
Web Service API Anti-patterns Detection
as a Multi-label Learning Problem

Islem Saidani1, Ali Ouni1(B), and Mohamed Wiem Mkaouer2

1 Ecode de technologie superieure, University of Quebec, Montreal, QC, Canada
islem.saidani@ens.etsmtl.ca, ali.ouni@etsmtl.ca

2 Rechester Institute of Technology, Rochester, NY, USA
mwmvse@rit.edu

Abstract. Anti-patterns are symptoms of poor design and implemen-
tation solutions applied by developers during the development of their
software systems. Recent studies have identified a variety of Web ser-
vice anti-patterns and defined them as sub-optimal solutions that result
from bad design choices, time pressure, or lack of developers experience.
The existence of anti-patterns often leads to software systems that are
hard to understand, reuse, and discover in practice. Indeed, it has been
shown that service designers and developers tend to pay little attention
to their service interfaces design. Web service antipatterns detection is
a non-trivial and error-prone task as different anti-pattern types typ-
ically have interleaving symptoms that can be subjectively interpreted
and hence detected in different ways. In this paper, we introduce an auto-
mated approach that learns from a set of interleaving Web service design
symptoms that characterize the existence of anti-pattern instances in a
service-based system. We build a multi-label learning model to detect 8
common types of Web service anti-patterns. We use the ensemble classi-
fier chain (ECC) model that transforms multi-label problems into several
single-label problems which are solved using genetic programming (GP)
to find the optimal detection rules for each anti-pattern type. To evalu-
ate the performance of our approach, we conducted an empirical study
on a benchmark of 815 Web services. The statistical tests of our results
show that our approach can detect the eight Web service antipattern
types with an average F-measure of 93% achieving a better performance
compared to different state-of-the-art techniques. Furthermore, we found
that the most influential factors that best characterize Web service anti-
patterns include the number of declared operations, the number of port
types, and the number of simple and complex types in service interfaces.

Keywords: Web service design · Service interface · Service
anti-patterns · Genetic programming · Ensemble classifier chain

1 Introduction

Web services have become a popular technology for deploying scale-out applica-
tion logic and are used in both open source and industry software projects such
c© Springer Nature Switzerland AG 2020
W.-S. Ku et al. (Eds.): ICWS 2020, LNCS 12406, pp. 114–132, 2020.
https://doi.org/10.1007/978-3-030-59618-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59618-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-59618-7_8

Web Service API Anti-patterns Detection as a MLL Problem 115

as Amazon, Yahoo, Fedex, Netflix, and Google. An advantage of using Web ser-
vices and Service-Based Systems (SBS) is their loose coupling, which leads to
agile and rapid evolution, and continuous re-deployment. Typically, SBSs use
of a collection Web services that communicate by messages through declared
operations in the services interfaces (API).

Being the most used implementation of the Service Oriented Architecture
(SOA), Web services are based on a number of widely acknowledged design
principles, qualities and structural features that are different from traditional
systems [2,20,29,30]. While there is no generalized recipe for what is considered
to be a good service design, there exists guidelines about how to develop service-
oriented designs while following a set of quality principles like service reusability,
flexibility, and loose coupling principles [10,20,29]. However, like any software
system, Web service must evolve to add new user requirements, fix defects or
adapt to new environment changes. Such frequent changes, as well as other
business factors, developers expertise, and deadline pressure may, in turn, lead
to the violation of design quality principles. The existence of bad programming
practices, inducing poor design, also called “anti-patterns” or “design defects”,
are an indication of such violations [20,21,25]. Such antipatterns include the God
Object Web service which typically refers to a Web service with large interface
implementing a multitude of methods related to different technical and business
abstractions. The God Object Web Service is not easy to discover and reuse and
often unavailable to end users because it is overloaded [12]. Moreover, when many
clients are utilizing one interface, and several developers work on one underlying
implementation, there are bound to be issues of breakage in clients and developer
contention for changes to server-side implementation artifacts [12]. To this end,
such anti-patterns should be detected, prevented and fixed in real world SBS to
adequately fit in the required system’s design with high QoS [12,29].

While recent works attempted to detect and fix Web service antipatterns
[18–21,25,33], the detection of such antipatterns is still a challenging and diffi-
cult task. Indeed, there is no consensual way to translate formal definition and
symptoms into actionable detection rules. Some efforts attempted to manually
define detection rules [18,19,25]. However, such manual rules are applied, in
general, to a limited scope and require a non-trivial manual effort and human
expertise to calibrate a set of detection rules to match the symptoms of each
antipattern instance with the actual characteristics of a given Web service. Other
approaches attempted to use machine learning to better automate the detection
of antipatterns [20,21,32]. However, these detection approaches formulated to
the detection as a single-label learning problem, i.e., dealing with antipatterns
independently and thus ignoring the innate relationships between the different
antipattern symptoms and characteristics. As a result, existing machine learning-
based approaches lead to several false positives and true negatives reducing the
detection accuracy. Indeed, recent studies showed that different types of Web
service antipatterns may exhibit similar symptoms and can thus co-exist in the
same Web service [12,20,25]. That is, similar symptoms can be used to char-
acterize multiple antipattern types making their identification even harder and

116 I. Saidani et al.

error-prone [12,20]. For example, the God Object Web service (GOWS) antipat-
tern is typically associated with the Chatty Web service (CWS) antipattern
which manifests in the form of a Web service with a high number of opera-
tions that are required to complete abstraction. Consequently, the GOWS and
the CWS typically co-occur in Web services. Inversely, the GOWS antipattern
has different symptoms than the fine-grained Web service (FGWS) antipattern
which typically refers to a small Web service with few operations implementing
only apart of an abstraction. Hence, knowing that a Web service is detected as
a FGWS antipattern, it cannot be a GOWS or a CWS as they have different
innate characteristics/symptoms.

