experimental observations have been made for graphene). In addition, connections
to universality are pointed out. The chapter by D. Croydon addresses recent results
on scaling limits for stochastic processes in terms of Kigami’s resistance forms. He
describes an application to random conductance models with heavy tails on nested
fractal graphs. He shows that rescaled variable speed and constant speed random
walks on the approximating graphs converge to the standard and to a singularly
time changed Brownian motion, a version of the Fontes–Isopi–Newman process,
on the fractal, respectively. A somewhat related topic is explained by P. Kern and
S. Lage in their contribution on the Zolotarev duality between stable densities and
distributions on the positive real line. This results in an equivalence of certain heat-
type fractional equations and time-fractional differential equations. After a review
of known results, they present a new generalization to the semistable situation. The
chapter by E. Sava-Huss reviews results on internal and external DLA (diffusion
limited aggregation) on infinite graphs, such as lattices, trees, cylindrical graphs
and fractal graphs. For external DLA, known results on the growth of arms and the
number of holes are addressed, while for internal DLA, the focus is on the limit
shapes of the cluster.
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Fractal Dimensions and Measures



Interpolating Between Dimensions

Jonathan M. Fraser

Abstract Dimension theory lies at the heart of fractal geometry and concerns
the rigorous quantification of how large a subset of a metric space is. There are
many notions of dimension to consider, and part of the richness of the subject
is in understanding how these different notions fit together, as well as how their
subtle differences give rise to different behaviour. Here we survey a new approach
in dimension theory, which seeks to unify the study of individual dimensions
by viewing them as different facets of the same object. For example, given two
notions of dimension, one may be able to define a continuously parameterised
family of dimensions which interpolates between them. An understanding of this
‘interpolation function’ therefore contains more information about a given object
than the two dimensions considered in isolation. We pay particular attention to
two concrete examples of this, namely the Assouad spectrum, which interpolates
between the box and (quasi-)Assouad dimension, and the intermediate dimensions,
which interpolate between the Hausdorff and box dimensions.

Keywords Dimension theory · Hausdorff dimension · Box dimension · Assouad
dimension · Assouad spectrum · Intermediate dimensions

Mathematics Subject Classifications (2010) Primary: 28A80, Secondary: 37C45

1 Dimension Theory and a New Perspective

Roughly speaking, a fractal is an object which exhibits complexity on arbitrarily
small scales. Such objects are hard to analyse, and cannot be easily measured.
Dimension theory is the study of how to measure fractals, specifically aimed at
quantifying how they fill up space on small scales. This is done by developing

J. M. Fraser (�)
School of Mathematics and Statistics, The University of St Andrews, St Andrews, Scotland
e-mail: jmf32@st-andrews.ac.uk
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4 J. M. Fraser

Fig. 1 Three fractals: a self-affine set (left), a random set generated by Mandelbrot percolation
(centre), and the self-similar Sierpiński triangle (right)

precise mathematical formulations of dimension and then developing techniques
which can be used to compute these dimensions in specific settings, such as, for sets
invariant under a dynamical system or generated by a random process, see Fig. 1.
There are many ways to define dimension which naturally extend our intuitive idea
that lines have dimension 1 and squares have dimension 2, etc. The box dimension
is a particularly natural and easily digested notion of dimension, which comes from
understanding how a coarse measure of size behaves as the resolution increases.
More precisely, given a bounded set F ⊆ R

d and a scale (resolution) r > 0, let
Nr(F ) denote the minimum number of sets of diameter r required to cover F , see
Fig. 2. This should increase as r → 0 and it is natural to expect Nr(F ) ≈ r−δ for
some δ > 0, which can be readily interpreted as the ‘dimension’ of F . As such, the
upper box dimension of F is defined by

dimBF = lim sup
r→0

logNr(F )

− log r
.

If the lim sup is replaced by lim inf, one gets the lower box dimension dimBF .
However, often the lim sup and lim inf agree, in which case we refer to the common
value as the box dimension, denoted by dimB F . Despite how convenient and natural
this definition is, it has some theoretical disadvantages, such as not being countably
stable, see [8, page 40]. A more sophisticated notion, which is similar in spirit, is
the Hausdorff dimension. This can be defined, for any set F ⊆ R

d , by

dimH F = inf

{
α > 0 : for all ε > 0 there exists a cover {Ui} of F

such that
∑
i

|Ui |α < ε
}
.

The key difference here is that sets with vastly different diameters are permitted in
the covers and their contribution to the ‘dimension’ is weighted according to their
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Fig. 2 An efficient covering of the self-affine set from Figure 1 by balls of the same radius.
Counting the number of balls required for such a cover as the radius tends to 0 gives rise to the box
dimension

diameter, denoted by |Ui |, see Fig. 3. In particular, it is easily seen that the Hausdorff
dimension is countably stable. Both the Hausdorff and box dimension measure the
size of the whole set, giving rise to an “average dimension”. It is often the case that
more extremal information is required, for example in embedding theory, see [29].
The Assouad dimension is designed to capture this information and is defined, for
any set F ⊆ R

d , by

dimA F = inf

{
α > 0 : there exists a constant C > 0 such that,

for all 0 < r < R and x ∈ F we have

Nr
(
B(x,R) ∩ F ) ≤ C

(
R

r

)α}
.

The key point here is that one does not seek covers of the whole space, but only a
small ball, and the expected covering number is appropriately normalised, see Fig. 4.
The Assouad dimension has many useful applications outside the realm of fractal
geometry. For example, see the survey [23] (also published in these proceedings)
which considers applications of the Assouad dimension to problems in geometric
analysis. One of the joys of dimension theory is in understanding how these different
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Fig. 3 An efficient covering of the self-affine set from Fig. 1 by balls of arbitrarily varying radii.
Understanding the weighted sum of diameters of the sets in such a cover gives rise to the Hausdorff
dimension

Fig. 4 An efficient covering of a particular ball in the self-affine set from Fig. 1 by smaller balls of
the same radius. Counting the number of balls required for such a cover, optimised over all larger
balls and all pairs of scales, gives rise to the Assouad dimension
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notions of dimension relate to each other and how they behave in different settings.
It is a simple exercise to demonstrate that

dimH F ≤ dimBF ≤ dimBF ≤ dimA F

for any bounded F ⊆ R
d , and that these inequalities can be strict inequalities

or equalities in any combination. Equality throughout can be interpreted as a
manifestation of ‘strong homogeneity’. For example, if F is Ahlfors-David regular
then dimH F = dimB F = dimA F .

There are of course many other notions of dimension, each important in its own
right and motivated by particular questions or applications. We omit discussion of
these, but other examples include the packing, lower, quasi-Assouad, modified box,
topological, Fourier, among many others. We refer the reader to [2, 7, 8, 27, 29] for
more background on dimension theory, including a thorough investigation of the
basic properties of the various notions of dimension.

The main purpose of this article is to motivate a new perspective in dimension
theory. Rather than view these notions of dimension in isolation, we should try to
view them as different facets of the same object. This approach will give rise to a
continuum of dimensions, which fully describes the scaling structure of the space,
both locally and globally. Moreover, this will yield a more nuanced understanding
of the individual notions of dimensions as well as insight into the somewhat
philosophical question of how to define dimension itself. This sounds rather grand
and ambitious, but by focusing our attention slightly and applying this philosophy
in particular settings, an interesting and workable theory has started to emerge.

More concretely, given dimensions dim and Dim which generally satisfy
dimF ≤ DimF , we wish to introduce a parameterised family of dimensions
dθ , with parameter θ ∈ [0, 1], which (ideally) satisfies:

• d0 = dim
• d1 = Dim
• dimF ≤ dθ (F ) ≤ DimF, for all θ ∈ (0, 1) and all reasonable sets F
• for a given F , dθ (F ) varies continuously in θ .

Moreover,

• the definition of dθ should be natural, sharing the philosophies of both dim and
Dim

• dθ should give rise to a rich and workable theory.

The most important of these points are the final two. One can achieve the first four
in any number of trivial and meaningless ways, but the key idea is that the function
θ �→ dθ (F ) should be ripe with easily interpreted, meaningful, and nuanced
information regarding the set F . If this can be achieved then the rewards are likely
to include:

• a better understanding of dim and Dim
• an explanation of one type of behaviour changing into another
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• more information, leading to better applications
• a (large) new set of questions
• fun.

In the following subsections we describe two concrete examples of this philosophy
in action.

1.1 The Assouad Spectrum

The Assouad spectrum, introduced by Fraser and Yu in 2016 [14], aims to
interpolate between the upper box dimension and the Assouad dimension. The
parameter θ ∈ (0, 1) serves to fix the relationship between the two scales r < R
used to define the Assouad dimension, by setting R = rθ . As such, the Assouad
spectrum of F ⊆ R

d is defined by

dimθA F = inf

{
α > 0 : there exists a constant C > 0 such that,

for all 0 < r < 1 and x ∈ F we have

Nr
(
B
(
x, rθ
) ∩ F ) ≤ C

(
rθ

r

)α}
.

At this point it might seem equally natural to bound the two scales away from each
other by considering all 0 < r ≤ R1/θ rather than fixing r = R1/θ . Rather than go
into details here, we simply observe that fixing the relationship between the scales is
both easier to work with and provides strictly more information than the alternative,
see [18]. We also note that in [14] the scales were denoted by R1/θ and R, rather
than r and rθ . These two formulations are clearly equivalent but the notation we use
here seems a little less cumbersome, however, in certain situations it is more natural
to use R1/θ and R. It was established in [14] that dimθA F is:

• continuous in θ ∈ (0, 1), see [14, Corollary 3.5]
• Lipschitz on any closed subinterval of (0, 1), see [14, Corollary 3.5]
• not necessarily monotonic (but often is), see [14, Proposition 3.7 and Section 8].

Moreover, we have the following general bounds, adapted from [14, Proposition
3.1].

Lemma 1.1 For any bounded set F ⊆ R
d ,

dimBF ≤ dimθA F ≤ min

{
dimBF

1− θ , dimA F

}
.
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Proof Let s > dimBF , x ∈ F and r ∈ (0, 1). By definition there exists C > 0
depending only on s such that

Nr
(
B
(
x, rθ
) ∩ F ) ≤ Nr(F ) ≤ Cr−s = C

(
rθ

r

)s/(1−θ)

which implies dimθA F ≤ s/(1 − θ) and since s > dimBF was arbitrary, the upper
bound follows, noting that dimθA F ≤ dimA F is trivial.

For the lower bound, we may assume dimBF > 0 and let 0 < t < dimBF < s.
Covering F with rθ -balls and then covering each of these rθ -balls with r-balls, we
obtain

Nr(F ) ≤ Nrθ (F )
(

sup
x∈F

Nr
(
B
(
x, rθ
) ∩ F )

)
.

Again, by definition, there exist arbitrarily small r > 0 such that

sup
x∈F

Nr
(
B
(
x, rθ
) ∩ F ) ≥ Nr(F )

Nrθ (F )
≥ r−t

r−sθ
=
(
rθ

r

) sθ−t
θ−1

which establishes dimθA F ≥ t−sθ
1−θ and, since s and t can be made arbitrarily close

to dimBF , the lower bound follows. 
�
A useful consequence of Lemma 1.1 is that dimθA F → dimBF as θ → 0 for any

bounded F . However, dimθA F may not approach dimA F as θ → 1. In fact, it was
proved in [18] that dimθA F → dimqA F as θ → 1, where dimqA F is the quasi-
Assouad dimension. In many cases the quasi-Assouad dimension and Assouad
dimension coincide and so the intended interpolation is achieved. Moreover, the
appearance of Assouad dimension in Lemma 1.1 may be replaced by the quasi-
Assouad dimension.

Generally, one has dimqA F ≤ dimA F and if this inequality is strict, then
the intended interpolation is not achieved. However, an approach for “recovering”
the interpolation was outlined in [14]. Let φ : [0, 1] → [0, 1] be an increasing
continuous function such that φ(R) ≤ R for all R ∈ [0, 1]. The φ-Assouad
dimension, introduced in [14], is defined by

dimφA F = inf

{
α > 0 : there exists a constant C > 0 such that,

for all 0 < r ≤ φ(R) ≤ R ≤ 1 and x ∈ F we have

Nr
(
B(x,R) ∩ F ) ≤ C

(
R

r

)α}
.
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The goal is now to identify precise conditions on φ which guarantee dimφA F =
dimA F . Resolution of this problem for a particular F gives precise information
on how the Assouad dimension of F can be witnessed and, moreover, completes
the interpolation between the upper box and Assouad dimension in a precise sense.
Often dimθA F = dimA F for some θ ∈ (0, 1), in which case the threshold for
witnessing the Assoaud dimension is provided by the function φ(R) = R1/θ . The
φ-Assouad dimension has been considered in detail by García, Hare, and Mendivil
[19, 20] and Troscheit [32].

Various other dimension spectra are introduced in [14], including the lower
spectrum, which is the natural dual to the Assouad spectrum and lives in between
the lower dimension and the lower box dimension. This has been investigated, in
conjunction with the Assouad spectrum, by Chen [5], Chen et al. [6], Hare and
Troscheit [21] and Fraser and Yu [15].

1.2 Intermediate Dimensions

The intermediate dimensions, introduced by Falconer, Fraser and Kempton in 2018
[9], aim to interpolate between the Hausdorff and box dimensions. The parameter
θ ∈ (0, 1) serves to restrict the discrepancy between the size of covering sets in the
definition of the Hausdorff dimension by insisting that |Ui | ≤ |Uj |θ for all i, j . As
such, the θ -intermediate dimensions of a bounded set F ⊆ R

d are defined by

dimθ F = inf

{
α > 0 : for all ε > 0 there exists a cover {Ui} of F

with |Ui | ≤ |Uj |θ for all i, j such that
∑
i

|Ui |α < ε
}
.

In fact, [9] considers upper and lower intermediate dimensions, but we restrict our
attention here to the lower version. It was proved in [9] that dimθ F is:

• continuous in θ ∈ (0, 1), see [9, Proposition 2.1]
• monotonically increasing
• bounded between the Hausdorff and lower box dimension, that is, for bounded F

dimH F ≤ dimθ F ≤ dimBF

• and satisfies appropriate versions of the mass distribution principle and Frost-
man’s lemma, see [9, Propositions 2.2–2.3].

Next we establish general lower bounds for the intermediate dimensions which
involve the Assouad dimension, see [9, Proposition 2.4]. In the proof we rely on
the following mass distribution principle, first proved in [9, Proposition 2.2]. The
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main difference between Lemma 1.2 and the usual mass distribution principle, see
[8, 4.2], is that a family of measures {μr} is used instead of a single measure.

Lemma 1.2 Let F be a Borel subset of Rd , 0 ≤ θ ≤ 1 and s ≥ 0. Suppose that
there are numbers a, c, r0 > 0 such that for all 0 < r ≤ r0 we can find a Borel
measure μr supported by F with μr(F ) ≥ a, such that

μr(U) ≤ c|U |s (1.1)

for all Borel sets U ⊆ R
d with r ≤ |U | ≤ rθ . Then dimθ F ≥ s.

Proof Let {Ui} be a cover of F such that r ≤ |Ui | ≤ rθ for all i and some r ≤ r0.
We may clearly assume the Ui are Borel (even closed). Then

a ≤ μr(F ) ≤ μr

(⋃
i

Ui

)
≤
∑
i

μr(Ui) ≤ c
∑
i

|Ui |s ,

so that
∑
i |Ui |s ≥ a/c > 0 for every admissible cover (by sets with sufficiently

small diameters) and therefore dimθ F ≥ s. 
�
Lemma 1.3 For bounded F ⊆ R

d and θ ∈ (0, 1), we have

dimθ F ≥ dimA F − dimA F − dimBF

θ
.

Proof Fix θ ∈ (0, 1) and assume that dimBF > 0, since otherwise there is nothing
to prove. Let

0 < s < dimBF ≤ dimA F < t <∞

and r ∈ (0, 1) be given. Since s < dimBF , there exists a constant C0 such that
there is an r-separated set of points in F of cardinality at least C0r

−s . Let μr be a
uniformly distributed probability measure supported on this set of points.

LetU ⊆ R
d be a Borel set with |U | = rγ for some γ ∈ [θ, 1]. Since dimA F < t ,

there exists a constant C1 such that U intersects at most C1(r
γ /r)t points in the

support of μr . Therefore

μr(U) ≤ C1r
(γ−1)tC−1

0 rs = C1C
−1
0 |U |(γ t−t+s)/γ ≤ C1C

−1
0 |U |(θt−t+s)/θ ,

which, using Lemma 1.2, implies that

dimθ F ≥ (θt − t + s)/θ = t − t − s
θ
.

Letting t → dimA F and s → dimBF yields the desired result. 
�
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It follows from this lemma that dimθ F → dimBF as θ → 1. In contrast, it
was shown in [9] that dimθ F does not necessarily approach dimH F as θ → 0.
Moreover, a mechanism for constructing such examples is provided by the above
lemma since if dimBF = dimA F , then dimθ F = dimBF = dimA F for all θ ∈
(0, 1).

Lemma 1.3 should be compared with Lemma 1.1. For example, combining the
two results, one sees that if F ⊆ R

d and either dimB F = 0 or dimB F = d, then
both the intermediate dimensions and Assouad spectrum are constant (and equal to
dimB F ).

2 Examples

2.1 Countable Sets

Fix p > 0, and let Fp = {n−p : n ∈ N}. It is straightforward to show that

dimH Fp = 0 < dimB Fp = 1

1+ p < dimA Fp = 1.

Moreover, it was shown in [14, Corollary 6.4] that

dimθA Fp = min

{
1

(1+ p)(1− θ) , 1

}

and in [9, Proposition 3.1] that

dimθ Fp = θ

θ + p ,

see Fig. 5. Therefore these simple examples provide a clear exposition of dimension
interpolation in action, noting that genuine continuous interpolation between the
dimensions considered is achieved in each case.

2.2 Self-Affine Sets

One of the most natural and important families of set which exhibit distinct
Hausdorff, box and Assouad dimensions are the self-affine carpets introduced by
Bedford [1] and McMullen [28]. These sets are constructed as follows. Divide the
unit square [0, 1]2 into anm×n grid, for integers n > m ≥ 2, and select a collection
ofN ≥ 2 rectangles formed by the grid. Label the rectangles 1, . . . , N and, for each
rectangle i, let Si denote the affine map which maps [0, 1]2 onto i by first applying
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Fig. 5 Plots of dimθA Fp (red) and dimθ Fp (solid blue) as functions of θ for different values of
p. On the left, p = 4, in the centre p = 1, and on the right p = 1/10. For reference, the general
lower bounds from Lemma 1.3 for the intermediate dimensions are shown as a dashed blue line.
The general upper bounds from Lemma 1.1 for the Assouad spectrum are achieved

the map (x, y) �→ (x/m, y/n) and then translating. The Bedford-McMullen carpet
is defined to be the unique non-empty compact set F satisfying

F =
N⋃
i=1

Si(F ).

The fact that this formula defines such a set uniquely is a well-known result in fractal
geometry concerning iterated function systems, see [8, Chapter 9] for the details.

In order to state known dimension formulae for F , let M ∈ [1,m] denote the
number of distinct columns in the grid containing chosen rectangles i, Cj ∈ [1, n]
denote the number of chosen rectangles in the j th nonempty column for j ∈
{1, . . . ,M}, andCmax = maxj Cj . Bedford and McMullen independently computed
the box and Hausdorff dimensions of F in 1984 [1, 28] and the Assouad dimension
was computed by Mackay in 2011 [26]. The respective formulae are

dimH F =
log
∑
j C

logm/ log n
j

logm
,

dimB F = logM

logm
+ log(N/M)

log n
,

and

dimA F = logM

logm
+ logCmax

log n
.

Note that if Cj < Cmax for some j , then the Hausdorff, box and Assouad
dimensions are all distinct. This is called the non-uniform fibres case and is
the case of interest. In fact, in the uniform fibres case, the three dimensions
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Fig. 6 Left: a plot of dimθA F (solid blue) as a function of θ where n = 3, m = 2, N = 3,M = 2,
C1 = 2, C2 = 1 and Cmax = 2. For reference, the general upper and lower bounds for the Assouad
spectrum from Lemma 1.1 are shown as dashed blue lines. Right: an example of a self-affine carpet
constructed with the same data

coincide. Therefore, from now on we restrict our attention to the non-uniform fibres
setting, where computation of the Assouad spectrum and intermediate dimensions is
relevant. It was recently proved in [15, Corollary 3.5] that, for θ ∈ (0, logm/ log n],

dimθA F =
logM − θ log(N/Cmax)

(1− θ) logm
+ log(N/M)− θ logCmax

(1− θ) log n

and for θ ∈ [logm/ log n, 1)

dimθA F = dimA F,

see Fig. 6. In particular, a single phase transition occurs at θ = logm/ log n, and a
short calculation reveals that this is strictly greater than

1− dimBF

dimA F

which is where the single phase transition occurs in the general upper bound from
Lemma 1.1. Therefore, the general upper bound for dimθA F is never achieved by a
Bedford-McMullen carpet in the non-uniform fibres setting.

The intermediate dimensions of F were considered in [9], where it was estab-
lished that dimθ F → dimH F as θ → 0. Recall that this ‘genuine interpolation’
is not satisfied for all sets. A precise formula for dimθ F currently seems out of
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Fig. 7 Plots of the upper and
lower bounds for dimθ F for
the carpet shown in Fig. 6.
The upper bound combines
the bound from [9] and the
trivial upper bound dimB F .
The lower bound is a
piecewise function, with the
first increasing part coming
from the bounds established
in [9], the constant part
coming from monotonicity,
and the final increasing part
coming from the general
bounds from Lemma 1.3
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reach, but the following bounds were established in [9, Propositions 4.1 and 4.3],

see Fig. 7. For 0 < θ <
(

logm
2 log n

)2
we have the upper bound

dimθ F ≤ dimH F +
2(logCmax) log

(
log n
logm

)
−(log n) log θ

,

which importantly establishes dimθ F → dimH F as θ → 0, but only improves on
the trivial bound of dimθ F ≤ dimB F for very small values of θ . For example, for
the carpet considered in Fig. 6 this improvement is only achieved for θ smaller than
around 10−13. Also, for all θ ∈ (0, logm/ log n) we have the lower bound

dimθ F ≥ dimH F + θ logN − h
log n

,

where

h = −m− dimH F
∑
j

C
logm/ log n
j

((
logm

log n
− 1

)
logCj − dimH F logm

)

is the entropy of the McMullen measure. A short calculation shows that 0 < h ≤
logN with h = logN if and only if F has uniform fibres. Therefore, in the non-
uniform fibres case we have dimH F < dimθ F for all θ ∈ (0, 1). This lower bound
improves on the general lower bound from Lemma 1.3 for the carpet considered
in Fig. 6 for θ ≤ 0.95. In the absence of a precise formula, we ask the following
questions.
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Question 2.1 For F a Bedford-McMullen carpet with non-uniform fibres, is it true
that dimθ F < dimB F for all θ ∈ (0, 1)? Moreover, is it true that dimθ F is strictly
increasing, differentiable, or analytic?

2.3 Self-Similar Sets and Random Sets

The examples discussed so far (the countable sets, and self-affine carpets with non-
uniform fibres) are particularly well-suited to the models of interpolation we discuss
in this article. In particular, the Hausdorff, box, and Assouad dimensions are all
distinct, and the intermediate dimensions and Assouad spectrum achieve genuine
interpolation between these three dimensions. Recall that this is not always the case.
Here we discuss two natural families of sets, for which the desired interpolation is
not achieved: self-similar sets with overlaps, and Mandelbrot percolation.

We restrict our attention to self-similar sets in R, but interesting questions remain
open in higher dimensions. Let {Si}i be a finite collection of contracting orientation
preserving similarities mapping [0, 1] into itself. That is, for each i, there are
constants ci ∈ (0, 1) and ti ∈ [0, 1 − ci] such that Si is given by Si(x) = cix + ti .
Similar to the setting of self-affine carpets, there exists a unique non-empty compact
set F ⊆ [0, 1] satisfying

F =
⋃
i

Si(F ).

Such sets F are known as self-similar, see [8, Chapter 9]. It is well-known that if
there exists a non-empty open set U ⊆ [0, 1] such that ∪iSi(U) ⊂ U and the sets
Si(U) are pairwise disjoint, then

dimH F = dimB F = dimA F = s

where s ∈ (0, 1] is the unique solution to Hutchinson’s formula
∑
i c
s
i = 1.

In particular, this ‘separation condition’, known as the open set condition (OSC),
guarantees that the pieces Si(F ) do not overlap too much and thus the images of
F under iterates of the defining maps directly give rise to efficient covers of F ,
facilitating calculation of dimension. It also guarantees sufficient homogeneity to
ensure equality of the three dimensions we discuss. In particular, self-similar sets
satisfying the OSC are not interesting from our dimension interpolation perspective.
However, if the OSC fails, then the Assouad dimension can strictly exceed the box
dimension, see [11, 16]. On the other hand, the Hausdorff and box dimension always
coincide for self-similar sets, see [7, Corollary 3.3]. Thus, the natural object to
consider here is the Assouad spectrum. The following result was proved in [15,
Corollary 4.2].
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Theorem 2.2 Let F ⊆ R be a self-similar set which does not have ‘super-
exponential concentration of cylinders’. Then for all θ ∈ (0, 1)

dimθA F = dimB F.

In particular, this result implies that genuine interpolation between the box
dimension and the Assouad dimension is not achieved for these self-similar sets
whenever the Assouad dimension strictly exceeds its box dimension. It remains
open whether the conclusion of the above result is true for all self-similar sets. This
theorem was proved using a recent result of Shmerkin [30] and we refer the reader
to this paper for more details on the ‘super-exponential concentration’ assumption.
We note, however, that this assumption is satisfied if the semigroup generated by
the defining maps is free (that is, there are no ‘exact overlaps’) and the parameters
ti and ci defining the maps are algebraic.

Mandelbrot percolation is a natural random process giving rise to fractals which
are statistically self-similar, see [8, Section 15.2]. We begin with the unit cubeM0 =
[0, 1]d , a fixed integer m ≥ 2, and a probability p ∈ (0, 1). At the first step of the
construction we divide M0 into md (closed) cubes of side length m−1 and for each
cube we independently choose to ‘keep it’ with probability p, or ‘throw it away’
with probability (1 − p). We let M1 be the collection of kept cubes and we then
repeat this process inside each kept cube independently, denoting the collection of
kept cubes at stage n byMn. The limit set is then defined byM = ∩nMn, see Fig. 1
for an example with d = m = 2. It is well-known that if p > m−d , then M is non-
empty with positive probability. Moreover, if we condition on M being non-empty,
then

dimHM = dimBM = d + logp

logm
∈ (0, d)

almost surely. It was shown in [17, Theorem 5.1] that, conditioned on M being
non-empty,

dimAM = d (2.1)

almost surely, and therefore it is natural to consider the Assouad spectrum of M .
However, it was proved in [15, 31, 33] that, conditioned on M being non-empty,
almost surely

dimθAM = dimBM (2.2)

for all θ ∈ (0, 1). Therefore, again we see that genuine interpolation between the
box dimension and Assouad dimension is not achieved by the Assouad spectrum
for Mandelbrot percolation. However, using the finer analysis introduced in [14]
and discussed in Sect. 1.1, it is possible to observe the interpolation by considering
dimφA M for different functions φ. Troscheit proved the following dichotomy in [32].
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Theorem 2.3 If

log(R/φ(R))

log | logR| → 0

as R→ 0, then, conditioned onM being non-empty, almost surely

dimφAM = d = dimAM.

Moreover, if

log(R/φ(R))

log | logR| → ∞

as R→ 0, then, conditioned onM being non-empty, almost surely

dimφAM = dimBM = d + logp

logm
.

Note that this result implies (2.2) by considering φ(R) = R1/θ and (2.1) by
considering φ(R) = R. A similar dichotomy, with the same threshold on φ, was
obtained in a different random setting in [20]. The Assouad spectrum of random
self-affine carpets was considered in [13].

3 Applications: Bi-Lipschitz and Bi-Hölder Distortion

A key aspect of this new perspective in dimension theory is in its applications. The
idea is that if we can interpolate between two given dimensions in a meaningful way,
then we will get strictly better information than when the dimensions are considered
in isolation. This better information should, in turn, yield stronger applications.
For example, see the recent papers [3, 4] which use the intermediate dimensions
to obtain new results concerning the box dimensions of orthogonal projections and
images under fractional Brownian motion, respectively.

A common application of dimension theory is derived from the fact that
dimensions are often invariant, or approximately invariant in a quantifiable sense,
under a family of transformations. For example, the Hausdorff, box and Assouad
dimensions are all invariant under bi-Lipschitz maps and therefore provide useful
invariants in the problem of classification up to bi-Lipschitz image. The Assouad
spectrum and intermediate dimensions are also invariant under bi-Lipschitz maps
and therefore provide a continuum of invariants in the same context. Recall that an
injective map f : X→ R

d is bi-Lipschitz if there exists a constant C ≥ 1 such that
for all distinct x, y ∈ X

C−1|x − y| ≤ |f (x)− f (y)| ≤ C|x − y|. (3.1)
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Here we assume that X is a bounded subset of Rd . In particular, for such f we have

dimθAX = dimθA f (X) and dimθ X = dimθ f (X)

for all θ ∈ (0, 1). This was proved for the Assouad spectrum in [14] and we prove
it for the intermediate dimensions here.

Lemma 3.1 For any bounded set X ⊆ R
d and bi-Lipschitz map f : X → R

d , we
have dimθ X = dimθ f (X) for all θ ∈ (0, 1).
Proof Let s > dimθ X and ε > 0. It follows that there exists a cover {Ui} of X
with |Ui | ≤ |Uj |θ for all i, j such that

∑
i |Ui |s < ε. It follows that {f (Ui)} is

a cover of f (X) and that |f (Ui)| ≤ C|Ui | ≤ C|Uj |θ ≤ C1+θ |f (Uj )|θ for all
i, j , where C is the constant from (3.1). Let δ = infj |f (Uj )|. For all i such that
δθ < |f (Ui)| ≤ C1+θ δθ , cover the set f (Ui) with balls of diameter δθ and replace
the covering set f (Ui) by these balls. Note that we can always do this with fewer
than cdCd(1+θ) balls where cd ≥ 1 is a constant depending only on d. This yields
an allowable cover {Vl} of f (X) and we have

∑
l

|Vl |s ≤ cdCd(1+θ)
∑
i

Cs |Ui |s ≤ cdCd(1+θ)+sε

which proves dimθ f (X) ≤ dimθ X by letting s → dimθ X. The reverse inequality
follows by replacing f by f−1 in the above. 
�

An immediate consequence of the bi-Lipschitz invariance of the Assouad
spectrum is that if F1 and F2 are Bedford-McMullen carpets associated withm1×n1
andm2×n2 grids, respectively, and there exists a bi-Lipschitz map between F1 and
F2, then

logm1

log n1
= logm2

log n2
.

This is because this ratio corresponds to the phase transition in the spectrum, and
is therefore a bi-Lipschitz invariant. This is not at all surprising, but serves as a
simple example of the spectrum yielding applications which are not immediate
when considering the dimensions in isolation. Classification of self-affine sets up
to bi-Lipschitz equivalence is an interesting problem in general, see [24].

Bi-Hölder maps are a natural generalisation of bi-Lipschitz maps where more
distortion is allowed. We say an injective map f : X → R

d is (α, β)-Hölder, or
bi-Hölder, for 0 < α ≤ 1 ≤ β < ∞ if there exists a constant C ≥ 1 such that for
all distinct x, y ∈ X

C−1|x − y|β ≤ |f (x)− f (y)| ≤ C|x − y|α.
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We note that being (1, 1)-Hölder is the same as being bi-Lipschitz. Dimensions
are typically not preserved under bi-Hölder maps, but one can often control the
distortion. For example, if dim is the Hausdorff, or upper or lower box dimension,
and f is (α, β)-Hölder, then

dimX

β
≤ dim f (X) ≤ dimX

α
, (3.2)

see [8, Proposition 3.3]. Notably, the Assouad dimension does not satisfy such
bounds, see [25, Proposition 1.2]. The Assouad spectrum, which is inherently more
regular than the Assouad dimension, can be controlled in this context but the
control is more complicated than (3.2). The following lemma is adapted from [14,
Proposition 4.7].

Lemma 3.2 Suppose f : X→ R
d is (α, β)-Hölder. Then, for all θ ∈ (0, 1),

1− βθ/α
β(1− θ) dimβθ/αA X ≤ dimθA f (X) ≤

1− αθ/β
α(1− θ) dimαθ/βA X

where dimβθ/αA X is taken to equal 0 if βθ/α ≥ 1.

In order to motivate this result, we consider the winding problem. Given p ≥ 1,
let

Sp = {x−p exp(ix) : 1 < x <∞}

which is a polynomially winding spiral with focal point at the origin. The winding
problem concerns quantifying how little distortion is required to map (0, 1) onto
Sp. For example, if x−p is replaced by e−cx for some c > 0, then it is possible to
map (0, 1) onto the corresponding spiral via a bi-Lipschitz map, see [22]. However,
this is not possible for the spirals Sp, see [10]. Therefore, it is natural to consider
bi-Hölder winding functions, and attempt to optimise the Hölder exponents.

Here there is a possible application of dimension theory: if the dimensions of Sp
can be computed, and strictly exceed 1, then (3.2) (or similar) will directly lead to
bounds on the possible Hölder exponents for winding functions f : (0, 1) → Sp.
However, since Sp can be broken up into a countable collection of bi-Lipschitz
curves, it follows that dimH Sp = 1. Moreover, it was proved in [12] that dimB Sp =
1. This does not follow from the countable decomposition since box dimension is
not countably stable. Therefore, neither the Hausdorff nor box dimensions give any
information on the Hölder exponents. It was proved in [12] that dimA Sp = 2, but
despite this being strictly greater than dimA(0, 1) = 1, we also get no information
from the Assouad dimension since the change in dimension cannot be controlled by
the Hölder exponents. It was proved in [12] that

dimθA Sp = 1+ θ

p(1− θ)
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Fig. 8 Plots of dimθA Sp (solid blue) as a function of θ . On the left p = 2 and on the right p = 10.
For reference, the general upper and lower bounds for the Assouad spectrum from Lemma 1.1 are
shown as dashed blue lines

for 0 < θ < p
1+p , and

dimθA Sp = 2

for p
1+p ≤ θ < 1, see Fig. 8. Therefore, since we do have some control on how

the Assouad spectrum distorts under bi-Hölder maps, this dimension formula does
yield non-trivial information. Specifically, we get that if f : (0, 1) → Sp is an
(α, β)-Hölder map, then

α ≤ pβ + β
p + 2β

. (3.3)

This follows by applying the first inequality in Lemma 3.2 to f−1 for
θ = αp/(βp + β). In particular, if β = 1, then α ≤ p+1

p+2 < 1, which is a
stronger, quantitative, analogue of the fact that (0, 1) cannot be mapped to Sp
via a bi-Lipschitz map.

It turns out that the bounds (3.3) are not sharp. The sharp relationship between α
and β is given by

α ≤ pβ

p + β ,

see [12] and Fig. 9. We note the amusing resemblance of this relationship to that
of Sobolev conjugates. Recall the Sobolev embedding theorem which says that, for
1 ≤ p < d, one has

W 1,p(Rd) ⊂ Lq(Rd)
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Fig. 9 Left: a plot of the upper bounds for α as a function of p where β = 1 is fixed. The sharp
upper bound is shown in blue and the upper bound given by the Assouad spectrum is shown in red.
Right: a plot of the upper bounds for α as a function of β where p = 2 is fixed. The sharp upper
bound is shown in blue and the upper bound given by the Assouad spectrum is shown in red

where q is defined by

p = dq

d + q ,

that is, q is the Sobolev conjugate of p.
A further application of the Assouad spectrum in this context is that dimθA Sp,

distinguishes spirals with different winding rates p. Note that this is not achieved
by the Hausdorff, box, or Assouad dimensions, since these (somewhat surprisingly)
do not depend on p. In particular, the Assouad spectrum shows that Sp and Sq are
not bi-Lipschitz equivalent for p �= q.

4 Further Remarks

We note that the Assouad spectrum of the spirals considered in the previous section
exhibits a single phase transition at p

p+1 . Similar to the self-affine carpets, it is easy
to see that this phase transition occurs strictly to the right of the phase transition in
the general upper bound, provided p > 1, and therefore the general upper bound is
not realised by these spirals. This gives rise to a similar form for the spectrum of the
carpets and the spectrum of the spirals. We observe that this similarity goes a little
deeper. In fact, in both cases we have the formula

dimθA E = min

{
dimB E + (1− ρ)θ

(1− θ)ρ (dimA E − dimB E) , dimA E

}
, (4.1)
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where ρ is a constant which holds particular geometric significance for the object
E. Specifically, for carpets ρ = logm

log n , and for spirals ρ = p
p+1 . Also note that ρ is

the value of θ at which the unique phase transition occurs. In both cases ρ captures
some fundamental scaling property of the set. For carpets, the kth level rectangles
in the standard construction of F are of size m−k × n−k and therefore ρ is the
“logarithmic eccentricity”. For spirals, the kth revolution, given by

{x−p exp(ix) : 1+ 2π(k − 1) < x ≤ 1+ 2πk},

has diameter comparable to k−p, while the distance between the end points (or,
outer radius minus inner radius) is comparable to k−(p+1). These are fundamental
measurements considered in the winding problem, see [12], and measure how
big the kth revolution is and how tightly it is wound, respectively. Again the
“logarithmic eccentricity” is

log
(
k−p
)

log
(
k−(p+1)

) = p

p + 1
= ρ.

We wonder if this is a coincidence, or whether it is reflective of a more general
phenomenon. It would be interesting to identify other natural classes of set for which
this formula holds for a particular choice of “fundamental ratio” ρ. Finally, we note
that the Assouad spectrum does not generally satisfy an equation of the form (4.1),
see [14, 15, 18].
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Assouad Type Dimensions in Geometric
Analysis

Juha Lehrbäck

Abstract We consider applications of the dual pair of the (upper) Assouad
dimension and the lower (Assouad) dimension in analysis. We relate these notions
to other dimensional conditions such as a Hausdorff content density condition and
an integrability condition for the distance function. The latter condition leads to a
characterization of the Muckenhoupt Ap properties of distance functions in terms of
the (upper) Assouad dimension. It is also possible to give natural formulations for
the validity of Hardy–Sobolev inequalities using these dual Assouad dimensions,
and this helps to understand the previously observed dual nature of certain cases of
these inequalities.
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1 Introduction

Mathematicians working in fractal geometry and related fields are well aware of
the fact that there can not be a unique definition for the concept of dimension
of a set, since different problems require different ways to deal with dimensional
information. In fact, what sometimes may seem like a negligible nuance in the
definition might actually lead to interesting discoveries concerning the fine structure
of sets. On the flip side, the multitude of the notions of dimension may easily create
confusion, and thus it is important to be able to justify the existence of all these
concepts via natural applications.
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The purpose of this article is to describe some recent observations concerning
the applications of the dual pair of the upper and lower Assouad dimension,
often simply called the Assouad dimension and the lower dimension, respectively.
These notions provide geometric information which is relevant not only in fractal
geometry, but also for instance in harmonic analysis, potential theory, and partial
differential equations. One manifestation of these connections can be seen via the
validity of the so-called Hardy–Sobolev inequalities. Our aim is not so much in
presenting any novelties on the level of the details or techniques, but rather in trying
to illustrate how a new point of view in terms of dimensional conditions may offer
clarity and reveal connections between known results. On the other hand, we do
give proofs for some basic results, hoping that these will help the reader to gain
familiarity with the relevant concepts.

We begin in Sect. 2 by recalling the definitions of the upper and lower Assouad
dimension and relating them to the more familiar Hausdorff dimension. In particular,
we explain the connection between the lower Assouad dimension and a Hausdorff
content density condition. In Sect. 3 we study integrability conditions for distance
functions w(x) = dist(x, E)−α , where E ⊂ R

n and (usually) 0 < α < n. Such
conditions, originally introduced by Aikawa, can be used to characterize the upper
Assouad dimension, see Theorem 3.5. Next, in Sect. 4, we ask when a distance
function w as above belongs to the important class of Muckenhoupt Ap weights. As
it turns out, the answer can be given in terms of the upper Assouad dimension, using
the integrability conditions from Sect. 3 as a helpful stepping stone. Finally, Sect. 5
completes the circle by showing how both upper and lower Assouad dimension play
an important role when examining the validity of the Hardy–Sobolev inequalities in
an open set � ⊂ R

n. In particular, a previously observed duality between certain
cases of such inequalities becomes more transparent and natural when the conditions
are formulated in terms of suitable dimensions.

Much of the theory presented in this survey can be extended to more general
metric spaces satisfying standard structural assumptions. We give some comments
and remarks related to such extensions, but for simplicity we focus on the case of
the n-dimensional Euclidean space R

n.

Notation

The open ball with center x ∈ R
n and radius r > 0 is

B(x, r) = {y ∈ R
n : |y − x| < r},

and B(x, r) is the corresponding closed ball. When A ⊂ R
n, we write diam(A) for

the diameter of A, and dist(x,A) denotes the distance from a point x ∈ R
n to the

set A. The complement of A is Ac = R
n \ A. If A is (Lebesgue) measurable, then

the Lebesgue measure of A is denoted by |A|. If 0 < |A| <∞ and f ∈ L1(A), then
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the mean value integral of f over A is

∫
A

f (x) dx = 1

|A|
∫
A

f (x) dx.

As usual, C denotes a constant whose exact value may change at each occurrence.
For simplicity, we use the following versions of Hausdorff contents and mea-

sures. It is easy to see that these are comparable to the more standard definitions in
e.g. [9, 30].

Definition 1.1 Let E ⊂ R
n and λ ≥ 0. For 0 < δ ≤ ∞, the λ-dimensional

Hausdorff δ-content of E is

Hλδ (E) = inf

{ ∞∑
i=1

rλi : E ⊂
∞⋃
i=1

B(xi, ri), 0 < ri ≤ δ
}
.

(In the case λ = 0 we allow also finite summations.) Then the (spherical) λ-
dimensional Hausdorff measure of E is

Hλ(E) = lim
δ→0+

Hλδ (E) = sup
δ>0

Hλδ (E),

and the Hausdorff dimension of E is defined as

dimH(E) = inf
{
λ ≥ 0 : Hλ(E) = 0

} = inf
{
λ ≥ 0 : Hλ∞(E) = 0

}
.

2 Assouad Type Dimensions

The definitions of the Assouad type dimensions of a setE ⊂ R
n are based on simple

and natural local covering properties of E: we consider pieces E ∩ B(x,R), with
x ∈ E and 0 < R < diam(E), and ask how many balls of radius 0 < r < R are
needed at most (upper Assouad), or respectively at least (lower Assouad), to cover
such pieces. Thus these concepts reveal the most “extreme” local behavior of sets,
whereas other notions of dimension usually tell more about the “average” properties
of sets.

When A ⊂ R
n is a bounded set and r > 0, we let N(A, r) denote the minimal

number of open balls of radius r that are needed to cover the set A.

Definition 2.1 Let E ⊂ R
n. The upper Assouad dimension dimA(E) is the

infimum of λ ≥ 0 for which there exists a constant C such that

N
(
E ∩ B(x,R), r) ≤ C( r

R

)−λ = C(R
r

)λ
(2.1)

for every x ∈ E and 0 < r < R < diam(E).
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In particular, the estimate in (2.1) holds whenever λ > dimA(E), and possibly
also when λ = dimA(E). If E ⊂ E′, then clearly dimA(E) ≤ dimA(E

′). It is also
easy to see that 0 ≤ dimA(E) ≤ n for every E ⊂ R

n.
In the literature, the upper Assouad dimension is often called the Assouad

dimension and denoted by dimA(E). This concept was used by Assouad in
connection with the bi-Lipschitz embedding problem between metric and Euclidean
spaces, see e.g. [4]. A nice account on the basic properties and history of the
Assouad dimension is given in [29]. See also the survey by Fraser [11] in this same
volume (and the references therein) for recent fractal geometric applications of the
(upper) Assouad dimension and its generalizations.

We illustrate the definition by proving the fact that the Hausdorff dimension
always gives a lower bound for the upper Assouad dimension.

Lemma 2.2 Let E ⊂ R
n. Then dimH(E) ≤ dimA(E).

Proof By the countable stability of the Hausdorff dimension it suffices to show that

dimH
(
E ∩ B(x,R)) ≤ dimA(E)

for every x ∈ E and R > 0. Let s > dimA(E), choose λ satisfying dimA(E) < λ <

s, and fix x ∈ E and R > 0. Then E ∩ B(x,R) can be covered by

N ≤ C
(R
r

)λ

balls of radius r , for every 0 < r < R. Thus, by the definition of Hausdorff content,

H s
r

(
E ∩ B(x,R)) ≤ Nrs ≤ C1R

λrs−λ.

Letting r → 0 gives H s
(
E ∩ B(x,R)) = 0, and we conclude that

dimH
(
E ∩ B(x,R)) ≤ dimA(E). 
�

Definition 2.3 Let E ⊂ R
n. The lower Assouad dimension dimA(E) is the

supremum of λ ≥ 0 for which there exists a constant C such that

N
(
E ∩ B(x,R), r) ≥ C( r

R

)−λ = C(R
r

)λ
(2.2)

for every x ∈ E and 0 < r < R < diam(E).

In particular, the estimate in (2.2) holds whenever 0 ≤ λ < dimA(E), and
possibly also when λ = dimA(E). In the case E = {x0}, x0 ∈ R

n, we remove
the requirement R < diam(E) from the definition and hence dimA({x0}) = 0. It is
easy to verify that 0 ≤ dimA(E) ≤ dimA(E) ≤ n for every E ⊂ R

n. However, it
should be noted that, unlike (most) other natural concepts of dimension, the lower
Assouad dimension is not monotone. For instance, dimA({0} ∪ [1, 2]) = 0, due to
the isolated point 0, but for the subset [1, 2] we have dimA([1, 2]) = 1.
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The lower Assouad dimension is often called the lower dimension and denoted
by dimL(E). Thus the pair of Assouad-type dimensions can be referred to as
the (upper) Assouad dimension dimA(E) = dimA(E) and the lower (Assouad)
dimension dimA(E) = dimL(E). Also other names, such as (uniform) metric
dimension and minimal dimensional number, respectively, have been used. An early
reference concerning the lower (Assouad) dimension is [21], and more recently
some basic properties of this dimension have been discussed e.g. in [10] and [18].

Remark 2.4 It should be noted that in the literature there are some slight differences
in the definitions of the upper and lower Assouad dimensions. In particular,
sometimes the covering inequalities in (2.1) and (2.2) are required to hold only
for 0 < r < R ≤ R0, for some fixed R0 < ∞. This change may affect the
dimensions of unbounded sets. Notice also that in (2.1) we may omit the upper
bound R < diam(E) without altering the value of the upper Assouad dimension.
On the other hand, if we omit this upper bound in (2.2), then all bounded sets would
have lower Assouad dimension equal to zero, which is perhaps not so desirable.

Recall that a closed set E ⊂ R
n is called (Ahlfors–David) λ-regular, or a λ-set,

for 0 ≤ λ ≤ n, if there is a constant C ≥ 1 such that

C−1rλ ≤ Hλ
(
E ∩ B(x, r)) ≤ Crλ (2.3)

for every x ∈ E and 0 < r < diam(E); for λ = 0 the upper bound r < diam(E) is
omitted.

Examples of λ-regular sets include subspaces of R
n and self-similar fractals

satisfying the open set condition. It is not hard to see that for a λ-regular set E ⊂ R
n

the upper and lower Assouad dimensions agree. More precisely, if E ⊂ R
n is λ-

regular then

dimA(E) = dimA(E) = dimH(E) = λ.

In order to examine the relation between the lower Assouad dimension and
the Hausdorff dimension for more general sets, we consider the following density
condition for Hausdorff contents.

Definition 2.5 Let 0 ≤ λ ≤ n. We say that a set E ⊂ R
n satisfies the λ-Hausdorff

content density condition if there exists a constant C such that

Hλ∞
(
E ∩ B(x,R)) ≥ CRλ (2.4)

for every x ∈ E and 0 < R < diam(E).

Sometimes the upper bound R < diam(E) is omitted in Definition 2.5, but then
a bounded set can not satisfy this condition for any λ > 0.

The λ-Hausdorff content density condition holds for a set E ⊂ R
n if and only if

there is a constant C such that if {B(xi, ri) : i ∈ N} is a cover of E ∩ B(x,R), for
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x ∈ E and 0 < R < diam(E), then

∞∑
i=1

rλi ≥ CRλ. (2.5)

If we only use balls B(xi, r) having a fixed radius 0 < r < R, then (2.5) reads as

N∑
i=1

rλ ≥ CRλ, or equivalently, N ≥ C
(R
r

)λ
, (2.6)

which is exactly (2.2) for E ∩ B(x,R).
Condition (2.6) might seem a priori much weaker than (2.5). However, when

required to hold uniformly for every x ∈ E and 0 < R < diam(E), these conditions
are almost equivalent for closed sets. That is, the estimate in (2.7), for covers using
balls of fixed radii r , yields a corresponding estimate (2.8) for covers where balls of
all radii are allowed. The price to pay is a small drop in the dimensional parameter λ.

Lemma 2.6 Let E ⊂ R
n be a closed set. Assume that there exist 0 < λ0 ≤ n and a

constant C1 such that

N
(
E ∩ B(x,R), r) ≥ C1

(R
r

)λ0
(2.7)

for every x ∈ E and 0 < r < R < diam(E). Then, for every 0 < λ < λ0, there
exists a constant C such that

Hλ∞
(
E ∩ B(x,R)) ≥ CRλ (2.8)

for every x ∈ E and 0 < R < diam(E).

The proof of Lemma 2.6 requires a bit work. Roughly speaking, the idea is
to construct a Cantor-type set F ⊂ E ∩ B(x,R) by using (2.7) iteratively, and
then deduce (2.8) with the help of the equally distributed probability measure μ on
F . We omit the details, which are similar to those in [17, Theorem 3.1] and [23,
Lemma 4.1].

Lemma 2.6 has several important consequences. The following theorem shows
that the lower Assouad dimension of closed sets can be characterized using the
Hausdorff content density condition.

Theorem 2.7 Let E ⊂ R
n be a closed set and assume that 0 ≤ λ < dimA(E).

Then E satisfies the λ-Hausdorff content density condition. Moreover, dimA(E) is
the supremum of the exponents λ ≥ 0 for which E satisfies the λ-Hausdorff content
density condition.
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Proof Choose λ0 satisfying 0 ≤ λ < λ0 < dimA(E). The definition of the lower
Assouad dimension implies that (2.7) holds with a constant C1 for every x ∈ E and
0 < r < R < diam(E). Thus we obtain from Lemma 2.6 that

Hλ∞
(
E ∩ B(x,R)) ≥ CRλ

for every x ∈ E and 0 < R < diam(E); that is, E satisfies the λ-Hausdorff content
density condition.

Assume then that E satisfies the λ-Hausdorff content density condition. Fix x ∈
E and 0 < r < R < diam(E), and let {B(xi, r) : i = 1, . . . , N} be a cover of
E ∩ B(x,R). Then

Rλ ≤ CHλ∞
(
E ∩ B(x,R)) ≤ C

N∑
i=1

rλ = CNrλ,

and so N ≥ C(R
r

)λ. Since this holds for all such covers, we have

N
(
E ∩ B(x,R), r) ≥ C(R

r

)λ
.

Thus dimA(E) ≥ λ, and the proof is complete. 
�
Theorem 2.7 yields a comparison between the Hausdorff dimension and the

lower Assouad dimension of a closed set. Such a comparison was first obtained
in [21].

Corollary 2.8 Let E ⊂ R
n be a closed set. Then

dimA(E) ≤ dimH
(
E ∩ B(x, r)) ≤ dimH(E)

for every x ∈ E and r > 0.

Proof The second inequality follows from the monotonicity of the Hausdorff
dimension. For the first inequality we may clearly assume that dimA(E) > 0
and 0 < r < diam(E). Fix 0 ≤ λ < dimA(E). By Theorem 2.7, we then have
Hλ∞
(
E ∩ B(x, r)) > 0. Hence λ ≤ dimH

(
E ∩ B(x, r)), and the claim follows. 
�

The assumption that E is closed is necessary in Corollary 2.8. Indeed, it is easy
to see that dimA(E) = dimA(E) for all E ⊂ R

n, and hence for instance

dimA(Q
n) = dimA(R

n) = n � 0 = dimH
(
Q
n ∩ B(x, r))

for every x ∈ Q
n and r > 0.

For comparison, we recall also the definitions of the Minkowski (or box-
counting) dimensions of bounded sets. As before, we let N(E, r) be the minimal
number of open balls of radius r that are needed to cover the bounded set E ⊂ R

n.



32 J. Lehrbäck

Then the upper Minkowski dimension of E, dimM(E), can be defined as the
infimum of all λ ≥ 0 for which there exists a constant C such that N(E, r) ≤ Cr−λ
for every 0 < r < diam(E). Correspondingly, the lower Minkowski dimension of
E, dimM(E), is the supremum of all λ ≥ 0 for which there exists a constant C such
that N(E, r) ≥ Cr−λ for every 0 < r < diam(E).

It follows easily from these definitions that

dimA(E) ≤ dimM(E) ≤ dimM(E) ≤ dimA(E)

for all bounded sets E ⊂ R
n. Moreover, if E ⊂ R

n is compact, then

dimA(E) ≤ dimH(E) ≤ dimM(E) ≤ dimM(E) ≤ dimA(E).

A typical example with strict inequalities is the set E = { 1
k
: k ∈ N

} ∪ {0} ⊂
R, for which dimA(E) = dimH(E) = 0, dimM(E) = dimM(E) = 1

2 , and
dimA(E) = 1.

3 The Aikawa Condition

The following integrability condition for the distance function creates a natural link
between the (upper) Assouad dimension and the Muckenhoupt Ap properties of
distance weights, see Sect. 4. This condition was introduced and used by Aikawa in
connection with the so-called quasiadditivity property of Riesz capacities in [1], see
also [2, Part II, Section 7]. In [20] and [22] this condition was applied in the context
of Hardy inequalities.

Definition 3.1 Let E ⊂ R
n be a non-empty set. We say that E satisfies the Aikawa

condition for α ∈ R, if there exists a constant C (depending on α) such that

∫
B(x,r)

dist(y, E)−α dy ≤ Crn−α (3.1)

or, equivalently,

∫
B(x,r)

dist(y, E)−α dy ≤ Cr−α (3.2)

for every x ∈ E and r > 0. Here we use the convention that 00 = 1, and if α > 0
then we also require that |E| = 0.

We let A(E) denote the set of all α ∈ R for which E satisfies the Aikawa
condition.
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It is easy to see that a non-empty set E ⊂ R
n satisfies the Aikawa condition for

all α ≤ 0. On the other hand, if α ≥ n, then

∫
B(x,r)

dist(y, E)−α dy ≥
∫
B(x,r)

|y − x|−α dy = ∞

for every x ∈ E and r > 0, and thus E does not satisfy the Aikawa condition for
any α ≥ n. Hence we may restrict our attention to the range 0 < α < n in the
Aikawa condition.

We now begin to examine the close connections between the upper Assouad
dimension and the Aikawa condition.

Lemma 3.2 Let E ⊂ R
n. If α ∈ A(E), then dimA(E) ≤ n− α.

Proof If α ≤ 0, then the claim is clear since dimA(E) ≤ n. Hence we may assume
that 0 < α < n. Fix x ∈ E and 0 < r < R, and write F = E ∩ B(x,R). By
the existence of maximal packings there are pairwise disjoint open balls B(xi, r2 ),

i = 1, . . . , N , with xi ∈ F , such that F ⊂⋃Ni=1 B(xi, r).
Let Fr be the r-neighborhood of F , that is,

Fr = {y ∈ R
n : dist(y, F ) < r} ⊂ B(x, 2R).

Using the pairwise disjointness of the balls B(xi, r2 ) ⊂ Fr , the fact that dist(y, E) ≤
dist(y, F ) < r for all y ∈ Fr , and the assumed Aikawa condition (3.1), we obtain

NCrn ≤
N∑
i=1

∣∣B(xi, r2 )
∣∣ ≤ |Fr | ≤ rα

∫
Fr

d(y,E)−α dy

≤ rα
∫
B(x,2R)

d(y,E)−α dy ≤ rαCRn−α = Crn
(R
r

)n−α
.

Thus

N
(
E ∩ B(x,R), r) = N(F, r) ≤ N ≤ C(R

r

)n−α
,

and the claim dimA(E) ≤ n− α follows since n− α > 0. 
�
For the converse direction we need to assume a strict upper bound for the

dimension. See, however, also Theorem 3.5 below concerning the strict inequality
in the previous Lemma 3.2.

Lemma 3.3 Let E ⊂ R
n be a non-empty set. If α ∈ R and dimA(E) < n− α, then

α ∈ A(E).
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Proof Again, the claim is clear if α ≤ 0, and so we may assume that α > 0. Choose
dimA(E) < λ < n− α, and let x ∈ E and r > 0. Define

Fj =
{
y ∈ B(x, r) : d(y,E) < 2−j+1r

}
and Aj = Fj \ Fj+1,

for j ∈ N. Since λ > dimA(E), there is a constant C1 such that the set E∩B(x, 2r)
can be covered byNj ≤ C12jλ balls of radius 21−j r , for every j ∈ N. It follows that

each Fj can be covered by at most Nj balls of radius 22−j r . If Bji , i = 1, . . . , Nj ,
are such balls, then

|Fj | ≤
Nj∑
i=1

∣∣Bji ∣∣ ≤ NjC(22−j r)n ≤ C(2−j )n−λrn. (3.3)

Since E ∩ B(x, r) ⊂ Fj for all j ∈ N and λ < n − α < n, by letting j → ∞ we
see in particular that |E ∩ B(x, r)| = 0. Here r > 0 is arbitrary, and thus |E| = 0.

If y ∈ Aj , then 2−j r ≤ d(y,E) < 2−j+1r . In addition, Aj ⊂ Fj for all j ∈ N

and the sets Aj cover B(x, r) up to the set E∩B(x, r), which has measure zero. By
using estimate (3.3) we obtain

∫
B(x,r)

d(y,E)−α dy ≤ C
∞∑
j=1

∫
Aj

d(y,E)−α dy ≤ C
∞∑
j=1

|Fj |(2−j r)−α

≤ Crn−α
∞∑
j=1

(2−j )n−λ−α ≤ Crn−α,

where the geometric series converges since λ < n − α. This together with the fact
|E| = 0 shows that α ∈ A(E). 
�

In order to combine the two lemmas above into a characterization, we need the
following improvement property for the Aikawa condition, observed in [20]. It is
easy to see that the Aikawa condition, for 0 < α < n, implies a reverse Hölder
inequality, see (3.4) below. After that we can apply a suitable version of the so-
called Gehring lemma, see [13, Lemma 3], which is a deep result concerning the
improvement of reverse Hölder inequalities. This leads to the Aikawa condition for
an exponent larger than α. (Notice that conversely it is easy to see that the Aikawa
condition, for 0 < α < n, implies Aikawa conditions for all exponents smaller
than α.)

Theorem 3.4 Let E ⊂ R
n and 0 < α < n. If α ∈ A(E), then there exists α <

α′ < n such that α′ ∈ A(E).
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Proof Fix a ball B(x, r) ⊂ R
n and assume first that B(x, 2r) ∩ E �= ∅. Then

dist(y, E) ≤ 3r for every y ∈ B(x, r), and thus the assumed Aikawa condition (3.2)
implies

∫
B(x,r)

dist(y, E)−α dy ≤ Cr−α = C(r− α2 )2 ≤ C
(∫
B(x,r)

dist(y, E)−
α
2 dy

)2

.

It is easy to see that the same conclusion holds also in the case B(x, 2r) ∩ E = ∅.
Writing f (y) = d(y,E)− α2 , we obtain the reverse Hölder inequality

(∫
B(x,r)

f (y)2 dy

) 1
2 ≤ C

∫
B(x,r)

f (y) dy, (3.4)

for every ball B(x, r) ⊂ R
n.

By the Gehring lemma, there exists p > 2 such that

(∫
B(x,r)

f (y)p dy

) 1
p ≤ C

∫
B(x,r)

f (y) dy ≤ C
(∫
B(x,r)

f (y)2 dy

) 1
2

,

for every ball B(x, r) ⊂ R
n, where the second inequality is just the usual Hölder’s

inequality. Choose α′ = p
2 α > α. Then the estimate above and the assumed Aikawa

condition give

(∫
B(x,r)

dist(y, E)−α′ dy
) α

2α′ ≤ C
(∫
B(x,r)

dist(y, E)−α dy
) 1

2 ≤ Cr− α2 ,

for every x ∈ E and r > 0, and this implies the Aikawa condition for α′ > α. 
�
We are now prepared to characterize the upper Assouad dimension in terms of

the Aikawa condition. This result is essentially from [26], where corresponding
characterizations were obtained also in more general metric spaces.

Theorem 3.5 Let E ⊂ R
n be a non-empty set and let α > 0. Then α ∈ A(E) if

and only if dimA(E) < n− α.

Proof If dimA(E) < n− α, then α ∈ A(E) by Lemma 3.3.
Assume then that 0 < α ∈ A(E). Since α < n, by Theorem 3.4 there is α′ > α

such that also α′ ∈ A(E). Thus Lemma 3.2 yields dimA(E) ≤ n− α′ < n− α, as
desired. 
�

Notice that the assumption α > 0 in Theorem 3.5 is essential: if E ⊂ R
n and

dimA(E) = n, then 0 ∈ A(E), but dimA(E) ≮ n− 0.
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4 Muckenhoupt Weights

A measurable function w : Rn→ R is called a weight in R
n if w(x) > 0 for almost

every x ∈ R
n and
∫
B
w(x) dx <∞ for all balls B ⊂ R

n. When w is a weight in R
n

and E ⊂ R
n is a measurable set, we write

w(E) =
∫
E

w(x) dx.

The following classes of Muckenhoupt weights are important tools for instance
in harmonic analysis; we refer to [12, Chapter IV] for a thorough discussion.
Muckenhoupt weighted R

n is also an example of a metric space with a doubling
measure and supporting a p-Poincaré inequality, which are the standard assumptions
in analysis on metric spaces; see for instance [6, 14] and the references therein for
more information.

Definition 4.1 Letw be a weight in R
n. We say thatw belongs to the Muckenhoupt

class

(a) Ap, for 1 < p <∞, if there is a constant C such that

(∫
B

w(x) dx

)(∫
B

w(x)
− 1
p−1 dx

)p−1

≤ C (4.1)

for every ball B ⊂ R
n.

(b) A1, if there is a constant C such that

(∫
B

w(x) dx

)
ess sup
x∈B

1

w(x)
≤ C, (4.2)

for every ball B ⊂ R
n.

(c) A∞, if there are constants C, δ > 0 such that

w(E)

w(B)
≤ C
( |E|
|B|
)δ

whenever B ⊂ R
n is a ball and E ⊂ B is a measurable set.

It is easy to verify directly from the Ap condition (4.1) that if 1 < p <∞ and w
is a weight in R

n, then

w ∈ Ap if and only if w
− 1
p−1 ∈ A p

p−1
. (4.3)

Moreover, an application of Hölder’s inequality shows that if 1 ≤ p < q <∞, then
Ap ⊂ Aq .
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The class A∞ can be characterized as the union of all Ap, for 1 ≤ p < ∞, that
is,

A∞ =
⋃

1≤p<∞
Ap. (4.4)

Neither of the inclusions in (4.4) is trivial. The main tool for establishing both of
them is a reverse Hölder inequality, but we omit the details; see e.g. [12, Chapter IV,
Section 2]. We do not really need the class A∞ below, since all statements “w ∈
A∞” could be replaced by the statement “w ∈ Ap for some 1 ≤ p <∞”.

Example 4.2 Consider the weight w(y) = |y|−α for every y ∈ R
n \ {0}. It is

straightforward to verify by direct computations that w ∈ A1 if and only if 0 ≤ α <
n, and w ∈ Ap, for 1 < p <∞, if and only if (1− p)n < α < n.

Our main interest in this section is in the generalizations of Example 4.2 to more
general distance functions, that is, for weights of the type w(y) = dist(y, E)−α ,
with E ⊂ R

n satisfying |E| = 0. The Aikawa condition is tailor-made for the study
of this problem; see [1, 2], in particular [2, p. 151].

Theorem 4.3 Let E ⊂ R
n and α ∈ R, and define w(y) = dist(y, E)−α for every

y ∈ R
n. Then the following assertions hold.

1. If 0 ≤ α ∈ A(E), then w ∈ Ap for every 1 ≤ p ≤ ∞.
2. If α < 0 and 1 < p <∞ are such that −α

p−1 ∈ A(E), then w ∈ Ap.

Proof Consider first part 1. If α = 0, then w(y) = 1 for every y ∈ R
n, and it

follows that w ∈ Ap for every 1 ≤ p ≤ ∞. Assume then that 0 < α < n and
that (3.1) holds with a constant C1, that is,

∫
B(x,r)

w(y) dy ≤ C1r
n−α <∞

for every x ∈ E and r > 0. This implies that w is locally integrable. Since α ∈
A(E) and α > 0, we have |E| = 0. Therefore w(x) > 0 for almost every x ∈ R

n,
and thus w is a weight.

Since A1 ⊂ Ap for every p ≥ 1, it suffices to show that w ∈ A1. Fix a ball
B(x, r) ⊂ R

n and assume first that B(x, 2r) ∩ E �= ∅. Then B(x, r) ⊂ B(z, 3r),
for some z ∈ E, and so the assumed Aikawa condition (3.2) implies

∫
B(x,r)

w(y) dy ≤ C
∫
B(z,3r)

dist(y, E)−α dy ≤ C(3r)−α = Cr−α.

On the other hand, if y ∈ B(x, r) \ E, then

1

w(y)
= dist(y, E)α ≤ d(y, z)α ≤ (3r)α = Crα,
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since α > 0. By combining the estimates above and recalling that |E| = 0, we
obtain

(∫
B(x,r)

w(y) dy

)
ess sup
y∈B(x,r)

1

w(y)
≤ C.

This shows that theA1 condition (4.2) holds for the ballB(x, r) ifB(x, 2r)∩E �= ∅.
Assume then that B(x, 2r) ∩ E = ∅. In this case

1
2 dist(y, E) ≤ dist(x, E) ≤ 2 dist(y, E)

for every y ∈ B(x, r), and thus

(∫
B(x,r)

w(y) dy

)
ess sup
y∈B(x,r)

1

w(y)
≤ C dist(x, E)−α dist(x, E)α ≤ C.

Hence (4.2) holds also in the case B(x, 2r) ∩ E = ∅, and the proof of part 1 is
complete.

In part 2, we let

σ(y) = w(y)− 1
p−1 = dist(y, E)

α
p−1

for every y ∈ R
n. By part 1 we have σ ∈ A1 ⊂ A p

p−1
, and the claim w ∈ Ap

follows from the duality property (4.3) of Ap weights. 
�
There is also a partial converse of Theorem 4.3, see Theorem 4.5 below. We recall

that a set E ⊂ R
n is porous, if there exists a constant C such that for every x ∈ R

n

and r > 0 there exists z ∈ R
n such that B(z, Cr) ⊂ B(x, r) \ E. Porosity can also

be characterized using the upper Assouad dimension:

Theorem 4.4 A set E ⊂ R
n is porous if and only if dimA(E) < n.

For the proof of Theorem 4.4, see for instance [29, Theorem 5.2]. Note that by
Theorem 3.5 the conditions in Theorem 4.4 hold if and only if there is α > 0 such
that α ∈ A(E).

Theorem 4.5 Assume thatE ⊂ R
n is a non-empty porous set. Let α ∈ R and define

w(y) = dist(y, E)−α for every y ∈ R
n. Then the following assertions hold.

1. If α ≥ 0, 1 ≤ p <∞, and w ∈ Ap, then α ∈ A(E).
2. If α < 0, 1 < p <∞, and w ∈ Ap, then −α

p−1 ∈ A(E).

Proof In part 1 we may assume that p > 1. Let B0 = B(x, r) be a ball. Since E is
porous, there is z ∈ B0 such that B(z, Cr) ⊂ B(x, r) \ E. Then dist(y, E) ≥ C

2 r
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for every y ∈ B = B(z, C2 r), and since the measures of B0 and B are comparable,
we obtain

(∫
B0

w(y)
− 1
p−1 dy

)p−1

≥ C
(∫
B

w(y)
− 1
p−1 dy

)p−1

≥ C
(∫
B

r
α
p−1 dy

)p−1

≥ Crα.

On the other hand, the Ap condition (4.1) for w ∈ Ap gives

(∫
B0

w(y) dy

)(∫
B0

w(y)
− 1
p−1 dy

)p−1

≤ C.

By combining the two estimates above we obtain

∫
B0

dist(y, E)−α dy =
∫
B0

w(y) dy ≤ C
(∫
B0

w(y)
− 1
p−1 dy

)1−p
≤ Cr−α,

and thus α ∈ A(E).
Then we consider part 2. If w ∈ Ap, for 1 < p <∞, we have by the Ap duality

in (4.3) that

dist(·, E)−( −αp−1 ) = dist(·, E) α
p−1 = w− 1

p−1 ∈ A p
p−1
.

Hence the claim follows from part 1. 
�
For porous sets we now have a complete characterization of the Ap properties of

the distance functions.

Theorem 4.6 Let 1 < p <∞ and assume that E ⊂ R
n is a non-empty porous set.

Let α ∈ R and define w(y) = dist(y, E)−α for every y ∈ R
n. Then the following

assertions hold.

1. w ∈ A1 if and only if 0 ≤ α < n− dimA(E).
2. w ∈ Ap if and only if

(1− p)(n− dimA(E)
)
< α < n− dimA(E). (4.5)

Proof Since E is porous, dimA(E) < n by Theorem 4.4.
We consider first part 2. If 0 ≤ α < n − dimA(E), we have α ∈ A(E) by

Lemma 3.3 and thus part 1 of Theorem 4.3 implies w ∈ Ap. On the other hand, if

(1− p)(n− dimA(E)
)
< α < 0,
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then

0 <
−α
p − 1

< n− dimA(E).

From Lemma 3.3 we obtain −α
p−1 ∈ A(E) and hence w ∈ Ap by part 2 of

Theorem 4.3.
Conversely, assume that w ∈ Ap. If α > 0, part 1 of Theorem 4.5 implies

α ∈ A(E), and so α < n − dimA(E) by Theorem 3.5. If α = 0, then (4.5) holds
since dimA(E) < n by porosity. Finally, if α < 0, then −α

p−1 ∈ A(E) by part 2 of
Theorem 4.5. Theorem 3.5 gives

0 <
−α
p − 1

< n− dimA(E),

showing that (4.5) holds also in this case. The proof of part 2 is complete.
Consider then part 1. If 0 ≤ α < n − dimA(E), the claim w ∈ A1 follows from

Lemma 3.3 and part 1 of Theorem 4.3 just as in part 2. Conversely, if w ∈ A1 and
α > 0, then α < n−dimA(E) by part 1 of Theorem 4.5 and Theorem 3.5. If α = 0,
then 0 ≤ α < n−dimA(E) holds since dimA(E) < n by porosity. Finally, it is easy
to see that α ≥ 0 is necessary in part 1, and this completes the proof. 
�
Remark 4.7 The fact that the Ap properties of the weights w(y) = dist(y, E)−α
depend on the dimension(s) of E ⊂ R

n has certainly been part of the mathematical
folklore, at least for suitably nice sets E. Aikawa [1, 2] mentions explicitly the
connections between the Aikawa condition and Ap weights. Horiuchi [15, 16]
used a different dimensional condition, called property P(s), in the study of Ap
properties of distance weights and in particular distance weighted Sobolev-type
embeddings. It was shown in [27, Theorem 3.4] that also this property P(s) can
be characterized using the upper Assouad dimension. A sufficient condition in the
spirit of Theorem 4.3 was given in [7, Lemma 3.3] for subsets of λ-regular sets of
R
n.
Theorem 4.6 was formulated in [8], where corresponding results were also

obtained in metric spaces in terms of the so-called lower Assouad codimension.
Metric space results of this type were considered in [3], as well, but using a
completely different approach and under the stronger assumption that both the
space X and the set E ⊂ X satisfy Ahlfors–David regularity conditions; see [3,
Theorems 6 and 7].

