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Preface

The International Conference on Web Services (ICWS) has been a prime international
forum for both researchers and industry practitioners to exchange the latest funda-
mental advances in the state of the art and practice of Web-based services, identifying
emerging research topics and defining the future of Web-based services. All topics
regarding Internet/Web services lifecycle study and management align with the theme
of ICWS.

ICWS 2020 is a member of the Services Conference Federation (SCF). SCF 2020
had the following 10 collocated service-oriented sister conferences: the International
Conference on Web Services (ICWS 2020), the International Conference on Cloud
Computing (CLOUD 2020), the International Conference on Services Computing
(SCC 2020), the International Conference on Big Data (BigData 2020), the Interna-
tional Conference on AI & Mobile Services (AIMS 2020), the World Congress on
Services (SERVICES 2020), the International Conference on Internet of Things
(ICIOT 2020), the International Conference on Cognitive Computing (ICCC 2020), the
International Conference on Edge Computing (EDGE 2020), and the International
Conference on Blockchain (ICBC 2020). As the founding member of SCF, the First
International Conference on Web Services (ICWS 2003) was held in June 2003 in Las
Vegas, USA. Meanwhile, the First International Conference on Web Services - Europe
2003 (ICWS-Europe 2003) was held in Germany in October 2003. ICWS-Europe 2003
was an extended event of ICWS 2003, and held in Europe. In 2004, ICWS-Europe was
changed to the European Conference on Web Services (ECOWS), which was held in
Erfurt, Germany.

This volume presents the accepted papers of ICWS 2020, held virtually during
September 18–20, 2020. For this conference, each paper was reviewed by three
independent members of the International Program Committee. After carefully evalu-
ating their originality and quality, we accepted 14 papers.

We are pleased to thank the authors whose submissions and participation made this
conference possible. We also want to express our thanks to the Organizing Committee
and Program Committee members for their dedication in helping to organize the
conference and reviewing the submissions. We owe special thanks to the keynote
speakers for their impressive speeches.

Finally, we would like to thank operations team members, Dr. Sheng He and
Dr. Yishuang Ning, for their excellent work in organizing this conference. We thank all



volunteers, authors, and conference participants for their great contributions to the
fast-growing worldwide services innovations community.

July 2020 Wei-Shinn Ku
Yasuhiko Kanemasa

Mohamed Adel Serhani
Noseong Park

Liang-Jie Zhang
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Conference Sponsor – Services Society

Services Society (S2) is a nonprofit professional organization that has been created to
promote worldwide research and technical collaboration in services innovation among
academia and industrial professionals. Its members are volunteers from industry and
academia with common interests. S2 is registered in the USA as a “501(c)
organization,” which means that it is an American tax-exempt nonprofit organization.
S2 collaborates with other professional organizations to sponsor or co-sponsor
conferences and to promote an effective services curriculum in colleges and
universities. The S2 initiates and promotes a “Services University” program worldwide
to bridge the gap between industrial needs and university instruction.

The services sector accounted for 79.5% of the USA’s GDP in 2016. The world’s
most service-oriented economy, with services sectors accounting for more than 90% of
GDP. S2 has formed 10 Special Interest Groups (SIGs) to support technology and
domain specific professional activities.

• Special Interest Group on Web Services (SIG-WS)
• Special Interest Group on Services Computing (SIG-SC)
• Special Interest Group on Services Industry (SIG-SI)
• Special Interest Group on Big Data (SIG-BD)
• Special Interest Group on Cloud Computing (SIG-CLOUD)
• Special Interest Group on Artificial Intelligence (SIG-AI)
• Special Interest Group on Edge Computing (SIG-EC)
• Special Interest Group on Cognitive Computing (SIG-CC)
• Special Interest Group on Blockchain (SIG-BC)
• Special Interest Group on Internet of Things (SIG-IOT)



About the Services Conference Federation (SCF)

As the founding member of the Services Conference Federation (SCF), the First
International Conference on Web Services (ICWS 2003) was held in June 2003 in Las
Vegas, USA. Meanwhile, the First International Conference on Web Services - Europe
2003 (ICWS-Europe 2003) was held in Germany in October 2003. ICWS-Europe 2003
was an extended event of ICWS 2003, and held in Europe. In 2004, ICWS-Europe was
changed to the European Conference on Web Services (ECOWS), which was held in
Erfurt, Germany. SCF 2019 was held successfully in San Diego, USA. To celebrate its
18th birthday, SCF 2020 was held virtually during September 18–20, 2020.

In the past 17 years, the ICWS community has been expanded from Web
engineering innovations to scientific research for the whole services industry. The
service delivery platforms have been expanded to mobile platforms, Internet of Things
(IoT), cloud computing, and edge computing. The services ecosystem is gradually
enabled, value added, and intelligence embedded through enabling technologies such
as big data, artificial intelligence (AI), and cognitive computing. In the coming years,
all the transactions with multiple parties involved will be transformed to blockchain.

Based on the technology trends and best practices in the field, SCF will continue
serving as the conference umbrella’s code name for all service-related conferences.
SCF 2020 defines the future of New ABCDE (AI, Blockchain, Cloud, big Data,
Everything is connected), which enable IOT and enter the 5G for Services Era. SCF
2020’s 10 collocated theme topic conferences all center around “services,” while each
focusing on exploring different themes (web-based services, cloud-based services, big
data-based services, services innovation lifecycle, AI-driven ubiquitous services,
blockchain driven trust service-ecosystems, industry-specific services and applications,
and emerging service-oriented technologies). SCF includes 10 service-oriented
conferences: ICWS, CLOUD, SCC, BigData Congress, AIMS, SERVICES, ICIOT,
EDGE, ICCC, and ICBC. The SCF 2020 members are listed as follows:

[1] The International Conference on Web Services (ICWS 2020, http://icws.org/) is
the flagship theme-topic conference for Web-based services, featuring Web ser-
vices modeling, development, publishing, discovery, composition, testing,
adaptation, delivery, as well as the latest API standards.

[2] The International Conference on Cloud Computing (CLOUD 2020, http://
thecloudcomputing.org/) is the flagship theme-topic conference for modeling,
developing, publishing, monitoring, managing, delivering XaaS (Everything as a
Service) in the context of various types of cloud environments.

[3] The International Conference on Big Data (BigData 2020, http://
thecloudcomputing.org/) is the emerging theme-topic conference for the scien-
tific and engineering innovations of big data.

[4] The International Conference on Services Computing (SCC 2020, http://thescc.
org/) is the flagship theme-topic conference for services innovation lifecycle that
includes enterprise modeling, business consulting, solution creation, services

http://icws.org/
http://thecloudcomputing.org/
http://thecloudcomputing.org/
http://thecloudcomputing.org/
http://thecloudcomputing.org/
http://thescc.org/
http://thescc.org/


orchestration, services optimization, services management, services marketing,
and business process integration and management.

[5] The International Conference on AI & Mobile Services (AIMS 2020, http://
thescc.org/) is the emerging theme-topic conference for the science and tech-
nology of AI, and the development, publication, discovery, orchestration, invo-
cation, testing, delivery, and certification of AI-enabled services and mobile
applications.

[6] The World Congress on Services (SERVICES 2020, http://servicescongress.org/)
focuses on emerging service-oriented technologies and the industry-specific ser-
vices and solutions.

[7] The International Conference on Cognitive Computing (ICCC 2020, http://
thecognitivecomputing.org/) focuses on the Sensing Intelligence (SI) as a Service
(SIaaS) which makes systems listen, speak, see, smell, taste, understand, interact,
and walk in the context of scientific research and engineering solutions.

[8] The International Conference on Internet of Things (ICIOT 2020, http://iciot.org/)
focuses on the creation of IoT technologies and development of IoT services.

[9] The International Conference on Edge Computing (EDGE 2020, http://
theedgecomputing.org/) focuses on the state of the art and practice of edge
computing including but not limited to localized resource sharing, connections
with the cloud, and 5G devices and applications.

[10] The International Conference on Blockchain (ICBC 2020, http://blockchain1000.
org/) concentrates on blockchain-based services and enabling technologies.

Some highlights of SCF 2020 are shown below:

– Bigger Platform: The 10 collocated conferences (SCF 2020) are sponsored by the
Services Society which is the world-leading nonprofit organization (501 c(3))
dedicated to serving more than 30,000 worldwide services computing researchers
and practitioners. Bigger platform means bigger opportunities to all volunteers,
authors, and participants. Meanwhile, Springer sponsors the Best Paper Awards and
other professional activities. All the 10 conference proceedings of SCF 2020 have
been published by Springer and indexed in ISI Conference Proceedings Citation
Index (included in Web of Science), Engineering Index EI (Compendex and Inspec
databases), DBLP, Google Scholar, IO-Port, MathSciNet, Scopus, and ZBlMath.

– Brighter Future: While celebrating the 2020 version of ICWS, SCF 2020 high-
lights the Third International Conference on Blockchain (ICBC 2020) to build the
fundamental infrastructure for enabling secure and trusted service ecosystems. It
will also lead our community members to create their own brighter future.

– Better Model: SCF 2020 continues to leverage the invented Conference Block-
chain Model (CBM) to innovate the organizing practices for all the 10 theme
conferences.

xiv About the Services Conference Federation (SCF)
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A Reputation Based Hybrid Consensus
for E-Commerce Blockchain

You Sun1,2, Rui Zhang1,2(B), Rui Xue1,2, Qianqian Su1,2, and Pengchao Li1

1 State Key Laboratory of Information Security,
Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China
{sunyou,zhangrui,xuerui,suqianqian,lipengchao}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

Abstract. Blockchain can achieve non-tampering, non-repudiation,
consistency and integrity that other data management technologies do
not have. Especially in peer-to-peer networks, the decentralized nature of
blockchain has drawn tremendous attention from academic and industrial
communities. Recently, the field of e-commerce has also begun to realize
its important role. Although blockchain technology has many advantages
in achieving trust establishment and data sharing among distributed
nodes, in order to make it better to be applied in e-commerce, it is nec-
essary to improve the security of transactions and the efficiency of con-
sensus mechanisms. In this paper, we present a reputation based hybrid
consensus to solve the problem of transaction security and efficiency.
Our scheme integrates the reputation mechanism into transactions and
consensus, and any improper behavior of nodes will be reflected in the
reputation system and fed back to a new round of transactions and con-
sensus. We implement distributed reputation management and enable
users to append new reputation evaluations to the transaction that has
previously evaluated. Meanwhile, we demonstrated that the scheme can
defend against existing attacks such as selfish mining attacks, double
spending attacks and flash attacks. We implement a prototype and the
result shows that our scheme is promising.

Keywords: Blockchain · E-commerce · Consensus mechanism ·
Reputation system

1 Introduction

Recent advances in blockchain technology have witnessed unprecedented prac-
ticability in various tasks e.g., intelligent services, health care, education, social
management. The consensus mechanism is the core technology of the blockchain,
and mainstream blockchain platforms such as Bitcoin and Ethereum rely on the
continuous mining of miners distributed around the world to maintain the nor-
mal operation of the system. However, the mining incentive mechanism will lead
c© Springer Nature Switzerland AG 2020
W.-S. Ku et al. (Eds.): ICWS 2020, LNCS 12406, pp. 1–16, 2020.
https://doi.org/10.1007/978-3-030-59618-7_1
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2 Y. Sun et al.

to the concentration of computing power, which will not only cause 51% attacks
but also waste a lot of resources. The security of consensus mechanisms such as
proof-of-stake (POS) [7,14,24] and delegated proof-of-stake (DPOS) [1], which is
not based on computing power, has not been theoretically validly proven. Strong
consistency algorithms such as practical Byzantine fault-tolerant algorithms also
have disadvantages such as high algorithm complexity and low degree of decen-
tralization. Therefore, to apply blockchain technology to the field of e-commerce,
how to design a safe and efficient consensus mechanism is one of the major chal-
lenges.

In this paper, we propose a hybrid consensus mechanism and apply it to the
e-commerce blockchain. We have put forward the concept of reputation. The
purpose of this is that, on the one hand, both parties to the transaction need
the reputation system as an important basis for mutual judgment; on the other
hand, integrating the reputation mechanism into the consensus can promote the
normal operation of the consensus mechanism and made the system more secure.

To summarize, we made the following contributions:

– We introduced the blockchain into the e-commerce system to realize the
decentralized management of transactions, so that users can complete trans-
actions without the involvement of trusted third parties. We propose a repu-
tation based hybrid consensus for e-commerce blockchain. We introduce the
concept of reputation, and push forward nodes to act legally in both trans-
actions and consensus.

– In our consensus mechanism, we decouple transaction packaging and write
transaction lists into the blockchain. Besides, the work of miners is divided
into low difficulty microblocks and high difficulty blocks, which effectively
prevents the concentration of computing power and ensures the degree of
decentralization of the system.

– We use a reputation chain to store, manage, and update reputations. In this
way, distributed reputation management is achieved without the need for
trusted third parties in traditional reputation systems. In addition, the repu-
tation system also supports users to append new evaluation messages to the
transaction that has already evaluated.

– We provide detailed security analysis of our scheme, the analysis shows that
our scheme can resist the most attacks. We implement the prototype and
evaluate its performance. The experiment result shows that our scheme has
high efficiency, that is, it can achieve high throughput, so the scheme is more
suitable to the field of e-commerce.

2 Related Work

With the wide application of blockchain technology, the types of consensus mech-
anisms have also become diverse to accommodate a variety of different applica-
tion scenarios. In this section, we will give an introduction to the consensus
mechanisms in different blockchains.
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Proof of Work (POW) is the earliest consensus mechanism in the blockchain
field, it serves the bitcoin network proposed by Nakamoto [10,19]. The work
here refers to the process of computer computing calculating a random number.
Within a certain period of time, the difficulty of finding a random number is
certain, which means that it takes a certain amount of work to get this ran-
dom number. The node that first obtains this random number is responsible
for packing the transactions to the block, adding the new block to the exist-
ing blockchain, and broadcasting it to the entire network, other nodes perform
verification and synchronization. In the case of POS, the system allocates the
corresponding accounting rights according to the product of the number of tokens
held by the node and the time. In DPOS, the person who owns the token votes
to a fixed node, and these nodes act as agents to exercise the right to record.
These voting-recognized representatives obtain billing rights in turn according
to certain algorithms. PBFT is a fault-tolerant algorithm for Byzantine generals
[16,18], it is a state machine that requires all nodes to jointly maintain a state,
and all nodes take the same action. The Paxo mechanism without considering
Byzantine faults [15] and Raft mechanism [20] belong to the same type of con-
sensus mechanism. There are also some problems with these common consensus
mechanisms, such as the waste of the computing power of the PoW mechanism,
the interest of the PoS mechanism is easy to concentrate on the top layer, and
the efficiency of the PBFT in the network with a large number of nodes that are
constantly changing dynamically, etc.

Therefore, in recent years, scholars have been proposing new consensus mech-
anisms. Ouroboros [13] is the first blockchain protocol based on PoS with strong
security guarantees, which has an efficiency advantage over a blockchain of phys-
ical resource proofs (such as PoW). Given this mechanism, honest behavior is an
approximate Nash equilibrium, which can invalidate selfish mining attacks. Snow
White [4] addresses the dynamic distribution of stake owners and uses corruption
delay mechanisms to ensure security. Algorand [6] provides a distributed ledger
that follows the Byzantine protocol, and each block resists adaptive corruption.
Fruitchain [23] provides a reward mechanism and approximate Nash equilibrium
proof for PoW-based blockchains.