In this paper, our aim is to provide an automated and accurate technique
to detect Web service anti-patterns. We formulate the Web services antipat-
terns detection problem as a multi-label learning (MLL) problem to deal with
the interleaving symptoms of existing Web service antipatterns by generating
multiple detection rules that can detect various antipattern types. We use the
ensemble classifier chain (ECC) technique [28] that converts the detection task
of multiple antipattern types into several binary classification problems for each
individual antipattern type. ECC involves the training of n single-label binary
classifiers, where each one is solely responsible for detecting a specific label, i.e.,
antipattern type. These n classifiers are linked in a chain, such that each binary
classifier is able to consider the labels identified by the previous ones as additional
information at the classification time. For the binary classification, we exploit
the effectiveness of genetic programming (GP) [13,14,20] to find the optimal
detection rules for each antipattern. The goal of GP is to learn detection rules
from a set of real-world instances of Web service antipatterns. In fact, we use
GP to translate regularities and symptoms that can be found in real-world Web
service antipattern examples into actionable detection rules. A detection rule is
a combination of Web service interface quality metrics with their appropriate
threshold values to detect various types of antipatterns.

We implemented and evaluated our approach on a benchmark of 815 Web ser-
vices from different application domains and sizes and eight common Web service
antipattern types. To evaluate the performance of our GP-ECC approach, and
the statistical analysis of our results show that the generated detection rules can
identify the eight considered antipattern types with an average precision of 89%,
and recall of 93% and outperforms state-of-the-art techniques [20,25]. Moreover,
we conducted a deep analysis to investigate the symptoms, i.e., features, that are
the best indicators of antipatterns. We found that the most influential factors
that best characterize Web service anti-patterns include the number of declared
operations, the number of port types, and the number of simple and complex
types in service interfaces.

This paper is structured as follows: the paper’s background is detailed in
Sect. 2. Section 3 summarizes the related studies. In Sect. 4, we describe our GP-
ECC approach for Web service antipatterns detection. Section 5 presents our
experimental evaluation, and discusses the obtained results. Section 6 discusses
potential threats to the validity our our approach. Finally, Sect. 7 concludes and
outlines our future work.

Web Service API Anti-patterns Detection as a MLL Problem 117

2 Background

This section describes the basic concepts used in this paper.

2.1 Web Service Anti-Patterns

Anti-patterns are symptoms of bad programming practices and poor design
choices when structuring the web interfaces.They typically engender web inter-
faces to become harder to maintain and understand [17].

Various types of antipatterns, characterized by how they hinder the quality
of service design, have been recently introduced with the purpose of identifying
them, in order to suggest their removal through necessary refactorings [12,16,25].
Typical web service antipatterns are described in Table 1:

Table 1. The list of considered Web service antipatterns.

Antipatterns definitions

Chatty Web service (CWS): is a service where a high number of operations, typically
attribute-level setters or getters, are required to complete one abstraction. This
antipattern may have many fine-grained operations, which degrades the overall
performance with higher response time [12]

Fine grained Web service (FGWS): is a too fine-grained service whose overhead
(communications, maintenance, and so on) outweighs its utility. This defect refers to a
small Web service with few operations implementing only a part of an abstraction. It
often requires several coupled Web services to complete an abstraction, resulting in
higher development complexity, reduced usability [12]

God object Web service (GOWS): implements a multitude of methods related to
different business and technical abstractions in a single service. It is not easily reusable
because of the low cohesion of its methods and is often unavailable to end users
because it is overloaded [12]

Ambiguous Web service (AWS): is an antipattern where developers use ambiguous or
meaningless names for denoting the main elements of interface elements (e.g., port
types, operations, messages). Ambiguous names are not semantically and syntactically
sound and affect the service discoverability and reusability [19]

Data Web service (DWS): contains typically accessor operations, i.e., getters and
setters. In a distributed environment, some Web services may only perform some
simple information retrieval or data access operations. A DWS usually deals with very
small messages of primitive types and may have high data cohesion [25]

CRUDy Interface (CI): is a service with RPC-like behavior by declaring create, read,
update, and delete (CRUD) operations, e.g., createX(), readY(), etc. Interfaces
designed in that way might be chatty because multiple operations need to be invoked to
achieve one goal. In general, CRUD operations should not be exposed via interfaces [12]

Redundant PortTypes (RPT): is a service where multiple portTypes are duplicated
with the similar set of operations. Very often, such portTypes deal with the same
messages. RPT antipattern may negatively impact the ranking of the Web Services [12]

Maybe It is Not RPC (MNR): is an antipattern where the Web service mainly provides
CRUD- type operations for significant business entities. These operations will likely
need to specify a significant number of parameters and/or complexity in those
parameters. This antipattern causes poor system performance because the clients often
wait for the synchronous responses [12]

118 I. Saidani et al.

We focus our study on these eight antipattern types as they are the most
common ones in SBSs based on recent studies [15,16,21,22,25,30,33].

2.2 Multi-label Learning

Multi-label learning (MLL) is the machine learning task of automatically assign-
ing an object into multiple categories based on its characteristics [5,28,31].
Single-label learning is limited by one instance with only one label. MLL is a non-
trivial generalization by removing the restriction and it has been a hot topic in
machine learning [5]. MLL has been explored in many areas in machine learning
and data mining fields through classification techniques. There exists different
MLL techniques [3,5,28,31,35] including (1) problem transformation methods
and algorithms, e.g., the classifier chain (CC) algorithm, the binary relevance
(BR) algorithm, label powerset (LP) algorithm, and (2) algorithm adaptation
methods such as the K-Nearest Neighbors (ML.KNN), as well as (3) ensemble
methods such as the ensemble classifier chain (ECC), and random k-labelset
(RAKEL).