5 Hardy–Sobolev Inequalities

Hardy–Sobolev inequalities interpolate between the Sobolev inequality and the p-
Hardy inequality. Indeed, for q = p∗ = np

n−p inequality (5.1) is the Sobolev
inequality, while for q = p we recover the p-Hardy inequality.
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Definition 5.1 Let 1 < p ≤ q ≤ np
n−p <∞ and let � � R

n be an open set. We say
that the (q, p)-Hardy–Sobolev inequality holds in � if there is a constant C such
that

(∫
�

|u(x)|q dist(x,�c)
q
p
(n−p)−n

dx

) 1
q ≤ C

(∫
�

|∇u(x)|p dx
) 1
p

(5.1)

for every u ∈ C∞0 (�).
We also consider weighted versions of these inequalities and say that the

(q, p, β)-Hardy–Sobolev inequality holds in �, for β ∈ R, if there is a constant
C such that

(∫
�

|u(x)|q dist(x,�c)
q
p
(n−p+β)−n

dx

) 1
q ≤ C

(∫
�

|∇u(x)|p dist(x,�c)β dx

) 1
p

(5.2)
for every u ∈ C∞0 (�).

For q = p, the inequality in (5.2) is called the (p, β)-Hardy inequality.
In this final section we formulate (without proofs) sufficient and necessary

conditions for Hardy–Sobolev inequalities in � ⊂ R
n, given in terms of the upper

and lower Assouad dimensions (and also other dimensions) of the complement
�c = R

n\�. It has been understood already for a long time that sufficient conditions
for these inequalities naturally split into two cases: either the complement �c has to
be sufficiently “thick” or sufficiently “thin”. The thickness has been formulated, for
instance, using capacity density or Hausdorff content density, and thinness using the
Aikawa condition. With Assouad dimensions this duality becomes more transparent:
thickness means that �c has large lower Assouad dimension, while thinness means
that �c has small upper Assouad dimension.

It can also be shown that suitable combinations of such thick and thin parts give
sufficient conditions for Hardy–Sobolev inequalities, as well, but these cases will
not be discussed in this work; see e.g. [25, Section 7] for details.

In the case of thin complements, the Hardy–Sobolev inequalities can be obtained
by using the following general two weight embedding result together with the
Aikawa condition and the knowledge about the Ap properties of the distance
functions.

Theorem 5.2 Let 1 < p ≤ q < ∞ and let (w, v) be a pair of weights such that

w ∈ A∞ and σ = v− 1
p−1 ∈ A∞. Assume that there exists a constant C1 such that

(
1

|B|1− 1
n

)p
w(B)

p
q σ (B)p−1 ≤ C1 (5.3)
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for all balls B ⊂ R
n. Then there exists a constant C such that

(∫
Rn

|u(x)|qw(x) dx
) 1
q ≤ C

(∫
Rn

|∇u(x)|pv(x) dx
) 1
p

for every u ∈ C∞0 (Rn).
Theorem 5.2 can be proved using the mapping properties of Riesz potentials

and maximal operators. Muckenhoupt and Wheeden [31, Theorem 1] gave a single
weight control for the Riesz potential I1 in terms of a fractional maximal operator,
and Pérez [32, Theorem 1.1] proved a two weight Lp–Lq control for such maximal
operators under the assumption in (5.3). The claim of Theorem 5.2 then follows
from the pointwise estimate |u(x)| ≤ CI1|∇u|(x) for the Riesz potential and the
boundedness properties of the maximal operator. See also [33] and [8] for discussion
and generalizations of these results to metric spaces.

From Theorem 5.2 we obtain the following weighted global Hardy–Sobolev
inequalities where the integrals can be taken over the whole R

n. This is possible
since dimA(E) < n by the assumptions, and consequently |E| = 0.

Theorem 5.3 Let E ⊂ R
n be a non-empty closed set and assume that

1 < p ≤ q ≤ np

n− p <∞

and

dimA(E) < min

{
q

p
(n− p + β), n− β

p − 1

}
.

Then the inequality

(∫
Rn

|u(x)|q dist(x, E)
q
p
(n−p+β)−n

dx

) 1
q ≤ C

(∫
Rn

|∇u(x)|p dist(x, E)β dx

) 1
p

(5.4)
holds for every u ∈ C∞0 (Rn).

In particular, if E = �c satisfies the assumptions in Theorem 5.3, then the
(q, p, β)-Hardy inequality holds in �. The dimensional condition in Theorem 5.3,
together with Theorem 4.3, implies that the weights in (5.4) satisfy the A∞
conditions in Theorem 5.2, and then (5.3) for these weights can be checked with
the help of the Aikawa condition; see [8, Section 4] for the computations (in the
metric setting).

Actually, by the results of Horiuchi [15] (see also [16] and [27, Section 5]) the
bound dimA(E) < n − β

p−1 can be removed if dimA(E) < n − 1, while by [27,

Example 4.4] this bound is really needed when dimA(E) ≥ n− 1 and also sharp at
least when dimA(E) = n − 1. The proofs in [15] for the case dimA(E) < n − 1
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however require a completely different approach based on relative isoperimetric
inequalities.

On the other hand, it is not hard to show that for β ≥ 0 the bound dimA(E) <
q
p
(n−p+β) is also necessary for the global Hardy–Sobolev inequality to hold with

respect to E (see [27, Theorem 6.1]). Thus we have the following characterization
in the case β = 0.

Theorem 5.4 Let 1 < p ≤ q < np
n−p <∞ and assume thatE ⊂ R

n is a non-empty
closed set. Then there exists a constant C such that

(∫
Rn

|u(x)|q dist(x, E)
q
p
(n−p)−n

dx

) 1
q ≤ C

(∫
Rn

|∇u(x)|p dx
) 1
p

, (5.5)

for every u ∈ C∞0 (Rn), if and only if

dimA(E) <
q

p
(n− p).

Under some additional conditions the bound dimA(E) <
q
p
(n − p + β) is

necessary also for β < 0, see [27, Theorem 6.2] and compare also to Theorem 5.7
below.

We now turn to the case of thick complements. A well-known sufficient condition
for the unweighted p-Hardy inequality in � ⊂ R

n is the uniform p-fatness of
the complement �c, see e.g. [28, 34]. Uniform fatness is a density condition for
the variational p-capacity, but in fact �c is uniformly p-fat if and only if �c is
unbounded and satisfies the λ-Hausdorff density condition in Definition 2.5 for
some λ > n− p; see [19, Section 2.4] for a discussion.

The Hausdorff content density condition is a natural assumption also for
weighted Hardy inequalities, but for β ≥ p−1 an additional accessibility condition
for the boundary ∂� is needed. This leads to the following theorem. We omit the
details and refer to [19] and [24] for the definitions and proofs; see also [5] for recent
progress concerning such accessibility conditions.

Theorem 5.5 Let 1 < p < ∞, λ ≥ 0, and β ∈ R be such that λ > n − p + β.
Assume that � ⊂ R

n is an open set such that �c is unbounded and satisfies the
λ-Hausdorff content density condition. Moreover, if β ≥ p − 1, we assume an
additional accessibility condition for ∂�. Then the (p, β)-Hardy inequality holds
in �.

Combining this with Theorem 2.7 and an interpolation result in [27, The-
orem 2.1], we obtain the corresponding Hardy–Sobolev inequalities under an
assumption for the lower Assouad dimension of the complement.
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Theorem 5.6 Let 1 < p ≤ q ≤ np
n−p < ∞ and β ∈ R and assume that � ⊂ R

n

is an open set such that �c is unbounded and dimA(�
c) > n − p + β. Moreover,

if β ≥ p − 1, we assume an additional accessibility condition for ∂�. Then the
(q, p, β)-Hardy–Sobolev inequality holds in �.

Proof Let λ ≥ 0 be such that dimA(�
c) > λ > n − p + β. By Theorem 2.7

the complement �c satisfies the λ-Hausdorff content density condition (2.4) and
thus the (p, β)-Hardy inequality holds in � by Theorem 5.5. The (q, p, β)-Hardy–
Sobolev inequality then follows from [27, Theorem 2.1]. 
�

We have seen in Theorems 5.3 and 5.6 that the “dual” conditions

dimA(�
c) <

q

p
(n− p + β) and dimA(�

c) > n− p + β,

possibly together with some additional requirements, are sufficient for the (q, p, β)-
Hardy–Sobolev inequality in � ⊂ R

n. As was already mentioned, also suitable
combinations of these conditions suffice for Hardy–Sobolev inequalities, and this
rules out the possibility that the conditions above could characterize the validity
of Hardy–Sobolev inequalities. Nevertheless, these conditions are not that far from
being also necessary, and at least the dimensional bounds q

p
(n−p+β) and n−p+β

are optimal. This can be seen from the following result, which is [27, Theorem 4.6].
Interestingly, also the Hausdorff dimension and the (lower) Minkowski dimension
are needed here, and they can not be changed to dimA(�

c) in the respective bounds.
However, in the case q = p the inequalities in these dimensional lower bounds can
be made strict, see [22]. From this it follows that if

dimH(�
c) ≤ n− p + β ≤ dimA(�

c),

then the (p, β)-Hardy inequality can not hold in �.

Theorem 5.7 Let 1 < p ≤ q < np
n−p < ∞ and β ∈ R, and assume that the

(q, p, β)-Hardy–Sobolev inequality (5.2) holds in an open set � ⊂ R
n.

1. If β ≥ 0 and q
p
(n− p + β) �= n, then either

dimA(�
c) <

q

p
(n− p + β) or dimH(�

c) ≥ n− p + β.

2. If β < 0 and �c is compact and porous, then either

dimA(�
c) <

q

p
(n− p + β) or dimM(�

c) ≥ n− p + β.

Examples in [27] show that for β < 0 the compactness assumption can not
be completely omitted. However, compactness can be relaxed to the condition that
x �→ dist(x,�c)β is locally integrable, which in turn holds, for instance, if we
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assume that dimM(�
c ∩B) < n+β for all balls B centered at �c. It is not known if

the porosity assumption is necessary or if the lower Minkowski dimension (instead
of the Hausdorff dimension) is really needed in the case β < 0.

In conclusion, the moral of this final section is not so much in the actual
formulations of all these conditions for Hardy–Sobolev inequalities, but rather in the
fact that all five notions of dimensions mentioned in this article (Hausdorff, upper
and lower Assouad, and upper and lower Minkowski) have made an appearance.
Moreover, in the light of examples at least three of these (Hausdorff, upper and
lower Assouad) are certainly needed in order to state the optimal conditions for the
validity of Hardy–Sobolev inequalities in a somewhat uniform and condensed way.
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Abstract Multifractal behavior has been identified and mathematically established
for large classes of functions, stochastic processes and measures. Multifractality has
also been observed on many data coming from Geophysics, turbulence, Physics,
Biology, to name a few. Developing mathematical models whose scaling and
multifractal properties fit those measured on data is thus an important issue.
This raises several still unsolved theoretical questions about the prescription of
multifractality (i.e. how to build mathematical models with a singularity spectrum
known in advance), typical behavior in function spaces, and existence of solutions to
PDEs or SPDEs with possible multifractal behavior. In this survey, we gather some
of the latest results in this area.
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The Supp notion of multifractal functions and measures can be traced back to
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a geometric setting in the version of the so-called multifractal formalism for
functions proposed by Frisch and Parisi [23], see Sect. 4. Another source leading
to multifractal ideas is provided by the works of Henschel and Procaccia [26]
and Halsey et al. [25]. Since then, multifractal analysis was further developed in
dynamical systems theory and geometric measure theory, and has become a standard
tool to describe the fine geometric structure of objects possessing nice invariance
properties, such as self-similar and self-affine measures and functions, many classes
of stochastic processes such as Lévy processes and more general Markov processes,
as well as random measures emerging from multiplicative chaos theory.

Let us recall the notion of singularity spectrum of a function, leading to
multifractals.

Let d ≥ 1 be an integer. Given a real function f ∈ L∞loc(Rd) and x0 ∈ R
d , f is

said to belong to CH (x0), for some H ≥ 0, if there exists a polynomial P of degree
at most �H� and a constant C > 0 such that

for x close to x0, |f (x)− P(x − x0)| ≤ C|x − x0|H .

Definition 1.1 The pointwise Hölder exponent of f ∈ L∞loc(Rd) at x0 is

hf (x0) = sup
{
H ≥ 0 : f ∈ CH (x0)

}
,

and f is said to have a Hölder singularity of order hf (x0) at x0.
The singularity spectrum Df of f is the map:

Df : H ∈ [0,∞] �−→ dim Ef (H), where Ef (H) := {x0 ∈ R
d : hF (x0) = H }.

The notation dim stands for the Hausdorff dimension, and by convention dim ∅ =
−∞.

The multifractal spectrum Df encapsulates key information on a given function
f , in particular it carries a description of the distribution of the singularities of f .
But the computation of Df often raises deep mathematical questions (for instance,
it took almost 130 years to find the multifractal spectrum of the famous Riemann

series
+∞∑
n=1

sin(n2πx)

n2 ), and in most cases the exact value of Df happens to be not

directly accessible, neither theoretically nor numerically.
Fortunately, the notion of multifractal formalism furnishes a clever way to

circumvent this difficulty and to compute the explicit value of the spectrum of large
classes of measures and functions. Also, multifractal formalism provides ideas to
develop numerical algorithms able to estimate Df on real-life data. The main idea
is that for very large classes of functions f (and also for other mathematical objects
like measures, stochastic processes—such examples will be given in this paper),Df
is equal to the Legendre transform of the so-called Lq -spectrum τf of f : this Lq -
spectrum is computed directly using the values of f , and is numerically accessible.
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When these two quantities (Df and the Legendre transform of τf ) coincide, it is said
that f satisfies the multifractal formalism. Examples of Lq -spectra for functions
(and measures) based on increments, wavelet coefficients or wavelet leaders, are
given in the upcoming sections (see (4.1), (4.2), (4.8) or (4.9)). The intuition that a
multifractal formalism should hold is due to U. Frisch and G. Parisi, we refer the
reader to Sect. 4 for an account on the ideas leading to this formula.

The multifractal formalism, and its validity for many mathematical models,
explains the success of the multifractal approach used as classification tool in signal
and image processing. Indeed, algorithms have been developed (mainly based on
wavelet theory, see [38] for the original WTMM method and more recently [2] for a
mathematical study of the wavelet leaders algorithm and the latest developments
and algorithms based on wavelet leaders) to estimate numerically Lq -scaling
functions, the stability and efficiency of these algorithms being mathematically
grounded. Using these algorithms, it is now established that many data coming from
Geophysics, turbulence, Physics, Biology, exhibit non-linear Lq -scaling functions,
which for a given function f is interpreted thanks to the Frisch–Parisi heuristics
as a non-trivial singularity spectrum Df of f . Examples of data and estimated
singularity spectra are plotted in Figs. 1 and 2.

Resuming the above, we have on one side many mathematical objects f with
non-linear Lq -scaling functions and a non-trivial singularity spectrum Df , and on
the other side an impressive quantity of signals, images and multivariate, multi-
dimensional data whose estimatedLq -spectra and singularity spectra are non-trivial.
It is worth asking which mathematical objects are indeed the most relevant to
model the observed data, and how to create models with any reasonable multifractal
behavior.

Fig. 1 Image and estimated multifractal spectrum of different color levels of a satellite image.
Courtesy H. Wendt
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Fig. 2 Two FMRI signals of a resting (in black) and acting (in red) patient. Comparison between
their estimated multifractal spectrum. Courtesy H. Wendt

This general problematics can be understood in various ways, and raises several
theoretical questions, most of them still being open:

1. What are the mappings σ : R+ → [0, d] ∪ {−∞} that are admissible to be a
multifractal spectrum, i.e. there exists a function f : Rd → R such thatDf = σ?

2. What are the mappings σ : R+ → [0, d] ∪ {−∞} that are admissible to be a
homogeneous multifractal spectrum, i.e. there exists a function f : Rd → R

such for every cube I ⊂ R
d with non-empty interior, DfI = σ where fI stands

for the restriction of f on I?
3. Given an admissible (homogeneous or not) singularity spectrum σ : R+ →
[0, d] ∪ {−∞}, is there a functional space in which Baire typical functions have
σ as singularity spectrum? Do typical functions satisfy a multifractal formalism?

4. Given an admissible (homogeneous or not) singularity spectrum σ : R+ →
[0, d] ∪ {−∞}, is there a differential equation, a PDE or a stochastic (P)DE
whose solution has σ as singularity spectrum?

These problems have their counterpart in terms of Lq -spectra: replacing every-
where σ : R+ → [0, d] ∪ {−∞} by τ : R → R, one may ask for the admissible
τ that can be the Lq -spectrum of a function (homogeneous or not), and if such an
Lq -spectrum is typical in some functional space.

The same questions arise when considering probability measures instead of
functions. The main difference with the function setting is that there are additional
constraints when dealing with measures, see Sects. 2 and 4.1. Although the tools
used in the two contexts (functions and measures) are of different nature, a
connection between the two situations is provided by the following theorem from
[8], based on wavelet analysis.

Theorem 1.2 Let μ be a probability measure on R
d such that there exist α,C > 0

satisfying that for every x ∈ R
d and 0 ≤ r ≤ 1, μ(B(x, r)) ≤ Crα .

Consider the function Fμ : Rd → R whose wavelet coefficients are given by
dλ = μ(λ) for every dyadic cube λ ∈ � (see Sect. 4.2 for definitions).

Then the multifractal spectra of μ and Fμ coincide.

Our purpose here is to provide a survey on recent results and on some open
problems related to these various research directions, which combine many ideas
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coming from (and having applications to) geometric measure theory, functional
and harmonic analysis, and real analysis, as well as ergodic theory and dynamical
systems.

2 Prescription of Exponents and Local Dimensions

For a given mapping f : Rd → R belonging to L∞loc(Rd), its associated pointwise
Hölder exponent mapping hf : x �→ hf (x) may be very erratic, changing violently
from one point to the other. Nevertheless hf (viewed as a function) is quite well
understood, as confirmed by the following theorem by S. Jaffard which provides
a full characterization of hf [27, 29]. Recall that Clog(Rd) is the space of those
functions f : Rd → R satisfying that there exists C > 0 such that for every
x, y ∈ R

d with |x − y| ≤ 1/2, |f (x)− f (y)| ≤ C| log |x − y||−1.

Theorem 2.1 When f ∈ Clog(Rd), the mapping hf is a liminf of a sequence of
continuous functions.

Conversely, let H : Rd → R
+ ∪ {+∞} be a liminf of a sequence of continuous

functions. There exists a function f : Rd → R, f ∈ Clog(Rd), such that for every
x ∈ R

d , hf (x) = H(x).
Let us also mention that in [5] the authors build a continuous nowhere differen-

tiable stochastic process (Mx)x≥0 whose pointwise Hölder exponents have the most
general form, i.e. the mapping x �→ hM(x) ∈ (0, 1) can be any liminf of a sequence
of continuous functions.

It is a natural question to investigate the same issues for local dimensions for
measures.

Definition 2.2 Let M(K) be the set of Borel probability measures on a Borel set
K ⊂ R

d .
For μ ∈M(Rd), the support of μ is the set

Supp(μ) = {x ∈ R
d : μ(B(x, r)) > 0 for every r > 0}.

The (lower) local dimension of μ at x ∈ Supp(μ) is

hμ(x) = lim inf
r→0+

logμ(B(x, r))

log r
(2.1)

and the singularity spectrum of μ is defined for H ∈ R ∪ {+∞} by

Dμ(H) = dimEμ(H) where Eμ(H) = {x ∈ Supp(μ) : hμ(x) = H }.

It is common (and in many situations, relevant and important) to look at points
x at which (2.1) turns out to be a limit (and not only a liminf). Nevertheless, in this
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article only lower local dimensions are considered (we will forget the term “lower”
in the following), since we are interested in quantities defined for all x ∈ Supp(μ).

Definition 2.3 A function f (resp. a measure μ) on R
d is called homogeneous (in

short: HM) if the restriction of f (resp. μ) on any finite subcube I ⊂ R
d has the

same singularity spectrum as f (resp. μ).
The same definition applies to a function or measure when R

d is replaced by
[0, 1]d .

One could expect that an analog of Theorem 2.1 should hold for local dimensions
of measures. Unfortunately, the situation is not as clear, as proved by the next lemma
[17].

Lemma 2.4 Let μ ∈ M(Rd) with a support containing a cube U ⊂ R
d . If the

mapping x �→ hμ(x) is continuous on U , then hμ is locally constant and equal to d
on U .

Last lemma leads to the two following open problems: What are the admissible
mappings H : Rd → R

+ satisfying H = hμ for some probability measure μ?
Given an admissible mapping H , can one explicitly build a measure μ ∈ M(Rd)
such that hμ = H?

Even if all these questions are mathematically relevant and raise delicate
questions (in geometric measure theory for instance), in many situations it is even
more important to construct functions with prescribed singularity spectrum. This is
the case in particular when trying to model real-life data, for which essentially only
global quantities (like the Lq -spectrum) are accessible.

3 Prescription of Multifractal Behavior

As expected, the prescription of singularity spectrum for functions or measures is
more involved than that of exponents. Indeed, there is no obvious characterization
for the admissible singularity spectrum for functions. Yet, using wavelet techniques,
S. Jaffard was able to prove the following theorem [28]. Let

R =
⎧⎨
⎩σ : R+ → [0, d] ∪ {−∞} :

⎧⎨
⎩
∃ bounded interval I ⊂ R

+ and α ∈ [0, d]
such that σ = α11I + (−∞)11R+\I

⎫⎬
⎭ .

Theorem 3.1 Let σ : R+ → [0, d] ∪ {−∞} be the supremum of a countable
sequence of functions (σn)n≥1 ∈ R. Then there exists a continuous function f :
R
d → R such that Df = σ .

Although probably not optimal, this theorem already covers a large class of
singularity spectra, certainly sufficient to mimic precisely all the singularity spectra
that can be estimated on real data.
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In particular, any concave mapping σ : R+ → [0, d] ∪ {−∞} can be written as
supn∈N σn for some well chosen functions σn ∈ R, hence it is possible to build a
function f : Rd → R such that Df = σ .

The same questions were addressed for measures first in [17] and then in [7].
The admissible singularity spectra for measures are not characterized either, but
when compared to spectra of functions, there are additional constraints: if dμ = σ
for some μ ∈M(Rd), then σ(h) ≤ min(h, d) (see [13, 39]).

Another surprising constraint obtained in [17] is that the support of the sin-
gularity spectrum of a 1-dimensional HM measure contains an interval. We call
Supp(σ ) the support of a function σ : Rd → R, and by abuse of notation, if
σ : R→ R

+ ∪ {−∞}, Supp(σ ) = {H : σ(H) ≥ 0}.
Proposition 3.2 For any non-atomic HM probability measure μ ∈ M(R), the set
Supp(Dμ) ∩ [0, 1] is necessarily an interval of the form [α, 1], where 0 ≤ α ≤ 1.

This proposition leads to the following notation: for σ : R+ → [0, 1] ∪ {−∞},
consider the mapping

σ †(H) = max
(
σ(H), 0 · 11[inf(Supp(σ )),sup(Supp(σ ))](H)

)
.

Essentially, σ † fills the gaps in the support of σ by replacing the value −∞ by 0.
The result concerning the prescription of singularity spectrum of measures

obtained in [17] is the following.

Theorem 3.3 Let σ : R+ → [0, 1] ∪ {−∞} be the supremum of a countable
sequence of functions (σn)n≥1 ∈ R satisfying in addition that for every n ≥ 1,
calling In the interval on which σn is not −∞,

• In ⊂ [0, 1],
• In is closed,
• σn(x) ≤ x for x ∈ In.
Then:

1. There exists μ ∈M(R) such that Dμ = σ .
2. There exists a HM measure μ ∈ M(R) with support equal to [0, 1] such that
Dμ = σ †, and Dμ(1) = 1.

Observe that although the class of singularity spectra obtained here is quite large,
only local dimensions less than 1 are dealt with, and only the one-dimensional case
is covered. Theorem 3.3 is completed by the result by Barral [7].

Theorem 3.4 Let σ : R+ → [0, d] ∪ {−∞} be an upper semi-continuous function
with support included in [α, β] for some 0 < α < β < +∞, satisfying σ(h) ≤ h for
every h ∈ [α, β], and such that σ(h) = h for some h. Then there exists μ ∈M(Rd)
such that Dμ = σ .

In the last theorem, Barral was also able to build measures that were “homoge-
neous” in the sense that the restriction of μ to any bounded cube I ⊂ R

d such that
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μ(I) �= 0 has the same singularity spectrum as μ itself. A comparison between
Theorems 3.3 and 3.4 yields that (at least) in dimension 1, the measures constructed
by Barral are necessarily not supported by a full interval (their support is a Cantor-
like set), otherwise σ should be replaced by σ †.

Theorems 3.1, 3.3, and 3.4 are not entirely satisfying. Indeed,

• The construction used in Theorem 3.1 does not guarantee that the corresponding
spectrum is homogeneous. Homogeneous spectra are yet very common (for
instance, trajectories of stationary processes usually exhibit homogeneous spec-
tra).

• In the three previous theorems, even if the prescribed spectrum is concave,
the corresponding function or measure a priori does not satisfy a multifractal
formalism.

• The functions and measures built along the proofs of Theorems 3.1 and 3.3
are not “typical” in any sense, and may essentially appear, from the modeling
standpoint, as mathematical extreme toy examples.

These issues will be addressed in the next sections.

4 Prescription of Multifractal Formalisms

Let us very quickly recall the intuition by Frisch and Parisi [23], who studied the
velocity v of a turbulent fluid in a bounded domain � ⊂ R

3. More precisely, inspired
by the seminal works by Kolmogorov on turbulent fluids and the study of the local
fluctuations of their velocity, Frisch and Parisi were interested in the moments of the
increments of v defined by

for every q ∈ R, Sv(q, l) =
∫

�

|v(x + l)− v(x)|qdx. (4.1)

For real data, q being fixed, it has been observed that when |l| becomes small,
Sv(q, l) obeys a scaling law:

Sv(q, l) ∼ |l|ζv(q) for some exponent ζv(q) ∈ R.

The mapping q �→ ζv(q) is called the scaling function of the velocity of the
fluid. It can be seen that if v is modeled at small scales by a fractional Brownian
motion of index H0 (as did Kolmogorov for instance), then ζv(q) is linear with
slope H0. However, in the 1980s, numerical experiments for the velocity show that
ζv(q) is non-linear and concave. The seminal idea by Frisch and Parisi consists
in interpreting this non-linearity in terms of multifractality of v, via the following
heuristic argument.

Replacing Hausdorff by box dimension, and making all kind of rough approxima-
tions (i.e. assuming that limits exist, etc), for all points x ∈ R

3 at which hv(x) = H ,



A Survey on Prescription of Multifractal Behavior 55

one has |v(x + l) − v(x)| ∼ |l|H for small l. Since dimEv(H) = Dv(H), there
should exist approximately |l|−Dv(H) cubes of size l in the domain � containing
points x which are singularities of order H for the velocity v. All these intuitions
lead to the estimates

S(q, l) =
∫

�

|v(x + l)− v(x)|qdx ∼
∑
H

|l|qH |l|−Dv(H)|l|3 ∼
∑
H

|l|qH−Dv(H)+3.

When |l| → 0, the greatest contribution is obtained for the smallest exponent:

ζv(q) = inf
H
(qH −Dv(H)+ 3).

The corresponding mapping q �→ ζv(q) is called the Lq -spectrum or the scaling
function of v—soon we will see more relevant formulas for ζv(q) and how to define
it for measures. By inverse Legendre transform, one deduces that

Dv(H) = inf
q∈R (qH − ζv(q)+ 3)

which justifies that Dv has a concave shape.
It is striking that despite the series of crude approximations, this intuition has

proved to hold true in many (if not most of) situations, after some renormalization
and suitable choices for the scaling functions.

Definition 4.1 We call multifractal formalism any formula relating the singularity
spectrum of a function (or a measure) to a scaling function via a Legendre transform.

For almost 30 years now, many efforts have been made to prove the validity
of multifractal formalism(s) in various functional spaces, for many mathematical
objects (self-similar or self-affine functions and measures) including random pro-
cesses (Mandelbrot cascades, Gaussian multiplicative chaos, Lévy processes). This
line of research was constantly followed and fostered by applications which gave
mathematicians lots of signals and physical phenomena to study and work on, see
Figs. 1 and 2. In particular, stable algorithms to estimate Lq -spectra of data have
been developed, furnishing to the scientific community many robustly analyzed sets
of data [2].

A remaining question though lies in the existence of a functional setting in which
a given multifractal behavior would be “generic”. This is known after [30] as the
Frisch–Parisi conjecture, which can be formulated as follows:

Conjecture 4.2 Given any admissible concave mapping σ : R+ → [0, d] ∪ {−∞},
is there a functional space in which typical functions have σ as singularity spectrum
and satisfy a multifractal formalism?

Notice that ideas leading to a multifractal formalism can also be found in
thermodynamics (see [25, 26] and the large literature around thermodynamical for-
malism). This outlines the universality of the approach consisting in describing local
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fluctuations via the (Legendre transform of) global statistical quantities computed
directly on the object (function, measure, random process) under consideration.

From now on, and without loss of generality, we restrict our statements to
measures and functions supported in the cube [0, 1]d .

4.1 Prescription of Multifractal Formalism for Measures

In case of measures μ ∈ M([0, 1]d), the formula for the Lq -spectrum is quite
standard and given by

τμ(q) = lim inf
j→+∞

1

−j log2

∑
λ∈Dj :μ(λ) �=0

μ(λ)q, (4.2)

where Dj stands for the set of dyadic cubes λj,k = 2−j k + [0, 2−j ]d , k ∈
Z
d , of generation j ∈ Z (i.e. dyadic cubes with side-length equal to 2−j ).

It is easily seen that τμ is always concave, non-decreasing, and that −d ≤
τμ(0+) ≤ τμ(1) = 0. In addition, the support of τμ is equal to R when

lim supr→0+
log(inf{μ(B(x,r)): x∈Supp(μ)})

log r < +∞, and it is [0,+∞) when the same
quantity is infinite [7].

Recall that the Legendre transform of a mapping τ : R→ R (used in the previous
section) is defined for H ≥ 0 as

τ ∗(H) := inf
q∈R(qH − τ(q)).

Barral solved in [7] the following inverse problem.

Theorem 4.3 Let τ : R → R be concave, non-decreasing, with −d ≤ τ(0+) ≤
τ(1) = 0. There exists a probability measure μ ∈M([0, 1]d) compactly supported,
such that τμ = τ and μ satisfies the multifractal formalism, i.e. Dμ = τ ∗.

See Fig. 3 for an illustration.
The drawback of this first important step is that the measure constructed by

Barral in [7] has again a Cantor-like set as support (so it is not fully supported
on [0, 1]d ), hence is not suitable to model any real-life signal supported by, say,
an interval. The result is reinforced in the upcoming paper [9], in which we build
fully supported measures satisfying a prescribed multifractal formalism, which in
addition are almost-doubling in the following sense.

A Borel set function is a mapping μ associating with every Borel set B ⊂ [0, 1]d
a positive real number μ(B) ∈ [0,+∞]. A Borel set function μ is almost-doubling
when there exists a non increasing function θ : (0, 1] → R

+ \ {0} such that :

• θ(1) = 0 and limr→0+
θ(r)

log(r) = 0
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Fig. 3 Left: Lq -spectrum of a measure μ on [0, 1]. Right: The corresponding singularity spectrum
of μ when it satisfies a multifractal formalism

• there is a constant C ≥ 1 such that for all x ∈ [0, 1]d and r ∈ (0, 1] one has

C−1e−θ(r)μ(B(x, r)) ≤ μ(B(x, 2r)) ≤ Ceθ(r)μ(B(x, r)). (4.3)

When θ ≡ 0, then μ is said to be doubling.
Doubling and almost-doubling measures occupy a special place in geometric

measure theory since they are easier to deal with in many situations—such
properties guarantee a certain stability of the values of μ in the sense that μ(B)
and μ(B ′) have comparable values as soon as B and B ′ are two balls of comparable
radii that are close to each other. It is thus important to investigate the possible
combination of these properties with the multifractal ones, as done in the following
theorem proved in [9].

Theorem 4.4 Let τ : R → R be concave, non-decreasing, with −d = τ(0+) ≤
τ(1) = 0.

Then there exists an HM almost doubling measure μ ∈ M([0, 1]d) with full
support in [0, 1]d such that τμ = τ and μ satisfies the multifractal formalism, i.e.
Dμ = τ ∗.

Although Gibbs measures associated with Hölder regular potentials and smooth
maps provide examples of doubling measures with non-trivial multifractal behavior,
it may seem surprising that the almost doubling property (which, as said above,
limits the local variations of a measure) does not constitute a constraint from
the multifractal formalism standpoint: every (admissible) concave mapping can be
obtained as the singularity spectrum of a compactly supported probability measure
satisfying the multifractal formalism.

Theorem 4.4 leaves open interesting questions in ergodic theory and dynamical
systems, and geometric measure theory, which to the best of our knowledge are not
completely addressed yet:
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1. Can the almost doubling property be simplified in a “simple” doubling property
in Theorem 4.4?

2. Given an almost doubling measure μ, is there a doubling measure μ̃ with same
multifractal behavior as μ?

3. Is it possible to find a Hölder potential on a suitable dynamical system such that
the associated invariant measure satisfies the multifractal formalism with a Lq -
spectrum given in advance?

Remark 4.5 In Theorem 4.4, it is possible to impose additional conditions on the
measures μ so that the same result (Dμ = τ ∗) holds. One useful condition, which
will be used later, is the following.

Definition 4.6 Let � be the set of non decreasing functions θ : N → R
∗+ such

that:

1. θ(j) = o(j) as j →∞
2. θ(0) = 0
3. for all ε > 0, there exists jε ∈ N such that for all j ′ ≥ j ≥ jε, θ(j ′) − θ(j) ≤
ε(j ′ − j).

A measure μ ∈ M([0, 1]d) (or μ ∈ M(Rd)) satisfies property (P) if there exist
C, s1, s2 > 0 such that:

(P1) for all j ∈ N and λ ∈ Dj , if μ(〈) �= 0, then

C−12−js2 ≤ μ(λ) ≤ C2−js1 . (4.4)

(P2) There exists θ ∈ � such that for all j, j ′ ∈ N with j ′ ≥ j , and all λ, λ̃ ∈ Dj
such that μ(〈) �= 0, μ(〈̃) �= 0, ∂λ ∩ ∂λ̃ �= ∅, and λ′ ∈ Dj ′ such that λ′ ⊂ λ:

C−12−θ(j)2(j ′−j)s1μ(λ′) ≤ μ(̃λ) ≤ C2θ(j)2(j
′−j)s2μ(λ′). (4.5)

Heuristically, this last condition yields for every dyadic cube 〈∈ Dj a control of
the μ-mass of the cubes 〈̃ ∈ D

j̃
with j̃ ≥ j and 〈̃ ⊂ 3〈. It is easily checked on

self-similar measures satisfying an open-set condition for instance.
In [9], it is proved that there exist measures satisfying (P) for which the

conclusion of Theorem 4.4 holds.

4.2 Prescription of Multifractal Formalism for Functions

While the definition of the Lq -spectrum for measures is quite standard and intuitive,
finding a suitable formula for the Lq -spectrum of functions is not straightforward.
Indeed, one easily sees that Eq. (4.1) does not allow one to catch and describe
the local regularity characteristics of smooth functions (with pointwise exponents
greater than 1). Many alternative formulas have been proposed, and most of them
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are based on wavelets. It is thus useful at this point to set the notation concerning
wavelets coefficients and wavelet leaders.

Let � : Rd → R be a scaling function and consider an associated family of
smooth wavelets � = {ψ(i)}i=1,...,2d−1 belonging to Cr(Rd), with r ∈ N

∗ (for
a general construction, see [37, Ch. 3]). For simplicity, we assume that � and the
wavelets � are compactly supported [19]. For every j ∈ Z, recall that Dj is the set
of dyadic cubes of generation j , i.e. if k = (k1, . . . , kd) ∈ Z

d and

λj,k :=
∏

i=1,...,d

[ki2−j , (ki + 1)2−j ) ⊂ R
d

then Dj = {λj,k : k ∈ Z
d} (see the beginning of Sect. 4.1). Further we consider the

set

�j = {λ = (i, j, k) : k ∈ Z
d , i ∈ {1, . . . , 2d − 1}},

and � = ⋃j∈Z�j . By abuse of notation, λ ∈ �j will still be called a dyadic cube
of generation j and identified with λ = λj,k ∈ Dj .

For every cube λ = (i, j, k) ∈ �, we denote by ψλ the function x �→ ψ(i)(2j x−
k). The set of functions 2dj/2ψλ, j ∈ Z, λ ∈ �j , forms a Hilbert basis of L2(Rd),
so that every f ∈ L2(Rd) can be expanded as

f =
∑
j∈Z

∑
λ∈�

dλψλ, with dλ =
∫
Rd

2djψλ(x)f (x) dx,

where equality holds in L2 (we will work with smooth functions, so equality will
also hold pointwise). Observe that we choose an L∞ normalization for the so-called
wavelet coefficients (dλ)λ∈� of f ∈ L2(Rd) (more generally, of f ∈ Lp(Rd) for
some p ∈ [1,∞]). For f ∈ L2(Rd), define also for k ∈ Z

d

β(k) =
∫
Rd

f (x)�(x − k) dx. (4.6)

Finally, for a function f ∈ Lp(Rd) with p ∈ [1,∞] whose wavelet coefficients
are denoted by (dλ)λ∈�, the wavelet leader associated with λ ∈ Dj is

dLλ = sup
λ′∈�,λ′⊂3λ

|dλ′ |,

where for λ ∈ Dj , 3λ stands for the cube with same center as λ and radius
3
2 2−j (it is the cube that contains λ as well as its 2d − 1 neighbors in Dj ). While
wavelet coefficients are usually sparse (only a few coefficients carry the important
information about f ), wavelet leaders possess a strong hierarchical structure since
0 ≤ dL

λ′ ≤ dLλ when λ′ ⊂ λ.
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Remark 4.7 Although the notations for wavelet coefficients and wavelet leaders do
not mention the function f , they highly depend on f and we should never forget
about it!

Wavelet coefficients and wavelet leaders characterize the pointwise Hölder
exponents: indeed, if f ∈ Cε(Rd) for some ε > 0, then for every x0 ∈ [0, 1]d
one has

hf (x0) = lim inf
j→∞

log dLλj (x0)

log(2−j )
, (4.7)

where λj (x0) is the unique cube λ ∈ Dj that contains x0 (see [31]).
It was quite clear from the beginning that a formula based on increments

like (4.1) was not stable neither mathematically nor numerically. To circumvent
this difficulty, the idea of introducing wavelets (whose computation requires local
means, bringing simultaneously a numerical stability crucial for applications and a
natural connection with characterizations of standard functional spaces, see Sect. 5)
was introduced by Alain Arnéodo and his collaborators. Two formulations are
nowadays recognized to be the most relevant:

• Formula based on wavelets:

Tf (q, j) =
∑

λ∈�j :d〈 �=0

|dλ|q −→ ηf (q) = lim inf
j→+∞

log2 Tf (q, j)

−j . (4.8)

• Formula based on wavelet leaders:

Lf (q, j) =
∑

λ∈Dj :dL〈 �=0

|dLλ |q −→ Lf (q) = lim inf
j→+∞

log2 Lf (q, j)

−j . (4.9)

Even if wavelets brought some stability in the computations, wavelet leaders
are now recognized as the most efficient, relevant and numerically exploitable
measurements of local and global regularity. In particular, the hierarchical structure
of wavelet leaders (i.e. 0 ≤ dλ ≤ dλ′ as soon as λ ⊂ λ′) makes all computations
easier and more stable [2].

Definition 4.8 The wavelet multifractal formalism WMF (resp. wavelet leader
multifractal formalism WLMF) is satisfied for a function f on an interval J ⊂ R

+
when Df (H) = (ηf )∗(H) ( resp. Df (H) = (Lf )∗(H)) for every H ∈ J .

We also say that a function f satisfies the weak wavelet leader multifractal
formalism (weak-WLMF) on an interval J ⊂ R

+ when there exists an increasing

sequence (jn)n≥1 of integers such that if L̃f (q) = lim infn→+∞
log2 Lf (q,jn)

−jn , then

Df (H) = (L̃f )∗(H) for every H ∈ J .
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Remark 4.9 The above definition of formalisms depends a priori on the chosen
wavelets �. Actually it does not depend on � in the increasing part of the
multifractal spectrum [31], but it does in the decreasing part. For simplicity, we
do not mention this dependence in the notations.

Let Sd be the set of admissible singularity spectra for functions satisfying a
multifractal formalism, i.e.

Sd =
{
σ : R+ → [0, d] ∪ {−∞} :

{
σ is compactly supported in (0,+∞),
concave, with maximum equal to d.

}
.

(4.10)

We are now able to state the result on multifractal formalism prescription for
functions.

Theorem 4.10 For every mapping σ ∈ Sd , there exists a function f ∈ L2(Rd)

satisfying the WLMF and whose singularity spectrum is equal to σ .

Proof Observe that if a function f has its wavelet coefficients dλ given by μ(λ) for
some probability measure μ ∈ M([0, 1]d), then for every choice of α, β > 0, the
function fα,β whose wavelet coefficients are d̃λ := dαλ 2−jβ satisfies

for every H ≥ 0, Dfα,β (H) = Df
(
H − β
α

)
.

This simply follows from (4.7) and the fact that hf α,β (x0) = αhf (x0)+β for all x0.
Let σ : R+ → [0, d] ∪ {−∞} ∈ Sd be a mapping satisfying the conditions to be

a singularity spectrum of a function satisfying a multifractal formalism.
Let α, β be two strictly positive real numbers such that the mapping σα,β(H) =

σ(αH + β) satisfies σα,β(H) ≤ H and there exists H0 > 0 such that σα,β(H0) =
H0. The existence of (α, β) is an exercise (notice that (α, β) need not be unique).

Theorem 4.4 provides us with a measure μ satisfying the multifractal formalism
for measures and Dμ = σα,β .

Then, Theorem 1.2 yields that the function Fμ whose wavelet coefficients are
given by dλ = μ(λ) has the same singularity spectrum as μ. In addition, comparing
(4.2) with (4.9), and using the hierarchical structure of the measure (i.e. μ(λ′) ≤
μ(λ) whenever λ′ ⊂ λ), one sees that τμ(q) = LFμ(q) for every q ∈ R, hence Fμ
satisfies the WLMF.

Finally, using the first remark of this proof, the function F whose wavelet
coefficients equal μ(λ)α2−jβ has its singularity spectrum equal to σ and satisfies
the WLMF.

We thus have a complete answer for the prescription of multifractal formalism
for functions. But at this point, one may have the feeling that the functions we built
are mathematical toy examples. The purpose of the last sections is to explain that
for any choice of concave admissible mapping σ , there are natural functional spaces
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in which typical functions have exactly σ as singularity spectrum. This confirms
and strengthens the overall presence of multifractals in most of science fields,
and reinforces the position of multifractal machinery as legitimate tool in signal
processing and data analysis.

5 Typical Multifractal Behavior in Classical Functional
Spaces

As emphasized above, it is possible to find mathematical models that mimic large
classes of multifractal behavior, in particular including all concave singularity
spectra. This last part of the results is key, since for real-life data (multi-dimensional
and/or multivariate signals, images, . . . ) only estimates for the Lq -spectrum are
numerically accessible (based on log-log plots on a well-chosen range of scales).
Indeed, the standard paradigm is to assume that the discrete data f (say, a signal)
is obtained from discrete samples of a mathematical model obeying a multifractal
formalism, and to consider that the Legendre transform of the estimated Lq -
spectrum contains relevant information regarding the distribution of the singularities
of f (somehow extrapolating on Frisch–Parisi heuristics). This Legendre transform
is thus viewed as an “approximation” of the singularity spectrum of the data,
although the meaning of the singularity spectrum of a discretized signal is not
made precise. The obtained estimated singularity spectrum of the data f possesses
various characteristics (values of the largest and the smallest exponents, locations
of the maximum, curvature of the concave spectrum at its maximum,. . . ) which
are then used as classification tools between numerous samples of a physical,
medical,. . . phenomenon. This has proven to be relevant in various fields going from
medicine (heart-beat rate and X-ray analysis) and turbulence [32] to, recently, more
surprising areas (paintings analysis [1], text analysis [33]).

Inspired by these applications, it is thus key to investigate whether the mathe-
matical objects we regularly meet satisfy a multifractal formalism (so that all these
heuristics described above lie on solid mathematical grounds). In this survey, we
focus on “typical” objects in the sense of Baire: in a Baire space E, a property P
of elements x ∈ E is typical or generic when the set {x ∈ E : x satisfies P} is a
residual set, i.e. its complement is included in a first Baire category set (a union of
countably many nowhere dense sets in E).

Regularity properties of typical functions have been explored since the pioneer
works of Banach [6] or Mazurkiewicz [36] for instance. The seminal result
concerning multifractal properties of typical functions is due to Buczolich and Nagy,
who proved the following [14].

Theorem 5.1 Let Mon([0, 1]) be the set of continuous monotone functions f :
[0, 1] → R equipped with the supremum norm of functions. Typical functions in
Mon([0, 1]) are multifractal with singularity spectrum equal to Df (H) = H ·
11[0,1](H)+ (−∞) · 11(1,+∞](H).
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Theorem 5.1 was the starting point of an abundant literature on the subject,
examples of which are given in the following. The method consists first in finding an
upper bound for the singularity spectrum of all functions in Mon([0, 1]) (here, the
diagonal σ(H) = H)), then an explicit function Ftyp whose local behavior is the
one suspected to be typical, and finally to construct a countable sequence (An)n≥1
of sets of functions, dense in Mon([0, 1]), which are for a given n, really close
to Ftyp at a given scale (depending on n). If the parameters are correctly settled,
the intersection of the (An)n≥1 will be the set of typical functions with multifractal
behavior similar to that of Ftyp.

The proof is based on a careful analysis on local oscillations of functions, and
simultaneous constructions of Cantor-like sets Ef (H) carrying the sets of points
with pointwise Hölder exponent equal to H , for every f ∈⋂n≥1An.

After Theorem 5.1, the first direction consisted in exploring the typical behavior
in other standard functional spaces. The first, spectacular, results were obtained by
Jaffard [30], who implemented the same strategy as [14] but added wavelet tools to
deal with the important examples of Hölder and Besov spaces.

Theorem 5.2

(1) Let α > 0 and consider the space Cα([0, 1]d) of α-Hölder functions on [0, 1]d .
Typical functions in Cα([0, 1]d) are monofractal and satisfy

Df (H) = d · 11{α}(H)+ (−∞) · 11[0,+∞]\{α}(H).

(2) Let p ≥ 1 and s > d/p, and consider the Besov space Bs,pq ([0, 1]d). Typical
functions in Bs,pq ([0, 1]d) are multifractal and satisfy

Df (H) = p(H − (s − d/p)) · 11[s−d/p,s](H)+ (−∞) · 11[0,+∞]\[s−d/p,s](H).

In addition, typical functions satisfy the WLMF.

See Fig. 4 for an illustration.

Fig. 4 Typical singularity spectra of measures supported on [0, 1]d (Left) and of functions in
B
s,p
q (Rd ) (Right)
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Theorems 5.1 and 5.2 are striking since they underline the preeminence of mul-
tifractal properties for “everyday” functions. Jaffard also described the multifractal
behavior of typical functions belonging to countable intersections of Besov spaces,
leading to a first answer to the Frisch–Parisi conjecture. Although these results were
a giant step in the domain, only increasing singularity spectra with restricted shapes
can be obtained and the typical functions do not obey a satisfactory multifractal
formalism. Let us also mention that Besov spaces with indices s < d/p were also
considered in [30].

Other directions have been investigated. The most natural one concerns proba-
bility measures: typical multifractal properties were explored in [15] for measures
supported on [0, 1]d and these results were extended by Bayart [11] for measures
supported on general compact sets.

Theorem 5.3 LetK ⊂ R
d be a compact set, and let M(K) be the set of probability

measures on K .
A typical measure μ ∈M(K) satisfies for any H ∈ [0, dim(K)), Dμ(H) = H .
In addition, when the dim(K)-Hausdorff measure of K is strictly positive,

then typical measures satisfy Dμ(dim(K)) = dim(K) and obey the multifractal
formalism.

Another extension of typical monotone functions is provided by the set of
monotone increasing in several variables: A function f : [0, 1]d → R is continuous
monotone increasing in several variables (in short: MISV) if for all i ∈ {1, . . . , d},
the coordinate functions

f (i)(t) = f (x1, . . . , xi−1, t, xi+1, . . . , xd)

are continuous monotone increasing. The set of MISV functions is denoted by
MISVd . With Z. Buczolich, we also investigated the set CCd of continuous convex
functions f : [0, 1]d → R. Equipped with the supremum norm ‖ · ‖, CCd and
MISVd are separable complete metric spaces. In [16] and [18] we obtained the
following results.

Theorem 5.4

(1) Typical functions in MISVd satisfy

Df (H) = (d − 1+H) · 11[0,1](H)+ (−∞) · 11[0,+∞]\[0,1](H).

(2) Typical functions f ∈ CCd satisfy

Df (H) = (d−1)·11{0}(H)+(d−2+H)·11[1,2](H)+(−∞)·11[0,+∞]\[1,2]∪{0}(H).

See Fig. 5 for a comparison between typical multifractal behavior in various
functional spaces. This shall also be compared to Fig. 3. It appears clearly that in
all the previous situations, the singularity spectra of typical functions have the same
shape: it is an affine, increasing, mapping, with no decreasing part.
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Fig. 5 Typical singularity spectra for measures, MISV and convex functions

Other functional spaces, called Sν spaces were built in [3], in which typical
functions all exhibit a singularity spectrum which is visibly increasing in the sense
of [34], enlarging the class of possible typical multifractal behavior in functional
spaces. In addition, these typical functions do not satisfy a multifractal formalism
in the sense of Definition 4.1.

In order to break this limitation (no decreasing part in the singularity spectrum),
new (and natural) functional spaces have been introduced in [9].

6 Besov Spaces in Multifractal Environment

Since standard functional spaces do not fulfill our requirements (i.e. typical
functions in such spaces do not exhibit concave singularity spectra), it is natural
to ask whether there are other functional spaces in which typical functions have any
singularity spectrum given in advance, and satisfy a multifractal formalism. This
solves the Frisch–Parisi conjecture as stated in Conjecture 4.2.

Let B(Rd) be the Borel sets included in R
d , and let us introduce the set of Hölder

set functions

C(Rd) :=
⎧⎨
⎩μ : B(Rd)→ R

+ such that

⎧⎨
⎩
∃ s1, s2 ≥ 0, ∀ I ⊂ R

d with |I | ≤ 1,

|I |s2 ≤ μ(I) ≤ |I |s1

⎫⎬
⎭ .

(6.1)
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For μ ∈ C(Rd) and s ∈ R, we write

μs(I ) = μ(I)s,
μ(s)(I ) = μ(I)|I |s .

We will use the following notation: for x, y ∈ R
d , B[x, y] is the smallest

Euclidean ball that contains x and y.

Definition 6.1 Let h ∈ R
d , f : Rd → R, and consider the finite difference operator

�hf : x �→ f (x + h)− f (x). Define for n ≥ 2 by iteration �nhf := �h(�n−1
h f ).

For every set function μ ∈ C(Rd), let us introduce for n ≥ 2

�
μ,n
h f (x) = �nhf (x)

μ(B[x, x + nh]) . (6.2)

The μ-adapted n-th order modulus of continuity of f on R
d is defined for t > 0

by

ωμn (f, t)p = sup
t/2≤|h|≤t

‖�μ,nh f ‖Lp(Rd ). (6.3)

It is trivial to check that that when μ(I) = 1 for every set I , then ωμn (f, t)p
coincides with the so-called homogeneous n-th order modulus of continuity of f

ωn(f, t)p = sup
t/2≤|h|≤t

‖�nhf ‖Lp(Rd ).

Definition 6.2 Let μ ∈ C(Rd) associated with exponents 0 < s1 ≤ s2 in (6.1).
Let n ≥ s2. For 1 ≤ p, q ≤ +∞, the Besov space in μ-environment Bμ,pq (Rd)

is the space of those functions f : Rd → R such that ‖f ‖Lp(Rd ) < +∞ and

|f |Bμ,pq = ‖2jd/p(ωμn (f, 2−j )p)j≥1‖�q (N) < +∞. (6.4)

Finally, let us introduce the spaces

B̃
μ,p
q (Rd) =

⋂
0<ε<s1/2

B
μ(−ε),p
q (Rd). (6.5)

The reader can check that Bμ,pq (Rd), when endowed with the topology induced
by the norm ‖f ‖Bμpq = ‖(β(k))k∈Zd‖p+|f |Bμ,pq , forms a Banach space (recall (4.6)
for the definition of β(k)).

The intuition behind Definition 6.2 consists in introducing some space-dependent
constraints that will create heterogeneity at all scales. Indeed, when a function f
belongs to Bμ,pq (Rd), its oscillations �nhf (x) must be very small in certain regions
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(around points x where μ(B(x, r)) ∼ rα with α large), while in other regions
(where μ(B(x, r)) ∼ rα with α small) the control of the oscillations can be relaxed.

In [9], a wavelet characterization of Bμ,pq (Rd) and B̃μ,pq (Rd) is proved when
μ is an almost-doubling set function satisfying condition (P) (recall Eq. (4.3) and
Remark 4.5). Observe indeed that Definition 4.6 of the condition (P) for measures
can easily be extended for set functions μ ∈ C(Rd).

For this, let us introduce a second semi-norm for f ∈ Lp(Rd) : we set

|f |p,q,μ = ‖(Aj )l≥1‖�q (N), where Aj =
⎛
⎝∑
λ∈�j

∣∣∣∣ dλμ(λ)
∣∣∣∣
p
⎞
⎠

1/p

.

The following inequalities are proved in [9].

Theorem 6.3 Let μ ∈ C(Rd) be an almost doubling set function satisfying
condition (P), and let � be a scaling function associated with wavelets � (see
Sect. 4.2).

Let p ≥ 1, and q ∈ [1,+∞].
Assume that the wavelets � are compactly supported, belong to the standard

Besov spaceBs,pq (Rd) for some s > d/p+s2, and possess at least �s2�+1 vanishing
moments (s1 and s2 are the exponents associated with μ in (6.1)).

For every 0 < ε < s1, there exists a constant C > 1 (not depending on f ) such
that

‖f ‖Lp + |f |Bμ,pq ≤ C(‖f ‖Lp + |f |μ(+ε),p,q) (6.6)

‖f ‖Lp + |f |μ,p,q ≤ C(‖f ‖Lp + |f |
B
μ(+ε),p
q

). (6.7)

Moreover, when μ is doubling, (6.6) and (6.7) hold for ε = 0, and the norms
‖f ‖Lp + |f |p,q,μ and ‖f ‖Lp + |f |Bμ,pq are equivalent.

Last theorem supports the idea that B̃μ,pq (Rd) is the right space to work with,
since it is characterized by wavelet coefficients, while the spaces Bμ,pq (Rd) are not
(unless μ is doubling).

The main theorem in [9] is the following.

Theorem 6.4 Let σ ∈ Sd be an admissible singularity spectrum (recall (4.10)).
Call Hs the smallest value at which σ(H) = d.

There exists an almost doubling set function μ ∈ C(Rd) satisfying condition (P)
and p ∈ [1,+∞] such that for every q ∈ [1,+∞], typical functions f ∈ B̃μ,pq (Rd)

possess the following properties:

• Df = σ
• f satisfies the WLMF for every H ≤ Hs .
• f satisfies the weak-WLMF for every H > Hs .
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In addition:

• when p = +∞, typical functions in B̃μ,pq (Rd) satisfy Df = Dμ.
• when μ is doubling, the same holds for Bμ,pq (Rd) instead of B̃μ,pq (Rd).

Also, given σ ∈ Sd , from the proof in [9] it can be checked that the couple (μ, p)
in Theorem 6.4 is not unique.

Theorem 6.4 brings a solution to the Frisch–Parisi conjecture (Conjecture 4.2).
The fact that the (strong) multifractal formalism holds only for the increasing part
of the singularity spectrum (when H ≤ Hs) seems to be unavoidable. A heuristic
explanation of the weak validity of the multifractal formalism in the decreasing
part of the spectrum (and not the full validity) is that functions have usually sparse
wavelet representations, generating very large values for negative values of q for
Lf (q, j) on some values of j .

Let us conclude this section by mentioning that a deeper study of the Bμ,pq and
B̃
μ,p
q spaces is performed in [9], leading to results that have their own interest.

More precisely, a uniform upper bound for the singularity spectrum of all functions
in Bμ,pq and B̃μ,pq is found, as well as the singularity spectrum of typical functions
in these spaces for large classes of almost-doubling measures μ. Without giving
details on the results, it appears that the singularity spectra Df of typical functions
f may have very different shapes depending on the initial measure μ, and the proofs
involve many arguments coming from geometric measure theory, ergodic theory and
harmonic analysis.

7 Perspectives

First of all, we are far from being exclusive on generic dimensional results in
analysis (see for instance [22, 24]), and many other regularity properties shall
definitely be studied from the Baire genericity standpoint.

In this survey we focused on the notion of Baire genericity—the same issues can
(and must) be addressed in the prevalence sense. Many results regarding prevalent
multifractal properties have been obtained, see [4, 20, 21, 40, 41] amongst many
references, and asking whether prevalent properties coincide with generic ones can
sometimes bring some surprises (when they do not coincide).

Finally, one challenging research direction consists in establishing multifractal
properties for (classes of) solutions to ordinary or partial differential equations, as
well as for the stochastic counterparts. Indeed, multifractal ideas originate from the
study of turbulence and other physical phenomena that are ruled by ODEs, SDEs or
(S)PDEs, and it would be a fair return to demonstrate the multifractality of (some of)
those functions that are solutions to such equations. A few examples already exist
(i.e., Burgers equation with a Brownian motion as initial condition [12] and large
classes of stochastic jump diffusions [10, 42]), but they are only a first step toward a
systematic multifractal analysis of solutions to (partial) differential equations, which
will certainly require the development of new techniques and approaches.
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Renewal Theorems and Their
Application in Fractal Geometry

Sabrina Kombrink

Abstract A selection of probabilistic renewal theorems and renewal theorems in
symbolic dynamics are presented. The selected renewal theorems have been widely
applied. Here, we will show how they can be utilised to solve problems in fractal
geometry with particular focus on counting problems and the question of Minkowski
measurability. The fractal sets we consider include self-similar and self-conformal
sets as well as limit sets of graph-directed systems consisting of similarities and
conformal mappings.

Keywords Renewal theorem · Dependent interarrival times · Symbolic
dynamics · Minkowski content · Counting problems in fractal geometry · Ruelle
Perron-Frobenius theory

Mathematics Subject Classifications (2010) Primary: 60K05, 60K15;
Secondary: 28A80, 28A75

1 Introduction

Renewal theorems have found wide applicability in various areas of mathematics
(such as fractal and hyperbolic geometry), economics (such as queuing, insurance
and ruin problems) and biology (such as population dynamics). Classically, they
describe the asymptotic behaviour of waiting times in-between occurrences of a
repetitive pattern connected with repeated trials of a stochastic experiment. These
probabilistic renewal theorems have been extended and generalised in several ways,
resulting in an even broader applicability.

The purpose of this article is to provide an overview of a selection of renewal
theorems and to highlight in which situation which renewal theorem is natural to
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be applied. This will be done by considering two questions in fractal geometry in
different settings. These motivating questions will be stated in Sect. 2. Subsequently,
a selection of probabilistic renewal theorems is introduced in Sect. 3 and applied
to obtain answers to the previously raised questions in the setting of similarities.
In Sect. 4 renewal theorems in symbolic dynamics are presented and applied to
solve the questions raised in Sect. 2 in more general settings. Additionally, in an
Appendix we provide background material and address the relationships between
the mentioned renewal theorems.

2 Some Questions in Fractal Geometry

In fractal geometry various notions of dimension such as Minkowski-, Hausdorff-
and packing dimension are well-established tools to describe the fractal nature
of a given set. Characterising sets beyond their dimension is one of the many
applications of renewal theorems. In Sect. 2.1 we raise two questions which we
answer by means of renewal theory in Sects. 3 and 4 for the classes of sets that
we introduce in Sect. 2.2.

2.1 Characterising Sets Beyond Dimension

Our first question relates to counting problems. The most basic counting problems
associated with fractal sets E arise in the situation when E is a subset of [0, 1].
Letting {I�}�∈L denote the family of connected components of [0, 1] \ E a natural
question is:

Question 2.1 What is the asymptotic behaviour as r → 0 of the number of intervals
I� whose lengths lie in the interval [r, rh) for some h > 1, i. e. of

Nlogh(r) := #{� ∈ L | rh > |I�| ≥ r}?

Here # denotes cardinality and |I�| denotes the length of the interval I�.

An example of a more advanced counting problem is to count the number of closed
geodesics on manifolds related to Schottky groups that do not exceed a given length.
This problem can also be treated by means of renewal theory. We refer the interested
reader to [28].

Before addressing how the answer to Question 2.1 helps our understanding of
the fine geometric structure of a set in Remark 2.3 we turn to the second question,
which relates to the asymptotic behaviour of the volume function.

For arbitrary d ∈ N the d-dimensional Lebesgue measure shall be denoted by
λd . Further, for r > 0 we let Er := {x ∈ R

d | dist(x, E) ≤ r} denote the r-parallel
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set of E ⊂ R
d , where dist(x, E) := infy∈E |x − y| denotes the distance of x to E

with respect to the euclidean metric |·| on R
d .

Question 2.2 What is the asymptotic behaviour as r → 0 of the volume of the
r-parallel set of E, i. e. of

λd(Er) as r → 0?

Supposing that the Minkowski dimension dimM(E) := d − limr→0
log λd(Er )

log r of E
exists, the above question can be reformulated as follows. How does the function
f : (0,∞) → R, f (r) := rdimM(E)−dλd(Er) behave as r → 0? If limr→0 f (r)

exists, we call the limit the Minkowski content of E and denote it by M(E).
If limr→0 f (r) exists, is positive and finite, then we say that E is Minkowski
measurable. In recent years the question of Minkowski measurability of a given
set has attracted much attention and is for instance related to the question ‘Can you
hear the shape of a drum with fractal boundary?’, see for instance [29].

Remark 2.3 Knowledge of the asymptotic behaviour of Nlogh(r) and λd(Er) as
r → 0 provides insight to the fine structure of E and can for instance be used to
describe the lacunarity of E. The word lacunarity originates from the Latin word
lacuna which means gap. According to [33] ‘a fractal is to be called lacunar if its
gaps tend to be large, in the sense that they include large intervals (discs or balls)’.
A nice exposition of lacunarity, its geometric meaning and its relationship to the
above introduced counting function and asymptotic behaviour of λd(Er) is provided
in [33], see also [24]. We will provide further insight to the geometric meaning of
the Minkowski content in Remark 3.6.

2.2 Classes of Fractal Sets

We address the above questions for the following classes of fractal sets.

2.2.1 Self-Similar and Self-Conformal Sets

Let � := {φ1, . . . , φM } denote an IFS of M ≥ 2 contracting maps φi : X → X

acting on a compact subset X of Rd . The famous Hutchinson-Hata Theorem states
that there exists a unique, non-empty and compact subset J ⊂ X, which is invariant
under �, that is J = ⋃Mi=1 φi(J ). If all the maps φi are similarities, i. e. there
exist ri ∈ (0, 1) such that |φi(x) − φi(y)| = ri |x − y| for any x, y ∈ X, then the
invariant set J is called self-similar. If all the maps φi extend to conformal maps on
an open neighbourhood U of X, i. e. φi : U → U is a C1-diffeomorphism whose
total derivative at every point is a similarity, then the invariant set J is called self-
conformal. For background we refer the reader to [15].
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Below, self-similar and self-conformal sets appear as special cases if Ai,j = 1
for all i, j ∈ � and all φi are similarities resp. extend to conformal maps.

2.2.2 Limit Sets of Graph-Directed Systems

Here, we restrict to a special class of graph-directed systems, namely those
which arise from iterated function systems (IFS) by forbidding certain transitions.
However, the results presented below are not limited to this special class but
also hold for general graph-directed systems as defined in [36]. We will provide
references at the appropriate places.

Let � := {φ1, . . . , φM} denote an IFS of finitely many contracting maps
φi : X → X acting on a compact subset X of Rd . Further, let A be an irreducible
M ×M matrix of zeros and ones, i. e. for each pair i, j ∈ � := {1, . . . ,M} there
exists n ∈ N such that (An)i,j > 0. We allow to concatenate φi ◦ φj if and only if
Ai,j = 1. Let �nA := {(ω1, . . . , ωn) ∈ �n | Aωi,ωi+1 = 1 ∀ i ∈ {1, . . . , n− 1}}. The
limit set of this type of graph-directed system is defined to be

J :=
⋂
n∈N

⋃
ω∈�nA

φω(X),

where φω := φω1 ◦ · · · ◦ φωn for ω = (ω1, . . . , ωn). We in particular study the cases
in which all the maps φi are similarities, and in which all the maps φi extend to
conformal maps on an open neighbourhood U of X.

3 Probabilistic Renewal Theorems and Their Applications to
Questions 2.1 and 2.2 for Self-Similar Sets and Limit Sets
of Graph-Directed Systems of Similarities

Probabilistic renewal theory is concerned with waiting times in-between occur-
rences of a repetitive pattern connected with repeated trials of a stochastic exper-
iment. In classical renewal theory, it is assumed that after each occurrence of the
pattern, the trials start from scratch. This means that the trials which follow an
occurrence of the pattern form a replica of the whole stochastic experiment. In
other words, the waiting times in-between successive occurrences of the pattern, also
called inter-arrival times, are assumed to be mutually independent random variables
with the same distribution (see [16, Ch. XIII] and [17]). The classical renewal
theorems have been extended in various ways and to various different settings. One
such extension, which we focus on here is given by Markov renewal theory, where
the independence condition is weakened. The literature on classical and Markov
renewal theory is vast. Therefore, we abstain from presenting a complete list of
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references but instead refer the reader to the following monographs and fundamental
articles, where further references can be found: [1, 2, 10, 16, 17, 34].

The aim of this section is to present the afore-mentioned renewal theorems and
to demonstrate to which question in which setting the respective renewal theorems
are natural to apply. We will present a solution to a selection of the problems, focus
on the ideas and provide references for the details. More precisely, we study the
fundamental setting of renewal theory in Sects. 3.1 and 3.3 and show how its results
can be utilised to answer Questions 2.1 and 2.2 for self-similar sets in Sects. 3.2 and
3.4. Subsequently, in Sect. 3.5 we turn to Markov renewal theory and apply Markov
renewal theorems to answer Questions 2.1 and 2.2 for limit sets of graph-directed
systems of similarities in Sect. 3.6.

3.1 Expected Number of Renewals—Blackwell’s Renewal
Theorem

In the afore-mentioned setting it is of interest how many occurrences of the pattern
(renewals) are expected in a given time interval, if the process has been going on for
a long time.

Let W,W1,W2, . . . denote independent identically distributed (i. i. d.) non-
negative random variables on a common probability space (�,A,P). We interpret
Wi as the waiting time between the (i − 1)-st and the i-th occurrence of the pattern
and setW0 := 0. For n ∈ N0 := N ∪ {0} define Sn :=∑ni=0Wi , which is the epoch
of the (n + 1)-st occurrence of a renewal, the origin counting as a renewal epoch.
Further, introduce the renewal function N : [0,∞)× (0,∞)→ R ∪ {∞} by

N(t, h) := E

( ∞∑
n=0

1{t−h<Sn≤t}

)
= E

( ∞∑
n=0

1[0,h)(t − Sn)
)
, (3.1)

where E denotes expectation. Thus, N(t, h) gives the expected number of renewals
in the time interval (t − h, t].

The asymptotic behaviour ofN(t, h) as t →∞ depends on whether the common
distribution F of the Wi is lattice or non-lattice. Recall that a distribution function
is called lattice if its set of discontinuities lies in a discrete subgroup of R, i. e. in
aZ for some a > 0. If a is maximal as such, we say that the distribution is a-lattice.
If no such a exists, then it is called non-lattice.

Intuitively, in the non-lattice situation we would expect h renewals in a time
interval of length hE(W) if the process has been going for a long while. Thus, in
a time interval of length h intuition yields h/E(W) to be the expected number of
renewals. In the a-lattice situation the same is plausible with h replaced by a.

This intuition was made rigorous in a series of publications, in which different
situations were covered, see [5, 6, 12, 17, 23] and references therein, resulting in the
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following renewal theorem, which sometimes is referred to as Blackwell’s renewal
theorem.

We say that f, g : R→ (0,∞) are asymptotic and write f (t) ∼ g(t) as t →∞
if limt→∞ f (t)/g(t) = 1.

Theorem 3.1 Suppose the setting of the current subsection. In particular, assume
that F is supported on [0,∞). Further, interpret E(W)−1 as 0 if E(W) = ∞.

(i) If F is a-lattice then

N(t, a) ∼ aE(W)−1 as t →∞.

(ii) If F is non-lattice then

N(t, h) ∼ hE(W)−1 as t →∞

for any h > 0.

3.2 Question 2.1 for Self-Similar Sets—Application of
Blackwell’s Renewal Theorem

We fix the following notation. � := {φ1, . . . , φM} shall denote an IFS of finitely
many contracting similarities φi with similarity ratio ri acting on [0, 1] with
invariant set E ⊂ [0, 1]. For ease of exposition, we assume that {0, 1} ⊂ E and
that φi([0, 1]) ∩ φj ([0, 1]) = ∅ for distinct i, j , however, note that the open set
condition is sufficient. (If we assume the milder open set condition to be satisfied
with a bounded feasible open set O, i. e. φiO ∩ φjO = ∅ for i �= j and φiO ⊆ O
for all i, then we would consider the connected components ofO\⋃Mi=1 φiO below,
of which there might be infinitely many.)

Let G1, . . . ,Gq denote the connected components of [0, 1] \ ⋃Mi=1 φi([0, 1]).
Then the connected components of [0, 1] \ E are precisely the intervals φω(Gj ).
Recall, φω := φω1 ◦ · · · ◦ φωn and rω := rω1 · · · rωn for ω = (ω1, . . . , ωn). Thus,

Nlogh(r) =
q∑
j=1

∞∑
n=0

#{ω ∈ �n | hr > rω|Gj | ≥ r} =
q∑
j=1

Mlogh

(
r
|Gj |
)
, (3.2)

where � := {1, . . . ,M}, Mlogh(r) := ∑∞n=0 #{ω ∈ �n | hr > rω ≥ r} and
�0 := {∅}, with ∅ denoting the empty word and r∅ := 1. For applying Blackwell’s
renewal theorem, we introduce random variablesWi in the following. By the Moran-
Hutchinson formula, 1 =∑Mi=1 r

D
i whereD is the Hausdorff dimension ofE. Thus,

P(W = − log ri) = rDi for i ∈ � defines the distribution of a non-negative random
variableW . WithW,W1,W2, . . . being i.i.d. the distribution of Sn := W1+· · ·+Wn
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is given by P(Sn = − log t) =∑ω∈�n:t=rω rDω for t > 0. With this notation

e−DtMlogh(e
−t ) = E

( ∞∑
n=0

z(t − Sn)
)
, (3.3)

where z : R→ R, z(t) := 1[0,logh)(t)e−Dt .

3.2.1 The Lattice Case

If − log r1, . . . ,− log rM lie in the discrete subgroup aZ of R with a > 0 maximal
as such, then W is a-lattice. As − log rω ∈ aZ for each ω, it follows that t − a <
− log rω ≤ t is equivalent to − log rω/a = �t/a� := max{k ∈ Z | k ≤ t/a}.
Whence, Theorem 3.1 implies for t →∞

Ma(e
−t )e−aD�t/a� =

∞∑
n=0

∑
ω∈�n

rDω 1(t−a,t](− log rω)

= E
( ∞∑
n=0

1(t−a,t](Sn)
)
∼ a

E(W)
,

yielding

Na(e
−t ) ∼ a

−∑Mi=1 r
D
i log ri

q∑
j=1

eaD�(t+log|Gj |)/a� as t →∞.

3.2.2 The Non-lattice Case

If − log r1, . . . ,− log rM do not generate a discrete subgroup of R then W is non-
lattice. Let h > 0 be arbitrary. Theorem 3.1 implies for t →∞

Mlogh(e
−t )e−Dt ≤

∞∑
n=0

∑
ω∈�n

rDω 1(t−h,t](− log rω) = E
( ∞∑
n=0

1(t−h,t](Sn)
)
∼ h

E(W)
,

Mlogh(e
−t )e−Dt > e−hD

∞∑
n=0

∑
ω∈�n

rDω 1(t−h,t](− log rω) ∼ he−hD

E(W)
.