Integrating identity and reputation into the consensus mechanism is a new
direction. Proof of authority (PoA) is a reputation-based consistency algorithm
that introduces practical and effective solutions for blockchain networks, espe-
cially private blockchains. The mechanism was proposed in 2017 by Ethereum
co-founder Gavin Wood [2]. PoA uses the value of the identity, which means that
the verifier of the block does not depend on the cryptocurrency of the mortgage
but on the reputation of the individual. The PoA mechanism relies on a limited
number of block validators, making it a highly scalable system. Blocks and trans-
actions are verified by participants pre-approved by the system administrator.
RepuCoin [25], developed by the University of Luxembourg’s Interdisciplinary
Centre for Security, Reliability and Trust, uses the concept of online reputation
to defend against 51% of attacks. Gai et al. present a reputation-based consensus
protocol called Proof of Reputation (PoR) [9], which guarantees the reliability
and integrity of transaction outcomes in an efficient way.
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However, the existing research results have not yet applied a sound reputation
system on the e-commerce blockchain, and these consensus mechanisms or sys-
tems based on reputation do not consider the behavior of users in the transaction
process, such as users do not comply with or deliberately destroy the transaction
rules. Therefore, this paper combines consensus with actual transactions through
a reputation mechanism, and proposes a reputation-based consensus mechanism
suitable for the application scenarios of e-commerce.

3 Notations and Security Definitions

In this section, we will introduce some notations and the security definition in
the scheme.

3.1 Notations

Towards to formalize our consensus mechanism and blockchain system, we first
define some basic concepts and notations.

User. In our scheme, the public key pkj is used to mark the user j. pkj is public,
but its corresponding skj is owned only by user j.

In the scheme, there are also some special users. The consensus group mem-
bers reach a consensus on the transaction list. Each round has a leader who
packs transactions in the network and initiates consensus. Miners generate cor-
responding blocks by solving puzzles of different difficulty. From the perspec-
tive of application scenarios of transactions, users are also divided into service
providers and purchasers.

Transaction. In a transaction, the purchaser i first needs to send a service
requirement to the service provider j. We define it as: ServiceRequirementij =
(pki, pkj , Req,H(Req′), σi). where pk is the public key of the purchaser, pk′

is the service provider’s public key, Req is the specific service requirement,
where the part involving sensitive information is represented by H(Req′), and
σ is the purchaser’s signature of the above information. After the service
provider receives the requirement message, it provides the corresponding ser-
vice to the purchaser, and then sends a response message to the purchaser:
ServiceResponseij = (ServiceRequirementij , Res,H(Res′), σj). After receiv-
ing the message and corresponding service, the purchaser adds the service
result (the service result is 1 if the transaction is completed, otherwise 0)
to the response message, signs it and publishes it to the blockchain network:
Serviceij = (ServiceResponseij , result, σi), this process can be expressed as
Fig. 1.

There are some special transaction forms such as reputation transactions
and reputation modification transactions, the specific structure of which will be
introduced later.
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A Transaction List is a collection of transactions of the same type. It is deter-
mined after the consensus group has reached a consensus, and it has an order.
Therefore, in addition to the transactions in the network over a period of time, the
transaction list also needs to include a serial number, the hash value of the previous
transaction list, and the signatures of the consensus group members σT .

Fig. 1. The transaction generation process.

MicroBlock. Each MicroBlock corresponds to a transaction list, which is a
block with lower mining difficulty. The existence of MicroBlock is to enable
miners to receive certain rewards without having to aggregate a large amount
of computing power, thereby preventing selfish mining. The main structure of
Microblock is:

MicroBlock = (recent block hash, tran serial num, tranList hash,Nonce)

where recent block hash is the hash value of the latest block on the current
blockchain, tran serial num is the serial number of the transaction list contained
in the MicroBlock, and tranList hash is its hash value. Nonce is the solution
to the puzzle.

Block. Block is similar to the structure in the Bitcoin system, and miners need
to solve a puzzle to mine blocks. The difficulty of this puzzle is higher than that
of MicroBlock. The main structure of a block is as follows:

Block = (prev block hash,MicroBlock,Nonce)

where prev block hash is the hash value of the previous block, MicroBlock is
the collection of MicroBlocks contained in the Block, and Nonce is the puzzle
solution.

3.2 Security Definitions

In the scheme discussed in this paper, we follow the security assumptions of
hybrid consensus mentioned in [21]. On the network side, the system is not a
fully synchronized network, so in some cases messages on the network may be
lost, duplicated, delayed, or out of order. We assume that messages are delivered
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within a certain time t. And the nodes in the system are independent, and the
failure of one node will not cause the failure of other nodes.

We assume that there is a malicious adversary A in the system, and the
computing power of adversary A is limited. For example, it cannot crack the
encryption algorithm, forge the digital signature of a node, or recover the message
content from the hash data. Adversary A cannot delay normal nodes indefinitely.

Fig. 2. The blockchain protocol.

Adversary A can manipulate multiple failed nodes, however, in the system,
we assume that when there are f malicious nodes or failed nodes, then at least
2f +1 normal nodes must be guaranteed in the system. Only in this way can the
security and liveness of the system in the consensus mechanism be guaranteed,
and there will be no indefinite delay.

4 The Proposed Consensus Mechanism

In this section, we will introduce the main processes of the hybrid consen-
sus mechanism. The consensus mechanism we propose is mainly divided into
three stages, namely transaction packaging, microblock mining and block min-
ing. Figure 2 describes the general flow of these three phases. We will describe
it in detail below.

4.1 Transaction Packaging

The transaction packing phase loads the messages in the network into the trans-
action list in the recent period. Transaction packaging is done by members of
the consensus group that are dynamically selected in each round. Members of
the consensus group are some of the nodes with the highest reputation scores.
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The calculation of consensus reputation will be described in detail later. Our

scheme will select the leader with a
1

|G| probability among the members of the

consensus group G with the highest reputation score, where
1

|G| is the number of

consensus group members. The specific selection method of the r-th transaction
list’s leader lr is as follows:

seedr ←− H(TransactionListr−1)
i ←− seedr mod |G|

lr ←− Gi

The leader is responsible for packaging the messages and initiating consensus. It
first sends the following messages to the members of the consensus group of this
round: (pklr , T ransactionListr, SIGlr (TransactionListr)), after receiving the
message, other consensus group members first check whether the sender is the
leader of the current round, and if so, check whether the transaction list and its
signature are legal. If all are legal, other nodes sign the message and broadcast
to the consensus group. After a period of time, if members of the consensus
group receive 2f messages that are the same as themselves, they send a commit
message to the consensus group. After a while, if members of the consensus group
receive 2f +1 commit messages, they will publish the transaction list. The form
of the pinned transaction list is shown in Fig. 3.

Fig. 3. The pinned transaction list structure.

The message list contains transaction messages published in the network over
a period of time. When the leader packages it into a transaction list, it needs to
add a serial number and the hash value of the previous pinned transaction list.
After consensus is finally reached, members of the consensus group will attach
their signature certificate to the transaction list to prove its validity.

4.2 MicroBlock Mining

In cryptocurrency systems such as Bitcoin, people have been worried about the
concentration of computing power for a long time due to the existence of mining
pools. Large mining pools and mining pool alliances composed of stakeholders
may have close to or even exceed 51% of the computing power.



8 Y. Sun et al.

To solve this problem, we introduced MicroBlock. Each MicroBlock contains
a transaction list. In addition, because MicroBlock can be mined out of order, it
also needs to contain the serial number of the transaction list to restore the order
of transactions. The mining difficulty of MicroBlock is relatively low, and it can
be adjusted according to the operating status of the system. We hope that its
mining interval is close to the consensus time of a transaction list. MicroBlock’s
puzzle is defined as follows:

H(prev block, recent block,Microblock set, tranList,Nonce) < targetm

where prev block is the hash value of the previous Block on the current blockchain,
although Microblock mining does not need to pay attention to it, in order to ensure
that the miners solve the same puzzles as mining Blocks (but the difficulty is differ-
ent), it needs to be added to the puzzle.Microblock set represents the MicroBlocks
contained in the Block. Like the former, it only plays a practical role in Block min-
ing. recent block is the Block on which this MicroBlock mining is based. It can be
any Block within a period of time. The tranList is the hash value of the transaction
list included in the MicroBlock. It is worth noting that it should also contain the
serial number of the transaction list. In the end, Nonce is a solution to the puzzle,
and the miner obtains the corresponding reward by finding Nonce.

When several MicroBlocks are mined at the same time, in this solution, the
solution we choose is to choose the one with the smallest hash value.

4.3 Block Mining

Block mining is similar to the PoW-based mechanism in Bitcoin. In this scheme,
the mining puzzle is defined as:

H(prev block, recent block,Microblock set, tranList,Nonce) < target

The mining difficulty target is higher than MicroBlock’s mining difficulty targetm,
and it can also be adjusted during the system operation. Similar to MicroBlock,
there are some things thatBlock does not care about in the puzzle ofminingBlocks,
such as recent block and tranList. These are all related to mining MicroBlock.
The former represents one of the most recent blocks that MicroBlock is attached
to, and the latter records the transaction list stored in MicroBlock. prev block is
the hash of the previous Block, Microblock set is the MicroBlocks included in the
Block. A Block will contain multiple MicroBlocks. Block miners will pack as many
MicroBlocks as possible to get more rewards.

4.4 Reputation System and Reward System

Reputation System. In this section, we mainly deal with the change of repu-
tation in the consensus process. In addition, in the process of transactions, there
will be changes in the transaction reputation, which we will discuss in detail in
the next section.
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Reputation feedback management can ensure the security of a decentralized
system. Therefore, in our solution, reputation scores, as well as computing power,
have become the key for miners to gain power in consensus mechanisms. We rep-
resent the reputation score of node i in the consensus as Ri. For the convenience
of description, we show the notations used in the reputation system in Table 1,
and reputation R is calculated according to Algorithm 1.

Table 1. The notations in reputation system

Notation Explanation

α A system parameter related to activity

bi The number of Blocks mined by node i

mbi The number of MicroBlocks mined by node i

Li The number of times node i becomes leader

Initi The initial reputation of node i

Ai Activity of node i

ti The number of improper behaviors of node i

Hi Honesty of node i

Algorithm 1. Reputation Calculation Algorithm
Input: the system parameter related to activity, α; the number of Blocks mined by

node bi; the number of MicroBlocks mined by node i,mbi; the number of times
node i becomes leader, Li; the initial reputation, Initi; the number of improper
behaviors of node i , ti;

Output: the consensus reputation score of node i, RI ;
1: Select the reputation system parameter α;
2: Calculate the number of times the node successfully mines and becomes a leader

pi = bi + mbi + Li;

3: Calculate the activity Ai = 1 − α

(pi + Initi) + α
;

4: Calculate the honesty Hi =
1

1 + ti
;

5: Ri = Hi · Ai;
return Ri;

The consensus reputation of a node is determined by two factors: its activity
and honesty. The activity of node i is mainly determined by three factors, which
are the number of times a Block is mined by node i, the number of times a
MicroBlock is mined by node i, and the number of times it becomes a leader.
In addition, some nodes will have a high initial reputation, which depends on
the specific scenarios of transactions in the real world. In the initial stage of the
system, these nodes will play a key role in the consensus mechanism, but as the
system runs, the node’s reputation will be more affected by its behavior.
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The honesty of a node depends on the legitimacy of its behavior. We define
the following behaviors of nodes as improper behaviors:

– Nodes provide conflicting transactions when they act as leaders;
– Nodes as members of the consensus group submit messages that conflict with

most members;
– Nodes do not include the correct information after mining Blocks or

MicroBlocks.

When nodes have one of these behaviors, their honesty decreases. The selec-
tion of the consensus group in our consensus mechanism is to sort the node’s
reputation value R and select the highest |G| nodes to participate in transaction
packaging. Such a mechanism can encourage nodes to properly perform their
work, thereby improving their reputation scores and obtaining more rewards.

Reward System. The reward mechanism is the core of the blockchain system
and the largest source of power for the system’s sustainable development. In our
reward system, the main source is transaction fees and there are three types of
nodes that receive rewards: leaders, block miners and microblock miners. For each
final block, there is one block miner and multiple microblock miners and leaders.
This is due to the structure of the block. A block contains multiple microblocks,
and a microblock contains a transaction list.

Our reward system allocates transaction fees in the following way: For each
transaction list, the leader of the transaction list, the miner of the microblock
with this list, and the miner of the block where this microblock was eventually
placed are divided equally the sum of transaction fees. That is, each node gets
a third of the transaction fees. Such a reward system can prompt the leader
to pack as many transactions as possible into the transaction list to get more
rewards, and the same is true for block miners, who will be more inclined to
put more microblocks into blocks. In addition, block miners will receive more
rewards than microblocks, which is proportional to the computing power they
pay.

The reward system and the reputation system have a mutually reinforcing
role, because a node with the correct behavior can not only receive a reward for
transaction fees, but also accumulate a higher reputation score, and increasing
the reputation score can also increase the probability that the node will enter
the consensus group and be selected as a leader.

5 The Reputation Chain

In this section, we will describe the management and storage of reputation in the
transaction stage. We store the reputation scores in the transaction separately
in the reputation chain, so that different nodes can choose the synchronized data
according to their needs.
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5.1 Reputation Storage and Management

In a transaction scenario, both parties to a transaction need a reputation sys-
tem as an important basis for mutual evaluation. Therefore, we propose the
concept of a reputation chain to perform distributed management of reputation
evaluation in user transactions. In the reputation chain, there are two forms of
reputation transactions, namely reputation publication transactions and addi-
tional reputation transactions.

After the node completes a transaction, it needs to evaluate the transaction.
This type of message has the form:

repu pub = (pki, pkj , tran location, tran hash,mpub, σ)

Fig. 4. The reputation chain structure.

where pki and pkj are the public keys of the purchaser and the service provider
respectively. tran location is the position of the transaction corresponding to this
reputation evaluation message in the transaction blockchain, and tran hash is
the hash of the transaction. mpub is the content of reputation evaluation, σ is
the publisher’s signature on this message.

If the purchaser wants to publish additional reputation evaluation message
after it has been submitted, the purchaser needs to generate a reputation mod-
ification message, which has the following structure:

repu extra = (pki, pkj , tran location, tran hash,mextra, σ
′)

The first four elements of the repu extra message are the same as the repu pub,
and they represent the same meaning. mextra is the new content of the additional
reputation evaluation message, and σ′ is its signature on the message.

Figure 4 shows the structure of the reputation chain and its relationship with
the original blockchain. Each of these blocks in the reputation chain is similar
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to RepuBlockr, and contains two types of messages. The reputation evalua-
tion message corresponds to a transaction in the original blockchain. The leader
described in Sect. 4 is responsible for packaging transactions of the reputation
chain and reaching a consensus within the consensus group.

5.2 Reputation and Additional Reputation Publication

Our scheme provides the ability to publish reputation evaluation message and
additional reputation message to the same transaction and implements it using a
linkable ring signature algorithm [12,17]. Before publishing reputation evaluation
messages, nodes sign them in the following way:

– [Setup] Choose a cyclic additive group G which generator is p and a multi-
plicative group G1 of a large prime q. The bilinear pairing is e : G×G → G1.
Let H and H ′ be the hash function, H : {0, 1}∗ → G and H ′ : {0, 1}∗ → Zq.
Randomly choose t ∈ mathbbZq, s ∈ mathbbZ∗

q and A ∈ G, every legal
user has an ID and let SID = sHi(ID) be the user’s private key, its pub-
lic key is given by H ′(ID), let Ppub = sP , L = {IDi}. Compute P ′ = tP ,
ck+1 = H(L ‖ m ‖ e(A,P ) ‖ e(A,P )).

– [Generate ring sequence] For i = k + 1, ..., n − 1, 0, 1, ..., k − 1 (the value
of i modulo n), choose Ri, Ti ∈ G randomly, and compute ci+1 = H(L ‖ m ‖
e(Ri, P )e(H ′(IDi), Ppub) ‖ e(Ti, P )e(ciH ′(IDi), P ′)).