The Classifier Chain (CC) Model. The CC model combines the computa-
tional efficiency of the BR method while still being able to take the label depen-
dencies into account for classification. With BR, the classifier chains method
involves the training of q single-label binary classifiers and each one will be solely
responsible for classifying a specific label l1, l2, ..., lq. The difference is that, in
CC, these q classifiers are linked in a chain {h1 → h2 → ... → hq} through the
feature space. That is, during the learning time, each binary classifier hj incor-
porates the labels predicted by the previous h1, ..., hj−1 classifiers as additional
information. This is accomplished using a simple trick: in the training phase, the
feature vector x for each classifier hj is extended with the binary values of the
labels l1, ..., lj−1.

The Ensemble Classifier Chain (ECC) Model. One of the limitation of the
CC model is that the order of the labels is random. This can lead may lead to a
single standalone CC model be poorly ordered. Moreover, there is the possible
effect of error propagation along the chain at classification time, when one (or
more) of the first classifiers predict poorly [28]. Using an ensemble of chains,
each with a random label order, greatly reduces the risk of these events having
an overall negative effect on classification accuracy. A majority voting method
is used to select the best model. Moreover, a common advantage of ensembles is
their performance in increasing overall predictive performance [3,28].

2.3 Genetic Programming

Genetic Programming (GP) [13], a sub-family of Genetic Algorithms (GA), is
a computational paradigm that were inspired by the mechanics of natural evo-
lution, including survival of the fittest, reproduction, and mutation. GP begins
with a set of random population of candidate solutions, also called individuals or
chromosomes. Each individual of the population, is represented in the form of a

Web Service API Anti-patterns Detection as a MLL Problem 119

computer program or tree and evaluated by a fitness function to quantitatively
measure its ability to solve the target problem.

In this paper, we apply GP to the problem of Web service antipatterns
detection. Hence, we show how GP can effectively explore a large space of solu-
tions, and provide intelligible detection rules with ECC. Also, we bridge the
gap between MLL and GP based on the ECC method to solve the problem of
antipatterns detection, where each Web service may contain different interleav-
ing antipatterns, e.g., GOWS, CWS and CI. For the binary labels, our ECC
model adopts GP to learn detection rules for each antipattern type.

3 Related Work

Detecting and specifying antipatterns in SOA and Web services is a relatively
new field. The first book in the literature was written by Dudney et al. [12]
and provides informal definitions of a set of Web service antipatterns. More
recently, Rotem-Gal-Oz described the symptoms of a range of SOA antipatterns
[30]. Furthermore, Král et al. [16] listed seven “popular” SOA antipatterns that
violate accepted SOA principles. In addition, a number of research works have
addressed the detection of such antipatterns. Recently, Palma et al. [25] have
proposed a rule-based approach called SODA-W that relies on declarative rule
specification using a domain-specific language (DSL) to specify/identify the key
symptoms that characterize an antipattern using a set of WSDL metrics. In
another study, Rodriguez et al. [29] and Mateos et al. [19] provided a set of
guidelines for service providers to avoid bad practices while writing WSDLs.
Based on some heuristics, the authors detected eight bad practices in the writ-
ing of WSDL for Web services. Mateos et al. [18] have proposed an interesting
approach towards generating WSDL documents with less antipatterns using text
mining techniques. Ouni et al. [20,22] proposed a search-based approach based
on evolutionary computation to find regularities, from examples of Web service
antipatterns, to be translated into detection rules. However, detections rules
based approaches tend to have a higher number of false positives. Ouni et al.
[21] introduced a machine learning based approach to build detection models for
different Web service antipattern types. However, the major limitation of the
current approaches is that deal with the Web service antipatterns problem as
a single label learning problem ignoring the valuable information related to the
shared symptoms between different antipattern types. As a consequence, they
suffer from reduced accuracy related to several false positives and true negatives.

To fix such antipatterns, Daagi et al. [9] proposed an automated approach
based on formal concept analysis to fix the GOWS antipattern. Ouni et al.
[23,24] introduced a hybrid approach based on graph partitioning and search
based optimization to improve the design quality of web service interfaces to
reduce coupling and increase cohesion. Later, Wang et al. [33] have formulated
an interactive approach to find the optimal design of Web service and reduce
the number of antipatterns.

120 I. Saidani et al.

4 Approach

In this section, we provide the problem formulation for Web service antipatterns
detection as a MLL problem. Then, we describe the details of our approach.

4.1 Problem Formulation

We define the Web services antipatterns detection problem as a multi-label
learning problem. Each antipattern type is denoted by a label li. A MLL prob-
lem can be formulated as follows. Let X = Rd denote the input feature space.
L = {l1, l2, ...lq} denote the finite set of q possible labels, i.e., antipattern types.
Given a multi-label training set D = {(x1, y1) , (x2, y2) ,(xN , yN) }(xi ∈
X, yi ⊆ L) , the goal of the multi-label learning system is to learn a function
h : X → 2L from D which predicts a set of labels for each unseen instance based
on a set of known data.

4.2 Approach Overview

The main goal of our approach is to generate a set of detection rules for each
antipattern type while taking into consideration the dependencies between the
different antipatterns and their interleaving symptoms. Figure 1 presents an
overview of our approach to generate service antipatterns detection rules using
the GP-ECC model. Our approach consists of two phases: training phase and
detection phase. In the training phase, our goal is to build an ensemble classifier
chain (ECC) model learned from real-world antipattern instances identified from
existing Web services based on several GP models for each individual antipat-
tern. In the detection phase, we apply this model to detect the proper set of labels
(i.e., antipattern type) for a new unlabeled data (i.e., a new Web service).

CC 1

Learn GP model
for antipattern A1

Apply A1 on
training set

Training
set

GP model
for A1

Learn GP model
for antipattern A8

Training set
+ A1+…+A8

GP model
for A8

…

CC n

…

Phase A: Training data collection

Phase D : Detection Phase

Apply ECC-GP
on the

New Web service

Detected
Antipatterns

Learn GP model
for antipattern A2

Apply A2 on
training set +A1

Training
set + A1

GP model
for A2

Genetic Programming-based Ensemble Classifier Chain (GP-ECC)

Phase B : Features Extraction

Phase C: Training Phase -

Web
services

Labeled antipatterns

Trained model
GP-ECC

New Web
service

Majority Voting

Fig. 1. The Web service antipatterns detection framework using GP-ECC.