We abstain from gaining the precise asymptotics here as these can be easily deduced
from the key renewal theorem, see Remark 3.8.
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3.3 The Key Renewal Theorem

The considerations of Sect. 3.1 are intimately related to the asymptotic behaviour of
the solution Z : R→ R of the renewal equation

Z(t) = z(t)+
∫ ∞
−∞
Z(t − y) dF(y) = (z+ F � Z)(t) (3.4)

with given z : R→ R, where � denotes convolution and F is a distribution on R.
For obtaining statements on the uniqueness and on the asymptotic behaviour of

Z(t) as t →∞ it is required that z be directly Riemann integrable.

Definition 3.2 For a function f : R→ R, h > 0 and k ∈ Z set

mk(f, h) := inf{f (t) | (k − 1)h ≤ t < kh} and

mk(f, h) := sup{f (t) | (k − 1)h ≤ t < kh}.

The function f is called directly Riemann integrable (d. R. i.) if for some sufficiently
small h > 0

R(f, h) :=
∑
k∈Z
h ·mk(f, h) and R(f, h) :=

∑
k∈Z
h ·mk(f, h)

are finite and tend to the same limit, denoted by
∫
f (T ) dT , as h→ 0.

Direct Riemann integrability excludes wild oscillations of the function at infinity
and is stronger than Riemann integrability. For further insights into this notion we
refer the reader to [17, Ch. XI] and [2, Ch. B.V].

As before, W,W1,W2, . . . shall denote i. i. d. random variables with common
distribution F . Note that here the Wi are not necessary non-negative. Recall that
Sn :=∑ni=0Wi withW0 := 0.

Lemma 3.3 ([1, Ch. 3.2]) If z is d. R. i. then the function Z : R→ R given by

Z(t) := E

( ∞∑
n=0

z(t − Sn)
)

(3.5)

is the unique solution of the renewal equation (3.4) that satisfies limt→−∞ Z(t) = 0.

Being a solution of the renewal equation (3.4), Z from (3.5) is called renewal
function. Setting z = 1[0,h) and assuming that F is concentrated on [0,∞) we
recover the renewal function N(·, h) of Sect. 3.1, see Eq. (3.1). Thus, it is apparent
that the present setting is much more general than that of Sect. 3.1.

Theorem 3.4 ([1, Satz 3.2.2]) Denote by z : R → R a d. R. i. function. Let F
be a distribution supported on R with positive mean and let Z be the unique
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solution (3.5) of the renewal equation (3.4) which satisfies limt→−∞ Z(t) = 0.
Then the following hold.

(i) If F is non-lattice, then as t →∞

Z(t) ∼ E(W)−1
∫ ∞
−∞
z(T ) dT .

(ii) If F is a-lattice, then as t →∞

Z(t) ∼ aE(W)−1
∞∑

�=−∞
z(a�+ t).

Notice, direct Riemann integrability of z ensures convergence of the series∑∞
�=−∞ z(a� + t) in the above theorem, which can be seen as follows. If m ∈ N

is minimal such that R(z, a/m) < ∞ then R(z, a) ≤ mR(z, a/m) < ∞. Thus,
m = 1 and we are done.

Remark 3.5 A nice exposition of the key renewal theorem tailored to fractal
geometry can be found in [14, Ch. 7], where it is applied to obtain results on the
asymptotic behaviour of the covering number of a self-similar subset of Rd , and to
Questions 2.1 and 2.2 for self-similar subsets of R.

3.4 Questions 2.1 and 2.2 for Self-Similar Sets—Application of
the Key Renewal Theorem

In the setting of self-similar sets both Questions 2.1 and 2.2 can be solved by means
of the key renewal theorem and the ideas below stem from [40]. We focus on the
solution to Question 2.2 and briefly discuss Question 2.1 in Remark 3.8. We fix
the following notation. � := {φ1, . . . , φM } shall denote an IFS of finitely many
contracting similarities φi with similarity ratio ri acting on X ⊂ R

d with invariant
set E. We suppose that the open set condition (OSC) is satisfied and that O is a
feasible open set for �, i. e. φi(O) ⊂ O and φi(O) ∩ φj (O) = ∅ for i �= j .
Assume w. l. o. g. that O is bounded.

Often, depending on the shape of O, the expression λd(Er \ O) is very easy to
determine. For the Sierpiński carpet E for instance, (i.e. for the invariant set E of
the IFS {x �→ x/3 + (i/3, j/3)}i,j∈{0,1,2}2\{(1,1)} acting on X = [0, 1]2) one can
choose O = (0, 1)2, giving λd(Er \ O) = 4r + πr2. Moreover, it is known that
λd(Er \ O) = o(rd−dimM(E)) as r → 0 for general self-similar sets E under the
OSC with the little Landau symbol o, see [40]. (For functions f, g : R → R we
write f = o(g) as t → ∞ if limt→∞ f (t)/g(t) = 0.) Therefore, we consider
λd(Er ∩ O) and let � := O \ �(O), where the action of � on a subset U of X is
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defined via �(U) :=⋃Mi=1 φi(U). Then O can be decomposed as

O =
∞⋃
n=0

⋃
ω∈�n

φω� ∪
∞⋂
n=0

�nO,

where the unions are disjoint. We have �
(⋂∞

n=0�
nO
)
= ⋂∞n=0�

nO. Thus,⋂∞
n=0�

nO is either empty or coincides with E by uniqueness of the self-similar
set. Therefore, λd

(⋂∞
n=0�

nO
) ≤ λd(E). Let D denote the Minkowski dimension

of E. If D < d then λd(E) = 0 and whence λd
(⋂∞

n=0�
nO
) = 0. Suppose that

O is chosen in such a way that Er ∩ φω� = (φωE)r ∩ φω� for each ω. This
condition is known as the locality property and it is shown in [40] that to each IFS
of similarities satisfying the OSC there is a feasible open set O which satisfies the
locality property, namely the central open set as introduced in [3]. Thus,

λd(Ee−t ∩O) =
∞∑
n=0

∑
ω∈�n

λd(Ee−t ∩ φω�)

=
∞∑
n=0

∑
ω∈�n

λd((φωE)e−t ∩ φω�)

=
∞∑
n=0

∑
ω∈�n

rdωλd(Ee−t−log rω ∩ �).

Let W,W1,W2, . . . denote i. i. d. random variables with common distribution
given by P(W = − log ri) = rDi as in Sect. 3.1. In [40] it is shown that t �→
z(t) := e−t (D−d)λd(Ee−t ∩ �) is d. R. i., which allows to apply the key renewal
theorem to

Z(t) := e−t (D−d)λd(Ee−t ∩O) =
∞∑
n=0

∑
ω∈�n

rDω z(t + log rω) = E
( ∞∑
n=0

z(t − Sn)
)
.

3.4.1 The Lattice Case

If − log r1, . . . ,− log rM lie in the discrete subgroup aZ of R with a > 0 maximal
as such, thenW is a-lattice. Thus, Theorem 3.4 yields for t →∞

Z(t) ∼ aE(W)−1
∞∑

�=−∞
z(a�+ t)

= −a∑M
i=1 r

D
i log ri

∞∑
�=−∞

e−(a�+t)(D−d)λd(Ee−a�−t ∩ �) =: g(t). (3.6)
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Note that g(t) is periodic in t with period a. In general it is not known whether
g is strictly periodic (implying that E is not Minkowski-measurable) or constant
(implying Minkowski-measurability of E). For self-similar subsets of R arising
from lattice IFS E being not Minkowski measurable has been shown in [26],
building on [20, 27, 30]. In the higher dimensional setting the analogue statement has
been verified under further assumptions in various works, see [27] and references
therein.

3.4.2 The Non-lattice Case

If − log r1, . . . ,− log rM do not generate a discrete subgroup of R then W is non-
lattice and Theorem 3.4 gives for t →∞

Z(t) ∼ E(W)−1
∫ ∞
−∞
z(T ) dT

= −1∑M
i=1 r

D
i log ri

∫ ∞
−∞

e−T (D−d)λd(Ee−T ∩ �) dT . (3.7)

Thus, (3.7) implies that E is Minkowski measurable in the non-lattice setting.
Furthermore, the Minkowski content of E is given by the right hand side of (3.7).

Remark 3.6 Just like there is a variety of sets of the same topological dimension,
e.g. 3-dimensional balls and cubes, there are various distinct fractal sets of the same
Minkowski dimension. The formula in (3.7) shows that we can use the Minkowski
content to distinguish between such sets. The value that the Minkowski content
takes highly depends on the geometric structure of �. Equation (3.7) shows that if
� includes large intervals (discs or balls), i.e. is highly lacunar, then M(E) will
be relatively small, compared to the case when � is made up of several connected
components of smaller size. We refer the interested reader to [24, 33] for further
details.

Remark 3.7 In the setting of self-similar sets, Question 2.2 has been studied by
various authors. References include [11, 13, 18, 29, 31, 32, 40] and several related
articles by the same authors. Related to the Minkowski measurability question is the
question of existence of fractal curvature measures, see e.g. [8, 37, 41].

Remark 3.8 Combining the methods presented above with those of Sect. 3.2 leads
to an answer of Question 2.1 in the setting of Sect. 3.2: combining (3.2) with (3.3)
gives

e−DtNlogh(e
−t ) =

q∑
j=1

|Gj |DE
( ∞∑
n=0

z(t + log|Gj | − Sn)
)
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with z : R→ R, z(t) := 1[0,logh)(t)e−Dt . In the a-lattice situation an application of
the key renewal theorem leads to

e−DtNa(e−t ) ∼ a

−∑Mi=1 r
D
i log ri

q∑
j=1

|Gj |DeaD{(t+log|Gj |)/a},

where {x} := x − |x| ∈ [0, 1) for x ∈ R. In the non-lattice situation an application
of the key renewal theorem yields

e−DtNlogh(e
−t ) ∼ 1− h−D

D
∑M
i=1 r

D
i log ri

q∑
j=1

|Gj |D.

3.5 Markov Renewal Theory

In Markov renewal theory one is concerned with the asymptotic behaviour of
solutions of the Markov renewal equation, which is a system of coupled renewal
equations that we will introduce momentarily. Before, let us allude to the stochastic
motivation.

By a Markov random walk, we understand a point process for which the inter-
arrival timesW0,W1, . . . are not necessarily i. i. d. (as in the preceding subsections),
but Markov dependent on a Markov chain (Xn)n∈N0 with finite or countable state
space�. This means thatWn is sampled according to the current and proximate val-
ues Xn,Xn+1 but is independent of the past values Xn−1, . . . , X0 of the underlying
Markov chain. Thus, (Xn+1,Wn)n∈N0 has an interpretation as a stochastic process
with state space � × R and transition kernel U : � × (P(�)⊗B(R))→ R given
by

U(i, {j} × (−∞, t]) := P(Xn+1 = j,Wn ≤ t | Xn = i) =: Fi,j (t). (3.8)

Here P(�) denotes the power set of � and B(R) denotes the Borel σ -algebra
on R and Fi,j defines a distribution function of a finite measure with total mass
‖Fi,j‖∞ := P(X1 = j | X0 = i) for given i, j ∈ �.

The system of equations

N(t, i) = fi(t)+
∑
j∈�

∫ ∞
−∞
N(t − u, j)Fi,j (du), (3.9)
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for varying i ∈ � and given fi : R → R is called a Markov renewal equation,
multivariate renewal equation or system of coupled renewal equations. This system
of equations is a direct analogue of (3.4) to the current setting, taking the Markov
dependence into account.

The Laplace transform of Fi,j at s ∈ R is given by

Bi,j (s) := (LFi,j )(s) :=
∫ ∞
−∞

e−sT dFi,j (T ).

Setting B(s) := (Bij (s))i,j∈� , and assuming that � is of finite cardinality, the
Perron-Frobenius theorem for matrices yields a unique s for which B(s) has spectral
radius one.

Theorem 3.9 (A Markov Renewal Theorem) Let M ≥ 2 be an integer and
assume that � = {1, . . . ,M}. For i, j ∈ � let Fi,j (t) be as in (3.8) and suppose
that F := (‖Fi,j‖∞)i,j∈� is irreducible. Let δ > 0 denote the unique positive real
number for which the matrix B(δ) given by Bi,j (δ) :=

∫
e−δuFi,j (du) has spectral

radius one. For i ∈ � let fi : R → R denote d. R. i. functions. Suppose that there
exist C, s > 0 such that e−δt |fi(t)| ≤ Cest for t < 0 and i ∈ �. Choose vectors ν,
h with νB(δ) = ν, B(δ)h = h and νi, hi > 0 for i ∈ �. Let N(t, i) for i ∈ � solve
the Markov renewal equation (3.9).

(i) If Fi,j is non-lattice for some (i, j) ∈ �2 , then

e−δtN(t, i) ∼ hi
∑M
j=1 νj

∫
e−δT fj (T )dT∑M

k,j=1 νkhj
∫
T e−δT Fk,j (dT )

=: G(i).

(ii) We always have

lim
t→∞ t

−1
∫ t

0
e−T δN(T , i)dT = G(i).

A statement for the lattice situation, i. e. when all Fi,j are lattice, can be deduced
from Theorem 4.2.

Remark 3.10 The above theorem is presented in a similar form in [2, VII. Thm. 4.6].
More general versions of Markov renewal theorems can be found in the literature
(see e.g. [1]). The precise version of Theorem 3.9 is a direct consequence of the
more general Renewal Theorem 4.2, which we present in the next section. In
Appendix B.2 we allude to how Theorem 3.9 can be deduced from Theorem 4.2.
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3.6 Questions 2.1 and 2.2 for Limit Sets of Graph-Directed
Systems of Similarities—Application of Markov Renewal
Theory

We demonstrate how to apply Markov renewal theory by considering the following
example. Let X := [0, 1] and let φ1, φ2, φ3 : X→ X be given by

φ1(x) = x
4
, φ2(x) = x

6
+ 5

12
, φ3(x) = x

4
+ 3

4
and A =

⎛
⎝ 1 1 1

1 0 1
1 1 1

⎞
⎠ .

Further, let J denote the limit set of � := {φ1, φ2, φ3} associated with A. The first
two steps in the construction of J are depicted in Fig. 1.

For a given h > 1 let N1(r), N2(r), N3(r) respectively denote the number of
connected components of [0, 1/4] \ J , [5/12, 7/12] \ J , [3/4, 1] \ J of lengths
between r and rh. We have that

N1(r) = N3(r) = 2 · 1
( 1

24h ,
1
24 ](r)+N1(4r)+N2(4r)+N3(4r),

N2(r) = 2 · 1
( 1

12h ,
1
12 ](r)+N1(6r)+N3(6r).

Setting

N(t, i) := Ni(e−t ),
f1 := f3 := 2 · 1(log(24),log(24h)], f2 := 2 · 1(log(12),log(12h)], and

Fi,j =

⎧⎪⎪⎨
⎪⎪⎩
1[log 4,∞) : (i, j) ∈ {1, 3} × {1, 2, 3}
0 : (i, j) = (2, 2)
1[log 6,∞) : (i, j) ∈ {2} × {1, 3}

we see that N(t, i) = fi(t) +∑j∈� ∫∞−∞N(t − u, j)Fi,j (du) for i ∈ �. Thus,
the system of coupled renewal equations (3.9) is satisfied. As we are in the non-
lattice situation and all hypotheses of Theorem 3.9 are clearly satisfied, Theorem 3.9

0 1
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5
48

7
48

3
16

1
4

5
12

11
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7
12

3
4

13
16

41
48
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48

15
16 1

Fig. 1 First two steps in the construction of the limit set of the graph-directed system studied in
Sect. 3.6
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thus yields

e−δtN(t, 1) = e−δtN(t, 3) ∼ (1− h−δ)(1+ 2−δ)
2δ[log 4(1+ 6δ)+ log 6] =: G and

e−δtN(t, 2) ∼ 6−δG

as t → ∞, where δ ≈ 0.6853. Now the asymptotics of the total number of
complementary intervals of lengths between e−t and he−t can be obtained from
the above through evaluating

N(t, 1)+N(t, 2)+N(t, 3)+ 2 · 1[log 6,∞)(t).

There is nothing particular about this example and the general setting, assuming
φi(int(X)) ∩ φj (int(X)) = ∅ for i �= j , can be treated analogously. Here, int(X)
denotes the topological interior of X.

The author is not aware that this approach has been carried out in the literature.
However, general results in the current setting were obtained in [20] for the more
general class of limit sets of conformal graph-directed systems, by means of the
renewal theorems that we turn to in the following section.

4 Renewal Theory in Symbolic Dynamics

The renewal theorem which is presented in the current section was developed in
[25] and extended to the setting of infinite state space in [21]. Here, the focus lies
on the situation of finite state space.

Now, the assumption of the previous section that (Xn)n∈N0 is a Markov chain and
thatWn is Markov dependent on (Xn)n∈N0 is dropped. Instead, we consider a time-
homogeneous (i.e. stationary increments) stochastic process (Xn)n∈Z with finite
state space � = {1, . . . ,M} and time-set Z and extend to the setting that Wn may
depend on the current valuesXn+1, Xn as well as on the whole pastXn−1, Xn−2, . . .

of the stochastic process (Xn)n∈Z.
In this situation it is of interest to study the limiting behaviour as t →∞ of the

renewal function N : R×�→ R given by

N(t, x) := Ex

[ ∞∑
n=0

fXn···X1x

(
t −

n−1∑
k=0

Wk

)]
, (4.1)

where {fy : R → R | y ∈ �} is a family of functions, Ex is the conditional
expectation givenX0X−1 · · · = x, for n = 0 we interpret fXn···X1x(t−

∑n−1
k=0Wk) to

be fx(t), and � is a subset of �N. For instance, if fy = 1[0,∞), then N(t, x) gives
the expected number of renewals in the time-interval (0, t] given X0X−1 · · · = x.
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In view of the questions in fractal geometry that we raised in Sect. 2 we impose
some assumptions, which turn the renewal function from (4.1) into a deterministic
one. For this, well-known terminology and theorems from symbolic dynamics are
used. For convenience, these are introduced in Appendix A and referred to at the
appropriate places.

4.1 Setting

The admissible transitions of the stochastic process (Xn)n∈N0 are assumed to be
governed by an irreducible (M ×M)- incidence matrix A of zeros and ones. Hence
infinite paths of the process are encoded by elements of the code space �A := {x ∈
�N | Axk,xk+1 = 1 ∀ k ∈ N}, see Sect. A.1. Thus, we consider the renewal function
N : R×�A→ R from (4.1) acting on R×�A.

A natural assumption in applications is that the recent history of (Xn)n∈N0 has
more influence on which state will be visited next than the earlier history. This is
reflected in the assumption that the function η : �A→ R given by

η(ix) := logPx(X1 = i)

belongs to the class Fα(�A) of real-valued α-Hölder continuous functions on
�A for some α ∈ (0, 1), see Sect. A.2. Here, i ∈ � and Px is the distribution
corresponding to Ex . Note that Px(X1 = i) := P(X1 = i | X0X−1 · · · = x) > 0 if
ix ∈ �A by the definition of�A. Similarly, it is assumed that the dependence ofWn
on Xn+1, Xn, . . . is described by a Hölder continuous function. That is we assume
existence of ξ ∈ Fα(�A) with

Wn = ξ(Xn+1XnXn−1 · · · ).

This notation allows us to evaluate the conditional expectation and express
N(t, x) in a deterministic way. Let σ denote the left-shift on �A and Sn the n-th
Birkhoff sum, see Sects. A.1 and A.3. Since

∑n−1
k=0Wk = Snξ(XnXn−1 · · · ) and,

for x, y ∈ �A with σny = x, we have P(XnXn−1 · · · = y | X0X−1 · · · = x) =
exp(Snη(y)) it follows that

N(t, x) =
∞∑
n=0

∑
y∈�A:σny=x

fy(t − Snξ(y))eSnη(y). (4.2)

From this, one can deduce the renewal-type equation

N(t, x) =
∑

y∈�A:σy=x
N(t − ξ(y), y)eη(y) + fx(t),
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which justifies calling N a renewal function. Intuitively, inter-arrival times are non-
negative and probabilities take values in [0, 1]. However, when considering the
deterministic form (4.2), ξ is allowed to take negative values, provided there exists
n ∈ N for which Snξ is strictly positive. Note that this condition is equivalent to
ξ being co-homologous (see Definition A.2) to a strictly positive function, see [25,
Rem. 2.1]. Moreover, η is allowed to be chosen freely from the class Fα(�A).

4.2 The Renewal Theorem

For y ∈ �A and t ∈ R write

fy(t) = χ(y) · gy(t)

with non-negative but not identically zero χ ∈ Fα(�A), where gy : R → R, for
y ∈ �A, need to satisfy a regularity condition, which is related to the direct Riemann
integrability assumption of the classical key renewal theorem (see Sect. 3.3), and
which we introduce next.

Definition 4.1 A family of functions {fx : R→ R | x ∈ I } with some index set I
is called equi directly Riemann integrable (equi d. R. i.) if fx is d. R. i. for all x ∈ I
(see Definition 3.2) and if

∑
k∈Z
h · sup

x∈I

(
mk(fx, h)−mk(fx, h)

)

tends to zero as h→ 0.

For the following, fix ξ and η as in Sect. 4.1 and let C(�A) denote the space of
real-valued continuous functions on �A, see Sect. A.2.

Theorem 4.2 (Renewal Theorem in Symbolic Dynamics, [25, Thm. 3.1] and [21,
Thm. 3.1]) Let A be irreducible, fix x ∈ �A and take α ∈ (0, 1). Further, let
ξ, η ∈ Fα(�A) be so that Snξ is strictly positive on �A for some n ∈ N. Let δ > 0
denote the unique real for which P(η − δξ) = 0, where P denotes the topological
pressure function (see Sect. A.3). Assume that x �→ gx(t) is α-Hölder continuous
for any t ∈ R, that {t �→ e−tδ|gx(t)| | x ∈ �A} is equi d. R. i. and that there exist
C, s > 0 such that e−tδ|gx(t)| ≤ Cest for t < 0 and x ∈ �A.

(i) If ξ is non-lattice (see Definition A.2) then there exists G(x) ∈ R, explicitly
stated in Sect. A.5, such that

N(t, x) ∼ etδG(x)

as t →∞, uniformly for x ∈ �A.
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(ii) Assume that ξ is lattice (see Definition A.2) and let ζ, ψ ∈ C(�A) satisfy the
relation

ξ − ζ = ψ − ψ ◦ σ,

where ζ(�A) ⊆ aZ for some a > 0. Suppose that ξ is not co-homologous to
any function with values in a proper subgroup of aZ, see Definition A.2. Then

N(t, x) ∼ etδG̃x(t)

as t → ∞, uniformly for x ∈ �A. Here G̃x is periodic with period a and
explicitly stated in Sect. A.5.

(iii) We always have

lim
t→∞ t

−1
∫ t

0
e−T δN(T , x)dT = G(x).

Remark 4.3

(i) In [25] it is shown that weaker assumptions than {t �→ e−tδ|gx(t)| | x ∈ �A}
being equi d.R.i. suffice, see [25, Sec. 3, (A)–(D)].

(ii) In [28] the case that η is the constant zero-function in conjunction with gx :=
1[0,∞) for every x ∈ �A is addressed. With these restrictions, [25, Sec. 3, (A)
and (Da)] are immediate and [25, Sec. 3, (B) and (C)] are shown in [28, Lemma
8.1]. The renewal function from (4.2) becomes

N(t, x) :=
∞∑
n=0

∑
y:σny=x

χ(y)1[0,∞)(t − Snξ(y)),

which is a counting function. [25, Thm. 3.1] provides its asymptotic behaviour
as t →∞, recovering [28, Thms. 1 to 3].

(iii) Notice, in [25] the above theorem was obtained under the stronger assumption
of A being primitive. This was weakened to A being irreducible in [21], where
additionally Theorem 4.2 was extended to the setting of � being countably
infinite.

In Appendix B we show how versions of the probabilistic renewal theorems,
which we stated in Sect. 3, can be deduced from the renewal theorems in symbolic
dynamics presented above.
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4.3 Questions 2.1 and 2.2 for Limit Sets of Graph-Directed
Systems of Conformal Maps, Including Self-conformal
Sets—Application of the Renewal Theorems in Symbolic
Dynamics

Both Questions 2.1 and 2.2 can be solved for limit sets of graph-directed systems of
conformal maps by means of the Renewal theorems in symbolic dynamics. We will
show how this is done for Question 2.2 below. Since the main ideas are similar we
will not execute how to solve Question 2.1 in this setting. Moreover, we will focus
on the case of self-conformal sets here and refer to [22] for the graph-directed case,
where details are provided.

As in Sect. 3.4 assume that � satisfies the OSC with feasible open set O and
w. l. o. g. that O is bounded. Recall from Sect. 3.4 that � := O \⋃Mi=1 φiO and that

λd(O) = λd
( ∞⋃
n=0

⋃
u∈�n

φu�

)
, (4.3)

where the unions are disjoint. In the following we assume that O can be chosen
so that λd(Ee−t ∩ �) = o(et (D−d)) as t → ∞ with the little Landau symbol
o, where E denotes the self-conformal set associated with � and D denote its
Minkowski dimension. (For functions f, g : R→ R we write f = o(g) as t →∞
if limt→∞ f (t)/g(t) = 0.) This is a mild condition, which is always satisfied for
self-similar systems with any feasible open set O, see [40]. For D < d Eq. (4.3)
thus gives

λd(Ee−t ∩O) =
∞∑
n=0

∑
u∈�n

λd(Ee−t ∩ φu�)

=
∑
ω∈�m

∞∑
n=0

∑
u∈�n

λd(Ee−t ∩ φuφω�)+ o(et (D−d))

for any m ∈ N. In the current setting we need to assume that λd(Ee−t ∩ φuφω�) =
λd((φuE)e−t ∩ φuφω�). As conformal maps locally behave like similarities the
expression λd((φuE)e−t ∩ φuφω�) can be approximated by

|φ′u(πσωx)|dλd(Ee−t /|φ′u(πσωx)| ∩ φω�) (4.4)

with an arbitrary x ∈ �N. Here, π : �N→ E is the code map defined by {π(ω)} :=⋂∞
n=0 φω|n(X). Introducing the geometric potential function ξ : �N→ R associated

with the IFS � by

ξ(ω) := − log|φ′ω1
(πσω)|
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we obtain exp(−Snξ(uωx)) = |φ′u(πσωx)|. Thus, λd(Ee−t ∩ O) can be approxi-
mated by

∑
ω∈�m

∞∑
n=0

∑
u∈�n

e−dSnξ(uωx)λd(Ee−t+Snξ(uωx) ∩ φω�)+ o(et (D−d)).

Setting fy(t) := λd(Ee−t ∩ φω�) for y ∈ �N, χ := 1�N , η := −dξ and assuming
the condition of {e−tδfy | y ∈ �A} being equi d.R.i. we can apply Thm. 4.2 and, if
ξ is non-lattice, obtain

∞∑
n=0

∑
u∈�n

e−dSnξ(uωx)λd(Ee−t+Snξ(uωx) ∩ φω�) = N(t, ωx)

∼ etδ
h−(d+δ)ξ (ωx)∫
ξdμ−(d+δ)ξ

∫ ∞
−∞

e−T δλd(Ee−T ∩ φω�)dT ,

where δ > 0 is the unique value for which P(−(d + δ)ξ) = 0, see Sect. A.3 and
the terms appearing in the fraction are explained in Sect. A.3, see also Sect. A.5.
It is proven in [4] that the Minkowski dimension D of E is the unique solution
to P(−Dξ) = 0 thus, d + δ = D. Using the bounded distortion property [35,
Lem. 2.3.1] this shows, in the non-lattice situation, that

λd(Ee−t ∩O) ∼ et (D−d) lim
m→∞
∑
ω∈�m

h−Dξ (ωx)∫
ξdμ−Dξ

∫ ∞
−∞

e−T (D−d)λd(Ee−T ∩ φω�)dT .

The lattice case can be treated similarly.

Remark 4.4 Question 2.2 for self-conformal subsets of R and limit sets of graph-
directed systems in R, including Fuchsian groups of Schottky type, are treated
in [19] and [20], where results of [28] were applied. The desire of obtaining an
answer to Question 2.2 in the higher dimensional setting of limit sets of conformal
graph-directed systems gave the motivation for developing the renewal theorem in
symbolic dynamics that we stated in Theorem 4.2 in [25] and its generalisation to
the infinite alphabet case in [21]. In [25] and [22] more details on the above can be
found. Results on curvature measures are for instance provided in [7].

Acknowledgments The author would like to thank the anonymous referee for their helpful and
constructive suggestions.
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A Appendix: Symbolic Dynamics

Here, we provide some background from symbolic dynamics which we use in
Sect. 4. Good references for the exposition below are [9, 38].

A.1 Sub-Shifts of Finite Type—Admissible Paths of a Random
Walk Through �

Recall the following setting from Sect. 4. � = {1, . . . ,M},M ≥ 2 denotes the state
space of the stochastic process (Xn)n∈N0 and A denotes an irreducible (M ×M)-
incidence matrix of zeros and ones. The set of one-sided infinite admissible paths of
(Xn)n∈N0 through � consistent with A = (Ai,j )i,j∈� is defined by

�A := {x ∈ �N | Axk,xk+1 = 1 ∀ k ∈ N}.

Elements of �A are interpreted as paths which describe the history of the process,
supposing that the process has been going on forever.

The path of the process prior to the current time is described by σ(x), where
σ : �A → �A denotes the (left) shift-map on �A given by σ(ω1ω2 . . .) :=
ω2ω3 . . .. The set of admissible words of length n ∈ N is defined by

�nA := {ω ∈ �n | Aωk,ωk+1 = 1 for k ≤ n− 1}.

If ω has infinite length or length m ≥ n we define ω|n := ω1 · · ·ωn to be the
sub-path of length n. Further, [ω] := {u1u2 · · · ∈ �A | ui = ωi for i ≤ n} is the
ω-cylinder set for ω ∈ �nA.

A.2 (Hölder-)Continuous and (Non-)lattice Functions

Equip �N with the product topology of the discrete topologies on � and equip
�A ⊂ �N with the subspace topology, i. e. the weakest topology with respect to
which the canonical projections onto the coordinates are continuous. Denote by
C(�A) the space of continuous real-valued functions on �A. Elements of C(�A)
are called potential functions.

Definition A.1 For ξ ∈ C(�A), α ∈ (0, 1) and n ∈ N0 define

varn(ξ) := sup{|ξ(ω)− ξ(u)| | ω, u ∈ �A and ωi = ui for all i ∈ {1, . . . , n}},

|ξ |α := sup
n≥0

varn(ξ)

αn
and

Fα(�A) := {ξ ∈ C(�A) | |ξ |α <∞}.



92 S. Kombrink

Elements of Fα(�A) are called α-Hölder continuous functions on �A.

Definition A.2 Functions ξ1, ξ2 ∈ C(�A) are called co-homologous, if there exists
ψ ∈ C(�A) such that ξ1 − ξ2 = ψ − ψ ◦ σ . A function ξ ∈ C(�A) is said to be
lattice, if it is co-homologous to a function whose range is contained in a discrete
subgroup of R. Otherwise, we say that ξ is non-lattice.

A.3 Topological Pressure Function and Gibbs Measures

The topological pressure function P : C(�A) → R is given by the well-defined
limit

P(ξ) := lim
n→∞ n

−1 log
∑
ω∈�nA

exp sup
u∈[ω]

Snξ(u). (A.1)

Here, Snξ := ∑n−1
k=0 ξ ◦ σk denotes the n-th Birkhoff sum of ξ with n ∈ N and

S0ξ := 0.

Proposition A.3 Let ξ, η ∈ C(�A) be so that Snξ is strictly positive on �A, for
some n ∈ N. Then s �→ P(η + sξ) is continuous, strictly monotonically increasing
and convex with lims→−∞ P(η+ sξ) = −∞ and lims→∞ P(η+ sξ) = ∞. Hence,
there is a unique δ ∈ R for which P(η − δξ) = 0.

A finite Borel measure μ on �A is said to be a Gibbs measure for ξ ∈ C(�A) if
there exists a constant c > 0 such that

c−1 ≤ μ([ω|n])
exp(Snξ(ω)− n · P(ξ)) ≤ c (A.2)

for every ω ∈ �A and n ∈ N.

A.4 Ruelle’s Perron-Frobenius Theorem

The Ruelle-Perron-Frobenius operator to a potential function ξ ∈ C(�A) is defined
by Lξ : C(�A)→ C(�A),

Lξχ(x) :=
∑

y∈�A:σy=x
χ(y)eξ(y). (A.3)

The dual operator acting on the set of Borel probability measures supported on �A,
is denoted by L∗ξ .
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By [39, Thm. 2.16, Cor. 2.17] and [9, Theorem 1.7], for each ξ ∈ Fα(�A), some
α ∈ (0, 1), there exists a unique Borel probability measure νξ on �A satisfying
L∗ξ νξ = γξ νξ for some γξ > 0. This equation uniquely determines γξ , which
satisfies γξ = exp(P (ξ)) and which coincides with the spectral radius of Lξ .
Further, there exists a unique strictly positive eigenfunction hξ ∈ C(�A) satisfying
Lξ hξ = γξhξ and

∫
hξdνξ = 1. Define μξ by dμξ/dνξ = hξ . This is the unique

σ -invariant Gibbs measure for the potential function ξ .
Proposition A.3 and the relation γξ = exp(P (ξ)) imply the following.

Proposition A.4 Let ξ, η ∈ C(�A) be such that for some n ∈ N the n-th Birkhoff
sum Snξ of ξ is strictly positive on �A. Then s �→ γη+sξ is continuous, strictly
monotonically increasing, log-convex in s ∈ R with lims→−∞ γη+sξ = 0 and
satisfies lims→∞ γη+sξ = ∞. The unique δ ∈ R from Proposition A.3 is the unique
δ ∈ R for which γη−δξ = 1.

A.5 The Constants in Theorem 4.2

Using the notation from Sect. A.3 we can explicitly state the form of G(x) and
Gx(t) occurring in the Renewal Theorem 4.2. For this, write �t� for the largest
integer k ∈ Z satisfying k ≤ t , where t ∈ R. Moreover, set {t} := t − �t� ∈ [0, 1).
Notice, for t ∈ R positive, �t� is the integer part and {t} is the fractional part of t .

G(x) = hη−δξ (x)∫
ξdμη−δξ

∫
�A

χ(y)

∫ ∞
−∞

e−T δgy(T ) dT dνη−δξ (y) and

G̃x(t) =
∫
�A

χ(y)

∞∑
l=−∞

e−alδgy
(
al + a

{
t+ψ(x)
a

}
− ψ(y)

)
dνη−δζ (y)

× e−a
{
t+ψ(x)
a

}
δ aeδψ(x)∫
ζdμη−δζ

· hη−δζ (x).

B Appendix: Relation to the Probabilistic Renewal Theorems

The setting of Sect. 4 extends and unifies the setting of established renewal
theorems. In brief: in the context of classical renewal theory for finitely supported
measures (in particular of the key renewal theorem), η and ξ only depend on the
first coordinate. When η and ξ only depend on the first two coordinates, we are
in the setting of Markov renewal theory. If η is the constant zero-function and
fy(t) = χ(y)1[0,∞)(t), where χ ∈ Fα(�A) is non-negative, we are precisely in
the setting of [28], where renewal theorems for counting measures in symbolic
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dynamics were developed, see Remark 4.3. The results of the infinite alphabet case
obtained in [21] even yield the respective cases for general discrete measures.

In the following we expand upon the above and let N : �A ×R→ R denote the
renewal function given in (4.2).

B.1 The Key Renewal Theorem for Finitely Supported
Measures

The special case of Theorem 4.2 thatN is independent of�A gives the classical key
renewal theorem for measures on [0,∞) that are finitely supported:
N being independent of�A can be achieved by the following assumptions. First,

�A = �N (i. e. full shift). Second, gx = f is independent of x ∈ �N implying
that equi d. R. i. of {t �→ e−tδ|gx(t)| | x ∈ �A} is equivalent to z : R → R

with z(t) := e−δtf (t) being absolutely d. R. i. Third, χ = 1�A . Fourth and most
importantly, ξ and η are constant on cylinder sets of length one. To emphasise local
constancy, write su := Snξ(u1 · · · unω) and pu := exp [Sn(η − δξ)(u1 · · · unω)] for
u = u1 · · · un ∈ �n and ω = ω1ω2 · · · ∈ �N. Setting Z(t) := e−δtN(t) we obtain
that

Z(t) =
∞∑
n=0

∑
ω∈�n

z(t − sω)pω and Z(t) =
M∑
i=1

Z(t − si)pi + z(t), (B.1)

for t ∈ R. Notice, the latter equation of (B.1) is the classical renewal equation (3.4).
The assumption Snξ > 0 for some n ∈ N implies si > 0 for all i ∈ �. Thus,
the distribution F which assigns mass pi to si is concentrated on (0,∞). On the
other hand, any vector (s1, . . . , sM) with s1, . . . , sM > 0 determines a strictly
positive function ξ ∈ Fα(�N) via ξ(ω1ω2 · · · ) := sω1 . Furthermore, in the setting
of Theorem 4.2, (p1, . . . , pM) is a probability vector with pi ∈ (0, 1) since

0 = P(η − δξ) = lim
n→∞ n

−1 log

(∑
i∈�
pi

)n
= log

∑
i∈�
pi

by Proposition A.3. Thus, F is a probability distribution. On the other hand, any
probability vector (p1, . . . , pM) with p1, . . . , pM ∈ (0, 1) determines η ∈ Fα(�N)

via η(ω1ω2 · · · ) := log(pω1eδsω1 ).
Consequently, Theorem 4.2 provides the asymptotic behaviour of Z under the

assumptions that (p1, . . . , pM) is a probability vector and that s1, . . . , sM > 0. In
order to present the asymptotic term in a common form, observe that Lη−δξ1 = 1(x)
for any x ∈ �N, where 1 = 1�N . Thus,

hη−δξ = 1 and μη−δξ ([i]) = νη−δξ ([i]) = pi,
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where the last equality follows by considering the dual operator of Lη−δξ . If ξ is
lattice then the range of ξ itself lies in a discrete subgroup of R: If there exist ζ, ψ ∈
C(�N) with ξ−ζ = ψ−ψ ◦σ and ζ(�N) ⊂ aZ for some a > 0, then ξ and ζ need
to coincide on {ω ∈ �N | ω = σω}. As every cylinder set of length one contains a
periodic word of period one the claim follows. Hence, we can choose ζ = ξ and ψ
to be the constant zero-function. We deduced the key renewal theorem, Theorem 3.4
for finitely supported measures on [0,∞) and f ≥ 0. In exactly the same way [21,
Thm. 3.1] yields the key renewal theorem for discrete measures.

B.2 Relation to Markov Renewal Theorems

Suppose that we are in the setting of Sect. 4.
If we assume that η and ξ are constant on cylinder sets of length two, then the

point process with inter-arrival timesW0,W1, . . . becomes a Markov random walk:
To see this, define η̃, ξ̃ : �2

A → R by η̃(ij) := η(ijω) and ξ̃ (ij) := ξ(ijω) for any
ω ∈ �A for which ijω ∈ �A. Then

P(X1 = i | X0X−1 · · · = x) = eη(ix) = eη̃(ix1) = P(X1 = i | X0 = x1).

Thus, (Xn)n∈Z is a Markov chain. Further, Wn = ξ(Xn+1XnXn−1 · · · ) =
ξ̃ (Xn+1Xn) implies that the inter-arrival times W0,W1, . . . are Markov dependent
on (Xn)n∈Z. Applying Theorem 4.2 to such Markov random walks gives the Markov
renewal theorem presented in Theorem 3.9. In order to state its conclusions in
the form of Theorem 3.9 we present several simplifications and conversions in the
following. Set

F̃i,j (t) := P(Xn+1 = j,Wn ≤ t | Xn = i)

=
{
1(−∞,t](̃ξ (j i))eη̃(j i) : ji ∈ �2

A

0 : otherwise.

and define F := (F̃ij )i,j∈� to be the matrix with entries Fij := ‖F̃ij‖∞ =
exp(̃η(j i))1�2

A
(j i). Then, F is irreducible if and only if A is irreducible. Moreover,

F̃ij is a distribution function of a discrete measure. Thus, ξ is lattice if and only if
F̃ij is lattice for all i, j . For s ∈ R and i, j ∈ � we have

Bi,j (s) :=
∫

e−sT F̃i,j (dT ) =
{

exp(̃η(j i)− sξ̃ (j i)) : ji ∈ �2
A

0 : otherwise.

Setting B(s) := (Bij (s))i,j∈� we see that the action of B(−s) on vectors coin-
cides with the action of the Ruelle-Perron-Frobenius operator Lη+sξ on functions
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g : �A → R which are constant on cylinder sets of length one. That is, setting
g̃i := g(ix), for x ∈ �A with ix ∈ �A, gives

Lη+sξ g(ix) =
∑

j∈�, ji∈�2
A

eη̃(j i)+sξ̃ (j i)g̃j =
∑
j∈�

Bij (−s)g̃j = (B(−s)g̃)i .

By the Perron-Frobenius theorem for matrices there is a unique s for which B(s) has
spectral radius one. By the above this value coincides with the unique s for which
Lη−sξ has spectral radius one, which we denoted by δ in Proposition A.4. Similarly,
hη−δξ is constant on cylinder sets of length one. Thus, setting hi := hη−δξ (ix) for
x ∈ �A with ix ∈ �A we obtain a vector (hi)i∈� with strictly positive entries which
satisfies B(δ)h = h, since

(B(δ)h)i = Lη−δξ hη−δξ (ix) = hη−δξ (ix) = hi.

Moreover, the vector ν given by νi := νη−δξ ([i]) satisfies νi > 0 for all i ∈ � and
νB(δ) = ν, since L∗η−δξ νη−δξ = νη−δξ . By the Perron-Frobenius theorem h and ν
are unique with these properties. Additionally assuming χ = 1�A and that fx only
depends on the first letter of x ∈ �A it follows that N(t, x) only depends on the
first letter of x. Thus, for i ∈ � write N(t, i) := N(t, ix) with x ∈ �A for which
ix ∈ �A. Now, the renewal equation becomes

N(t, i) =
∑

j∈�, ji∈�2
A

N(t − ξ̃ (j i), j)eη̃(j i) + fi(t)

=
∑
j∈�

∫ ∞
−∞
N(t − u, j)F̃i,j (du)+ fi(t),

(B.2)

for i ∈ �, where fi(t) := fix(t) for x ∈ �A with ix ∈ �A, compare (3.8).
Using the above in conjunction with the constants provided in Sect. A.5 thus yields
Theorem 3.9.
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Part II
Random Graphs and Complexes



Fractal Dimension of Discrete Sets
and Percolation

Markus Heydenreich

Abstract There are various notions of dimension in fractal geometry to charac-
terise (random and non-random) subsets of Rd . In this expository text, we discuss
their analogues for infinite subsets of Zd and, more generally, for infinite graphs.
We then apply these notions to critical percolation clusters, where the various
dimensions have different values.

Keywords Discrete fractal · Fractal dimension · Mass dimension · Spectral
dimension · Discrete Hausdorff dimension · Percolation · Incipient infinite
cluster
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1 What is the Dimension of a Graph?

Motivation There are various notions of dimension for subsets of R
d , see the

classical work of Falconer [22] as well as texts by Fraser and Lehrbäck in this
volume [24, 44]. Hausdorff dimension is perhaps the most commonly used, other
examples are box dimension and Assouad dimension. Any reasonable notion of
dimension yields the same value for strictly self-similar sets, but already for affine
self-similar sets these values may differ. All these notions depend on microscopic
properties of the set, i.e. local properties.

In statistical physics, many interesting models give rise to (random) subsets of the
lattice Z

d or even general graphs, and therefore “dimension” in this context should
describe the macroscopic properties of the set rather than the microscopic ones.
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In this expository text, we shall describe and compare three notions of dimension
for graphs: fractal dimension and spectral dimension can be defined for any
(connected and locally finite) graph, while the mass dimension requires the graph
to be embedded in an “external” metric space (for our purpose, we can think of
R
d equipped with the Euclidean norm). In the second part, we investigate these

notions for (high-dimensional) critical percolation as a prime example of a rich and
interesting subset of Zd , and we shall see that the three notions of dimension yield
different values.

It appears that different mathematical communities use different vocabulary, and
it is one of our aims to draw the connection between the various concepts involved.

Preparatory Notions We start by recalling basic notions from graph theory. Let
G = (V ,E) be a graph with non-empty vertex set V and edge set E ⊂ (V2) and
distinguished vertex 0 ∈ V (“the root”). We interpret G as a metric space with
intrinsic metric (or ‘graph metric’)

dG(x, y) = inf
{
n ∈ N : ∃v1, . . . , vn ∈ V such that

{x, v1}, {v1, v2}, . . . , {vn−1, vn = y} ∈ E
}
, (1.1)

for the shortest number of edges forming a path from x to y (including the case that
dG(x, y) = ∞ whenever there is no such path).

We henceforth assume that the graph is locally finite, i.e. for all x ∈ V :

degG(x) :=
∑
e∈E

1{x∈e} <∞, (1.2)

and connected, i.e. dG(x, y) < ∞ for all x.y ∈ V . For x ∈ V and n ∈ N0, we
denote by

Bx(n) :=
{
y ∈ V : dG(x, y) ≤ n

}

the ball w.r.t. the intrinsic metric dG, and abbreviate B(n) := B0(n) for the ball of
the root. We write ∂Bx(n) := Bx(n) \ Bx(n − 1) for the inner vertex boundary of
Bx(n).

Fractal Dimension The first notion of dimension is the fractal dimension (or
“volume growth dimension”) defined as

dimf (G) := lim
n→∞

log |B(n)|
log n

(1.3)

whenever the limit exists. More generally, we refer to the upper (resp. lower) fractal
dimension as lim sup (resp., lim inf) of (1.3). The fractal dimension appears to be
a very natural concept, and it characterises the structure of G viewed as a metric
space. In case of existence of the limit (1.3), we can write |B(n)| = ndimf (G)+o(1).
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Spectral Dimension A second, completely different approach to dimensionality is
given through random walks on the graph G. To this end, we define the (simple)
random walk on the (locally finite) graphG as the (discrete-time) stochastic process
with (Sn)n∈N0 with probability measure P and the property that

• P(S0 = 0) = 1;
• For all n ∈ N and x, y ∈ V :

P(Sn = x | Sn−1 = y) =
{

1
degG(y)

if dG(x, y) = 1,

0 otherwise.
(1.4)

In words, the random walk starts at the root at time n = 0, and in each time
step it moves to one of the neighbouring vertices (chosen independently with equal
probability).

We are now interested in the event that the random walk returns to the origin after
a given number 2n of steps. Indeed, we may use the decay rate of this probability to
define the spectral dimension of the graph G as

dims(G) := lim
n→∞−2

logP(S2n = 0)
log n

(1.5)

provided that the limit exists.
Mind that we are interested in returning after an even number of steps only, the

reason for this is that P(S2n = 0) > 0 for all n (e.g. by “reversing” the first n steps).
However, on bipartite graphs, the random walk can return to the origin only after an
even number of steps, so that automatically P(Sn = 0) = 0 whenever n is odd.

Both notions dimf and dims use the special vertex 0 as ‘base point’. However,
it might be easily observed that 0 is not relevant for the dimension (as long as the
graph is connected), and any other vertex ofG as base point would lead to the same
value of dimf and dims .

The spectral dimension is closely linked to the concept of recurrence and
transience of a graph, which we introduce next. To this end, we investigate the
probability that the random walk always returns to its starting point or not. We call
the graph recurrent if this is the case, i.e., if P(∃n ∈ N : Sn = 0) = 1. Otherwise,
we call the graph transient.

Lemma 1.1 The graph G is recurrent if dims < 2, and it is transient if dims > 2.

Proof A well-known theorem about random walks (e.g. Theorem 5.3.1 in [21])
states that the random walk (Sn)n is transient if and only if

∑
n∈N P(Sn = 0) <∞.

Thus for dims < 2, we have

∑
n∈N

P(Sn = 0) ≥
∑
n∈N

P(S2n = 0) =
∑
n∈N

n− dims /2+o(1) = ∞.
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For an upper bound, we use P(S2n+1 = 0) ≤ P(S2n = 0) for all n ∈ N (cf. Lemma
4.1 in [7]), and thus

∑
n∈N

P(Sn = 0) ≤ 1+
∑
n∈N

2P(S2n = 0) = 1+ 2
∑
n∈N

n− dims /2+o(1),

and this is summable whenever dims > 2. 
�
The “borderline case” dims = 2 relies on the finer asymptotics of P(S2n = 0),

and thus the limit (1.5) is too coarse to give an answer.
The terminology “spectral dimension” suggests a connection with the eigen-

values of the graph Laplacian, see for example Rammal and Toulouse [47] for a
discussion in the Physics literature. For Brownian motion on a class of compact
fractals, Kigami and Lapidus [39] prove a rigorous correspondence between the
fractal dimension and the spectrum of the associated Laplacian.

Examples An important example in the present text is the hypercubic lattice L
d =

(Zd ,Ed) with edge set Ed = {{x, y} : |x − y| = 1
}
. It is easily observed that

dimf (Ld) = dims(Ld) = d; indeed, this property should hold for any meaningful
notion of dimension for discrete sets. A Cayley graph is a graph that encodes the
abstract structure of a (usually finitely generated) group. The class of Cayley graphs
is very rich, and includes the hypercubic lattice, homogeneous trees, and many other
graphs. Gromov [27] proved that the limit (1.3) exists as an integer number for every
Cayley graph. Hebisch and Saloff-Coste [31, Thm. 5.1] verified that dimf = dims
for Cayley graphs. This equality is true for many other classes of graphs.

The Escape Time Exponent A second notion characterising random walks on
graphs is the escape time exponent β, which is defined as

E
[

inf{n ∈ N : Sn ∈ ∂B(n)}
] = nβ+o(1). (1.6)

Thus β describes how long it typically takes to reach the boundary of n-balls; by
E[ · ] we denote expectation w.r.t. the random walk measure P . For the Euclidean
lattice Ld we have β = 2. If β > 2, we speak of anomalous diffusion, which relates
to the fact that the random walk moves on average much slower than in Euclidean
space: after n steps, the random walk is typically at distance n1/β from its starting
point. An example for anomalous diffusion is random walk on the Sierpinski gasket,
for which Barlow and Perkins [9] proved that β = log 5/ log 2. The exponent β
is closely linked to dimf and dims . Indeed, Barlow and Bass [8] prove that β =
2 dimf / dims for any generalized Sierpinski carpet. However, all values of β in the
interval [2, dimf +1] are possible, as pointed out by Barlow [6].

Mass Dimension The graph notions described above are rather versatile tools for
abstract graphs. We shall now consider graphs that are embedded into Euclidean
space Rd (by this we mean that V ⊂ R

d ). For our purpose we can be more restrictive
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and require that V ⊂ Z
d . We denote by

Q(n) := [−n, n]d ∩ Z
d (1.7)

the ball of radius nwith respect to the supremum-metric on Z
d . The mass dimension

of a graph G = (V ,E) is then defined via

dimm(G) := lim
n→∞

log |V ∩Q(n)|
log n

. (1.8)

Mind the difference between dimf and dimm: while the former identifies the growth
exponent of balls w.r.t. the intrinsic (graph) metric, the latter measures balls w.r.t.
the extrinsic (Euclidean) metric. This makes no difference for G = L

d , but we will
encounter examples, where this is indeed very different. The use of the supremum
metric in (1.7) might appear arbitrary, but since all metrics on Z

d are equivalent,
they will all lead to the same value of dimm.

Other Notions of Dimension In this exposition we focus on the formerly defined
dimensions. However, there are various other notions of dimensions for subsets of
Z
d (mostly graph analogues of “continuum dimensions” for subsets of R

d ). We
explain two of these notions, which were introduced by Barlow and Taylor [10, 11].

The first definition is the discrete Hausdorff dimension dimH , which is defined
for subsets of Zd as follows. We say that a set A ⊂ Z

d is a finite cube if there exists
x ∈ Z

d and r ∈ N such that A = Q(r)+ {x} (where + is the Minkowski sum). For
a finite set A ⊂ Z

d , we denote by

R(A) = min{r : A ⊂ Q(r)+ {x} for some x ∈ Z
d}

the radius of A as the radius of a covering cube (and put R = ∞ if |A| = ∞). For
α ≥ 0, A,F ⊂ Z

d and F �= ∅, we further let

να(A, F ) := min

{
m∑
i=1

(
R(Bi)
R(F )

)α
: B1, . . . , Bm are finite cubes and A ∩ F ⊂

m⋃
i=1

Bi

}
.

Let

mα(A) =
∞∑
n=1

να
(
A,Q(2n) \Q(2n−1)

)
. (1.9)

Mind that α �→ xα is decreasing for x ∈ [0, 1], and so is mα(A). We finally define
the discrete Hausdorff dimension

dimH (A) := inf
{
α ≥ 0 : mα(A) <∞

}
. (1.10)
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The definition of discrete Hausdorff dimension is clearly modelled by its continuous
counterpart. Similarly to (and yet different from) the spectral dimension, this notion
is closely related to the recurrence and transience of random walks on A:

Proposition 1.2 (Thm. 8.3 in [11]) A setA ⊂ Z
d is recurrent if dimH (A) > d−2,

and it is transient if dimH (A) < d − 2.

Comparison with Lemma 1.1 shows that dimH and dims often differ. What is the
behaviour if dimH (A) = d − 2? If md−2(A) <∞, then the set is transient as well,
but no conclusion is possible when md−2(A) = ∞, because dimH is not sensitive
enough to decide the matter.

The second example that we discuss here is the discrete packing dimension dimp.
Its continuous analogue is the packing dimension as defined by Taylor and Tricot
[50], which is the same as Kolmogorov’s metric dimension and Hawke’s entropy
dimension. To this end, we let A,F ⊂ Z

d as before, and ε ∈ (0, 1). Then we let

μα(A, F, ε) := max

{
m∑
i=1

(
R(Bi)
R(F )

)α
: B1, . . . , Bm are finite pairwise disjoint cubes

centered in A ∩ F s.t. R(Bi) ≤ R(F )1−ε

}
,

and define the “packing measure”

pα(A, ε) =
∞∑
n=1

μα
(
A,Q(2n) \Q(2n−1, ε)

)
. (1.11)

Then the discrete packing dimension is defined as

dimp(A) := inf
{
α ≥ 0 : pα(A, ε) <∞ for all ε ∈ (0, 1)}. (1.12)

Among the results of Barlow and Taylor [11, Lemma 3.1] is the following order of
the dimensions: If A ⊂ Z

d , then

0 ≤ dimH (A) ≤ dimm(A) ≤ dimp(A) ≤ d. (1.13)

We return to these notions at the end of this text.
A different approach to the dimensionality of discrete sets has been proposed

recently by Bacelli, Haji-Mirsadeghi, and Khezeli [4].

2 Percolation

2.1 Percolation on L
d

Percolation theory studies the geometry of certain random subgraphs of L
d . Let

p ∈ [0, 1] be a parameter of the model, and make edges in E
d occupied with
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probability p (independently of each other), and otherwise vacant. More formally,
we consider the probability space� = {0, 1}Ed equipped with the product topology.
For a percolation configuration ω ∈ {0, 1}Ed , an edge b ∈ E

d is occupied whenever
ω(b) = 1, and it is vacant whenever ω(b) = 0. We equip this space with a family of
product measures (Pp)p∈[0,1] chosen such that Pp(b occupied) = p for any b ∈ E

d

and p ∈ [0, 1].
We say that x is connected to y and write x↔y when there exists a (finite) path

of occupied edges connecting x and y. Formally, x↔y on a configuration ω ∈
{0, 1}Ed if there exist x = v0, v1, . . . , vm−1, vm = y ∈ Z

d with the property that
{vi−1, vi} ∈ E

d and ω({vi−1, vi}) = 1 for all i = 1, . . . , m (m ∈ N). We further
write {x↔y} = {ω : x↔y on the configuration ω}. We let the cluster of x be all the
vertices that are connected to x, i.e., C(x) = {y : x↔y}. By convention, x ∈ C(x).

We define the percolation function p �→ θ(p) by

θ(p) = Pp(|C(x)| = ∞), (2.1)

where x ∈ Z
d is an arbitrary vertex and |C(x)| denotes the number of vertices in

C(x). By translation invariance, the above probability does not depend on the choice
of x. We therefore often investigate C = C(0) where 0 ∈ Z

d denotes the origin.
When θ(p) = 0, then the probability that the origin is inside an infinite connected

component is 0, so that there is almost surely no infinite connected component. On
the other hand, when θ(p) > 0, then (by ergodicity) the proportion of vertices
in infinite connected components equals θ(p) > 0, and we say that the system
percolates.

We define the percolation critical value by

pc = inf{p : θ(p) > 0}. (2.2)

It is well-known that pc = 1 on the one-dimensional lattice L
1 and pc ∈ (0, 1)

on L
d for all d ≥ 2. For this and other basic properties we refer to the textbooks

by Grimmett [26], Bollobas and Riordan [16] and Werner [51]. See Fig. 1 for a
simulation of percolation with different values of p.

For every percolation realization ω ∈ �, we can define a random walk on the
cluster C as in (1.4); we denote the corresponding measure by Pω. Random walk on
percolation clusters is a benchmark model of random walk in (non-elliptic) random
environment.

2.2 Dimension of Percolation Clusters

We now address the question: What is the dimension of the percolation cluster C =
C(0)? The answer depends on the value of p.
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= 1/ 3 = 1/ 2 = 2/ 3

Fig. 1 Three realisations of percolation on L
2

Indeed, if p < pc, then |C| <∞ for Pp-almost all ω, and hence

dimf (C) = dimm(C) = dims(C) = 0 Pp − a.s. (2.3)

We get a different picture when p > pc, and thus θ(p) = Pp(|C(x)| = ∞) > 0.
We condition on the event that the origin lies in an infinite cluster, and denote the
conditional probability by P

∗
p( · ) = Pp( · | 0↔∞). It may be seen by applying

the ergodic theorem that

lim
n→∞

|C ∩Q(n)|
|Q(n)| → θ(p) P

∗
p − a.s., (2.4)

and hence dimm(C) = d. Furthermore, we get that dimf (C) = d (almost surely
w.r.t. the measure P

∗
p) by exploiting the large deviation bounds on the graphical

distance by Antal and Pisztora [3]. Concerning the spectral dimension, Barlow [5]
proved the heat kernel bounds

c1n
−d/2 ≤ Pω(S2n = 0) ≤ c2n

−d/2 (2.5)

for P
∗
p-almost all ω (where the constants c1, c2 > 0 depend on the value of p),

and hence dims(C) = d as well. Barlow’s result was strengthened further to get a
quenched invariance principle [15, 45].

Finally, the critical case p = pc. There is a rather general lower bound on the
volume growth of critical clusters. Recall that we denote by B(n) the ball w.r.t. the
intrinsic (graph) metric dC on the cluster C = C(0), and ∂B(n) = B(n) \ B(n− 1).
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Theorem 2.1 For percolation on L
d , d ≥ 1,

Epc |B(n)| ≥ n, n ≥ 1. (2.6)

We provide a proof at the end of this chapter. Mind that (2.6) implies that
lim infn→∞ logEpc |B(n)|/ log n ≥ 1, and it might be tempting to conjecture that
even dimf ≥ 1. This, however, is not true. Even stronger, it is strongly believed that
critical infinite clusters do not exist:

Conjecture 2.2 For percolation on Z
d , d ≥ 2, we have that θ(pc) = 0, and thus

|C(x)| <∞ for all x ∈ Z
d
Ppc -a.s.

The conjecture is known to be true for d = 2 by Kesten [36] as well as in high
dimensions by Hara and Slade [29], where the meaning of high dimensions is that
there exists dmin > 6 such that the claim is true for d ≥ dmin . Fitzner and van der
Hofstad [23] optimized the strategy of Hara and Slade and verified that dmin = 11
suffices. Proving this conjecture in dimensions 3 ≤ d ≤ 10 is a major open problem
in percolation theory; see also [26] and [32, Open Problem 1.1].

In view of the presumed result that θ(pc) = 0, we thus get that all clusters are
almost surely finite and hence all dimensions equal 0, precisely as for p < pc. Yet
an interesting structure will emerge if we look at the interesting geometry of critical
clusters from a different angle. We now investigate this further for the two regimes
that we do understand rigorously, namely d = 2 and high dimensions.

2.3 The Incipient Infinite Cluster

When θ(pc) = 0, this leaves us with a most remarkable situation: At the critical
point pc there are clusters at all length scales, which are, however, all finite. As
we then make a density ε > 0 of closed edges open, the large clusters connect
up to form a (unique) infinite cluster, no matter how small ε is. At criticality, the
critical cluster is therefore at the verge of appearing. This observation motivated
the introduction of an incipient infinite cluster (IIC) as a critical cluster that is
conditioned to be infinite.

Somewhat simplified, the incipient infinite cluster (IIC) is defined as the cluster
of the origin under the critical measure Ppc conditioned on {|C(0)| = ∞}. Since this
would condition on an event of zero probability, a rigorous construction of the IIC
requires a limiting argument. The first mathematical construction has been carried
out by Kesten [37] in two dimensions, who considered two limiting schemes:

� under Ppc , condition on the event {C(0) ∩ ∂�n �= ∅}, and then let n→∞;
� under Pp (p > pc), condition on the event {|C(0)| = ∞} and let p ↘ pc.

Kesten proved that both limits exist in dimension d = 2, and lead to the same
limiting measure, which he calls the incipient infinite cluster. He was motivated
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by observations in the physics literature, which indicated anomalous diffusion for
random walk on large critical percolation clusters. Kesten [38] confirmed this, and
proved that the exit time exponent β satisfies β > 2 on incipient infinite cluster in
two dimensions. It is an open problem to improve this bound.

For percolation on a regular tree, the cluster distribution is precisely that of
a Galton-Watson tree with binomial offspring distribution. Hence, the incipient
infinite cluster for percolation on a tree is a special case of critical Galton-Watson
tree conditioned on non-extinction. It was again Kesten [38] who studied the
latter, and proved that it can be constructed in two steps: a single infinite line of
descent, casually phrased as “the immortal particle” and more formally as “cluster
backbone”, and critical trees hanging off this backbone. He further investigated the
escape time exponent for this incipient infinite cluster on trees, and proved that
β = 3.

We now come to the case of high-dimensional percolation, where the IIC was
constructed by van der Hofstad and Járai:

Theorem 2.3 (IIC Construction [35]) There is a dimension dmin > 6 such that
for d ≥ dmin and any event E that depends on the status of finitely many edges, the
limit

PIIC(E) := lim|x|→∞Ppc

(
E | 0↔x) (2.7)

exists.

The limitation to events that depend on the status of only finitely many edges is
a technical one. In fact, such events form an algebra on � which is stable under
intersections, and we may thus extend PIIC to a measure on the σ -fields generated
by the product topology. We denote this measure PIIC the incipient infinite cluster
measure.

It is straightforward to see that indeed PIIC(|C(0)| = ∞) = 1, as desired. Since
θ(pc) = 0, the IIC is also one-ended in the sense that the removal of any finite
region of the IIC leaves one infinite part. It can be seen that the infinite path is
essentially unique in the sense that any pair of infinite self-avoiding paths in the IIC
share infinitely many edges.

Van der Hofstad and Járai derive also another construction of the IIC-measure in
high dimensions, namely

PIIC(E) = lim
p↗pc

∑
x∈Zd Pp(E ∩ {0↔x})∑

x∈Zd Pp(0↔x)
. (2.8)

A third construction (same as Kesten’s first construction in two dimension) was
derived with van der Hofstad and Hulshof [33].

Mind that the measure PIIC has lost the translation invariance of the percolation
measures Pp. Indeed, the origin 0 plays a special role, since we have enforced that
the cluster C(0) is infinite.
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2.4 Lower Bound for the Expected Size of Critical Balls

We now prove Theorem 2.1. One ingredient is an alternative characterization of pc,
namely

pc = sup
{
p ∈ [0, 1] : Ep|C| <∞

}
, (2.9)

which is standard in percolation theory [1, 46]; we also refer to the short proof by
Duminil-Copin and Tassion [20]. In our proof of Theorem 2.1, we adapt ideas of
[20] but use the intrinsic (graph) metric rather than the extrinsic one. It appears that
the proof is valid in much wider context, namely all transitive connected graphs
whose percolation threshold is strictly between 0 and 1 and for which (2.9) is true.

Proof (Proof of Theorem 2.1) We define the value p̄c = supM with

M = {p ∈ (0, 1) : ∃n ∈ N such that Ep|∂B(n)| < 1
}
.

Fix an arbitrary p < p̄c. Then exists ε > 0 and n ∈ N such that Ep|∂B(n)| < 1− ε.
Fix such ε and n. We now claim that

Pp

(
∂B(kn) �= 0

) ≤ (1− ε)k, k ∈ N. (2.10)

The proof of (2.10) is via induction in k. The initialization of the induction is our
assumption. For the inductive step, we assume that (2.10) is true for some k, and
aim to prove it for k + 1. We first condition on the ball B(n):

Pp

(
∂B((k + 1)n) �= 0

) = ∑
A⊂Zd

Pp

(
B(n) = A, ∂B((k + 1)n) �= 0

)
. (2.11)

We treat the set A as a subgraph of Ld , and denote by ∂A the vertices with maximal
graphical distance from 0, this allows us to bound

Pp

(
∂B((k + 1)n) �= 0

) = ∑
A⊂Zd

Pp

(
B(n) = A,

⋃
y∈∂A

∂By(kn) �= 0 in (Zd \ A) ∪ {y})

≤
∑
A⊂Zd

∑
y∈∂A

Pp

(
B(n) = A, ∂By(kn) �= 0 in (Zd \ A) ∪ {y}).

(2.12)

The event {B(n) = A} depends on the status of all the edges with at least one
endpoint in A \ ∂A. On the other hand,

{
∂By(kn) �= 0 in Z

d \A ∪ {y}} depends on
the status of the edges not touching A \ ∂A. Hence, the two events are independent,
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and we bound further

Pp

(
∂B((k + 1)n) �= 0

)
≤
∑
A⊂Zd

∑
y∈∂A

Pp

(
B(n) = A)Pp(∂By(kn) �= 0 in (Zd \ A) ∪ {y})

≤
∑
A⊂Zd

∑
y∈∂A

Pp

(
B(n) = A)Pp(∂By(kn) �= 0

)
(2.13)

Transitivity of the underlying lattice gives Pp
(
∂By(kn) �= 0

) = Pp

(
∂B(kn) �= 0

)
.

Since

∑
A⊂Zd

∑
y∈∂A

Pp

(
B(n) = A) = ∑

A⊂Zd
|∂A| Pp

(
B(n) = A) = Ep|∂B(n)| ≤ 1− ε,

we can use the induction hypotheses to obtain Pp

(
∂B((k+1)n) �= 0

) ≤ (1−ε)k+1,
thus proving (2.10). Consequently,

Pp(|C| = ∞) ≤ lim
k→∞Pp

(
∂B(kn) �= 0

) = 0

and thus p ≤ pc. Since p < p̄c was arbitrary, we conclude p̄c ≤ pc.
We further observe that M is an open subset of [0, 1], and therefore p̄c �∈ M .

This implies Ep|∂B(n)| ≥ 1 for all n ∈ N, and thus

Ep̄c |C| =
∑
n∈N0

Ep̄c |∂B(n)| ≥
∑
n∈N0

1 = ∞,

and via (2.9) we thus get that p̄c ≥ pc. Together with the foregoing, we established
p̄c = pc.

The finishing touch is provided by the partial summation

Epc |B(n)| = Ep̄c |B(n)| =
n∑
k=0

Ep̄c |∂B(k)| ≥
n∑
k=1

1 = n. 
�

3 Dimension of the Incipient Infinite Cluster

In this section we come to the main endeavour of this text, which is characterising
the various dimensions of incipient infinite cluster.



Fractal Dimension of Discrete Sets and Percolation 113

Let us deal with the planar case first. Kesten [37] proved for various two-
dimensional lattices that

lim
λ→∞PIIC

(
λ−1 ≤ |C ∩Q(n)|

n2 Ppc (0↔∂Q(n))
≤ λ
)
= 1 (3.1)

uniformly in n. For the case of site percolation on the triangular lattice, it is known
that Ppc(0↔∂Q(n)) = n−5/48+o(1), cf. [43]. This suggests that the mass dimension
equals dimm = 91/96. However, in view of Lemma 3.5 below, the control of the
error terms is not strong enough to conclude that dimm = 91/96 in an (PIIC-)almost
sure sense. Concerning the fractal dimension dimf , it is a challenging open problem
to derive sharp bounds on the intrinsic (graph) distance of critical two-dimensional
clusters. For a recent survey of bounds on the intrinsic distance in the planar case,
we refer to Damron [19].

We now come to the case of high dimensions, where the results are most
complete. For a general survey of results in high-dimensional percolation, we refer
to our recent textbook [32].

For the incipient infinite cluster in high dimensions, the results are summarized
in the following theorem:

Theorem 3.1 ([18, 40]) For the incipient infinite cluster in high dimensions, we
have that

dims(C) = 4/3, dimf (C) = 2, dimm(C) = 4 PIIC − a.s.

Interestingly, all three dimensions of C are independent of the dimension d of the
embedding space, an indication that the geometry of the embedding space is less
visible, and the model appears similar as their non-spatial analogues (as predicted
by mean-field theory).

In the sequel, we demonstrate the proof for the fractal dimension based on a
number of standard results for high-dimensional percolation. Finally, we discuss
the necessary adaptations for the other dimensions dims and dimm.

The analysis of percolation in high dimension is rooted in a technique called
the lace expansion. For percolation, this was pioneered in a seminal 1990 paper by
Hara and Slade [29], who were inspired by earlier work of Brydges and Spencer
[17] for self-avoiding walk. For our purpose we need the following estimate on the
percolation connectivity: there exist C, c > 0 such that for all x, y ∈ Z

d , x �= y,

c|x − y|d−2 ≤ Ppc (x↔y) ≤ C|x − y|d−2. (3.2)

The estimate (3.2) was first derived for a spread-out version of percolation [30], and
adapted by Hara [28] to our setting. Fitzner and van der Hofstad [23] verified that it
is valid in dimension d > 10.

The upper bound in (3.2) readily implies the famous triangle conditon, which in
turn implies that various critical exponents take on their mean-field values. We need
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only two implications here, and refer to a general discussion of critical exponents to
[32, Section 1.2]: There are constants c1, C1, c2, C2 > 0 such that

c1

pc − p ≤ Ep|C| ≤ C1

pc − p , p ∈ (0, pc), (3.3)

and

c2√
k
≤ Ppc

(|C| ≥ k) ≤ C2√
k
, k ∈ N. (3.4)

The bound (3.3) is due to Aizenman and Newman [2], the bound (3.4) due to Barsky
and Aizenman [13].

Our final ingredient is the famous BK-inequality. To this end, we define the
disjoint occurrence E ◦ F of two events E and F as

E ◦ F = {ω : ∃K ⊂ E
d such that ωK ∈ E,ωEd\K ∈ F

}
, (3.5)

where ωK := {ω′ : ω(e) = ω′(e) for all e ∈ K} is the “K-cylinder of ω”. Then the
BK-inequality [14, 48] establishes that

Pp(E ◦ F) ≤ Pp(E) Pp(F ) (3.6)

for any p ∈ [0, 1] and all events E,F that depend on finitely many edges. This last
confinement can be lifted in many cases, and indeed (3.6) is true for all events that
we are considering in the present text (see also Section 2.3 in [26]).

3.1 The Fractal Dimension

We now prove that dimf (C) = 2 whenever (3.2) is valid. We start by showing that
the lower bound (2.6) has a matching upper bound in high dimensions (which is
supposedly false in dimension d < 6).

Lemma 3.2 (Ball Growth) Consider percolation in dimension d > 10. There
exists a constant C3 > 0 such that for all n ∈ N,

n ≤ Epc |B(n)| ≤ C3n.

Proof The lower bound was already contained in (2.6). We follow Sapozhnikov
[49] for a proof of the upper bound. Let p < pc. We consider the following coupling
of percolation with parameters p and pc: Starting with a critical percolation
configuration (edges are occupied with probability pc), make every occupied edge
vacant with probability 1 − (p/pc). This construction implies that for any x ∈ Z

d ,
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p < pc, and n ∈ N,

Pp

(
dC(0, x) ≤ n

) ≥
(
p

pc

)n
Ppc (dC(0, x) ≤ n).