– [Forming the ring] Let Rk = A − ckSIDk
and Tk = A − cktH

′(IDk).
– [Signing] the signature for m is σ = (P ′, c0, R0, ..., Rn−1, T0, ..., Tn−1).
– [Verification] Given (P ′, c0, R0, ..., Rn−1, T0, ..., Tn−1), m and L, compute

ci+1 = H(L ‖ m ‖ e(Ri, P ), e(ciH ′(IDi), Ppub) ‖ e(Ti, P )e(ciH ′(IDi), P ′)).
Accept if cn = c0, otherwise reject.

Table 2. Attack resilience

Attacks BitCoin ByzCoin Hyperledger Fabric Our scheme

Selfish mining attacks × × √ √

Double spending attacks × √ √ √

Flash attacks × × √ √

Reputation feedback × × × √

When the user needs to publish additional reputation evaluation information,
he uses the same t as in the original message signature to front the new reputation
evaluation message. Only from the same t, we can get the same P ′ as the original
signature. When verifying the signature, a signature with the same P ′ is the
additional message corresponding to the original message. If t′ other than t is
used for signing, the correctness of the signature algorithm cannot be guaranteed
in the step of forming the ring. For non-signers, solving t is a discrete logarithm
problem.
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6 Security and Performance Analysis

In this section, we first analyze the security of the scheme, prove that our scheme
can resist the existing attacks, and then we describe the efficiency of the scheme.

6.1 Security Analysis

Towards the current attacks, we give the security analysis for our consensus
mechanism in this section and compared them with existing systems. The result
is shown in Table 2.

Security Under Selfish Mining Attacks. Selfish mining [8] is mainly
achieved by detaining blocks and delaying the time of publishing blocks. The
purpose of selfish mining is not to destroy the blockchain network of cryptocur-
rencies, but to obtain greater profits. Because the threshold of attack is relatively
low and the profit is high, theoretically this kind of attack is easy to appear. In
the consensus mechanism described in this paper, miners are only responsible for
putting as many microblocks containing transaction lists into the block as possi-
ble, and the block containing the most microblocks is the main chain. Therefore,
miners can only publish the blocks they mine as soon as possible to get the
maximum benefit, it cannot mine the block and not publish it, because doing so
does nothing to the miners.

Security Under Double Spending Attacks. In traditional transactions,
because there is a centralized institution such as a bank, there is no double
spending problem: each payment will be deducted from your bank account, and
all details are available in the bank recording. However, in blockchain systems
such as Bitcoin, there is a danger of double spending [11,22] when a transac-
tion occurs because there is no guarantee from a centralized institution such as a
bank. In our scheme, transaction packaging and publishing to the final blockchain
are completed by different nodes, and miners cannot change the content in the
transaction list, because the consensus is reached by the consensus group and
each list has a signature of the consensus group. Miners can only put the com-
plete transaction list into the microblock, and then put multiple microblocks
into the block of the final blockchain. In this way, our scheme can resist double
spending attacks.

Security Under Flash Attacks. In flash attacks [5], an attacker can obtain
a large amount of computing power temporarily to launch an attack on a
blockchain system. This attack can break its security assumptions in the tra-
ditional proof-of-work mechanism. But in our system, flash attacks cannot be
implemented. Because the transaction list is packaged with high-reputation
nodes, and the mining of microblocks does not require too much computing
power, so even if the adversary can temporarily have a large amount of com-
puting power, he can only mine more blocks, and cannot pose a threat to the
transaction blockchain.
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6.2 Performance Analysis

For our prototype, we built an experimental network and implemented our pro-
tocol. We deploy the nodes on client machines with Intel i7-4600U 2.70 GHz
CPU, and 16 GB RAM. In the experiment we set up 1000 nodes, each node has
a bandwidth of 20 Mbps.
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Fig. 5. Throughput of the scheme.

Figure 5 compares our scheme with Bitcoin, ByzCoin and Hyperledger Fabric
[3] in terms of throughput in different block sizes of 0.5 MB, 1 MB, 2 MB and
4 MB. The Bitcoin system is the most commonly used blockchain system, and
it uses a proof-of-work consensus mechanism. However, due to its throughput
limitations, it is difficult to use in the field of e-commerce. In ByzCoin, the set
of witnesses is dynamically formed, a new leader is elected each time a new key
block is created, and the set of transactions can be committed every few seconds
if a sufficient number of witnesses have collectively signed it. Hyperledger Fabric
is the one with higher performance in the current blockchain system, but its
degree of centralization is high, and the chain is limited to members of the
alliance.

We can see that the throughput of the Bitcoin system is 2 TPS, 3 TPS, 7 TPS,
14 TPS under different block sizes, the ByzCoin system is 105 TPS, 205 TPS,
287 TPS and 428 TPS respectively. Hyperledger Fabric’s throughput is approx-
imately 2785 TPS, 2940 TPS, 3185 TPS and 3285 TPS respectively, which is a
blockchain system that is advantageous in terms of throughput. In Our scheme,
when the block size is 0.5 MB, the throughput is about 1200 TPS. When the
block size is 1MB, its throughput is close to 2000 TPS and when the block sizes
are 2 MB and 4 MB, the throughput exceeds 4000 TPS and 7000 TPS, respec-
tively.

Through the experimental results, it can be seen that our scheme has a high
throughput and is suitable for transaction scenarios.

7 Conclusion

In this paper, we design a reputation based consensus mechanism with high
security and efficiency for e-commerce blockchain. In the proposed scheme, we
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have established a reputation mechanism to supervise the legal behavior of
nodes in terms of consensus and transactions. We use the reputation chain to
implement distributed storage of reputation, and enable users to publish mul-
tiple reputation evaluation information for a transaction. Besides, the scheme
decouples the transaction serialization and writes it into the blockchain, adding
microblocks prevents the concentration of computing power and increases fair-
ness. The results of the security and performance analysis demonstrate that the
proposed scheme can be well adapted to the application scenarios of transaction.

Acknowledgment. The authors acknowledge the support from National Key R&D
Program of China under Grant No.2017YFB1400700 and National Natural Science
Foundation of China under Grant No.: 61772514.
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Abstract. As a core technology of the blockchain, the smart contract is
receiving increasing attention. However, the frequent outbreak of smart
contract security events shows that improving the security of smart con-
tracts is essential. How to guarantee the privacy of contract execution
and the correctness of calculation results at the same time is still an issue
to be resolved. Using secure multi-party computation (SMPC) technol-
ogy to implement smart contracts is considered to be one of the potential
solutions. But in the existing SMPC based contract execution schemes,
a problem has been ignored, that is, the attacker can perform the same
process as the reconstructor to recover the secret, which leads to the
leakage of users’ privacy. Therefore, in order to solve this problem in the
process of smart contract operation, an improved homomorphic encryp-
tion algorithm is proposed in this paper, which has a relatively small
public key size, short ciphertext length, and high encryption efficiency.
Then, a contract execution scheme integrated with SMPC and homo-
morphic encryption (SMPC-HE for short) is further proposed, which is
able to guarantee the privacy of contract execution and the correctness of
the calculation results at the same time, and also makes smart contract
execution fairer. Finally, our scheme is proved secure, efficient and has
low space overhead by theory and experiment results.

Keywords: Smart contract · Blockchain · Secure multi-party
computation · Homomorphic encryption · Privacy protection

1 Introduction

The concept of smart contracts was put forward by Szabo [12] in 1994. However,
smart contracts have not found a suitable application scenario since then. It was
not until the advent of blockchain technology that smart contracts, as a core
technology of it, re-entered the public’s vision [7]. Because its Turing complete-
ness can realize complex blockchain applications, it has been widely used in the
Internet of Things, medical health, and other fields. But due to the immutability
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of the blockchain, contracts cannot be changed once deployed, even if there are
vulnerabilities in the contract itself. In addition, the contract itself carries huge
economic value, thus increasingly becomes the target of hackers. In April 2018,
the US chain’s token BEC caused a market value of $900 million to almost zero
due to a security breach in the code. In May 2019, Binance suffered hacking and
led to the theft of more than 7,000 Bitcoins. These frequent security incidents of
smart contracts show that improving the security of smart contracts is essential.

As an important part of smart contract security, operation security mainly
ensures that contracts are executed more securely and accurately. Since the exe-
cution of contracts involves a large amount of users’ privacy, how to ensure the
privacy of contract execution and the correctness of calculation results at the
same time is a question worthy of study. Using secure multi-party computation
(SMPC) to implement contracts is considered one of the most potential solutions.
At present, some works [2,5,8,18] have used SMPC to ensure the secure oper-
ation of contracts. But in these existing schemes, a problem has been ignored,
that is, the attacker can perform the same process as the reconstructor to recover
the secret, which leads to the leakage of users’ privacy. All in all, these works
have conducted a beneficial exploration of contract execution security, but not
fundamentally solved the execution security problem of contracts.

A secure and efficient smart contract execution scheme is proposed, which
consists of two parts: on-chain and off-chain. In order to efficiently complete the
secure calculation in SMPC and homomorphic encryption (HE), the confirmation
contract and currency settlement are performed on-chain, and operations such
as key generation, data encryption, and decryption are implemented off-chain.
Specifically, this paper makes the following contributions:

– Since the storage space and processing power of the blockchain are special, a
more space-saving and more efficient HE algorithm is proposed. The number
of encrypted plaintext bits is k, and each component of the public key is in
the form of cubic. The algorithm achieves IND-CPA security. Compared with
the existing HE algorithm, this algorithm has a relatively small public key
size, short ciphertext length, and high encryption efficiency.

– An SMPC-HE based smart contract execution scheme is proposed, which
combines SMPC with the improved HE algorithm. This scheme not only
makes the user’s privacy better protected during the execution of the smart
contract, but also ensures the correctness of the calculation results. Moreover,
this scheme greatly improves the fairness and security of the smart contract.

The rest of this paper is organized as follows: in Sect. 2, we introduce the
research status of related technologies. Section 3 expounds the proposed smart
contract execution scheme in detail. Section 4 gives the safety, efficiency analysis
and experimental comparison. Finally, Sect. 5 summarizes the paper.
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2 Related Work

2.1 Secure Multi-party Computation

In 1979, Shamir [11] proposed a threshold secret sharing scheme. Subsequently,
Andrew et al. [17] proposed the concept of SMPC for the first time. In recent
years, some references have proposed the use of SMPC to implement contracts.
In [2], a time-dependent commitment is proposed to extend the instruction set in
Bitcoin. In [5], a two-party fairness protocol supporting “claim-or-refund” was
designed using the Bitcoin network and extended to the design of an SMPC
protocol with penalties. The above works are mainly researches on the Bitcoin
network. However, no one discussed the security implementation of commonly
used contracts. Afterward, Pei et al. [8] used an SMPC without a trusted third
party to improve the security of contracts, but the efficiency of this scheme
has not been verified, and the multiplication cannot be performed. Yan et al.
[18] proposed a contract framework based on SMPC. However, malicious users
can imitate the reconstructor to collect the calculation result information to
recover the secret in these schemes. Since the secret sharing of some contracts
involves the users’ privacy, this security loophole will lead to the leakage of
users’ privacy. The above works reflect the advantages of SMPC, but there are
security loopholes in these works. Therefore, it is necessary to further study the
application of SMPC in smart contracts.

2.2 Homomorphic Encryption

In 1978, Rivest et al. [10] proposed the concept of homomorphic encryption. In
2013, Plantard et al. [9] proposed a fully homomorphic encryption scheme based
on ideal lattices. In the encryption process, as the operation of the ciphertext
increases, the noise also increases. In 2010, the DGHV scheme was given in [14],
which supports operations of addition and multiplication on integers. Then in
[6,15,16], the plaintext space and the form of public-key were improved based on
DGHV. A new homomorphic encryption method was proposed in [13], but this
method is not secure. Among the existing integer-based HE algorithms, some
algorithms can only encrypt one bit of data, and some encryption operations
need a lot of space to store the public key. Moreover, the security of some algo-
rithms is attributed to the partial approximate greatest common divisor problem
(PACDP) [6], some algorithms are not random, and some have complex opera-
tions, which result in poor security, low efficiency and huge space overhead.

In summary, the current schemes of smart contracts based on SMPC have
not been able to protect users’ privacy well. Moreover, the above HE algorithm
cannot meet the blockchain’s demands for efficiency and space overhead. There-
fore, we improved the HE algorithm and integrated it with SMPC to make the
execution of smart contracts more secure and efficient.
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3 SMPC-HE Based Smart Contract Execution Scheme

3.1 Overview

In this paper, a secure and efficient smart contract execution scheme is proposed
from the aspect of operation security. Figure 1 describes the main framework of
this scheme, which consists of on-chain and off-chain. Due to the basic proper-
ties of the public chain, the chain includes distributed ledgers, transactions and
smart contracts. Moreover, confirmation contracts and currency settlements are
mainly performed on-chain. In order to complete secure computing efficiently
in SMPC-HE, many tasks should be implemented off-chain, such as key gen-
eration, data encryption and decryption. In addition, sensitive data should not
be recorded directly on the blockchain. IPFS [1] distributed storage system is
used as a chain component because of its feasibility. After the contract has been
audited automatically, it will be deployed on the public chain if there are no
vulnerabilities, the contract code will be stored in the off-chain database, and
the contract storage location, as well as contract hash, will be stored on-chain.
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Fig. 1. The main framework of the smart contract execution scheme.

For execution security, the smart contract uses an intermediate address
instead of the actual address. SMPC-HE requires each blockchain node to vote
for a reliable node (called Coordinator) according to consensus, which is used
to connect on-chain and off-chain message exchanges, manage and supervise the
execution of smart contracts, and coordinate the relationship between nodes in
the execution process. When the smart contract is called and executed by the
user, the Coordinator checks whether the contract code stored off-chain is correct
based on the hash value stored on-chain. Moreover, the user needs to provide
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the data required by the smart contract and pay for the operation gas to the
Coordinator and blockchain nodes. Then the Coordinator calculates whether
the user meets the conditions for calling smart contracts and whether the user’s
input is correct. If all conditions are met, subsequent operations will be com-
pleted. The Coordinator selects trusted computing nodes and uses SMPC-HE to
process the users’ data encrypted by homomorphic encryption, so as to obtain
the final result and update it to the blockchain (see Sect. 3.3 for details). In
fact, the Coordinator does not participate in the calculation of smart contracts,
maintains zero-knowledge during the execution process and only plays the role
of verification and notification. Therefore, the existence of the Coordinator does
not affect the fairness of smart contracts.

3.2 The Improved Homomorphic Encryption Algorithm

The biggest advantage of homomorphic encryption is that the encrypted data
can be calculated, and the result is equal to that of the same calculation using
plaintext directly. This not only shortens the calculation process, but also makes
it difficult to expose the unencrypted data to attackers. Due to the special storage
space and processing power of the blockchain, a more space-saving and more effi-
cient HE algorithm is needed. Therefore, we improve the existing HE algorithm
to meet the needs of the blockchain. Table 1 lists the descriptions of variable
symbols used in the homomorphic encryption.