Web Service API Anti-patterns Detection as a MLL Problem 121

Our approach takes as inputs a set of Web services with known labels, i.e.,
antipatterns (phase A). Then, extracts a set of features characterizing the con-
sidered antipattern types from which a GP algorithm will learn (phase B). Next,
an ECC algorithm will be built (phase C). The ECC algorithm consists of a set
of classifier chain models (CC), each with a random label order. Each CC model,
learns eight individual GP models for each of the eight considered antipattern
types. The ith binary GP detector will learn from the training data while consid-
ering the existing i already detected antipatterns by the i − 1 detected antipat-
terns to generate the optimal detection rule that can detect the current ith

antipattern. In total, the ECC trains n multi-label CC classifiers CC1, ..., CCn;
each classifier is given a random chain ordering; each CC builds 8 binary GP
models for each antipattern type. Each binary model uses the previously pre-
dicted binary labels into its feature space. Then, our framework searches for the
near optimal GP-ECC model from these n multi-label chain classifiers using an
ensemble majority voting schema based on each label confidence [28].

In the detection phase, the returned GP-ECC model is a machine learning
classifier that assigns multiple labels, i.e., antipattern types, to a new Web ser-
vice based on its current features, i.e., its symptoms (phase D). In the next
subsections, we provide the details of each phase.

4.3 Phase A : Training Data Collection

Our proposed technique leverages knowledge from a set of examples containing
real world instances of web service antipatterns. The base of examples contains
different web service antipatterns from different application domains (e.g., social
media, weather, online shopping, etc.), which were gathered from various Web
service online repositories and search engines, like ProgrammableWeb, and Ser-
viceXplorer, etc. To ensure the correctness of our dataset, the studied antipattern
instances were manually inspected and verified according to existing guidelines
from the literature [12,16,20,25]. Our dataset is publicly available [1].

4.4 Phase B : Features Extraction Module

The proposed techniques leverages a set of popular and widely used metrics
related to web services [20–22,25,27,32,34]. As shown in Table 2, our technique
develops its detection rules using suite of over 42 quality metrics including (i)
code level metrics, (ii) WSDL interface metrics, and (iii) measurements of per-
formance. Code metrics are calculating using service Java artefacts, being mined
using the JavaTM API for XML Web Services (JAX-WS)1 [8] as well as the
ckjm tool2 (Chidamber & Kemerer Java Metrics) [6]. WSDL metrics capture
any design properties of Web services, in the structure of the WSDL interface
level. Furthermore, a set of dynamic metrics is also captured, using web service
invocations, e.g., availability, and response time.

1 http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html.
2 http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/.

http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/

122 I. Saidani et al.

4.5 Phase C : Multi-label Learning Using GP-ECC

As outlined in the previous Sect. 4.2, our solution uses the ECC classifier [28]
to model the multi-label learning task into multiple single-label learning tasks.
Our multi-label ECC is a detection model for the identification of web service
antipatterns. Each classifier chain (CC) represents a GP model (binary decision
tree) for each smell type while considering the previously detected smells (if any),
i.e., each binary GP model uses the previously predicted binary labels into its
feature space. The motivation behind the choice of GP-based models is driven
by its efficiency in the resolution of similar software engineering problems such
as, design defects, and code smells identification [3,14,20,22].

In our approach, we adopted the Non-dominated Sorting Genetic Algorithm
(NSGA-II) [11] as a search algorithm to generate antipatterns detection rules.
NSGA-II is a powerful and widely-used evolutionary algorithm which extends
the generic model of GP learning to the space of programs. Unlike other evolu-
tionary search algorithms, in our NSGA-II adaptation, solutions are themselves
programs following a tree-like representation instead of fixed length linear string
formed from a limited alphabet of symbols [13]. More details about NSGA-II
can be found in Deb et al. [11].

We describe in the following subsections the three main adaptation steps: (i)
solution representation, (ii) the generation of the initial generation (iii) fitness
function, and (iv) change operators.

(i) Solution Representation. A solution consists of a rule that can detect
a specific type of anti-pattern in the form of:

IF (Combination of metrics and their thresholds) THEN antipattern type.

In MOGP, the solution representation is a tree-based structure of functions
and terminals. Terminals represent various structural, dynamic, and service ori-
ented metrics, extracted from Table 2. Functions are logic operators such as OR
(union), AND (intersection), or XOR (eXclusive OR). Thus, each solution is
encoded as a binary tree with leafnodes (terminals) correspond to one of metrics
described in Table 2 and their associated threshold values randomly generated.
Internal-nodes (functions) connect sub-tress and leaves using the operators set
C = {AND,OR,XOR}. Figure 2 is a simplified illustration of a given solution.

(ii) Generation of the Initial Population. The initial population of solu-
tions is generated randomly by assigning a variety of metrics and their thresholds
to the set of different nodes of the tree. The size of a solution, i.e., the tree’s
length, is randomly chosen between lower and upper bound values. These two
bounds have determined and called the problem of bloat control in GP, where
the goal is to identify the tree size limits. Thus, we applied several trial and
error experiments using the HyperVolume (HP) performance indicator [13] to
determine the upper bound after which, the sign remains invariant.

(iii) Fitness Function. The fitness function evaluates how good is a candi-
date solution in detecting web service antipatterns. Thus, to evaluate the fitness

Web Service API Anti-patterns Detection as a MLL Problem 123

Table 2. List of Web service quality metrics used.