Summing over x and using the inequality Pp(dC(0, x) ≤ n) ≤ Pp(0↔x), we obtain

Epc |B(n)| ≤
(
pc

p

)n
Ep|C| ≤ C1

(
pc

p

)n
(pc − p)−1,

where the last bound comes from (3.3). Choosing p = pc(1− 1
2n ) proves the claim.


�
Lemma 3.3 (Arm Exponents [40]) Consider percolation in dimension d > 10.
There exists constants C, c > 0 such that for all n ∈ N,

c

n
≤ Ppc

(
∂B(n) �= ∅

) ≤ C
n
.

Proof We start with the proof of the lower bound, and use the well-known second-
moment method. The basic inequality is

P(Z > 0) ≥ (EZ)2/EZ2, (3.7)

which is valid for any non-negative random variable Z. We aim to apply this to
Z = ∣∣B(λn) \ B(n)∣∣ with λ = 2C3. Now Lemma 3.2 yields

Epc |B(λn) \ B(n)| ≥ λn− C3n = C3n.

We now estimate the second moment of B(λn). Indeed, if both x and y are
connected with distance ≤ λn from 0, then there must exist a “branch point” z ∈ Z

d

such that there are (edge-)disjoint paths from 0 to z, from z to x and from z to y. We
may use the symbol ◦ (recall (3.5)) to write this as

{dC(0, x) ≤ λn} ∩ {dC(0, y) ≤ λn}
⊆
⋃
z

{dC(0, z) ≤ λn} ◦ {dC(z, x) ≤ λn} ◦ {dC(z, y) ≤ λn}.

Consequently, the BK-inequality (3.6) and Lemma 3.2 yields

Epc |B(λn)|2 =
∑
x,y

Ppc (dC(0, x) ≤ λn, dC(0, y) ≤ λn)

≤
∑
x,y,z

Ppc (dC(0, z) ≤ λn)Ppc (dC(z, x) ≤ λn)Ppc (dC(z, y) ≤ λn)

=
[ ∑
z∈Zd

Ppc (dC(0, z) ≤ λn)
]3 = B(λn)3 ≤ C′n3, (3.8)
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for some constant C′ > 0. Consequently, the bound in (3.7) yields

Ppc

(∃x ∈ Z
d : dC(0, x) ≥ λn

) ≥ Ppc

(|B(λn) \ B(n)| > 0
) ≥ C2

3n
2

C′n3 =
C2

3

C′n
,

which proves the statement with c = C2
3

λC′ = C3
2C′ .

The upper bound uses a clever induction argument. For subgraphs G of the
infinite lattice L

d , we denote by CG = CG(0) the (restricted) percolation cluster
of 0 in the subgraph G, and denote by BCG(n) =

{
y ∈ Z

d : dCG(0, y) ≤ n
}

the
corresponding ball w.r.t. the graph metric on the restricted cluster CG. We further
define

H(n;G) := {∂BCG(n) �= ∅
}

for the “one-arm event” on the graph G, and

�(n) = sup
{
Ppc (H(n;G)) : G is subgraph of Ed

}
.

It turns out that working with �(n) rather than Ppc (H(n;Ld)) enables us to apply
a regeneration argument, which would not work for Ppc (H(n;Ld)), since it is not
monotone.

For C2 as in (3.4), we choose C∗ ≥ 1 large enough so that

33C∗2/3 + C2C∗2/3 ≤ C∗, (3.9)

We claim that, for any integer k ≥ 0,

�(3k) ≤ C∗
3k
. (3.10)

This readily implies the upper bound of the lemma, since for any n we choose k
such that 3k−1 ≤ n < 3k and then

Ppc (H(n;Ld)) ≤ �(n) ≤ �(3k−1) ≤ C∗
3k−1 ≤

3C∗
n
.

The proof of (3.10) is via induction in k. The claim is trivial for k = 0 since C∗ ≥ 1.
For the inductive step we assume (3.10) for k − 1 and prove it for k. Depending on
the size |CG| of the restricted cluster CG for arbitrary subgraphs G, we estimate

Ppc (H(3
k;G)) ≤ Ppc

(
H(3k;G), |CG| ≤ C∗−4/39k

)+ Ppc

(|CG| > C∗−4/39k
)
.

(3.11)



Fractal Dimension of Discrete Sets and Percolation 117

For the second summand, we use (3.4) to obtain

Ppc

(|CG| > C∗−4/39k
) ≤ Ppc

(|CLd (0)| > C∗−4/39k
) ≤ C2C∗2/33−k. (3.12)

For the former, on the other hand, we claim that

Ppc

(
H(3k;G), |CG| ≤ C∗−4/39k

) ≤ C∗−4/33k+1(�(3k−1)
)2
. (3.13)

Indeed, if |CG| ≤ C∗−4/39k , then there exists j ∈ [ 13 3k, 2
3 3k] such that |∂BCG(j)| ≤

C∗−4/33k+1. Denote the first such level by j . Then, on the right hand side, we get
a factor �(j) (which is bounded by �(3k−1)) from the probability of a connection
from the origin to level j , and C∗−4/33k+1 times the probability to go from level j
to level 3k (each of these probabilities is again bounded above by �(3k−1)), which
shows (3.13).

We combine (3.11), (3.12), and (3.13) with the induction hypothesis, and
finally (3.9), to obtain

�(3k) ≤ C∗−4/33k+1
(
C∗

3k−1

)2

+ C2C∗2/3

3k
= 33C∗2/3 + C2C∗2/3

3k
≤ C∗

3k
,

thus proving (3.10). 
�
While the previous estimates all concern critical percolation, we now turn

towards the IIC-measure; and our tool to transfer the results is the construction (2.7).

Lemma 3.4 ([40]) Consider percolation in dimension d > 10. There exist C > 0
such that for all n ∈ N, λ > 1,

PIIC

(1

λ
n2 ≤ |B(n)| ≤ λn2

)
≥ 1− C

λ
.

Proof (Upper Bound) We aim to show that PIIC

(|B(n)| > λn2
) ≤ Cλ−1 for all

λ > 0, n ∈ N. If dC(0, z) ≤ n and 0↔x (for x, z ∈ Z
d ), then there exists a vertex

y ∈ Z
d such that

{dC(0, y) ≤ n} ◦ {dC(y, z) ≤ n} ◦ {y↔x}.
By the BK-inequality (3.6), we can bound this from above as follows:

Epc [|B(n)|1{0↔x}] =
∑
z

Ppc (dC(0, z) ≤ n, 0↔x)

≤
∑
y,z

Ppc

({dC(0, y) ≤ n} ◦ {dC(y, z) ≤ n} ◦ {y↔x})

≤
∑
y,z

Ppc (dC(0, y) ≤ n) Ppc (dC(y, z) ≤ n)Ppc (y↔x).

(3.14)
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Therefore, we get a bound for the conditional probability

Epc [|B(n)| | 0↔x] ≤
∑
x,z

Ppc (dC(0, y) ≤ n) Ppc (dC(y, z) ≤ n)
Ppc (y↔x)
Ppc (0↔x)

.

(3.15)

The asymptotics (3.2) implies that there is a constant C′ such that for all x with
|x − y| ≤ 2|x|, the ratio Ppc (y↔x)/Ppc (0↔x) ≤ C′, thus

Epc [|B(n)| | 0↔x] ≤ C
∑
x,z

Ppc (dC(0, y) ≤ n) Ppc (dC(y, z) ≤ n). (3.16)

Finally, we use the upper bound in Lemma 3.2 twice to get

Epc [|B(n)| | 0↔x] ≤ C′(C3n)
2. (3.17)

The finishing touch is provided by Markov’s inequality:

Ppc (|B(n)| ≥ λn2 | 0↔x) ≤ C
′C2

3n
2

λ n2
= C′C2

3λ
−1. (3.18)

Letting |x| → ∞ yields the claim (as {|B(n)| ≥ λn2} is a cylinder event). 
�
Proof (Lower Bound) For the lower bound, we prove that PIIC

(|B(n)| < εn2
) ≤ Cε

for all ε = λ−1 > 0, n ∈ N.
If |B(n)| < εn2, then there exists some radius j ∈ {#n/2$, . . . , n} such that

|∂B(0, j)| ≤ 2εn, and we fix the smallest such j . Then we condition on {B(j) = A}
for any “j -admissible” subgraphA, which is any finite subgraphA of Ld containing
0 s. t.

• Ppc (B(j) = A) > 0,
• |∂A| ≤ 2εn, where |∂A| denote the number of vertices at maximal graphical

distance from 0
• |{y : dA(0, y) = k}| > 2εn for k = #n/2$, . . . , j − 1 (to make sure that j is the

“first” level satisfying the above property).

This yields

Ppc

(|B(n)| < εn2, 0↔x) ≤
n∑

j=n/2

∑
A

Ppc

(
B(j) = A, 0↔x)

=
n∑

j=n/2

∑
A

Ppc

(
0↔x | B(j) = A) Ppc(B(j) = A),

(3.19)
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where the sum is over all j -admissable A. For any such A, we get

Ppc (0↔x | B(j) = A) ≤
∑
y∈∂A

Ppc (y↔x with a path avoiding A\∂A | B(j) = A).

However, since {y↔x with a path avoiding A\∂A} only depends on the edges with
both endpoints outside A\∂A and {B(j) = A} only depends on the edges with both
endpoints in A, the two events are independent, and

Ppc (0↔x | B(j) = A) ≤
∑
y∈∂A

Ppc (y↔x with a path avoiding A \ ∂A)

≤
∑
y∈∂A

Ppc (y↔x) ≤
∑
y∈∂A

C|y − x|d−2,

where the last bound uses (3.2). Assuming that x is far away from the origin (again
|x − y| ≤ 2|x| suffices), then there is a constant C′ > 0 such that

Ppc (0↔x | B(j) = A) ≤ C′ |∂A| |x|2−d ≤ C′εn |x|2−d .

Furthermore, we have that

n∑
j=n/2

∑
A

Ppc

(
B(j) = A) ≤ Ppc(∂B(n/2) �= ∅

)
.

Plugging the previous two bounds in (3.19), we get

Ppc

(|B(n)| < εn2, 0↔x) ≤ C′εn|x|2−d
n∑

j=n/2

∑
A

Ppc (B(j) = A)

≤ C′εn|x|2−dPpc
(
∂B(n/2) �= ∅

)
,

and now we use the upper bound in Lemma 3.3 to further bound

Ppc

(|B(n)| < εn2, 0↔x) ≤ C′′ε|x|2−d
for a constant C′′ > 0. Finally, letting |x| → ∞ and using (2.7) along with the
two-point function estimate (3.2) yields the desired result. 
�

In order to prove that dimf (C) = 2 for the incipient infinite cluster, we combine
the previous lemma with the following general criterion:

Lemma 3.5 (Lemma 3.2 in [18]) Let (Zn)n∈N be a sequence of positive random
variables such that Z1 ≤ Z2 ≤ . . . . Suppose there are constants α,μ,C > 0 such
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that for all λ > 0 and n ∈ N, we have

P(λ−1nα ≤ Zn ≤ λnα) ≥ 1− C(log λ)−1−μ. (3.20)

Then

P

(
lim
n→∞

logZn
log n

= α
)
= 1.

Proof We abbreviate Yn := logZn/ log n, and claim that it is sufficient to prove

lim
k→∞Y2k = α P− a.s. (3.21)

Indeed, for n ∈ N, we choose k = k(n) ∈ N such that 2k−1 ≤ n ≤ 2k , and use the
monotonicity of the sequence (Zn)n ∈ N to bound

Y2k−1
k − 1

k
= logZ2k−1

log 2k
≤ logZn

log n
≤ logZ2k

log 2k−1 = Y2k
k

k − 1
,

and then use (3.21) to conclude the claim.
In order to prove (3.21), we define

εk := k
1+μ/2
1+μ −1

, λk := 2kεk ,

and note that εk > 0, λk > 1 for all k ≥ 1, and limk→∞ εk = 0. Then, using (3.20),

∞∑
k=1

P
(|Y2k − α| > εk

) =
∞∑
k=1

P
(| logZ2k − log(2kα)| > log λk

)

=
∞∑
k=1

P
(
Z2k < λ

−1
k 2kα
)+ P
(
Z2k > λk2

kα
)

≤ C
∞∑
k=1

1

(log λk)1+μ
= C

(log 2)1+μ
∞∑
k=1

1

k1+μ <∞.

Hence, the Borel-Cantelli lemma implies that

P
(|Y2k − α| > εk for infinitely many k

) = 0,

which proves (3.21). 
�
Proof (Proof of dimf (C) = 2) We apply Lemma 3.5 with P being the IIC-measure
PIIC, α = 2, Zn = B(n) and apply Lemma 3.4 to get the desired result. 
�
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3.2 The Spectral Dimension

Control of the return probability of random walk needs two ingredients. The first one
is control of the the volume growth, which is achieved in Lemma 3.4. The second
ingredient is control of the effective resistance. The connection between these two
ingredients and random walk behaviour is in the folklore of studying random walks,
see in particular Kumagai and Misumi [42] for results in our context. Kozma and
Nachmias [40] prove a quantitative estimate on the lower bound on the effective
resistance between 0 and ∂B(n), and then apply a readily tailored theorem of Barlow
at al. [12] to deduce that dims = 4/3. Another consequence of this theorem is that
the escape time exponent equals β = 3 PIIC−almost surely (precisely as for the IIC
on trees).

3.3 The Mass Dimension

Already van der Hofstad and Járai [35] showed that

EIIC|C ∩Q(n)| ≈ n4.

From this, we can prove that dimf (C) ≤ 4 rather straightforwardly via Markov’s
inequality. The challenge is to prove a complementing lower bound, which was
achieved by Cames van Batenburg [18] using quantitative bounds on the extrinsic
one-arm exponent [41].

Mind that the escape time exponent as defined in (1.6) determines the rate at
which a random walk leaves a ball of intrinsic distance n. Unlike on Z

d , the extrinsic
and intrinsic distances are not equivalent on the IIC-cluster, and we therefore
consider a modified critical exponent β ′ as

E
[

inf{n ∈ N : Sn ∈ ∂Q(n)}
] = nβ ′+o(1). (3.22)

With van der Hofstad and Hulshof [33] we proved that β ′ = 6 for PIIC−almost
all realizations ω. This should be contrasted against β = 3 explained before. This
means that the random walk needs order n3 steps to leave the intrinsic ball B(n), but
it needs n6 steps in order to leave Q(n). The factor 2 between these two exponents
is not a coincidence: in high dimensions, the spatial dependency between different
parts of a critical cluster is rather weak; in fact so weak that geodesic paths (w.r.t.
graph distance) are embedded into Z

d similar to a random walk path, and thus the
graph distance between 0 and ∂Q(n) is of the order n2.
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4 Discussion and Outlook

A number of pressing challenges were mentioned en passant, most notably the
identification of dimensions of critical percolation clusters in lower dimension.
However, in the following we want to bring forward two lines of further research
that might be within reach with current techniques.

1. Identify discrete Hausdorff dimension and packing dimension of critical perco-
lation clusters in high dimension. Also for other “natural” random subsets of Zd .
So far the only results are by Barlow and Taylor [11] and Georgiou et al. [25] for
the range of (generalised) random walks.

2. Known cases of discrete dimension all deal with subsets of Z
d , and also the

focus of the present account is on subsets of the hypercubic lattice. However,
there is no obvious need to stick to the lattice setup here—fractal and spectral
dimension are meaningful for any locally-finite connected graph, and the others
require an embedding of the vertices in some metric space, and Z

d might appear
as an unnecessary limitation.

From a geometric point of view, it might be more natural to focus on discrete
subsets of Rd . Instead of lattice percolation, one might investigate the geometric
properties of (critical) continuum percolation clusters. A suitable candidate is the
random connection model, where vertices are given as a Poisson point process
in R

d , and two vertices are linked by an edge with probability depending on the
Euclidean distance between the vertices. The critical behaviour of the random
connection model in high dimensions has recently been identified [34], paving
the way to an investigation of the continuum incipient infinite cluster and its
dimension(s).

Acknowledgments The author thanks Martin Barlow and Steffen Winter for providing references
and for comments on an earlier version of the manuscript.
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Related Fields 79(4), 543–623 (1988). https://doi.org/10.1007/BF00318785

10. Barlow, M.T., Taylor, S.J.: Fractional dimension of sets in discrete spaces. J. Phys. A, Math.
Gen. 22(13), 2621–2626 (1989)

11. Barlow, M.T., Taylor, S.J.: Defining fractal subsets of Zd . Proc. Lond. Math. Soc. (3) 64(1),
125–152 (1992)

12. Barlow, M.T., Járai, A.A., Kumagai, T., Slade, G.: Random walk on the incipient infinite cluster
for oriented percolation in high dimensions. Comm. Math. Phys. 278(2), 385–431 (2008)

13. Barsky, D.J., Aizenman, M.: Percolation critical exponents under the triangle condition. Ann.
Probab. 19(4), 1520–1536 (1991)

14. Berg, J.v.d., Kesten, H.: Inequalities with applications to percolation and reliability. J. Appl.
Probab. 22(3), 556–569 (1985)

15. Berger, N., Biskup, M.: Quenched invariance principle for simple random walk on percolation
clusters. Probab. Theory Related Fields 137(1–2), 83–120 (2007). http://dx.doi.org/10.1007/
s00440-006-0498-z

16. Bollobás, B., Riordan, O.: Percolation. Cambridge University, New York (2006)
17. Brydges, D.C., Spencer, T.: Self-avoiding walk in 5 or more dimensions. Comm. Math. Phys.

97(1–2), 125–148 (1985)
18. Cames van Batenburg, W.P.S.: The dimension of the incipient infinite cluster. Electron.

Commun. Probab. 20(33), 10 (2015). https://doi.org/10.1214/ECP.v20-3570
19. Damron, M.: Recent work on chemical distance in critical percolation (2016). Preprint

arXiv:1602.00775 [math.PR]
20. Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for

Bernoulli percolation on Z
d . Enseign. Math. (2) 62(1–2), 199–206 (2016)

21. Durrett, R.: Probability. Theory and Examples, vol. 49, 5th edn. Cambridge University,
Cambridge (2019)

22. Falconer, K.: Fractal geometry. In: Mathematical Foundations and Applications, 3rd edn.
Wiley, Hoboken (2014)

23. Fitzner, R., van der Hofstad, R.: Mean-field behavior for nearest-neighbor percolation in d >
10. Electron. J. Probab. 22, 65 (2017). Id/No 43

24. Fraser, J.M.: Interpolating between dimensions. In: Freiberg, U., Hambly, B., Hinz, M.,
Winter, S. (eds.) Fractal Geometry and Stochastics VI. Progress in Probability, vol. 76, pp.
3–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59649-1_1

25. Georgiou, N., Khoshnevisan, D., Kim, K., Ramos, A.D.: The dimension of the range of a
transient random walk. Electron. J. Probab. 23, 31 (2018). https://doi.org/10.1214/18-EJP201

26. Grimmett, G.: Percolation. In: Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 321, 2nd edn. Springer, Berlin (1999)

27. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ.
Math. 53, 53–73 (1981)

28. Hara, T.: Decay of correlations in nearest-neighbour self-avoiding walk, percolation, lattice
trees and animals. Ann. Probab. 36(2), 530–593 (2008)

29. Hara, T., Slade, G.: Mean-field critical behaviour for percolation in high dimensions. Comm.
Math. Phys. 128(2), 333–391 (1990)

30. Hara, T., Hofstad, R.v.d., Slade, G.: Critical two-point functions and the lace expansion for
spread-out high-dimensional percolation and related models. Ann. Probab. 31(1), 349–408
(2003)

31. Hebisch, W., Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on
groups. Ann. Probab. 21(2), 673–709 (1993)

https://doi.org/10.1017/9781107415690
https://doi.org/10.1017/9781107415690
https://doi.org/10.1007/BF00318785
http://dx.doi.org/10.1007/s00440-006-0498-z
http://dx.doi.org/10.1007/s00440-006-0498-z
https://doi.org/10.1214/ECP.v20-3570
https://doi.org/10.1007/978-3-030-59649-1_1
https://doi.org/10.1214/18-EJP201


124 M. Heydenreich

32. Heydenreich, M., van der Hofstad, R.: Progress in high-dimensional percolation and random
graphs. In: CRM Short Courses. Springer, Cham; Centre de Recherches Mathématiques,
Montreal, QC (2017)

33. Heydenreich, M., Hofstad, R.v.d., Hulshof, W.J.T.: Random walk on the high-dimensional IIC.
Commun. Math. Phys. 329(1), 57–115 (2014). https://doi.org/10.1007/s00220-014-1931-2

34. Heydenreich, M., Hofstad, R.v.d., Last, G., Matzke, K.: Lace expansion and mean-field
behavior for the random connection model (2019). Preprint arXiv:1908.11356 [math.PR]

35. Hofstad, R.v.d., Járai, A.A.: The incipient infinite cluster for high-dimensional unoriented
percolation. J. Statist. Phys. 114(3–4), 625–663 (2004)

36. Kesten, H.: The critical probability of bond percolation on the square lattice equals 1/2. Comm.
Math. Phys. 74(1), 41–59 (1980)

37. Kesten, H.: The incipient infinite cluster in two-dimensional percolation. Probab. Theory
Related Fields 73(3), 369–394 (1986)

38. Kesten, H.: Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré
Probab. Statist. 22(4), 425–487 (1986)

39. Kigami, J., Lapidus, M.L.: Weyl’s problem for the spectral distribution of laplacians on p.c.f.
self-similar fractals. Comm. Math. Phys. 158(1), 93–125 (1993). https://projecteuclid.org:443/
euclid.cmp/1104254132

40. Kozma, G., Nachmias, A.: The Alexander-Orbach conjecture holds in high dimensions. Invent.
Math. 178(3), 635–654 (2009)

41. Kozma, G., Nachmias, A.: Arm exponents in high dimensional percolation. J. Am. Math. Soc.
24(2), 375–409 (2011). http://dx.doi.org/10.1090/S0894-0347-2010-00684-4

42. Kumagai, T., Misumi, J.: Heat kernel estimates for strongly recurrent random walk on random
media. J. Theoret. Probab. 21(4), 910–935 (2008). https://doi.org/10.1007/s10959-008-0183-
5

43. Lawler, G.F., Schramm, O., Werner, W.: One-arm exponent for critical 2D percolation.
Electron. J. Probab. 7(2), 13 (2002). https://doi.org/10.1214/EJP.v7-101

44. Lehrbäck, J.: Assouad type dimensions in geometric analysis. In: Freiberg, U., Hambly, B.,
Hinz, M., Winter, S. (eds.) Fractal Geometry and Stochastics VI. Progress in Probability,
vol. 76, pp. 25–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59649-1_2

45. Mathieu, P., Piatnitski, A.: Quenched invariance principles for random walks on percolation
clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463(2085), 2287–2307 (2007).
http://dx.doi.org/10.1098/rspa.2007.1876

46. Menshikov, M.V.: Coincidence of critical points in percolation problems. Dokl. Akad. Nauk
SSSR 288(6), 1308–1311 (1986)

47. Rammal, R., Toulouse, G.: Random walks on fractal structures and percolation clusters. J. de
Physique Lettres 44(1), 13–22 (1983). http://dx.doi.org/10.1051/jphyslet:0198300440101300.
https://hal.archives-ouvertes.fr/jpa-00232136

48. Reimer, D.: Proof of the van den Berg-Kesten conjecture. Combin. Probab. Comput. 9(1), 27–
32 (2000). https://doi.org/10.1017/S0963548399004113

49. Sapozhnikov, A.: Upper bound on the expected size of the intrinsic ball. Electron. Comm.
Probab. 15, 297–298 (2010). https://doi.org/10.1214/ECP.v15-1553

50. Taylor, S.J., Tricot, C.: Packing measure, and its evaluation for a Brownian path. Trans. Am.
Math. Soc. 288, 679–699 (1985)

51. Wendelin, W.: Percolation et modèle d’Ising., vol. 16. Société Mathématique de France, Paris
(2009)

https://doi.org/10.1007/s00220-014-1931-2
https://projecteuclid.org:443/euclid.cmp/1104254132
https://projecteuclid.org:443/euclid.cmp/1104254132
http://dx.doi.org/10.1090/S0894-0347-2010-00684-4
https://doi.org/10.1007/s10959-008-0183-5
https://doi.org/10.1007/s10959-008-0183-5
https://doi.org/10.1214/EJP.v7-101
https://doi.org/10.1007/978-3-030-59649-1_2
http://dx.doi.org/10.1098/rspa.2007.1876
http://dx.doi.org/10.1051/jphyslet:0198300440101300
https://hal.archives-ouvertes.fr/jpa-00232136
https://doi.org/10.1017/S0963548399004113
https://doi.org/10.1214/ECP.v15-1553


Asymptotics of Integrals of Betti
Numbers for Random Simplicial
Complex Processes

Masanori Hino

Abstract We discuss a higher-dimensional analogue of Frieze’s ζ(3)-limit theorem
for the Erdős–Rényi graph process applied to a family of increasing random
simplicial complexes. In particular, we consider the time integrals of Betti numbers,
which are interpreted as lifetime sums in the context of persistent homologies. We
survey some recent results regarding their asymptotic behavior that answer some
questions posed in an earlier study by Hiraoka and Shirai.

Keywords Random simplicial complex · Betti number · Persistent homology ·
Lifetime sum
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1 Introduction

Extensive studies on limit behavior of random graphs have their origins in the work
of Erdős and Rényi [4, 5]. Graph characteristics such as the threshold probability
of connectivity and the limit behavior around the critical probability provide good
descriptions of such complicated random discrete objects. In recent studies, the
scaling limits of random graphs themselves have attracted attention in pursuit of
a more comprehensive understanding; typical limit objects are continuum random
trees, which have fractal structures (e.g., see [1, 21] and the references therein). The
importance of fractal analysis in the study of random graphs will be emphasized
more in future work.

Meanwhile, the homological structures of random simplicial complexes have
also attracted interest recently as higher-dimensional counterparts of random
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graphs; see Kahle [16] for a survey of recent studies. In this connection, Hiraoka
and Shirai [11] studied the asymptotic behavior of persistent homologies of random
simplicial complex processes, and Hino and Kanazawa [10] advanced their research
by solving some of the problems that they had posed. A natural question to consider
next is to characterize suitable scaling limits of random simplicial complexes, which
are certain to have fractal structures. However, unlike the case with random graphs,
there are as yet no concrete results about this question because the theory and
techniques are yet to be developed fully.

In this article, we follow [10, 11] and survey some recent results and new ideas
in the study of the homologies of random simplicial complexes. We hope that this
survey will serve as a preliminary to studying such objects from the perspective of
fractal analysis.

The rest of this article is organized as follows. In Sect. 2, we introduce various
concepts regarding random graphs, random graph processes, and their higher-
dimensional analogues, and we state some results regarding their asymptotic
behavior. In Sect. 3, we provide basic ideas for proving the main theorems. In
Sect. 4, we enumerate several problems for future research.

2 Frameworks and Theorems

A typical random graph model is the Erdős–Rényi modelG(n, p) [4, 5, 9], which is
defined as the distribution of a random graph consisting of n vertices with the edges
between each pair of vertices included with probability p independently.1 In one of
the earliest results of random graph theory, Erdős and Rényi proved the following.

Theorem 2.1 ([5]) Let ε > 0 and p = p(n) depend on n.

• If p < (1− ε)(log n)/n for sufficiently large n, then

P(the graph is disconnected)→ 1 as n→∞.

• If p > (1+ ε)(log n)/n for sufficiently large n, then

P(the graph is connected)→ 1 as n→∞.

This theorem shows that the connectivity changes drastically around p =
(log n)/n. Since then, there have been many studies of the behavior around the
threshold probability, which is one of the central topics of random graph theory.

Meanwhile, there have been other types of studies on the limit behavior of the
Erdős–Rényi model. To explain one such type, we introduce a canonical realization

1This definition is due to Gilbert [9]. The model that Erdős and Rényi introduced in [4, 5] is slightly
different, but the two models behave similarly as the number of vertices tends to infinity.
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of the family of Erdős–Rényi models {G(n, p)}p∈[0,1] for fixed n. LetKn = Vn�En
be the complete graph with n vertices, where Vn and En are the vertex set and the
edge set, respectively. We assign independent and identically distributed random
variables {ue}e∈En that are uniformly distributed on [0, 1]. We construct a family
of random graphs Xn = {Xn(t)}t∈[0,1] so that each ue is the birth time of the edge
e ∈ En. More precisely, for each t ∈ [0, 1], the random graph Xn(t) is defined as

Xn(t) = Vn � {e ∈ En | ue ≤ t}.

By construction, Xn(t) is nondecreasing with respect to t almost surely, and the law
of Xn(t) is equal to G(n, t) for every t ∈ [0, 1].

Let L0(Xn) be the minimal weight of spanning trees2 of Kn, that is,

L0(Xn) = inf

{∑
e∈T
ue

∣∣∣∣∣ T : a spanning tree of Kn

}
.

This quantity has several interpretations: By Kruskal’s algorithm [18], the identities

L0(Xn) =
∫ 1

0
β0(Xn(t)) dt =

n−1∑
i=1

ti (2.1)

hold, where β0(G) denotes the number of connected components of the graph G
minus one, and ti denotes the ith random time when the number of connected
components of Xn(t) decreases. Frieze [7] proved the asymptotic behavior of
L0(Xn) as follows.

Theorem 2.2 ([7]) It holds that

lim
n→∞E[L0(Xn)] = ζ(3)

(
=
∞∑
k=1

k−3

)
.

Moreover, for any ε > 0,

lim
n→∞P(|L0(Xn)− ζ(3)| > ε) = 0.

Recently, Hiraoka and Shirai [11] studied a higher-dimensional analogue of (2.1)
and Theorem 2.2, with random graphs and the number of connected compo-
nents replaced by random simplicial complexes and the (reduced) Betti number,
respectively. Let us briefly review the concepts of simplicial complexes and their
homologies.

2A spanning tree of a graph G is, by definition, a tree that includes all the vertices of G.
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Let V be a nonempty finite set. A collectionX of nonempty subsets of V is called
an (abstract) simplicial complex over V if the following conditions are satisfied.

• For every v ∈ V , {v} belongs to X.
• For any σ ∈ X, every nonempty subset of σ belongs to X.

For σ ∈ X, k := #σ − 1 is called the dimension of σ and is denoted by dim σ .
We call σ a k-dimensional simplex or, equivalently, a k-simplex, and we call the
maximum of dim σ the dimension of X. Any finite graph can be regarded as either
a zero- or one-dimensional simplicial complex. If two simplices σ and τ satisfy
σ ⊂ τ , then σ is called a face of τ .

For k ≥ 0, σ = (v0, v1, . . . , vk) ∈ V k+1 is called an ordered k-simplex of X
if {v0, v1, . . . , vk} is a k-simplex of X. Two ordered simplices are called equivalent
if one is an even permutation of the other. The equivalence class of an ordered
k-simplex σ is denoted by 〈σ 〉 or 〈v0, v1, . . . , vk〉 and is called an oriented k-
simplex of X. The space Ck(X) of k-chains on X is defined as the real vector space
consisting of all linear combinations of oriented k-simplices under the relation that
〈v0, v1, . . . , vk〉 = −〈v1, v0, . . . , vk〉 for any oriented k-simplices.

For k ≥ 1, the kth boundary operator ∂k : Ck(X) → Ck−1(X) is defined as a
linear map such that for any 〈σ 〉 = 〈v0, v1, . . . , vk〉 ∈ Ck(X),

∂k〈σ 〉 =
k∑
i=0

(−1)i〈v0, . . . , vi−1, vi+1, . . . , vk〉.

By convention, we define C−1(X) = R, and ∂0 : C0(X) → C−1(X) is defined as
a linear map such that ∂0〈v〉 = 1 for v ∈ V . Then, it holds that ∂k ◦ ∂k+1 = 0
for all k ≥ 0. The kth homology group of X over R and the kth (reduced) Betti
number are defined as Hk(X) := ker ∂k/ Im ∂k+1 and βk(X) := dimHk(X),
respectively.3Intuitively, βk(X) is interpreted as the number of k-dimensional holes
in X. In particular, β0(X) is equal to the number of connected components of X
minus one. In the standard definition, we note that ∂0 would be defined as the
zero operator, which makes our zeroth Betti number defined above equal to the
conventional zeroth Betti number minus one.

Research interest has been growing in the higher-dimensional analogue of
Theorem 2.1 and related topics; see the survey by Kahle [16] for recent studies.
In general, the homological structures of large simplicial complexes are expected
to be very complicated. Indeed, as the number of simplices increases, so the
effect of creating holes competes against that of filling holes, thereby making the
situation more problematic than simply analyzing graphs. A distant goal is to extract
nice fractal structures from these simplicial complexes, but initially it would be

3In general, we can define the spaces Ck(X,R) and Hk(X,R) as R-modules for a commutative
ring R. In this paper, we consider only the case R = R.
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meaningful to develop effective tools with which to study the limit behavior as the
number of vertices tends to infinity.

We now consider a family X = {X(t)}t≥0 of subcomplexes of X, and we call
it a right-continuous filtration of X if X(s) ⊂ X(t) for 0 ≤ s ≤ t and X(t) =⋂
t ′>t X(t

′) for t ≥ 0. Here, X(t) can be an empty set, which is regarded as a
(−1)-dimensional simplicial complex. Let R[R≥0] be a real vector space of formal
linear combinations of finite elements of R≥0. We describe each element of R≥0 as
zt (t ∈ R≥0), where z is indeterminate. The product of two elements of R[R≥0] is
defined so as to be consistent with azs · bzt = abzs+t (a, b ∈ R and s, t ∈ R≥0).
This operation equips R[R≥0] with a ring structure. For k ≥ 0, the kth persistent
homology PHk(X) of X = {X(t)}t≥0 is defined as

PHk(X) =
⊕
t≥0

Hk(X(t)),

which is regarded as a graded module over R[R≥0]. Here, Hk(X(s)) is considered
as a subset of Hk(X(t)) for 0 ≤ s ≤ t by a natural inclusion from X(s) to X(t).
The structure theorem of the persistent homology is stated as follows.

Theorem 2.3 (E.g., See [11, 22]) For each k ≥ 0, there exist unique indices p, q ∈
Z≥0 and {bi}p+qi=1 , {di}pi=1 ⊂ R≥0 such that bi < di for all i = 1, . . . , p, and the
following graded module isomorphism holds:

PHk(X) &
p⊕
i=1

(
(zbi )
/
(zdi )
)⊕

p+q⊕
i=p+1

(zbi ),

where (za) denotes the ideal in R[R≥0] that is generated by the monomial za .

In Theorem 2.3, we call bi and di the kth birth and death times, respectively,
which indicate the appearance and disappearance of each k-dimensional “hole” in
X. The corresponding lifetime is defined as li := di − bi . We set di = li = ∞ for
i = p + 1, . . . , p + q, and we define the lifetime sum Lk(X) as

Lk(X) =
p+q∑
i=1

(di − bi).

The following is a generalization of the second identity of (2.1) to filtrations.

Theorem 2.4 (Lifetime Formula [11, Proposition 2.2]) It holds that

Lk(X) =
∫ ∞

0
βk(X(t)) dt.
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Analogously, by defining

(Lk(X))T =
p+q∑
i=1

(
(di ∧ T )− (bi ∧ T )

)

for T > 0, we have

(Lk(X))T =
∫ T

0
βk(X(t)) dt.

An analogue of the first identity of (2.1) has also been obtained by introducing the
concept of spanning acycles; see [11] for further details.

Now, we are interested in the asymptotic behavior ofLk(X) for random filtrations
as the number of vertices tends to infinity. The random models are introduced as
follows.

For each i ∈ Z≥0, we take a probability distribution function pi on [0,+∞].
Let n ∈ N and let K(n) denote the complete (n − 1)-dimensional simplicial
complex, namely the family of all nonempty subsets of an n-point set. We take a
family of independent random variables {uτ }τ∈K(n) such that each uτ obeys the
distribution function pdim τ . We then define a random simplicial complex process
Xn = {Xn(t)}t≥0 over n vertices by

Xn(t) := {σ ∈ K(n) | uτ ≤ t for every simplex τ( �= ∅) with τ ⊂ σ }. (2.2)

We call this process a multi-parameter random complex process. We can also
consider Xn = {Xn(t)}t∈[0,T ] for fixed T > 0 in an obvious manner. In this case,
we write Lk(Xn) for (Lk(Xn))T .

We have the following typical examples in mind.

Example 2.5 (cf. [19]) Let d ∈ N be fixed. For each i ∈ Z≥0, define

pi(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 (i < d)

t ∧ 1 (i = d)
0 (i > d)

for t ≥ 0.

In [10], the corresponding process K(d)n = {K(d)n (t)}t∈[0,1] for n > d and T = 1 is
called the d-Linial–Meshulam complex process. By definition, for each t ∈ [0, 1],
the random simplicial complex K(d)n (t) (⊂ K(n)) is described as follows:

• K
(d)
n (t) includes every simplex of K(n) whose dimension is less than d.

• K
(d)
n (t) includes each d-dimensional simplex of K(n) with probability t inde-

pendently.
• K

(d)
n (t) includes no simplex of K(n) whose dimension is greater than d.
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The Erdős–Rényi graph process is identified with K(1)n .

Example 2.6 (cf. [14]) Let d ∈ N be fixed. For each i ∈ Z≥0, define

pi(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 (i < d)

t ∧ 1 (i = d)
1 (i > d)

for t ≥ 0.

In [10], the corresponding process C(d)n = {C(d)n (t)}t∈[0,1] for n > d and T = 1
is called the d-flag complex process. By definition, for each t ∈ [0, 1], the random
simplicial complex C(d)n (t) (⊂ K(n)) is described as follows:

• C
(d)
n (t) includes every simplex of K(n) whose dimension is less than d.

• C
(d)
n (t) includes each d-dimensional simplex of K(n) with probability t inde-

pendently.
• C

(d)
n (t) includes each simplex σ of K(n) whose dimension is greater than d if

and only if every d-dimensional face of σ belongs to C(d)n (t).

C(1)n is also called the random clique complex process.

Our main concern is the asymptotic behavior of E[Lk(Xn)] as n→∞. To state
the results, we introduce the following functions:

q−1(t) := 1, qk(t) :=
k∏
i=0

{pi(t)}(
k+1
i+1) (k ≥ 0),

rk(t) := qk+1(t)

qk(t)
=
k+1∏
i=0

{pi(t)}(k+1
i ) (k ≥ −1).

(2.3)

Note that qk(t) denotes the probability of a fixed k-simplex appearing at time t . For
a k-simplex σ and a (k + 1)-simplex τ with σ ⊂ τ , rk(t) represents the conditional
probability of τ appearing at time t given σ appearing.

Let řk denote the generalized inverse function of rk , namely

řk(u) = inf{t ≥ 0 | rk(t) > u} for u < 1,

and řk(1) = ∞. We further define

Qk(t) =
∫ t

0
qk(s) ds for t ≥ 0,

�k(u) = Qk(řk(u)) and �k(u) = Qk(řk−1(u)) for u ∈ [0, 1).
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In what follows, we use the standard notations big-O and little-o, and

• f (u) =  (g(u)) means that f (u) = O(g(u)) and g(u) = O(f (u)) as u→ 0;
• an * bn means that an = O(bn) and bn = O(an) as n→∞.

Below, k is a fixed number. The following result is a special case of more-general
estimates [10, Theorems 4.3 and 4.4].

Theorem 2.7 ([10, Corollary 4.5]) Suppose that �k(u) =  (ua) for some a ∈
[0,∞) and �k(u) = o(�k(u)) as u→ 0. Then, for each T > 0,

E[(Lk(Xn))T ] * nk+1−a. (2.4)

Moreover, if
∫∞

0 t1+δdqk+1(t) <∞ for some δ > 0, then

E[Lk(Xn)] * nk+1−a. (2.5)

The following is a rather simple case but is not treated in Theorem 2.7.

Theorem 2.8 ([10, Theorem 4.6]) If �k(u) = �k(u) for all u ∈ [0, 1), then
Lk(Xn) = 0 almost surely for all n ∈ N.

We apply these results to Examples 2.5 and 2.6.

Example 2.9 ([10, Example 4.8]) We consider the d-flag complex process C(d)n =
{C(d)n (t)}t∈[0,1] as in Example 2.6. From straightforward computation, we obtain

(�k(u),�k(u)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0) (k < d − 1),

(u, 0) (k = d − 1),(
 
(
u
k+1−d
d+1 +(k+1

d )
−1)
, 
(
u
k+1
d+1+(kd)

−1))
(k ≥ d).

From Theorems 2.7 and 2.8, we have

E[Lk(C(d)n )] *
⎧⎨
⎩

0 (k < d − 1),

n
(k+2)d
d+1 −(k+1

d )
−1

(k ≥ d − 1).

In particular,

E[Lk(C(1)n )] * nk/2+1−1/(k+1).

This estimate improves Theorem 6.10 in [11] and determines the growth order,
thereby answering the question posed in [11, Section 7.4].
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Example 2.10 ([10, Example 4.7]) We consider the d-Linial–Meshulam complex
process K(d)n = {K(d)n (t)}t∈[0,1] as in Example 2.5. It is straightforward to see that

(�k(u),�k(u)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 0) (k < d − 1),

(u, 0) (k = d − 1),

(1/2, u2/2) (k = d),
(0, 0) (k > d).

From Theorems 2.7 and 2.8, we have

E[Lk(K(d)n )] *

⎧⎪⎪⎨
⎪⎪⎩

0 (k �= d − 1, d),

nd−1 (k = d − 1),

nd+1 (k = d).

The case k = d − 1 corresponds to [11, Theorem 1.2].

In fact, we have more-precise asymptotics for Ld−1(K(d)n ). Following [11, 20],
we introduce the limit constant. Let t∗1 = c∗1 = 1. For d ≥ 2, let t∗d be the unique
root in (0, 1) of

(d + 1)(1− t)+ (1+ dt) log t = 0, (2.6)

and define c∗d = (− log t∗d )/(1 − t∗d )d > 0. For c ≥ c∗d , let tc denote the smallest
positive root of (− log t)/(1− t)d = c. Define functions gd and hd on [0,∞) as

gd(c) =
⎧⎨
⎩

0 (c < c∗d),
ctc(1− tc)d + c

d + 1
(1− tc)d+1 − (1− tc) (c ≥ c∗d),

and

hd(c) = 1− c

d + 1
+ gd(c).

We also define

Id−1 := 1

d!
∫ ∞

0
hd(s) ds.

Then, the limit behavior of Ld−1(K(d)n ) is described as follows.
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Theorem 2.11 (Part of [10, Theorem 4.11]) Let d ≥ 1. The constant Id−1 is finite,
and for any r ∈ [1,∞),

lim
n→∞E

[∣∣∣∣∣
Ld−1(K(d)n )
nd−1

− Id−1

∣∣∣∣∣
r]
= 0;

in particular, E[Ld−1(K(d)n )]/nd−1 converges to Id−1 as n→∞.

This claim is a justification of an informal discussion in [11, Section 7.1]. Note
that I0 = ζ(3), and Theorem 2.11 with d = 1 is consistent with Theorem 2.2. See
[10, Section 4.4] for explicit expressions for general Id−1 and further information.
In particular, we have

I1 = 1

2

[
Li2(t

∗
2 )+ (log t∗2 ) log(1− t∗2 )+

t∗2 (log t∗2 )2

2(1− t∗2 )
+ (log t∗2 ){log t∗2 + (1− t∗2 )}

4(1− t∗2 )2
]

= 1

2

[
Li2(t

∗
2 )+ (log t∗2 ) log(1− t∗2 )+

3(1− t∗2 )(1+ 3t∗2 )
2(1+ 2t∗2 )2

]
(2.7)

and

I2 = 1

12

[
Li2(t

∗
3 )+ (log t∗3 − 1) log(1− t∗3 )+

t∗3 (log t∗3 )(log t∗3 − 2)

2(1− t∗3 )

+ t
∗
3 (log t∗3 )2

2(1− t∗3 )2
+ (log t∗3 ){log t∗3 + (1− t∗3 )}

3(1− t∗3 )3
]

= 1

12

[
Li2(t

∗
3 )+ (log t∗3 − 1) log(1− t∗3 )+

4((t∗3 )2 + 5t∗3 + 1)

(1+ 3t∗3 )2

]
, (2.8)

where Li2(x) denotes the dilogarithm

Li2(x) =
∞∑
k=1

xk

k2
(−1 ≤ x ≤ 1).

We remark that the second identities of (2.7) and (2.8) follow from the fact that t∗d
is a root of (2.6).

3 Ideas for Proving the Theorems

In this section, we explain some basic ideas for proving the main results (Theo-
rems 2.7 and 2.11) in the previous section, following [10]. Because

E[(Lk(X))T ] =
∫ T

0
E[βk(X(t))] dt and E[Lk(X)] =

∫ ∞
0

E[βk(X(t))] dt
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from Theorem 2.4, it suffices to obtain a sufficiently sharp estimate of E[βk(X(t))]
for each random simplicial complex X(t). In general, it is a difficult problem to
obtain a good estimate of a Betti number for a large simplicial complex X. The
following is a basic estimate.

Lemma 3.1 For every k ≥ 0,

fk(X)− fk+1(X)− fk−1(X) ≤ βk(X) ≤ fk(X), (3.1)

where fk(X) denotes the number of all k-simplices of X, and f−1(X) = 1 by
convention.

This is a version of the Morse inequality and is proved by simple application of
linear algebra. Lemma 3.1 provides good upper and lower estimates of E[βk(X(t))]
if t is sufficiently small. In fact, as crucially noticed in [11], replacing X in the
first inequality of (3.1) by X(t) and integrating with respect to t on a small interval
[0, t0] gives a lower estimate in (2.4) with the correct growth order. Thus, the main
difficulty in the proof of Theorem 2.7 is the upper estimate in (2.4) and (2.5).

For general t , we require another strategy for estimating βk(X(t)). To explain
this strategy, we introduce several concepts from graph theory and topology. Let G
be a finite undirected graph with a vertex set V , an edge set E, and with no loops
or multiple edges. The degree deg(v) of a vertex v ∈ V is defined as the number of
w ∈ V such that {v,w} ∈ E. The averaging matrix A[G] = {avw}v,w∈V of G is
defined as

avw :=

⎧⎪⎪⎨
⎪⎪⎩

1/ deg(v) if {v,w} ∈ E,
1 if deg(v) = 0 and v = w,
0 otherwise.

This is interpreted as the transition probability of a simple random walk on G. The
Laplacian L[G] of G is defined as L[G] = IV − A[G], where IV is the matrix that
acts as the identity operator on V . Let {λi}#Vi=1 be all the (not necessarily distinct)
eigenvalues of L[G]. Note that λi ∈ [0, 2] for all i and at least one λi is zero. Define

γ (G;α) := #{i | λi ≤ α} − 1 (≥ 0)

for α ≥ 0. By convention, γ (∅;α) := 0.
Given aD-dimensional simplicial complexX and a j -simplex τ inX with−1 ≤

j ≤ D, the link lkX(τ) of τ in X is defined as

lkX(τ) := {σ ∈ X | τ ∩ σ = ∅ and τ ∪ σ ∈ X}.

This is either an empty set or a simplicial complex whose dimension is at most
D − j − 1. Let lkX(τ)(1) denote the 1-skeleton of lkX(τ), that is, the totality of the
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simplices of lkX(τ) whose dimensions are at most 1. This is either an empty set or
a graph.

A key estimate is described as follows.

Theorem 3.2 ([10, Theorem 2.5]) Suppose that the dimension D of X is greater
than or equal to 1. Then

βD−1(X) ≤
∑
τ

γ
(
lkX(τ)

(1); 1−D−1), (3.2)

where τ in the summation is taken to be all (D − 2)-simplices of X.

Informally speaking, this claim says that the Betti number is dominated by the
sum of the number of small eigenvalues of the Laplacian on the 1-skeleton of each
link of X. In particular, if the right-hand side of (3.2) is zero, then HD−1(X) =
{0}. In this sense, Theorem 3.2 is regarded as a quantitative generalization of the
cohomology vanishing theorem4 [2, 8]. The proof of Theorem 3.2 is based on a
careful modification of that of [2, Theorem 2.1] and some additional arguments to
remove extra assumptions.

From Theorem 3.2, under the assumption that (3.2) provides a sufficiently sharp
estimate, the upper estimate of the Betti number is reduced to counting small
eigenvalues of Laplacians on graphs. If X is a random simplicial complex, then
this is closely related to the study of the eigenvalues of random matrices.

We apply this estimate to the following multi-parameter random simplicial
complexes that were introduced in [3, 6]. Let {pi}∞i=0 be fixed parameters with
0 ≤ pi ≤ 1 for all i. We define a sequence of random simplicial complexes
{Xn}n∈N as follows. For each n ∈ N, we start with a set V of n vertices and retain
each vertex with independent probability p0. Each edge with both ends retained is
added with probability p1, independently. Iteratively, for i = 1, 2, . . . , n − 1, each
i-simplex for which all faces were added by the previous procedures is added with
probability pi , independently. The resulting random simplicial complex isXn. From
the definition, {Xn(t)}n∈N defined in (2.2) for fixed t is nothing but {Xn}n∈N with
parameters {pi(t)}∞i=0.

Just as in (2.3), we define

q−1 := 1, qk :=
k∏
i=0

p
(k+1
i+1)
i (k ≥ 0),

rk := qk+1

qk
=
k+1∏
i=0

p
(k+1
i )

i (k ≥ −1).

4The proof is based on the discussion of the cohomology, not the homology. However, they are
isomorphic.



Asymptotics of Integrals of Betti Numbers for Random Simplicial Complex Processes 137

Then, a crucial estimate is described as follows.

Theorem 3.3 ([10, Theorem 3.6]) Let k ≥ 0 and l ∈ N. Then, there exists a
positive constant C depending only on k and l such that, for all n ∈ N,

E[βk(Xn)] ≤ nk+1qk

{
1 ∧ C(nrk)−l

}
. (3.3)

We give a brief outline of the proof of Theorem 3.3. Lemma 3.1 immediately
implies the inequality

E[βk(Xn)] ≤ nk+1qk. (3.4)

Therefore, it suffices to prove the inequality

E[βk(Xn)] ≤ Cnk+1qk(nrk)
−l (3.5)

for some C. The proof is decomposed into the following three cases. The constants
K1 ≤ K2 below should be taken appropriately.

Case 1 If rk ≥ K1

n
∨ (nrk−1)

1/l

n
, then the effect of “filling k-dimensional holes” is

strong; (3.5) follows from a variant of the cohomology vanishing theorem
of random simplicial complexes (e.g., [15, Theorem 1.1 (1)] and [6,
Theorem 1.1]) that is based on insightful results regarding spectral gaps
on random graphs by Hoffman, Kahle, and Paquette [12].

Case 2 If
K2

n
≤ rk ≤ (nrk−1)

1/l

n
, then we use a general inequality

#{eigenvalues of L (counting multiplicities) greater than α}
= #{eigenvalues of (L/α)l (counting multiplicities) greater than unity}
≤ tr((L/α)l) = α−l tr(Ll)

for nonnegative-definite symmetric matrices L and α > 0. Applying this
by letting L = L[lkXn(τ )] with τ ∈ Xn and α = 1− 1/(k+ 1), and using
some combinatorial arguments for estimating tr(Ll), we can prove (3.5)
via Theorem 3.2.

Case 3 If rk ≤ K2

n
, then (3.4) implies (3.5) for a suitable C.

Remark 3.4 As seen from the above explanation, the novel Betti-number estimate
is that in the intermediate range (Case 2). We remark that combinatorial arguments
that are similar in spirit are also found in the classical proof of Wigner’s semicircle
law of random matrices, albeit in a slightly different situation.
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Now, we obtain

E[Lk(Xn)] =
∫ ∞

0
E[βk(Xn(t))] dt (from Theorem 2.4)

≤
∫ ∞

0
nk+1qk(t)

{
1 ∧ C(nrk(t))−l

}
dt (from Theorem 3.3).

Taking l to be sufficiently large and performing some elementary calculations,
we reach an estimate E[Lk(Xn)] = O(nk+1−a) as n → ∞. The estimate of
E[(Lk(Xn))T ] is similarly proved, which completes the proof of Theorem 2.7.

In proving Theorem 2.11, the following is the key fact and follows from the
results by Linial and Peled [20] that come from the convergence of a sequence of
random graphs induced by {K(d)n (s/n)}n∈N for fixed s ≥ 0.

Theorem 3.5 For any s ≥ 0 and ε > 0,

lim
n→∞P

(∣∣∣∣∣
βd(K

(d)
n (s/n))(
n
d

) − gd(s)
∣∣∣∣∣ > ε
)
= 0.

With the help of the Euler–Poincaré formula, we can prove that, for each s ≥ 0
and ε > 0,

lim
n→∞P

(∣∣∣∣∣
βd−1(K

(d)
n (s/n))(
n
d

) − hd(s)
∣∣∣∣∣ > ε
)
= 0. (3.6)

We note that
∥∥∥∥∥
Ld−1(K(d)n )
nd−1

− Id−1

∥∥∥∥∥
Lr

=
∥∥∥∥∥
∫ ∞

0

(
βd−1(K

(d)
n (s/n))

nd
1[0,n](s)− 1

d!hd(s)
)
ds

∥∥∥∥∥
Lr

≤
∫ ∞

0
Un(s) ds,

where

Un(s) =
∥∥∥∥∥
βd−1(K

(d)
n (s/n))

nd
1[0,n](s)− 1

d!hd(s)
∥∥∥∥∥
Lr

.

Combining Theorem 3.3 and (3.6), we obtain limn→∞ Un(s) = 0 for each s ≥ 0
and supn∈N Un(s) is Lebesgue integrable over [0,∞). The dominated convergence
theorem implies that

∫∞
0 Un(s) ds converges to zero as n→∞, which finishes the

proof of Theorem 2.11.
A similar outline was discussed informally in [11, Section 7.1]. However,

because we now have the uniform estimate (3.3), we can provide a rigorous proof.
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4 Concluding Remarks

Theorems 2.7 and 2.11 remain at the beginning of the homological study of families
of random simplicial complexes. We will describe some potential directions for
future research.

1. In [11], discrete Morse theory was used for estimating Lk(Xn). Although the
argument therein did not provide the optimal asymptotics, it may be interesting
to investigate that approach further.

2. Work is in progress [17] to prove the existence and identify the limit of scaled
expectations of Lk(Xn) (Theorem 2.11) for general models other than d-Linial–
Meshulam complex processes.

3. The limit constants [e.g., (2.7) and (2.8)] for d-Linial–Meshulam complex
processes are regarded as “higher-dimensional” analogues of ζ(3), but the
question remains as to whether they have simpler expressions.

4. As already mentioned in [11], the next problem to be considered is proving the
central limit theorem for Lk(Xn). In the case of the Erdős–Rényi process, this
has been proved by Janson [13].

5. The sum of the αth power (α > 0) of lifetimes was studied in [10, Theorem 4.11]
for d-Linial–Meshulam complex processes. In any further investigation, it would
not be sufficient to study only the homologies of the simplicial complexes Xn(t)
for fixed t : we require the homological structure of the filtration {Xn(t)}t≥0 itself.

6. Regarding item 5 in this list, the scaling limit of graphs in the Gromov–
Hausdorff–Prokhorov topology has also been studied extensively (see [1, 21]
and the references therein for recent studies). The limit objects in that case
would have fractal structures and should provide detailed information about
random graphs. Studying the counterpart of random simplicial complexes or their
filtrations would be required for more-comprehensive understanding.

Acknowledgments This study was supported by JSPS KAKENHI Grant Numbers JP19H00643
and JP19K21833.
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Part III
Trees and Hyperbolicity



The Continuum Self-Similar Tree

Mario Bonk and Huy Tran

Abstract We introduce the continuum self-similar tree (CSST) as the attractor
of an iterated function system in the complex plane. We provide a topological
characterization of the CSST and use this to relate the CSST to other metric trees
such as the continuum random tree (CRT) and Julia sets of postcritically-finite
polynomials.

Keywords Metric tree · Iterated function system · Continuum random tree ·
Julia set
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1 Introduction

In this expository paper, we study the topological properties of a certain subset T of
the complex plane C. It is defined as the attractor of an iterated function system. As
we will see, T has a self-similar “tree-like” structure with very regular branching
behavior. In a sense it is the simplest object of this type. Sets homeomorphic to T

appear in various other contexts. Accordingly, we give the set T a special name, and
call it the continuum self-similar tree (CSST).

To give the precise definition of T we consider the following contracting
homeomorphisms on C:

f1(z) = 1
2z− 1

2 , f2(z) = 1
2 z̄+ 1

2 , f3(z) = i
2 z̄+ i

2 . (1.1)

M. Bonk (�)
Department of Mathematics, University of California, Los Angeles, CA, USA
e-mail: mbonk@math.ucla.edu

H. Tran
Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
e-mail: tran@math.tu-berlin.de

© Springer Nature Switzerland AG 2021
U. Freiberg et al. (eds.), Fractal Geometry and Stochastics VI,
Progress in Probability 76, https://doi.org/10.1007/978-3-030-59649-1_7

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59649-1_7&domain=pdf
mailto:mbonk@math.ucla.edu
mailto:tran@math.tu-berlin.de
https://doi.org/10.1007/978-3-030-59649-1_7


144 M. Bonk and H. Tran

Then the following statement is true.

Proposition 1.1 There exists a unique non-empty compact set T ⊆ C satisfying

T = f1(T) ∪ f2(T) ∪ f3(T). (1.2)

Based on this fact, we make the following definition.

Definition 1.2 The continuum self-similar tree (CSST) is the set T ⊆ C as given
by Proposition 1.1.

In other words, T is the attractor of the iterated function system {f1, f2, f3} in
the plane. Proposition 1.1 is a special case of well-known more general results in
the literature (see [19], [16, Theorem 9.1], or [21, Theorem 1.1.4], for example). We
will recall the argument that leads to Proposition 1.1 in Sect. 3.

Spaces of a similar topological type as T have appeared in the literature before
(among the more recent examples is the antenna set in [3] or Hata’s tree-like set
considered in [21, Example 1.2.9]). For a representation of T see Fig. 1.

To describe the topological properties of T, we introduce the following concept.

Definition 1.3 A (metric) tree is a compact, connected, and locally connected
metric space (T , d) containing at least two points such that for all a, b ∈ T with
a �= b there exists a unique arc α ⊆ T with endpoints a and b.

−1 0 1

Fig. 1 The continuum self-similar tree T
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In other words, any two distinct points a and b in a metric tree can be joined by a
unique arc α in T . It is convenient to allow a = b here in which case α = {a} = {b}
and we consider α as a degenerate arc.

In the following, we will usually call a metric space as in Definition 1.3 a tree
and drop the word “metric” for simplicity. It is easy to see that the concept of a
tree is essentially the same as the concept of a dendrite that appears in the literature
(see, for example, [29, Chapter V], [23, Section §51 VI], [27, Chapter X]). More
precisely, a metric space T is a tree if and only if it is a non-degenerate dendrite
(the simple proof is recorded in [6, Proposition 2.2]). If one drops the compactness
assumption in Definition 1.3, but requires in addition that the space is geodesic (see
below for the definition), then one is led to the notion of a real tree. They appear in
many areas of mathematics (see [2, 25], for example).

The following statement is suggested by Fig. 1.

Proposition 1.4 The continuum self-similar tree T is a metric tree.

If T is a tree, then for x ∈ T we denote by νT (x) ∈ N ∪ {∞} the number of
(connected) components of T \{x}. This number νT (x) is called the valence of x. If
νT (x) = 1, then x is called a leaf of T . If νT (x) ≥ 3, then x is a branch point of T .
If νT (x) = 3, then we also call x a triple point.

The following statement is again suggested by Fig. 1.

Proposition 1.5 Each branch point of the tree T is a triple point, and these triple
points are dense in T.

The set T has an interesting geometric property, namely it is a quasi-convex
subset of C., i.e., any two points in T can be joined by a path whose length is
comparable to the distance of the points.

Proposition 1.6 There exists a constant L > 0 with the following property: if
a, b ∈ T and α is the unique arc in T joining a and b, then

length(α) ≤ L|a − b|.

Note that a unique (possibly degenerate) arc α ⊆ T joining a and b exists,
because T is a tree according to by Proposition 1.4.

Proposition 1.6 implies that we can define a new metric ! on T by setting
!(a, b) = length(α) for a, b ∈ T, where α is the unique arc in T joining a and b.
Then the metric space (T, !) is geodesic, i.e., any two points in (T, !) can be joined
by a path in T whose length is equal to the distance of the points. It immediately
follows from Proposition 1.6 that metric spaces T (as equipped with the Euclidean
metric) and (T, !) are bi-Lipschitz equivalent by the identity map.

A natural way to construct (T, !), at least as an abstract metric space, is as
follows. We start with a line segment J0 of length 2. Its midpoint c subdivides J0
into two line segments of length 1. We glue to c one of the endpoints of another
line segment s of the same length. Then we obtain a set J1 consisting of three line
segment of length 1. The set J1 carries the natural path metric. We now repeat this
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procedure inductively. At the nth step we obtain a tree Jn consisting of 3n line
segments of length 21−n. To pass to Jn+1, each of these line segments s is subdivided
by its midpoint cs into two line segment of length 2−n and we glue to cs one endpoint
of another line segment of length 2−n.

In this way, we obtain an ascending sequence J0 ⊆ J1 ⊆ . . . of trees equipped
with a geodesic metric. The union J =⋃n∈N0

Jn carries a natural path metric ! that
agrees with the metric on Jn for each n ∈ N0. As an abstract space one can define
(T, !) as the completion of the metric space (J, !).

If one wants to realize T as a subset of C by this construction, one starts with the
initial line segment J0 = [−1, 1], and adds s = [0, i] in the first step to obtain J1 =
[−1, 0] ∪ [0, 1] ∪ [0, i]. Now one wants to choose suitable Euclidean similarities
f1, f2, f3 that copy the interval [−1, 1] to [−1, 0], [0, 1], [0, i], respectively. One
hopes to realize Jn as a subset of C using an inductive procedure based on

Jn+1 = f1(Jn) ∪ f2(Jn) ∪ f3(Jn), n ∈ N0.

In order to avoid self-intersections and ensure that each set Jn is indeed a tree,
one has to be careful about the orientations of the maps f1, f2, f3. The somewhat
non-obvious choice of these maps as in (1.1) leads to the desired result. See
Proposition 4.2 and the discussion near the end of Sect. 4 for precise statements
how to use the maps in (1.1) to realize the sets Jn as subsets of C, and obtain T (as
in Definition 1.2) as the closure of

⋃
n∈N0

Jn. A representation of J5 is shown in
Fig. 2.

The conditions in Proposition 1.5 actually characterize the CSST topologically.

− 0 11

Fig. 2 The set J5
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Theorem 1.7 A metric tree (T , d) is homeomorphic to the continuum self-similar
tree T if and only if the following conditions are true:

(i) For every point x ∈ T we have νT (x) ∈ {1, 2, 3}.
(ii) The set of triple points {x ∈ T : νT (x) = 3} is a dense subset of T .

We will derive Theorem 1.7 from a slightly more general statement. For its
formulation let m ∈ N with m ≥ 3. We consider the class Tm consisting of all
metric trees T such that

(i) for every point x ∈ T we have νT (x) ∈ {1, 2,m}, and
(ii) the set of branch points {x ∈ T : νT (x) = m} is a dense subset of T .

Note that by Proposition 1.5 the CSST T satisfies the conditions in Theorem 1.7
with m = 3, and so T belongs to the class of trees T3. Now the following statement
is true which contains Theorem 1.7 as a special case.

Theorem 1.8 Let m ∈ N with m ≥ 3. Then all trees in Tm are homeomorphic to
each other.

Theorems 1.7 and 1.8 are not new. In a previous version of this paper, we
considered Theorem 1.7 as a “folklore” statement, but we did not have a reference
for a proof. Later, the paper [11] was brought to our attention which contains a
more general result which implies Theorem 1.8, and hence also Theorem 1.7 (see
[11, Theorem 6.2]; the proof there seems to be incomplete though—the continuity
of the map h on the dense subset of X needs more justification). Theorem 1.8 was
explicitly stated in [9, (6), p. 490], but it seems that the origins of Theorem 1.8 can
be traced back much further to [28] (see also [26, Chapter X], and [10] for more
pointers to the relevant older literature about dendrites).

We will give a complete proof of Theorem 1.8. It is based on ideas that are quite
different from those in [11], but we consider our method of proof very natural.
It is also related to some other recent work, in particular [5, 6]; so one can view
the present paper as an introduction to these ideas. We will say more about our
motivation below.

Our proof of Theorem 1.8 can be outlined as follows. Fix m as in the statement
and consider a tree T in Tm. Then we cut T into m subtrees at a carefully chosen
branch point. This process is repeated inductively. One labels the subtrees obtained
in this way by finite words consisting of letters in the alphabet A = {1, 2, . . . , m}.
The labels are chosen so that if S is another tree in Tm and one decomposes S in a
similar manner, then one has the same combinatorics (i.e., intersection and inclusion
pattern) for the subtrees in T and S. The desired homeomorphism between T and
S can then be obtained from a general statement that produces a homeomorphism
between two spaces, if they admit matching decompositions into pieces satisfying
suitable conditions (see Proposition 2.1).

The CSST is related to metric trees appearing in other areas of mathematics. One
of these objects is the (Brownian) continuum random tree (CRT). This is a random
tree introduced by Aldous [1] when he studied the scaling limits of simplicial
trees arising from the critical Galton-Watson process. One can describe the CRT
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as follows. We consider a sample of Brownian excursion (et )0≤t≤1 on the interval
[0, 1]. For s, t ∈ [0, 1], we set

de(s, t) = e(s)+ e(t)− 2 inf{e(r) : min(s, t) ≤ r ≤ max(s, t)}.

Then de is a pseudo-metric on [0, 1]. We define an equivalence relation on [0, 1] by
setting s ∼ t if de(s, t) = 0. Then de descends to a metric on the quotient space
Te = [0, 1]/ ∼. The metric space (Te, de) is almost surely a metric tree (see [25,
Sections 2 and 3]). Curien [13] asked the following question.

Question Is the topology of the CRT almost surely constant, that is, are two
independent samples of the CRT almost surely homeomorphic?

This question was the original motivation for the present work and we found a
positive answer based on the following statement.

Corollary 1.9 A sample T of the CRT is almost surely homeomorphic to the
CSST T.

Proof As we discussed, a sample T of the CRT is almost surely a metric tree (see
[25, Sections 2 and 3]). Moreover, for such a sample T almost surely for every point
x ∈ T , the valence νT (x) is either 1, 2 or 3, and the set {x : νT (x) = 3} of triple
points is dense in T (see [15, Theorem 4.6] or [25, Proposition 5.2 (i)]). It follows
from Proposition 1.5 and Theorem 1.7 that a sample T of the CRT is almost surely
homeomorphic to the CSST T. 
�

Informally, Corollary 1.9 says that the topology of the CRT is (almost surely)
constant and given by the topology of a deterministic model space, namely the
CSST. In particular, almost surely any two independent samples of the CRT are
homeomorphic. This answers Curien’s question in the positive. As we found
out after we had obtained proofs for Theorem 1.7 and Corollary 1.9, Curien’s
question had already been answered implicitly in [12]. There the authors used
the distributional self-similarity property of the CRT and showed that the CRT is
isometric to a metric space with a random metric. This space is constructed similarly
to the CSST as the attractor of an iterated function system with maps very similar to
(1.1) (they contain an additional parameter though which is unnecessary if one uses
the maps in (1.1)).

An important source of trees is given by Julia sets of postcritically-finite
polynomials without periodic critical points in C. It follows from [14] (or see [8,
Theorem V.4.2]) that the Julia sets of such polynomials are indeed trees. One can
show that the Julia set J(P ) of the polynomial P(z) = z2 + i (see Fig. 3) satisfies
the conditions in Theorem 1.7. Accordingly, J(P ) is homeomorphic to the CSST.

There are several directions in which one can pursue these topics further. For
example, one can study the topology of more general trees than those in the classes
Tm. One may want to replace m with any finite (or even infinite) list of allowed
valences for branch points, including branch points of infinite valence. In an earlier
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Fig. 3 The Julia set of P(z) = z2 + i

version of our paper, we discussed this in more detail. Since we learned that these
results are already contained in [10], we decided to skip this in the present version.

There is one important variant of Theorem 1.8 that we like to mention though.
Namely, one can consider the (non-empty) class T∞ of trees T such that νT (x) ∈
{1, 2,∞} for all x ∈ T and such that the set of branch points of T (i.e., in this case
the set {x ∈ T : νT (x) = ∞}) is dense in T . Then all trees in T∞ are homeomorphic
to each other (our method of proof does not directly apply here, but one can use our
approach based on a more general version of Proposition 2.1). Moreover, each tree
T in T∞ is universal in the sense that every tree S admits a topological embedding
into T . These results are due to Waszewski [28] (see [27, Section 10.4] for a modern
exposition of this universality property; see also [9] for a discussion of a universality
property of the trees in Tm, m ∈ N, m ≥ 3).

Trees in T∞ are also interesting, because they naturally arise in probabilistic
models. More specifically, the so-called stable trees with index α ∈ (1, 2] are
generalizations of the CRT (see [25, Section 4] for the definition). For fixed α ∈
(1, 2), a sample T of such a stable tree belongs to T∞ almost surely [25, Proposition
5.2 (ii)]. By the previous discussion this implies that two independent samples of
stable trees for given α ∈ (1, 2) are almost surely homeomorphic. Note that the
Julia set of a polynomial never belongs to T∞. This follows from results due to
Kiwi (see [22, Theorem 1.1]).

Another direction for further investigations are questions that are more related to
geometric properties of metric trees, in contrast to purely topological properties. In
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particular, one can study the quasiconformal geometry of the CSST and other trees
(for a survey on the general topic of quasiconformal geometry see [4]).

One of the basic notion here is the concept of quasisymmetric equivalence. By
definition two metric spaces X and Y are called quasisymmetrically equivalent if
there exists a quasisymmetry f : X → Y . Roughly speaking, a quasisymmetry is
a homeomorphism with good geometric control: it sends metric balls to “roundish”
sets with uniformly controlled eccentricity (for the precise definition of a qua-
sisymmetry and other basic concepts of quasiconformal geometry see [17]). Since
every quasisymmetry is a homeomorphism, two spaces are homeomorphic if they
are quasisymmetrically equivalent. So this gives a stronger type of equivalence for
metric spaces that has a more geometric flavor and goes beyond mere topology.

A natural problem in this context is to characterize the CCST T up to qua-
sisymmetric equivalence, similar to Proposition 1.5 which gives a topological
characterization. This problem is solved in [5]. The precise statement is too technical
to be included here, but roughly speaking the conditions on a metric tree T to
be quasisymmetrically equivalent to T are similar in sprit to the conditions in
Proposition 1.5, but of a more “quantitative” nature.

For example, one of the conditions stipulates that T be trivalent (i.e., all branch
points of T are triple points), but not only should the branch points of T form a
dense subset of T , but T should be uniformly branching in the sense that every arc
α ⊆ T contains a branch point p of height HT (p) comparable to the diameter of
α. Here the height HT (p) is the diameter of the third largest branch of p (see the
discussion around (3.1) for more details).

In our proof of Theorem 1.7 we first realized that this concept of height of a
branch point plays a very important role in understanding the geometry and topology
of trees. This concept is also used in [5, 6].

The present paper and [5, 6] have another common feature. In all of these works
it is important to have good decompositions of the spaces studied, depending on the
problem under consideration. This line of thought in the context of quasiconformal
geometry can be traced back to [7, Proposition 18.8]. More recently, Kigami [20]
has systematically investigated such decompositions in the general framework of
partitions of a space given by sets that are labeled by the vertices of a (simplicial)
tree. This common philosophy with other recent work is the main motivation why
we wanted to present the proof of the known Theorem 1.8 from our perspective.

One can use the characterization of the CSST up to quasisymmetric equiva-
lence established in [5] to prove the following statement (unpublished work by
the authors): if the Julia set J(P ) of a postcritically-finite polynomial P with
no periodic critical points in C is homeomorphic to the CSST, then J(P ) is
quasisymmetrically equivalent to the CSST.

Finally, we mention in passing that the geometric properties of the continuum
random tree (CRT) were considered in the recent paper [24] by Lin and Rohde.
Though Lin and Rohde do not study quasisymmetric equivalence, many of their
considerations still fit into the general framework of quasiconformal geometry.