Table 1. Description of variable symbols in homomorphic encryption

Symbol Meaning

γ The bit length of the integer in the public key

η The bit length of the integer in the private key

ρ The bit length of noise integer

τ The number of integers in the public key

ρ′ The bit length of the second noise integer

k The bit length of an integer in plaintext

λ Safety parameters

�z�, �z�, �z� The up, down, and nearest rounding sign of the real number
z �z� ∈ [z, z + 1) , �z� ∈ (z − 1, z] , �z� ∈ (z − 1/2, z + 1/2]

qp (z) The quotient of the integer z divided by the integer p,
qp (z) = �z�

rp (z) , [z]p The remainder of the integer z divided by the integer p
rp (z) = z − qp (z) , rp (z) ∈ (−p/2, p/2]

Õ () Infinite mass of the same order

ω () Infinite mass of the higher order
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We construct an integer xi,j,k = xi,0 ·xj,1 ·xk,2 mod x0, where i, j, k satisfies
1 ≤ i, j, k ≤ β (β = 3

√
τ). In order to generate τ = β3 integers xi,j,k, only 3β

integers xi,b need to be stored in the public key. In other words, we use the cubic
form of the public key element instead of the linear form. In this way, the number
of integers in the public key is roughly reduced from τ to 3 3

√
τ . Moreover, the

plaintext space {0, 1} of DGHV [14] is extended to {0, 1}k by using the operation
in the number field {0, 1}k to realize the HE algorithm of encrypting k bit
plaintext m ∈ {

0, 1, · · · , 2k − 1
}

into a ciphertext. The encryption algorithm
consists of 4 parts: KeyGen(), Encrypt(), Decrypt(), and Evaluate().

KeyGen(1λ): Generate a η bit random number p ← (2Z + 1) ∩ [
2η−1, 2η

)
,

and use p as the private key, that is sk = p; for the public key pk, sam-
ple from the Dγ,ρ (p) distribution to obtain 3β + 1 integers x ← Dγ,ρ (p),
and mark the largest integer as x0 (x0 ∈ 2Z + 1, rp (x0) ∈ 2Z, if x0 is
not satisfied, then recalculate), and the remaining integers are respectively
labeled xi,b (1 � i � β and b ∈ {0, 1, 2}). The resulting public key is
pk = 〈x0, x1,0, x1,1, x1,2, · · · , xβ,0, xβ,1, xβ,2〉.

Dγ,ρ (p) =
{
q ← Z ∩ [0, 2γ/p) , r ← Z ∩ (−2ρ, 2ρ) : Outputx = pq + 2kr

}
(1)

Encrypt(pk,m ∈ {0, 1}k): Randomly select three subsets Si, Sj , Sk ∈ {1, 2,
· · · , β}, and randomly generate a vector b = 〈bi,j,k〉 with dimension len (Si) ·
len (Sj)·len (Sk) (len (Si) denotes the number of elements in the set (Si) and the
vector coefficient bi,j,k ∈ Z ∩ [0, 2α). Then a random number r ∈ Z ∩ (−2ρ′

, 2ρ′
)

is generated. The output ciphertext is:

c ← [m + 2kr + 2
∑

i∈Si,j∈Sj ,k∈Sk

bi,j,k · xi,0 · xj,1 · xk,2]x0 (2)

Decrypt(sk, c): Enter the private key sk = p and the ciphertext c. Then
decrypt to get the plaintext m′, that is:

m′ ← (c mod p) mod 2k (3)

In the decryption phase, set the value of c mod p in the range (−p/2, p/2], then
c mod p = c − p · 	c/p
. Since p is an odd number, the size of the integer can be
reduced in the operation by m′ ← [[c]2k − [p · 	c/p
]2k ]2k and obtain m′.

Evaluate(pk,C, c1, · · · , ct): Given a t bit binary gate circuit C and t cipher-
texts ci, the addition and multiplication gate circuits in C are used to perform
process the ciphertext on integers to obtain an integer as the new ciphertext
c∗ = Evaluate (pk,C, c1, · · · , ct) and satisfies Decrypt (sk, c∗) = C (m1, · · · ,mt).

Lemma 1. Assume (sk, pk) ← KeyGen
(
1λ

)
, m ∈ {0, 1}k, c ← Encrypt

(pk,m), then the ciphertext c in this HE algorithm has the following form for
some integers a and b: c = m + ap + 2kb, and satisfies

∣
∣m + 2kb

∣
∣ � τ2ρ′+3k+3.



A Secure and Efficient Smart Contract Execution Scheme 23

Proof. For the convenience of explanation, let φ = i ∈ Si, j ∈ Sj , k ∈ Sk.
Known from this HE algorithm: c ← [m+2kr+2

∑
φ bi,j,kxi,0xj,1xk,2]x0 . Because

of |x0| � |xi,b| for any 1 � i � β and b ∈ {0, 1, 2}, there is an integer n
such that the ciphertext c = m + 2kr + 2

∑
φ bi,j,kxi,0xj,1xk,2 + nx0, where

|n| � τ . Since x0 and xi,b are both generated by the formula Dγ,ρ (p), it is
assumed that x0 = pq0 + 2kr0 and xi,b = pqi,b + 2kri,b. Further c = m + 2kr +
2
∑

φ bi,j,k(pqi,0 + 2kri,0)(pqj,1 + 2krj,1)(pqk,2 + 2krk,2) + n(pq0 + 2kr0) = m +
p(nq0 + 2

∑
φ bi,j,k(p2qi,0qj,1qk,2 + · · · + 22kqk,2ri,0rj,1))+2k(r+nr0 +22k+1

∑
φ

bi,j,kri,0rj,1rk,2). It can be seen that the ciphertext c has the form c = m+ap+2kb
for some integers a and b. The inequality can be obtained from ρ′ � 3ρ + α:
|m + 2k(r + nr0 + 22k+1

∑
φ bi,j,kri,0rj,1rk,2)| � 2ρ′+k + τ2ρ+k + τ23k+3ρ+α+1 �

(2τ + 1) 2ρ′+3k+1 � τ2ρ′+3k+3. Therefore, the above lemma has been proved.

Theorem 1. The improved HE algorithm is correct.

Proof. Let C be an operational circuit with t bit inputs. ci = Encrypt (pk,mi)
and c mod p = C (c1, · · · , ct) mod p = C (c1 mod p, · · · , ct mod p) mod p
are known. From Lemma 1, we can know mi = [ci mod p]2k , i ∈ [1, t].
As well as, |C (c1 mod p, · · · , ct mod p)| � 2(η−4)(k−1) � (p/8)k−1 � p
and C([c1 mod p]2k , · · · , [ct mod p]2k) � 2k can be obtained from the def-
inition and nature of operable circuit, so: c mod p = C(c1 mod p, · · · , ct

mod p). Further [c mod p]2k = C ([c1 mod p]2k , · · · , [ct mod p]2k) mod 2k =
C([c1 mod p]2k , · · · , [ct mod p]2k) = C (m1, · · · ,mt). So the algorithm is cor-
rect.

Theorem 2. The algorithm is homomorphic with addition and multiplicative.

Proof. Assuming two messages m0 and m1, encrypting them separately can
get: c0 = [m0 + 2kr0 + 2

∑
i∈Si,j∈Sj ,k∈Sk

bi,j,kxi,0xj,1xk,2]x0 , c1 = [m1 + 2kr1+
2
∑

i∈Si,j∈Sj ,k∈Sk
bi,j,kxi,0xj,1xk,2]x1 . From Lemma 1, there are integers A0, B0,

A1, and B1, which make: c0 = m0 + pA0 + 2kB0 and c1 = m1 + pA1 +
2kB1. So we can get c0 + c1 = m0 + m1 + p (A0 + A1) + 2k (B0 + B1)
and c0 × c1 = m0m1 + p

(
m0A1 + m1A0 + pA0A1 + 2kA0B1 + 2kA1B0

)
+

2k
(
m0B1 + m1B0 + 2kB0B1

)
.

Decrypting the ciphertext using the decryption algorithm, we can get:m+ =
Decrypt(sk, c0 + c1) = [(c0 + c1) mod p]2k =

[
m0 + m1 + 2k (B0 + B1)

]
2k =

m0 + m1 and m× = Decrypt(sk, c0 × c1) = [(c0 × c1) mod p]2k = [m0 × m1 +
2k

(
m0B1 + m1B0 + 2kB0B1

)
]2k = m0 × m1. Therefore, the algorithm satisfies

the homomorphism of addition and multiplicative.

3.3 The Operation Process of Contracts Integrated with SMPC-HE

SMPC-HE. The SMPC is n participants P1, · · · , Pn, which need to perform a
certain computing task together, expressed as F (x1, · · · , xn) = (y1, y2, · · · , yn).
Each party Pi can only get its own input xi, and can only calculate its own out-
put yi. If the total number of participants is n, the number of honest parameter
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parties is t. The condition for SMPC to provide complete, secure, and credible
results is t � 2n/3. In SMPC-HE, improved homomorphic encryption, SMPC,
and blockchain are integrated. The SMPC has the characteristics of input pri-
vacy, calculation accuracy, etc., which can keep the data both private and usable.
Moreover, during the execution of SMPC, the computing tasks of each party are
consistent. This feature can guarantee the fairness of smart contracts. In SMPC,
although the sub-secret does not reveal the original secret, once the attacker
obtains t sub-secrets, the original secret can be reconstructed. The introduction
of homomorphic encryption allows calculations to be performed on the basis of
ciphertext, and even if sub-secrets are reconstructed, the original secrets are not
revealed. Therefore, SMPC-HE improves the security of contracts.

Theorem 3. The Shamir secret sharing scheme has additive homomorphism
and restricted multiplicative homomorphism. Specifically, if multiple (t, n) secret
sharing schemes are used to share multiple secret values, then the fragmented
sum of different secret values is the fragment to the sum of corresponding secret
values. If d (t, n) secret sharing schemes share multiple secret values. Then if
and only if d (t − 1) � n−1, the fragmented product of these secret values is still
the fragment to the product of corresponding secret values.

Proof. Due to the limited space, the proof process of the additive and multi-
plicative homomorphism is detailed in [3,4].

Assume that there are n participants. The SMPC-HE scheme is illustrated
by calculating the sum and difference between a and b. Figure 2 shows the flow of
the overall data. The detailed process of SMPC-HE’s addition and subtraction
operation is mainly divided into the following three phases:

(1) Verifiable secret sharing. Homomorphic encryption and (t, n) secret sharing
schemes are used to complete secret sharing. In view of the users’ privacy
involved in some secrets, the reason for introducing improved homomorphic
encryption is to prevent malicious users from obtaining sub-secrets from
multiple computing nodes to reconstruct secrets, leading to privacy leaks.
Moreover, SMPC is performed on the basis of ciphertext, so the encryption
scheme must be homomorphic. Therefore, an improved HE algorithm with
high efficiency and small space consumption is introduced. The specific pro-
cess of secret sharing is as follows: for a given secret a, use the homomorphic
encryption public key of the trusted party Coordinator to homomorphic
encrypt the secret a to obtain the ciphertext d = Encrypt (pk, a). Generate
n shared values d → {d1, · · · , dn} from the ciphertext d, where n � 1. The
process of generating shared values is: set r0 = d, and t−1 random numbers
(r1, r2, · · · , rt−1) in Fp are randomly selected to construct polynomial equa-
tion fd (x) =

∑t−1
i=0 rix

i. For the trusted computing node Pi (where i ∈ [1, n])
with identity θi, the shared sub-secret is (θi, di), where di = fd (θi); simi-
larly, the given secret b is homomorphic encrypted to obtain the ciphertext
e = Encrypt (pk, b). Generate n shared values e → {e1, · · · , en} from the
ciphertext e, where n � 1. Then the shared sub-secret is (θi, ei), i ∈ [1, n].
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Fig. 2. Data flow of SMPC-HE addi-
tion and subtraction

Fig. 3. The time sequence and state
transition of the smart contract.

In order to make secret sharing and reconstruction more secure, a verifi-
able secret sharing mechanism is further introduced to verify the correct-
ness of the secret. The security of the verifiable secret sharing mechanism
can be reduced to the discrete logarithm problem. Take a p order gen-
erator g of the multiplication group Z

∗
q to obtain a cyclic subgroup 〈g〉

(where p |(q − 1)), and find the sets G = {gi = gri mod q}t−1
i=0 ∪ {g} and

K = {ki = gri
′
mod q}t−1

i=0 ∪ {g}. Then the set G and the set K need to be
sent to the trusted computing nodes.

(2) Secure multi-party computing. Each trusted computing node Pi (i ∈ [1, n])
receives the shared sub-secrets (θi, di), (θi, ei) and sets G, K. If the equations
gdi = gd

∏t−1
j=1 grjθi

j

=
∏t−1

j=0 gj
θi

j

and gei = ge
∏t−1

j=1 grj
′θi

j

=
∏t−1

j=0 kj
θi

j

are satisfied, the sub-secrets are successfully received. The number of nodes
successfully receiving sub-secrets must be not less than t. Then perform their
own security calculations, which are mainly divided into addition and mul-
tiplication. Of course, it can also perform subtract and divide, that is, add
a negative number and multiply by the inverse of a number. Each Pi sends
the result (θi, fi) to the reconstructing party after the security calculation
is completed.

(3) Secret reconstruction. The reconstruction party chooses to receive t cor-
rect results (θi, fi) from n trusted computing nodes Pi (i ∈ [1, n]). If the
equation gfi = gdge

∏t−1
j=1(g

rjθi
j · grj

′θi
j

) =
∏t−1

j=0 (gjkj)
θi

j

is satisfied, the
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calculation result is correct. Then use the Lagrange interpolation method
to recover the total calculation result h′ = reconstruct ((θ1, f1) , · · · , (θt, ft)).
The recovery process is as follows: at first, recover the polynomial equation
fh (x) =

∑t
j=1 yjLj(x) =

∑t
j=1 (fj

∏t
i=1,i �=j

x−θi

θj−θi
). Then recover the results

h′ = fh (0) =
∑t

j=1(fj · ∏t
i=1,i �=j

−θi

θj−θi
), h′ = h. Since h′ is ciphertext, the

homomorphic encryption private key of the trusted party Coordinator needs
to be used to homomorphic decrypt the ciphertext h′ to obtain the final cal-
culation result c = Decrypt (pk, h′).

Because of the multiplicative homomorphism of homomorphic encryption and
the restricted multiplicative homomorphism of (t, n) threshold secret sharing.
This scheme can also perform multiplication and division operations, and further
perform mixed operations including addition, subtraction, multiplication and
division. The relevant calculation method is similar to the above, so it will not
be re-explained. Therefore, this scheme can be used to solve blockchain-related
calculations safely and efficiently. For example, the transaction cost of the smart
contract is calculated by the formula Gas = GasLimit × GasPrice.

The Operation Process of Contracts Integrated with SMPC-HE.
Figure 3 shows the time sequence and state transition of the smart contract
at runtime. In order to describe the process intuitively and clearly, the transfer
contract is used as an example to explain. Due to the limited space, it mainly
describes the operations between the two parties of the contract execution. The
correctness of the scheme depends on the addition and restricted multiplica-
tive homomorphism of the homomorphic encryption and (t, n) threshold secret
sharing scheme, so the calculation result of the scheme is correct. The detailed
operation process of the smart contract is divided into the following four phases:

Initialization: In this phase, the following three operations are performed:

(1) Authenticate the two parties of the smart contract execution and review
their conditions. The standard challenge-response protocol is used to authen-
ticate the two parties of the smart contract execution. The specific process of
authenticating the identity of user A is as follows: the authenticator Coordi-
nator uses the public key derived from secp256kl elliptic curve to obtain the
address of user A and sends a challenge to user A. User A uses the private
key and the elliptic curve digital signature algorithm to sign the challenge
and sends the response to the Coordinator. The Coordinator uses the public
key of user A to authenticate the received response. The same method is
used to authenticate the identity of user B. After identity authentication,
check whether both parties meet the calling conditions of the contract.

(2) The Coordinator collects trusted nodes. The number of nodes collected m is
not a fixed value, and m is changed according to actual needs. But m should
satisfy m � n � t, and it is better to leave some redundant nodes. After the
Coordinator collects the nodes, it stores the information of the computing
nodes in the “trustednodes” file of the public storage area.
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(3) Initialize the execution environment and data. The Coordinator connects
the “trustednodes” file to read the trusted node information in the list and
starts the daemon processes of n computing nodes. Then the threshold value
t = 	(2 · num)/3 in subsequent secret sharing is calculated according to the
number of participating computing nodes.