Metric Description Metric level

Service interface metrics

NPT Number of port types Port type

NOD Number of operations declared Port type

NCO Number of CRUD operations Port type

NOPT Average number of operations in port types Port type

NPO Average number of parameters in operations Operation

NCT Number of complex types Type

NAOD Number of accessor operations declared Port type

NCTP Number of complex type parameters Type

COUP Coupling Port type

COH Cohesion Port type

NOM Number of messages Message

NST Number of primitive types Type

ALOS Average length of operations signature Operation

ALPS Average length of port types signature Port type

ALMS Average length of message signature Message

RPT Ratio of primitive types over all defined types Type

RAOD Ratio of accessor operations declared Port type

ANIPO Average number of input parameters in operations Operation

ANOPO Average number of output parameters in operations Operation

NPM Average number of parts per message Message

AMTO Average number of meaningful terms in operation names Operation

AMTM Average number of meaningful terms in message names Message

AMTP Average number of meaningful terms in port type names Type

Service code metrics

WMC Weighted methods per class Class

DIT Depth of Inheritance Tree Class

NOC Number of Children Class

CBO Coupling between object classes Class

RFC Response for a Class Class

LCOM Lack of cohesion in methods Class

Ca Afferent couplings Class

Ce Efferent couplings Class

NPM Number of Public Methods Class

LCOM3 Lack of cohesion in methods Class

LOC Lines of Code Class

DAM Data Access Metric Class

MOA Measure of Aggregation Class

MFA Measure of Functional Abstraction Class

CAM Cohesion Among Methods of Class Class

AMC Average Method Complexity Method

CC The McCabe’s cyclomatic complexity Method

Service Performance Metrics

RT Response Time Method

AVL Availability Service

124 I. Saidani et al.

OR

OR AND

COH<0,3 NPT>3 NCT>5 NST>8

Fig. 2. A simplified example of a solution for GOWS antipattern.

of each solution, we use two objective functions, based on two well-known met-
rics [14,20], to be optimized, i.e., precision and recall. The precision objective
function aims at maximizing the detection of correct antipatterns over the list of
detected ones. The recall objective function aims at maximizing the coverage of
expected antipatterns from the base of examples over the actual list of detected
instances. Precision and recall of a solution S are defined as follows.

Precision(S) =
|{Detected antipatterns} ∩ {Expected antipatterns}|

|{Detected antipatterns}| (1)

Recall(S) =
|{Detected antipatterns} ∩ {Expected antipatterns}|

|{Expected antipatterns}| (2)

(iv) Change Operators. Crossover and mutation are used as change oper-
ators to evolve candidate solutions towards optimality.

Crossover. We adopt the “standard” random, single-point crossover. It selects
two parent solutions at random, then picks a sub-tree on each one. Then, the
crossover operator swaps the nodes and their relative subtrees from one parent
to the other. Each child thus combines information from both parents.

Mutation. The mutation operator aims at slightly changing a solution, with-
out losing its main properties. It can be applied for both function or terminal
nodes. For a given solution to mutated, one or multiple nodes are randomly
selected, then changed according to their type. For functions, a logic operator
can be replaced with any randomly selected logic operator, while for terminals,
metrics may be swapped with another metric, or a metric threshold can be
changed.

ECC Majority Voting. As shown in Fig. 1, for each CC, MOGP will generate
an optimal rule for each type of web service antipattern, i.e., binary detection.
Then, ECC allows to find the best CC that provides the best MLL from all
the trained binary models. Each CCi model is likely to be unique and able to
achieve different multi-label classifications. These classifications are summed by
label so that each label receives a number of votes. A threshold is used to select
the most popular labels which form the final predicted multi-label set. This is a
generic voting scheme used in MLL transformation methods [28].

4.6 Phase D: Detection Phase

After constructing the GP-ECC model in the training phase, it will be then used
to detect a set of labels for a new Web service. It takes as input the set of features

Web Service API Anti-patterns Detection as a MLL Problem 125

extracted from a given Web service using the feature extraction module. As
output, it returns the detection results for each individual label, i.e., antipattern.

5 Empirical Study

In this section, we describe our empirical study to evaluate our GP-ECC app-
roach. We report the research questions, the experimental setup, and results.

5.1 Research Questions

We designed our empirical study to answer the three following research questions.

– RQ1: (Performance) How accurately can our GP-ECC approach detect
Web service anipatterns?

– RQ2: (Sensitivity) What types of anipatterns does our GP-ECC approach
detect correctly?

– RQ3: (Features influence) What are the most influential features that can
indicate the presence of anipatterns?

5.2 Experimental Setup

We evaluate our approach on a benchmark of 815 Web services [1]. Table 3
summarizes the experimental dataset. Furthermore, as a sanity check, all
antipatterns were manually inspected and validated based on literature guide-
lines [12,30] as discussed in Sect. 4.3. Web services were collected from differ-
ent Web service search engines including eil.cs.txstate.edu/ServiceXplorer, pro-
grammableweb.com, biocatalogue.org, webservices.seekda.com, taverna.org.uk
and myexperiment.org. Furthermore, for better generalisability, our empirical
study, our collected Web services are drawn from 9 different application domains,
e.g., financial, science, search, shipping, etc.

We considered eight common types of Web service antipatterns, i.e., god
object Web service (GOWS), fine-grained Web service (FGWS), chatty Web ser-
vice (CWS), data Web service (DWS), ambiguous Web service (AWS), redundant
port types (RPT), CRUDy interface (CI), and Maybe It is Not RPC (MNR), (cf.
Sect. 2). In our experiments, we conducted a 10-fold cross-validation procedure
to split our data into training data and evaluation data.

To answer RQ1, we conduct experiments to justify our GP-ECC approach.

Baseline Learning Methods. We first compare the performance of our meta-
algorithm ECC. We used GP, decision tree (J48) and random forest (RF) as
corresponding basic classification algorithms. We also compared with the widely
used MLL algorithm adaptation method, K-Nearest Neighbors (ML.KNN).
Thus, in total, we have 4 MLL algorithms to be compared. One fold is used
for the test and 9 folds for the training.