The present paper is organized as follows. In Sect. 2 we state and prove a general
criterion for two metric spaces to be homeomorphic based on the existence of
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combinatorially equivalent decompositions of the spaces. In Sect. 3 we collect some
general facts about trees that we use later. The CSST is studied in Sect. 4. There we
provide proofs of Propositions 1.1, 1.4, 1.5, and 1.6. In Sect. 5 we explain how to
decompose trees in Tm with m ∈ N, m ≥ 3. Based on this, we then present a proof
Theorem 1.8. Theorem 1.7 is an immediate consequence.

2 Constructing Homeomorphisms Between Spaces

Throughout this paper, we use fairly standard metric space notation. If (X, d) is a
metric space, then we denote by B(a, r) = {x ∈ X : d(a, x) < r} the open ball
of radius r > 0 centered at a ∈ X. If A,B ⊆ X, then diam(A) = sup{d(x, y) :
x, y ∈ A} is the diameter of A and dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B} the
(minimal) distance of A and B. Similarly, if a ∈ X, then dist(a, B) = dist({a}, B)
denotes the distance of the point a to the set B. Finally, if γ is a path in X, then
length(γ ) stands for its length.

Before we discuss trees in more detail and turn our attention to the CSST,
we will establish the following proposition that is the key to showing that two
trees are homeomorphic. The statement will also give us some guidance for the
desired properties of tree decompositions that we will discuss in the following
sections. The proposition is inspired by [7, Proposition 18.8], which provided
geometric conditions for the decomposition of a space that can be used to construct
quasisymmetric homeomorphisms.

Proposition 2.1 Let (X, dX) and (Y, dY ) be compact metric spaces. Suppose that
for each n ∈ N, the space X admits a decomposition X = ⋃Mni=1Xn,i as a finite
union of non-empty compact subsets Xn,i , i = 1, . . . ,Mn ∈ N, with the following
properties for all n, i, and j :

(i) Each set Xn+1,j is the subset of some set Xn,i .
(ii) Each set Xn,i is equal to the union of some of the sets Xn+1,j .

(iii) max1≤i≤Mn diam(Xn,i)→ 0 as n→∞.

Suppose that for n ∈ N the space Y admits a decomposition Y =⋃Mni=1 Yn,i as a
union of non-empty compact subsets Yn,i , i = 1, . . . ,Mn, with properties analogous
to (i)–(iii) such that

Xn+1,j ⊆ Xn,i if and only if Yn+1,j ⊆ Yn,i (2.1)

and

Xn,i ∩Xn,j �= ∅ if and only if Yn,i ∩ Yn,j �= ∅ (2.2)

for all n, i, j .
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Then there exists a unique homeomorphism f : X→ Y such that f (Xn,i) = Yn,i
for all n and i.

In particular, under these assumptions the spaces X and Y are homeomorphic.

Proof We define a map f : X → Y as follows. For each point x ∈ X, by (ii) and
(iii) there exists a nested sequence of sets Xn,in , n ∈ N, such that {x} = ⋂n Xn,in .
Then the corresponding sets Yn,in , n ∈ N, are also nested by (2.1). Since these sets
are non-empty and compact, by condition (iii) for the space Y this implies that there
exists a unique point y ∈⋂n Yn,in . We define f (x) = y.

Then f is well-defined. To see this, suppose we have another nested sequence
Xn,i′n , n ∈ N, such that {x} = ⋂n Xn,i′n . Then there exists a unique point y′ ∈⋂
n Yn,i′n . Now x ∈ Xn,in ∩ Xn,i′n and so Yn,in ∩ Yn,i′n �= ∅ for all n ∈ N by (2.2).

By condition (iii) for Y , this is only possible if y = y′. So f : X → Y is indeed
well-defined.

One can define a map g : Y → X by a similar procedure. Namely, for each y ∈ Y
we can find a nested sequence Yn,in , n ∈ N, such that {y} = ⋂n Yn,in . Then there
exists a unique point x ∈⋂n Xn,in and if we set g(y) = x, we obtain a well-defined
map g : Y → X.

It is obvious from the definitions that the maps f and g are inverse to each other.
Hence they define bijections between X and Y .

Conditions (i) and (ii) imply that if Xk,i is a set in one of the decompositions of
X and x ∈ Xk,i , then there exists a nested sequence Xn,in , n ∈ N, with Xk,ik = Xk,i
and {x} =⋂n Xn,in . This implies that f (x) ∈ Yk,i and so f (Xk,i) ⊆ Yk,i . Similarly,
g(Yk,i) ⊆ Xk,i . Since g = f−1, we have f (Xk,i) = Yk,i as desired. It is clear that
this last condition together with our assumptions determines f uniquely.

It remains to show that f is a homeomorphism. For this it suffices to prove that f
and f−1 = g are continuous. Since the roles of f and g are completely symmetric,
it is enough to establish that f is continuous.

For this, let ε > 0 be arbitrary. By (iii) we can choose n ∈ N such that

max{diam(Yn,i) : 1 ≤ i ≤ Mn} < ε/2.
Since the sets Xn,i are compact, there exists δ > 0 such that

dist(Xn,i , Xn,j ) > δ,

whenever i, j ∈ {1, . . . ,Mn} and Xn,i ∩Xn,j = ∅.
Now suppose that a, b ∈ X are arbitrary points with dX(a, b) < δ. We claim that

then dY (f (a), f (b)) < ε. Indeed, we can find i, j ∈ {1, . . . ,Mn} such that a ∈ Xn,i
and b ∈ Xn,j . Since dX(a, b) < δ, we then necessarily have Xn,i ∩ Xm,j �= ∅ by
definition of δ. So Yn,i ∩ Yn,j �= ∅ by (2.2). Moreover, f (a) ∈ f (Xn,i) = Yn,i and
f (b) ∈ f (Xn,j ) = Yn,j . Hence

dY (f (a), f (b)) ≤ diam(Yn,i)+ diam(Yn,j ) < ε.

The continuity of f follows. 
�
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3 Topology of Trees

In this section we fix some terminology and collect some general facts about trees.
We do not claim any originality of this material. All of it is standard and well-
known, but we did not try to track it down in the literature. Our objective is to make
our presentation self-contained, and to have convenient reference points for future
work. For general background on trees or dendrites we refer to [29, Chapter V], [23,
Section §51 VI], [27, Chapter X]), and the literature mentioned there.

An arc α in a metric space is a homeomorphic image of the unit interval [0, 1] ⊆
R. The points corresponding to 0 and 1 are called the endpoints of α.

Let T be a tree. Then the last part of Definition 1.3 is equivalent to the
requirement that for all points a, b ∈ T with a �= b, there exists a unique arc in T
joining a and b, i.e., it has the endpoints a and b. We use the notation [a, b] for this
unique arc. It is convenient to allow a = b here. Then [a, b] denotes the degenerate
arc consisting only of the point a = b. Sometimes we want to remove one or
both endpoints from the arc [a, b]. Accordingly, we define (a, b) = [a, b]\{a, b},
[a, b) = [a, b]\{b} and (a, b] = [a, b]\{a}. In Sect. 4 we will not use this notation
for arcs in a tree. There [a, b] will always denote the Euclidean line segment joining
two points a, b ∈ C.

A metric space X is called path-connected if any two points a, b ∈ X can be
joined by a path in X, i.e., there exists a continuous map γ : [0, 1] → X such that
γ (0) = a and γ (1) = b. The space X is arc-connected if any two distinct points
in X can be joined by an arc in X. The image of a path joining two distinct points
in a metric space always contains an arc joining these points (this follows from the
fact that every Peano space is arc-connected; see [18, Theorem 3.15, p. 116]). In
particular, every path-connected metric space is arc-connected.

Lemma 3.1 Let (T , d) be a tree. Then for each ε > 0 there exists δ > 0 such that
for all a, b ∈ T with d(a, b) < δ we have diam([a, b]) < ε.
Proof Fix ε > 0. Since T is a compact, connected, and locally connected metric
space, it is a Peano space. So by the Hahn-Mazurkiewicz theorem there exists a
continuous surjective map ϕ : [0, 1] → T of the unit interval onto T [18, Theorem
3.30, p. 129]. By uniform continuity of ϕ we can represent [0, 1] as a union [0, 1] =
I1 ∪ · · · ∪ In of finitely many closed intervals I1, . . . , In ⊆ [0, 1] with diam(Xk) <
ε/2, where Xk = ϕ(Ik) for k = 1, . . . , n. The sets Xk = ϕ(Ik) are compact.
This implies that there exists δ > 0 such that dist(Xi,Xj ) > δ, whenever i, j ∈
{1, . . . , n} and Xi ∩Xj = ∅.

Now let a, b ∈ T with d(a, b) < δ be arbitrary. We may assume a �= b. Then
there exist i, j ∈ {1, . . . , n} with a ∈ X := Xi and b ∈ Y := Xj . By choice of δ
we must have X ∩ Y �= ∅. As continuous images of intervals, the sets X and Y are
path-connected. Since X ∩ Y �= ∅, the union X ∪ Y that contains the points a and b
is also path-connected. This implies that X∪Y is arc-connected, and so there exists
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an arc α ⊆ X∪Y with endpoints a and b. The unique such arc in the tree T is [a, b],
and so [a, b] = α ⊆ X ∪ Y . This implies

diam([a, b]) ≤ diam(X)+ diam(Y ) < ε,

as desired. 
�
Lemma 3.2 Let (T , d) be a tree and p ∈ T . Then the following statements are
true:

(i) Each component U of T \{p} is an open and arc-connected subset of T .
(ii) If U is a component of T \{p}, then U = U ∪ {p} and ∂U = {p}.

(iii) Two points a, b ∈ T \{p} lie in the same component of T \{p} if and only if
p �∈ [a, b].

Proof

(i) The set T \{p} is open. Since T is locally connected, each component U of
T \{p} is also open.

For a, b ∈ U we write a ∼ b if a and b can be joined by a path in U .
Obviously, this defines an equivalence relation on U . The equivalence classes
are open subsets of T . To see this, suppose a, b ∈ U can be joined by a path
β in U . Then for all points x in a sufficiently small neighborhood V ⊆ U of
b we have [b, x] ⊆ U as follows from Lemma 3.1. So by concatenating β
with (a parametrization of) the arc [b, x], we obtain a path β ′ in U that joins a
and x ∈ V . This shows that every point b in the equivalence class of a has a
neighborhood V that also belongs to this equivalence class.

We see that the equivalence classes of∼ partition U into open sets. Since U
is connected, there can only be one such set. It follows thatU is path-connected
and hence also arc-connected.

(ii) Let U be a (non-empty) component of T \{p}. We choose a point a ∈ U .
The set [a, p) is connected, contained in T \{p}, and meets U in a. Hence
[a, p) ⊆ U . This implies that p ∈ U . On the other hand, the set U ∪ {p} is
closed, because its complement is a union of components of T \{p} and hence
open by (i). Thus U = U ∪ {p}. By (i) no point in U is a boundary point of U ,
and so ∂U = {p}.

(iii) If a, b ∈ T \{p} and p �∈ [a, b], then [a, b] is a connected subset of T \{p}.
Hence [a, b] lies in a component U of T \{p}. In particular, a, b ∈ [a, b] lie in
the same component U of T \{p}.

Conversely, suppose that a, b ∈ T \{p} lie in the same component U of
T \{p}. We know by (i) that U is arc-connected. Hence there exists a (possibly
degenerate) arc α ⊆ U with endpoints a and b. But the unique such arc in T is
[a, b]. Hence [a, b] = α ⊆ U ⊆ T \{p}, and so p �∈ [a, b]. 
�

A subset S of a tree (T , d) is called a subtree of T if S equipped with the
restriction of the metric d is also a tree as in Definition 1.3. Every subtree S of
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T contains two points and hence a non-degenerate arc. In particular, every subtree
S of T is an infinite, actually uncountable set.

The following statement characterizes subtrees.

Lemma 3.3 Let (T , d) be a tree. Then a set S ⊆ T is a subtree of T if and only if
S contains at least two points and is closed and connected.

Proof If S is a subtree of T , then S contains at least two points, and is connected
and compact. Hence it is a closed subset of T . Conversely, suppose that S contains
at least two points and is closed and connected. Then S is compact, because T is
compact.

Suppose that a, b ∈ S, a �= b, are two distinct points in S. We consider the arc
[a, b] ⊆ T . Suppose there exists a point p ∈ [a, b] with p �∈ S. Then p �= a, b, and
so by Lemma 3.2 (iii), the points a and b lie in different components of T \{p}. This
is impossible, because the connected set S ⊆ T \{p} must be contained in exactly
one component of T \{p}. This shows that [a, b] ⊆ S and so the points a and b can
be joined by an arc in S. This arc in S is unique, because it is unique in T .

It remains to show that S is locally connected, i.e., every point in S has arbitrarily
small connected relative neighborhoods. To see this, let a ∈ S and ε > 0 be
arbitrary. Then by Lemma 3.1 we can find δ > 0 such that [a, x] ⊆ B(a, ε)

whenever x ∈ B(a, δ). Now let M be the union of all arcs [a, x] with x ∈
S∩B(a, δ). These arcs lie in S and soM is a connected set contained in S∩B(a, ε).
Moreover, S ∩B(a, δ) ⊆ M and soM is a connected relative (not necessarily open)
neighborhood of a in S. This shows that S is locally connected. We conclude that S
is indeed a subtree of T . 
�
Lemma 3.4 Let (T , d) be a tree, p ∈ T , and U a component of T \{p}. Then
B = U ∪ {p} is a subtree of T and p is a leaf of B.

Proof It follows from Lemma 3.2 (i) and (ii) that the set U is connected and that
B = U ∪ {p} = U . This implies that B is closed and connected. Since U �= ∅
and p �∈ U , the set B contains at least two points. Hence B is a subtree of T by
Lemma 3.3. Since B\{p} = U is connected, p is a leaf of B. 
�

If the subtree B = U ∪ {p} is as in the previous lemma, then we call B a branch
of p in T (or just a branch of p if T is understood).

Lemma 3.5 Let (T , d) be a tree, S ⊆ T be a subtree of T , and p ∈ S. Then every
branch B ′ of p in S is contained in a unique branch B of p in T . The assignment
B ′ �→ B is an injective map between the sets of branches of p in S and in T . If p is
an interior point of S, then this map is a bijection.

In particular, if under the given assumptions νT (p) is the valence of p in T and
νS(p) the valence of p in S, then νS(p) ≤ νT (p). Here we have equality if p is an
interior point of S.

If p ∈ S is a leaf of T , then T has only one branch B at p, namely B = T . Hence
1 ≤ νS(p) ≤ νT (p) ≤ 1, and so νS(p) = 1. This means that p is also a leaf of S.
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More informally, we can say that the property of a point being a leaf in T is passed
to subtrees that contain the point.

Proof If B ′ is a branch of p in S, then B ′ = U ′ ∪ {p}, where U ′ is a component
of S\{p}. Then U ′ is a connected subset of T \{p} and so contained in a unique
component U of T \{p}. Then B = U ∪ {p} is a branch of p in T with B ′ ⊆ B and
it is clear that B is the unique such branch.

To show injectivity of the map B ′ �→ B, let B ′1 and B ′2 be two distinct branches
of p in S. Pick points a ∈ B ′1\{p} and b ∈ B ′2\{p}. Then a and b lie in different
components of S\{p} and so p ∈ [a, b] by Lemma 3.2 (iii) applied to the tree S.
Hence a and b lie in different components of T \{p}, and so in different branches of
p in T . This implies that B ′1 and B ′2 must be contained in different branches of p in
T . This shows that the map B ′ �→ B is indeed injective.

Now assume in addition that p is an interior point of S. To show surjectivity of
the map B ′ �→ B, we consider a branch B of p in T . Pick a point a ∈ B\{p}. Then
[a, p) ⊆ B\{p}, because B is a subtree of T . Since p is an interior point of S, there
exists a point x ∈ [a, p) close enough to p such that x ∈ S\{p}. If B ′ is the unique
branch of p in S that contains x, then we have x ∈ B ′ ∩ B. This implies B ′ ⊆ B.
Hence the map B ′ �→ B is also surjective, and so a bijection. 
�
Lemma 3.6 Let (T , d) be a tree, p, a1, a2, a3 ∈ T with p �= a1, a2, a3 and suppose
that the sets [a1, p), [a2, p), [a3, p) are pairwise disjoint. Then the points a1, a2, a3
lie in different components of T \{p} and p is a branch point of T .

Proof The arcs [a1, p] and [a2, p] = [p, a2] have only the point p in common. So
their union [a1, p]∪[p, a2] is an arc and this arc must be equal to [a1, a2]. Hence p ∈
[a1, a2] which by Lemma 3.2 (iii) implies that a1 and a2 lie in different components
of T \{p}. A similar argument shows that a3 must be contained in a component of
T \{p} different from the components containing a1 and a2. In particular, T \{p}
has at least three components and so p is a branch point of T . The statement
follows. 
�
Lemma 3.7 Let (T , d) be a tree such that the branch points of T are dense in T . If
a, b ∈ T with a �= b, then there exists a branch point c ∈ (a, b).
Proof We pick a point x0 ∈ (a, b) �= ∅. Then x0 has positive distance to both a and
b. This and Lemma 3.1 imply that we can find δ > 0 such that for all x ∈ B(x0, δ)

the arc [x, x0] has uniformly small diameter and so does not contain a or b.
Since branch points are dense in T , we can find a branch point p ∈ B(x0, δ).

Then a, b �∈ [p, x0]. If p ∈ (a, b), we are done.
In the other case, we have p �∈ (a, b). If we travel from p to x0 ∈ (a, b) along

[p, x0], we meet [a, b] in a first point c ∈ (a, b). Then a, b, p �= c. Moreover, the
sets [a, c), [b, c), [p, c) are pairwise disjoint. Hence c ∈ (a, b) is a branch point of
T as follows from Lemma 3.6. 
�
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Lemma 3.8 Let (X, d) be a compact, connected, and locally connected metric
space, J an index set, pi ∈ X, and Ui a component of X\{pi} for each i ∈ J .
Suppose that

Ui ∩ Uj = ∅

for all i, j ∈ J , i �= j . Then J is a countable set. If there exists δ > 0 such that
diam(Ui) > δ for each i ∈ J , then J is finite.

Informally, the space X cannot contain a “comb” with too many long teeth.

Proof We prove the last statement first. We argue by contradiction and assume that
diam(Ui) > δ > 0 for each i ∈ J , where J is an infinite index set. Then we can
choose a point xi ∈ Ui such that d(xi, pi) ≥ δ/2. The setA = {xi : i ∈ J } is infinite
and so it must have a limit point q ∈ X, because X is compact. Since X is locally
connected, there exists a connected neighborhood N of q such that N ⊆ B(q, δ/8).
Since q is a limit point of A, the set N contains infinitely many points in A. In
particular, we can find i, j ∈ J with xi, xj ∈ N and i �= j . Then

dist(pi, N) ≥ d(pi, xi)− diam(N) ≥ δ/2− δ/4 > 0,

and soN ⊆ X\{pi}. Since the connected setN meets Ui in the point xi , this implies
that N ⊆ Ui . Similarly, N ⊆ Uj . This is impossible, because we have i �= j and so
Ui ∩ Uj = ∅, while ∅ �= N ⊆ Ui ∩ Uj .

To prove the first statement, note that diam(Ui) > 0 for each i ∈ J . Indeed,
otherwise diam(Ui) = 0 for some i ∈ J . Then Ui consists of only one point a.
Since X is locally connected, the component Ui of X\{pi} is an open set. So a is
an isolated point of X. This is impossible, because the metric space X is connected
and so it does not have isolated points.

Now we write J =⋃n∈N Jn, where Jn consists of all i ∈ J such that diam(Ui) >
1/n. Then each set Jn is finite by the first part of the proof. This implies that J is
countable. 
�

We can apply the previous lemma to a tree T and choose for each pi a fixed
branch point p of T . Then it follows that p can have at most countably many distinct
complementary components Ui and hence there are only countably many distinct
branches Bi = Ui ∪ {p} of p. Moreover, since diam(Bi) = diam(Ui) = diam(Ui),
there can only be finitely many of these branches whose diameter exceeds a given
positive number δ > 0. In particular, we can label the branches of p by numbers
n = 1, 2, 3, . . . so that

diam(B1) ≥ diam(B2) ≥ diam(B3) ≥ . . . .

We now set

HT (p) = diam(B3) (3.1)
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and callHT (p) the height of the branch point p in T . So the height of a branch point
p is the diameter of the third largest branch of p.

Lemma 3.9 Let (T , d) be a tree and δ > 0. Then there are at most finitely many
branch points p ∈ T with height HT (p) > δ.

Proof We argue by contradiction and assume that this is not true. Then the set E
of branch points p in T with HT (p) > δ has infinitely many elements. Since T is
compact, the set E has a limit point q ∈ T .

Claim. There exists a branchQ of q such that the set E ∩Q is infinite and has q
as a limit point.

Otherwise, q has infinitely many distinct branchesQn, n ∈ N, that contain a point
an ∈ E ∩ (Qn\{q}). Then an is a branch point with HT (an) > δ which implies that
an has at least three branches whose diameters exceed δ. At least one of them does
not contain q. If we denote such a branch of an by Vn, then Vn is a connected subset
of T \{q}. It meets Qn\{q}, because an ∈ (Qn\{q}) ∩ Vn. It follows that Vn ⊆ Qn
and so diam(Qn) ≥ diam(Vn) > δ. Since the branches Qn of q are all distinct for
n ∈ N, this contradicts Lemma 3.8 (see the discussion after the proof of this lemma).
The Claim follows.

We fix a branchQ of q as in the Claim. For each n ∈ N we will now inductively
construct branch points pn ∈ E ∩ (Q\{q}) together with a branch Bn of pn and an
auxiliary compact set Kn ⊆ T . They will satisfy the following conditions for each
n ∈ N:

(i) diam(Bn) > δ,
(ii) the sets B1, . . . , Bn are disjoint,

(iii) the set Kn is compact and connected, and

B1 ∪ · · · ∪ Bn ⊆ Kn ⊆ Q\{q}.

We pick an arbitrary branch point p1 ∈ E ∩ (Q\{q}) to start. Then we can
choose a branch B1 of p1 that does not contain q and satisfies diam(B1) > δ. We
set K1 = B1. Then K1 is a compact and connected set that does not contain q and
meetsQ, because p1 ∈ K1 ∩Q. Hence K1 ⊆ Q\{q}.

Suppose for some n ∈ N, a branch point pk ∈ E ∩Q, a branch Bk of pk , and a
set Kk with the properties (i)–(iii) have been chosen for all 1 ≤ k ≤ n.

Since q �∈ Kn, we have dist(q,Kn) > 0, and so we can find a branch point
pn+1 ∈ E ∩ (Q\{p}) sufficiently close to q such that pn+1 �∈ Kn. This is possible,
because q is a limit point of E ∩ (Q\{q}). Since the set Kn ⊆ T \{pn+1} is
connected, it must be contained in a branch of pn+1. Since there are three branches
of pn+1 �= q whose diameters exceed δ, we can pick one of them that contains
neither q norKn. Let Bn+1 be such a branch of pn+1. Then diam(Bn+1) > δ and so
(i) is true for n + 1. We have Bn+1 ∩ Kn = ∅; so (iii) shows that Bn+1 is disjoint
from the previously chosen disjoint sets B1, . . . , Bn. This gives (ii).

Since pn, pn+1 ∈ Q\{q}, the arc [pn, pn+1] does not contain q (see
Lemma 3.2 (iii)). We also have pn ∈ Bn ⊆ Kn and pn+1 ∈ Bn+1, which implies
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that the set Kn+1 := Kn ∪ [pn, pn+1] ∪ Bn+1 ⊆ Q\{q} is compact and connected.
We have

B1 ∪ · · · ∪ Bn ∪ Bn+1 ⊆ Kn ∪ Bn+1 ⊆ Kn+1 ⊆ Q\{q},

and so Kn+1 has property (iii).
Continuing with this process, we obtain disjoint branches Bn for all n ∈ N that

satisfy (i). The last part of Lemma 3.8 implies that this is impossible and we get a
contradiction. 
�

4 Basic Properties of the Continuum Self-Similar Tree

We now we study the properties of the continuum self-similar tree (CSST). Unless
otherwise specified, all metric notions in this section refer to the Euclidean metric
on the complex plane C. In this section, i always denotes the imaginary unit and we
do not use this letter for indexing as in the other sections. If a, b ∈ C we denote
by [a, b] the Euclidean line segment in C joining a and b. We also use the usual
notation for open or half-open line segments. So [a, b) = [a, b]\{b}, etc.

For the proof of Proposition 1.1 we consider a coding procedure of certain points
in the complex plane by words in an alphabet. We first fix some terminology related
to this. We consider a non-empty set A. Then we call A an alphabet and refer to
the elements in A as the letters in this alphabet. In this paper we will only use
alphabets of the form A = {1, 2, . . . , m} with m ∈ N, m ≥ 3. We consider the
set W(A) := AN of infinite sequences in A as the set of infinite words in the
alphabet A and write the elements w ∈ W(A) in the form w = w1w2 . . ., where it
is understood that wk ∈ A for k ∈ N. Similarly, we setWn(A) := An and consider
Wn(A) as the set of all words in the alphabet A of length n. We write the elements
w ∈ Wn(A) in the form w = w1 . . . wn with wk ∈ A for k = 1, . . . , n. We use
the convention thatW0(A) = {∅} and consider the only element ∅ inW0(A) as the
empty word of length 0. Finally,

W∗(A) :=
⋃
n∈N0

Wn(A)

is the set of all words of finite length. If u = u1 . . . un is a finite word and v =
v1v2 . . . is a finite or infinite word in the alphabet A, then we denote by uv =
u1 . . . unv1v2 . . . the word obtained by concatenating u and v. We call u an initial
segment and v a tail of the word w = uv. If the alphabet A is understood, then we
will simply drop A from the notation. So W will denote the set of infinite words in
A, etc.

For the rest of this section, we use the alphabet A = {1, 2, 3}. So when we
write W , Wn, W∗ it is understood that A = {1, 2, 3} is the underlying alphabet.
There exists a unique metric d on W = {1, 2, 3}N with the following property. If
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we have two words u = u1u2 . . . and v = v1v2 . . . in W and u �= v, then for
some n ∈ N0 we have u1 = v1, . . . , un = vn, and un+1 �= vn+1. Then d(u, v) =
1/2n. More informally, two elements u, v ∈ W are close in this metric precisely if
they share a large number of initial letters. The metric space (W, d) is compact and
homeomorphic to a Cantor set.

If n ∈ N0 and w = w1w2 . . . wn ∈ Wn, we define

fw := fw1 ◦ fw2 ◦ · · · ◦ fwn,

where we use the maps in (1.1) in the composition. By convention, f∅ = idC is the
identity map on C. Note that fw is a Euclidean similarity on C that scales Euclidean
distances by the factor 2−n. If a, b ∈ C, then fw([a, b]) = [fw(a), fw(b)]. We will
use this repeatedly in the following.

Throughout this section we denote byH ⊆ C the (closed) convex hull of the four
points 1, i, −1, and 1

2 − i
2 (see Fig. 4). We set Hk = fk(H) for k = 1, 2, 3. Then

H1 ∪H2 ∪H3 = f1(H) ∪ f2(H) ∪ f3(H) ⊆ H.

This implies that

fw(H) ⊆ H (4.1)

for all w ∈ W∗.

− 111

− 1
2

+
2

0

1

2

3

1 2

3

Fig. 4 Illustration of some associated sets
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Lemma 4.1 There exists a well-defined continuous map π : W → C given by

π(w) = lim
n→∞ fw1w2...wn(z0)

for w = w1w2 . . . ∈ W and z0 ∈ C. Here the limit exists and is independent of the
choice of z0 ∈ C.

The existence of such a map π is standard in similar contexts (see, for example,
[19, Section 3.1, pp. 426–427]). In the following, π : W → C will always denote
the map provided by this lemma.

Proof Fix z0 ∈ C. Then there exists a constant C ≥ 0 such that

|z0 − fk(z0)| ≤ C

for k = 1, 2, 3. If n ∈ N0 and u ∈ Wn, then

|fu(a)− fu(b)| = 1

2n
|a − b|

for all a, b ∈ C. This implies that if w = w1w2 . . . ∈ W , n ∈ N, and u :=
w1w2 . . . wn ∈ Wn, then

|fw1w2...wn(z0)− fw1w2...wn+1(z0)| = |fu(z0)− fu(fwn+1(z0))|

= 1

2n
|z0 − fwn+1(z0)| ≤ C

2n
.

It follows that {fw1w2...wn(z0)}n∈N is a Cauchy sequence in C. Hence this sequence
converges and

π(w) = lim
n→∞ fw1w2...wn(z0)

is well-defined for each w = w1w2 . . . ∈ W .
The limit does not depend on the choice of z0. Indeed, if z′0 ∈ C is another point,

then

|fw1w2...wn(z0)− fw1w2...wn(z
′
0)| =

1

2n
|z0 − z′0|,

which implies that

lim
n→∞ fw1w2...wn(z0) = lim

n→∞ fw1w2...wn(z
′
0).

The definition of π shows that if w = w1w2 . . . ∈ W and n ∈ N0, then

π(w) = π(w1w2 . . .) = fw1...wn(π(wn+1wn+2 . . .)). (4.2)
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If we pick z0 ∈ H , then (4.1) and the definition of π imply that π(W) ⊆ H . If we
combine this with (4.2), then we see that if two words u, v ∈ W start with the same
letters w1, . . . , wn, then

|π(u)− π(v)| ≤ diam(fw1...wn(H)) =
1

2n
diam(H).

The continuity of the map π follows from this and the definition of the metric d
onW . 
�
We can now establish the result that is the basis of the definition of the CSST. Again
arguments along these lines are completely standard.

Proof of Proposition 1.1 Let π : W → C be the map provided by Lemma 4.1 and
define T = π(W) ⊆ C. Since W is compact and π is continuous, the set T is non-
empty and compact. The relation (1.2) immediately follows from (4.2) for n = 1.
Note that (1.2) implies that

fw(T) = fw1(T) ∪ fw2(T) ∪ fw3(T) (4.3)

for each w ∈ Wn, n ∈ N0. From this in turn we deduce that

⋃
w∈Wn

fw(T) = T (4.4)

for each n ∈ N0.
It remains to show the uniqueness of T. Suppose T̃ ⊆ C is another non-empty

compact set satisfying the analog of (1.2). Then the analogs of (4.3) and (4.4) are
also valid for T̃. This and the definition of π using a point z0 ∈ T̃ imply that T =
π(W) ⊆ T̃.

For the converse inclusion, let a ∈ T̃ be arbitrary. Using the relation (4.3) for
the set T̃, we can inductively construct an infinite word w1w2 . . . ∈ W such that
a ∈ fw1w2...wn(T̃) for all n ∈ N. Since

diam(fw1w2...wn(T̃)) =
1

2n
diam(T̃)→ 0 as n→∞,

the definition of π (using a point z0 ∈ T̃) implies that a = π(w). In particular,
a ∈ π(W) = T, and so T̃ ⊆ T. The uniqueness of T follows. 
�

In the proof of Proposition 1.1 we have seen that T = π(W). If p ∈ T and
p = π(w) for some w ∈ W , then we say that the word w represents p.

The following statement provides some geometric descriptions of T.
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Proposition 4.2 Let I = [−1, 1] ⊆ C. For n ∈ N0 define

Jn =
⋃
w∈Wn

fw(I) and Kn =
⋃
w∈Wn

fw(H).

Then the sets Jn and Kn are compact and satisfy

Jn ⊆ Jn+1 ⊆ T ⊆ Kn+1 ⊆ Kn (4.5)

for n ∈ N0. Moreover, we have

⋃
n∈N0

Jn = T =
⋂
n∈N0

Kn. (4.6)

As we will discuss more towards the end of this section, the first identity in
(4.6) represents T as the closure of a union of an ascending sequence of trees as
mentioned in the introduction. We will not need the second identity in (4.6) in the
following, but included it to show that T can also be obtained as the intersection of
a natural decreasing sequence of compacts sets. This is how many other fractals are
constructed.

Proof It is clear that the sets Jn and Kn as defined in the statement are compact
for each n ∈ N0. Set Ik = fk(I ) for k = 1, 2, 3. Then an elementary geometric
consideration shows that (see Fig. 4)

I ⊆ I1 ∪ I2 ∪ I3 ⊆ H1 ∪H2 ∪H3 ⊆ H.

This in turn implies that

fw(I) ⊆ fw1(I ) ∪ fw2(I ) ∪ fw3(I )

⊆ fw1(H) ∪ fw2(H) ∪ fw3(H) ⊆ fw(H)

for each w ∈ Wn, n ∈ N0. Taking the union over all w ∈ Wn, we obtain

Jn ⊆ Jn+1 ⊆ Kn+1 ⊆ Kn (4.7)

for all n ∈ N0. The set T̃ =
⋃
n∈N0

Jn is non-empty, compact, and satisfies

⋃
k=1,2,3

fk(T̃) =
⋃

k=1,2,3

fk

(⋃
n∈N0

Jn

)
=
⋃

k=1,2,3

fk

(⋃
n∈N0

Jn

)



164 M. Bonk and H. Tran

=
⋃

k=1,2,3

fk

(⋃
n∈N0

Jn

)
=
⋃
n∈N0

⋃
k=1,2,3

fk(Jn)

=
⋃
n∈N0

Jn+1 =
⋃
n∈N0

Jn = T̃.

Hence T̃ = T by the uniqueness statement in Proposition 1.1. So we have the first
equation in (4.6).

Since 0 ∈ H , we have fw(0) ∈ fw(H) ⊆ Kn for each w ∈ Wn. Since the sets
Kn are compact and nested, this implies that for each w = w1w2 . . . ∈ W we have

π(w) = lim
n→∞ fw1...wn(0) ∈

⋂
n∈N0

Kn.

It follows that T = π(W) ⊆
⋂
n∈N0

Kn.

To show the reverse inclusion, let a ∈
⋂
n∈N0

Kn be arbitrary. Then a ∈ Kn for

each n ∈ N0, and so there is a word un ∈ Wn such that a ∈ fun(H). Define
zn = fun(0) ∈ Jn ⊆ T. Since 0 ∈ H , we have zn ∈ fun(H), and so

|zn − a| ≤ diam(fun(H)) =
1

2n
diam(H).

Hence zn → a as n → ∞. Since zn ∈ T and T is compact, it follows that a ∈ T.
We see that

⋂
n∈N0

Kn ⊆ T. So the second equation in (4.6) is also valid.

The inclusions (4.5) follow from (4.6) and (4.7). 
�
For a finite word u ∈ W∗ we define

Tu := fu(T) ⊆ T. (4.8)

Note that T∅ = T. Since T = π(W) and fu(π(v)) = π(uv) whenever u ∈ W∗
and v ∈ W (see (4.2)), the set Tu consists precisely of the points a ∈ T that can
be represented in the form a = π(w) with a word w ∈ W that has u has an initial
segment. This implies that if v ∈ W∗ is a finite word with the initial segment u ∈ W∗,
then Tv ⊆ Tu.

It follows from (4.3) that

Tu = Tu1 ∪ Tu2 ∪ Tu3
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for each u ∈ W∗ and from (4.4) that

T =
⋃
u∈Wn

Tu (4.9)

for each n ∈ N0.
Since I = [−1, 1] ⊆ T ⊆ H (as follows from Proposition 4.2) and diam(I ) =

diam(H) = 2, we have diam(T) = 2. If n ∈ N0 and u ∈ Wn, then fu is a similarity
map that scales distances by the factor 1/2n. Hence

diam(Tu) = 21−n. (4.10)

We have 0 = f1(1) = f2(−1) = f3(−1). This implies

0 ∈ Tk = fk(T) ⊆ fk(H) = Hk (4.11)

for k = 1, 2, 3. If k, � ∈ {1, 2, 3} and k �= �, then (see Fig. 5)

Hk ∩H� = {0}, and so Tk ∩ T� = {0}. (4.12)

The next lemma provides a criterion when two infinite words inW represent the
same point in T under the map π . Here we use the notation k̇ for the infinite word
kkk . . . for k ∈ {1, 2, 3}.

− 11

1

2

3

0

1

2

3

T

T

T

Fig. 5 The CSST T and its subtrees T1, T2, T3
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Lemma 4.3 (i) We have π−1(0) = {12̇, 21̇, 31̇}.
(ii) Let v,w ∈ W with v �= w. Then π(v) = π(w) if and only if there exists a finite

word u ∈ W∗ such that v,w ∈ {u12̇, u21̇, u31̇}. In this case, π(v) = π(w) =
fu(0).

Note that if v ∈ W and v ∈ {u12̇, u21̇, u31̇} for some u ∈ W∗, then u is uniquely
determined. This and the lemma imply that each point in T = π(W) has at most
three preimages under the map π .

Proof

(i) Note that 12̇ ∈ π−1(0) as follows from

f2(1) = 1 and f1(1) = 0.

Similarly, 21̇, 31̇ ∈ π−1(0), because

f1(−1) = −1, f2(−1) = 0, and f1(−1) = −1, f3(−1) = 0.

Hence {12̇, 21̇, 31̇} ⊆ π−1(0).
To prove the reverse inclusion, suppose that π(w) = 0 for some w =

w1w2 . . . ∈ W . We first consider the case w1 = 1. Then 0 = f1(a), where
a := π(w2w3 . . .), and so a = 1. Since 1 ∈ T2\(T1 ∪ T3) as follows from
(4.11), we must have w2 = 2. Then 1 = f2(b), where b := w3w4 . . ., and so
b = 1 ∈ T2\(T1 ∪ T3). This implies w3 = 2. Repeating the argument, we see
that 2 = w2 = w3 = . . ., and so w = 12̇.

A very similar argument shows that if w1 = 2, then w = 21̇, and if w1 = 3,
then w = 31̇.

(ii) Suppose that π(v) = π(w) for some v,w ∈ Wn, v �= w. Let u ∈ W∗ be the
longest initial word that v and w have in common. So v = uvn+1vn+2 . . . and
w = uwn+1wn+2 . . . , where n ∈ N0 and vn+1 �= wn+1. Since fu is bijective
and

π(v) = fu(π(vn+1vn+2 . . . )) = π(w) = fu(π(wn+1wn+2 . . . )) ,

we have

π(vn+1vn+2 . . . ) = π(wn+1wn+2 . . . ).

Note that π(vn+1vn+2 . . . ) ∈ Tvn+1 and π(wn+1wn+2 . . . ) ∈ Twn+1 .

Since vn+1 �= wn+1, by (4.12) this is only possible if π(vn+1vn+2 . . . ) =
π(wn+1wn+2 . . . ) = 0. Hence

vn+1vn+2 . . . , wn+1wn+2 . . . ∈ {12̇, 21̇, 31̇}

by (i). The “only if” implication follows. Our considerations also show that
π(v) = π(w) = fu(0). The reverse implication follows from (i). 
�
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Our next goal is to show that T is indeed a tree. This requires some preparation.

Lemma 4.4 (i) For each p ∈ T there exists a (possibly degenerate) arc α in T

with endpoints −1 and p.
(ii) The sets T, T\{1}, and T\{−1} are arc-connected.

Proof

(i) Let p ∈ T. Then p = π(w) for some w = w1w2 . . . ∈ W .
Let vn = w1 . . . wn and define an = fvn(−1) ∈ T for n ∈ N0. Then a0 =

f∅(−1) = −1. For each n ∈ N0 we have

[an, an+1) = [fvn(−1), fvnwn+1(−1)) = fvn
([−1, fwn+1(−1))

)
.

If wn+1 = 1, then fwn+1(−1) = f1(−1) = −1; so an = an+1 and

[an, an+1) = ∅.
If wn+1 ∈ {2, 3}, then fwn+1(−1) = 0; so

[−1, fwn+1(−1)) = [−1, 0) ⊆ T1\{0},
and

[an, an+1) = fvn([−1, 0)) ⊆ fvn(T1\{0}) ⊆ Tvn ⊆ T.

Moreover,

length([an, an+1)) = 1

2n
length

([−1, fwn+1(−1))
)

=
{

2−n if wn+1 = 2, 3,

0 if wn+1 = 1.
(4.13)

Let

An := {p} ∪
⋃
k≥n+1

[ak, ak+1)

for n ∈ N0. By what we have seen above,

[ak, ak+1) ⊆ Tvk ⊆ Tvn+1

for k ≥ n + 1. Since p = limk→∞ ak and Tvn+1 is closed, we also have p ∈
Tvn+1 , and so

An ⊆ Tvn+1 .
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This implies that

[an, an+1) ∩ An = ∅

for each n ∈ N0. Indeed, ifwn+1 = 1 this is clear, because then [an, an+1) = ∅.
If wn+1 = 2, then

An ⊆ Tvn+1 = fvn(f2(T)) = fvn(T2),

which implies that

[an, an+1) ∩ An ⊆ fvn(T1\{0}) ∩ fvn(T2) = fvn((T1\{0}) ∩ T2) = ∅.

If wn+1 = 3, then [an, an+1) ∩An = ∅ by the same reasoning. This shows that
the sets

[a0, a1), [a1, a2), [a2, a3), . . . , {p}

are pairwise disjoint. As n→∞, we have an→ p and also diam(An)→ 0 by
(4.13). Therefore, the union

α = [a0, a1) ∪ [a1, a2) ∪ [a2, a3) ∪ · · · ∪ {p} (4.14)

is an arc in T joining a0 = −1 and p (if p = −1, this arc is degenerate). We
have proved (i).

To prepare the proof of (ii), we claim that if p �= 1, then this arc α does not
contain 1. Otherwise, we must have 1 ∈ [an, an+1) ⊆ Tvn for some n ∈ N0.
This shows that 1 can be written in the form 1 = π(u), where u ∈ W is
an infinite word starting with the finite word v := vn (note that this and the
statements below are trivially true for n = 0). On the other hand, we have
f2(1) = 1 which implies that 1 = π(2̇). By Lemma 4.3 (ii) this is only possible
if all the letters in v are 2’s. Then fv(1) = 1 and it follows that

1 = fv(1) ∈ [an, an+1) = fv
([−1, fwn+1(−1))

)
.

Since fv is a bijection, this implies that 1 ∈ [−1, fwn+1(−1)). Now
fwn+1(−1) ∈ {−1, 0}, and we obtain a contradiction. So indeed, 1 �∈ α.

(ii) Let p, q ∈ T with p �= q be arbitrary. In order to show that T is arc-connected,
we have to find an arc γ in T joining p and q. Now by the construction in (i)
we can find arcs α and β in T joining p and q to −1, respectively. Then the
desired arc γ can be found in the union α ∪ β as follows. Starting from p, we
travel long α until we first hit β, say in a point x. Such a point x exists, because
−1 ∈ α∩β �= ∅. Let α′ be the (possibly degenerate) subarc of α with endpoints
p and x, and β ′ be the subarc of β with endpoints x and q. Then γ = α′ ∪ β ′ is
an arc in T joining p and q.
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The arc-connectedness of T\{1} is proved by the same argument. Indeed, if
p, q ∈ T\{1}, then by the remark in the last part of the proof of (i), the arcs α
and β constructed as in (i) do not contain 1. Then the arc γ ⊆ α ∪ β does not
contain 1 either.

Finally, to show that T\{−1} is arc-connected, we assume that p, q ∈
T\{−1}. If x is, as above, the first point on β as we travel along α starting
from p, then it suffices to show that x �= −1, because then−1 �∈ γ . This in turn
will follow if we can show that α and β have another point in common besides
−1.

To find such a point, we revisit the above construction. Pickw = w1w2 . . . ∈
W and u = u1u2 . . . ∈ W such that p = π(w) and q = π(u). Let α and β be
the arcs for p and q, respectively, as constructed in (i). Then α is as in (4.14)
and we can write the other arc β as

β = [b0, b1) ∪ [b1, b2) ∪ [b2, b3) ∪ · · · ∪ {q},

where bn = fu1...un(−1) for n ∈ N0. Since p �= q, we havew �= u, and so there
exists a largest n ∈ N0 such that v := w1 . . . wn = u1 . . . un and wn+1 �= un+1.
Then an = bn = fv(−1) ∈ α ∩ β. If an = bn �= −1, we are done. So we may
assume that an = bn = fv(−1) = −1. Then a0 = · · · = an = −1, and so
wk = uk = 1 for k = 1, . . . , n. This shows that all letters in v are equal to 1.

Since the letters wn+1 and un+1 are distinct, one of them is different from
1. We may assume un+1 �= 1. Then fun+1(−1) = 0, and so (bn, bn+1] =
fv((−1, 0]) ⊆ β \ {−1}. Here we used that fv is a homeomorphism with
fv(−1) = −1.

Since p = π(w) �= −1 = π(1̇), we have w �= 1̇ and so there exists a
smallest � ∈ N such that wn+� �= 1. Then fwn+� (−1) = 0 and so a simple
computation using wn+1 = · · · = wn+�−1 = 1 shows that

c := fwn+1...wn+� (−1) = fwn+1...wn+�−1(0) = 21−� − 1 ∈ (−1, 0].

Hence

an+� = fv(c) ∈ fv((−1, 0]) ⊆ β \ {−1}.

It follows that an+� ∈ α ∩ β and an+� �= −1 as desired. 
�
The next lemma will help us to identify the branch points of T once we know

that T is a tree.

Lemma 4.5

(i) The components of T\{0} are given by the non-empty sets T1\{0}, T2\{0},
T3\{0}.
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(ii) If u ∈ W∗, then T\{fu(0)} has exactly three components. The sets Tu1\{fu(0)},
Tu2\{fu(0)}, Tu3\{fu(0)} are each contained in a different component of
T\{fu(0)}.

In the proof we will use the following general facts about components of a subsetM
of a metric spaceX. Recall that a setA ⊆ M is relatively closed inM ifA = A∩M ,
or equivalently, if each limit point of A that belongs to M also belongs to A. Each
component A of M is relatively closed in M , because its relative closure A ∩M is
a connected subset of M with A ⊆ A ∩ M . Hence A = A ∩ M , because A is a
component ofM and hence a maximal connected subset ofM .

If A1, . . . , An ⊆ M for some n ∈ N are non-empty, pairwise disjoint, relatively
closed, and connected sets with M = A1 ∪ · · · ∪ An, then these sets are the
components ofM .

Proof

(i) Each of the sets T\{1} and T\{−1} is non-empty, and connected by
Lemma 4.4 (ii). Therefore, the sets

T1\{0} = f1(T\{1}), T2\{0} = f2(T\{−1}), T3\{0} = f3(T\{−1})

are non-empty and connected. They are also relatively closed in T\{0} and
pairwise disjoint by (4.12). Since T = T1 ∪ T2 ∪ T3 we have

T\{0} = (T1\{0}) ∪ (T2\{0}) ∪ (T3\{0}).

This implies that the sets Tk\{0}, k = 1, 2, 3, are the components of T\{0}. The
statement follows.

(ii) We prove this by induction on the length n ∈ N0 of the word u ∈ W∗. If n = 0
and so u = ∅, this follows from statement (i).

Suppose the statement is true for all words of length n − 1, where n ∈ N.
Let u = u1 . . . un ∈ Wn be an arbitrary word of length n. We set � := u1 and
u′ := u2 . . . un. Then u = �u′. To be specific and ease notation, we will assume
that � = 1. The other cases � = 2 or � = 3 are completely analogous and we
will skip the details.

Note that fu(0) �= 0. Indeed, if

0 = fu(0) = fu(π(12̇)) = π(u12̇),

then u12̇ ∈ {12̇, 21̇, 31̇} by Lemma 4.3 (i). This is only possible u1 = 1. This
is a contradiction, because u has length n ≥ 1. Hence fu(0) �= 0. Since u1 =
� = 1, we have fu(0) ∈ T1\{0}.
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By induction hypothesis, T\{fu′(0)} has exactly three connected compo-
nents V1, V2, V3, and we may assume that Tu′k\{fu′(0)} ⊆ Vk for k = 1, 2, 3.
It follows that

f�(T\{fu′(0)}) = f1(T\{fu′(0)}) = T1\{fu(0)}

has exactly three connected components Uk = f1(Vk) ⊆ T1 with

Tuk\{fu(0)} = T1u′k\{f1u′(0)} = f1(Tu′k\{fu′(0)}) ⊆ f1(Vk) = Uk
for k = 1, 2, 3.

Let k ∈ {1, 2, 3}. Then we have Vk = Vk ∩ T\{fu′(0)}, because Vk is
a component of T\{fu′(0)} and hence relatively closed in T\{fu′(0)}. This
implies that

Uk = f1(Vk) = f1(Vk ∩ T\{fu′(0)}) = f1(Vk) ∩ T1\{fu(0)}
= f1(Vk) ∩ T1\{fu(0)} = Uk ∩ T1\{fu(0)}.

Since T1 ⊆ T is compact,Uk ⊆ T1, and soUk ⊆ T1, this shows that every limit
point of Uk distinct from fu(0) belongs to Uk . Hence Uk is relatively closed in
T\{fu(0)}.

Exactly one of the components of T1\{fu(0)}, sayU1, contains the point 0 ∈
T1\{fu(0)}. ThenU ′1 := U1∪T2∪T3 is a relatively closed subset of T\{fu(0)}.
This set is also connected, because the sets U1, T2 = f2(T), T3 = f3(T) are
connected and have the point 0 in common. Hence the connected sets U ′1, U2,
U3 are pairwise disjoint, relatively closed in T\{fu(0)}, and

T\{fu(0)} = (T1\ {fu(0)}) ∪ T2 ∪ T3 = U ′1 ∪ U2 ∪ U3.

This implies that T\{fu(0)} has exactly the three connected components U ′1,
U2, U3. Moreover, Tu1\{fu(0)}, Tu2\{fu(0)}, Tu3\{fu(0)} lie in the different
components U ′1, U2, U3 of T\{fu(0)}, respectively. This provides the inductive
step, and the statement follows. 
�

We can now show that T is a metric tree.

Proof of Proposition 1.4 We know that T is compact, contains at least two points,
and is arc-connected by Lemma 4.4.

Let p ∈ T and n ∈ N be arbitrary, and define

N =
⋃
{Tu : u ∈ Wn and p ∈ Tu}.

Since each of the sets Tu = fu(T), u ∈ W∗, is a compact and connected subset of T,
the set N is connected. Moreover, since each of the finitely many sets Tu, u ∈ Wn,
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is closed, we can find δ > 0 such that

dist(p,Tu) ≥ δ

whenever u ∈ Wn and p �∈ Tu. Then we have B(p, δ) ∩ T ⊆ N by (4.9), and
so N is a connected relative neighborhood of p in T. It follows from (4.10) that
diam(N) ≤ 22−n. This shows that each point in T has arbitrarily small connected
neighborhoods in T. Hence T is locally connected.

To complete the proof, it remains to show that the arc joining two given distinct
points in T is unique. For this we argue by contradiction and assume that there are
two distinct arcs in T with the same endpoints. By considering suitable subarcs of
these arcs, we can reduce to the following situation: there are arcs α, β ⊆ T that
have the distinct endpoints a, b ∈ T in common, but no other points.

To see that this leads to a contradiction, we represent the points a and b by words
in W ; so a = π(v) and b = π(w), where v = v1v2 . . . and w = w1w2 . . . are
in W . Since a �= b and every point in T has at most three such representations by
Lemma 4.3 (ii), we can find a pair v and w representing a and b with the largest
common initial word, say v1 = w1, . . . , vn = wn, and vn+1 �= wn+1 for some
maximal n ∈ N0.

Let u = v1 . . . vn = w1 . . . wn and

t = fu(0) = π(u12̇) = π(u21̇) = π(u31̇).

Then t �= a, b. To see this, assume that t = a, say. We have wn+1 ∈ {1, 2, 3}, and
so, say wn+1 = 1. But then a = t = π(u12̇) and b = π(u1wn+2 . . .). So a and b
are represented by words with the common initial segment u1 that is longer than u.
This contradicts the choice of v and w. The cases wn+1 = 2 or wn+1 = 3 lead to a
contradiction in a similar way.

So indeed t = fu(0) �= a, b. Moreover a = π(uvn+1 . . .) ∈ Tuvn+1\{t} and
similarly b ∈ Tuwn+1\{t}. Since vn+1 �= wn+1 the points a and b lie in different
components of T\{t} by Lemma 4.5 (ii). So any arc joining a and b must pass
through t . Hence t ∈ α ∩ β, but t �= a, b. This contradicts our assumption that the
arcs α and β have no other points than their endpoints a and b in common. 
�

IfM ⊆ T, then we denote by ∂M ⊆ T the relative boundary ofM in T.

Lemma 4.6 Let n ∈ N and u ∈ Wn. Then

∂Tu ⊆ {fu(−1), fu(1)}. (4.15)

Moreover, if p ∈ ∂Tu, then p = fw(0) for some word w ∈ W∗ of length ≤ n− 1.

In particular, the set ∂Tu contains at most two points.

Proof We prove this by induction on n. First consider n = 1. So let u = k ∈
W1 = {1, 2, 3}. Then Tk\{0} is a component T\{0} by Lemma 4.5 (i). Hence
Proposition 1.4 and Lemma 3.2 (i) imply that Tk\{0} is a relatively open set in
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T. So each of its points lies in the relative interior of Tk and cannot lie in ∂Tk .
Therefore, ∂Tk ⊆ {0}. Since

0 = f∅(0) = f1(1) = f2(−1) = f3(−1), (4.16)

the statement is true for n = 1.
Suppose the statement is true for all words in Wn, where n ∈ N. Let u ∈ Wn+1

be arbitrary. Then u = vk, where v ∈ Wn and k ∈ {1, 2, 3}. By what we have just
seen, the set Tk\{0} is open in T. Hence

fv(Tk\{0}) = fu(T)\{fv(0)} = Tu\{fv(0)}

is a relatively open subset of fv(T) = Tv . So if p ∈ Tu is not an interior point of
Tu in T, then p = fv(0) or p is not an interior point of Tv in T and hence belongs
to the boundary of Tv . This and the induction hypothesis imply that

∂Tu ⊆ {fv(0)} ∪ ∂Tv ⊆ {fv(0), fv(−1), fv(1)}.

From this we conclude that each point p ∈ ∂Tu ⊆ {fv(0)} ∪ ∂Tv can be written in
the form fw(0) for an appropriate word w of length ≤ n. This is clear if p = fv(0)
and follows for p ∈ ∂Tv from the induction hypothesis.

Now Tu = fu(T) is compact and so closed in T. Hence ∂Tu ⊆ Tu. On the other
hand, Tu contains only two of the points fv(0), fv(−1), fv(1). Indeed, if k = 1, then
1 �∈ T1 ⊆ H1, and so fv(1) �∈ fv(T1) = Tu. It follows that ∂Tu ⊆ {fv(−1), fv(0)}.
Note that f1(−1) = −1 and f1(1) = 0, and so

fv(−1) = fv(f1(−1)) = fu(−1) and fv(0) = fv(f1(1)) = fu(1).

Hence

∂Tu ⊆ {fu(−1), fu(1)}.

Very similar considerations show that if k = 2, then

∂Tu ⊆ {fv(0), fv(1)} = {fu(−1), fu(1)},

and if k = 3, then

∂Tu ⊆ {fv(0)} = {fu(−1)}.

The statement follows. 
�
The next lemma shows that all branch points of T are of the form fu(0) with

u ∈ W∗.
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Lemma 4.7 The branch points of T are exactly the points of the form t = fu(0) for
some finite word u ∈ W∗. They are triple points of T.

Proof By Lemma 4.5 (ii) we know that each point t = fu(0)with u ∈ W∗ is a triple
point of the tree T. We have to show that there are no other branch points of T.

So suppose that t is a branch point of T, but t �= fu(0) for each u ∈ W∗. Then
we can find (at least) three distinct components U1, U2, U3 of T\{t}. Pick a point
xk ∈ Uk and choose n ∈ N such that |xk − t | > 21−n for k = 1, 2, 3. By (4.9)
we can find u ∈ Wn such that t ∈ Tu. Then t is distinct from the points in the
relative boundary ∂Tu, because they have the form fw(0) for some w ∈ W∗ (see
Lemma 4.6). Hence t is contained in the relative interior of Tu in T. Moreover,
diam(Tu) = 21−n, and so xk �∈ Tu. For k = 1, 2, 3 let αk be the arc in T joining xk
and t . As we travel from xk to t along αk , there exists a first point yk ∈ Tu. Then
yk ∈ ∂Tu and so yk �= t . Let βk be the subarc of αk with endpoints xk and yk .
Then βk is a connected set in T\{t}. Since xk ∈ βk , it follows that βk ⊆ Uk , and so
yk ∈ Uk .

This shows that the points y1, y2, y3 are distinct and contained in the relative
boundary ∂Tu. This is impossible, because by Lemma 4.6 the set ∂Tu consists of at
most two points. 
�

We can now prove Proposition 1.5 which shows that T satisfies the conditions in
Theorem 1.7 and belongs to the class of trees T3.

Proof of Proposition 1.5 By Lemma 4.7 each branch point of T is a triple point and
each set Tu for u ∈ Wn and n ∈ N contains the triple point t = fu(0). The sets Tu,
u ∈ Wn, cover T and have small diameter for n large. It follows that the triple points
are dense in T. 
�

In order to show that T is a quasi-convex subset of C, we first require a lemma.

Lemma 4.8 There exists a constant K > 0 such that if p ∈ T and α is the arc in T

joining 0 and p, then

length(α) ≤ K|p|. (4.17)

In particular, the arc α is a rectifiable curve.

Proof Let p ∈ T be arbitrary. We may assume that p �= 0. Then p = π(w) for some
w = w1w2 . . . ∈ W . For simplicity we assume w1 = 3. The other cases, w1 = 1
and w1 = 2, are very similar and we will only present the details for w1 = 3.

Since p �= 0 = π(31̇), we have w2w3 . . . �= 1̇. Hence there exists a smallest
number n ∈ N such that such that wn+1 �= 1. Let v = w1 . . . wn be the initial
word of w and w′ = wn+1wn+2 . . . be the tail of w. The word v has the form
v = 31 . . . 1, where the sequence of 1’s could possibly be empty. Note that q :=
π(w′) ∈ Twn+1 ⊆ T2 ∪ T3 ⊆ H2 ∪H3. Since

c0 := dist(−1,H2 ∪H3) > 0
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(see Fig. 4), for the distance of q and −1 we have |q + 1| ≥ c0. We also have
fv(q) = p, and fv(−1) = 0, because f1(−1) = −1 and f3(−1) = 0. It follows
that

|p| = |fv(q)− fv(−1)| = 1

2n
|q + 1| ≥ c0

2n
. (4.18)

Now define a0 = 0 = fv(−1) and ak = fvwn+1...wn+k−1(0) for k ∈ N (here
wn+1 . . . wn+k−1 = ∅ for k = 1). Note that then

a1 = fv(0) = fw1...wn(0) = f31...1(0) = f3(2
1−n − 1) = i/2n,

and so

[a0, a1] = [fv(−1), fv(0)] = [0, i/2n] ⊆ [0, i] ⊆ T.

This also shows that length([a0, a1]) = 1/2n.
For k ∈ N we have fwn+k (0) ∈ {−1/2, 1/2, i/2}, and [0, fwn+k (0)] ⊆ T. This

implies that

[ak, ak+1] = fvwn+1...wn+k−1

([0, fwn+k (0)]) ⊆ T

and length([ak, ak+1]) = 1/2n+k for k ∈ N. Since limk→∞ ak = π(w) = p, we
can concatenate the intervals [ak, ak+1] ⊆ T for k ∈ N0, add the endpoint p, and
obtain a path γ in T that joins 0 and p with

length(γ ) =
∞∑
k=0

1

2n+k
= 1

2n−1 .

The (image of the) path γ will contain the unique arc α in T joining 0 and p and so
length(α) ≤ 1/2n−1. If we combine this with (4.18), then inequality (4.8) follows
with K = 2/c0. 
�

We can now show that T is indeed a quasi-convex subset of C.

Proof of Proposition 1.6 Let a, b ∈ T be arbitrary. We may assume that a �= b.
Then there are words u = u1u2 . . . ∈ W and v = v1v2 . . . ∈ W such that a = π(u)
and b = π(v). Since a �= b, we have u �= v and so there exists a smallest number
n ∈ N0 such that u1 = v1, . . . , un = vn and un+1 �= vn+1. Let w = u1 . . . un =
v1 . . . vn, u′ = un+1un+2 . . . ∈ W and v′ = vn+1vn+2 . . . ∈ W . We define a′ =
π(u′) and b′ = π(v′). Set k = un+1 and � = vn+1. Then k �= �, a′ ∈ Tk ⊆ Hk ,
and b′ ∈ T� ⊆ H�. We now use the following elementary geometric estimate: there
exists a constant c1 > 0 such that

|x − y| ≥ c1(|x| + |y|),
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whenever x ∈ Hk , y ∈ H�, k, � ∈ {1, 2, 3}, k �= �. Essentially, this follows from the
fact that the sets H1, H2, H3 are contained in closed sectors in C that are pairwise
disjoint except for the common point 0.

In our situation, this means that

|a′ − b′| ≥ c1(|a′| + |b′|).

Let σ and τ be the arcs in T joining 0 to a′ and b′, respectively. Then σ ∪ τ contains
the arc α′ in T joining a′ and b′. Then it follows from Lemma 4.8 that

length(α′) ≤ length(σ )+ length(τ ) ≤ K(|a′| + |b′|) ≤ L|a′ − b′| (4.19)

with L := K/c1.
For the similarity fw we have fw(a′) = a and fw(b′) = b. Since fw(T) ⊆ T, it

follows that α := fw(α′) is the unique arc in T joining a and b. Since fw scales
distances by a fixed factor (namely 1/2n), (4.19) implies the desired inequality
length(α) ≤ L|a − b|. 
�

As we already discussed in the introduction, by Proposition 1.6 we can define a
new metric ! on T by setting

!(a, b) = length(α) (4.20)

for a, b ∈ T, where α is the unique arc in T joining a and b. Then the metric space
(T, !) is geodesic, and we have

|a − b| ≤ !(a, b) ≤ L|a − b|

for a, b ∈ T, where L is the constant in Proposition 1.6. This implies that the
metric spaces T (as equipped with the Euclidean metric) and (T, !) are bi-Lipschitz
equivalent by the identity map.

We now want to reconcile Definition 1.2 with the construction of the CSST as an
abstract metric space outlined in the introduction. We require an auxiliary statement.

Lemma 4.9 Let n ∈ N0. Then the sets

fw(T\{−1}), w ∈ Wn, (4.21)

are pairwise disjoint and their union is equal to T\{−1}.
Proof This is proved by induction on n ∈ N0. For n = 0 the statement is clear,
because then f∅(T\{−1}) = T\{−1} is the only set in (4.21).
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Suppose the statement is true for some n ∈ N. Then for each u ∈ Wn the sets

fu1(T\{−1}) = fu(T1\{−1}),
fu2(T\{−1}) = fu(T2\{0}),
fu3(T\{−1}) = fu(T3\{0})

provide a decomposition of fu(T\{−1}) into three pairwise disjoint subsets as
follows from (4.9) for n = 1, (4.11), and (4.12). This and the induction hypothesis
imply that the sets fuk(T\{−1}), u ∈ Wn, k ∈ {1, 2, 3}, and hence the sets
fw(T\{−1}), w ∈ Wn+1, are pairwise disjoint, and their union is equal to T\{−1}.
This is the inductive step, and the statement follows. 
�

We now consider the sets Jn, n ∈ N0, as in Proposition 4.2. Here J0 = I =
[−1, 1] is a line segment of length 2. Since (−1, 1] ⊆ T\{−1}, the previous lemma
implies that for each n ∈ N0, the sets fw((−1, 1]), w ∈ Wn, are pairwise disjoint
half-open line segments of length 21−n. The union of the closures fw([−1, 1]) =
fw(I), w ∈ Wn, of these line segments is the set Jn. In particular, Jn consists of 3n

line segments of length 21−n with pairwise disjoint interiors.
Note that for w ∈ Wn we have

fw1((−1, 1]) ∪ fw2((−1, 1]) ∪ fw3((−1, 1])
= fw((−1, 0]) ∪ fw((0, 1]) ∪ fw((0, i])
= fw((−1, 1]) ∪ fw([0, i]).

An induction argument based on this shows that for n ∈ N0 we have a decomposi-
tion

Jn\{−1} =
⋃
w∈Wn

fw((−1, 1]) (4.22)

of Jn\{−1} into the pairwise disjoint sets fw((−1, 1]), w ∈ Wn.
In the passage from Jn to Jn+1 we can think of each line segment fw(I) =

fw([−1, 1]) as being replaced with

fw1(I ) ∪ fw2(I ) ∪ fw3(I ) = fw([−1, 0]) ∪ fw([0, 1]) ∪ fw([0, i]).

So fw([−1, 1]) is split into two intervals fw([−1, 0]) and fw([0, 1]), and at its
midpoint fw(0) a new interval fw([0, i]) is “glued” to fw(0). This is exactly the
procedure described in the introduction. Note that Lemma 4.9 implies that these
new intervals fw([0, i]) ⊆ fw(T\{−1}), w ∈ Wn, are pairwise disjoint. Moreover,
each such interval fw([0, i])meets the set Jn only in the point fw(0) and in no other
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point of Jn. Indeed, by (4.22) and Lemma 4.9 we have

fw((0, i]) ∩ Jn = fw3((−1, 1]) ∩ Jn = fw3((−1, 1]) ∩ Jn\{−1}
= fw((0, i]) ∩

⋃
u∈Wn

fu((−1, 1])

⊆ (fw((0, i]) ∩ fw((−1, 1])) ∪ ⋃
u∈Wn, u�=w

fw(T\{−1}) ∩ fu(T\{−1}) = ∅.

It is clear that Jn is compact, and one can show by induction based on the
replacement procedure just described that Jn is connected. Hence each Jn is a
subtree of T by Lemma 3.3. The metric ! in (4.20) restricted to Jn, n ∈ N0, and to
J := ⋃n∈N0

Jn is just the natural Euclidean path metric on these sets. In particular,
! is a geodesic metric on J . These considerations imply that (Jn, !) for n ∈ N, and
hence (J, !), are isometric to the abstract versions of these spaces defined in the
introduction.

By Proposition 4.2 the tree T is the equal to closure J in C. Since on J the
Euclidean metric and the metric ! are comparable, the set T = J is homeomorphic
to the space obtained from the completion of the geodesic metric space (J, !). This
is how we described the CSST as an abstract metric space in the introduction.

5 Decomposing Trees in Tm

In the previous section we have seen that for each n ∈ N the CSST admits a decom-
position

T =
⋃
u∈Wn

Tu

into subtrees. We will now consider an arbitrary tree in Tm,m ∈ N,m ≥ 3, and find
similar decompositions into subtrees. Our goal is to have decompositions for each
level n ∈ N so that the conditions (i)–(iii) in Proposition 2.1 are satisfied.

Note that each tree class Tm is non-empty. Namely, for eachm ∈ N,m ≥ 3, a tree
in Tm can be obtained by essentially the same method as for the construction of the
CSST as an abstract metric space outlined in the introduction. The only difference
is that instead of gluing one line segment of length 2−n to the midpoint cs of a line
segment s of length 21−n obtained in the nth step, we glue endpoints of m− 2 such
segments to cs . Since from a purely logical point of view we will not need the fact
that Tm is non-empty for the proof of Theorem 1.8, we will skip further details.

We now fix m ∈ N, m ≥ 3, for the rest of this section. We consider the alphabet
A = {1, 2, . . . , m}. In the following, words will contain only letters in this fixed
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alphabet and we use the simplified notation for the sets of words W , Wn, W∗ as
discussed in Sect. 4.

Let T be an arbitrary tree in the class Tm. We will now define subtrees Tu of T
for all levels n ∈ N and all u ∈ Wn. The boundary ∂Tu of Tu in T will consist of one
or two points that are leaves of Tu and branch points of T . We consider each point
in ∂Tu as a marked leaf in Tu and will assign to it an appropriate sign− or+ so that
if there are two marked leaves in Tu, then they carry different signs. Accordingly,
we refer to the points in ∂Tu as the signed marked leaves of Tu. The same point
may carry different signs in different subtrees. We write p− if a marked leaf p of
Tu carries the sign − and p+ if it carries the sign +. To refer to this sign, we also
write sgn(p, Tu) = − in the first and sgn(p, Tu) = + in the second case. If Tu has
exactly one marked leaf, we call Tu a leaf-tile and if there are two marked leaves an
arc-tile.

The reason why we want to use these markings is that it will help us to
consistently label the subtrees so that if another tree S in Tm is decomposed by the
same procedure, then we obtain decompositions of our trees T and S into subtrees
on all levels n that satisfy the analogs of (2.1) and (2.2) (here u ∈ Wn will play the
role of the index i on each level n). While (2.1) is fairly straightforward to obtain,
(2.2) requires a more careful approach and this is where the markings will help us
(see Lemma 5.3 (ii) and its proof).

For the construction we will use an inductive procedure on n. As in Sect. 3 (see
(3.1) and the discussion before Lemma 3.9), for each branch point p ∈ T , we let
HT (p) be its height, i.e., the diameter of the third largest branch of p in T . If δ > 0,
then by Lemma 3.9 there are only finitely many branch points p of T with height
HT (p) > δ, and in particular there is one for which this quantity is maximal.

For the first step n = 1, we choose a branch point c of T with maximal height
HT (c). Since T is in the class Tm, this branch point c has m = νT (c) branches in
T . So we can enumerate the distinct branches by the letters in our alphabet as Tk ,
k ∈ A.

We choose c as the signed marked leaf in each Tk , where we set sgn(c, T1) = +
and sgn(c, Tk) = − for k �= 1. So the set of signed marked leaves is {c+} in T1 and
{c−} in Tk , k �= 1. Note that ∂Tk = {c} as follows from Lemma 3.2 (ii) and that c is
indeed a leaf in Tk by Lemma 3.4 for each k ∈ A.

Suppose that for some n ∈ N and all u ∈ Wn we have constructed subtrees Tu of
T such that ∂Tu consists of one or two signed marked leaves of Tu that are branch
points of T . We will now construct the subtrees of the (n+ 1)-th level as follows by
subdivision of the trees Tu.

Fix u ∈ Wn. To decompose Tu into subtrees, we will use a suitable branch point
c of T in Tu\∂Tu. The choice of c depends on whether ∂Tu contains one or two
elements, that is, whether Tu is a leaf-tile or an arc-tile. We will explain this precisely
below, but first record some facts that are true in both cases.

Since c ∈ Tu\∂Tu is an interior point of Tu, there is a bijective correspondence
between the branches of c in T and in Tu (see Lemma 3.5). So νTu(c) = νT (c) = m,
and we can label the distinct branches of c in Tu by Tuk , k ∈ A. We will choose
these labels depending on the signed marked leaves of Tu. Among other things, if
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Tu has a marked leaf p−, then p is passed to Tu1 with the same sign. Similarly, a
marked leaf p+ of Tu is passed to Tu2 with the same sign. We will momentarily
explain this in more detail (see the Summary below).

In any case, we have

Tu =
⋃
k∈A

Tuk. (5.1)

Each set Tuk is a subtree of Tu and hence also of T . We call these subtrees the
children of Tu and Tu the parent of its children. Note that two distinct children of
Tu have only the point c in common and no other points.

Before we say more about the precise labelings of the children of Tu and their
signed leaves, we first want to identify the boundary of each child; namely, we want
to show that

∂Tuk = {c} ∪ (∂Tu ∩ Tuk) (5.2)

for each k ∈ A.
To see this, first note that Tuk is a subtree of T . Hence Tuk contains all of its

boundary points and so ∂Tuk ⊆ Tuk . We have c ∈ ∂Tuk , because c ∈ Tuk and
every neighborhood of c contains points in the complement of Tuk as follows from
Lemma 3.2 (ii) (here it is important that there are at least two branches of c). If p ∈
Tuk ⊆ Tu and p �∈ {c}∪ ∂Tu, then a sufficiently small neighborhood N of p belongs
to Tu. Since Tuk\{c} is relatively open in Tu (this follows from Lemma 3.2 (i)),
we can shrink this neighborhood so that p ∈ N ⊆ Tuk . So no point p in Tuk
can be a boundary point of ∂Tuk unless it belongs to {c} ∪ ∂Tu. It follows that
∂Tuk ⊆ {c} ∪ (∂Tu ∩ Tuk).