Secret Sharing: The Coordinator informs the parties of the smart contract execu-
tion to enter the secret-sharing phase. Take the transfer contract as an example,
both parties of the contract execution perform the opposite operation. For user
A, the operation performed is the payment, that is, the account balance of user
A subtracts the transfer amount; for user B, the operation performed is the
gathering, that is, the account balance of user B plus the transfer amount. In
this phase, the following operations are required:

(1) User A prepares his account balance AV alue and the transfer amount Q.
Use the homomorphic encryption public key of the Coordinator and the
improved HE algorithm to encrypt the information.

(2) User A uses the (t, n) threshold secret sharing scheme to divide the encrypted
secret into n sub-secrets and shares the sub-secrets to n nodes. Note that at
least t nodes must be guaranteed to receive the sub-secret successfully.

(3) User B prepares his account balance BV alue and transfer amount Q, then
shares them secretly to n nodes after encryption.

(4) When the secret-sharing is finished, the Coordinator will inform all partic-
ipating nodes to perform secure multi-party calculations. However, if the
number of nodes that successfully receive the sub-secret is less than t, the
Coordinator will inform user A and user B to restart secret sharing.

Secure Multi-party Computing: The computing node can only obtain the secrets
that need to be calculated by itself. This phase requires two operations:

(1) The trusted computing node invokes a secure computing algorithm to com-
plete the computing process. When the computing task of this node is com-
pleted, the node will send the result to the reconstruction party Coordinator.

(2) The reconstruction party Coordinator verifies the results received. If the
number of correct calculation results is less than t, the Coordinator will
inform the trusted computing nodes to recalculate the secrets.

Secret Reconstruction: In this phase, the following operations are performed:

(1) After receiving the t correct calculation results, the reconstruction party
Coordinator reconstructs the secret using the Lagrange interpolation
method.

(2) Since the reconstructed secret is a ciphertext, the reconstruction party Coor-
dinator needs to use its own private key to homomorphic decrypt the cipher-
text to obtain the final calculation result.

(3) The reconstruction party Coordinator uploads the calculation results to the
blockchain to update the balance status of user A and user B. In this process,
it also involves mining, consensus, and other processes. These processes are
the regular operations of the blockchain, which are not described here.



28 Z. Li et al.

4 Analysis and Evaluation

4.1 The Analysis of the HE Algorithm

Theorem 4. Fix the parameters (ρ, ρ′, η, γ, τ) as in the improved HE algorithm
(all polynomial in the security parameter λ). Any attack A with advantage ε on
the encryption algorithm can be converted into an algorithm B for solving (ρ, η,
γ)-approximate-gcd with success probability at least ε/2. The running time of B
is polynomial in the running time of A, and in λ and 1/ε.

Proof. This theorem can be proved by two algorithms Subroutine Lear-LSB(z,
pk) and Binary GCD, the specific proof process can be referred to the proof of
Theorem 2 in [14].

The security of this HE algorithm can be reduced to the approximate greatest
common divisor problem (ACDP) [14]. The currently known attack schemes for
the ACDP include violent attacks on the remainder, etc. [16]. However, the secu-
rity of the encryption algorithm can be guaranteed by setting reasonable security
parameters. According to Theorem 4, this algorithm achieves IND-CPA. Up to
now, ACDP can’t be cracked, so the algorithm is relatively secure. Moreover,
ACDP is more difficult than PACDP [6]. That is to say, if the parameters are
consistent, the algorithm of security to ACDP is more secure than the algorithm
of security to PACDP.

Table 2. Comparison of several homomorphic schemes

Scheme Plaintext
bits/bit

Public key
form

Public key
size

Private key
size

Encryption
efficiency

Security

DGHV [14] 1 Linear Õ
(
λ10)

Õ
(
λ2)

1 bit/time ACDP

[16] k Linear Õ
(
λ10)

Õ
(
λ2)

k bit/time ACDP

[6] 1 Quadratic Õ
(
λ7)

Õ
(
λ2)

1 bit/time PACDP

[13] 1 Linear Õ
(
λ5)

Õ
(
λ2)

1 bit/time PACDP

[15] k Cubic Õ
(
λ6)

Õ
(
λ2)

k bit/time PACDP

This
scheme

k Cubic Õ
(
λ6)

Õ
(
λ2)

k bit/time ACDP

It can be seen from Table 2 that DGHV has the largest key overhead, the low-
est encryption efficiency, and the length of the ciphertext generated by encrypt-
ing the plaintext of the same length is largest. The scheme in [16] changed the
number of plaintext bits on the basis of DGHV and improved the encryption
efficiency, but the public key size did not be changed. In [6], the scheme reduced
the size of the public key to a certain extent, but the encryption efficiency did
not be improved. The security of schemes in [13,15] can be reduced to PACDP,
while the security of the scheme in this paper is reduced to ACDP. So the scheme
in this paper is more secure. The public key of the scheme in [13] is pk = (N,x).
Although the length of the public key has changed to Õ

(
λ5

)
, the randomness

of the ciphertext has been reduced, which has greatly reduced the security.
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The size of the public key in this scheme is Õ
(
λ6

)
, which is similar to Õ

(
λ5

)
, but

the security and the encryption efficiency are greatly improved. In addition, com-
pared with the scheme in [15], 2k

∑
1�i,j,k�β bi,j,kxi,0xj,1xk,2 in the encryption

process is replaced with 2
∑

i∈Si,j∈Sj ,k∈Sk
bi,j,kxi,0xj,1xk,2. The randomness of

the ciphertext is increased and the amount of encryption is reduced, so that the
security and the encryption efficiency are improved. To sum up, compared with
the existing HE algorithms, a relatively small public key size, short ciphertext
length, and high encryption efficiency are obtained in this algorithm, thereby
saving system encryption time. Moreover, this algorithm guarantees correctness,
homomorphism, and security. In this algorithm, we find that as the form of com-
ponent increases, the size of the public key will slowly decrease to Õ

(
λ5

)
, but

the calculation efficiency will decrease sharply. So considering the efficiency and
space overhead, the component of the public key takes the form of cubic, and
no higher form is used.

4.2 The Analysis of the Smart Contract Execution Scheme

Security. The smart contract execution scheme has significantly improved the
security of smart contracts. First, during the process of contract execution, an
HE algorithm is improved, which achieves IND-CPA security. The description of
the relevant certification and other advantages of this algorithm are referred to
Sect. 4.1. Second, SMPC-HE integrates homomorphic encryption, SMPC, and
blockchain to enable contracts to complete secure computing efficiently and
securely. Moreover, verifiable secret sharing is introduced in SMPC-HE, that
is, the shared secret and calculation results can be verified to ensure the correct-
ness. Therefore, the scheme guarantees the privacy of contract execution and
the correctness of the calculation results at the same time. Third, the Coor-
dinator maintains zero-knowledge throughout the process in this scheme, does
not participate in calculations, and only plays the role of verification and noti-
fication. Therefore, the existence of the Coordinator does not affect the fairness
of smart contracts. In other words, the contract execution does not depend on
trusted third parties in this scheme. Fourth, combined with SMPC-HE, this
scheme allows users to control their own data information independently and
have ownership of the data. Users can agree and revoke the access rights of other
users to their data. Finally, the correctness and homomorphism of the improved
HE algorithm and verifiable threshold secret sharing scheme are shown in
Theorem 1, 2, 3. So the scheme is feasible and maintains a high level of security.

Efficiency. The scheme adopts the on-chain and off-chain collaboration meth-
ods and makes full use of computing resources to improve operation efficiency
under the condition of ensuring the security of users’ privacy. Moreover, com-
pared with the existing HE algorithms, a relatively small public key size, short
ciphertext length, and high encryption efficiency are obtained in the improved
HE algorithm. Therefore, the space overhead is reduced, the encryption time is
saved, and the overall efficiency of the scheme is greatly improved in SMPC-HE.
The larger the amount of data, the more obvious the advantages of the scheme.
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4.3 The Comparative Analysis of Experiments

We use python language to implement the scheme proposed in this paper, and use
the HE algorithm proposed in [6,14–16] and this paper respectively in SMPC-
HE. The running environment of the program is Windows 10, Intel (R) Core
(TM) i5-4200H 2.80 GHz and 12 GB RAM. In the experiment, the parameters
λ and k are set to 3 and 4 respectively, and the message transmission time
between nodes in the blockchain is 1 ms. Figures 4 and 5 show the changes of
running time with the increase of the number of secret sharing nodes and the size
of operation data in SMPC-HE based on five different HE algorithms and the
contract execution scheme [18] that only uses SMPC. It can be seen from Fig. 4
that SMPC-HE based on the HE algorithm proposed in this paper consumes
the least time. In addition, through the comparison between this scheme and
the scheme in [18], it can be seen that the time difference between the two
schemes is within 1ms, that is, the homomorphic encryption has little effect on
the overall running time. Furthermore, as the number of shared nodes increases,
the time for homomorphic encryption can be ignored gradually.

Fig. 4. Graph of sharing node number and scheme runtime.

It can be seen from Fig. 5 that SMPC-HE based on the HE algorithm pro-
posed in this paper consumes the least time, and with the increase of data size,
the time increases the slowest. In addition, through the comparison between this
scheme and the scheme in [18], it can be seen that the time difference between the
two schemes is about 1 ms (millisecond level) as the size of data increases, that is,
the homomorphic encryption has little effect on the overall running time. There-
fore, the scheme that incorporates the HE algorithm proposed in this paper has
higher execution efficiency, and the time of homomorphic encryption is basically
negligible compared with the time of secure multi-party calculation.

Figures 6 and 7 show the changes of memory overhead with the increase of
running time and the number of secret sharing nodes in different schemes. Since
the memory overhead needs to be recorded, the running time (the sum of the
running time and the memory recording time, n = 40) in Fig. 6 is extended
compared to the time in Fig. 4. It can be seen from Fig. 6 that the memory over-
head in all schemes increases gradually over time, and the maximum overhead is
almost the same. It can be seen from Fig. 7 that the maximum memory overhead
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Fig. 5. Graph of calculated size and scheme runtime.

Fig. 6. Graph of runtime and memory
overhead.

Fig. 7. Graph of sharing node number
and maximum memory overhead.

of all schemes increases with the number of secret sharing nodes, and the maxi-
mum overhead is almost the same, so the memory overhead of the homomorphic
encryption is basically negligible. Moreover, this scheme also guarantees a higher
level of security. In summary, the performance of this scheme is superior in terms
of security, time overhead, and space overhead.

5 Conclusion

In this paper, we propose a secure and efficient smart contract execution scheme
to solve the security issues of smart contract operation in the blockchain. The
scheme and its advantages are as follows: (1) An improved HE algorithm is pro-
posed, and the correctness and homomorphism of the algorithm are proved. Com-
pared with the existing HE algorithm, a relatively small public key size, short
ciphertext length, and high encryption efficiency are obtained. (2) An SMPC-
HE based smart contract execution scheme is proposed, and the correctness of
the scheme is proved. This scheme not only guarantees the privacy of contract
execution and the correctness of calculation results at the same time, but also
makes the smart contract execution fairer. Finally, it is proved by theory and
experiment that the smart contract in this scheme can meet the requirements of
execution efficiency, and achieve higher security and low space overhead.
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Abstract. The cloud computing paradigm is characterized by the abil-
ity to provide flexible provisioning patterns for computing resources and
on-demand common services. As a result, building business processes and
workflow-based applications on cloud computing platforms is becoming
increasingly popular. However, since real-world cloud services are often
affected by real-time performance changes or fluctuations, it is difficult
to guarantee the cost-effectiveness and quality-of-service (Qos) of cloud-
based workflows at real time. In this work, we consider that workflows,
in terms of Directed Acyclic Graphs (DAGs), to be supported by decen-
tralized cloud infrastructures are with time-varying performance and
aim at reducing the monetary cost of workflows with the completion-
time constraint to be satisfied. We tackle the performance-fluctuation
workflow scheduling problem by incorporating a stochastic-performance-
distribution-based framework for estimation and optimization of work-
flow critical paths. The proposed method dynamically generates the
workflow scheduling plan according to the accumulated stochastic dis-
tributions of tasks. In order to prove the effectiveness of our proposed
method, we conducted a large number of experimental case studies on
real third-party commercial clouds and showed that our method was
significantly better than the existing method.
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1 Introduction

The cloud computing architectures and services is evolving as the main-stream
solution to building elastic and agile IT services and applications [1,2]. It
offers platforms and reusable components for building complex applications with
improved cost-effectiveness than earlier solutions, e.g., grids. The cloud manage-
ment logic allocates only the required resources to the cloud users so that the
system-level utilization and operational cost of resources actually used can be
saved [3–5]. Based on the multiple performance criteria resource management
and provisioning patterns, cloud services are delivered at different levels: infras-
tructure clouds (IaaS), platform clouds (PaaS), and software clouds (SaaS). The
IaaS one provides resources in the form of virtual machine (VM) instances cre-
ated in a data center or server node. Due to this distinctive feature, the IaaS cloud
service are well recognized to be powerful and effective in supporting workflow-
based applications [6].

The performance-oriented scheduling issues of cloud workflows is given
considerable attention [7–9]. A widely-believed difficulty for promising user-
perceived QoS is that real-world cloud infrastructures are with usually with
time-varying performance and quality. Schad et al. [10] demonstrated that IaaS
cloud performance in the Amazon EC2 could decrease by 23% when cloud nodes
are fully loaded. Jakson et al. [11] showed that VM response time can fluctuate
by 30–65% when communication delay is unstable. Such instability and perfor-
mance fluctuations strongly impact the user-end QoS of business processes and
applications deployed over infrastructural cloud services and probably cause vio-
lations of Service-Level-Agreement (SLA) [12]. Moreover, extra operational cost
may be required to conduct fault-handling tasks or needed to counter perfor-
mance degradations when SLA requirements are not met.

To face the above difficulty, we introduce a novel method to tackle
the performance-fluctuation workflow scheduling problem by incorporating a
stochastic-performance-distribution-based framework for estimation and opti-
mization of workflow critical paths. The proposed method is able to estimate the
accumulated stochastic distributions of workflow tasks at real-time and appro-
priately yield the task-VM mappings with the objective of cost reduction by
optimizing the execution durations of the critical paths with the workflow com-
pletion time threshold. Case studies up on real-world commercial cloud services
and multiple workflow templates demonstrate that our method beat its peers in
terms of multiple performance criteria.

The main contributions of this article are as follows:

– We proposed a novel method to tackle the performance-fluctuation workflow
scheduling problem by incorporating a stochastic-performance-distribution-
based framework for estimation and optimization of workflow critical paths.

– Proposed method modeling time-varying performance of cloud resources and
generating cost-effective scheduling plans to reduce monetary cost while fol-
lowing constraints of Service-Level-Agreement.
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– Scheduling policy can continuously optimize the scheduling scheme in real
time according to the actual execution of workflow and the accumulative
stochastic distributions of tasks.

The rest of this article is organized as follows. Section 2 discusses the related
work. The system model of workflow is introduced in Sect. 3. The definitions of
formulas and symbols are explained in Sect. 4. Section 5 introduces Critical-Path-
Performance-Evaluation VM selection strategy in detail. Experimental results
and analysis are given in Sect. 6. Finally, Sect. 7 summarizes the paper.

2 Related Work

It is widely acknowledged that the problem of scheduling multi-task business pro-
cesses with decentralized computing platforms is NP-hard [13,14]. Thus, heuris-
tic and approximation-based methods can be good alternatives for generated
sub-optimal results with affordable time-complexity.

For instance, Casas et al. [15] incorporated a bio-inspired strategy with the
Efficient Tune-In (GA-ETI) mechanism for mapping workflow tasks into app.
Wang et al. [16] leveraged a multi-stage game-theoretic framework. Its opti-
mization scheme is yielded by multi-step dynamic game for generating the sub-
optimal solutions with multi-constraints. These works can be limited due to the
fact that they assumed time-invariant and static performance of infrastructural
cloud services. They can thus be ineffective when dealing with cloud systems
with unstable performance.