126 I. Saidani et al.

Table 3. The list of Web services used in our evaluation.

Category # of services # of antipatterns

Financial 185 115

Science 52 18

Search 75 33

Shipping 58 23

Travel 105 49

Weather 65 21

Media 82 19

Education 55 28

Messaging 63 43

Location 75 39

All 815 388

State-of-the-Art Detection Methods. Moreover, we compare the perfor-
mance of our approach with two state-of-the-art approaches, SODA-W [25] and
P-EA [20] for Web service antipattern detection. The SODA-W approach of
Palma et al. [25] manually translates antipattern symptoms into detection rules
and algorithms based on a literature review of Web service design. P-EA [20]
adopts parallel GP technique to detect Web service antipatterns based on a set
of Web service interface metrics. Both approaches detect antipattern types in an
independent manner.

To compare the performance of each method, we use common performance
metrics, i.e., precision, recall, and F-measure [14,20,28]. Let l a label in the
label set L. For each instance i in the antipatterns learning dataset, there are
four outcomes, True Positive (TPl) when i is detected as label l and it correctly
belongs to l; False Positive (FPl) when i is detected as label l and it actually
does not belong to l; False Negative (FNl) when i is not detected as label l when
it actually belongs to l; or True Negative (TNl) when i is not detected as label l
and it actually does not belong to l. Based on these possible outcomes, precision
(Pl), recall (Rl) and F-measure (Fl) for label l are defined as follows:

Pl =
TPl

TPl + FPl
; Rl =

TPl

TPl + FNl
; Fl =

2 × Pl × Rl

Pl + Rl

Then, the average precision, recall, and F-measure of the | L | labels are
calculated as follows:

Precision =
1

| L |
∑

l∈L

Pl ; Recall =
1

| L |
∑

l∈L

Rl ; F1 =
1

| L |
∑

l∈L

Fl

Statistical Test Methods. To compare the performance of each method, we
perform Wilcoxon pairwise comparisons [7] at 99% significance level (i.e., α =

Web Service API Anti-patterns Detection as a MLL Problem 127

0.01) to compare GP-ECC with each of the 9 other methods. We also used the
non-parametric effect Cliff’s delta (d) [7] to compute the effect size. The effect
size d is interpreted as Negligible if | d |< 0.147, Small if 0.147 ≤| d |< 0.33,
Medium if 0.33 ≤| d |< 0.474, or High if | d |≥ 0.474.

To answer RQ2, we investigated the antipattern types that were detected to
find out whether there is a bias towards the detection of specific types.

To answer RQ3, we aim at identifying the features that are the most impor-
tant indicators of whether a Web service has a given antipattern or not. For each
antipattern type, we count the percentage of rules in which the feature appears
across all obtained optimal rules by GP. The more a feature appears in the set of
optimal trees, the more the feature is relevant to characterize that antipattern.

5.3 Results

Results for RQ1 (Performance). Table 4 reports the average precision, recall
and F-measure scores for the compared methods. We observe that we see that
ECC performs well with GP as a base method as compared to J48 and RF. We
used GP-ECC as the base for determining statistical significance. In particular,
the GP-ECC method achieves the highest F-measure with 0.91 compared to
the J48 and RF methods achieving an F-measure of 0l9 and 0.89, respectively,
with medium and large effect sizes. The same performance was achieved by
GP-ECC in terms of precision and recall, with 0.89 and 0.93, respectively. The
statistical analysis of the obtained results confirms thus the suitability of the
GP formulation compared to decision tree and random forest algorithms. We
can also see overall superiority for of the ECC and in particular the GP-ECC
compared to the transformation method ML.KNN in terms of precision, recall
and F-measure with large effect size. One of the reasons that ML.KNN does
not perform well is that it ignores the label correlation, while ECC consider the
label correlation by using an ensemble of classifiers. Moreover, among the 3 base
learning algorithms, GP performs the best, followed by J48 and RF.

Moreover, we observe from Table 4 that GP-ECC achieved a higher superi-
ority than both state-of-the-art approaches, P-EA and SODA-W. While P-EA
achieves promising results with an average F-measure of 83%, it is still less than
GP-ECC. Moreover, SODA-W achives an F-measure of 72% which lower than
other approaches. We conjecture that a key problem with P-EA and SODA-W
is that they detect separately possible antipatterns without looking at the rela-
tionship between them. Through a closer manual inspection of the false positive
and true negative instances by P-EA and SODA-W, we found a number of Web
services that are detected at the same time as god object Web services (GOWS)
and fine-grained Web services (FGWS) which would reduce the overall accuracy
as GOWS and FGWS cannot co-occur in the same Web service. Other missing
chatty Web service (CWS) instances were identified in Web services that are
detected as GOWS. Indeed, GP-ECC makes the hidden relationship between
antipatterns more explicit which has shown higher accuracy.

128 I. Saidani et al.

Table 4. The achieved results by ECC with the base algorithms GP, J48, and RF;
ML.KNN; and existing approaches SODA-W and P-EA.