On the other hand, we know that c ∈ ∂Tuk . If p ∈ ∂Tu∩Tuk , then p is a boundary
point of Tuk , because every neighborhood of p contains elements in the complement
of Tu and hence in the complement of Tuk ⊆ Tu. This gives the other inclusion in
(5.2), and (5.2) follows.

The identity (5.2) implies that each point in ∂Tuk is a branch point of T , because
c is and the points in ∂Tu are also branch points of T by construction on the previous
level n. Moreover, each point p ∈ ∂Tuk ⊆ Tuk is a leaf of Tuk , because if p = c,
then p is a leaf in Tuk by Lemma 3.4. Otherwise, p ∈ ∂Tu. Then p is a leaf of Tu by
construction and hence a leaf of Tuk by the discussion after Lemma 3.5.

For the choice of the branch point c ∈ Tu\∂Tu, the precise labeling of the children
Tuk , and the choice of the signs of the leaves of Tuk in ∂Tuk , we now consider two
cases for the set ∂Tu. See Fig. 6 for an illustration.

Case 1: ∂Tu contains precisely one element, say ∂Tu = {a}. Note that Tu is
a subtree of T and so an infinite set. So Tu\∂Tu �= ∅. All points in Tu\∂Tu are
interior points of Tu. Since branch points in T are dense (here we use that T belongs
to Tm), there exist branch points of T in Tu\∂Tu. We choose a branch point c ∈
Tu\∂Tu with maximal height HT (c) among all such branch points. This is possible
by Lemma 3.9.
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Fig. 6 An illustration for the
decomposition of subtrees
with one marked leaf (top) or
two marked leaves (bottom)

Since a ∈ ∂Tu ⊆ Tu\{c}, precisely one of the children of Tu contains a. We now
consider two subcases depending on the sign of the marked leaf a.

If sgn(a, Tu) = −, then we choose a labeling of the children so that a ∈ Tu1. It
then follows from (5.2) that ∂Tu1 = {a, c} and ∂Tuk = {c} for k �= 1. We choose
signs so that the set of signed marked leaves is {a−, c+} in Tu1 and {c−} in Tuk ,
k �= 1.

If sgn(a, Tu) = +, then we choose a labeling such that a ∈ Tu2. Then again by
(5.2) we have ∂Tu2 = {a, c} and ∂Tuk = {c} for k �= 2. We choose signs so that
the set of signed marked leaves is {c+} in Tu1, {c−, a+} in Tu2, and {c−} in Tuk ,
k �= 1, 2.

Case 2. ∂Tu contains precisely two elements, say ∂Tu = {a−, b+}. Then we
choose a branch point c ∈ (a, b) of T such that it has the maximal height HT (c)
among all branch points that lie on (a, b). The existence of c is guaranteed by
Lemmas 3.7 and 3.9. Note that (a, b) ⊆ Tu, because Tu is a subtree of T .

The points a and b lie in different branches of c in Tu as follows from
Lemma 3.2 (iii). We choose the labels for the children of Tu so that a ∈ Tu1 and
b ∈ Tu2. Then by (5.2) we have ∂Tu1 = {a, c}, ∂Tu2 = {c, b}, and ∂Tuk = {c},
k �= 1, 2. We choose signs so that the set of marked leaves is {a−, c+} in Tu1,
{c−, b+} in Tu2, and {c−}, in Tuk for k �= 1, 2.

The most important points of our construction can be summarized as follows.
Summary: Tuk is a subtree of T such that ∂Tuk consists of one or two points.

These points are branch points of T and leaves of Tuk . Moreover, the signs of the
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points in each set ∂Tuk are chosen so that these signs differ if ∂Tuk contains two
points. If c is the branch point used to decompose Tu, then c is a marked leaf in all
the children of Tu, namely the marked leaf c+ in Tu1 and c− in Tuk for k �= 1.

If Tu has a marked leaf p−, then p is passed to the child Tu1 with the same sign.
Similarly, a marked leaf p+ of Tu is passed to Tu2 with the same sign. So marked
leaves are passed to a unique child and they retain their signs.

Since Cases 1 and 2 exhaust all possibilities, this completes the inductive step in
the construction of the trees on level n + 1 and their marked leaves. So we obtain
subtrees Tu of T for all u ∈ W∗. Here it is convenient to set T∅ = T with an empty
set of marked leaves.

If one applies our procedure to choose signs for the points in ∂Tu for the subtrees
Tu of the CSST defined in Section 4, then one can recover these signs directly by a
simple rule without going through the recursive process. Namely, by Lemma 4.6 we
have ∂Tu ⊆ {fu(−1), fu(1)}. Then it is not hard to see that for p ∈ ∂Tu, we have
sgn(Tu, p) = + if p = fu(1) and sgn(Tu, p) = − if p = fu(−1).

We now summarize some facts about the subtrees Tu of T that we just defined.

Lemma 5.1 The following statements are true:

(i) T =
⋃
u∈Wn

Tu for each n ∈ N.

(ii) If n ∈ N, u, v ∈ Wn, u �= v, and Tu∩Tv �= ∅, then Tu∩Tv consists of precisely
one point p ∈ T , which is a marked leaf in both Tu and Tv .

(iii) For n ∈ N, u ∈ Wn, and v ∈ Wn+1, we have Tv ⊆ Tu if and only if u = vk for
some k ∈ A.

(iv) For each u ∈ W∗ let cu be the branch point chosen in the decomposition of Tu
into children. Then cu �= cv for all u, v ∈ W∗ with u �= v.

Proof

(i) This immediately follows from (5.1) and induction on n.
(ii) We prove this by induction on n. By choice of the subtrees Tk for k ∈ A = W1

and their marked leaves this is clear for n = 1.
Suppose the statement is true for all distinct words of length n − 1, where

n ≥ 2. Now consider two words u, v ∈ Wn of length n with u �= v and
Tu ∩ Tv �= ∅. Then u = u′k and v = v′�, where u′, v′ ∈ Wn−1 and k, � ∈ A.

If u′ = v′, then Tu and Tv are two of the branches obtained from Tu′ and a
suitable branch point c ∈ Tu′ . In this case, {c} = Tu∩Tv and c is a marked leaf
in both Tu and Tv .

In the other case, u′ �= v′. Then Tu′ ∩ Tv′ �= ∅, because Tu ∩ Tv �= ∅, Tu ⊆
Tu′ , and Tv ⊆ Tv′ . By induction hypothesis, Tu′ ∩ Tv′ consists of precisely one
point p, which is a marked leaf in both Tu′ and Tv′ . Then necessarily Tu∩Tv =
{p}. Moreover, p is a marked leaf in both Tu and Tv , because marked leaves
are passed to children. The statement follows.

(iii) Let n ∈ N and u ∈ Wn. Then we have Tuk ⊆ Tu for each k ∈ A by our
construction. Conversely, suppose Tv ⊆ Tu, where v = v′k ∈ Wn+1 with
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v′ ∈ Wn and k ∈ A. Then Tv′ ∩ Tu ⊇ Tv contains more than one point. By (iii)
this implies that v′ = u. The statement follows.

(iv) If u ∈ Wn, n ∈ N0, then by construction cu ∈ Tu does not lie in the set ∂Tu
of marked leaves of Tu. By (ii) this implies that cu �∈ Tw for each w ∈ Wn,
w �= u. It follows that the points cu, u ∈ Wn, are all distinct, and none of them
is contained in the union of sets ∂Tu, u ∈ Wn. By our construction this union is
equal to the set of all points cv , where v ∈ W∗ is a word of length≤ n−1. This
shows that the branch points cu, u ∈ Wn, used to define the subtrees of level
n + 1 are all distinct and distinct from any of the previously chosen branch
points for levels ≤ n. The statement follows from this. 
�

Lemma 5.2 We have lim
n→∞ sup{diam(Tu) : u ∈ Wn} = 0.

Proof Let δn := sup{diam(Tu) : u ∈ Wn} for n ∈ N. It is clear that the sequence
{δn} is non-increasing. To show that δn→ 0 as n→∞, we argue by contradiction.
Then there exists δ > 0 such that δn ≥ δ for all n ∈ N. This means that for each
n ∈ N there exists u ∈ Wn with

diam(Tu) ≥ δ. (5.3)

We now use (5.3) to find an infinite word w = w1w2 . . . ∈ W such that

diam(Tw1...wn) ≥ δ (5.4)

for all n ∈ N. The word w is constructed inductively as follows. One of the finitely
many letters k ∈ A must have the property that there are arbitrarily long words u
starting with k such that (5.3) is true.

We define w1 = k. Note that then diam(Tw1) ≥ δ. T By choice of w1, one of
the letters � ∈ A must have the property that there are arbitrarily long words u
starting with w1� such that (5.3) is true. We define w2 = �. Then diam(Tw1w2) ≥ δ.
Continuing in this manner, we can find w = w1w2 . . . ∈ W satisfying (5.4).

Obviously,

Tw1 ⊇ Tw1w2 ⊇ Tw1w2w3 ⊇ . . . .

So the subtrees Kn = Tw1...wn , n ∈ N, of T form a descending family of compact
sets with diam(Kn) ≥ δ. This implies that

K =
⋂
n∈N

Kn

is a non-empty compact subset of T with diam(K) ≥ δ.
In particular, we can choose p, q ∈ K with p �= q. Then p, q ∈ Kn for each n ∈

N. Since Kn is a subtree of T , we then have [p, q] ⊆ Kn. Moreover, by Lemma 3.7
there exists a branch point x of T contained in (p, q) ⊆ Kn. By Lemma 3.2 (iii) the
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points p and q lie in different components of Kn\{x}. In particular, for each n ∈ N

the point x is not a leaf of Kn and hence distinct from the marked leaves of Kn.
By Lemma 3.9 there are only finitely many branch points y1, . . . , ys of T distinct

from x with HT (yj ) ≥ HT (x) > 0 for j = 1, . . . , s. This implies that at most s of
the trees Kn are leaf-tiles, i.e., have only one marked leaf. Indeed, if Kn an leaf-tile,
then it is decomposed into branches by use of a branch point c ∈ Kn\∂Kn with
the largest height HT (c). The point c is then a marked leaf in each of the children
of Kn and in particular in Kn+1. Since the branch point x ∈ Kn is distinct from
the marked leaves of Kn and Kn+1, we have x ∈ Kn\∂Kn and x �= c. So x was
not chosen to decompose Kn, and we must have HT (c) ≥ HT (x). Since the branch
points c that appear from leaf-tiles at different levels n are all distinct as follows
from Lemma 5.1 (iv), we can have at most s leaf-tiles in the sequence Kn, n ∈ N.
This implies that there exists N ∈ N such that Kn for n ≥ N is an arc-tile and so
has precisely two marked leaves.

Let a, b ∈ KN with a �= b be the marked leaves ofKN . As we travel from x along
[x, a] ⊆ KN towards a, there is a first point x′ on [a, b]. Then x′ �= a. Otherwise,
x′ = a. Then [x, a] and [a, b] have only the point a in common, which implies that
[x, a] ∪ [a, b] is an arc equal to [x, b]. Then a ∈ (x, b), which by Lemma 3.2 (iii)
implies that x, b ∈ KN lie in different components of KN\{a}. This contradicts the
fact that a is a leaf of KN and so KN\{a} has only one component. Similarly, one
can show that x′ �= b.

The point x′ is a branch point of T . This is clear if x′ = x. If x′ �= x, this
follows from Lemma 3.6, because a, b, x �= x′ and the arcs [a, x′), [b, x′), [x, x′)
are pairwise disjoint.

The tree KN+1 is a branch of KN obtained from a branch point c ∈ (a, b) of
T with largest height HT (c) among all branch points on (a, b). We have x′ �= c.
Otherwise, x′ = c. Then x �= x′, because x′ = c is a marked leaf of KN+1 and x is
distinct from all the marked leaves in any of the setsKn. This implies that the points
a, b, x lie in different components of KN\{x′} and hence in different branches of x′
in KN . Since a and b are the marked leaves of KN , the branches containing a and b
are arc-tiles and all other branches of x′ = c inKN are leaf-tiles. The unique branch
of x′ inKN containing x, which is equal toKN+1, must be a leaf-tile by the way we
decomposed T . This is impossible by choice of N and so indeed x′ �= c. Note that
this implies HT (c) ≥ HT (x′).

Since x′ �= c, c ∈ (a, b), and [x, x′) ∩ [a, b] = ∅, we have [x, x′] ⊆ KN\{c}.
So x′ lies in the same branch of c inKN as x, which isKN+1. Moreover, depending
on whether c ∈ (a, b) lies on the right or left of x′ ∈ (a, b), we have x′ ∈ (a, c)
or x′ ∈ (c, b). In the first case, [a, c] ⊆ KN+1 and a and c are the marked leaves
of KN+1. In the second case, [c, b] ⊆ KN+1 and c and b are the marked leaves
of KN+1. So in both cases, if a′ and b′ are the marked leaves of KN+1, then x′ ∈
(a′, b′), [x, x′] ⊆ KN+1, and [x, x′) ∩ [a′, b′] = ∅.

These facts allow us to repeat the argument for KN+1 instead of KN . Again
KN+1 is decomposed into branches by choice of a branch point c′ ∈ (a′, b′). We
must have c′ �= x′, because otherwise we again obtain a contradiction to the fact
that KN+2 is not a leaf-tile. This implies that HT (c′) ≥ HT (x′). Continuing in this
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manner, we obtain an infinite sequence of branch points c, c′, . . . . By construction
these branch points are all distinct and have a height ≥ HT (x′). This is impossible
by Lemma 3.9. We obtain a contradiction that establishes the statement. 
�

The previous argument shows that each branch point x of T will eventually be
chosen as a branch point in the decomposition of T into the subtrees Tu, u ∈ W∗.
Indeed, otherwise x is distinct from all the marked leaves of any of the subtrees Tu,
u ∈ W∗. This in turn implies that there exists a unique infinite wordw = w1w2 . . . ∈
W such that x ∈ Kn := Tw1...wn for n ∈ N. From this one obtains a contradiction as
in the last part of the proof of Lemma 5.2.

Lemma 5.3 Let m ∈ N, m ≥ 3, and suppose T and S are trees in Tm. Assume
that subtrees Tu of T and Su of S with signed marked leaves have been defined for
u ∈ W∗ by the procedure described above. Then the following statements are true:

(i) Let n ∈ N, u ∈ Wn, and v ∈ Wn+1. Then Tv ⊆ Tu if and only if Sv ⊆ Su.
(ii) For n ∈ N and u, v ∈ Wn with u �= v we have Tu ∩ Tv �= ∅ if and only

if Su ∩ Sv �= ∅. Moreover, if these intersections are non-empty, then they are
singleton sets, say {p} = Tu ∩ Tv and {p̃} = Su ∩ Sv . The point p is a signed
marked leaf in Tu and Tv , the point p̃ is a signed marked leaf in Su and Sv ,
sgn(p, Tu) = sgn(p̃, Su), and sgn(p, Tv) = sgn(p̃, Sv).

In (ii) we are actually only interested in the statement that Tu ∩ Tv �= ∅ if and
only if Su ∩ Sv �= ∅. The additional claim in (ii) will help us to prove this statement
by an induction argument.

Proof

(i) This follows from Lemma 5.1 (iii) applied to the decompositions of T and S.
Indeed, we have Tv ⊆ Tu if and only if v = uk for some k ∈ A if and only if
Sv ⊆ Su.

(ii) We prove this by induction on n ∈ N. The case n = 1 is clear by how the
decompositions were chosen.

Suppose the claim is true for words of length n− 1, where n ≥ 2. Now consider
two words u, v ∈ Wn of length n with u �= v. Then u = u′k and v = v′� ∈ Wn,
where u′, v′ ∈ Wn−1 and k, � ∈ A. Since the claim is symmetric in T and S, we
may assume that Tu ∩ Tv �= ∅.

If u′ = v′, then Tu and Tv are two of the branches obtained from Tu′ and a branch
point c ∈ Tu′ . In this case, Tu ∩ Tv = {c} and c is a marked leaf in both Tu and
Tv . Similarly, Su and Sv are two of the branches obtained from Su′ and a branch
point c̃ ∈ Su′ . We have Su ∩ Sv = {̃c} and c̃ is a marked leaf in both Su and Sv .
Moreover, c has the same sign in Tu as c̃ in Su. Indeed, by the choice of labeling
in the decomposition, this sign is + if k = 1 and − otherwise. Similarly, c has the
same sign in Tv as c̃ in Sv . This shows that the statement is true in this case.

In the other case, u′ �= v′. Then Tu′ ∩ Tv′ �= ∅, because Tu ∩ Tv �= ∅, Tu ⊆ Tu′ ,
and Tv ⊆ Tv′ . Then by induction hypothesis, Tu′ ∩Tv′ consists of precisely one point
p that is a marked leaf in both Tu′ and Tv′ . The set Su′ ∩ Sv′ consists of one point p̃
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that is a marked leaf in Su′ and Sv′ . Moreover, we have sgn(p, Tu′) = sgn(p̃, Su′)
and sgn(p, Tv′) = sgn(p̃, Sv′). Since ∅ �= Tu ∩ Tv ⊆ Tu′ ∩ Tv′ = {p}, we then have
Tu ∩ Tv = {p}.

If sgn(p, Tu′) = sgn(p̃, Su′) = −, then u = u′1, because p ∈ Tu. Hence p̃ ∈
Su′1 = Su, because the marked leaf p̃ of Su′ with sgn(p̃, Su′) = − is passed to the
child Su′1. If sgn(p, Tu′) = sgn(p̃, Su′) = +, then u = u′2 and p̃ ∈ Su′2 = Su.

Similarly, if sgn(p, Tv′) = sgn(p̃, Sv′) = −, then v = v′1 and if sgn(p, Tv′) =
sgn(p, Sv′) = +, then v = v′2, because p ∈ Tv . In both cases, p̃ ∈ Sv .

In each of these cases, p is a marked leaf in Tu and Tv , and p̃ is a marked leaf in
Su and Sv . In particular, {p̃} ⊆ Su ∩ Sv ⊆ Su′ ∩ Sv′ = {p̃} and so Su ∩ Sv = {p̃}.
So both Tu ∩ Tv = {p} and Su ∩ Sv = {p̃} are singleton sets consisting of marked
leaves as claimed. Since signed marked leaves are passed to children with the same
sign, we have

sgn(p, Tu) = sgn(p, Tu′) = sgn(p̃, Su′) = sgn(p̃, Su).

Similarly, we conclude that sgn(p, Tv) = sgn(p̃, Sv). The statement follows. 
�
We are now ready to prove Theorem 1.8, and Theorem 1.7 as an immediate

consequence.

Proof of Theorem 1.8 Let m be as in the statement, and consider arbitrary trees
T and S in the class Tm. For each n ∈ N we consider the decompositions
T =⋃u∈Wn Tu and S =⋃u∈Wn Su as defined earlier in this section. Here of course,
Wn = Wn(A), where A = {1, 2, . . . , m}.

We want to show that decompositions of T and S for different levels n ∈ N have
the properties in Proposition 2.1. In this proposition the index i for fixed level n
corresponds to the words u ∈ Wn.

The spaces T and S are trees and hence compact. The sets Tu and Su appearing in
their decompositions are subtrees and hence non-empty and compact. Conditions (i),
(ii), and (iii) in Proposition 2.1 follow from Lemma 5.1 (iii), (5.1), and Lemma 5.2,
respectively. Finally, (2.1) and (2.2) follow from Lemma 5.3 (i) and (ii).

Proposition 2.1 implies T and S are homeomorphic as desired. 
�
Proof of Theorem 1.7 As we have seen in Sect. 4, the CSST T is a metric tree
with the properties (i) and (ii) as in the statement (see Proposition 1.4 and
Proposition 1.5). In particular, T belongs to the class T3. Since these properties
(i) and (ii) are obviously invariant under homeomorphisms, every metric tree T
homeomorphic to T has these properties.

Conversely, suppose that T is a metric tree with properties (i) and (ii). Then
T belongs to the class T3. So Theorem 1.8 for m = 3 implies that T and T are
homeomorphic. 
�

The method of proof for Theorem 1.8 can be used to a establish a slightly stronger
result for m = 3.
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Theorem 5.4 Let T and S be trees in T3. Suppose p1, p2, p3 ∈ T are three distinct
leaves of T , and q1, q2, q3 ∈ S are three distinct leaves of S. Then there exists a
homeomorphism f : T → S such that f (pk) = qk for k = 1, 2, 3.

Note that −1, 1 ∈ T are leaves of T as follows from Lemma 4.4 (ii). Moreover,
i ∈ T is also a leaf of T, because the set

T \ {i} = T1 ∪ T2 ∪ (T3 \ {i}) = T1 ∪ T2 ∪ g3(T \ {1})

is connected. Hence T, and so by Theorem 1.8 every tree in T3, has at least three
leaves (actually infinitely many). If we apply Theorem 5.4 to S = T, then we see
that if T is a tree in T3 with three distinct leaves p1, p2, p3, then there exists a
homeomorphism f : T → T such that f (p1) = −1, f (p2) = 1, and f (p3) = i.
Proof of Theorem 5.4 We will employ a slight modification of our decomposition
and coding procedure. The underlying alphabet corresponds to the case m = 3, and
so A = {1, 2, 3}. We describe this for the tree T . Essentially, one wants to use the
leaves p1, p2, p3 of T as additional marked leaves for any of the inductively defined
subtrees Tu for n ∈ N and u ∈ Wn = Wn(A) if it contains any of these leaves. Here
p1 carries the sign −, while p2 and p3 carry the sign +.

Instead of starting the decomposition process with a branch point c ∈ T of
maximal height, one chooses a branch point c so that the leaves p1, p2, p3 lie in
distinct branches T1, T2, T3 of c in T , respectively. To find such a branch point, one
travels from p1 along [p1, p2] until one first meets [p2, p3] in a point c. Then the
sets [p1, c), [p2, c), [p3, c) are pairwise disjoint. For k, � ∈ A with k �= � the set
[pk, c) ∪ {c} ∪ (c, p�] is an arc with endpoints pk and p�, and so it must agree with
[pk, p�]. In particular, c ∈ [pk, p�]. Since each point pk is a leaf, it easily follows
from Lemma 3.2 (iii) that c �= p1, p2, p3. Indeed, if c = p1 for example, then
c = p1 ∈ [p2, p3] and so p2 and p3 would lie in different components of T \ {p1}.
This is impossible, because p1 is a leaf of T and so T \ {p1} is connected.

We conclude that the connected sets [p1, c), [p2, c), [p3, c) are non-empty and
must lie in different branches T1, T2, T3 of c. In particular, c is a branch point of T .
We can choose the labels so that pk ∈ Tk for k = 1, 2, 3. The point c is a marked
leaf in each of theses branches with a sign chosen as before. With the additional
signs for the distinguished leaves, we then have the set of marked leaves {p−1 , c+}
in T1, {c−, p+2 } in T2, and {c−, p+3 } in T3.

We now continue inductively as before. If we have already constructed a subtree
Tu for some n ∈ N and u ∈ Wn with one or two signed marked leaves, then we
decompose Tu into three branches labeled Tu1, Tu2, Tu3 by using a suitable branch
point c ∈ Tu. Namely, if Tu is a leaf-tile and has one marked leaf a ∈ Tu, we choose
a branch point c ∈ Tu \ {a} with maximal height HT (c). If Tu is an arc-tile with two
marked leaves {a, b} ⊆ Tu we choose a branch point c ∈ Tu of maximal height on
(a, b) ⊆ Tu.

Marked leaves and their signs are assigned to the children Tu1, Tu2, Tu3 of Tu as
before. In particular, a marked leaf x− of Tu is passed to Tu1 with the same sign.
Similarly, a marked leaf x+ of Tu is passed to Tu2 with the same sign. If we continue
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in this manner, we obtain subtrees Tu with one or two signed marked leaves for all
levels n ∈ N and u ∈ Wn.

We apply the same procedure for the tree S and its leaves q1, q2, q3. Then Lem-
mas 5.1, 5.2, and 5.3 are true (with almost identical proofs) for the decompositions
of T and S obtained in this way. The argument in the proof of Theorem 1.8 based
on Proposition 2.1 now guarantees the existence of a homeomorphism f : T → S

such that

f (Tu) = Su for all n ∈ N and u ∈ Wn. (5.5)

In our construction p1 ∈ T1 carries the sign − and is hence passed to T11 with
the same sign; so p1 ∈ T11. Repeating this argument, we see the

p1 ∈ T1 ∩ T11 ∩ T111 ∩ . . . .

The latter nested intersection of compact sets cannot contain more than one point,
because by Lemma 5.3 the diameters of our subtrees Tu, u ∈ Wn, approach 0
uniformly as n → ∞. Thus, {p1} = T1 ∩ T11 ∩ T111 ∩ . . . . The same argument
shows that {q1} = S1 ∩ S11 ∩ S111 ∩ . . . , and so (5.5) implies that f (p1) = q1.

Similarly, the points p2, p3, q2, q3 carry the sign + in their respective trees. This
leads to

{p2} = T2 ∩ T22 ∩ T222 ∩ . . . , {q2} = S2 ∩ S22 ∩ S222 ∩ . . . ,
{p3} = T3 ∩ T32 ∩ T322 ∩ . . . , {q3} = S3 ∩ S32 ∩ S322 ∩ . . . ,

which by (5.5) gives f (p2) = q2 and f (p3) = q3.
We have shown the existence of a homeomorphism f : T → S with the desired

normalization. 
�
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p-Hyperbolicity of Ends and Families
of Paths in Metric Spaces

Nageswari Shanmugalingam

Abstract The purpose of this note is to give an expository survey on the notions
of p-parabolicity and p-hyperbolicity of metric measure spaces of locally bounded
geometry. These notions are extensions of the notions of recurrence and transience
to non-linear operators such as the p-Laplacian (with the standard Laplacian or
the 2-Laplacian associated with recurrence and transience behaviors). We discuss
characterizations of these notions in terms of potential theory and in terms of moduli
of families of paths in the metric space.

Keywords Recurrence · p-hyperbolic · Singular function · Modulus of curve
families · Ends

Mathematics Subject Classifications (2010) Primary: 31E05; Secondary:
43A85, 65M80

1 Introduction

It is now a well-known fact that Brownian motion is recurrent in R and R
2 but

is transient in R
n for n ≥ 3. In other words, a Brownian motion, starting from

a closed ball in R
n, will almost surely return infinitely often to that ball when

n ≤ 2 but almost surely will eventually not return to the ball when n ≥ 3.
This dichotomous behavior of recurrence versus transience can be seen in more
general Riemannian manifolds, leading to a classification of manifolds as parabolic
(Brownian motion is recurrent, returning infinitely often to a ball) or hyperbolic
(where the Brownian motion is transient). The works [11, 29] demonstrated that the
recurrence or transience of the Brownian motion is intimately connected with the
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existence of global singular functions, also known as Green’s functions. A manifold
is transient if and only if it supports a non-negative singular function.

During the past 20 years the notion of first order calculus has been developed
for more general non-smooth metric measure spaces where the metric space is
complete and the measure is a locally doubling Radon measure supporting a
local Poincaré type inequality. For such spaces, it is not clear what the Brownian
motion is, but thanks to Kakutani’s theorem, we know that Brownian motion on
a Riemannian manifold is a probabilistic approach to harmonic functions and the
Laplace–Beltrami operator on the manifold. Physics and the theory of Markovian
process as described in [10] also back this up, with the link provided through the
heat equation. Using this as a motivation, we can study recurrence or transience of
a metric measure space in terms of the existence of a singular function associated
with the so-called 2-harmonicity.

Indeed, the recurrence and transience properties of the space seem to be
associated with a “large scale” dimension of the underlying space. To explore the
effect of the geometry of a space on curves in the space, we also move away
from the realm of linear operators (Laplace–Beltrami operators) to non-linear p-
Laplace type operators. In his dissertation [16], Holopainen gave a definition of
p-parabolicity and p-hyperbolicity in Riemannian manifolds and their connections
to p-harmonic functions. In this note we will describe some of the connections
between the geometry of curves in the setting of metric measure spaces, which
should be thought of as a non-linear analog of recurrence versus transience, and p-
harmonic functions in the space. Metric measure spaces that correspond to transient
spaces for p-harmonic functions are said to be p-hyperbolic while those that are not
are said to be p-parabolic.

2 Background Notions

The context of this note is that of metric measure spaces that need not be smooth
(Riemannian). Here (X, d, μ) denotes a metric measure space with the measure μ
assumed to be a Radon measure such that balls have positive and finite measure. In
this section we will give a brief account of the basic notions used in the study of
parabolicity versus hyperbolicity of the space in terms of first order analysis. For
details on these notions, we recommend [15] and the references therein.

To understand p-parabolicity (recurrence) and p-hyperbolicity (transience), we
need to have a concept of a “size” of families of curves in X. To this end, let � be a
collection of curves in X, and we set A(�) to be the collection of all non-negative
Borel measurable functions ρ on X such that for each locally rectifiable path γ ∈ �
we have

∫
γ

ρ ds ≥ 1.
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Here a path is locally rectifiable if it maps an interval I ⊂ R continuously into X
and for each compact subinterval J ⊂ I we have that γ |J has finite length. An
excellent introduction to the notion of path integrals in metric setting can be found
in [15, Chapter 5], [1, Chapters 4, 6] and [13, Chapter 7].

Definition 2.1 Given 1 ≤ p <∞, the p-modulus of the collection � is the number

Modp(�) = inf
ρ∈A(�)

∫
X

ρp dμ.

Observe that if � consists only of paths that are not locally rectifiable, then by
definition Modp(�) = 0, whereas if � includes a constant curve, then Modp(�) =
∞. It is not too difficult to verify that Modp is an outer measure on the collection
of all paths, and that if � has even one constant path then Modp(�) = ∞. It is
a result of Fuglede [9] that the only sets that are Modp-measurable are those of
zero p-modulus and their complements. In this note we only consider Modp to the
extent of verifying whether a family � satisfies Modp(�) > 0 or not. To this end,
the following result of Koskela and MacManus [23] is useful.

Lemma 2.2 Let � be a family of paths in X, and 1 < p <∞. Then Modp(�) = 0
if and only if there is a nonnegative Borel function ρ ∈ Lp(X) such that for each
γ ∈ �,

∫
γ

ρ ds = ∞.

Definition 2.3 Given two sets E,F ⊂ X, by �(E, F ) we mean the collection of
all curves in X with one end point in E and the other in F .

The following definition is based on the dissertation [16].

Definition 2.4 We say that X is p-hyperbolic if there is a closed ball B =
B(x0, R) ⊂ X and a strictly monotone increasing sequence of real numbersRn > R
with limn Rn = ∞ and

lim
n

Modp(�(B(x0, R),X \ B(x0, Rn)) > 0.

We say that X is p-parabolic if it is not p-hyperbolic.

There are now at least five available notions of Sobolev spaces in the metric
setting: Poincaré–Sobolev, Korevaar–Schoen, Hajłasz–Sobolev, Newton–Sobolev,
and Dirichlet domain spaces, see for example [12, 14, 15]. In this paper we will
focus on the notion of Newton–Sobolev spaces as they are the closest aligned to the
study of paths in a metric space, though for the case p = 2 one can replace this
with Dirichlet forms and the corresponding Dirichlet domains whenever they are
available, by considering the corresponding heat equation, see [11] for example.
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Given a function f : X → R, we say that a non-negative Borel measurable
function g on X is an upper gradient of f if for each non-constant compact
rectifiable curve γ : [a, b] → X we have

|f (γ (b))− f (γ (a))| ≤
∫
γ

g ds.

We say that g is a p-weak upper gradient of f if the collection � of non-constant
compact rectifiable curves for which the above inequality fails satisfies Modp(�) =
0. With Dp(f ) denoting the collection of all p-weak upper gradients of f that also
belong to Lp(X), we say that f ∈ N1,p(X) if f ∈ Lp(X) (that is, the function f
belongs to an equivalence class in Lp(X)) and Dp(f ) is nonempty. The set Dp(f )
is a convex lattice subset ofLp(X), and by a result in [23], it is also closed inLp(X).
We set

‖f ‖N1,p(X) := ‖f ‖Lp(X) + inf
g∈Dp(f )

‖g‖Lp(X).

For 1 < p < ∞, by the uniform convexity of Lp(X) and the lattice property of
Dp(f ) we know that there is a unique element gf ∈ Dp(f ) with the property that
for each g ∈ Dp(f ), gf ≤ g almost everywhere. Thus

‖f ‖N1,p(X) = ‖f ‖Lp(X) + ‖gf ‖Lp(X).

Equipped with the norm ‖ · ‖N1,p(X), the space N1,p(X) is a Banach space, see
for example [26] and [15]. Classically, the measure of the set where two functions
disagree determines whether the two functions belong to the same equivalence class
in Lp(X). In the setting of N1,p(X) the notion of p-capacity of a set plays this role,
and here the value of p determines what sets are of zero p-capacity. Given a set
E ⊂ X, we set

Capp(E) := inf
f

∫
X

[|f |p + gpf ]dμ,

where the infimum is over all functions f ∈ N1,p(X) such that f ≥ 1 on E. A
more pertinent notion related to parabolicity and hyperbolicity is that of relative
p-capacity.

Definition 2.5 Given two closed sets E,F ⊂ X such that E ∩ F is empty,

capp(E, F ) := inf
f

∫
X

g
p
f dμ,

where the infimum is over all functions f ∈ N1,p(X) such that f ≥ 1 on E and
f ≤ 0 on F .
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There is a close connection between capp(E, F ) and Modp(�(E, F )). Indeed, if
ρ ∈ A(�(E, F )), then the function u defined by

u(y) = inf
γy

∫
γy

ρds

with infimum taken over all locally rectifiable curves in X with one endpoint y and
the other end point in E, is measurable (see for example [20]) and satisfies u = 0
on E and u ≥ 1 on F . If then X \ E is bounded, we would have u ∈ N1,p(X) with
ρ ∈ Dp(u), and thus we would have

capp(E, F ) ≤ Modp(�(E, F )).

Typically in this note E would be X \B(x0, R) for some x0 ∈ X and R > 0, and F
would be a compact subset of the ball B(x0, R).

Definition 2.6 We say that the measure μ is uniformly locally doubling on X if
there is a constant CD ≥ 1 and a scale 0 < R0 ≤ ∞ such that whenever x ∈ X and
0 < r < R0, we have

μ(B(x, 2r)) = μ({y ∈ X : d(x, y) < 2r}) ≤ CDμ(B(x, r)).

We say that (X, d, μ) supports a uniformly local p-Poincaré inequality if there are
constants C > 0, λ ≥ 1 and a scale 0 < R1 ≤ ∞ such that whenever x ∈ X,
0 < r < R0, and f ∈ N1,p(B(x, 2λr)), we have

∫
B(x,r)

|f − fB(x,r)| dμ ≤ C r
(∫
B(x,λr)

g
p
f dμ

)1/p

.

Here

fB :=
∫
B

f dμ := 1

μ(B)

∫
B

f dμ.

It is known that if X is complete, μ is uniformly locally doubling, and (X, d, μ)
supports a uniformly local p-Poincaré inequality, then for compact sets E,F ⊂ X,

capp(E, F ) = Modp(�(E, F )). (2.1)

A proof of this can be obtained by adapting the proof found in [21] where it
was assumed that R0 = R1 = ∞. It follows immediately that capp(E, F ) =
capp(F,E), even though this was not at all obvious merely from considering the
definition of capp(E, F ).
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Standing Assumptions We will assume in this note that 1 < p < ∞, X is
complete, μ is uniformly locally doubling, and (X, d, μ) supports a uniformly local
p-Poincaré inequality.

3 Potential Theoretic Characterization of p-Hyperbolicity
via p-Singular Functions

In this section we will discuss a Grigor’yan-type characterization of p-hyperbolicity
in terms of existence of global singular functions. A p-singular function is a non-
negative p-superharmonic function u on X such that there is a point x0 ∈ X for
which u is p-harmonic in X \ {x0}, u ∈ N1,p(X \ B(x0, r)) for each r > 0, and
satisfies limy→x0 u(y) = ∞. As described in [11], a manifold X is transient (that
is, it is 2-hyperbolic) if and only if X supports a 2-singular function. In the setting
of manifolds, the dissertation [16] extends this result to the non-linear setting of all
1 < p <∞.

Following [27], for a non-empty open set � ⊂ X and a function u on �, we say
that u is p-harmonic in� if u ∈ N1,p

loc (�) and for each open set V ⊂ �with V ⊂ �
compact and each v ∈ N1,p(X) with v = 0 in X \ V we have

∫
V

g
p
u dμ ≤

∫
V

g
p
u+vdμ.

We say that u is p-superharmonic in � if whenever V ⊂ � with V ⊂ � a compact
set and v ∈ N1,p(X) is p-harmonic in a neighborhood of V with v ≤ u on ∂V , we
must have v ≤ u on V .

Definition 3.1 Let � be a nonempty open subset of X with X \ � nonempty and
x0 ∈ �. We say that a non-negative function u on X is a p-singular function on �
with singularity at x0 if

1. u is p-harmonic in � \ {x0},
2. lim�\{x0}0y→x0 u(y) = capp({x0}, X \�)1/(1−p),
3. u ∈ N1,p(X \ B(x0, r)) for each r > 0, and u = 0 in X \�,
4. and finally,

(
p − 1

p

)2(p−1)

(b − a)1−p ≤ capp({u ≥ b}, {u > a}) ≤ p2(b − a)1−p

whenever 0 ≤ a < b such that {u > a} ⊂ B(x0, R0/2).

In the above definition, Condition 2 is equivalent to enforcing the condition
lim�\{x0}0y→x0 u(y) = ∞ if capp({x0}, X \�) = 0 (which is the case for values of
p that are not larger than the dimension of the space). Thus the first three properties
would be satisfied by positive scalar multiples of a p-singular function. The fourth
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condition dictates the the condensers ({u ≥ b}, {u > a}) for b > a, or more
specifically the value of Modp(�({u ≥ b}, {u ≤ a}), in terms of (b − a)1−p.
Hence this condition narrows the candidates for p-singular functions. Indeed, from
the arguments in [16], this fourth condition guarantees uniqueness of p-singular
functions in the context of Riemannian manifolds and other spaces where there is
an Euler–Lagrange equation corresponding to the p-energy minimization property.
A combination of the above second and fourth conditions guarantee then that the
p-Laplacian type operator, corresponding to the Euler-Lagrange equation, acts on
the p-singular function to give the unit atomic measure δx0 supported at x0.

From [22] we know that functions that are p-harmonic on an open set satisfy
local Hölder continuity and (if they are non-negative) a Harnack inequality. Namely,
we know that given a p-harmonic function h on a domain U ⊂ X and x ∈ U , there
are constants α,Ch > 0 such that if r > 0 with B(x, 2r) ⊂ U and whenever
z,w ∈ B(x, r) we have |h(z) − h(w)| ≤ Chd(z,w)

αx ; this is the local Hölder
continuity ([22, Theorem 5.2]). Moreover, it is shown in [22, Corollary 7.3] that
there is a constant C > 0 so that if h is p-harmonic and non-negative on U and
B(x, 2r) ⊂ U , then supB(x,r) h ≤ C infB(x,r) h. Using this Harnack inequality for
non-negative p-harmonic functions in � \ {x0}, it is shown in [19] that if � is a
relatively compact subset of X, then for each x0 ∈ � we always have a p-singular
function on�with singularity at x0. Therefore the non-trivial aspect of the existence
of singular functions is when � is unbounded.

Definition 3.2 A function u on X is said to be a p-singular function on X with
singularity at x0 ∈ X if

1. u is p-harmonic in X \ {x0} with u > 0 there,
2. there is a sequence of bounded open sets �j ⊂ X with
3. �j ⊂ �j+1 and X = ⋃j �j and r0 > 0 such that for 0 < r < r0 and x ∈ X

with d(x, x0) = r , limX\{x0}0y→x0 u(y) & limj capp(B(x0, r),X \�j)1/(1−p),
4. u ∈ N1,p

loc (X \ {x0}),
5. and finally,

(
p − 1

p

)2(p−1)

(b − a)1−p ≤ capp({u ≥ b}, {u > a}) ≤ p2(b − a)1−p

whenever 0 ≤ a < b ≤ limj capp({x0}, X \�j)1/(1−p) with b sufficiently large.

Note that the notation adopted in [19] is slightly different from that here; there
the relative capacity capp(E, F ) is computed with respect to functions u ∈ N1,p(X)

with u = 0 in X \ F and u ≥ 1 on E, with E ⊂ F . Hence to interpret the notation
of [19] here, we should substitute the second component of capp(E,�), namely �
there, with X \ � in this current paper. In the setting of metric measure spaces, the
following theorem was established in [19, Theorem 3.14].



198 N. Shanmugalingam

Theorem 3.3 (X, d, μ) is p-hyperbolic if and only if there is a point x0 ∈ X and
a p-singular function on X with singularity at x0. If (X, d, μ) is p-hyperbolic, then
for every x0 ∈ X there is a p-singular function with singularity at x0.

The idea for the proof is simple, though the details are cumbersome; we refer the
interested reader to [19] for the details, and merely give a sketch of the proof now.

Sketch of Proof Suppose first that X is p-hyperbolic; then there is some x0 ∈ X,
R > 0, and a strictly monotone increasing sequence of positive real numbers Rn,
n ∈ N, with R1 > R, such that

lim
n

Modp(�(B(x0, R),X \ B(x0, Rn)) > 0.

Since each curve in �(B(x0, R),X \B(x0, Rn+1) has a subcurve that belongs to the
family �(B(x0, R),X \ B(x0, Rn), it follows that

Modp(�(B(x0, R),X \ B(x0, Rn+1)) ≤ Modp(�(B(x0, R),X \ B(x0, Rn)),

and so the above limit is well-defined. Then by (2.1) we know that

0 < lim
n

capp(X \ B(x0, Rn), B(x0, R)) ≤ capp(X \ B(x0, R1), B(x0, R)) <∞.

For each n let un be a p-singular function in B(x0, Rn) with singularity at x0;
Thanks to the uniformly local version of Harnack’s inequality and the definition
of p-singular functions, for each n ∈ N the sequence um, m ≥ n, is locally
uniformly bounded in B(x0, Rn) \ {x0}. A stability result for p-harmonic functions
(see [28]) then gives us a subsequence of um, and a function u∞, such that um
converges locally uniformly in X \ {x0} to u∞ with u∞ a p-harmonic function on
X \ {x0}. A direct argument would show that u∞ is a p-singular function on X with
singularity at x0.

Now suppose that X supports a p-singular function u with singularity at some
x0 ∈ X. Then for sufficiently small r > 0 and a nested sequence of open sets �j
with X =⋃j �j such that

u & lim
j

capp(X \�j ,B(x0, r))
1/(1−p)

on the sphere S(x0, r) = {y ∈ X : d(x0, y) = r}. Thus

lim
j

capp(X \�j ,B(x0, r)) > 0.

By passing to a subsequence if necessary, we may assume that Rj := dist(x0, X \
�j) is a strictly monotone increasing sequence; as X = ⋃j �j , it follows that
limj Rj = ∞, and so

capp(X \ B(x0, Rj ), B(x0, r)) ≥ capp(X \�j ,B(x0, r)).
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Hence we now have

lim
j

capp(X \ B(x0, Rj ), B(x0, r)) > 0,

that is, X is p-hyperbolic. 
�
Note that here we require the singular functions to be non-negative. Reverting

back to the setting of Euclidean spaces R
n, we know that Rn supports p-singular

functions for 1 < p < n, but does not support a p-singular function for p = n;
in the case of p = n we have Green’s functions, which are functions u that are
p-harmonic in R

n \ {x0}, limy→x0 u(y) = ∞, and�nu = δx0 ; however, in this case
u is not non-negative, and indeed we have that limy→∞ u(y) = −∞. For more on
singular functions and p-parabolicity, see for example [2, 3, 8, 11, 16, 17].

4 p-Hyperbolicity and p-Modulus of a Family of Curves
Connecting a Ball to ∞

In the setting of manifolds and with p = 2, we know from [11] that a manifoldM is
2-parabolic if and only if the (Brownian) probability measure of the collection of all
Brownian paths γ inM that eventually never return to a given ball inM is zero; that
is, if B is a ball inM and � is the collection of all Brownian paths γ : [0,∞)→ M

such that γ (t) = x0 and γ (t) �∈ B for all t ≥ tB ∈ [0,∞), then P(�) = 0. In
the non-linear setting of p �= 2, and even when p = 2 but in the setting of metric
measure spaces where the upper gradient structure does not come from an inner
product structure on the space, the connection to Brownian motion is more tenuous.
However, there is a connection between p-parabolicity and p-modulus of families
of curves connecting B to∞; the focus of this section is to explore this idea further.

From Definition 2.4, a metric measure space X is p-hyperbolic if there is a ball
B = B(x0, R0) and a positive number τ > 0 such that whenever R > R0, the p-
modulus of the collection of all paths connecting B to X \B(x0, R) is at least τ . Let
�(R) denote this collection of paths. Set � := ⋂R>0 �(R). Then � consists of all
paths that have one end point in B and leave each bounded subset of X. Moreover,
for R0 < R < T we have �(T ) ⊂ �(R), and so the family (�(R))R>R0 is a
decreasing sequence of families of paths. However, in general it is not true that if
�n, n ∈ N, is a decreasing sequence of families of curves, then limn Modp(�n) =
Modp(

⋂
n �n). However, we will see in this section that we can still conclude

that Modp(�) > 0. As far as I know, this fact is not proven in currently existing
literature on analysis on metric spaces, we provide a complete proof of this here.
Note that this result is new even in the Euclidean setting. We first need the following
lemma.
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Lemma 4.1 There is a non-negative Borel measurable function h ∈ Lp(X) such
that for each x0 ∈ X and R > 0,

inf
B(x0,R)

h := βR > 0.

Proof We fix x0 ∈ X and R0 > 0, and set

h :=
∑
k∈N

1

2k μ(B(x0, (k + 2)R0) \ B(x0, kR0))1/p
χB(x0,(k+2)R0)\B(x0,kR0)

.

Then h is lower semicontinuous, and satisfies the desired requirements. 
�
Now we are ready to prove the main result of this section.

Theorem 4.2 Let B be a ball in X and let � be the collection of all paths γ :
[0,∞) → X such that γ (0) ∈ B and for each R > 0 there is some tγ,R > 0 such
that γ (t) �∈ B(x0, R) whenever t > tγ,R . Then X is p-hyperbolic if and only if
Modp(�) > 0.

Proof Suppose first that X is p-hyperbolic. Then

lim
R→∞Modp(�(R)) =: τ > 0. (4.1)

Suppose that � = ⋂R>R0
�(R) satisfies Modp(�) = 0. Then we know from

Fuglede’s theorem (see the discussion following Definition 2.1) that there is a
non-negative Borel function ρ ∈ Lp(X) such that

∫
γ
ρ ds = ∞ for each locally

rectifiable path γ ∈ �. An application of the Vitali-Carathéodory theorem allows
us to assume that ρ is also lower semicontinuous. Moreover, by replacing ρ with
max{ρ, h} with h as in Lemma 4.1, we may also assume that for each R > 0,

inf
B(x0,R)

ρ := βR > 0.

Scaling ρ by a positive constant if necessary, we can also assume that

∫
X

ρp dμ ≤ τ/2.

Then by (4.1) and by the fact that R �→ Modp(�(R)) is monotone decreasing, we
know that ρ �∈ A(�(R)) for each R > R0. Thus, for each positive integer n ≥ 2,
there is a rectifiable curve γn ∈ �(nR0) such that

∫
γn
ρds < 1.

For each positive integer n ≥ 2 and each positive integer k ≥ n, we now have
that

�(γk ∩ B(x0, nR0)) ≤ 1

βnR0

∫
γn

ρ ds <
1

βnR0

<∞.
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It follows that the sequence γn, n ∈ N, of paths in X (using arc-length parametriza-
tion) is locally equicontinuous and locally equibounded. Given that the metric
space X is complete and doubling, it follows that X is proper (that is, closed
and bounded subsets of X are compact, see for example [13]). Therefore we can
invoke the Arzelà–Ascoli theorem and a Cantor diagonalization argument to obtain
a subsequence of paths, denoted γnj , j ∈ N, and and a locally rectifiable path γ with
one end point in B = B(x0, R0), such that γnj → γ locally uniformly in [0,∞).
Recall that ρ is lower semicontinuous. Hence an adaptation of the argument found
in [13, Page 13–14], we have

∫
γ

ρ ds ≤ lim inf
k

∫
γk

ρ ds ≤ 1.

On the other hand, as γn ∈ �(nR0), it follows that γ ∈ �(kR0) for each positive
integer k ≥ 2; whence we have that γ ∈ �. This violates our choice of ρ as a
function inLp(X) such that for each γ̃ ∈ � we have

∫
γ̃
ρ ds = ∞. We can therefore

conclude that we must have Modp(�) > 0 as desired.
Finally, if Modp(�) > 0, then for each R > R0 we must have

Modp(�(R)) ≥ Modp(�) > 0,

and therefore X is p-hyperbolic. This concludes the proof of the theorem. 
�
Note that the outer measure Modp, on the family of all paths in X, sees only

locally rectifiable paths. Hence p-hyperbolicity of the metric measure space X (or a
Riemannian manifoldM) tells us that there is a plenitude of locally rectifiable curves
γ in X beginning from a given ball B and eventually leaving every bounded subset
ofX. The key here is that these curves are locally rectifiable. In the event that p = 2
and we are in the setting of Riemannian manifoldsM , this perspective is dual to the
perspective of Brownian paths which are almost surely not even locally rectifiable
(though they are almost surely locally Hölder continuous). It would be interesting
to know whether there is an object analogous to Brownian motion for the non-
linear setting of p �= 2 that sees locally non-rectifiable paths. One possible process
associated with the p-Laplacian, called tug-of-war with noise in [25], might shed
some light on this, but this direction of study has so far not focused on properties of
paths associated with the tug-of-war with noise process. The paper [24] gives a nice
introduction to the tug-of-war process, and the regularity theory associated with the
tug-of-war with noise is explored in [4].

5 p-Parabolicity and a Liouville-Type Theorem

The classical Liouville theorem states that there is no non-constant bounded
complex-analytic function on the entire complex plane. A version of this theorem
states that there is no non-constant positive harmonic function on the Euclidean
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space R
n. In the non-smooth setting, if μ is globally doubling and supports

a global p-Poincaré inequality, then by the results in [22] we know that non-
negative p-harmonic functions satisfy a Harnack inequality, and hence there are
no non-constant positive p-harmonic functions on such metric measure spaces.
The situation is different when considering metric measure spaces equipped with
a measure that is locally doubling and supports a local p-Poincaré inequality.
The hyperbolic spaces H

n are examples of such spaces, as are infinite trees with
bounded degree that are not homeomorphic to R. As we know, Hn does support a
non-constant positive harmonic function. It was shown in [6] that if the measure
is globally doubling and supports a global p-Poincaré inequality, and in addition
the metric space is annular quasiconvex, then there are no global non-constant p-
harmonic functions (whether non-negative or not) with finite energy. Here a metric
space X is annular quasiconvex if there is a constant C ≥ 1 such that whenever
x0 ∈ X and r > 0, and whenever x, y ∈ B(x0, r) \ B(x0, r/2), there is a
rectifiable path γ in B(x0, Cr) \ B(x0, r/C) with end points x and y, and with
length �(γ ) ≤ Cd(x, y). This version of Liouville theorem (finite energy Liouville
theorem) is not equivalent to the standard Liouville theorem described above. In
this section we discuss the effect of p-hyperbolicity on the existence of global non-
constant positive/finite energy p-harmonic functions.

Note that when 1 < p < n, the Euclidean space Rn is p-hyperbolic, but does not
have a non-constant positive p-harmonic function nor a non-constant finite energy
p-harmonic function; here we say that a function u on a metric space X has finite
energy if it has an upper gradient gu ∈ Lp(X). Hence p-hyperbolicity of a space
does not guarantee existence of non-constant global p-harmonic functions. The
results of [6] indicate that we need the space to fail to be annular quasiconvex,
and strongly so. The following notion of ends of a metric space is a direct analog of
the theory of ends of Riemannian manifolds as described in [2].

Definition 5.1 A sequence of connected sets {Ek}k is said to be an end (or end at
infinity) of X if there is a sequence of balls Bk ⊂ X with Bk ⊂ Bk+1 such that Ek
is a component of X \ Bk and Ek+1 ⊂ Ek for each positive integer k. We say that
an end {Ek} is a p-hyperbolic end if

lim inf
k→∞ Modp(�(B1, Ek)) > 0.

We say that an end is p-parabolic if it is not p-hyperbolic.

It is possible for a metric measure space to be p-hyperbolic but have only p-
parabolic ends. Indeed, if X is a K-regular tree (that is, each vertex has exactly
K number of edges attached to it) with K ≥ 3, with the edges of unit length and
equipped with the Lebesgue measure L1, then the measure onX is uniformly locally
doubling and supports a uniformly local 1-Poincaré inequality, see for example [5].
Observe that each end of X corresponds to a geodesic ray starting from a vertex in
X. Fix such an end, and we list the vertices that make up the corresponding geodesic
ray by xk , k ∈ N. We fix B = B(x1, 1). The function ρk given by setting ρk = 0 on
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all the edges except on the edges [x2, x3], · · · , [xk−1, xk], where it is set to take on
the value of 1/(k − 1). Then ρk ∈ A(�(B,Xk)) with Xk the connected component
of X \ xk containing xk+1. Therefore

Modp(�(B,Xk)) ≤
∫
X

ρ
p
k dμ =

1

(k − 1)p
k,

and so

lim
k→∞Modp(�(B,Xk)) = 0.

Therefore the end is a p-parabolic end of X. However, X itself is p-hyperbolic for
each p > 1. This is a consequence of the following result from [7, Theorem 1.2]
together with the fact that there is a non-constant p-harmonic function on X with
finite energy (see [6]). Indeed, fixing a base vertex v0, we set u = 0 at v0. We will
define the value of u at each vertex, with the understanding that a linear interpolation
will extend the function to the edges that make up X. For ease of computation,
we will focus on p = 2 and K = 3. Then with v1,1, v1,2 and v1,3 denoting the
three vertices that are neighbors of v0, we set u(v1,1) = 0, u(v1,2) = 1/2, and
u(v1,3) = −1/2. On the connected component of X \ {v0} containing v1,1 we set
u = 0. We can then extend u to vertices in the connected component of X \ {v0}
containing v1,2 by setting u(w) =∑kj=1 2−j where w is a vertex in this component

that is a distance k from v1,2. We set u(w) = −∑kj=1 2−j wherew is a vertex in the
component of X \ {v0} containing v1,3, with k the distance between w and v1,3. A
direct computation shows that u is 2-harmonic inX with finite energy

∑∞
j=1 2−kp2k

with p = 2.

Theorem 5.2 Suppose that in addition to being uniformly locally doubling and
supporting a uniformly local p-Poincaré inequality, we have that X is unbounded
and proper. Then

• if X has a non-constant p-harmonic function with finite energy, then X is p-
hyperbolic.

• If X has at least two p-hyperbolic ends, then it has a non-constant bounded
p-harmonic function with finite energy.

Observe that when n > 1, the hyperbolic space H
n has only one end, and this

end is indeed p-hyperbolic when p < n; the Euclidean space R
n also has only one

end, and this end is p-hyperbolic when p < n. On the other hand, Rn supports no
non-constant positive p-harmonic functions while H

n does.
Unlike the property of supporting a p-singular function, the property of sup-

porting a non-constant positive or finite energy p-harmonic function does not
characterize p-hyperbolic spaces; however, the above discussion shows that there
is a connection between the existence of non-constant positive/finite energy p-
harmonic functions and p-hyperbolicity. A deeper understanding of the structures
of p-hyperbolic ends and p-parabolic ends of X might lead to a characterization



204 N. Shanmugalingam

of the property of supporting a non-constant positive or finite energy p-harmonic
functions, and this field of enquiry is still under development. For other partial
characterizations of p-hyperbolicity using volume growth conditions see [17]
(Riemannian manifold setting) and [18] (metric setting). It was shown in [17,
Proposition 1.7] that if X is a non-compact complete Riemannian manifold and

∫ ∞
1

(
1

μ(B(x0, t))

)1/(p−1)

dt = ∞,

then it is p-parabolic. Moreover, it is shown in [17, Corollary 2.29] that if there
is a constant C > 0 and a point x0 ∈ X such that each sequence xk ∈ X with
2 < d(xk, x0) → ∞ as k → ∞ can be connected to x0 by geodesics γk with the
property that

∫ d(xk,x0)

1

(
1

μ(B(γk(t), t/8))

)1/(p−1)

dt ≤ C,

then X is p-hyperbolic. Versions of these results in the metric setting can be
found in [18], where large-scale dimension conditions are given to guarantee p-
parabolicity and p-hyperbolicity of the space.
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Part IV
Physical Models and Fractals



Breaking of Continuous Scale Invariance
to Discrete Scale Invariance: A Universal
Quantum Phase Transition

Omrie Ovdat and Eric Akkermans

Abstract We provide a review on the physics associated with phase transitions
in which continuous scale invariance is broken into discrete scale invariance. The
rich features of this transition characterized by the abrupt formation of a geometric
ladder of eigenstates, low energy universality without fixed points, scale anomalies
and Berezinskii–Kosterlitz–Thouless scaling are described. The important role of
this transition in various celebrated single and many body quantum systems is
discussed along with recent experimental realizations. Particular focus is devoted
to a recent realization in graphene.

Keywords Discrete scale invariance · Continuous scale invariance ·
Universality · Limit cycles · Graphene · Berezinskii–Kosterlitz–Thouless

Mathematics Subject Classifications (2010) Primary: 28A80, Secondary:
28A75, 60G22

1 Introduction

Continuous scale invariance (CSI)—a common property of physical systems—
describes the invariance of a physical quantity f (x) (e.g., the mass) when changing a
control parameter x (e.g., the length). This property is expressed by a simple scaling
relation,

f (ax) = b f (x), (1.1)

satisfied ∀a > 0 and corresponding b(a), whose general solution is the power law

f (x) = C xγ (1.2)
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with γ = ln b/ ln a. Other physical systems possess the weaker discrete scale
invariance (DSI) expressed by the same scaling relation (1.1) but now satisfied for
fixed values a, b and whose solution becomes

f (x) = xγ G (ln x/ ln a) , (1.3)

where G(u + 1) = G(u). Since G(u) is a periodic function, one can expand it in
Fourier series G(u) =∑ cne2πinu, thus,

f (x) =
∞∑

n=−∞
cnx

γ+i 2πn
ln a . (1.4)

If f (x) is required to obey CSI, G(u) would be constraint to fulfill the relation
G(u) = G(u+ a0) ∀a0 ∈ R. In this case, G(u) can only be a constant function,
that is, cn = 0 for all n �= 0 eliminating all terms with complex exponents in
(1.4). Therefore, real exponents are a signature of CSI and complex exponents are a
signature of DSI. DSI is a typical property of a class of fractal systems [1, 3, 4, 18,
25, 26, 76, 84] and it underlines the construction of special geometric objects such
as the Cantor set, Sierpinski triangle, Koch snowflake and others.

In this article we describe a variety of distinct quantum systems in which a
sharp transition initiates the breaking of CSI into DSI. Essential to all these cases
is a DSI phase characterized by a sudden appearance of a low energy spectrum
arranged in an infinite geometric series. Accordingly, each transition is associated
with exponents that change from real to complex valued at the critical point. We
describe the universal properties of this transition. Particularly, in the framework of
the renormalization group it is shown that universality in this case is not associated
with trajectories terminating at a fixed point but with periodic flow known as a
limit cycle. Intrinsic to this phenomena is a special type of scale anomaly in which
residual discrete scaling symmetry remains at the quantum level.

We discuss the physical realizations of the CSI to DSI transition and present
recent experimental observations which provide evidence for the existence of the
critical point and for the universal low energy features of the DSI phase. We
discuss the basic ingredients that underline these features and the possibility of their
occurrence in other, yet to be studied systems.

2 The Schrödinger 1/r2 Potential

A well studied example exhibiting the breaking of CSI to DSI is given by the
problem of a quantum particle in an attractive inverse square potential [17, 53]
described by the Hamiltonian (h̄ = 1, m = 1/2)

HS = p2 − λ/r2. (2.1)
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This system constitutes an effective description of the “Efimov effect” [23, 24] and
plays a role in various other systems [16, 19, 47, 54, 67, 79].

2.1 The Spectral Properties of HS

The HamiltonianHS has an interesting yet disturbing property – the power law form
of the potential matches the order of the kinetic term. As a result, the Schrödinger
equation

HSψ = Eψ (2.2)

depends on the single dimensionless parameter λ which raises the question of the
existence of a characteristic energy to express the eigenvalues En. This absence
of characteristic scale implies the invariance of HSψ = Eψ under the scale
transformation [43]

xi → axi, E→ a−2E (2.3)

which indicates that if there is one negative energy bound state En then there is an
unbounded continuum of bound states which render the Hamiltonian nonphysical
and mathematically not self-adjoint [32, 59].

The eigenstates of HS can be solved in terms of Bessel functions which confirm
these assertions in more detail. For E < 0 and lowest orbital angular momentum
subspace l = 0, the most general decaying solution is described by the radial
function

ψ (r) ≈ r− d−2
2

(
(kr)−

√
λc−λ
(
a1 + O (kr)2

)
+ (kr)

√
λc−λ
(
a2 + O (kr)2

))
(2.4)

where k ≡ √−E, a1, a2 are energy independent coefficients, d is the space
dimension and λc ≡ (d − 2)2/4.1 As seen in (2.4), for λ > λc − 1, ψ0 (r)

is normalizable ∀Re (E) < 0 which constitutes a continuum of complex valued
bound states of HS . Thus, for λ > λc − 1, HS is no longer self-adjoint, a property
that originates from the strong singularity of the potential and is characteristic of a
general class of potentials with high order of singularity [17].

A simple, physically instructive procedure to deal with the absence of self-
adjointness is to remove the singular r = 0 point by introducing a short distance

1For higher angular momentum channels λc is larger and given by (d − 2)2/4+ l(l + d − 2).
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cutoff L and to apply a boundary condition at r = L [5, 10, 13, 19, 37, 62, 63]. The
most general boundary condition is the mixed condition

L
ψ ′ (L)
ψ (L)

= g, (2.5)

g ∈ R, for which there is an infinite number of choices each describing different
short range physics.

Equipped with condition (2.5) the operator HS is now a well defined self-adjoint
operator on the interval L < r < ∞. The spectrum of HS exhibits two distinct
features in the low energy kL 1 1 regime. For λ < λc ≡ (d − 2)2 /4, the
expression of Lψ ′ (L) /ψ (L) as given from (2.4) is independent of k to leading
order in kr . As a result, Eq. (2.5) does not hold for a general choice of g. For λ > λc,
the insertion of (2.4) into (2.5) leads to

(kL)2i
√
λ−λc = eiγ (2.6)

where γ (g, λ) is a phase that can be calculated (the explicit expression of γ is not
important for the purpose of this section). The solution of (2.6) yields a set of bound
states with energies

kn = k0e
− πn√

λ−λc (2.7)

where n ∈ Z, such that knL 1 1 and k0 ≡ 1
L
e

γ

2
√
λ−λc . Thus, for λ < λc ≡

(d − 2)2 /4, the spectrum contains no bound states close to E = 0, however, as
λ goes above λc, an infinite series of bound states appears. Moreover, in this “over-
critical” regime, the states arrange in a geometric series such that

kn+1/kn = e−
π√
λ−λc . (2.8)

The absence of any states for λ < λc is a signature of CSI while the geometric
structure of (2.7) for λ > λc is a signature of DSI since kn is invariant under
{kn} →

{
exp
(−π/√λ− λc) kn}. Accordingly, as seen in (2.4), the characteristic

behavior of the eigenstates for kr 1 1 manifests an abrupt transition from real
to complex valued exponents as λ exceeds λc. Thus, HS exhibits a quantum phase
transition (QPT) at λc between a CSI phase and a DSI phase. The characteristics of
this transition are independent of the values of L, g which enter only into the overall
factor k0 in (2.7). The functional dependence of kn on

√
λ− λc is characteristic of

Berezinskii–Kosterlitz–Thouless (BKT) transitions as was identified in [44, 45, 47,
50]. Finally, the breaking of CSI to DSI in the λ > λc regime constitutes a special
type of scale anomaly since a residual symmetry remains even after regularization
(see Table 1).
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Table 1 Summary of the properties associated with the transition occurring at λ = λc for the
Hamiltonian HS given in Eq. (2.1) on the interval L < r <∞

λ < λc λ > λc − 1 λ > λc Scale
anom

aly
2⇒

Formal Hamiltonian CSI CSI CSI

Self-adjointness H = H † H �= H † H �= H †

Regularization with L Redundant Essential Essential

Symmetry of eigenspace CSI CSI DSI

Quantum Phase Transition 2⇒

2.2 Physical Realizations of HS

A well known realization of HS for λ > λc is the “Efimov effect” [12, 23, 24].
In 1970, Efimov studied the quantum problem of three identical nucleons of mass
m interacting through a short range (r0) potential. He pointed out that when the
scattering length a of the two-body interaction becomes very large, a 4 r0, there
exists a scale-free regime for the low-energy spectrum, h̄2/ma2 1 E 1 h̄2/mr2

0 ,
where the corresponding bound-states energies follow the geometric series En =
−E0e

−2πn/s0 where s0 ≈ 1.00624 is a dimensionless number and E0 > 0 a
problem-dependent energy scale. Efimov deduced these results from an effective
Schrödinger equation in d = 3 with the radial (l = 0) attractive potential V (r) =
−λ/r2 with λ = s0 + 1/4 > λc (λc = 1/4 for d = 3). Despite being initially
controversial, Efimov physics has turned into an active field especially in atomic and
molecular physics where the universal spectrum has been studied experimentally
[35, 51, 52, 56, 65, 72, 73, 87] and theoretically [12]. The observation of the Efimov
geometric spectral ratio e2π/s0 ≈ 515.028 have been recently determined using an
ultra-cold gas of caesium atoms [42].

In addition to the Efimov effect, the inverse square potential also describes the
interaction of a point like dipole with an electron in three dimensions. In this case,
the dipole potential is considered as an inverse square interaction with non-isotropic
coupling [16]. The Klein Gordon equation for a scalar field on an Euclidean AdS
d+1 space time can be written in the form of (2.2). The over-critical regime λ > λc
corresponds to the violation of the Breitenlohner–Freedman bound [47].

3 Massless Dirac Coulomb System

The inverse square Hamiltonian (2.1), a simple system exhibiting a rich set of
phenomena, inspires studying the ingredients which lead to the aforementioned DSI
and QPT and whether they are found in other systems. One such candidate system
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is described by a massless Dirac fermion in an attractive Coulomb potential [27–
29, 36, 60, 71, 80, 81] with the scale invariant Hamiltonian (h̄ = c = 1)

HD = γ 0γ jpj − β/r (3.1)

where β specifies the strength of the electrostatic potential, d is the space dimension
and γ μ are d + 1 matrices satisfying the anti-commutation relation

{
γ μ, γ ν

} = 2ημν (3.2)

with η00 = ηii = −1, i = 1, . . . , d and ημν = 0 for μ �= ν.
Based on the previous example, it may be anticipated that, like HS , HD will

exhibit a sharp spectral transition at some critical β in which the singularity of the
potential will ruin self-adjointness. As detailed below, the analog analysis of the
Dirac equation

HDψ = Eψ (3.3)

confirm these assertions and details a remarkable resemblance between the low
energy features of the two systems.

3.1 The Spectral Properties of HD

Utilizing rotational symmetry, the angular part of Eq. (3.3) can be solved and the
radial dependence of ψ is given in terms of two functions �1 (r) ,�2 (r) [21]
determined by the following set of equations

� ′2 (r)+
(d − 1+ 2K)

2r
�2 (r) =

(
E + β

r

)
�1 (r)

−� ′1 (r)−
(d − 1− 2K)

2r
�1 (r) =

(
E + β

r

)
�2 (r) (3.4)

where

K ≡
⎧⎨
⎩
±
(
l + d−1

2

)
d > 2

m+ 1/2 d = 2
, (3.5)

l = 0, 1, . . . and m ∈ Z are orbital angular momentum quantum numbers. In terms
of these radial functions, the scalar product of two eigenfunctions ψ, ψ̃ is given by

∫
dV ψ†ψ̃ =

∫
dr rd−1

(
�∗1 (r) �̃1 (r)+�∗2 (r) �̃2 (r)

)
. (3.6)
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Unlike HS in Sect. 2, the spectrum of HD does not contain any bound states,
a property that reflects the absence of a mass term. As a result, the spectrum is a
continuum of scattering states spanning −∞ < E < ∞. In the absence of bound
states we explore the possible occurrence of “quasi-bound” states. Quasi bound
states are pronounced peaks in the density of states ρ(E), embedded within the
continuum spectrum. These resonances describe a scattering process in which an
almost monochromatic wave packet is significantly delayed by V (r) as compared
to the same wave packet in free propagation [31].

An elegant procedure for calculating the quasi-bound spectrum [31] is to allow
the energy parameter to be complex valued E → ε ≡ ER − i W2 and look for
solutions of (3.4) with no outgoing e−iEr plane wave component for r → ∞. The
lifetime of the resonance is given byW−1. Consider the lowest angular momentum
subspace K = ± (d − 1) /2 and E < 0, the most general solution with no outgoing
component is given by

(
�1 (r)

�2 (r)

)
≈ r− d−1

2

(
(2iEr)

√
β2
c−β2
((
a11

a12

)
+ O (|E| r)

)

+ (2iEr)−
√
β2
c−β2
((
a21

a22

)
+ O (|E| r)

))
(3.7)

where βc ≡ (d − 1)/22 and a is a 2× 2 energy independent coefficient matrix.
As in the case of HS above it is necessary at this point to remove the singularity

of the 1/r potential by introducing a radial short distance cutoff L and imposing a
boundary condition. To identify this explicitly, consider the case where E = i in
(3.7). Since (3.7) is (asymptotically) an ingoing eiEr plane wave solution if E ∈ R,
it decays exponentially for E = i and r → ∞. If additionally β2 > β2

c − 1/4,
then (3.7) is a normalizable eigenfunction with a complex valued eignvalue which
renders HD not self-adjoint.

The equivalent mixed boundary condition of (3.3) can be written as follows [90]

h = �2 (L)

�1 (L)
(3.8)

where h ∈ R is determined by the short range physics. Equipped with this condition
HD is now a well defined self-adjoint operator on the interval L < r < ∞. The
spectrum of HD exhibits two distinct pictures in the low energy |E|L 1 1 regime.
For β < βc ≡ (d − 1) /2, the expression of �2 (L) /�1 (L) as given from (3.7) is
independent of E to leading order in |E|L. As a result, Eq. (3.8) does hold for a

2For higher angular momentum channels βc is larger and given by |K| where K is defined as in
(3.5).



216 O. Ovdat and E. Akkermans

general choice of h. For β > βc, the insertion of (3.7) and (3.8) reduces into

(2iEL)2i
√
β2−β2

c = z0 (3.9)

where

z0 (h, β) ≡ h a21 − a22

a12 − h a11
(3.10)

is a complex valued number3 (the explicit exporession for z0, which can be found
in [69], is not important for the purpose of this section). The solution of (3.9) yields
a set of quasi-bound energies at

En = E0e
− πn√

β2−β2
c (3.11)

where n ∈ Z, such that |En|L 1 1 and E0 ≡ Re

⎛
⎝ 1

2iLz

1

2i
√
β2−β2

c

0

⎞
⎠. It can be

directly verified that ER = ReEn < 0 andW = −2ImEn > 0 [69].
Thus, in complete analogy with the−λ/r2 inverse squared potential described in

Sect. 2, for β < βc ≡ (d − 1) /2, the spectrum contains a CSI phase with no quasi-
bound states close to E = 0. As β exceeds βc, an infinite series of quasi-bound
states appears which arrange in a DSI geometric series such that

En+1/En = e
− π√

β2−β2
c . (3.12)

As seen explicitly in (3.7), the characteristic behavior of the eigenstates for |E| r 1
1 manifests an abrupt transition from real to complex valued exponents at β = βc.
The characteristics of this transition are independent of the values of L, h which
enter only into the overall factor E0 in (3.9). Thus, under a proper trasformation
between λ and β, Table 1 represents a valid and consistent description of the
massless Dirac Coulomb system as well.