Various works assumed bounded performance instead of the static one. E.g.,
Mao et al. [17] introduced a VM-consolidation-based strategy, which is capable
of finding near-optimal scheduling plans for consolidating distributed VMs and
assumes bounded task response time. Calheiros et al. [18] assumed soft con-
straints and considered a critical path identification algorithm that exploits idle
time-slots for high system utilization. They considered bounded response time of
VMs as well. Poola et al. [19] developed a fault-tolerant and performance-change-
aware workflow scheduling method, where performance variation is assumed to
be bounded by a given distribution type. Ghosh et al. [20,21] assumed VM
response time to be with an exponential distribution. While Zheng et al. [22]
assumed a Pareto distribution as an approximation.

Imposing bounds effectively improves accuracy of models for cloud perfor-
mance and lowers SLA violation rate. However, as explained in [22], doing so
cloud bring pessimistic evaluation of system capabilities and causes low resource
utilization.

Consider a cheap cloud service with time-varying QoS performance and with
averaged/highest response time of 25 s/23 s and another expensive one with aver-
aged/highest response time of 17 s/17.1 s. If 23 s is the timing constraint, the
bound-based algorithm definitely selects the high-price one to avoid SLA vio-
lation. Nevertheless, 25 s occurs only in extreme cases and a smarter algorithm
is supposed to decide the future tendency of breaching the 23 s threshold and
choose the expensive VM only when such tendency is high.
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Recently, various contributions considered time-variant or stochastic perfor-
mance of cloud infrastructures and resources in their scheduling models. For
example, Sahni et al. [23] proposed a performance-fluctuation-aware and cost-
minimization method for dynamic multi-workflow scheduling with the constraint
of completion time. It considers the fluctuation of performance and generates the
scheduling scheme in real time. Li et al. [24] proposed a time-series-prediction-
based approach to scheduling workflow tasks upon IaaS clouds. The fed the
predicted performance trend into a genetic algorithm (GA) for yielding future
scheduling plans. Haidri et al. [25] proposes a cost-effective deadline-time-aware
(S-CEDA) resource scheduler that incorporates the expected value and vari-
ance of task processing time and inter-task communication time into workflow
scheduling to optimize the total execution price and total execution time of
the workflow. Our work differs from these in that we consider both real-time
scheduling and cumulative stochastic distribution of performance. It estimates
the cumulative stochastic distributions of workflow tasks in real time accord-
ing to the critical path, and generates the scheduling scheme with the goal of
reducing cost under the constraint condition.

3 System Model

A workflow W=(T,E) is described by a Directed-Acyclic-Graph (DAG) where
T = {t1, t2, . . . , tm} denotes the set of tasks and E denotes the set of edges. The
edge eij ∈ E indicates the constraint between ti and tj(i �= j). This means that
task tj can only be started after ti is completed. D identifies the pre-specified
constraint.

VMs exist in the provider resource pool and are with different computing
performance and price. If task tiand tj are run on different VMs, and eij ∈ E, a
transmission of data between them is needed.

The charging plan is based on the pay-per-use billing pattern. Resource
providers charge users based on the duration they spend for occupying VMs.

The execution order of a DAG is formally expressed by associating an index
to every task. The index has a rage from 1 to m and the ith item indicates the
order of running ti. The above sequence configuration can be decided by the
function l : T → N+ and encoded as a vector of a permutation of 1 to n. If i
precedes k in the order, it doesn’t necessarily mean that ti precedes tk unless
they are on the same virtual machine. Workflow tasks performed by varying
types of VMs often exhibit different performance. Moreover, the performance of
the same virtual machine executing the same task fluctuates at different times as
mentioned before. In order to meet the Qos constraints when the performance
of virtual machines fluctuates, dynamic scheduling methods and performance
fluctuation data should be considered.
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4 Definition and Formulation

Fig. 1. Notations and meanings.

Cost-effectiveness and performance objectives usually contradicts with each
other. Our proposed strategy reconciles them and generates cost-effective sched-
ules with as-low-as-possible cost while meeting the performance threshold at real
time. The formal problem can therefore be described as follows,

min C =
|n|∑

i=1

(Rw(i)
i ) ∗ h(w(i))

subject to τ ≤ D

(1)

where C indicates the total cost, D the completion-time threshold, h(j) the
cost-per-time for occupying VM vj . Notations and meanings are shown in Fig. 1.

In this work, our method uses the accumulated stochastic distributions of
tasks to dynamically schedule cloud workflows. The performance of different
tasks on the virtual machine is what we concern, it is important to keep track
of how the task is being performed. The performance of virtual machines tends
to fluctuate, and the performance of tasks is different. We perform the Gauss
Legendre algorithm task on different configured virtual machines, the details of
the task and the configuration of the virtual machine are explained in the case
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Fig. 2. Measured time
for the Gauss Legendre
algorithm to calculate 2
million digits of circum-
ference ratio.

Fig. 3. Measured time
for the Gauss Legendre
algorithm to calculate 4
million digits of circum-
ference ratio.

Fig. 4. Measured time
for the Gauss Legendre
algorithm to calculate 8
million digits of circum-
ference ratio.

study section. Let Rj
i indicates the actual execution time of ti-type task execute

on vj-type virtual machine and it’s value fluctuates as shown in Fig. 2, 3 and 4.
FRx

indicates the cumulative distribution function (CDF) of execution time.
Let Ry

i , Rz
j denote the execution time of two tasks executed sequentially. The

cumulative distribution function (CDF) of Ri+j is obtained by a convolution
operation (which takes the CDFs of two random variables as input and generates
the CDF of the sum of the two random variables, usually denoted by a symbol
in math) of Ry

i and Rz
j :

FRx
(t) = Prob(Rx ≤ t)

= FRi+Rj
(t)

= FRi
∗ FRj

(t)

=
∫ ∞

0

FRi
(t − s) × FRj

(t)(s)

=
∫ ∞

0

Prob{Ry
i <= t − s} × Prob{Rz

j <= s}ds

(2)

We use the data in Fig. 2 as an example, and the result is shown in Fig. 5.
The estimated start time of the task is an important parameter that our

method needs to use. ξji indicates the estimated beginning time of task ti if
it is allocated into VM vj , calculated by the estimated completion time of the
parent tasks, the transmission time, and the estimated idle duration. The virtual
machine is idle when all tasks to be performed on VM are finished and the virtual
machine is now available. ξji is used as the start time of the critical path from a
task, which is dynamically updated to generate a more appropriate scheduling
scheme during the task execution.

ξmi =

⎧
⎨

⎩

tj∈∗ti
max
n�=m

(λn
i + xji, λ

m
j , θm) if ∗ti �= ∅

θm if ∗ti = ∅
(3)
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Fig. 5. A convolution sample of CDF

λj
i indicates the estimated ending time of task ti if ti is allocated into VM vj .

It is calculated by task’s beginning time and the average performance of VMs.
Rj

i indicates the average execution time, determined by the history log. If the
type of task has not been performed, and there is no history, it is calculated
based on the number of task instructions and virtual machine configuration. λj

i

is used to get the estimated start time of the child task.

λj
i =

⎧
⎪⎨

⎪⎩

χj
i + Rj

i (if ti is in execution)

ξji + Rj
i

(if ti is waiting for execution)

(4)

As mentioned earlier, the execution time of the task and the performance of
the virtual machine fluctuate. In order to dynamically adjust the allocation plan
based on the current state, we need to update the expected start time of the
task in the scheduling scheme through the actual execution of the task.

χm
i =

⎧
⎪⎪⎨

⎪⎪⎩

tj∈∗ti
max
n�=m

{χn
j + Rn

j + xji, χ
m
j + Rm

j , βm}
if ∗ti �= ∅

βm if ∗ti = ∅
(5)

χj
i indicates the actual beginning time of task ti on condition that it is

allocated into VM vj . This means that vj begins after it accepts all the dependent
data of ti. Note that the performance of the virtual machine fluctuates, the value
of R is the actual execution time.

5 Critical-Path-Performance-Evaluation VM Selection
Strategy

Algorithm 1: This pseudo-code illustrates the process of finding the critical path.
This function starts with ti looking for the path with the largest computation
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task, until it identifies the task with no child tasks. We considered the accu-
mulated stochastic distributions of tasks of critical path tasks to calculate the
duration of the entire workflow. When multiple termination tasks are existent,
e.g., tj

∗ = ∅ and tm
∗ = ∅, this function is also applicable. To simplify the func-

tion, the variable flagSize is used, which is not returned when the final result
is generated.

Algorithm 1. CriticalPath
input: Task ti
output: The critical path from ti
1: flagSize = 0
2: flagTask = null
3: flagPath = null
4: if tj

∗ = ∅ then
5: tempSize ⇐ taskSize(ti)
6: tempPath = Stack.push(ti)
7: return tempSize, tempPath
8: end if
9: if ti

∗ �= ∅ then
10: for tj ∈ ti

∗ do
11: tempSize, tempPath = criticalPath(tj)
12: tempSize = taskSizeArr(tj) + tempSize
13: if tempSize > flagSize then
14: flagSize = tempSize
15: flagTask = tj
16: flagPath = tempPath
17: end if
18: end for
19: tempPath = Stack.push(flagTask)
20: return flagSize, flagPath
21: end if

Algorithm 2: This is the main part of the scheduling algorithm, we choose the
virtual machine based on the accumulated stochastic performance distributions
of critical path. The critical path starting time from each task is different, which
can be obtained from (3). If there are no virtual machines that meet the con-
straints, reduce the constraints or simply use the better and more expensive
virtual machines. Parameter taskQue is the queue of tasks that can be allocated
in parallel. Parameter vm pool is the set of VMs that we can used in scheduling
algorithm.

Algorithm 3: The accumulated stochastic performance distributions of critical
path is analyzed and calculated. This function uses the formula (2) approach to
consider the performance of the critical path. FRx

is the cumulative distribution
function (CDF) of the performance of the x-type task or set of path tasks in
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the specified virtual machine. For tasks that do not record performance, it is
calculated from the configuration of the virtual machine and the details of the
task.

Algorithm 4: In the process of making allocation decision, the actual execu-
tion duration of tasks can differs from that of expected. As the task runs, the
performance estimation should thus be updated. When a task starts executing,
its expected completion time is updated by the specific start time of the task.
According to the actual execution of the task, a new schedulable list is generated
to calculate the new and more accurate scheduling scheme.

Algorithm 2. Scheduling
input: Task queue: taskQue, VM pool: vm pool
output: Scheduling scheme
1: flagV M = null
2: flagCost = INF
3: while taskQue �= ∅ do
4: ti = Queue.deque(taskQue)
5: Cpath = CriticalPath(ti)
6: CDFs = V M PathPerfrom(Cpath)
7: for vj ∈ vm pool do
8: FRx = CDFs(vj)
9: //Gets the critical path performance of vj

10: tempT ime = D − ξji
11: Prob = FRx(tempT ime)
12: //limit is the degree of constraint
13: if Prob ≥ limit then
14: tempCost = F

R
j
i
(Prob) ∗ h(j)

15: if flagCost < tempCost then
16: flagCost = tempCost
17: flagV M = vj
18: end if
19: end if
20: end for
21: if flagV M == null then
22: flagV M = max(h(x))
23: end if
24: schedules.add(ti, vj)
25: Update(taskQue)
26: end while
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Algorithm 3. VM PathPerform
input: Critical Path: path
output: CDFs of Critical Path: CDFs
1: for k ∈ K do
2: tempPath = path
3: ti = Stack.pop(tempPath)
4: FRx ⇐ Perform(ti, k)

5: // If FRx == null do FRx = Prob(Rk
i = 1)

6: for tj = Stack.pop(tempPath) do
7: FRj ⇐ Perform(tj , k)
8: FRx = FRx ∗ FRj

9: end for
10: CDFs.append(FRx)
11: end for
12: return CDFs

Algorithm 4. Excution
input: Workflow: T
output: Update related parameters
1: while T not finished do
2: ti, vj = schedules.get()//Scheduling scheme
3: Wait ∗ti all finished
4: Start executing ti
5: // When ti start running, update relevant data
6: Update(χj

i )
7: Update(λj

i )
8: Update(taskQue)
9: End of execution of task ti

10: // When ti is completed, update data F
R

j
i

11: Update(F
R

j
i
)

12: end while

6 Case Study

In this part, we perform a case study of a real-world science workflow deployed
on a commercial IaaS cloud to compare the traditional scheduling approach to
our proposed framework.

We consider different classical scientific workflow templates, namely Mon-
tage, CyberShake, and Epigenomics as shown in Fig. 6 to support tasks of
Gauss Legendre calculations with a different number of digits. The GaussLe-
gendre calculation is a highly-memory-requiring iterative procedure to compute
the digits of circumference ratio to a specific number of digits. This procedure
is implemented by a benchmark tool, i.e., Super-Pi (from http://www.superpi.
net/). This tool is frequently used in testing floating-point performance of com-
puting systems. Tasks of the sample workflows are required to run the Super-Pi
tests with different requirements of the numbers of digits to generate as given in
Table 1.

http://www.superpi.net/
http://www.superpi.net/
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Table 1. Tasks of three scientific workflows(million).

Montage t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

digits of circumference ratio 2 4 8 2 4 8 2 4 8 2

Montage t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

digits of circumference ratio 4 8 2 4 8 2 4 8 2 4

Montage t21 t22 t23 t24

digits of circumference ratio 8 2 4 8

CyberShake t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

digits of circumference ratio 2 4 8 2 4 8 2 4 8 2

CyberShake t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

digits of circumference ratio 4 8 2 4 8 2 4 8 2 4

Epigenomics t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

digits of circumference ratio 2 4 8 2 4 8 2 4 8 2

Epigenomics t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

digits of circumference ratio 4 8 2 4 8 2 4 8 2 4

Fig. 6. Overview of there workflow templates for the case study.

We employ three commercial cloud services, namely Ali, Huawei, and Ten-
cent to provide supporting VMs for the workflow tasks. VMs from Ali, Huawei,
and Tencent clouds are with different resource configurations, i.e., 1 g RAM
/2.5 GHz(1-core)/40 G storage for Ali, 2 g RAM/2.6 GHz(1-core)/50 G storage
for Huawei, and 2 g RAM/2.5 GHz(1-core)/50 G storage for Tencent. The cost-
per-second of these services are 1.20, 1.60, and 1.40 cents, according to their
charging plans, respectively. The maximum number of required VMs equals that
of tasks and VMs are available from the beginning to the end. We tested these
VMs by using Sugon I450 server (4-CPU Intel Xeon 5506/128 G RAM) at 2
2 min fixed intervals. The task completion time for different virtual machines to
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calculate circumference ratio reaching a varying number of decimal digits shown
as Fig. 2, 3 and 4. We also used other Sugon I450 server to generate the schedul-
ing scheme.

Fig. 7. Comparison of cost of Montage
workflow.

Fig. 8. Comparison of cost of Cyber-
Shake workflow.

Fig. 9. Comparison of cost of Epige-
nomics workflow.

Fig. 10. Comparison of completion
time of Montage workflow.

Fig. 11. Comparison of completion
time of CyberShake workflow.

Fig. 12. Comparison of completion
time of Epigenomics workflow.

We calculated the workflow execution completion time roughly according to
the maximum-task-path from DAGs and previously measured data. The base-
line execution time for Montage, Cybershake, and Epigenomic workflows should



A Stochastic-Performance-Distribution-Based Approach 45

fall into [136;226], [56;72], and [88;112] secedes. We also used the previously
measured data as the initial performance record for our proposed method, and
the timing thresholds of Montage, CyberShake, and Epigenomics are 180 s, 65 s,
and 100 s. To compare, we employ GA [26,27], PSO [28] and MDGT [16] as the
baseline algorithms. To validate the effectiveness of the stochastic-performance-
distribution-based framework, we consider a pure version of our proposed method
without pre-measured data, where CDFs is collected dynamically at execution
time.