Approach Precision Recall F1

Score p-value (d)* Score p-value (d)* Score p-value (d)*

GP-ECC 0.89 - 0.93 - 0.91 -

J48-ECC 0.87 <0.01 (M) 0.9 <0.01 (M) 0.88 <0.01 (M)

RF-ECC 0.86 <0.01 (M) 0.89 <0.01 (M) 0.87 <0.01 (M)

ML.KNN 0.83 <0.01 (L) 0.84 <0.01 (L) 0.83 <0.01 (L)

P-EA 0.82 <0.01 (L) 0.85 <0.01 (L) 0.83 <0.01 (L)

SODA-W 0.7 <0.01 (L) 0.74 <0.01 (L) 0.72 <0.01 (L)

*p-value(d) reports the statistical difference (p-value) and effect-size (d)
between GP-ECC and the algorithm/approach in the current row.
The effect-size (d) is N : Negligible − S : Small − M : Medium − L : Large

Results for RQ2 (Sensitivity). Figure 3 reports the sensitivity analysis of
each specific antipattern type. We observe that GP-ECC does not have a bias
towards the detection of any specific antipattern type. As shown in the figure,
GP-ECC achieved good performance and low variability in terms of the median
F-measure, ranging from 87% to 93%, across the 8 considered antipattern types.
The highest F-measure was obtained for the god object (GOWS) and fine-
grained (FGWS) antipatterns (93%) which heavily relies on the notion of size.
This higher performance is reasonable since the existing guidelines [12,30] rely
heavily on the notion of size in terms of declared operations, port types, and
simple/complex data types used. But for antipatterns such as the ambiguous
Web service (AWS), the notion of size is less important, it rather relies an the
meaningfulness and length of operations and messages identifiers. This aspect
makes this type of antipatterns hard to detect using such information as it often
depends on human interpretations.

AWS CI CWS DWS FGWS GOWS MNR RPT

70

75

80

85

90

95

100

Fig. 3. F-measure achieved by GP-ECC for each antipattern across all categories.

Results for RQ3 (Features Influence). To better understand what features,
i.e., metrics, are most used by our GP-ECC model to generate detection rules

Web Service API Anti-patterns Detection as a MLL Problem 129

among all the generated rules, we count the percentage of rules in which the
feature appears. Table 5 shows the statistics for each smell type with the top-10
features (cf. Table 2), from which the three most influencing features values are
in bold. We observe that the number of operations declared (NOD), the number
of messages (NOM), the number of simple and complex types (NST and NCT),
and the cohesion (COH) are the most influencing parameters. Other features
such as the number of input parameters in operations (NIPO) and the coupling
(COUP) are also influencing the existence of antipatterns. We also found that
some features such the average length of operation signatures (ALOS) are specific
to the ambiguous Web service (AWS) antipattern and do not participate to
characterize any of the other considered antipattern types.

Table 5. The most influential features for each antipattern.

GOWS FGWS CWS DWS AWS RPT CI MNR

NOD 98 100 91 86 52 96 93 83

NOM 92 90 100 92 55 91 89 93

COH 89 84 89 87 23 92 92 85

WMC 82 82 81 65 45 81 72 83

NIPO 79 75 89 84 92 61 93 98

NCT 81 85 91 93 41 54 86 91

NST 89 86 96 96 82 32 80 93

ALOS 34 32 41 18 100 9 39 23

COUP 76 69 93 82 71 52 89 100

LCOM 88 77 88 85 46 81 86 79

We thus observe that different interface service level measures play a crucial
role in the emergence of antipatterns, while those related to the source code are
less influencial. These findings suggest that more attention has to be paid to the
design of their service interface to avoid the presence of antipatterns and their
impact on the software quality. This finding aligns also with previous research
advocating the importance of service interface design [4,12,18,24,26,33]

6 Threats to Validity

Threats to construct validity could be related to the performance measures.
We basically used standard performance metrics such as precision, recall and
F-measure that are widely accepted in MLL and software engineering [20,25].
Another potential threat could be related to the selection of learning techniques.
Although we use the GP, J48 and RF which are known to have high performance,
we plan to compare with other ML techniques in our future work.

130 I. Saidani et al.

Threats to internal validity relate to errors in our experiments. Our approach
relies on the used metrics to characterize antipatterns. We mitigated this issues
by using popular and well-accepted metrics and tools to neasure our metrics.

Threats to external validity relate to the generalizability of our results. Our
approach relies on learning from existing services, and so, their diversity is crit-
ical for our learning process. We mitigated this threat by choosing independent
services, issued from different providers, and they were also developed in mul-
tiple application domains. Also, our training set was manually validated, how-
ever, such human activity is prone to error sand personal bias. The reduction of
such bias can be achieved by following existing literature gidelines [12,16] ran-
domly choosing a statistically significant sample that is reclassified by the three
authors. Then, the kappa agreement is calculated and its corresponding score is
0.83, which is considered a high score for inter-rater agreement [7].

7 Conclusion and Future Work

Web service antipatterns are symptoms of potential problems threatening the
longevity of services. Although such antipatterns can facilitate the coding the
quick delivery of services, their long-term impact hinders the maintainability and
evolvability of services. This paper developed a novel technique, leveraging an
existing set of manually verified antipatterns, to develop a metric-based detection
rules using ensemble classifier chain. We transform multi-label problems into
several single-label problems that are solved using the genetic programming.
Our experiments show the effectiveness of our detection strategy by achieving
an F-Measure of 93%, when analyzing a large set of 815 web services.

As part of our future investigations, we plan on extending the set of metrics
we used as well as other RESTFul Web services, in order to explore potential
features, which may further improve the accuracy of our detection strategy.

References

1. Replication package (2020). https://github.com/WS-antipatterns/dataset
2. Almarimi, N., Ouni, A., Bouktif, S., Mkaouer, M.W., Kula, R.G., Saied, M.A.: Web

service api recommendation for automated mashup creation using multi-objective
evolutionary search. Appl. Soft Comput. 85, 105830 (2019)

3. Almarimi, N., Ouni, A., Chouchen, M., Saidani, Islem, M.M.W.: On the detection
of community smells using genetic programming-based ensemble classifier chain.
In: International Conference on Global Software Engineering, pp. 1–12 (2020)

4. Boukharata, S., Ouni, A., Kessentini, M., Bouktif, S., Wang, H.: Improving web
service interfaces modularity using multi-objective optimization. Automated Softw.
Eng. 26(2), 275–312 (2019). https://doi.org/10.1007/s10515-019-00256-4

5. de Carvalho, A.C.P.L.F., Freitas, A.A.: A Tutorial on Multi-label Classification
Techniques, pp. 177–195 (2009)

6. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

https://github.com/WS-antipatterns/dataset
https://doi.org/10.1007/s10515-019-00256-4