3.2 Distinct Features Associated with Spin 1/2

On top of the similarities emphasized above, an interesting difference in the
quantum phase transition exhibited by HS and HD results from the distinct
spin of the associated Schrödinger and Dirac wave functions. Unlike the scalar

3Here z0 is not a phase like in (2.6), a reflection of the fact that the solutions for E would have an
imaginary component corresponding to a finite lifetime.
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Schrödinger case, the lowest angular momentum subspace of HD contains two
channels corresponding to K = ±(d − 1)/2. As a result, not one but two copies
of geometric ladders of the form (3.11) appear at β = βc (see Fig. 1). These two
ladders may be degenerate or intertwined depending on the choice of boundary
condition in (3.8).

The breaking of the degeneracy between the ladders is directly related to the
breaking of a symmetry. To understand this point more explicitly consider the case
where d = 2. There, in a basis where γ 0 = σz, γ 1 = iσ1, γ 2 = −iσ2, HD is given
by

HD = σipi − β/r. (3.13)

From (3.13) it is seen that HD is symmetric under the following parity transforma-
tion

x →−x, y → y,HD → σ2HDσ2, (3.14)

which in terms of �1 (r) , �2 (r) is equivalent to [69]

�1 (r)→ �2 (r) , �2 (r)→−�1 (r) , m→−m− 1 (3.15)

where m is the orbital angular momentum. Consequently, the Dirac equation (3.4)
is invariant under (3.15), however, the boundary condition (3.8) can break (3.15).
Typical choices of boundary conditions are

1. Continuously connected constant potential V (r < L) = −β/L [70] correspond-
ing to h = Jm+1(β + EL)/Jm(β + EL), where Jn(x) is Bessel’s function.

2. Zero wavefunction of one of the spinor components [81] corresponding to h = 0
or h = ∞.

3. Infinite mass term on boundary [71] corresponding to h = 1.
4. Chiral boundary conditions [68]

h =
{

0 m ≥ 1

∞ m ≤ 0
(3.16)

inducing a zero mode localized at the boundary.

Under (3.15), a solution of the Dirac equation with angular momentum m

obeying boundary condition (3.8) will transform into a different solution with
angular momentum −m − 1 obeying (3.8) with h → −h−1. Thus, the boundary
condition respects parity if and only if

hm = −h−1
−m−1. (3.17)
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Thus case 1 above preserves parity while 2–4 break parity. If (3.17) holds,
transformation (3.15) links between the m ↔ −m − 1 eigenspace solutions. The
lowest angular momentum subspaces correspond to orbital angular momentum
m = 0,−1. If (3.17) holds, then the two geometric ladders (3.11) associated with
m = 0,−1 are degenerate. The reason is that, as seen in (3.7), under (3.15)

a11 → a12, a12 →−a11, a21 → a22, a22 →−a21

h→−h−1 (3.18)

which render z0 in (3.10) and consequently E0 invariant. Thus E0,m=±1/2 are
identical in this case. If (3.17) does not hold, this symmetry is not enforced and
the degeneracy between the ladders is broken.

The visualization of parity breaking is displayed in Fig. 1 where the density of
states ρ(E) ofHD is plotted for them = 0,−1 channels and β > βc. The boundary

-0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001
0

5.0×1010

1.0×1011

1.5×1011

EL

-10 -2 -10 -4 -10 -6 -10 -8-100

1010
1012
1014
1016
1018
1020

EL

ρ(E)/L

ρ(E)/L

Fig. 1 Density of states ρ(E) of HD for d = 2, β = 1.2 > βc and different angular momentum
eigenstates. The yellow and blue curves correspond to them = 0,−1 angular momentum channels
respectively. The boundary condition h used here is the chiral boundary condition (3.16) which
breaks parity. The parameter L is the short distance cutoff taken here to be 0.195 nm. The numeric
values on both axis are in units of h̄c = 0.197 eVµm. The set of pronounced peaks in both curves
describes the quasi-bound spectrum in the overcritical regime β > βc as calculated in (3.11). The
lower panel displays the detailed structure of the infinite geometric ladders of the quasi-bound
states in a logarithmic scale. The m = 0,−1 ladders are intertwined, indicative of the breaking of
parity by the boundary condition. These results are independent of the specific choice of L or h
(provided that it breaks parity)
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condition that was used in Fig. 1 is the chiral boundary condition (3.16) which
breaks parity. Both curves exhibit an identical set of pronounced peaks condensing
near E = 0−. These peaks describe quasi-bound states (3.11) and, accordingly, are
arranged in a set of two geometric ladders. The separation between the ladder is a
distinct signal of parity breaking.

3.3 Experimental Realization

The CSI to DSI transition has recently received further validity and interest due to a
detailed experimental observation in graphene [69]. In what follows, we summarize
the results of this observation and emphasize its most significant features.

Graphene is a particularly interesting condensed matter system where HD is
relevant (for d = 2). The basic reason for this argument is that low energy
excitations in graphene behave as a massless Dirac fermion field with a linear
dispersion E = ±vF |p| where the Fermi velocity vF ≈ 106 m/s appears instead
of c [48]. These characteristics have been extensively exploited to make graphene a
useful platform to emulate specific features of quantum field theory, topology and
quantum electrodynamics (QED) [49, 60, 80–82, 89, 91], since an effective fine
structure constant αG = e2/h̄vF of order unity is obtained by replacing the velocity
of light c by vF .

It has been shown that single-atom vacancies in graphene can host a local and
stable charge [55, 57, 69]. This charge can be modified and measured at the vacancy
site by means of scanning tunneling spectroscopy and Landau level spectroscopy
[57]. The presence of massless Dirac excitations in the vicinity of the vacancy
charge motivates the assumption that these will interact in a way that can be
described by a massless Dirac Coulomb system. Particularly, the low energy spectral
features of the charged vacancy would be the same as that of a tunable Coulomb
source. The experimental results of [69] provide confirmation of this hypothesis as
will be detailed below.

The measurements and data analysis presented below were carried out as follows:
positive charges are gradually increased into an initially prepared single atom
vacancy in graphene. Using a scanning tunneling microscope (STM) the differential
conductance dI/dV (V ) through the STM tip is measured at each charge increment
at the vacancy site. The conductance dI/dV (V ) is expected to be proportional to
the local density of states of the system [2, 69]. Thus, quasi-bound states should also
appear as pronounced peaks in the dI/dV curves.

For low enough values of the charge, the differential conductance displayed in
Fig. 2b, shows the existence of a single quasi-bound state resonance whose distance
from the Dirac point increases with charge. The behaviour close to the Dirac point,
is very similar to the theoretical prediction of the under-critical regime β < βc
displayed in Fig. 2a. The β value associated with the data of Fig. 2b is obtained from
matching the position of the quasi-bound state with the theoretical model where
the cutoff L and the boundary condition h are fixed model parameters that will
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Fig. 2 Experimental and theoretical picture in the undercritical regime. (a) Theoretical behaviour
of the density of states ρ(E) of the Dirac Hamiltonian HD in (3.1) with d = 2, c→ vF = 0.003c
and angular momentum channels m = −1 (blue) and m = 0 (yellow). The cutoff and boundary
conditions are assigned here with the optimized values L = 0.195 nm, h = −0.85(m + 1) as
explained in the text. The m = −1 (blue) branch contains a single peak and the m = 0 (yellow)
branch shows no peak. While increasing β, the resonance shifts to lower energy and becomes
broader. (b) The conductance dI/dV measured at a single vacancy in graphene using STM as a
function of the applied voltage V . The determination of the parameter β is obtained from matching
the position of the peak in the dI/dV curve with the theoretical model where the cutoff L and the
boundary condition h are fixed model parameters

be given later. The theoretical position of the under-critical quasi-bound state as a
function of β is displayed in Fig. 4 along with the positions of the peak extracted
from measurements. The existence of a quasi-bound state does not contradict CSI of
the undercritical phase since the absence of any states occurs only in the low energy
limit.

At the point where the build up charge exceeds a certain value, three additional
resonances emerge out of the Dirac point. These resonances are interpreted as the
lowest overcritical (β > 1/2) resonances which we denote E1, E

′
1, E2 respectively.

The corresponding theoretical and experimental behaviours displayed in Figs. 1 and
3, show a very good qualitative agreement. To achieve a quantitative comparison
solely based on the massless Dirac Coulomb Hamiltonian (3.13), the theoretical
β values corresponding to the respective positions of the lowest overcritical
experimental resonance E1 (as demonstrated in Fig. 3) are deduced for fixed L and
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Fig. 3 Experimental and theoretical picture in the overcritical regime. Upper plot: Theoretical
behaviour of the low energy density of states ρ(E) for overcritical β = 1.33. The Blue (Yellow)
line corresponds to m = −1 (m = 0) orbital angular momentum. The peaks on the vertical scale
describe the first quasi-bound states with two (Blue and Yellow) infinite geometric towers of states.
Lower plot: Experimental values of the tunnelling conductance measured at the charged vacancy
site in graphene

the boundary condition h (as before). This allows to determine the lowest branch
E1(β) represented in Fig. 4. Then, the experimental points E′1, E2 are now free
points to be directly compared to their corresponding theoretical branch as seen in
Fig. 4. ParametersL and h, are determined according to the ansatz h = a(m+1), and
correspond to optimal values of L = 0.195 nm, a & −0.85. The comparison of the

experimental E2/E1 ratio with the universal prediction En+1/En = e−π/
√
β2−1/4

is given in Fig. 5. A trend-line of the form e−b/
√
β2−1/4 is fitted to the ratios E2/E1

yielding a statistical value of b = 3.145 with standard error of�b = 0.06 consistent
with the predicted value π . An error of ±1meV is assumed for the position of the
energy resonances.

A few further comments are appropriate:

1. The points on the E2(β) curve follow very closely the theoretical prediction

En+1/En = e−π/
√
β2−1/4. This result is relatively insensitive to the choice of

h,L.
2. In contrast, the correspondence between the E′1 (β) points and the theoretical

branch is sensitive to the choice of h,L. This reflects the fact that while each
geometric ladder is of the form (3.11), the energy scale E0 is different between
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Fig. 4 Comparison of lowest quasi bound state energy curves En(β) with experimentally
measured tunneling conductance peaks. The curves E1(β), E

′
1(β), E2(β) describe resonances

extracted from the density of states of the m = 0 (E1, E2) and m = −1 (E′1) angular momentum
channels. E1, E2 and E′1 are the first quasi bound states appearing for β > 1/2 in the m = 0,−1
channels respectively. The brown curve is the position of the single under-critical quasi bound
state as a function of β < βc scaled by a factor of 1/3 in the vertical axis. The black and cyan
dots correspond to the positions of the tunneling conductance peaks as measured in graphene. The
determination of the β value associated with these points is obtained from matching the position
of the single under-critical peak and first over-critical peak (E1) in the dI/dV curves with the
theoretical model where the cutoff L and boundary condition h are fixed parameters. The two pink
x’s are the values of Efimov energy states as measured in Caesium atoms [42, 51] and rescaled
by an appropriate overall factor. These points corresponds to the (overcritical) fixed Efimov value
βE = 1.1236. Similarly, additional experimental points obtained in [72, 87] are displayed in the
inset

the E1 (β) and E′1 (β) channels thus leading to a shifted relative position. The
ansatz taken for h is phenomenological, however, in order to get reasonable cor-
respondence to theory, the explicit dependence onm is needed. More importantly,
it is necessary to use a parity breaking boundary condition (see Sect. 3.2) to
describe the E′1(β) points, otherwise, both angular momentum channels E1 (β),
E′1 (β) will become degenerate and there would be no theoretical line to describe
the E′1 (β) points. The existence of the experimental E′1 (β) branch is therefore a
distinct signal that parity symmetry in the corresponding Dirac description is
broken. In graphene, exchanging the triangular sub-lattices is equivalent to a
parity transformation. Creating a vacancy breaks the symmetry between the two
sub-lattices and is therefore at the origin of broken parity in the Dirac model.

3. The optimal value obtained for the short distance cutoff L = 0.195 nm is fully
consistent with the low energy requirement E1L/h̄vF & 0.03 1 1 necessary to
be in the regime relevant to observe the β-driven QPT. Furthermore, it is quite
close the lattice spacing of graphene (≈ 0.15 nm)



The Breaking of Continuous Scale Invariance to Discrete Scale Invariance 223

1.0 1.1 1.2 1.3 1.4
0.02

0.04

0.06

0.08

0.10

E
2

E
1

b

Fig. 5 Comparison between the experimentally obtained E2/E1 ratio and the universal factor

e−π/
√
β2−1/4. Blue points: the ratioE2/E1 obtained from the position of the points in Fig. 4. Green

point: Universal Efimov energy ratio as measured in Caesium atoms [42, 51]. Blue line (dashed):

the corresponding optimized curve, fitted according to the model e−b/
√
β2−1/4 and corresponding

to b = 3.145 with standard error of �b = 0.06 consistent with the predicted value π . The shaded
pink region is the ±2�b confidence interval of the curve. Cyan line: universal low energy factor

e−π/
√
β2−1/4. Purple line: theoretical ratio E2/E1 obtained from the exact solution of the Dirac

equation. As β → 0.5, |En| becomes smaller therefore the green and purple curves coincide for
low β. The error bar on the resonance energies is ±1 meV

One of the most interesting features of observed quasi bound states is their
similarity with the Efimov spectrum. As discussed in Sect. 2.2, Efimov states are
a geometric tower of states with a fixed geometric factor which is derived from
an effective Schrödinger equation with a V = −λ/r2 potential (as in (2.1)) and
overcritical potential strength λ = s0 + 1/4, s0 ≈ 1.00624. To emphasize the
similarities between the Dirac quasi bound spectrum and the Efimov spectrum or,
more generally, between the CSI to DSI transition in the Dirac and Schrödinger
Hamiltonians HD , HS , two additional experimental points (pink x’s) are presented
in Fig. 4. These points are the values of Efimov energy states measured in Caesium
atoms [42, 51] and scaled with an appropriate overall factor. The points are placed at
the (overcritical) fixed Efimov value βE = 1.1236 corresponding to the geometric
factor of Efimov states. The universality of the transition is thereby emphasized
in Fig. 4 in which curves calculated from a massless Dirac Hamiltonian, energy
positions of tunneling conductance peaks in graphene and resonances of a gas of
Caesium atoms are combined in a meaningful context.
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4 Relation to Universality

In Sects. 2 and 3 we obtained the properties of the CSI to DSI transition from a
direct analysis of the corresponding eigenstates of each system. In what follows, we
describe the same physics, but this time through the language of the renormalization
group (RG). As will be detailed next, the description of this phenomenon in a RG
picture provides a notable example of a case in which there is universality even
in the absence of any fixed points. To understand this point more clearly, we first
recall the physical meaning of the RG formalism and the usual context for which
universality is understood with relation to RG.

Universality is a central concept of physics. It refers to phenomena for which
very different systems exhibit identical behavior when properly coarse-grained to
large distance (or low energy) scales. Important representatives of universality are
systems that are close to a critical point, e.g., liquid-gas or magnetic systems. Near
the critical point, these systems exhibit continuous scale invariance (as in (1.1))
where the free energy and correlation length vary as a power of the temperature (or
some other control parameter). The exponents of these functions are real valued and
are identical for a set of different systems thereby constituting a “universality class”.

The contemporary understanding of university in critical phenomena is provided
by the tools of RG and effective theory. In the framework of the later, low
energy physics is described by a Hamiltonian H with a series of interaction terms
gnOn constrained by symmetries. Intrinsic to this description is an ultraviolet
cutoff � reflecting the conceptual idea that H is obtained from some microscopic
HamiltonianH0 by integrating out degrees of freedom with length scale shorter than
1/�. The dependence of 5g ≡ (g1, g2 . . .) on � defines the RG space of parameters
5g (�) which represent a large set of Hamiltonians H (5g (�)). Within this picture,
the scale invariant character of critical phenomena is attributed to the case where
H0 (5g0) flows in the infrared limit, � → 0, to H (5g∗) where 5g∗ is a fixed point.
Additionally, universality classes arise since trajectories starting at distinct positions
on RG space can flow to the same fixed point for�→ 0. The role of RG fixed points
in the description of universality, effective theory and scale invariance is central and
extends throughout broad sub-fields in physics.

4.1 Renormalization Group Formalism for the Schrödinger
1/r2 Potential

The RG picture which describes the low energy physics of the Schrödinger
−λ/r2 potential in the λ > λc regime cannot be associated with a fixed point
because of the absence of CSI. However, even without fixed points, we expect
universality to appear in this regime since the geometric series factor En+1/En
= exp

(−2π/
√
λ− λc

)
is independent of the short distance parameters associated

with the cutoff L and the boundary condition g.
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To see this explicitly [5, 10, 47, 50, 63], consider the radial Schrödinger equation
for HS given by

−
(
d2

dr2 +
d − 1

r

d

dr
− l(l + d − 2)

r2

)
− λ

rs
ψ (r) = Eψ (r) , L < r <∞

(4.1)

where ψ (r) is the radial wavefunction, l the orbital angular momentum, d the space
dimension, L a short distance cutoff and s = 2 but remains implicit for a reason
that will be clear shortly. A well defined eigenstate of (4.1) is obtained by imposing
a boundary condition at r = L

L
ψ ′ (L)
ψ (L)

= g, (4.2)

g ∈ R, which encodes the short-distance physics. To initiate a RG transformation
we transform

L→ L+ dL ≡ εL ; 0 < ε − 11 1 (4.3)

and obtain an equivalent effective description with the short distance cut-off εL and
correspondingly, a new boundary condition at r = εL:

εL
ψ ′ (εL)
ψ (εL)

= g (εL) . (4.4)

As a result of (4.3), Eq. (4.1) is now defined in the range εL ≤ r <∞with the same
functional form. With the help of the rescaling r ′ ≡ ε−1r, E′ ≡ ε2E, Eq. (4.1) is
modified to the equivalent form

−
(
d2

dr ′2
+ d − 1

r ′
d

dr ′
− l(l + d − 2)

r ′2

)
− λε

2−s

r ′s
ψ
(
r ′
) = E′ψ (r ′) L < r ′ <∞.

(4.5)

Thus, transformation (4.3) is accounted in (4.1) by λ→ λε2−s and using (4.3) leads
to the infinitesimal form

L
dλ

dL
= (2− s) λ. (4.6)

Similarly, g (εL) in (4.4) can be related to g (L) as follows. The series expansion of
g (εL) in ε − 1 is

g (εL) = Lψ
′ (L)
ψ (L)

+ (ε − 1)

(
L
ψ ′ (L)
ψ (L)

− L2
(
ψ ′ (L)
ψ (L)

)2

+ L2ψ
′′ (L)
ψ (L)

)
+O (ε − 1)2 .

(4.7)
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Manipulation of (4.7) by insertion of the radial Schrödinger equation (4.1) and the
definition of g (L) yield

g (εL) = g (L)+ (ε − 1)
(
(2− d) g (L)− g (L)2 − λL2−s + l(l + d − 2)− L2E

)
(4.8)

where terms of order (ε − 1)2 or higher were eliminated. The equivalent differential
form is thus

L
dg

dL
= (2− d) g − g2 − λL2−s + l(l + d − 2)− L2E. (4.9)

In the low energy regime

L2 |E| 1 |λ− l(l + d − 2)| (4.10)

Eq. (4.9) reduces to

L
dg

dL
= (2− d) g − g2 − λ (4.11)

where the orbital angular momentum was taken to be l = 0 and s set to s = 2 for
brevity. Finally, the combination of (4.6) and (4.11) constitutes the RG equations

β (λ) ≡ L dλ
dL
= (2− s) λ

β (g) ≡ L dg
dL
= − (g − g+) (g − g−) (4.12)

where

g± = 2− d
2
±√λc − λ (4.13)

and λc = (d − 2)2 /4.
Since β (λ) = 0 for s = 2, λ (L) remains unchanged under the RG transforma-

tion. In contrary, the function β (g) is not trivial and has two roots g± . For λ < λc,
the two roots correspond to two fixed points, g− unstable and g+ stable. However,
as λ increases, the two fixed points get closer and merge for λ = λc. For λ > λc, g±
become complex valued and the two fixed points vanish as can be seen in Fig. 6a.
The solution for g (L) in this regime is given explicitly by (see Fig. 6b)

g (L) = 2− d
2
−√λ− λc tan

[√
λ− λc ln (L/L0)− φg

]
(4.14)
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Fig. 6 Visualization of the renormalization group picture associated with the boundary condition
g(L) at the short distance cutoff r = L for the case of the Schrödinger V (r) = −λ/r2 potential
HS . (a) The β (g) function in the over-critical and under-critical regimes. For λ < λc, β (g) has two
roots correspond to two fixed points, g− unstable and g+ stable. The point λ = λc is a transition
point where the roots merge into a single fixed point. For λ > λc there are no real fixed points.
(b) The behaviour of the boundary condition g (L) in the overcritical regime λ > λc and d = 3

as a function of ln (x) with x ≡ √λ− λc ln (L/L0) − φg , φg ≡ arctan

(
g0− 2−d

2√
λ−λc

)
. Independent

of the initial condition g0 (L0), g (L) is a log-periodic function of L which, as shown in (1.3), is a
generic feature of DSI

where φg ≡ arctan

(
g0− 2−d

2√
λ−λc

)
. Unlike the case of a fixed point, the flow of g (L)

in (4.14) does not terminate at any specific point but rather oscillate periodically in
logLwith periodL→ eπ/

√
λ−λcL independent of the initial condition g (L0) = g0.

The appearance of two fixed points for λ < λc, which annihilate at λc and
give rise to a log-periodic flow for λ > λc is the transcription of the CSI to DSI
transition in the RG picture. The periodicity eπ/

√
λ−λc , being independent on the

initial conditions, g (L0) = g0, represents a universal content even in the absence of
fixed points.

An analogue of the RG equations (4.12) can be derived for the boundary
condition h (L) in (3.8) of the massless Dirac Coulomb system described in Sect. 3
[33].

5 Discussion

The similarities between the Dirac and Schrödinger system HS,HD

HS = p2 − λ/r2 (5.1)

HD = γ 0γ jpj − β/r (5.2)

presented in Sects. 2 and 3 motivate the study of whether a similar transition from
CSI to DSI is possible for a generic class of systems and, if so, what are the common
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Table 2 Comparison between the various cases discussed in the text for which a transition
between a continuous scale invariant phase and a discrete scale invariant phase occurs. In the DSI
regime each system is characterized by the sudden appearance of a geometric tower of modes

with the universal form On = O0 exp
(
−b πn√

x−xc
)

. In lines 1–3 of the table, On are one body

bound states. Lines 4–5 describe many body quantum systems where On are fermion masses and
3-body bound states respectively. Line 6 provides a comparison with the Berezinskii–Kosterlitz–
Thouless phase transition where the analog quantity for On is the free energy F for T � Tc. In
line 4, αN is a N dependent real number whose exact value can be found in [15]. In line 5, c± are
d dependent real positive number defined in Sect. 5.3

System On x xc b

HS = p2 − λ/r2 En λ (d − 2)2 /4 2

HD = γ 0γ jpj − β/r En β2 (d − 1)2 /4 1

HL =
(
− d

2

dx2

)N
− λL

x2N En λL

(
(2N − 1)!!

2N

)2

NαN

QED3 with N massless
flavours

mn N−1 π2/32 π/
√

8

Efimov effect in d dimensions En d 2.3 1/c± (d)
BKT F T Tc System dependent

ingredients within this class. Below we briefly survey some other setups which
interestingly give rise to a CSI to DSI transition. The relation between all these
cases is summarized in Table 2.

5.1 Lifshitz Scaling Symmetry

Since HS and HD share the property that the power law form of the corresponding
potential matches the order of the kinetic term, it is interesting to examine whether
this property is a sufficient ingredient by considering a generalized class of one
dimensional Hamiltonians,

HL =
(
− d

2

dx2

)N
− λL

x2N , (5.3)

where N is a natural integer and λL a real valued coupling. The Hamiltonian HL
describes a quantum system with non-quadratic anisotropic scaling between space
and time for N > 1. This so called “Lifshitz scaling symmetry” [6], manifest in
(5.3), can be seen for example at the finite temperature multicritical points of certain
materials [34, 41] or in strongly correlated electron systems [9, 30, 88]. Quartic
dispersion relations E ∼ p4 can also be found in graphene bilayers [58] and heavy
fermion metals [74]. It may also have applications in particle physics [6], cosmology
[64] and quantum gravity [39, 40, 46].
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The detailed solution of the corresponding Schrödinger equation HLψ = Eψ
[15] confirms that a transition from CSI to DSI occurs at λL,c = (2N − 1)!!2/22N ,
∀N ≥1. The CSI phase contains no low energy, |E|1/2N L1 1 (L is a short distance
cutoff), bound states and the DSI phase is characterized by an infinite set of bound
states forming the geometric series

En = −E0e
− NαNπn√

λL−λL,c , 0 < λL − λL,c 1 1 (5.4)

where E0 > 0 and αN is an N dependent real number. For λL − λL,c → 0+, the
analytic behavior of the spectrum is characteristic of the Berezinskii–Kosterlitz–
Thouless (BKT) scaling in analogy with the N = 1 case. However, unlike the
N = 1 case, the BKT scaling appears only for λL − λL,c → 0+. Deeper in the

overcritical regime, the dependence on
(
λL − λL,c

)1/2 in (5.4) is replaced by a more
complicated function of λL−λL,c [15]. The transition as well as the value of λL,c is
independent of the short distance physics characterized by the boundary conditions
and cutoff L.

Since HL is a high order differential operator it requires the specification of
several x = L boundary condition parameters (unlike the one parameter g in
Sect. 2.1) in order to render it as a well defined self-adjoint operator on the interval
L < x <∞. The most general choice of boundary conditions is parameterized by a
unitary N ×N matrix. Accordingly, the corresponding N2 dimensional RG space is
characterized by fixed points in the under-critical regime λL < λL,c. Interestingly,
the DSI over-critical regime λL > λL,c is not filled with an infinite number of
cyclic flows such as represented in Fig. 6b. Instead, there is a ‘limit cycle’ [85], i.e.,
an isolated closed trajectory at which flows terminate [14] (see Fig. 7).

5.2 QED in 2 + 1 Dimensions and N Fermionic Flavors

The study of dynamical fermion mass generation in 2 + 1 dimensional quantum
electrodynamics (QED) [8, 38] provides an interesting many body instance of the
CSI to DSI transition. Consider the 2+ 1 dimensional QED Lagrangian

L = i�̄γ μ (∂μ − ieAμ)� − 1

4
FμνF

μν (5.5)

where � is a vector of N identical types of fermion fields with zero mass. In this
theory, e2 or alternatively α ≡ Ne2/8, is a dimension-full coupling. Analogous to
the short distance cutoff L of Sects. 2, 3, and 5.1, α constitutes the only energy scale
of the theory. Consequently, the low energy regime E 1 α can be shown to exhibit
CSI.
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Fig. 7 A two dimensional projection of the (four dimensional) RG picture of the system H =
d4
x − 2/x4. The four boundary conditions at x = L are parametrized by a unitary 2× 2 matrix U .

The initial conditions for the dashed blue flows are specified by choosing θ = −π, . . . ,−π/10, 0
for the U matrix as displayed. All the trajectories flow towards a limit cycle. There exists a non-
unitary fixed point, denoted by the blue cross, which is enclosed by the cycle when projected down
onto any two dimensional subspace

To understand whether or not fermion mass appears as a result of quantum
fluctuations it is required to calculate the fermion propagator, specifically, the self-
energy � (p). Under a particular (non-perturbative) approximation scheme [8], the
expression for � (p) can be extracted from the solution of the following differential
equation

−�′′ (p)− 2

p
�′ (p)− λQ

p2 +� (p)2� (p) = 0, 0 < p < α (5.6)

with boundary condition

α
�′ (α)
� (α)

= −1 (5.7)

where λQ ≡ 8/
(
π2N
)
. Close to a transition point the fermion mass and thereby

� (p) are non-zero but arbitrarily small such that� (p)1 p < α. As a result, (5.6)
can be further approximated by assuming � (p)2 in the denominator is a constant
which we define as � (p)2 → m2/λQ. Expanding to order m2 yields

−�′′ (p)− 2

p
�′ (p)− λQ

p2
� (p) = −m

2

p4
� (p) . (5.8)
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A closer look on Eqs. (5.7) and (5.8) reveals that they are the same as the radial
form of the Schrödinger equation with a V = −λ/r2 potential

−
(
d2

dr2 +
d − 1

r

d

dr
− l(l + d − 2)

r2

)
− λ

r2ψ (r) = −k2ψ (r) , L < r <∞ (5.9)

L
ψ ′ (L)
ψ (L)

= g (5.10)

where k = √−E as described in Sect. 2 and in Eqs. (4.1) and (4.2). To see this
explicitly, we rewrite (5.7) and (5.8) in terms of r ≡ 1/p, ψ (r) ≡ � (p), L ≡ 1/α
which then yields

− ψ ′′(r)− λQ
r2
ψ(r) = −m2ψ(r), L < r <∞ (5.11)

L
ψ ′ (L)
ψ (L)

= 1. (5.12)

Thus, the appearance of a non-vanishing fermion self energy constitutes a system of
the form (5.9) and (5.10) with d = 1, λ = λQ and g = 1. The resulting implication
is that a transition from a CSI to DSI occurs at λQ,c = 1/4. For λQ < 1/4 there
will be no � (p) �= 0 solution for the self-energy in them/α 1 1 regime. However,
once λQ exceeds λQ,c = 1/4 an infinite geometric tower of possible non-trivial
self-energy solutions appears with eigenvalues

mn+1/mn = e−
π√

λQ−λQ,c . (5.13)

The critical point λQ,c = 1/4 corresponds to a critical fermion numberNc = 32/π2

for which the DSI regime is N < Nc. In these term, (5.13) reduces to

mn+1/mn = e
− π√

1
N
− π2

32

π/
√

8

. (5.14)

5.3 Efimov Effect in d Dimensions

As described in Sect. 2.2, the Efimov effect [12, 23, 24] is a remarkable phenomenon
in which three particles form an infinite geometric ladder of low energy bound states.
The effect occurs when at least two of the three pairs interact with a range that is
small compared to the scattering length. It can be shown that the Efimov effect is
possible only for space dimensions 2.3 < d < 3.76 [66] which essentially limits
the phenomenon to 3 dimensions. Interestingly, in the case where d is allowed to be
tuned continuously, two CSI to DSI transitions are initiated at the critical dimensions
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d− = 2.3, d+ = 3.76 [61]. In what follows we outline the main features of this
result.

Low energy 3-body observables of locally interacting identical bosons can be
described by an effective field theory with Lagrangian

L = ψ†
(
i
∂

∂t
+ 1

2
∇2
)
ψ + g2

4

(
�†�
)
− g2

4

(
�†ψ2 + ψ†2

�
)
− g3

36

(
�†�ψ†ψ

)

(5.15)

where ψ is a non-relativistic bosonic atom field,� is a non dynamical ‘diatom’ field
annihilating two atoms at one point and g2, g3 are bare 2-body and 3-body couplings
respectively. With the diatom field and these interaction terms, it is possible to
reproduce the physics of the Efimov effect [11]. The main ingredient of this
procedure is the diagramatic calculation of the atom-diatom scattering amplitude
as shown in Fig. 8. The self-consistent equations described in Fig. 8 leads to the
following approximate relation for the s-wave atom-diatom amplitude As

As (p) = −
(

4

3

) d−2
2 4 sin

(
d
2π
)

π

∫ ∞
0

dq
q

p2 + q2 2F1

( 1
2 1
d
2
; p2q2

p2 + q2

)
As (q)

(5.16)

Since there are no dimension-full parameters in (5.16) we are, once again, faced
with a CSI equation, in analogy with the characteristics of equations (2.2), (3.3),
(5.3), and (5.8). By inserting the ansatz As (p) = ps−1, two possible solutions for
(5.16) are obtained

As ≈ a1p
√
s2−1 + a2p

−√s2−1 (5.17)

Fig. 8 Diagrammatic representation of the atom-diatom scattering amplitude and the diatom
propagator [12]. (a) Diagrammatic self-consistent equation for the atom-diatom scattering ampli-
tude. (b) Diagrammatic self-consistent equation for the diatom field propagator
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where s2 (d) is a solution of the s →−s invariant equation

2 sin

(
dπ

2

)
2F1

(
d−1+s

2
d−1−s

2
d
2

; 1

4

)
+ cos

( s
2
π
)
= 0. (5.18)

The numerical solution s2 (d) of (5.18) shows that near d = d±, s2 (d±) = 0,
∂ds

2 (d−) < 0, ∂ds2 (d+) > 0 and it is analytic. Consequently, near the critical
dimensions d±

s2 (d) = ±c2± (d − d±)+ O (d − d±) (5.19)

with c± > 0. The insertion of (5.19) into (5.17) imply a CSI to DSI transition from
real to complex valued power law behaviour of As . The DSI regime d− < d < d+
is consistent with the strip within which the Efimov states appear. Consequently,
close to the critical points d = d±, As (p) in (5.17) obeys the following DSI scaling
relation (as in (1.1))

As

(
e

πn

c±
√|d−d±|p

)
= e−

πn

c±
√|d−d±|As (p) . (5.20)

The corresponding RG equation for the couplings is

�
d

d�
G = 1− s2 (d)

2
(G−G−) (G−G+) (5.21)

where G(�) ≡ �2g3 (�) /9g2 (�)
2, � is a UV cutoff and

G± ≡ −
(

1±
√
s2 (d)
)
/
(

1∓
√
s2 (d)
)
. (5.22)

In accordance with the RG picture detailed in Sect. 4.1, the insertion of (5.19) shows
that the β-function of G contains two fixed points outside the strip d− < d < d+
which annihilate at d = d±.

6 Summary

The breaking of continuous scale invariance (CSI) into discrete scale invariance
(DSI) is a rich phenomenon with roots in multiple fields in physics. Theoretically,
this transition plays an important role in various fundamental quantum systems such
as the inverse-squared potential (Sect. 2), the massless hydrogen atom (Sect. 3), 2+1
dimensional quantum electrodynamics (Sect. 5.2) and the Efimov effect (Sects. 2.2
and 5.3). This CSI to DSI transition constitutes a quantum phase transition which
appears for single body and strongly coupled many body systems and extends
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through non-relativistic, relativistic and Lifshitz dispersion relations. In a RG
picture the transition describes universal low energy physics without fixed points
and constitutes a physical realization of a limit cycle. Remarkably, the features
of this transition have been measured recently in various systems such as cold
atoms, graphene and Fermi gases [20]. In the DSI phase, the dependence of the
geometric ladder of states on the control parameter (see Table 2) is in the class of
Berezinskii–Kosterlitz–Thouless transitions. This provides an interesting, yet to be
studied, bridge between DSI and two dimensional systems associated with BKT
physics.

The characteristics described above provide the motivation to further study
the ingredients associated with CSI to DSI transitions and we expect that these
transitions will have an increasingly important role across the physics community
in the future.

More generally, it will be interesting to understand how this phenomenon relate
to recent realization of fractal structure in theories of quantum gravitation [75–78]
or to the characteristics of systems that are placed on an explicit fractal space [1, 3,
4, 7, 18, 22, 25, 26, 83, 84, 86].
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The Random Conductance Model with
Heavy Tails on Nested Fractal Graphs

David A. Croydon

Abstract Recently, Kigami’s resistance form framework has been applied to
provide a general approach for deriving the scaling limits of random walks on
graphs with a fractal scaling limit (Croydon, Ann Inst Henri Poincaré Probab Stat
54(4):1939–1968, 2018; Croydon et al., Electron J Probab 22, paper no.82, 41,
2017). As an illustrative example, this article describes an application to the random
conductance model with heavy tails on nested fractal graphs.

Keywords Nested fractal · Random conductance model · Scaling limit · FIN
diffusion

Mathematics Subject Classifications (2010) Primary: 28A80; Secondary: 60K37

1 Introduction

One of the early motivations for the study of stochastic processes on fractals came
from physics, where there was an interest in understanding the dynamical properties
of disordered media. Specifically, certain examples of the latter were modelled by
critical percolation, which is believed to exhibit large scale fractal structure. (See
[15] for background.) The initial response from the mathematics community was
to construct Brownian motion on idealised fractals, such as the Sierpiński gasket
[27, 34]. Since then, the technology has developed to the point where it can engage
with some of the original questions about critical percolation. For instance, recent
work in this direction underlines that the notion of a resistance form, as introduced
by Kigami to provide a broad framework for studying analysis on fractals [30, 31],
is useful for understanding the scaling limits of various models of random walks
on random graphs in critical regimes [20, 21]. We highlight that resistance forms
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are only really applicable in low-dimensional settings, with the stochastic processes
constructed from them typically being point recurrent (note that in the case of the
standard Brownian motion on R

d , the latter property holds only when d = 1, and
this is indeed the only dimension in which the Brownian motion can be described
by a resistance form). A brief introductory survey of the work of [20, 21] already
appears in [19], where a number of applications to random graphs are listed (see also
[4, 5] for some further ones that have appeared more recently), and a conjecture for
critical percolation is made. Here, the aim will be to introduce the general resistance
form results of [20, 21] specifically to an audience that has some familiarity with
analysis on self-similar fractals by presenting in detail an example from [21] which
is of interest in its own right: the random conductance model with heavy tails on
nested fractal graphs.

The nested fractals were originally introduced in [35], and are a class of self-
similar fractals that are finitely-ramified, embedded into Euclidean space and admit
a high degree of symmetry. In the next section we will introduce sequences of graphs
associated with nested fractals, but to keep the presentation concise here, we focus
for the moment on a concrete example of a nested fractal, the Sierpiński gasket in
two dimensions. Let V0 := {x0, x1, x2} ⊆ R

2 consist of the vertices of an equilateral
triangle of side length 1. Write ψi(x) := |x + xi |/2 for i = 0, 1, 2. Then there
exists a unique compact set F such that F = ∪2

i=0ψi(F ); this is the Sierpiński
gasket. We define the associated Sierpiński gasket graphs (Gn)n≥0 by setting the
vertex set V (Gn) := Vn, where Vn := ∪2

i=0ψi(Vn−1) for n ≥ 1, (note that V0
was already defined,) and defining the edge set E(Gn) to be the collection of pairs
of elements of Vn at a Euclidean distance 2−n apart. (The first three graphs in this
sequence are shown in Fig. 1.) For each n, we associate a stochastic process Xn =
(Xnt )t≥0 by supposing Xn is the continuous time Markov chain that has exponential
holding times of unit mean, and at jump times moves to a neighbour of the current
location with uniform probability amongst the possibilities. If we moreover assume
that Xn0 = x0 for each n, then, from the seminal early works in the area [12, 27, 34,
35] it is known that

(
Xn5nt
)
t≥0 →

(
XSGt

)
t≥0

(1.1)

Fig. 1 The Sierpiński gasket graphs G0, G1, G2



The Random Conductance Model with Heavy Tails on Nested Fractal Graphs 241

in distribution in D([0,∞),R2) (that is, the space of cadlag processes on R
2,

i.e. those that are right-continuous and have left-hand limits, equipped with the
usual Skorohod J1-topology—for elementary introductions to this framework, see
[16, Chapter 3] or [39, Chapter 3], for example), where XSG is a strong Markov
diffusion—the so-called Brownian motion on the Sierpiński gasket, started from x0.
We remark that the terminology ‘Brownian motion’ reflects the fact that XSG is
apparently the most natural stochastic process on the Sierpiński gasket—apart from
being a strong Markov diffusion that arises as a scaling limit of random walks on
approximating lattices, it has a distribution that is invariant under the symmetries
of the underlying space, and also satisfies natural scale invariance properties. Given
this, as in other settings, it is natural to ask how robust a result such as (1.1) is to
perturbations in the environment in which the process Xn is based.

One simple, canonical way in which to introduce disorder into the situation is in
terms of the random conductance model. Specifically, letG = (VG,EG) be a locally
finite, connected graph. Let ω = (ωe)e∈EG be a collection of independent and
identically distributed (i.i.d.) strictly-positive random variables built on a probability
space with probability measure P; these are the so-called random conductances.
(Actually, for our model of self-similar fractals, we will later allow some local
dependence.) Conditional on ω, we define the variable speed random walk (VSRW)
XV = (XVt )t≥0 to be the continuous-time VG-valued Markov chain with jump rate
from x to y given by ωxy if {x, y} ∈ EG, and jump rate 0 otherwise. We obtain the
associated constant speed random walk (CSRW)XC = (XCt )t≥0 by setting the jump
rate along edge x to y to be ωxy/ν({x}), where

ν ({x}) :=
∑

e∈EG: x∈e
ωe; (1.2)

note that the latter process has unit mean holding times at each vertex, and so Xn as
described in the previous paragraph is simply the CSRW whenGn is equipped with
unit conductances ωe ≡ 1.

An important observation is that the VSRW and CSRW experience different
trapping behaviour on edges of large conductance. In particular, if we have an edge
of conductance ωe 4 1 (surrounded by other edges of conductance close to 1),
then both the VSRW and CSRW cross the edge order ωe times before escaping.
However, each crossing only takes the VSRW a time of 1/ωe, meaning that it is
only trapped for a time of order 1, whereas each crossing for the CSRW takes a
time of order 1, and so the latter process is trapped for a total time of order ωe. In
particular, when the weights are bounded away from 0, but not bounded above, we
might expect the VSRW of the random conductance model to behave like the VSRW
on the unweighted graph. For the CSRW, however, we would expect the trapping
to be more significant, potentially leading to anomalous scaling if the weights are
suitably inhomogeneous.

The random conductance model has been studied in a range of settings, via which
the intuition of the previous paragraph has been shown to reflect the actual behaviour
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of the VSRW and CSRW. In the case of Zd with d ≥ 2, for example, it has been
established that if the weights are bounded away from 0, then the VSRW always
scales diffusively to a Brownian motion [11]. On the other hand, for the CSRW this
is only true when the weights also have a finite first moment [11]. (In fact, both
these results also apply when d = 1, cf. remarks in [17, 21]. See also [2] for the
case when the weights are unbounded below, and [3] for results beyond the case of
i.i.d. conductances.) For weights whose tail no longer has a first moment, but is in
the normal domain of attraction of an α-stable random variable, namely there exists
a constant c ∈ (0,∞) such that

uαP (ωe > u)→ c (1.3)

as u→∞, one instead sees as a scaling limit for the CSRW the fractional kinetics
process—this is a Brownian motion subordinated by an α-stable process, which is
subdiffusive [13, 38]. The subordination here reflects that in its first n jumps, the
random walk visits Cn sites, and the time spent in these grows like a sum of n
i.i.d. α-stable random variables, so is of order n1/α 4 n (there are logarithmic
corrections needed when d = 2 [38]). In d = 1, the simple random walk revisits
sites more often, and so although it is also true that the CSRW is subdiffusive when
the weights satisfy (1.3), the nature of the process is different. Rather, the limiting
process, is a Brownian motion time-changed by the Poisson random measure

ν(dx) =
∑
i

viδxi (dx), (1.4)

where (vi, xi)i∈N is a Poisson point process with intensity αv−1−αdvdx, and
δxi is the probability measure placing all its mass at xi ; this random measure
can be viewed as the scaling limit of the random trapping environment [38].
After its introduction in [25] as a scaling limit for a random walk with strongly
inhomogeneous random jump rates, the Brownian motion time-changed by ν is
called the Fontes–Isopi–Newman diffusion.

For fractals, the random conductance model has previously been studied in
[32, 33], where homogenisation was shown for certain classes of fractal graphs
when the weights were bounded uniformly below and above. Here, we explain
the progress of [21], in which a framework was developed that allowed unbounded
weights, and particularly weights satisfying (1.3) to be considered. For the particular
case of nested fractals (the precise definition of which is recalled in the next section),
one knows that diffusions on such spaces are point recurrent, and so it is natural
to conjecture that the nature of the random conductance model is likely to be more
closely related to the one-dimensional Euclidean picture than the higher dimensional
situation. The aim of this article is to explain that this is indeed the case, with the
main result being stated as Theorem 4.5. We note that, although we restrict to nested
fractals here, in [21], the slightly more general setting of uniformly finitely ramified
fractals was considered. Moreover, we also remark that heat kernel estimates for the
limiting processes are given in [22].
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The remainder of the article is organised as follows. After introducing the model
in Sect. 2, we go on to study the renormalisation and homogenisation of associated
resistance metrics in Sect. 3, and then present the main scaling result in Sect. 4.

2 Random Conductance Model on Nested Fractal Graphs

In this section, we introduce precisely the model that will be of interest in the
remainder of the article, starting with the notion of a nested fractal. For β > 1
and I = {1, 2, · · · , N}, let (ψi)i∈I be a family of contraction maps on R

d such that
ψi(x) = β−1Uix + γi for x ∈ R

d , where Ui is a unitary map and γi ∈ R
d . As

(ψi)i∈I is a family of contraction maps, there exists a unique non-void compact set
F such that F = ∪i∈Iψi(F ). We assume the following.

Open set condition There is a non-empty, bounded open setW such that the sets
(ψi(W))i∈I are disjoint and ∪i∈Iψi(W) ⊆ W .

The maps (ψi)i∈I have unique fixed points, and we denote the set of these by Fix.
A point x ∈ Fix is called an essential fixed point if there exist i, j ∈ I, i �= j and
y ∈ Fix such that ψi(x) = ψj (y). We write V0 for the set of essential fixed points.
Denoting ψi1,...,in = ψi1 ◦ · · · ◦ ψin for each n ≥ 0 and i1, · · · , in ∈ I , we call
a set of the form ψi1,··· ,in (V0) an n-cell. The further assumptions we make are the
following.

Connectivity For any 1-cells C and C′, there is a sequence C = C0, C1, . . . ,

Cn = C′ of 1-cells such that Ci−1 ∩ Ci �= ∅ for i = 1, . . . , n.
Symmetry For any x, y ∈ R

d with x �= y, let Hxy denote the hyperplane
perpendicularly bisecting x and y, and Uxy denote reflection with respect toHxy .
If x, y ∈ V0 and x �= y, then Uxy maps n-cells to n-cells, and maps any n-cell
which contains elements on both sides of Hxy to itself for each n ≥ 0.

Nesting/Finite ramification If n ≥ 1 and if (i1, · · · , in) and (j1, · · · , jn) are
distinct elements of In, then

ψi1,...,in (F )
⋂
ψj1,...,jn(F ) = ψi1,...,in (V0)

⋂
ψj1,...,jn(V0).

A nested fractal F is a set determined by (ψi)i∈I satisfying the above assumptions
with |V0| ≥ 2. Throughout, we assume without loss of generality that ψ1(x) =
β−1x and 0 belongs to V0. We observe that the class of nested fractals was
introduced in [35], and is included in the class of uniformly finitely ramified fractals,
first introduced in [28] (and upon which the random conductance model was studied
in [21]), and the latter collection is included in the class of post-critically finite
self-similar sets [30]. We note that the Sierpiński gasket is a nested fractal, other
examples include the Vicsek set, and Lindstrøm’s snowflake. Some discussion about
the restrictiveness of the axioms for nested fractals appears in [8, Remark 5.25].
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Related to the nested fractal itself, we now introduce a sequence of nested fractal
graphs (Gn)n≥0. As in the case of the Sierpiński gasket described in the introduction,
the Gn has vertex set Vn given by ∪Ni=1ψi(Vn−1), where V0 is as defined above.
Moreover, for each n, the edge set En of Gn consists of the collection of pairs of
vertices that are contained in the same n-cell. We let μn be the counting measure on
Vn (placing mass one on each vertex).

Finally for this section, let us describe the version of the random conductance
model that is of interest here. For each n ≥ 1, let ωn = (ωne )e∈En be a collection
of strictly-positive random variables built on a probability space with probability
measure P. We assume the following conditions on the weights.

Independence Weights within each n-cell are independent copies of ω0.
Uniform lower bound There exists a deterministic constant c > 0 such that, P-

a.s.,

ω0
e ≥ c.

α-stable tail decay There exist constants α ∈ (0, 1) and c ∈ (0,∞) such that the
random conductance distribution satisfies

uαP

⎛
⎝∑
e∈E0

ω0
e > u

⎞
⎠→ c (2.1)

as u→∞.

Given a realisation of weights satisfying these assumptions, we define the variable
speed random walk Xn,V and constant speed random walk Xn,C on Gn, as per the
conventions in the introduction. Specifically, both have jump chains given by the
simple random walk on the graph Gn. The process Xn,V has exponential holding
times, with the mean of the holding times at vertex x ∈ Vn being given by 1/νn({x}),
where, similarly to (1.2),

νn ({x}) :=
∑

e∈En: x∈e
ωne ; (2.2)

the process Xn,C has unit mean exponential holding times. The so-called quenched,
i.e. conditional on the conductances, laws of Xn,V and Xn,C started from a
vertex x ∈ Vn will be denoted Pn,Vx and Pn,Cx , respectively. The corresponding
averaged/annealed laws are then given by

P
n,V
x :=

∫
Pn,Vx (·) dP, P

n,C
x :=

∫
Pn,Cx (·) dP.

The aim of this article is to describe scaling limits for both Xn,V and Xn,C under
their annealed laws; the main result is stated as Theorem 4.5. Some discussion as
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to why we consider the annealed laws, rather than the quenched laws, is given in
Remark 4.8.

3 Homogenisation of Resistance

In this section, we will briefly recall the now classical construction of a resistance
metric on a nested fractal via graphical approximations. Following this, we explain
what is perhaps the main result of [21] concerning self-similar fractals, which is
that the same resistance metric arises from the random conductance model defined
in the previous section, i.e. homogenisation of the resistance occurs. Roughly
speaking this can be interpreted as meaning that, apart from normalisation by a
deterministic constant, the randomness of the conductances is insignificant on large
scales. Intuitively, this might be expected since, whilst the tail decay at (2.1) leads to
the occasional exceptionally large edge conductance, or equivalently the occasional
exceptionally small edge resistance, as we rescale, neighbouring points are anyway
close in terms of resistance, and so this does not lead to large scale distortions.

Before getting to resistance metrics, however, we introduce the canonical
Dirichlet form and Brownian motion on a nested fractal. In Lindstrøm’s original
work on nested fractals [35], transition probabilities (qx,y)x,y∈V0 satisfying qx,x = 0
and
∑
y∈V0

qx,y = 1 for x ∈ V0, and also qx,y = qy,x > 0 for x �= y ∈ V0 were
introduced. Importantly, it was further established that the quantities (qx,y)x,y∈V0

could be chosen to be invariant under renormalisation in the sense we now describe.
Specifically, define a quadratic form by setting

E0(f, f ) = 1

2

∑
x,y∈V0

qx,y (f (x)− f (y))2

for f ∈ F0 := {f : V0 → R}. One obtains a further quadratic form on the same
space by defining

Ẽ0(f, f ) = inf

{∑
i∈I

E0 (g ◦ ψi, g ◦ ψi) : g : V1 → R, g|V0 = f
}

for f ∈ F0. The invariance under renormalisation of [35, Theorem V.5] then has
the equivalent statement that there exists a constant ρ > 1 such that E0 = ρẼ0.
Moreover, it is now known that the latter condition, together with the assumption
that q are the entries of a stochastic matrix, ensure the uniqueness of (qx,y)x,y∈V0

(see [37, Theorem 6.8] and [33, Corollary 3.5]). Given (qx,y)x,y∈V0 and ρ, for n ≥ 1
we then let

En(f, f ) = ρn
∑

i1,...,in∈I
E0
(
f ◦ ψi1,...,in , f ◦ ψi1,...,in

)
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for f ∈ Fn := {f : Vn → R}. One then obtains a canonical quadratic form on F
by setting

E(f, f ) := lim
n→∞En(f |Vn, f |Vn)

for any f ∈ F := {f ∈ C(F,R) : limn→∞ En(f |Vn, f |Vn) <∞}. Importantly, the
resulting quadratic form (E,F) turns out to be a Dirichlet form on L2(F, μ), where
μ is the unique self-similar probability measure on F , that is, the only probability
measure satisfying

μ = 1

N

∑
i∈I
μ ◦ ψ−1

i .

As a consequence, standard machinery from probability theory (see [26], for
example) yields that there exists a corresponding Markov process XF = (XFt )t≥0,
which is now commonly called the Brownian motion on the nested fractal F .

We next describe the parallel construction of the resistance metric on F . To start
with one possible definition, we observe that from the quadratic form (E,F), one
obtains a metric on F by defining

R(x, y)−1 := inf {E(f, f ) : f ∈ F, f (x) = 1, f (y) = 0} , x, y ∈ F, x �= y;
(3.1)

this is the resistance metric on F . In fact, the above description of R yields a
one-to-one relationship between a class of quadratic forms called resistance forms
(of which (E,F) is one) and a class of metrics called resistance metrics (see [30,
Theorems 2.3.4, 2.3.6], for example). An alternative definition of R is via resistance
metrics on the finite graphs. Specifically, suppose Rn is the resistance metric on Vn
induced by placing conductances according to (ρ−nqx,y)x,y∈V0 along edges of n-
cells, i.e. setting the conductance from ψi1,...,in (x) to ψi1,...,in (y) to be ρ−nqx,y ;
alternatively, Rn can be defined from (En,Fn) analogously to (3.1). From the
invariance under renormalisation of E0, one can check that

Rn = Rm|Vn, ∀m ≥ n.

From this it readily follows that we have R = limn→∞ Rn(x, y) on V∗ = ∪n≥0Vn.
In particular, R|Vn = Rn. With some additional work to check that (F,R) is the
completion of (V∗, R), we obtain that Vn converges to F with respect to Hausdorff
topology on compact subsets of (F,R). (See [29] for proofs of these claims.)

It transpires that one obtains the limit described in the preceding paragraph if
the deterministic conductances characterised by (qx,y)x,y∈V0 are replaced by the
random conductances of the previous section. That is, suppose Rωn is the resistance
metric on Vn induced by placing conductances according to (cρ−nωne )e∈En along
edges of the graph, where c ∈ (0,∞) is a deterministic constant that depends on the
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law of the conductances; this is the metric given by (3.1) for the following quadratic
form

1

2c
ρn
∑

i1,...,in∈I

∑
x,y∈V0

ωnψi1,...,in (x),ψi1,...,in (y)
(
f ◦ ψi1,...,in (x)− f ◦ ψi1,...,in (y)

)2
,

which is defined for f ∈ Fn. From [21, Theorem 6.11], we then have that, in P-
probability,

(
Rωn (x, y)

)
x,y∈V0

→ (R(x, y))x,y∈V0
, (3.2)

where we note that the constant c is determined by this result. The proof in
[21], which can heuristically be understood as establishing contractivity of a
renormalisation map, resembles that of the corresponding results in [32, 33].
However, the lack of a uniform upper bound on the conductances leads to significant
technical challenges, particularly in checking that certain quantities are integrable,
as is required for the argument to work. From (3.2) and the trivial bound that
Rωn ≤ CRn, (which follows from the fact that the conductances are bounded away
from 0,) we readily obtain the following proposition.

Proposition 3.1 ([21, Lemma 6.14]) In P-probability,

sup
x,y∈Vn

∣∣Rωn (x, y)− R(x, y)∣∣→ 0.

Since (Vn, Rωn ) can not in general be isometrically embedded into (F,R), then
the usual Hausdorff topology on (F,R) is not the right topology with which to
discuss convergence. However, one can instead conclude from the previous result
(and some small additional technical work again depending on the bound Rωn ≤
CRn) that (Vn, Rωn ) converges to (F,R) with respect to the Gromov–Hausdorff
topology, that is, all the spaces in question can be isometrically embedded into
a common metric space so that the Vn converges to F with respect to the usual
Hausdorff metric on this space (see [18, Chapter 7] for background on the Gromov–
Hausdorff topology).

4 Random Walk Scaling Limits

Proposition 3.1 is the main ingredient to proving scaling limits for the variable
speed random walk Xn,V and the constant speed random walk Xn,C . Indeed, the
only additional input required is the convergence under scaling of the counting
measure μn and the measure νn defined in terms of conductances at (2.2), which is
straightforward to prove. The machinery that allows us to proceed with this program
is the main result of [20] (which gives a more general version of the result of [21]).
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To introduce the abstract result we appeal to precisely, let us fix the frame-
work. In particular, we write F

∗
c for the collection of quintuples of the form

(K,RK,μK, ρK, φK), where: K is a non-empty set; RK is a resistance metric on
K such that (K,RK) is compact; μK is a locally finite Borel regular measure of full
support on (K,RK); ρK is a marked point in K , and φK is a continuous map from
K to some fixed metric space (M, dM). From the point of view of metric geometry,
there is a natural notion of convergence of such spaces which gives rise to the
marked spatial Gromov–Hausdorff–Prohorov topology. Specifically, convergence
of some sequence in F

∗
c means that all the spaces can be isometrically embedded

into a common metric space (M, dM) in such a way that: the embedded sets
converge with respect to the Hausdorff distance, the embedded measures converge
weakly, the embedded marked points converge, and the image of the continuous
map is close in M for points that are close in M. We note that such Gromov–
Hausdorff-type topologies have proved useful for studying various kinds of random
metric spaces; see [18] for an introduction to the classical theory. More specifically,
the marked spatial Gromov–Hausdorff–Prohorov topology was introduced in [14],
building on the notions of the Gromov–Hausdorff–Prohorov/Gromov–Hausdorff-
vague topologies of [1, 7, 24, 36] and the topology for spatial trees of [23] (cf. the
spectral Gromov–Hausdorff topology of [21]).

Importantly, that the elements (K,RK,μK, ρK, φK) of F∗c incorporate a resis-
tance metric means that there is a naturally associated stochastic process. For, it is
a result of Kigami that the corresponding resistance form, characterised via (3.1), is
a regular Dirichlet form on L2(K,μK), and so naturally associated with a Markov
process (see [31, Chapter 9], for example). The following result establishes that, if
the convergence described in the previous paragraph occurs, then we also obtain
convergence of stochastic processes.

Theorem 4.1 ([20, Theorem 7.2]) Suppose that (Kn,RKn, μKn, ρKn, φKn)n≥1 is a
sequence in F

∗
c satisfying

(
Kn,RKn, μKn, ρKn, φKn

)→ (K,RK,μK, ρK, φK) (4.1)

in the marked spatial Gromov–Hausdorff–Prohorov topology for some element
(K,RK,μK, ρK, φK) ∈ F

∗
c . It then holds that

PnρKn

((
φKn(X

n
t )
)
t≥0 ∈ ·

)
→ PρK

(
(φK(Xt ))t≥0 ∈ ·

)

weakly as probability measures on D(R+,M), where ((Xnt )t≥0, (P
n
x )x∈Kn) is the

Markov process corresponding to (Kn,RKn, μKn, ρKn), and ((Xt )t≥0, (Px)x∈K) is
the Markov process corresponding to (K,RK,μK, ρK).

Remark 4.2 The key to the proof of the above result in [20] is the observation
that for a process associated with a resistance metric, it is possible to explicitly
express the associated resolvent kernel in terms of the resistance metric. (This was
also the basis of the corresponding argument for trees from [6].) Specifically, if
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((Xt )t≥0, (Px)x∈K) is the Markov process associated with (K,RK,μK, ρK, φK) ∈
F
∗
c , define the resolvent of X killed on hitting x by

Gxf (y) = Ey
∫ σx

0
f (Xs)ds,

where Ey is the expectation under Py , and σx := inf{t ≥ 0 : Xt = x} is the
hitting time of x by X. (NB. Processes associated with resistance forms hit points;
the above expression is well-defined and finite.) One can then write

Gxf (y) =
∫
K

gx(y, z)f (z)μK(dz),

where the resolvent kernel is given by

gx(y, z) = RK(x, y)+ RK(x, z)− RK(y, z)
2

.

(See [31, Theorem 4.3].) Appealing to this formula, the metric measure convergence
at (4.1) enables one to check the convergence of resolvents in a certain sense. One
can then use more standard machinery from probability theory to establish semi-
group convergence, and moreover convergence of finite dimensional distributions.
To complete the proof, one is also required to check tightness of the processes (see
[16, Chapter 16]), but again this can be deduced from the above resolvent density
formula (or, more precisely, a slight generalisation thereof). See [20] for details.

Remark 4.3 Whilst Theorem 4.1 has an appealingly concise statement, checking
the assumption at (4.1) is by no means trivial. Indeed, beyond the case of graph trees
(or graphs that are close to trees), where the resistance metric corresponds to (or is
close to, respectively) a shortest path metric, or certain finitely ramified self-similar
fractals, where the resistance metric can be studied by using the particular structure
of the space, understanding detailed properties of the resistance metric remains a
challenge. To give just one example of an open problem from the world of self-
similar fractals, it is still not known how to compute the value of the resistance
exponent for graphs based on the two-dimensional Sierpiński carpet, see [9] for
some work in this direction, and the discussion in [10, Example 4] concerning the
graphical Sierpiński carpet in particular.

We will apply Theorem 4.1 with Kn = Vn, RKn = Rωn , μKn = μn or μKn = νn,
ρKn = 0, and φKn := In, where In is the identity map from Kn into R

d . The
following lemma gives us the scaling limits of the measures. To state the result, we
introduce a Poisson random measure on F by setting

ν(dx) =
∑
i

viδxi (dx),
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where (vi, xi)i∈N is a Poisson point process with intensity αv−1−αdvμ(dx), and
δxi is the probability measure placing all its mass at xi . (This is the analogue of the
measure defined at (1.4) in the present setting.) Note that the exponent α is given by
the tail of the conductance distribution (2.1).

Lemma 4.4 It holds that N−nμn → μ, and also there exists a deterministic
constant c0 ∈ (0,∞) such that c−1

0 N
−n/ανn → ν in distribution, in both cases

with respect to the weak topology for finite measures on R
d .

Combining Proposition 3.1 and Lemma 4.4, we readily obtain that

(
Vn,R

ω
n ,N

−nμn, 0, In
)→ (F,R,μ, 0, I ) , (4.2)

in P-probability, and

(
Vn,R

ω
n , c

−1
0 N

−n/ανn, 0, In
)
→ (F,R, ν, 0, I ) ,

in distribution under P with respect to the marked spatial Gromov–Hausdorff–
Prohorov topology, where I is the identity map from F into R

d . Since Xn,V

is the process associated with (Vn, c−1ρnRωn , μn, 0, In), and Xn,C is the process
naturally associated with (Vn, c−1ρnRωn , νn, 0, In), we are consequently able to
apply Theorem 4.1 to deduce a scaling limit for these processes. (By considering the
generators of the relevant Markov processes, it is readily checked how the resistance
and mass scaling factors can be interpreted in terms of time scaling.) As for the
limiting processes, we note that the Brownian motion XF is the process associated
with (F,R,μ, 0)—we write the law of this process started from 0 as P0. Moreover,
the process associated with (F,R, ν, 0) is the time-change of XF according to ν,
that is, defining an additive functional

At :=
∫ t

0
Lt(x)ν(dx),

where (Lt (x))x∈F, t>0 are the jointly continuous local times of XF (with respect to
μ), and its right-continuous inverse τ(t) := inf{s > 0 : As > t}, we set

X
F,ν
t := XFτ(t);

following the definition of the corresponding one-dimensional process in [25], we
call this the FIN diffusion on F . The averaged/annealed law of the FIN diffusion on
F , started from 0, will be denoted

P
FIN
0 :=

∫
P0

(
XF,ν ∈ ·

)
dP,
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i.e. one chooses ν according to P, and then the law ofXF,ν is determined by the law
of XF under P0.

Theorem 4.5 There exists a deterministic constant c1 ∈ (0,∞) such that

P
n,V
0

((
X
n,V
c1t (ρN)

n

)
t≥0
∈ ·
)
→ P0

((
XFt

)
t≥0
∈ ·
)

weakly as probability measures on D(R+,Rd). Moreover, there exists a determin-
istic constant c2 ∈ (0,∞) such that

P
n,C
0

((
X
n,C

c2t (ρN
1/α)n

)
t≥0
∈ ·
)
→ P

FIN
ρ

((
X
F,ν
t

)
t≥0
∈ ·
)

weakly as probability measures on D(R+,Rd).

Remark 4.6 To state the result for the Sierpiński gasket explicitly, note that in this
case we have N = 3 and ρ = 5/3, so that

P
n,V
0

((
X
n,V
c1t5n

)
t≥0
∈ ·
)
→ P0

((
XFt

)
t≥0
∈ ·
)
,

and we also have

P
n,C
0

((
X
n,C

c2t5n(3
1
α −1)n

)
t≥0
∈ ·
)
→ P

FIN
0

((
X
F,ν
t

)
t≥0
∈ ·
)
.

In particular, the scaling regime for the variable speed random walk matches that
of the simple random walks on the unweighted graphs, as stated at (1.1); and since
α < 1, the constant speed random walk (or limiting diffusion) moves through the
relevant graph more slowly than the unweighted simple random walk (or Brownian
motion, respectively). Together with known results for simple random walks on
nested fractal graphs, Theorem 4.5 implies that these qualitative comments apply
to nested fractal graphs in general.

Remark 4.7 When Eω0
e < ∞ for each e ∈ E0, one obtains in place of the second

claim of Lemma 4.4 that there exists a constant c0 such that c−1
0 N

−nνn → μ.
Consequently, if (2.1) is replaced by the assumption of finite first moments, then
one can check the annealed limit of Xn,C is Brownian motion, rather than the FIN
diffusion that appears in the second statement of Theorem 4.5.

Remark 4.8 A stronger notion of convergence than convergence with respect to the
annealed law is convergence with respect to the quenched law for P-a.e. realisation
of the conductances. Typically, one might hope to be able to prove such a quenched
convergence statement in the case where the conductances homogenise, as has
been established when the underlying graph is a Euclidean lattice (see [2, 3, 11],
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for example). In particular, it would be natural to conjecture that for the example
described in this article, the quenched law of the VSRW Xn,V converges as n→∞
for typical realisations of the environment. To do this, it would be sufficient to
replace the weak (i.e. in probability) statement of (4.2) with a strong (i.e. P-a.s.)
one. However, the techniques of [21] are not sufficient to yield such a result. As
for the CSRW Xn,C , the typical fluctuations of the conductance environment as n
varies will be too large to permit a quenched limit statement (cf. the law of the
iterated logarithm for simple random walk on Z, which implies that individual
sample paths can not be rescaled to a realisation of Brownian motion on R, even
though the discrete paths have the latter process as a distributional limit).
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Space-Time Duality for Semi-Fractional
Diffusions

Peter Kern and Svenja Lage

Abstract Almost 60 years ago Zolotarev proved a duality result which relates an α-
stable density for α ∈ (1, 2) to the density of a 1

α
-stable distribution on the positive

real line. In recent years Zolotarev duality was the key to show space-time duality
for fractional diffusions stating that certain heat-type fractional equations with a
negative fractional derivative of order α in space are equivalent to corresponding
time-fractional differential equations of order 1

α
. The point source solutions of the

former are given by negatively skewed α-stable densities, whereas the latter are
solved by densities of corresponding inverse 1

α
-stable subordinators. We review this

space-time duality and take it as a recipe for a previously unknown generalization
from the stable to the semistable situation.

Keywords Zolotarev duality · Fractional diffusion · Semi-fractional derivative ·
Semistable Lévy process · Subordinator · Hitting-time

Mathematics Subject Classifications (2010) Primary: 35R11, Secondary:
26A33, 60G18, 60G22, 60G51, 82C31

1 Introduction

The objects of our study are one-dimensional Lévy processes with a certain self-
similarity property. A Lévy process X = (Xt )t≥0 on R is a stochastic process
starting in X0 = 0 with the following properties:

• X has independent increments, i.e. (Xt(k) − Xt(k−1))k=1,...,n are independent
random variables for finitely many time points 0 = t (0) < t(1) < · · · < t(n).

• X has stationary increments, i.e. Xt − Xs d= Xt−s for all 0 ≤ s ≤ t , where
d=

denotes equality in distribution.
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• X is stochastically continuous, i.e. P {|Xt −Xs | > ε} → 0 as |t − s| → 0 for all
ε > 0.

We will further assume that the process is strictly self-similar in the statistical sense
that

(Xct )t≥0
fd= (c1/αXt )t≥0 for all c > 0, (1.1)

where
fd= denotes equality of all joint distributions for finitely many time points.

Then necessarily X is a stable Lévy process with parameter α ∈ (0, 2], where we
exclude the degenerate case Xt = μt for some μ ∈ R, corresponding to α = 1.
In the case of α = 2 we have Brownian motion with a certain variance parameter
σ 2 > 0. Brownian motion is exceptional among the α-stable Lévy processes, since
its sample paths t �→ Xt(ω) are continuous for almost all ω ∈ � of the underlying
probability space (�,A, P ), whereas for 0 < α < 2 the sample paths of an α-stable
process are almost surely càdlàg functions (right-continuous with left limits) with
jumps as illustrated in Fig. 1. For all α ∈ (0, 2] the paths of an α-stable process
can be considered as random fractals which in many aspects almost surely share
the same fractal behavior. E.g. the Hausdorff dimension of the range, the graph or
multiple points only depend on α and the space dimension for multivariate stable
Lévy processes. Classical results on the fractal behavior of Brownian paths [7, 21,
44] were later extended to the case of multivariate stable processes in [4, 11, 13, 34,
36, 37, 45, 46] to mention just a few striking results. For an excellent overview on
fractal path behavior we refer to the survey article [48].

It is further known that Xt has a smooth probability density x �→ p(x, t) for
every t > 0, in particular these are C∞(R)-functions such that the density itself and
all its derivatives belong to C0(R) ∩ L1(R). However, no closed form solution of
stable densities are known besides α = 2 (Gaussian), α = 1 (Cauchy) and a certain
density for α = 1

2 called Lévy density, which becomes important later on. In the
following we will exclude the often exceptional cases α = 2 (Brownian motion)
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Fig. 1 Sample paths of a Brownian motion for α = 2 are continuous (left), whereas sample paths
of a stable Lévy process with α ∈ (0, 2) have jumps (right)
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and α = 1 (Cauchy and degenerate process). Since the description of stable Lévy
processes by their probability densities are not easily accessible, the processes are
best characterized by their Fourier transforms (FT) in terms of the Lévy–Khintchine
formula

E[exp(ik Xt )] = p̂(k, t) = exp(tψ(k))

with log-characteristic function

ψ(k) = iμk +
∫
R\{0}

(
eikx − 1− ikx

1+ x2

)
dφ(x) (1.2)

for some unique drift parameter μ ∈ R and a unique Lévy measure

dφ(x) = D
(
p · x−α−11{x>0} + q · |x|−α−11{x<0}

)
dx, (1.3)

where D > 0 and p, q ≥ 0 with p + q = 1. Thus it is sufficient to describe the
distribution of X1 for which three additional parameters D > 0, p ∈ [0, 1] and
μ ∈ R are needed besides the parameter α ∈ (0, 2) \ {1}. According to [39], there is
an alternative parametrization of the probability density p(x, 1) = g(x;α, β, σ, v)
as the unique function with FT

ĝ(k;α, β, σ, v) = p̂(k, 1) = exp
(
ivk − σα|k|α (1− iβ sign(k) tan(α π2 )

))
,

(1.4)

where β = p − q ∈ [−1, 1] is a skewness parameter, σ = (D · | cos(α π2 )|)1/α > 0
is a scale parameter, and v = μ − ∫

R\{0}(
x

1+x2 − x 1{α>1})dφ(x) is a centering
parameter. In particular, the strict self-similarity (1.1) holds iff v = 0. To visualize
the impact of the parameters α and β on ranges that will become important later in
this article, various stable densities for constant ν = 0 and σ > 0 are plotted in
Fig. 2 using Fourier inversion techniques.