The scheduling scheme executes the workflow at five-minute intervals, which
is a safe time to ensure that no other Gauss Legendre tasks run on the virtual
machine. We set the constraint parameter limit in our method to 0.95, requiring
that the critical path execution time starting from each task has a probability of
at least 95% meeting Qos conditions. If no virtual machine exists that satisfies
the constraint, we use the fastest but more expensive virtual machine to reduce
the workflow completion time.

As can be observed from Figs. 7, 8 and 9, our method beats PSO, GA,
and MDGT in terms of average cost (as shown in Figs. 13, the averaged
cost of our method for Montage/Cybershake/Epigenomic are 365.7/338.5/341.2
cents, while those of GA are 366.8/339.2/341.79 cents, those of PSO for are
366.2/338.7/341.76 cents, those of MDGT are 366.5/338.9/341.7 cents).

Fig. 13. The average cost of multiple executions of workflow.

Fig. 14. Violation rate of workflow. Fig. 15. Average completion time.
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As can be seen from Figs. 14–15 as well, our method clearly achieves lower
average completion times by 1.1%, 2%, and 0.9% for three workflows, respec-
tively. It’s worth noting that such reduced completion times also lead to
fewer violations to the deadline constraints. (the violation rates of our method
for Montage/Cybershake/Epigenomic are 0%/3%/0%, while those of GA are
11.7%/17.6%/14.7%, those of PSO are 11.7%/17.6%/14.7%, those of MDGT are
8.9%/11.7%/14.7%). Our method beats the pure one as well (the violation rates
of our method for Montage/Cybershake/Epigenomic are 0%/0%/0%, while those
of the our method-pure one are 11.7%/5.8%/8.9%). By comparing the results
of our method and our method-pure as shown in Fig. 7, 8, 9, 10, 11 and 12,
the results show that they become approximately consistent after an indetermi-
nate time that executing 13/10/9 times for Montage/Cybershake/Epigenomic
workflow. The proposed method can obtain sufficient and effective performance
evaluation data in a relatively short time.

7 Conclusion

In this work, we develop a novel Stochastic-Performance-Distribution-Based app-
roach for scheduling workflows upon clouds infrastructures. The developed strat-
egy is capable of modeling time-varying performance of cloud resources and gen-
erating cost-effective scheduling plans to reduce monetary cost while following
constraints of Service-Level-Agreement (SLA). It is featured by a stochastic-
performance-distribution-based framework for estimation and optimization of
workflow critical paths in terms of the accumulated stochastic distributions of
tasks. Comprehensive tests based on commercial clouds and multiple well-known
scientific workflow templates show that our method beats other traditional ones.

Acknowledgement. This work is supported in part by Science and Technology Pro-
gram of Sichuan Province under Grant 2020JDRC0067.
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Abstract. Recently, the developer recommendation on crowdsourcing software
platform is of great research significance since an increasingly large number of
tasks and developers have gathered on the platforms. In order to solve the prob-
lem of cold-start, the existing developer recommendation algorithms usually only
use explicit information but not ID information to represent tasks and develop-
ers, which causes poor performance. In view of the shortcomings of the existing
developer recommendation algorithms, this paper proposes an FM recommenda-
tion algorithmbased on explicit to implicit featuremapping relationshipmodeling.
This algorithm firstly integrates fully the ID information, explicit information and
rating interaction between the completed task and the existing developers by using
FM algorithm in order to get the implicit features related to their ID information.
Secondly, for the completed tasks and existing developers, a deep regressionmodel
is established to learn the mapping relationship from explicit features to implicit
features. Then, for the cold-start task or the cold-start developer, the implicit fea-
tures are determined by the explicit features according to the deep regression
model. Finally, the ratings in the cold-start scene can be predicted by the trained
FM model with the explicit and implicit features. The simulation results on Top-
coder platform show that the proposed algorithm has obvious advantages over the
comparison algorithm in precision and recall.

Keywords: Crowdsourcing software development · Developer
recommendation · Cold-start problem · Deep regression model · FM algorithm

1 Introduction

In recent years, more and more software companies have begun to adopt crowdsourcing
software engineering model [1] for software development, which is the application of
crowdsourcing concept in the field of software development.With the rapid development
of various crowdsourcing software platforms, the number of publishing tasks and reg-
istered developers has increased dramatically. Therefore, the problem of “information
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overload” on crowdsourcing software platforms is becoming more and more serious,
which makes the tasks and developers face a serious problem in selection. In this con-
text, developer recommendation is of paramount importance in research and application,
and has attracted the attention of some researchers in recent years.

Mao et al. [2] first extract task features, and then use classification algorithm tomatch
the task features with the ID number of the winning developer. Shao et al. [3] firstly train
the neural network model based on the category and numerical attributes of the task
features, then train the Latent Semantic Index (LSI) model by using the task description
attribute, and finally complete the developers’ recommendations by combining the two
models. These methods only use task explicit information for input feature presentation,
and do not take into account other rich heterogeneous information on crowdsourcing
software development platform. Hence, the recommendation performance is not ideal.
Besides, they cannot solve the problem of developers’ cold-start since they use developer
ID as the class label.

Zhu et al. [4] regard the problem of developer recommendation as one of infor-
mation retrieval. This method is similar to a classification model in essence, which
takes the explicit features of tasks and developers as model input, and the evaluation
results (“recommended” or “not recommended”) as label information. Because only the
explicit features of tasks and developers are used as the model input, the method can
solve the cold-start problem. However, similar to the previous methods, this method still
fails to fully represent explicit information on the crowdsourcing software development
platform. More importantly, in order to solve the cold-start problem, this method only
takes the explicit features as input, and does not take into consideration the task and
developer ID information, so the effect is not ideal. In fact, according to the Factoriza-
tion Machines algorithm (FM) [5], the ID information can reflect the implicit features
that are closely related to the rating results. Hence it is an important kind of feature
that needs to be considered in the recommendation system. Although FM model can
integrate high-dimensional sparse explicit features and ID features, the model cannot
solve the problem of cold-start. Therefore, it cannot be directly applied to developer
recommendation scenarios.

Aiming at the above shortcomings, this paper proposes an FM recommendation algo-
rithm based on explicit to implicit feature mapping relationship modeling for the cold-
start scenario on crowdsourcing software platform. On one hand, this method extracts
and represents the features related to tasks and developers according to the explicit
description information; constructs a fine-grained rating matrix according to the scoring
information. Besides, the ID information is represented with one-hot encoding. On the
other hand, FM algorithm is firstly used to fuse the explicit features, ID information and
corresponding ratings. Secondly, based on the trained FMmodel, the implicit features of
existing tasks and developers are acquired, and the mapping relationship from explicit
features to implicit features is established based on the deep regression model. Then,
based on the mapping relationship, the implicit features are calculated according to the
explicit features of cold-start tasks or developers. Finally, according to the explicit and
implicit features of cold-start tasks and developers, the trained FM model is used for
rating prediction. Extensive experiments on the data set from Topcoder show that it has



An FM Developer Recommendation Algorithm 51

obvious advantages in precision and recall compared with the comparison algorithm,
which shows the effectiveness of this method.

The rest of this paper is organized as follows: Sect. 2 reviews the related works. In
Sect. 3, an FM recommendation algorithm based on explicit to implicit feature mapping
relationship modeling is proposed. In Sect. 4, extensive comparative experiments are
carried out, and the experimental results are analyzed in detail. Section 5 summarizes
the whole paper and proposes future research orientations.

2 Related Work

2.1 Traditional Recommendation

In order to solve the problem of information overload in the context of big data and meet
the personalized needs of different users, the recommendation algorithm has beenwidely
used. Two of the most famous recommendation algorithms are content-based (CB) [6]
and collaborative filtering (CF) [7]. According to the attribute information of the user’s
favorite items in the past, CB algorithm recommends the similar items for the user.
However, CB algorithm usually needs to represent the features of items. Inaccurate or
insufficient feature representation will seriously affect its recommendation performance.
By contrast, CF algorithm does not rely on the content of goods, only uses the feedback
of users to items to mine the preferences of users. The recommendation results have
better diversity, but the problems of cold-start and data sparsity are the bottlenecks of
CF algorithm. In addition, hybrid recommendation [8] and recommendation algorithm
[9] based on deep learning technology have been widely studied in recent years, which
provides new research ideas for the field of recommendation algorithm.

2.2 Developer Recommendation in Crowdsourcing Software Engineering

Compared with the traditional recommendation system, the solution of cold-start prob-
lem is particularly important for developer recommendation. Therefore, simple appli-
cations of traditional recommendation algorithm cannot effectively solve the developer
recommendation problem. In the literature of developer recommendation, the first sys-
tematic study comes from Mao et al. [2]. Following, Shao et al. [3] propose a NNLSI
model. However, as both of these two models fail to fully represent the input features,
the recommendation performance is not ideal. Besides, both of the two models cannot
solve the developer cold-start problem.

Zhu et al. [4] propose a recommendation model based on Learning to Rank (LR).
The method only designs a small number of features based on the task and developer
description information, which affects the recommendation performance of the model.
In addition, it only considers the explicit features as the input information, but fails to
use the implicit features reflected by the ID information. Therefore, the recommendation
effect is still not ideal.
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3 The Proposed Model

3.1 Feature Representation

Task Explicit Feature Representation. Software crowdsourcing tasks contain various
types of features, ranging from text features to numeric features. The main text features
include “Title”, “Task Description”, “PL” (Programming Language), and “Tech” (Tech-
niques). The main numeric features are “Date” (task post date), “Duration” (allocated
task duration), and “Payment” [2]. Next, we will give the representation and calculation
methods of the features.

(1) Date, Duration, and Payment
The above three numeric features can be obtained from the platform directly. In
order to eliminate the influence of different scales, Z-score normalization is used
to process the numeric feature values.

(2) PL and Tech
Since the value of PL and Tech are always composed of several labels provided
in the platform, we can naturally use a binary vector with a dimension equal to
the number of labels to represent it, where value 1 denotes the developer has the
corresponding skill and 0 otherwise.

(3) Title and Task description
In this paper, we utilize Bert [10] model to encode the title and task description.
Moreover, we use PCA to reduce dimension.

Developer Explicit Feature Representation. As to the features of developers, we con-
sider static and dynamic features. The feature details of developers are presented in
Table 1. Next, we will give the representation and calculation methods of the features.

(1) Skill
Like PL and Tech features of the tasks, we also utilize a binary vector to represent
it.

(2) Self-description
Self-description information is represented in the same way as the ‘Title’ and ‘Task
description’ features of the tasks.

(3) Developer type and Location
We use the one-hot encoding to represent these two categorical features.

(4) The numeric features
The numeric features can be obtained from the platform directly, which are
preprocessed in the same way as the numeric features of tasks.

Task and Developer ID Information Representation. We use one-hot encoding to
represent task and developer ID information.
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Table 1. The feature details of developers

Type Feature Format Description

Static Skill Text Skills that developers are good at

Developer type Categorical DATA_SCIENCE, DEVELOP,
DESIGN

Location Categorical Developer’s work city

Registration date Numeric The registration date of developers

Self-description Text Self-description of developers

Dynamic Number of tasks completed Numeric The number of tasks completed

Number of tasks won Numeric The number of tasks won

Submission rate Numeric Task submission rate

Total evaluation score Numeric Total evaluation score of platform
experts on developers’ historical
completion tasks

Activity Numeric Number of tasks completed in the
past three months

Reliability Numeric Platform measurement of developer
credit

Forum posts Numeric Developer’s performance on the
Q&A forum

Rating Matrix Construction. This paper takes Topcoder platform as an example to
design the developer recommendation algorithm.ForTopcoder platform,when the devel-
opers submit the results, the platform will organize experts to evaluate the results and
grade all the submitted results, with the score range of [0,100]. In order to be consistent
with the traditional recommendation scenarios, this paper uses the min-max normal-
ization to normalize the percentage rating to the [1–5] range, and then constructs the
task-developer-rating matrix R.

3.2 Training Based on FM Fusion Model

We regard both the explicit features and ID features of tasks and developers as the input
features of regression problem and the rating as the regression variable. In the model
training stage, FMmodel is used to fuse the explicit features, ID features and ratings. This
paper uses second order FM model to fuse heterogeneous information. For developer
recommendation scenarios, see Eq. (1) for its expression.

r̂ = w0 +
n1+m1+n+m∑

i=1

wixi +
n1+m1+n+m∑

i=1

n1+m1+n+m∑

j=i+1

wijxixj (1)

Among them, model parameters w0, wj and wij represent global bias, weight cor-
responding to feature i and weight of interaction term between feature i and feature j,
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m and n represent the number of existing tasks and developers respectively, m1 and n1
represent the explicit feature dimensionality of tasks and developers respectively.

In Eq. (1), the weight wij of interaction terms between xi and xj can be expressed as
wij = vTi vj, where vi and vj represent the latent factor vector corresponding to feature xi
and xj, respectively. The dimensionality k of the latent factor vector is usually specified
manually by the user.

In order to train FM regression model, we minimize the regularized squared error.

(w∗
0 ,w∗, v∗) = argmin

w0,w,v

⎛

⎝
∑

(x,y)∈D
(ŷ(x|w0,w, v) − y)2 + λw0w

2
0 + λw

n1+m1+n+m∑

i=1

w2
i + λv

n1+m1+n+m∑

i=1

k∑

f =1

v2i,f

⎞

⎠ (2)

where D denotes the training set, λw0 , λw, and λv are the regularization coefficients of
three kinds of parameters to avoid overfitting.

It should be noted that FM model cannot deal with the cold-start problem caused by
the ID feature. This can be explained from the optimization problem (2), as we cannot
obtain the values of latent factor vectors corresponding to the cold-start tasks or cold-start
developers. To facilitate the description, we first give the following definitions.

Definition 1. Latent factor vectors of tasks and developers. The latent factor vectors of
tasks and developers are defined as the latent factor vectors in FM model corresponding
to the feature whose value is 1 in the one-hot encoding of their ID numbers.

Definition 2. . Implicit features of tasks and developers. The implicit features of tasks
and developers are defined as their latent factor vectors of tasks and developers.

As the cold-start tasks or developers do not have any score, their corresponding
implicit features cannot be trained. Therefore, we cannot use Eq. (1) to predict the rating
of the cold-start tasks to the developers. If there is a method to calculate the implicit
features of cold-start tasks or cold-start developers, we can easily use the trained FM
model to predict the score. We will give the detailed approach below.

3.3 The Cold-Start Problem

In the developer recommendation scenario, two situations need to be solved to deal
with the cold-start problem: predicting the ratings of the cold-start tasks to the existing
developers, and predicting the ratings of the cold-start tasks to the cold-start developers.
We focus on the first case, and the second case is similar to the first one.

Predicting the Ratings of the Cold-Start Tasks to the Existing Developers. As the
traditional FM model cannot model the implicit feature (vi) of cold-start tasks during
the training process, it cannot solve the problem of cold-start. Therefore, obtaining the
implicit feature of cold-start tasks is the key to solve the problem. This paper attempts
to use explicit features to induce implicit features. Next, we will model the mapping
relation from explicit features to implicit features.

In this paper, we model the mapping relationship based on the deep regression
network. First, we use the Stacked Denoising AutoEncoder (SDAE) [11] to transform
the original explicit features of tasks to low-dimensional high-level features. Second, the
linear regression model is constructed by using the low-dimensional high-level features
as the input and the implicit features of tasks in the training set as the output.
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(1) Dimension reduction

In this paper, SDAE is utilized to learn a good low-dimensional feature representation
[11]. We set k1 > k2 > k3 > k4 to obtain high-level feature representation, shown in
Fig. 1.
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Fig. 1. The training of SDAE on explicit features of existing tasks.