Web Service API Anti-patterns Detection as a MLL Problem 131

7. Cohen, J.: Statistical power analysis for the behavioral sciences. Academic Press
(1988)

8. Coscia, J.L.O., Crasso, M., Mateos, C., Zunino, A.: Estimating web service inter-
face quality through conventional object-oriented metrics. CLEI E. 16(1) 2056–
2101 (2013)

9. Daagi, M., Ouni, A., Kessentini, M., Gammoudi, M.M., Bouktif, S.: Web service
interface decomposition using formal concept analysis. In: IEEE International Con-
ference on Web Services (ICWS), pp. 172–179 (2017)

10. Daigneau, R.: Service Design Patterns: fundamental design solutions for
SOAP/WSDL and restful Web Services. Addison-Wesley (2011)

11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

12. Dudney, B., Krozak, J., Wittkopf, K., Asbury, S., Osborne, D.: J2EE Antipatterns.
Wiley, Hoboken (2003)

13. John, R., Koza, M.: Genetic programming: On programming computers by means
of natural selection and genetics. In: Association for Computing Machinery, MIT
Press, Cambridge (1992)

14. Kessentini, M., Ouni, A.: Detecting android smells using multi-objective genetic
programming. In: IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), pp. 122–132 (2017)

15. Král, J., Žemlička, M.: Crucial service-oriented antipatterns. Int. J. Adv. Softw.
2(1), 160–171 (2009)

16. Král, J., Zemlicka, M.: Popular SOA Antipatterns. In: Computation World: Future
Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, pp.
271–276 (2009)

17. Marinescu, R.: Detection strategies: metrics-based rules for detecting design flaws.
In: 2013 IEEE International Conference on Software Maintenance, pp. 350–359
(2004)

18. Mateos, C., Rodriguez, J.M., Zunino, A.: A tool to improve code-first web services
discoverability through text mining techniques. Softw. Pract. Experience 45(7),
925–948 (2015)

19. Mateos, C., Zunino, A., Coscia, J.L.O.: Avoiding WSDL bad practices in code-first
web services. SADIO Electron. J. Inform. Oper. Res. 11(1), 31–48 (2012)

20. Ouni, A., Kessentini, M., Inoue, K., Cinneide, M.O.: Search-based web service
antipatterns detection. IEEE Trans. Serv. Comput. 10(4), 603–617 (2017)

21. Ouni, A., Daagi, M., Kessentini, M., Bouktif, S., Gammoudi, M.M.: A machine
learning-based approach to detect web service design defects. In: IEEE Interna-
tional Conference on Web Services (ICWS). pp. 532–539 (2017)

22. Ouni, A., Gaikovina Kula, R., Kessentini, M., Inoue, K.: Web service antipatterns
detection using genetic programming. In: Annual Conference on Genetic and Evo-
lutionary Computation (GECCO), pp. 1351–1358 (2015)

23. Ouni, A., Salem, Z., Inoue, K., Soui, M.: SIM: an automated approach to improve
web service interface modularization. In: IEEE International Conference on Web
Services (ICWS), pp. 91–98 (2016)

24. Ouni, A., Wang, H., Kessentini, M., Bouktif, S., Inoue, K.: A hybrid approach
for improving the design quality of web service interfaces. ACM Trans. Internet
Technol. (TOIT) 19(1), 1–24 (2018)

25. Palma, F., Moha, N., Tremblay, G., Gueheneuc, Y.G.: Specification and detection
of SOA antipatterns in web services. In: Software Architecture, pp. 58–73 (2014)

26. Perepletchikov, M., Ryan, C., Frampton, K., Schmidt, H.: Formalising service-
oriented design. J. Softw. 3(2), 1–14 (2008)

132 I. Saidani et al.

27. Perepletchikov, M., Ryan, C., Tari, Z.: The impact of service cohesion on the
analyzability of service-oriented software. IEEE Trans. Serv. Comput. 3(2), 89–
103 (2010)

28. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85(3), 333 (2011)

29. Rodriguez, J.M., Crasso, M., Mateos, C., Zunino, A.: Best practices for describing,
consuming, and discovering web services: a comprehensive toolset. Softw. Pract.
Experience 43(6), 613–639 (2013)

30. Rotem-Gal-Oz, A.: SOA Patterns. Manning Publications (2012)
31. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data

Warehous. Min. 3(3), 1–13 (2007)
32. Wang, H., Kessentini, M., Ouni, A.: Bi-level identification of web service defects.

In: International Conference on Service-Oriented Computing, pp. 352–368 (2016)
33. Wang, H., Kessentini, M., Ouni, A.: Interactive refactoring of web service interfaces

using computational search. IEEE Trans. Serv. Comput. 3 6–12 (2017)
34. Wang, H., Ouni, A., Kessentini, M., Maxim, B., Grosky, W.I.: Identification of web

service refactoring opportunities as a multi-objective problem. In: IEEE Interna-
tional Conference on Web Services (ICWS), pp. 586–593 (2016)

35. Zhang, M.L., Zhou, Z.H.: Ml-knn: a lazy learning approach to multi-label learning.
Pattern Recogn. 40(7), 2038–2048 (2007)

	Web Service API Anti-patterns Detection as a Multi-label Learning Problem
	1 Introduction
	2 Background
	2.1 Web Service Anti-Patterns
	2.2 Multi-label Learning
	2.3 Genetic Programming

	3 Related Work
	4 Approach
	4.1 Problem Formulation
	4.2 Approach Overview
	4.3 Phase A : Training Data Collection
	4.4 Phase B : Features Extraction Module
	4.5 Phase C : Multi-label Learning Using GP-ECC
	4.6 Phase D: Detection Phase

	5 Empirical Study
	5.1 Research Questions
	5.2 Experimental Setup
	5.3 Results

	6 Threats to Validity
	7 Conclusion and Future Work
	References