A further description of stable Lévy processes comes from the fact that for
suitable functions f the operators Ttf (x) = E[f (x − Xt)], t ≥ 0, determine a
C0-semigroup with generator

Lf (x) = −μf ′(x)+
∫
R\{0}

(
f (x − y)− f (x)+ y f

′(x)
1+ y2

)
dφ(x) (1.5)

and FT L̂f (k) = ψ(k) · f̂ (k) with ψ from (1.2) and φ as in (1.3). For a
comprehensive overview on (stable) Lévy processes we refer to the monographs
[39, 40].
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Fig. 2 Stable densities g(x;α, 0, 4, 0) for α = 2, α = 1.7 and α = 1.1 (left) and g(x; 1.5, β, 1, 0)
for β = 0, β = −0.3, β = −0.6 and β = −1 (right)

It is well known that for α = 2 the Brownian motion with variance parameter
σ 2 > 0 has probability density

p(x, t) = 1√
2πσ 2t

exp

(
−1

2

x2

σ 2t

)
for x ∈ R and t > 0

which is a solution to the one-dimensional heat equation

∂

∂t
p(x, t) = σ

2

2

∂2

∂x2 p(x, t)

with initial point source p(x, 0) = δ(x). As laid out in [32], for α ∈ (0, 2) \ {1} the
stable densities are point source solutions to the fractional diffusion equation

∂

∂t
p(x, t) = −v ∂

∂x
p(x, t)+ C

(
1+ β

2

∂α

∂xα
p(x, t)+ 1− β

2

∂α

∂(−x)α p(x, t)
)
,

(1.6)

where C > 0 if α ∈ (1, 2), C < 0 if α ∈ (0, 1), v ∈ R is a velocity
(centering) parameter, and β ∈ [−1, 1] is the skewness parameter. Here ∂α

∂xα
f (x)

and ∂α

∂(−x)α f (x) denote the positive and negative Riemann–Liouville fractional
derivatives defined for suitable functions f as the unique functions with FT
(−ik)αf̂ (k), respectively (ik)αf̂ (k). Due to L̂f = ψ · f̂ these can also be defined
by means of the generators of α-stable Lévy processes with ν = 0 and skewness
parameter β = 1, respectively β = −1. Formally, for integers α ∈ N the FT of
the Riemann–Liouville fractional derivative coincides with

∫
R
e±ikxf (α)(x) dx =

f̂ (α)(±k) and thus fractional derivatives generalize integer order derivatives. For
details on fractional calculus we refer to the monographs [22, 38].
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Since stable Lévy processes contain both fractal behavior of sample paths and
probability densities solving a fractional pde, they contribute to an ongoing discus-
sion on the connection of fractal geometry and fractional calculus [6, 23, 43]. The
fractional pde (1.6) is our starting point towards space-time duality for fractional
diffusions. In Sect. 2 we will review this fractional pde approach and a remarkable
connection to Zolotarev duality. In the special case of a negatively skewed stable
Lévy process with α ∈ (1, 2), the fractional diffusion equation is known to be
equivalent to a time-fractional pde with an ordinary first-order derivative in space,
which is called space-time duality [1, 14]. This perfectly reflects Zolotarev duality
for the related stable densities. From a physical point of view this space-time
duality has an important impact. Since fractional derivatives are non-local operators,
the fractional diffusion equation lacks a meaningful physical interpretation. As
mentioned by Hilfer [12], due to non-locality in space, experimentally a closed
system cannot be separated from its outer environment, whereas non-locality in time
does not violate physical principles if one accepts long memory effects.

We will further consider Lévy processes with a discrete scaling property such
that (1.1) only holds for some c > 1 and thus for all integer powers of c, but not
necessarily for all c > 0:

(Xcmt )t≥0
fd= (cm/αXt )t≥0 for some c > 1 and all m ∈ Z.

These processes are called semistable Lévy processes and are determined by log-
periodic perturbations of the tails of the Lévy measure, i.e. instead of (1.3) we have
for all x > 0

φ(x,∞) = x−αθ+(log x) and φ(−∞,−x) = x−αθ−(log x), (1.7)

where θ± are non-negative, log(c1/α)-periodic functions such that x �→
x−αθ±(log x) are non-increasing, which we call admissable. Replacing the Lévy
measure (1.3) by (1.7), the formulas (1.2) for the log-characteristic function and
(1.5) for the generator remain valid for a semistable Lévy process. For details on
semistable distributions and Lévy processes we refer to the monographs [30, 40].
Log-periodic disturbances of power law behavior frequently appears in a variety
of physical applications [41, 49] and also in finance [42]. The most prominent
example of a semistable Lévy process which is not stable is the limiting process
for the normalized gain in successive St. Petersburg games derived in [8, 29]. Here,
the Lévy measure φ is concentrated on 2Z with φ({2m}) = 2−m for all m ∈ Z

such that c = 2, α = 1, θ− ≡ 0 and θ+(x) = 2〈
x

log 2 〉, where 〈x〉 = x − �x�
denotes the fractional part of x ∈ R. For details see [17] where also fractal path
properties of this particular semistable Lévy process are investigated. However,
since α = 1 the example is outside the scope of this article. In recent years the
fractal path behavior of general semistable Lévy processes has been investigated,
complementing the above mentioned classical results for their stable counterparts.
It turned out that in terms of Hausdorff dimension the range, the graph and multiple
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points of the sample paths almost surely are not affected by the log-periodic
perturbations [16, 19, 28, 47] even in terms of exact Hausdorff measure [18].
Nevertheless, semistable Lévy processes show a different behavior when turning
to probability densities which are known to be of class C∞(R) again with all its
derivatives belonging to C0(R) ∩ L1(R). Recently, semi-fractional derivatives have
been introduced in [20] such that densities of semistable Lévy processes solve
corresponding semi-fractional diffusion equations. This new class of fractional
derivatives can be seen as a special case of general fractional derivatives as in
[24, 25]. In Sect. 3 we ask for a new duality result concerning the more general
class of semistable Lévy processes. The approach allows us to develop a novel
dual equation with a semi-fractional derivative in time in which the log-periodic
disturbances cause an additional inhomogeneity and thus shows a significantly
different behavior compared to their stable counterpart. Finally, proofs of our new
results are given in Sect. 4.

2 Fractional Diffusions and Zolotarev Duality

In this section we follow the arguments laid out in [14, 32] to derive the probabilistic
solution to certain fractional diffusion equations by stable densities, and the
approach in [14] to space-time duality in the negatively skewed case. This is best
suited to our desired generalization towards the semistable setting in Sect. 3.

We will frequently make use of the following transforms of our densities for
k ∈ R and s > 0.

Fourier transform (FT): p̂(k, t) =
∫
R

eikxp(x, t) dx

Laplace transform (LT): p̃(x, s) =
∫ ∞

0
e−stp(x, t) dt

Fourier–Laplace transform (FLT): p̄(k, s) =
∫ ∞

0

∫
R

e−st+ikxp(x, t) dx dt

Turning to the FT on both sides of (1.6) yields

∂

∂t
p̂(k, t) = v ikp̂(k, t)+ C

(
1+ β

2
(−ik)α + 1− β

2
(ik)α
)
p̂(k, t)

= v ikp̂(k, t)− σα|k|α (1− iβ sign(k) tan(α π2 )
)
p̂(k, t),

(2.1)

where the last equality follows after a short calculation with the scale parameter
σ = (−C cos(α π2 ))

1/α > 0; see equations (5.5) and (5.6) in [32] for details.
With the initial conditions p̂(0, t) = 1 for a probability density, and p̂(k, 0) = 1
corresponding to the point source p(x, 0) = δ(x), using (1.4) the unique solution
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to the ode (2.1) is given by p̂(k, t) = ĝ(k;α, β, σ t1/α, vt), showing that the stable
densities p(x, t) = g(x;α, β, σ t1/α, vt) solve (1.6).

We now restrict our considerations to the negatively skewed case β = −1 with
α ∈ (1, 2), v = 0 and C = 1. The corresponding fractional diffusion equation

∂

∂t
p(x, t) = ∂α

∂(−x)α p(x, t) (2.2)

is solved by the stable densities

p(x, t) = g
(
x;α,−1,

(∣∣cos
(
α π2

)∣∣ t)1/α , 0) . (2.3)

Applying FLT to both sides of (2.2) yields s p̄(k, s)−1 = (ik)αp̄(k, s) for the point
source fulfilling p̂(k, 0) = 1 with solution

p̄(k, s) = 1

s − (ik)α =
1

s − ψ(k) , (2.4)

where ψ is as in (1.2) for the Lévy measure φ concentrated on the negative axis
with φ(−∞,−x) = x−α α−1

�(2−α) and μ = ∫ 0
−∞(

x
1+x2 − x) dφ(x). Note that p̄ has

a simple pole at k = −i s1/α . Inverting the FT with the help of Cauchy’s residue
theorem (details are given in Sect. 4), for x > 0 this leads to

p̃(x, s) = 1

α
s−1+1/α exp

(
−x s1/α

)
= 1

α
h̃(x, s) (2.5)

for the Laplace transform (LT) p̃(x, s) = ∫∞0 e−stp(x, t) dt as shown in [14], where
h̃ is the LT of the inverse 1

α
-stable subordinator (see Remark 2.3) with 1

α
∈ ( 1

2 , 1)
and density

h(x, t) = αt x−1−αg
(
t x−α; 1

α
, 1,
∣∣∣cos
(

1
α
π
2

)∣∣∣α , 0) (2.6)

for x > 0; see [31] or equation (4.47) in [32]. Combining (2.3), (2.5), and
(2.6) directly leads to Zolotarev’s duality result relating negatively skewed α-stable
densities for α ∈ (1, 2) with positively skewed 1

α
-stable densities:

Theorem 2.1 ([50, Theorem 1]) For α ∈ (1, 2) and stable densities g

parametrized as in (1.4) we have for all x > 0 and t > 0

g
(
x;α,−1,

(∣∣cos
(
α π2

)∣∣ t)1/α , 0) = t x−1−αg
(
t x−α; 1

α
, 1,
∣∣∣cos
(

1
α
π
2

)∣∣∣α , 0) .
Note that Zolotarev uses a different parametrization which can be transferred to the
above parametrization (1.4) as described in [1]. Zolotarev proved this result in [50]
by transforming the FT of the α-stable density using complex contour integrals; cf.
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also Theorem 2.3.1 in [51]. Lukacs [27, Theorem 3.3] gave a different proof using a
series representation of stable densities independently obtained by Bergström [3]
and Feller [10]. In this work of Feller the α-stable density is also shown to be
a solution to a fractional diffusion equation with a fractional integral operator of
negative order −α. It is worth mentioning that Zolotarev duality also holds for
arbitrary values of the skewness parameter β, but then the below interpretation as
a solution of a time-fractional pde fails. Zolotarev’s result further holds for α = 2
which leads to a closed form expression of a positively skewed 1

2 -stable density, the
only closed form expression known besides the Gaussian and the Cauchy density.
This density is frequently called Lévy density due to its appearance in [26], but
according to section 3.7 in [9] it was already observed by Heavyside in 1871. The
fractional pde connection for the case α = 2 can be found in [2].

Coming back to duality, we now want to show that (2.6) is related to a time-

fractional pde. Therefore, applying FT for x > 0 to (2.5) yields h̄(k, s) = s−1+1/α

s1/α−ik
which leads to the equation

s1/αh̄(k, s)− s−1+1/α = ik h̄(k, s).

Inverting the FT on both sides gives

s1/αh̃(x, s)− s−1+1/αδ(x) = − ∂
∂x
h̃(x, s). (2.7)

For suitable functions f and t ≥ 0 denote by ( ∂
∂t
)γ f (t) the Caputo fractional

derivative of order γ ∈ (0, 1) which is the unique function with LT sγ f̃ (s) −
sγ−1f (0), whereas the Riemann–Liouville fractional derivative ∂γ

∂tγ
of order γ ∈

(0, 1) is the unique function with LT sγ f̃ (s). Then Laplace inversion on both sides
of (2.7) yields

(
∂

∂t

)1/α

h(x, t) = − ∂
∂x
h(x, t) (2.8)

for x > 0 and t > 0. Since p(x, t) = α−1h(x, t) by (2.5), the original α-
stable density p also solves the time-fractional pde (2.8) under point source initial
condition p(x, 0) = δ(x) leading directly to space-time duality for fractional
diffusions:

Theorem 2.2 ([1, 14]) For x > 0 and t > 0 the point source solutions p(x, t) of
the fractional diffusion equation (2.2) of order α ∈ (1, 2) and h(x, t) of the time-
fractional pde (2.8) of order 1

α
∈ ( 1

2 , 1) are equivalent, i.e. they are proportional to
each other: p(x, t) = α−1h(x, t) for all x > 0 and t > 0.

The proof in [1] directly uses Zolotarev duality, whereas the above arguments from
[14] only use FLT techniques and gives the partial result on Zolotarev duality stated
in Theorem 2.1 as a byproduct. In the semistable setup corresponding duality results
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Fig. 3 Solutions p(x, t0) (dashed line) of the fractional diffusion equation (2.2) and h(x, t0) (solid
line) of the time-fractional pde (2.8) for fixed t0 = 3.5 and α = 1.5

are not known in the literature and the above FLT method is our preferable choice
in Sect. 3 to derive a corresponding semistable duality result.

To illustrate Theorem 2.2 we plotted numerical solutions p(x, t) of the fractional
diffusion equation (2.2) and h(x, t) of the time-fractional pde (2.8) for fixed t0 = 3.5
and α = 1.5 in Fig. 3. For the stable density p(x, t0) in (2.3) we use a Fourier
inversion technique together with the representation (1.4), whereas h(x, t0) was
approximated from (2.8) by a finite difference method [33] involving Grünwald–
Letnikov differences for the time-fractional derivative. Note that in Fig. 1 the ratio
h(x, t0)/p(x, t0) decreases from the true value α = 1.5 at x = 0 almost linearly
to 1.2 at x = 4 which is an effect of the rather weak approximation by Grünwald–
Letnikov differences for which the error increases with the distance from the origin.

Remark 2.3 The time-fractional equation (2.8) has the following probabilistic
interpretation. If (Dt )t≥0 is a 1

α
-stable subordinator, i.e. a 1

α
-stable Lévy process

with almost surely strictly increasing sample paths, then its hitting-time process
(Et := inf{u > 0 : Du > t})t≥0 which is also called an inverse stable subordinator,
has a smooth probability density x �→ h(x, t) which solves (2.8) with initial point
source condition; see [31, 32] for details. The space-time duality in Theorem 2.2
does not cover the full range 1

α
∈ (0, 1) for 1

α
-stable subordinators. Extending

Theorem 2.2 for 1
α
∈ (0, 1

2 ) would lead to an equivalent space-fractional pde of
order α > 2 for which in its full generality no meaningful stochastic solution exists.
A first result towards this direction is given in [15] for 1

α
∈ ( 1

3 ,
1
2 ) leading to a
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probabilistic interpretation of a space-fractional pde of order α ∈ (2, 3) by means
of an inverse 1

α
-stable subordinator. This stochastic solution is much stronger than

the higher order approach in [5].

3 Duality for Semi-Fractional Diffusions

We now turn to a negatively skewed semistable distribution for α ∈ (1, 2) with a
Lévy measure φ as in (1.7) concentrated on the negative axis

φ(−∞,−x) = x−αθ(log x), x > 0.

Here θ is an admissable function, i.e. θ is a positive, log(c1/α)-periodic function for
some c > 1 and x �→ x−αθ(log x) is non-increasing. We will further assume that
θ is smooth, i.e. θ is continuous and piecewise continuously differentiable, hence
representable by a Fourier series

θ(x) =
∑
n∈Z
cn e

iñcx with c̃ = 2πα

log c
.

In the special case of constant θ ≡ c0 = α−1
�(2−α) and μ = ∫ 0

−∞(
x

1+x2 − x) dφ(x) in
(1.2) this reduces to the stable distribution corresponding to the fractional diffusion
equation (2.2). For the more general semistable distribution with the same drift
parameter μ the corresponding semi-fractional diffusion equation is given by

∂

∂t
p(x, t) = ∂α

∂c,θ (−x)α p(x, t). (3.1)

Here, for suitable functions f the negative semi-fractional derivative of order α ∈
(1, 2) was recently introduced in [20] by its generator form

∂α

∂c,θ (−x)α f (x) = Lf (x) =
∫ 0

−∞
(
f (x − y)− f (x)+ yf ′(x)) dφ(y)

=
∫ ∞

0

(
f ′(x + y)− f ′(x)) y−αθ(log y) dy,

(3.2)

where the last equality follows from reflection and integration by parts. As shown
in [20], with this definition the negatively skewed semistable densities x �→ p(x, t)

are a solution to (3.1). Moreover, it was shown in [20] that the corresponding log-
characteristic function admits the series representation

ψ(k) = −
∑
n∈Z
cn �(iñc − α + 1)(ik)α−iñc (3.3)
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which for the stable case θ ≡ c0 = α−1
�(2−α) = − 1

�(1−α) reduces toψ(k) = (ik)α and
gives back the negative Riemann–Liouville fractional derivative of order α ∈ (1, 2).
Applying the FLT on both sides of (3.1) again yields p̄(k, s) = 1

s−ψ(k) as in (2.4) for
the corresponding semistable densities, but now with ψ from (3.3). We will show
in Lemma 4.1 that the FLT p̄ has again a single pole at some k = −iξ(s) on the
negative imaginary axis which enables us to invert the FT with the help of Cauchy’s
residue theorem to come to:

Theorem 3.1 For α ∈ (1, 2) the LT with respect to time of the semistable densities
corresponding to the the semi-fractional diffusion equation (3.1) takes the form

p̃(x, s) = 1

α

s1/αg(log s) exp
(−x s1/αg(log s)

)
s + f (s) =: 1

α
h̃(x, s), (3.4)

where g is a continuously differentiable, log(c)-periodic function and f is some
specific function such that s + f (s) > 0. Moreover, f and g only depend on c > 1,
α ∈ (1, 2) and the admissible function θ .

The proof of Theorem 3.1 is given in Sect. 4. As in Sect. 2 we now calculate the
FT of h̃ on the right-hand side of (3.4) and then apply FLT inversion which also
justifies the LT notation h̃(x, s) in Theorem 3.1. Writing ξ(s) = s1/αg(log s) to
simplify notation (it turns out that this is indeed the location of the pole of p̄(k, s)
on the negative imaginary axis stated above) and applying FT for x > 0 to (3.4)
yields

h̄(k, s) = ξ(s)

s + f (s)
∫ ∞

0
exp (−x (ξ(s)− ik)) dx

= ξ(s)

s + f (s)
1

ξ(s)− ik =
(

1

s
− 1

s

f (s)

s + f (s)
)

ξ(s)

ξ(s)− ik ,

which leads to the equation

ξ(s)h̄(k, s)− s−1ξ(s)− ikh̄(k, s) = −1

s

f (s)

s + f (s)ξ(s) =:
1

s
s1/αγ (log s).

Inverting the FT on both sides gives

ξ(s)̃h(x, s)− s−1ξ(s)δ(x)+ ∂

∂x
h̃(x, s) = 1

s
s1/αγ (log s)δ(x). (3.5)

We will show in Lemma 4.3 that γ is a smooth log(c)-periodic function and thus γ
and g from Theorem 3.1 both admit a Fourier series representation

g(x) =
∑
n∈Z
dn e

−ind̃x and γ (x) =
∑
n∈Z
hn e

−ind̃x (3.6)
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with d̃ = 2π
log c =

2π 1
α

log d for d = c1/α > 1. Let us define the functions

τ(x) =
∑
n∈Z

dn

�(ind̃ − 1
α
+ 1)

eind̃x and ρ(x) =
∑
n∈Z

hn

�(ind̃ − 1
α
+ 1)

eind̃x

(3.7)

which clearly are log(dα)-periodic functions. Note that formally τ(− log s) and
ρ(− log s) are related to ξ(s) = s1/αg(log s) and s1/αγ (log s) in the same manner
than θ(− log(ik)) is related to −ψ(k) in (3.3), simply by multiplying the Fourier
coefficients with appropriate values of the gamma function depending on the
admissability parameters. We conjecture that τ and ρ are admissable with respect to
the parameters d > 1 and 1

α
∈ ( 1

2 , 1). If so, then for suitable functions f and t ≥ 0
we may formally introduce the Riemann–Liouville and the Caputo semi-fractional
derivative by LT inversion in analogy to time-fractional derivatives:

∂1/α

∂d,τ t1/α
f (t) = r(t) ⇐⇒ r̃(s) = ξ(s)f̃ (s),

(
∂

∂d,τ t

)1/α

f (t) = r(t) ⇐⇒ r̃(s) = ξ(s)f̃ (s)− s−1ξ(s)f (0).

Remark 3.2 It is worth mentioning that this formal introduction of semi-fractional
derivatives for functions on the positive real line can be strengthened from a
probabilistic perspective. In fact the densities h(x, t) of an inverse 1

α
-semistable

subordinator with a log(dα)-periodic admissable function τ in the positive tail of
the Lévy measure solve the semi-fractional pde

(
∂

∂d,τ t

)1/α

h(x, t) = − ∂
∂x
h(x, t)

in analogy to (2.8) for the densities of an inverse 1
α

-stable subordinator. This fact is
outside the scope of this article and will be published elsewhere.

Finally, since 1
s
= ∫∞0 e−st dt is the LT of the function 1(0,∞)(t), we may now

rewrite (3.5) as

(
∂

∂d,τ t

)1/α

h(x, t)+ ∂

∂x
h(x, t) = δ(x) ∂1/α

∂d,ρ t1/α
1(0,∞)(t). (3.8)

Similar to (3.2), for suitable functions f the semi-fractional Caputo derivative of
order 1

α
∈ (0, 1) (here we have 1

α
∈ ( 1

2 , 1)) with respect to d > 1 and the admissable
function ρ is given in [20] by

(
∂

∂d,ρt

)1/α

f (t) =
∫ ∞

0
f ′(t − s)s−1/αρ(log s) ds (3.9)
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and the corresponding Riemann–Liouville derivative is obtained by interchanging
differentiation and integration on the right-hand side of (3.9). Hence, on the right-
hand side of (3.8) we get

∂1/α

∂d,ρ t1/α
1(0,∞)(t) = d

dt

∫ ∞
0

1(0,∞)(t − s) s−1/αρ(log s) ds

= d

dt

∫ t
0
s−1/αρ(log s) ds = t−1/αρ(log t)

which yields

(
∂

∂d,τ t

)1/α

h(x, t)+ ∂

∂x
h(x, t) = δ(x) t−1/αρ(log t). (3.10)

Thus we have shown space-time duality for semi-fractional diffusions:

Theorem 3.3 Assume that τ and ρ in (3.7) are admissable functions with respect
to the parameters d = c1/α > 1 and 1

α
∈ ( 1

2 , 1). Then for x > 0 and t > 0 the
point source solutions p(x, t) of the semi-fractional diffusion equation (3.1) of order
α ∈ (1, 2) in space and h(x, t) of the semi-fractional pde (3.10) of order 1

α
∈ ( 1

2 , 1)
in time are equivalent, i.e. p(x, t) = α−1h(x, t) for all x > 0 and t > 0.

Note that with f and g also τ and ρ do only depend on c > 1, α ∈ (1, 2) and the
admissable function θ of the underlying semistable distribution.

4 Proofs for Sect. 3

For simplicity, we write ωn = −cn�(iñc − α + 1) for the coefficients in (3.3).
Extending ψ for z ∈ C shows that

ψ(z) =
∑
n∈Z
ωn(iz)

α−iñc = (iz)α
∑
n∈Z
ωne

−iñc log(iz) (4.1)

is an analytic function in the lower half plane, where the series in (4.1) is absolutely
convergent by Theorem 3.1 in [20], and ψ admits the representation

ψ(z) =
∫ 0

−∞

(
eizx − 1− izx

)
dφ(x). (4.2)

Moreover, since ω−n = ωn for n ∈ Z, the function

ψ(−ik) = kα
∑
n∈Z
ωne

−iñc log(k) =: kαm(log k) (4.3)



268 P. Kern and S. Lage

for k > 0 is a real function such that m is log(c1/α)-periodic.

Lemma 4.1 For any s > 0 there is a unique z = z(s) in the lower half plane such
that s = ψ(z(s)). Moreover, z(s) = −i ξ(s) with ξ(s) > 0 lies on the negative
imaginary axis.

Proof From (4.2) it can be deduced that for z in the lower half plane ψ(z) ∈ R iff
z = −ik with k > 0. If we consider the real mapping s(k) = ψ(−ik) for k > 0
then by (4.2)

s′(k) =
∫ 0

−∞
x
(
ekx − 1

)
dφ(x) > 0

and thus k �→ s(k) is a continuously differentiable and strictly increasing function
with limk↓0 s(k) = 0 and limk→∞ s(k) = ∞. Hence, for s > 0 there is a unique
ξ(s) > 0 with s = ψ(−i ξ(s)).
Lemma 4.2 The function ξ from Lemma 4.1 is continuously differentiable and for
s > 0 we have ξ(s) = s1/αg(log s) for some log(c)-periodic function g.

Proof Since ξ is the inverse of the function k �→ s(k) = ψ(−ik) appearing in the
proof of Lemma 4.1, it is itself continuously differentiable and strictly increasing.
By (4.3) we get

ψ
(
−i c1/αξ(s)

)
= c ξ(s)αm

(
log(c1/α)+ log ξ(s)

)

= c ξ(s)αm (log ξ(s)) = c ψ(−i ξ(s))
= cs = ψ(−i ξ(cs))

and thus we have c1/αξ(s) = ξ(cs). Defining g(x) = e−x/αξ(ex) we get

g(x + log c) = e−x/αc−1/αξ(c ex) = e−x/αξ(ex) = g(x).

Proof of Theorem 3.1 Using equation (4.8.18) in [35], an inversion of the FT of
p̄(k, s) = (s − ψ(k))−1 for fixed s > 0 gives

p̃(x, s) = 1

2π
lim
T→∞

∫ T−iξ0
−T−iξ0

e−ikx

s − ψ(k) dk, (4.4)

where we choose ξ0 ∈ (0, ξ(s)). For large T > 0 consider the cut semicircle CT +
LT in the lower half plane as in the picture.
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T−T

CT

LT−i ξ0

−i ξ(s) •

Letting k = T e−iϕ we get

∣∣∣∣
∫
CT

e−ikx

s − ψ(k) dk
∣∣∣∣ ≤
∫ π

0

T exp(−T x sinϕ)

|s − ψ(T e−iϕ)| dϕ→ 0

as T →∞ by dominated convergence, since we can easily derive Reψ(T e−iϕ)→
∞ for ϕ ∈ (0, π). By Lemma 4.1 and Cauchy’s residue theorem we get from (4.4)
with the function s(k) from the proof of Lemma 4.1

p̃(x, s) = −i Res(−i ξ(s)) = i e−xξ(s)

ψ ′(−i ξ(s)) =
e−xξ(s)

s′(ξ(s))

= e−xξ(s)

ξ(s)α−1 (α m(log ξ(s))+m′(log ξ(s)))

= 1

α

ξ(s)e−xξ(s)

ψ(−i ξ(s))+ 1
α
ξ(s)αm′(log ξ(s))

= 1

α

ξ(s)e−xξ(s)

s + f (s) ,

where f (s) = 1
α
ξ(s)αm′(log ξ(s)). Hence we have shown (3.4) and the denomina-

tor is strictly positive, since s + f (s) = α−1ξ(s) s′(ξ(s)) > 0. Note that due to the
above approach f and g only depend on the parameters c, α and θ of the semistable
distribution.

Lemma 4.3 Let f (s) = 1
α
ξ(s)αm′(log ξ(s)) as above. Then we can write

−f (s)
s + f (s) ξ(s) = s

1/αγ (log s)

for some log(c)-periodic and smooth function γ .

Proof Write

−f (s)
s + f (s) ξ(s) =

−g(log s)αm′(log ξ(s))

α + g(log s)αm′(log ξ(s))
s1/αg(log s) = s1/αγ (log s).
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Since g is log(c)-periodic, m is log(c1/α)-periodic and ξ(cs) = c1/αξ(s), the
assertion follows easily.

Remark 4.4 Note that in the stable case we have ψ(k) = (ik)α and thus m ≡ 1
in (4.3) and g ≡ 1 in Lemma 4.2 are constant. Thus f ≡ 0 in the above proof of
Theorem 3.1 and (3.4) coincides with (2.5).

References

1. Baeumer, B., Meerschaert, M.M., Nane, E.: Space-time duality for fractional diffusion. J. Appl.
Probab. 46, 110–115 (2009)

2. Baeumer, B., Meerschaert, M.M., Nane, E.: Brownian subordinators and fractional Cauchy
problems. Trans. Am. Math. Soc. 361(7), 3915–3930 (2009)

3. Bergström, H.: On some expansions of stable distributions. Ark. Mat. 2, 375–378 (1952)
4. Blumenthal, R.M., Getoor, R.K.: A dimension theorem for sample functions of stable

processes. Ill. J. Math. 4, 370–375 (1960)
5. Bonaccorsi, S., D’Ovidio, M., Mazzucchi, S.: Probabilistic representation formula for the

solution of high-order heat-type equations. J. Evol. Equ. 19(2), 523–558 (2019)
6. Butera, S., Di Paola, M.: A physically based connection between fractional calculus and fractal

geometry. Ann. Phys. 350, 146–158 (2014)
7. Ciesielski, Z., Taylor, S.J.: First passage times and sojourn times for Brownian motion in space

and the exact Hausdorff measure of the sample path. Trans. Am. Math. Soc 103, 434–450
(1962)
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From Fractals in External DLA
to Internal DLA on Fractals

Ecaterina Sava-Huss

Abstract We present an unified approach on the behavior of two random growth
models (external DLA and internal DLA) on infinite graphs, the second one being
an internal counterpart of the first one. Even though the two models look pretty
similar, their behavior is completely different: while external DLA tends to build
irregularities and fractal-like structures, internal DLA tends to fill up gaps and
to produce regular clusters. We will also consider the aforementioned models on
fractal graphs like Sierpinski gasket and carpet, and present some recent results and
possible questions to investigate.

Keywords Random walks · Harmonic measure · Cluster models · Sierpinski
gasket · Integer lattices · Trees · Hyperbolic plane · Fractal graphs

Mathematics Subject Classifications (2010) Primary: 60J10, 28A80;
Secondary: 31A15, 05C81

1 Introduction

We consider two aggregation models initially introduced in physics in [51] and
[43], and rigorously studied in mathematics over the last three decades, models for
which we present a survey on the existing results and state several open problems.
The models under consideration are external diffusion limited aggregation (shortly
external DLA) and internal diffusion limited aggregation (shortly internal DLA). In
the mathematical community, these two models started to gain interest only a couple
of years after being introduced, with the first results on external DLA in [30, 32],
and on internal DLA in [36]. Only recently, these models became interesting
in the fractals community: few recent results concerning external DLA on the
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m-dimensional pre-Sierpinski carpet as defined in [44], for m ≥ 3 are available.
For the internal DLA on the Sierpinski gasket graph, there are also some limit shape
results, but other than these two examples, there is not much known about the two
growth models on other fractal graphs where, according to simulations which we
present towards to end of the paper, interesting behavior may be observed. With the
current overview, we would like to draw the attention on the beauty of these models.

For the rest of the paper, G will be an infinite and locally finite graph, the
reference state space, which will be replaced with concrete examples of graphs as
needed. We denote by o ∈ G a fixed vertex, the origin of the graph G.

External DLA was initially introduced in physics by WITTEN AND SANDER

[51] as an example to create ordering out of chaos due to a simple rule. Mathemat-
ically, this ordering is far away from being understood, and new methods and ideas
are needed in order to move forward in this direction. External DLA is a model of
random fractal growth which exhibits self-organized criticality and complex-pattern
formation, and which produces scale-invariant objects whose Hausdorff dimension
is independent of short-range details. Moreover external DLA has no upper critical
dimension as shown in [51]; it is a model which builds a sequence of random
growing sets (En)n≥0, starting with one particle E0 = {o} at the origin of G. At
each time step, a new particle starts a simple random walk from “infinity” (far
away) and walks until it hits the outer boundary of the existing cluster, where it
stops and settles. In this way, one builds a family (En)n≥0 of growing clusters; the
set En consists of exactly n + 1 particles and it is called external DLA cluster. In
spite of these very simple growth rules, only a few rigorous mathematical results
about external DLA are available, results which will be surveyed below. A typical
structure produced on a two-dimensional lattice is shown in Fig. 1. External DLA
was found to well represent growth processes in nature such as growth of bacterial
colonies, electrodeposition, or crystal growth.

Internal DLA is an attempt of a model which eliminates irregularities and fills
gaps, as opposed to external DLA. It was proposed by MEAKIN AND DEUTCH [43]
as a model of industrial chemical processes such as electropolishing, corrosion and
etching. DIACONIS AND FULTON in [19] identified internal DLA as a special case of
a “smash sum” operation on subsets of Z2. Internal DLA is a random growth model
which builds a sequence of random growing clusters (In)n≥0 based on particles
performing random walks, where all the particles start from the same fixed point o.
Typically, one starts with I0 = {o}, and for each n, we let In+1 be In plus the first
point where a random walk started at o exits In. There are several modifications
of this model, where one can start the random walks uniformly at random in the
already existing cluster, or one can start with an initial configuration of particles
on the state space G. As in external DLA, understanding the shape of the limiting
cluster In, the internal DLA cluster with n+1 particles, is the main question in this
model. Also, of fundamental significance as mentioned in the initial paper [43], is
to know how smooth a surface formed by internal DLA (processes) may be. These
problems are well understood mathematically on many state spaces, and there are
very precise results available. On the one hand, the limiting object formed from
internal DLA does not show any fractal structure. On the other hand, when running
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Fig. 1 External DLA cluster on Z
2 with center initially occupied

internal DLA on a fractal graph, we have partial results that indicate the absence of
fractal structure, though there remain many more fractal state spaces to be explored.
The crucial difference between the above two models is that the dynamics of the
external model roughens the cluster, whereas the dynamics of the internal model
makes the cluster smoother.

Structure of the Paper After fixing the notation and the basic notions in Sect. 2,
we focus on the external DLA model in Sect. 3, in which we survey the available
results on the growth of arms in this model, number of holes, and variations of
the standard model. The results will not be stated in the chronological order of
publication, but according to the state space they evolve on. Finally, in Sect. 4 we
survey the results for the limit shapes of the internal DLA cluster, and we include
several questions through the whole paper.

2 Preliminaries

Graphs Let G be an infinite, locally finite graph (i.e. every vertex has finite degree
denoted by deg(x)). The neighborhood relation will be denoted by “∼”, and by
x ∼ y we mean that (x, y) is an edge in G. Let o ∈ G be a fixed distinguished
vertex, which will be called the origin or the root. For x, y ∈ G, the distance d(x, y)
represents the minimal number of edges on the path connecting x with y. For a
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subgraph A of G, we denote by ∂A the outer boundary of A:

∂A = {y ∈ G : y /∈ A, ∃x ∈ A : x ∼ y}.

For x ∈ G and n ≥ 0, we write Bn(x) = {y ∈ G : d(x, y) ≤ n} for the ball of
radius n and center x in G. If the center of the ball is o, we write only Bn.

Random Walks Let (Sn)n≥0 be a random walk on G, and denote by Px the
probability measure of the random walk started at x. We do not fix yet the transition
probabilities for the random walk, since those will change from case to case, and we
will mention them as needed. For a subset A ⊂ G, let T (A) be the hitting time of
A, defined as

T (A) = min{n ≥ 0 : Sn ∈ A}.

For a set {x} consisting of a single vertex, we write T (x) instead of T ({x}). The
heat kernel of the random walk (Sn) is defined to be

pn(x, y) = Px[Sn = y],

and the Green function G(x, y) is defined as

G(x, y) =
∑
n≥0

pn(x, y),

which is well defined and finite precisely when the random walk is transient. For a
subset A ⊂ G, the killed or the stopped Green function GA(x, y) is defined as

GA(x, y) =
∑
n≥0

Px[Sn = y, T (A) > n].

The hitting distribution HA(x, y) is then

HA(x, y) = Px[ST (A) = y], for y ∈ A

and ST (A) is the hitting position of A. If the random walk (Sn) starts at o, we write

hA(y) = Po[ST (A) = y], for y ∈ A (2.1)

for the probability of the random walk starting at o to first hit A in y, that is hA is
the harmonic measure (from o) of the set A, and

∑
y∈A hA(y) = 1.
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3 External DLA

We define here formally the external DLA model, by first explaining what it
means to release a particle at infinity. Several variants of external DLA have been
considered, but we refer here to the original, simplest model, which can be defined
on any space where the notion of random walk or diffusion exists. If the Poisson
boundary consists of one point and the random walk is recurrent (for instance the
case of simple random walk on Z and Z

2), external DLA can be defined so that
the law of the location of a new particle is the harmonic measure of the existing
aggregate with pole at infinity. If the random walk is transient (such as the case of
simple random walk on Z

d , with d ≥ 3, or on regular trees Td of degree d ≥ 2,
n-dimensional Sierpinski carpet graph, for n ≥ 3), one can consider the harmonic
measure with a pole far away from the aggregate, let the pole go to infinity and take
limits (i.e., conditioning the random walk coming from infinity to hit the cluster).
That is, in defining rigorously external DLA, we have to distinguish the cases when
the random walk (Sn) on the infinite graph G is recurrent or transient; the Poisson
boundary of the random walk also plays a role in this case. We recall that the Poisson
boundary of a random walk is a measure space that describes the stochastically
significant behavior of the walk at infinity. It provides an integral representation of
the bounded harmonic functions of the random walk.

During the whole paper, when we speak about the n-dimensional Sierpinski
carpet graph, we shall also use the notion pre-Sierpinski carpet, and we have in
mind the construction introduced in [44].

We shall write μA(y) for the harmonic measure from infinity, that is, for the
probability to start a random walk at infinity and to hit the finite subset A ⊂ G at
the point y. Depending on whether the graph G is transient or recurrent, this measure
can take different forms, and we cannot define it globally on any general graph here.
This will be made precise in the concrete cases below.

Definition 3.1 Let G be an infinite graph, and (Sn) a discrete time random walk
on it. External DLA on G is a Markov chain (En)n≥0 on finite subsets of G, which
evolves in time in the following way. Start with a single vertex o ∈ G, that is E0 =
{o}. Given the state En of the chain at time n, let yn+1 be a random vertex in ∂En
chosen according to the harmonic measure (from infinity) of ∂En. That is,

P[yn+1 = y|En] = μ∂En(y), for y ∈ ∂En,

and we set En+1 = En ∪ {yn+1}.
Definition 3.2 The cluster at infinity E∞ for the external DLA process (En) on G
is defined as

E∞ =
∞⋃
n=1

En.
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It is immediate that the external DLA cluster En at time n contains exactly n+ 1
vertices. This model is hard to study. The difficulty comes from the fact that the
dynamics is neither monotone nor local (meaning that if big tentacles surround a
vertex x, then x will never be added to the cluster). By non-monotonicity we mean
that there is no coupling between the external DLA starting from a cluster C and
another from a cluster D ⊂ C such that, at each step, the inclusion of the clusters
remains valid almost surely. Understanding the shape of En as n → ∞ and the
fractal nature of this object, are problems one would be typically interested in. While
mathematically this is out of reach for the time being, there are other partial results
concerning the growth of arms and the number of holes in external DLA.

3.1 Integer Lattices Zd

In this subsection the state space for the external DLA process is G = Z
d , d ≥ 1.

Even for Zd , there are no results that prove the fractal nature of the limiting object,
or results that prove the zero density in the long run. The first rigorous results go
back to Kesten [30, 32], who gives estimates on the growth of arms in external DLA.
Since for d = 1, the behavior of standard external DLA is trivial, we consider d ≥ 2,
and let (Sn)n≥0 be a simple random walk on Z

d .
For d = 2, for any finite nonempty subset A ⊂ Z

2, we have T (A) < ∞ with
probability one, and we define the harmonic measure (from infinity) of A

μA(y) = lim|x|→∞HA(x, y), (3.1)

where |x| denotes the Euclidean norm of x. The limit lim|x|→∞ corresponds to
“releasing the particle at infinity”. In this case, (Sn) is recurrent, so that by [50,
Theorem 14.1] the limit in (3.1) exists and

∑
y∈A μA(y) = 1.

For d ≥ 3, since the random walk (Sn) is transient, the limit lim|x|→∞HA(x, y)
in (3.1) is identically zero (cf [50, Proposition 25.3]). So in order to obtain a
nontrivial limit similar to the one in (3.1), we have to condition on T (A) being finite.
This conditioning gives the factor of the capacity of the set A in the denominator.
In the case d ≥ 3, we define the harmonic measure (from infinity) of a finite subset
A ⊂ Z

d as

μA(y) = lim
d(o,x)→∞

HA(x, y)∑
z∈A HA(x, z)

= lim
d(o,x)→∞Px [ST (A) = y|T (A) <∞], for y ∈ A,

(3.2)

which is proportional to the so-called equilibrium measure associated to the set A.
The limit in (3.2) exists again by [50, Proposition 26.2] for d = 3 (the same proof
works also for d > 3) and satisfies

∑
y∈A μA(y) = 1. Therefore, we have a valid
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definition for external DLA, and we let r(En) to be the radius of En, defined as

r(En) = max{|x| : x ∈ En}, (3.3)

Theorem 3.3 ([31, Theorem] and [30, Corollary]) There exist constants C(d) <
∞ such that with probability 1

lim sup
n→∞

n−2/3r(En) ≤ C(2), if d = 2

lim sup
n→∞

n−2/dr(En) ≤ C(d), if d ≥ 3.

The proof uses classical estimates for the harmonic measure (from infinity) as
defined in (3.1) and (3.2) and for the hitting probabilities. Simulations actually
indicate that for d = 2, E[r(En)] ≈ n10/17 but as far as the lower bound is
concerned, nothing has been proven beyond

√
n in the 35 years since the model has

been introduced. It would be very interesting to prove even a logarithmic correction,
i.e. to prove that E[r(En)] ≥ √n log(n). On Z

d , a lower bound on the number N(n)
of vertices in Bn which are occupied by the cluster E∞ is known.

Theorem 3.4 ([32, Theorem 2]) There exist constants C(d) < ∞ such that with
probability 1

N(n) ≥ C(d)nd−1, for infinitely many n.

Another non-trivial result on Z
2 concerns the number of holes Hn in the external

DLA cluster En. A hole of En is a finite connected component of Z2 \ En.
Theorem 3.5 ([21]) For any finite connected subset e of Z2 we have

P[Hn converges to infinity as n→∞|E0 = e] = 1.

Theorem 3.3 has been improved in [12], where upper bounds on the growth rate
of arms in external DLA cluster are given on a big class of transient graphs
with properties such as: transitive graphs of polynomial growth of degree ≥ 4;
transitive graphs of exponential growth; Z3; non-amenable graphs; n-dimensional
pre-Sierpinski gasket graphs (n ≥ 3) as introduced in [44]. In particular, on Z

3 the
factor n−2/3 from Theorem 3.3 has been improved to n−1/2/ log(n). On the class of
transient graphs G considered in [12], the harmonic measure (from infinity) μA of
a set A is defined as in (3.2).

A directed version of external DLA has been recently introduced on Z
2 in [42].

In a series of three papers [1–3], a one-dimensional external DLA model based on
random walks with long jumps (that depend on a parameter α) is proposed, which
tries to capture the fractal nature of the standard DLA. Depending on the values of
α, the random walk (Sn) with long jumps on Z may be recurrent or transient, and
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for the precise definition of harmonic measure from infinity we refer to those three
papers. The main results of [2, 3] can be summarized into the following theorem.

Theorem 3.6 Let (Sn) be a symmetric random walk on Z that satisfies P[|S1 −
S0| = k] ∼ ck−1−α . Let d(En) be the diameter of the external DLA cluster En.
Then almost surely:

(a) If α > 3, then n− 1 ≤ d(En) ≤ Cn+ o(n), where C depends only on α.
(b) If 2 < α ≤ 3, then d(En) = nβ+o(1), where β = 2

α−1 .

(c) If 1 < α < 2, then d(En) = n2+o(1).
(d) If 1

3 < α < 1, then nβ+o(1) ≤ d(En) ≤ nβ ′+o(1), where β = max(2, α−1) and

β ′ = 2
α(2−α) .

(e) If 0 < α < 1
3 , then d(En) = nβ+o(1), where β = α−1.

The last one [1] from the series of three papers mentioned above deals with the
cluster at infinity E∞, and it is shown that for random walks (Sn) whose step size
has finite third moment,E∞ has a renewal structure and positive density. In contrast,
for random walks whose step size has finite variance, the renewal structure no longer
exists and E∞ has zero density.

Theorem 3.7 ([1, Theorem 1]) Assume that the step distribution ξ of the random
walk (Sn) on Z satisfies P[ξ > n] ≤ Cn−α for any n and some α > 3. There exists
some B > 0 such that a.s. E∞ has density B. Further, B is the limit density of En:

B = lim
m1→∞,m2→∞

|E∞ ∩ [−m1,m2]|
m1 +m2

= lim
n→∞

n

d(En)
.

Theorem 3.8 ([1, Theorem 2]) Assume that there exist 2 < α < 3 and constants
c1, c2 > 0 so that ξ satisfies c1n

−α ≤ P[ξ > n] ≤ c2n
−α for all n then a.s.

|E∞ ∩ [−n, n]| = nα−1
2 +o(1).

In particular, E∞ has zero density in the sense that limn→∞ |E∞∩[−n,n]|n
= 0.

The results mentioned above are the only ones available for external DLA on Z
d ,

and the limit shape and the density problem for d ≥ 2 still resist a mathematical
proof. There are many open problems and questions in this direction; see [12] for
more details.

Conjecture 3.9 On Z
d , the rate of growth of the radius of the external DLA cluster

En started at E0 = {0} is of order n1/d :

lim sup
n→∞

n−1/d
E[r(En)] = 0.

Question 3.10 What is the distribution of the number of ends of the cluster at
infinity E∞ on Z

d?
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Concerning recent progress on external DLA in a wedge of Zd , we refer to [47].
Furthermore, the reach of Kesten’s idea is extended to non-transitive graphs in [46],
where the (horizontally) translation invariant stationary harmonic measure on the
upper half plane with absorbing boundary condition is defined and it is shown that
the growth of such stationary harmonic measure in a connected subset intersecting
x-axis is sub-linear with respect to the height; see also [45, 48] where the stationary
harmonic measure as a natural growth measure for external DLA model in the upper
planar lattice is investigated.

3.2 Trees Td

One reason that makes the lattice case Z
d hard to investigate is that there is no

simple way to describe the harmonic measure (from infinity) for the boundary of
an external DLA cluster on Z

d . On other state spaces, such as trees, which have
no loops, the model is more tractable and the harmonic measure (from infinity) can
be understood. In [10], an adjusted version of external DLA on d-regular trees Td ,
where the fingering phenomenon occurs, was introduced. The dynamics of their
model is as follows: the initial cluster E0 contains only the root. Vertices are then
added one by one from among those neighboring the current subtree. The choice
of which vertices to add is random, with vertices in generation n (i.e. distance n
from the root) chosen with probabilities proportional to α−n where α > 0 is a fixed
parameter. Then En is the subtree at step n and let r(En) = max{d(o, x) : x ∈ En}
denote the maximum height of a vertex in En, which is similar to the radius in (3.3).
For this model, for a finite subtreeA ⊂ Td with boundary ∂A, its harmonic measure
μα∂A (from infinity) on ∂A, with parameter α > 0 can be computed as

μα∂A(y) =
α−d(o,y)∑
x∈∂A α−d(o,x)

, for y ∈ ∂A,

see Definition on page 4 in [10]. In the latter paper, the case α < 1 is studied. The
external DLA cluster En is the position at time n of the Markov chain defined in
Definition 3.1, where En+1 is obtained from En by adding a new vertex according to
the harmonic measure defined in the previous equation. For α ≥ 1 it is easy to see
that E∞ is almost surely the entire tree. For α = 1, one has the uniform measureμ1

∂A

on ∂En (this corresponds to the Eden model). From the external DLA perspective,
the case α < 1 is the interesting one, where one obtains the so-called fingering
phenomenon. For this external DLA model, [10] obtained a strong law and a central
limit theorem for the height r(En) of the DLA cluster.
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Theorem 3.11 Let Td be a d-regular tree and 0 < α < 1. There exist constants
r0(α, d) ∈ (0, 1) and σ 2 = σ 2(α, d) > 0 such that

(a) limn→∞ r(En)
n
= r0(α, d) a.s.

(b) r(En)−nr0(α,d)√
n

D−→ N(0, σ 2), as n→∞.

The model considered here can be also interpreted as a model of first passage
percolation on Td .

3.3 Hyperbolic Plane H2

In [22], external DLA on the hyperbolic plane H
2 is considered, and it is shown

that the cluster at infinity E∞ almost surely admits a positive upper density. For
completeness, we recall the definition of the upper density of a set, as used in [22].
In a metric measure space X whose diameter is infinite, we say that a locally finite
set A ⊂ X has an upper density greater or equal to c if there exist a point p ∈ X
and a sequence R1 < R2 < · · · such that Ri →∞ as i →∞, such that

#
(
A ∩ BRi (p)

) ≥ cμ(BRi (p)), ∀i ∈ N,

where Br (p) is a metric ball centered at p with radius r and μ is the measure
defined on X. On the hyperbolic plane, one can use this definition with the standard
hyperbolic distance as a metric and the standard Riemannian volume of a set as
a measure. In the hyperbolic setting the behavior of the aggregate is simpler to
analyze than the Euclidean one; the rate of decay of the hyperbolic potential plays
an important role in understanding the external DLA.

See Fig. 2 for a picture of external DLA model with 1000 particles, viewed on the
Poincaré disc model. In his construction, particles are metric balls of radius 1, E0 =
{p0}, where p0 is a fixed point in H

2, and recursively En+1 = En ∪ {yn+1}, where
{yn+1} is added to the aggregate En according to a (harmonic) measure μ∂En(y)
with pole at infinity that has to be carefully constructed on H

2, such that external
DLA makes sense in this setting. For details on this construction, we refer to [22];
the main result of his paper reads as following.

Theorem 3.12 ([22, Theorem 1.1]) The external DLA cluster at infinity E∞
almost surely has an upper density greater than c, where c > 0 is an universal
constant.

We would like to point out the fact that the behavior of external DLA on the
hyperbolic plane and on the regular tree Td as considered in [10] is completely
different, even though the hyperbolic plane has a tree-like structure.
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Fig. 2 External DLA with 1000 particles, viewed on the Poincaré disc model (by Ronen Eldan)

3.4 Cylinder Graphs

Other results on external DLA that are worth mentioning have been proven in [11]
on cylinder graphs G × N. Let us first fix the notation for the graphs we consider
below. Let G be a finite, connected graph. The cylinder graph with base G, denoted
by G × N, is defined as: the vertex set of G × N is V (G) × N = {(v, k) : v ∈
V (G), k ∈ N}, where V (G) represents the vertex set of G. The edge set is defined
by the following relations: for all u, v ∈ V (G) and all m, k ∈ N, (u,m) ∼ (v, k),
that is between vertices (u,m) and (v, k) there is an edge in G × N, if and only if
m = k and u ∼ v in G, or |m − k| = 1 and u = v. Equivalently, the cylinder with
base G is obtained by just placing infinitely many copies of G one over the other,
and connecting each vertex in a copy to its corresponding vertices in the adjacent
copies.

On G × N, particles perform simple random walks (Sn) from infinity. Since G
is finite, such random walks are recurrent on G × N, and the harmonic measure
from infinity can be defined similar to the one on Z

2, as in (3.1). That is, vertices are
added to the existing cluster En according to the measure in (3.1). Denote by Gm the
induced subgraph on the vertices of G × {m}, for all m ∈ N, and call Gm the m-th
level of the cylinder graph G× N. One of the results proven in [11] is that external
DLA on G × N grows arms if the base graph G mixes fast. Recall that the mixing
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time tmix(G) of the simple random walk on G is the time it takes for the random
walk to come close in total-variation distance to the stationary distribution.

Theorem 3.13 ([11, Theorem 2.1]) Let 2 ≤ d ∈ N. There exists n0 = n0(d), such
that the following holds for all n > n0: let G be a d-regular graph of size n, and

mixing time tmix(G) ≤ log2 n

(log log n)5
. Let (Et ) be the external DLA process on G×N

with E0 = G0, and for m ∈ N, let Tm be the first time the DLA cluster reaches Gm.

Then, for all m, E[Tm] < 4mn

log log n
.

This phenomenon is often referred to as the aggregate grows arms, i.e. grows faster
than order |G| particles per layer. As mentioned in [11], the result above is believed
not to be optimal, and a stronger result is conjectured.

Conjecture 3.14 ([11, Conjecture 2.2]) Let (Gn)n≥0 be a family of d-regular graphs
such that limn→∞ |Gn| = ∞. There exists 0 < γ < 1 and n0 such that for all n > n0
the following holds: consider the cylinder graph Gn × N with base Gn and let (Et )
be the external DLA process on Gn×N with E0 being the zero layer of the cylinder
graph, and Tm be the first time the external DLA cluster reaches level m on the
cylinder graph Gn × N. Then, for all m, E[Tm] ≤ m|Gn|γ .

Concerning the density of the limit cluster at infinity E∞, for cylinder graphs G×N

with base G, in the same paper there are two results. To state them, let us define the
empirical density of particles in the finite cylinder G× {1, . . . , m} as

D(m) = 1

mn

m∑
i=1

|E∞ ∩Gi |

and the density at infinity asD = D∞ = limm→∞D(m). Using standard arguments
from ergodic theory one can show that the above limit exists, and is constant almost
surely. The next result relates the density at infinity to the average growth rate.

Theorem 3.15 ([11, Theorem 4.2]) For the external DLA process on G×N, where
G is a d-regular graph of size n, we have

D = lim
m→∞

1

mn
E[Tm].

In [11, Theorem 4.6] the previous result has been improved to D ≤ 2
3 for the case

when the base graph G is a vertex transitive graph. Finally, for a family of base
graphs with small mixing time, the following holds.
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Theorem 3.16 ([11, Theorem 4.8]) Let (Gn)n≥0 be a family of d-regular graphs
(d ≥ 2) such that limn→∞ |Gn| = ∞, and for all n,

tmix(Gn) ≤ log2 |Gn|
(log log |Gn|)5 .

Let D(n) be the density at infinity of the external DLA process on Gn × N. Then
limn→∞D(n) = 0.

We refer to the last section of [11] for several open questions and problems
concerning external DLA on cylinder graphs. Many of the bounds from the previous
three results can be improved, with some careful technicalities and assumptions on
the base graph G.

3.5 Fractal Graphs

The appearance of fractal-like structures in DLA models (both internal and external)
and their behavior on fractal graphs is the main theme of this paper, and we would
like at this point to introduce two fractal graphs: the Sierpinski gasket graph and the
Sierpinski carpet graph (called also pre-Sierpinski carpet).

Sierpinski gasket graph SG is a pre-fractal associated with the Sierpinski gas-
ket, defined as follows. We consider in R

2 the sets V0 = {(0, 0), (1, 0), (1/2,
√

3/2)}
and

E0 =
{(
(0, 0), (1, 0)

)
,
(
(0, 0), (1/2,

√
3/2)
)
,
(
(1, 0), (1/2,

√
3/2)
)}
.

Now recursively define (V1, E1), (V2, E2), . . . by

Vn+1 = Vn ∪
{(

2n, 0
)+ Vn}⋃

{(
2n−1, 2n−1

√
3
)
+ Vn
}

and

En+1 = En ∪
{(

2n, 0
)+ En}⋃

{(
2n−1, 2n−1

√
3
)
+ En
}
,

where (x, y) + S := {(x, y) + s : s ∈ S}. Let V∞ = ∪∞n=0Vn, E∞ = ∪∞n=0En,
V = V∞∪{−V∞} andE = E∞∪{−E∞}. Then the doubly infinite Sierpinski gasket
graph SG is the graph with vertex set V and edge set E. See Fig. 3 for a graphical
representation of SG. Set the origin o = (0, 0). External DLA on SG seems to be
an approachable problem, due to the fact that SG is a post-critically finite fractal,
and the existence of cut points simplifies the understanding of the harmonic measure
from infinity, which can be defined again as in (3.1), since simple random walk on
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Fig. 3 The doubly-infinite Sierpinski gasket graph SG

SG is recurrent. We refer the reader to [8] and [33] for more details on analysis and
diffusion on fractals.

Sierpinski carpet graph SCm, called alsom-dimensional pre-Sierpinski carpet,
is an infinite graph derived from the Sierpinski carpet. SC2 is constructed from the
unit square in R

2 by dividing it into 9 equal squares and deleting the one in the
center. The same procedure is then repeated recursively to the remaining 8 squares.
As mentioned in the introduction, we use the construction of the pre-Sierpinski
carpet as in [44]. Recall that in this construction, the length scale factor is 3 and
the mass scale factor is 3m − 1. For random walks on such graphs see [9] and
the references therein. See Fig. 4 for a finite piece of Sierpinski carpet graph in
dimension 2.

For m ≥ 3, simple random walk on SCm is transient, and the harmonic measure
from infinity μA(y) for a finite subset A ⊂ SCm is defined by using the capacity
of A and the equilibrium measure of A, similar to (3.2). More details on the
construction can be found in [12], where upper bounds for the arms r(En) of external
DLA on a large class of transient graphs, including SCm, m ≥ 3, are proved. Their
proofs are based on good control of heat-kernel estimates. The bounds for SCm read
as following.

Theorem 3.17 ([12, Theorem 5.5]) Let SCm be the m-dimensional Sierpinski
carpet graph, and (En)n≥0 the external DLA process on SCm started at E0 = {o}
(o is some fixed origin). Then almost surely,

lim sup
n→∞

n−βr(En) <∞
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Fig. 4 Sierpinski carpet graph SC2

where

β =
{

log2(13)−2
3 = 0.5568, if m = 3,

1
2 , if m = 4.

When m ≥ 5, we have almost surely,

lim sup
n→∞

(log n)−1n
− 2
d(m)−2 r(En) <∞,

where d(m) = log(3m − 1)

log(3m − 1)− log(3m−1 − 1)
.

We would like to conclude the section on external DLA with a couple of
problems/questions.

Question 3.18 Can one find an upper bound for the growth of arms in external DLA
on SG and on SC2 (the random walk is strongly recurrent on these two graphs)? Can
one extend the method Kesten used to upper bound the growth of arms in external
DLA on Z

2?

Question 3.19 Do we have zero density at infinity of the cluster E∞ on the
Sierpinski gasket graph SG?
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Question 3.20 Does the external DLA cluster on the Sierpinski gasket graph and
on the Sierpinski carpet graph have infinitely many holes, with probability one, as
in the case of Z2 as proven in [21]?

Other than SG and SCm there is a variety of other fractal graphs one can look
at, and investigate the behavior of external DLA, which can be easier than Z

d .

Question 3.21 Assuming that the Poisson boundary of the random walk on the
graph G is non trivial, is there a characterization of the Poisson boundary in terms
of the number of ends of the external DLA cluster at infinity E∞ on G?

4 Internal DLA

Internal DLA can be defined on any infinite graph G; fix as above a vertex o of G and
call it the origin. The internal DLA cluster is built up one site at a time, by letting the
n-th particle perform a random walk until it exits the set of sites already occupied
by the previous n − 1 particles, the walk of the n-th particle being independent of
the past. Similarly to external DLA, internal DLA is also a Markov chain on finite
subsets of G.

Definition 4.1 Let G be an infinite graph, and (Sn) a simple random walk on G
starting at o. Internal DLA on G is a Markov chain (In)n≥0 on finite connected
subsets of G, which evolves in time in the following way. Start with a single vertex
o ∈ G and set I0 = {o}. Given the state In of the chain at time n, let yn+1 be a
random vertex in ∂In chosen according to the harmonic measure (from o) of ∂In,
as defined in (2.1). That is, yn+1 is the first exist location from In of the simple
random walk (Sn) starting from o, independent of the past:

P[yn+1 = y|In] = h∂In(y), for y ∈ ∂In,

and we set In+1 = In ∪ {yn+1}.
The set In is called the internal DLA cluster at time n, and it contains n + 1 sites.
As n → ∞, we are interested in the asymptotic shape of internal DLA cluster
In, and the fluctuations of the cluster around the limiting shape. Due to the fact
that the harmonic measure for “nice subsets” (for example balls) of G, when G is
an Euclidean lattice, or a regular tree, is easier to understand than the harmonic
measure from infinity as in the external DLA case, for the internal DLA model we
have very precise estimates on many state spaces. Moreover, several variations of
the classical internal DLA have been introduced.
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4.1 Integer Lattices Zd

The first result concerning the internal DLA goes back to [36], where it is shown
that the limit shape of internal DLA cluster is a ball, in the following sense. Let
ωd be the volume of the d-dimensional Euclidean ball of radius 1, and Bn be the
d-dimensional “lattice ball” of radius n, that is, Bn = {x ∈ Z

d : |x| ≤ n}, where
|x| denotes the Euclidean norm of x.

Theorem 4.2 ([36, Theorem 1]) At time �ωdnd�, internal DLA cluster occupies a
set of sites close to a d-dimensional ball of radius n. More precisely, for any ε > 0,
with probability 1

Bn(1−ε) ⊂ I�ωdnd� ⊂ Bn(1+ε), for n large.

In this first paper, a basic open question on fluctuations (deviation of In from the
Euclidean ball) was asked: are the fluctuations of order

√
n, of order nδ for some

δ ∈ (0, 1
2 ), or even smaller? LAWLER [35] proved that for d ≥ 2, the fluctuations

are subdiffusive and they are of order at most n1/3. While it was conjectured that the
fluctuations are at most logarithmic in the radius, this resisted a mathematical proof
for about 20 years. Two independent groups JERISON, LEVINE, AND SHEFFIELD

[26–28] and ASSELAH AND GAUDILLIÈRE [4–6], and by different methods have
shown that indeed, for d = 2 there are log(n) fluctuations, and for d ≥ 3, there are√

log(n) fluctuations in the radius. A summary of their results reads as following.

Theorem 4.3 If d = 2, there is an absolute constant c, such that with probability
1,

Bn−c log n ⊂ I�πn2� ⊂ Bn+c log n, for all sufficiently large n.

If d ≥ 3, there is an absolute constant C, such that with probability 1,

Bn−C√log n ⊂ I�ωdnd� ⊂ Bn+C√log n, for all sufficiently large n.

A generalization of the classical internal DLA on Z
d was treated in [39], where

instead of running all particles from the origin, the authors run the process from
an arbitrary starting configuration of particles (initial density of particles) on finer
and finer lattices, all particles still performing simple random walks. They then show
that, as the lattice spacing tends to zero, the internal DLA has a deterministic scaling
limit which can be described as the solution to a certain PDE free boundary problem
in R

d . We do not state here the rigorous result, which requires more notation and
definition, but refer to the lengthy and complex paper [39]. In order to study this
general model, a new model called divisible sandpile was introduced in [38], which
uses a continuous amount of mass instead of discrete particles.

The divisible sandpile model can be briefly described as following: start with
an initial mass μ at the origin o. A vertex is called full if it has mass at least 1.
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Any full site can topple by keeping mass 1 for itself and distributing the excess
mass equally among its neighbors. At each time step, one chooses a full site and
topples it. As time goes to infinity, provided each full site is eventually toppled,
the mass approaches a limiting distribution in which each site has mass ≤ 1; this
is proved in [38]. Individual topplings do not commute, but the divisible sandpile
is abelian in the sense that any sequence of topplings produces the same limiting
mass distribution; this is proved in [39, Lemma 3.1]. The set of sites with limit mass
distribution equal to 1 is denoted by Sn and is called the divisible sandpile cluster.
The asymptotic shape of the divisible sandpile cluster Sn is proven to be the same
as the one of the internal DLA cluster on Z

d in [38], on regular trees in [37], on
comb lattices in [24], and on Sierpinski gasket graphs in [25].

Random Walks with Drift on Z
d If one lets the particles which build up the

internal DLA cluster In perform drifted random walk instead of simple random
walk as in the classical model, one can again ask about the shape of the limit cluster
on any state space. On Z

d , this was open for several years, and the cluster was
believed to be represented by the level sets of the Green function for the drifted
random walk. This fact has been disproved, and with the help of the divisible
sandpile model, in [41] it was proven that the internal DLA cluster is a true heat
ball, because it gives rise to a mean-value property for caloric functions. The author
introduced there the unfair divisible sandpile, where the mass is not distributed
equally to the neighbors, but according to the one-step transition probabilities of
the drifted random walk; the limit shape for the unfair divisible sandpile on Z

d was
also described there. The main result for the limit shape for drifted internal DLA
can be found in [41, Theorem 1.1], and for the limit shape of the unfair divisible
sandpile cluster in [41, Theorem 3.3].

Uniform Starting Points To my knowledge, the most recent result for internal
DLA on Z

d , concerns the limit shape for the cluster when the particles do not all start
from the same vertex o. Instead the starting position is chosen uniformly at random
in the existing cluster. Formally, one can define the internal DLA as in Definition 4.1,
starting with I0 = {0}, and given the process at time n, let yn+1 be the first exit
location from In of the simple random walk SXnn starting at Xn, where Xn is a point
chosen uniformly on In, independent of the past. Set In+1 = In ∪ {yn+1}. It turns
out, as shown in [13], that this additional source of randomness arising from the
choice of the initial position of the random walk, does not change the limit shape of
the process, as the result below shows. Let bn := |Bn|.
Theorem 4.4 ([13, Theorem 1.1]) Let d ≥ 2. There exist constants c1, c2, C1 and
C2 depending only on the dimension d such that, almost surely, the internal DLA
cluster In on Z

d with uniform starting points satisfies

Bn(1−C1n
−c1 ) ⊆ Ibn ⊆ Bn(1+C2n

−c2 ), for n large enough.

Question 4.5 What can we say about the fluctuations of the internal DLA cluster on
Z
d with uniform starting points around the limit shape? Are they bigger (smaller)
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that the fluctuations for internal DLA when all particles start their random walk
from the same vertex o?

Supercritical Percolation Cluster on Z
d In [49], the underlying state space for

the internal DLA model is the supercritical bond percolation cluster on Z
d , with the

origin conditioned to be in the infinite cluster. It is shown in [49, Theorem 1.1] that
an inner bound for the internal DLA cluster is a ball in the graph metric. The picture
for the outer bound was completed in [20, Theorem 1.1], where the authors show
that also in this case the limit shape is a ball. The results in their paper hold in a
more general setting: given the existence of a “good” inner bound for internal DLA,
one can also prove a matching outer bound by using their methods. An interesting
problem in the context of internal DLA model on a random graph is to understand
the fluctuations.

4.2 Comb Lattices C2

The 2-dimensional comb lattice C2 is the spanning tree of Z2 obtained by removing
all horizontal edges except the ones on the x-axis. While C2 is a simple graph, see
Fig. 5 (left), it has some remarkable properties in what concerns the behavior of
random walks: no form of the so-called Einstein relation for exponents associated
with random walks hold on C2, see [14]. PERES AND KRISHNAPUR [34] showed
that on C2 two independent simple random walks meet only finitely often. The comb
C2 is an example where the limit shape of internal DLA is not a ball in the graph
metric or in another standard metric. Indeed, the diameter of the internal DLA
cluster with n particles grows like n2/3 in the y-direction, and like n1/3 in the x-
direction. See Fig. 5 (right) for a picture of the internal DLA cluster with 100, 500,
and 1000 particles, respectively.

Let

Dn =
{
(x, y) ∈ C2 : |x|

k
+
( |y|
l

)1/2

≤ n1/3

}
(4.1)

where the constants k and l are given by

k =
(

3

2

)2/3

, l = 1

2

(
3

2

)1/3

.

The inner bound for the limit shape of internal DLA cluster on C2 was proven in
[24, Theorem 4.2], while the outer bound together with the fluctuations was proven
in [7].
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Fig. 5 The comb C2 (left) and internal DLA clusters on C2 (right)

Theorem 4.6 ([7, Theorem 1.2]) There is a positive constant a such that with
probability 1, and n large enough

Dn−a√log n ⊂ In ⊂ Dn+a√log n.

Remark that this result does not mean that the fluctuations are sub-logarithmic,
but rather Gaussian; see [7, Theorem 1.2] and the comments afterwards. In [24,
Theorem 3.5] we also prove that the limit shape for the divisible sandpile cluster on
C2 is given by the set Dn.

4.3 Trees Td

Internal DLA on discrete groups with exponential growth has been studied in [16].
The homogeneous tree Td is a particular case (as a Cayley graph of a free group) of
these state spaces, for which the authors have proven that the limit shape of internal
DLA cluster is a ball in the graph metric, and they give lower bounds for the inner
and outer error. The more general result is the following.

Theorem 4.7 ([16, Theorem 3.1]) Let G be a finitely generated group of exponen-
tial growth, and consider the internal DLA model (In) on G, built up with symmetric
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random walks with finitely supported increments, starting at the identity o of G.
Then, for any constants CO > 2 and CI > 3/K ,

P
[∃n0 s.t. ∀n > n0 : Bn−CI ln n ⊂ I|Bn| ⊂ Bn+CO√n

] = 1,

where K is a constant that ensures that the ball Bn contains the boundary ∂Bn−1,
and Bn is the ball of radius n centered at the identity in the word metric on G.

An extension of this result to non-amenable graphs for a wide class of Markov
chains was considered in [23]. On discrete groups with polynomial growth, internal
DLA has been considered in [15].

4.4 Cylinder Graphs

Like in Sect. 3.4, we consider here cylinder graphs G × Z, and we let G to be
the cycle graph ZN on N vertices. Internal DLA on cylinder graphs ZN × Z was
investigated in [29], for the following initial setting. For k ∈ Z, the set ZN × {k}
is called the k-th level of the cylinder, and Rk = {(x, y) ∈ ZN × N : y ≤ k} the
rectangle of height k. Let I0 = R0, and given the cluster In at time n, let yn+1
be the first exit location from In of a random walk that starts uniformly at random
on level zero of the cylinder, independent on the past, that is, the starting location
is chosen with equal probability among the N sites (x, 0), for x ∈ ZN . We then set
In+1 = In ∪ {yn+1}. It has been proven in [29, Theorem 2] that the limit shape
of internal DLA clusters on ZN × Z is logarithmically close to rectangles, result
that we do not state in complete form here, but instead we state a more recent result
due to LEVINE AND SILVESTRI [40, Theorem 1.1] which generalizes the previous
one [29] (here the fluctuations are described in terms of the Gaussian Free Field
exactly). Remark that in the cylinder setting, there are two parameters, the size N of
the cycle base graph, and the time n.

Theorem 4.8 ([40, Theorem 1.1]) Let (In)n≥0 be the internal DLA process on
ZN × Z starting from I0 = R0. For any γ > 0, m ∈ N there exist a constant
C = C(γ,m) such that

P[R n
N
−C logN ⊆ In ⊆ R n

N
+C logN, n ≤ Nm] ≥ 1−N−γ , for N large enough.

For other results concerning the fluctuations and the behavior of internal DLA
clusters on ZN × Z, we refer to [40].
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4.5 Fractal Graphs

We would like to conclude the section about internal DLA with the behavior of the
model on Sierpinski gasket graphs SG. Recall the definition of the Sierpinski gasket
graph SG and of the Sierpinski carpet graph SC2, as given in Sect. 3.5. Due to the
symmetry of SG, it is clear that the limit shape of the internal DLA cluster on SG
is a ball in the graph metric, a result proved in [18].

Theorem 4.9 ([18, Theorem 1.1]) On SG, the internal DLA cluster of |Bn|
particles occupies a set of sites close to a ball of radius n. That is, for all ε > 0, we
have

Bn(1−ε) ⊂ I|Bn| ⊂ Bn(1+ε), for all n sufficiently large

with probability 1.

A limit shape for the divisible sandpile on SG was described in [25]. Concerning
the fluctuations for internal DLA, it is conjectured that they are sub-logarithmic.

Conjecture 4.10 ([17, Conjecture 4.1]) There exists C > 0 such that

Bn−C√log n ⊂ I|Bn| ⊂ Bn+C√log n.

Many other questions concerning internal DLA on fractal graphs can be found in
the final section of [17].

Question 4.11 Is the limit shape for the internal DLA model with uniform starting
points on SG, again a ball in the graph metric? What about the fluctuations in this
case?

A reason why SG is easier to work with is because (1) it is a finitely ramified fractal
graph, and (2) we have a precise characterization of the divisible sandpile model on
SG, thanks to the finite ramification and the symmetries it possesses. In contrast,
SC2 is infinitely ramified, and characterizing the harmonic measure thereon is a
challenging open question in the study of analysis on fractals. So at the moment it
is very difficult to analyze growth models on SC2. See Fig. 6 for the behavior of
internal DLA on SC2.

Question 4.12 Does the internal DLA cluster on the 2-dimensional Sierpinski
carpet graph SC2 have a (unique) scaling limit? What can one say about the
boundary of the limit shape, which according to simulations appears to be of fractal
nature?

Question 4.13 What is the limit shape of internal DLA on fractal graphs, other that
SG (which is understood) and SC2 (which seems hard to investigate)?
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Fig. 6 Internal DLA clusters on SC2 for 10000 up to 150000 particles. Simulations by W.Huss

Since in most cases, the limit shape for internal DLA is a ball (in the graph metric,
or Euclidean metric, or word metric), a more general question to ask is about the
state space for the process.

Question 4.14 What properties should the state space G and the random walk on it
have, in order for the internal DLA cluster on G to have a ball as limit shape?

We would like to conclude this survey with the remark that fractals provide
a class of state spaces with intriguing properties, both for the behavior of the
external and internal DLA model, respectively. This behavior is definitely not fully
understood on such graphs, and we hope to attract more people from the fractal
community into the beauty of these topics.
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