(2) Linear Regression Analysis

A layer of traditional linear regression model is added to the outer layer of the stacked
denoising autoencoder network, by which the low-dimensional high-level explicit fea-
tures are transformed into implicit features. The linear regression unit does not contain
any activation function, and only calculates the weighted sum of input units. The loss
function can be defined as:

1

m

m∑

i=1

∥∥v̂i − vi
∥∥2 (3)

where vi is the implicit feature value of task i, v̂i is the implicit feature value of task i
predicted by the deep regression model, and m is the number of existing tasks.

In this paper, during the training process of the deep regression model, we use the
pre-trained weights to initialize the stacked denoising autoencoder, and use the random
weights to initialize the traditional regression model in the outermost layer. Then, the
back propagation algorithm is used to fine tune all weights, so as to obtain the final deep
regression model.

(3) Predicting the ratings for existing developers on cold-start tasks

Suppose that the explicit features of the cold-start task i is f i, and the mapping relation
from the explicit features to the implicit features isF1.According to themapping relation,
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the implicit features vi of the cold-start task i can be expressed as vi = F1(fi). Let f j and
vj respectively denote the explicit features and implicit features of any existing developer
j. According to the trained FM model, the ratings for developer j on cold-start task i can
be calculated by substituting f i, vi, f j, and vj into the model.

Predicting the Ratings of the Cold-Start Tasks to the Cold-Start Developers.
According to the proposed deep regression model, we can also obtain the mapping
relation F2, which transforms the explicit features of developers to implicit features. In
the same way, the ratings for cold-start developer j on cold-start task i can be obtained.

4 Experiment

4.1 Introduction to the Topcoder Data Acquisition

Most of the tasks of Topcoder platform are published in the form of competitions. In this
experiment, we crawl the contest task data related to software development, including
system design, coding, module testing, etc. We collected historical tasks that have been
crowdsourced between Oct. 2012 and Mar. 2019, from which we further filter out the
incomplete data. In all, 520 tasks and 8286 developers are chosen as the original dataset.

4.2 Comparison Algorithms

At present, a few developer recommendation algorithms have been proposed, such as
the model propose in [2], NNLSI [3] and LR [4]. However, the model proposed in [2]
and NNLSI cannot solve the developer cold-start problem. LR is designed for Zhubajie
website and cannot be applied to Topcoder, so we will not compare our method with the
above three models.

In order to compare with the proposedMRFMRec algorithm, we consider a classical
recommendation algorithm, FM algorithm, and apply it to the domain of developer
recommendation. To enable it to deal with the problems of task cold-start and developer
cold-start, the FM algorithm used for comparison only models the relation between task
and developer’s explicit features and ratings. As MRFMRec algorithm considers both
the explicit features and ID features of tasks and developers, and the comparison method
only considers the explicit features, the comparison results will fully reveal whether ID
features are important for recommendation performance.

MRFMRec: FM algorithm is implemented by libFM software [5]. In FM algorithm,
the dimensionality f of the latent factor vector is tried in {5, 10, 15, 20, 25, 30, 35, 40},
and the three regularization parameters λw0 , λw, λV are all tried in {0.001, 0.01, 0.1,
1, 10, 100}. We determine the optimal parameter value based on the test effect of FM
algorithm on the validation set. For the deep regression model, we set k2 = �k1/2�,
k3 = �k2/2�, k4 = �k3/2�, where k1 denotes the dimensionality of tasks or developers.

FM: The setting of relevant parameters in the algorithm is consistent with that in
MRFMRec.
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4.3 Metrics

We first use Mean Absolute Error (MAE) in Eq. (4) to evaluate the rating prediction
precision of MRFMRec.

MAE = 1

|T1|
∑

(t,d)∈T1

∣∣rtd − r̂td
∣∣ (4)

where rtd and r̂td represent the ground truth rating and the predicted rating of task t to
developer d, respectively, and T1 is the test sample set.

Then, we use Precision and Recall to compare our MRFMRec model with FM. Let
R(t) be the predicted ‘recommended’ list obtained by a recommendation algorithm on
a tested developer list DL = {d1, d2, …, dl}. Let T (t) be the true ‘recommended’ list,
i.e., the ground truth list on DL. Then, Precision and Recall are defined as:

Precision =

∑
t∈T2

|R(t) ∩ T (t)|
∑
t∈T2

|R(t)| (5)

Recall =

∑
t∈T2

|R(t) ∩ T (t)|
∑
t∈T2

|T (t)| (6)

where T2 is the test sample set.
Note that the tested developer list DL can be represented by TE(t) in the following

DL = T (t) ∪ T̄ (t) (7)

where T̄ (t) = DL−T (t) denotes the true ‘not recommended’ developer from the tested
developer list. Hence, DL should contain both ‘recommended’ and ‘not recommended’
developers. How to design DL will be given in the following.

4.4 Data Preparation

We choose the rating matrix and relevant information composed of 520 tasks and 8286
developers as the experimental data. In order to evaluate the recommended performance
of the algorithm under the case that there are both existing and cold-start developers,
8286 developers are divided into existing developers and cold-start developers according
to the ratio of 1: 1. In addition, from the experimental data, we randomly select data
corresponding to 80%, 60%, 40%, 20% of the tasks and the existing developers as the
training set, denoted as TR80, TR60, TR40, TR20, respectively. We randomly select
data corresponding to 10% of the task and all the developers as the validation set, and
the data corresponding to the remaining 10%, 30%, 50%, 70% of the task and all the
developers as the test set, denoted as TE10, TE30, TE50, TE70, respectively.
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In the experiment, we first use both the training set and the validation set to tune
the parameters of our model according to MAE, in order to obtain the best performance
of our model. Second, the MRFMRec algorithm and the traditional FM algorithm are
compared on the test set in terms of Precision and Recall.

To calculate Precision and Recall on the test set, we first process the test set: mark
developers whose ratings are greater than or equal to 4 as recommended, and developers
whose ratings are less than 4 as not recommended. Similarly, when the recommendation
system predicts that the rating of cold-start task for a developer is greater than or equal
to 4, the developer is considered to be recommended; otherwise, the developer is not
considered to be recommended.

On the other hand, we construct the tested developer list DL = {d1, d2, …, dl} on
the test set. To ensure thatDL includes both recommended and not recommended devel-
opers, we first select in the test set those tasks that contain no less than 6 recommended
developers and no less than 4 not recommended developers. Second, we randomly select
6 recommended developers and 4 not recommended developers for each task to form
the tested developer list.

4.5 Experimental Results and Analysis

Model Tuning. We determine the optimal values of parameters based on the test effect
of FM algorithm on the validation set. Since, in the test ranges, there are too many
(8 * 6 * 6 * 6 = 1728) combinations for the dimensionality f of latent factor vector and
the regularization parameter values λw0 , λw, λV , in Table 2, we only give the MAE value
corresponding to the optimal combination.

Table 2. The combination of optimal parameters and the corresponding MAE values.

Training set f λw0 λw λV MAE

TR80 20 0.1 0.1 10 0.881

TR60 25 0.1 1 10 0.902

TR40 25 1 0.1 1 0.939

TR20 20 10 10 1 1.021

Algorithms Comparison. We compare MRFMRec algorithm with the FM algorithm
which only considers explicit features. The comparison results (Precision and Recall)
on the test set are shown in Fig. 2.

FromFig. 2, it can be seen that comparedwith the FMalgorithmwhich only considers
explicit features, MRFMRec algorithm has obvious advantages in Precision and Recall.
The experimental results show that the implicit features reflected by the ID information
play an important role in improving the performance of the recommendation algorithm.
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Fig. 2. The Precision and Recall results.

5 Conclusion

For the cold-start problem of developer recommendation scenarios in crowdsourcing
software platform, this paper proposes an FM recommendation algorithm based on
explicit to implicit feature mapping relation modeling. The algorithm learns the implicit
features of existing tasks and existing developers based on FM algorithm, and learns the
mapping relation from explicit features to implicit features based on the deep regression
model. Finally, for the cold-start task or developer, the explicit features are used to obtain
the implicit features via the regression model, and then the FM model is used to predict
ratings by integrating the explicit and implicit features of cold-start tasks or developers.
By virtue of the regression model, our model effectively obtains the implicit features of
cold-start tasks or developers, and successfully solves the cold-start problem when FM
algorithm models the ID information. The comparison experiments on the data set from
Topcoder platform show that the proposed algorithm can obtain better recommendation
performance by considering both explicit features and ID features.
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Abstract. As the emerging entertainment applications, short video
platforms, such as Youtube, Kuaishou, quickly dominant the Internet
multimedia traffic. The caching problem will surely provide a great ref-
erence to network management (e.g., traffic engineering, content deliv-
ery). The key to cache is to make precise popularity prediction. However,
different from traditional multimedia applications, short video network
exposes unique characteristics on popularity prediction due to the explo-
sive video quantity and the mutual impact among these countless videos,
making the state-of-the-art solutions invalid. In this paper, we first give
an in-depth analysis on 105,231,883 real traces of 12,089,887 videos from
Kuaishou Company, to disclose the characteristics of short video net-
work. We then propose a graph convolutional neural-based video popu-
larity prediction algorithm called GraphInf . In particular, GraphInf clus-
ters the countless short videos by region and formulates the problem
in a graph-based way, thus addressing the explosive quantity problem.
GraphInf further models the influence among these regions with a cus-
tomized graph convolutional neural (GCN) network, to capture video
impact. Experimental results show that GraphInf outperforms the tra-
ditional Graph-based methods by 44.7%. We believe such GCN-based
popularity prediction would give a strong reference to related areas.
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1 Introduction

In recent years, online short video (or micro-video) platforms are emerging as
a new trend to satisfy the fast-paced modern society. They have been widely
spreading all over the world, making video traffic dominate the Internet traffic.
As of 2019, there are over 200 million active users in Kuaishou and more than
27 million short videos are being uploaded and viewed, on a daily basis [9].

Video popularity prediction has long been considered as an important topic
in Internet traffic area, because it can provide a basis for many network manage-
ment problems such as caching policies [12,14], reducing the required memory
size [28], and modeling videos’ lifecycle [27]. Existing popularity prediction algo-
rithms [2,13,19,21,23,24] work well in traditional multimedia scenario, but they
become invalid in short video network due to the following two characteristics.

– Explosive video quantity. Kuaishou [9] produced more than 5 billion short
videos in half a year in 2019, nearly 3,445,900 times more than the total
number of TV series (about 351) and films (less than 1100) [26].

– Relationship among videos. Online social networks [4] and user behaviour
[3,15] play important roles in video popularity, making hot topics propagate
from one region to another. Such effects become more apparent in short video
network due to its strong social interaction and high timeliness.

Several pioneer efforts have been invested to the short video network predic-
tion problem. [17] uses the average watched percentage of videos to predict the
popularity, but becomes inefficient in large scale short video network. [12] takes
video content into consideration to predict video popularity, but without consid-
ering video relationship, it becomes invalid in short video network. With further
research, we made a simple comparison of short videos in different regions. For
example, there were 5,755 same videos between Henan in the first 20 min with
Anhui in the last 20 min. This shows that videos in different regions influence
each other.

In this paper, we propose GraphInf , a popularity prediction system in short
video network, which is based on a novel customized graph convolutional neural
algorithm. GraphInf is a highly scalable system that clusters the massive videos
into corresponding regions and formulates them by a simple GCN network. The
main contributions of this paper are summarized below:

– We disclose the unique characteristics and challenges in short video network
by analyzing real data from industry (Sect. 3.1).

– We present a system called GraphInf to address the popularity prediction
problem in short video network (Sect. 4).

– We demonstrate the practical benefits of GraphInf by building a prototype,
and the results also reveal some useful experiences/lessons that would be
instructive to related topics. (Sect. 5).

The remainder of this paper is organized as follows. Section 2 briefly reviews the
state-of-the-art efforts related to popularity prediction in short video network.
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Section 3 introduces the background and motivation of the proposed problem.
Section 4 presents the framework of GraphInf , with detailed design. Section 5
demonstrates the setting up of GraphInf prototype and shows extensive exper-
iment results from real data evaluations. Finally, Sect. 6 concludes this work.

2 Related Work

This work relates to a few areas of active research. We structure our discussion
along two parts: the specific characteristics of short video network and video
popularity prediction.

2.1 Short Video Network

The specific characteristics of short video network, like large scale and the influ-
ence between regions, have not been fully considered yet.

Explosive Video Quantity. It is well known that the number of short videos
is huge and the growth rate is quite high. This raises the challenge as to how
to cache these videos in limited storage to guarantee the cache hit rate [28].
To reduce the latency due to intermediate caching, [11] proposed a distributed
resilient caching algorithm (DR-Cache) that is simple and adaptive to network
failures. [25] designed a data store VStore for analytics on large videos. VStore
selects video formats catering so as to achieve the target accuracy. [5] designed
a parallel processing framework Streaming Video Engine that specially designed
to solve the scalability problem, and showed the results of some use cases on
data ingestion, parallel processing and overload control.

Relationship Among Videos. The influence between regions depth of short
videos is surprising, due to the impact from user behaviour, online social net-
works, geo-distributed hot events, etc. [7]. [15] proposed an end-to-end frame-
work, DeepInf, which takes user’s local network as the input for capturing the
latent social representation. [3] discussed the popularity dynamics of videos
dynamics of videos in Video Sharing Sites (VSSes) focusing on views, ratings
and comments so as to build a emulator which replicates users behaviours in
Online Social networks (OSN). These researches focus on the influences between
regions model, but didn’t make popularity prediction.

In brief, the literature above highlights the special characteristics of short
video network that are large scale and the influence between regions.

2.2 Popularity Prediction

Significant efforts have been devoted to exploring item popularity prediction due
to the potencial business value [21]. [23] provided the affect the popularity of
science communication videos on YouTube. They found that the user-generated
contents were significantly more popular than the professionally generated ones
and that videos that had consistent science communicators were more popular
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than those without a regular communicator. [13] proposed LARM that is empow-
ered by a lifetime metric that is both predictable via early-accessible features
and adaptable to different observation intervals, as well as a set of specialized
regression models to handle different classes of videos with different lifetime. [19]
used support vector regression with Gaussian radial basis functions to predict
the popularity of an online video measured by its number of views. Although
these algorithms have their own advantages, they lack the high performance of
operating speed with the rapid growth of the number of short videos.

Overall, we propose a framework GraphInf to explore the video popularity
in short video network, by taking the special characteristics above into consid-
eration.

3 Motivation

We start by providing some background knowledge of short video network. We
point out the uniqueness of such kind of networks by comparing it with tradi-
tional online video networks (Sect. 3.1). In particular, by analyzing real statis-
tical figures and access traces from Kuaishou, a popular short video platform
in China, we disclose its two challenges, the explosive video quantity and the
complex relationship among short videos.

We then show the opportunity of solving these two challenges above by map-
ping the massive short videos into regions and formulating the origin problem
into a graph-based problem (Sect. 3.2). The graph structure property motivates
us to design the proposed GraphInf .

3.1 Characteristics of Short Video Network

In this subsection, we show the differences between traditional online video
network and short video network. The differences clearly disclose the unique
characteristics (also challenges) of popularity prediction problem in short video
network.

Explosive Video Quantity. We introduce the explosive video quantity in two
aspects, from the perspective of videos and users, respectively.

– From the perspective of videos.

Length of Video Uploaded: In 2018, the length of all the uploaded tradi-
tional online videos is about 100 thousands of minutes, while that is 340 millions
of minutes in only one short video platform (Kuaishou), which is 2,850 times
longer [8].

Videos Viewed: In 2018, there are only 46 million views per day in top 10
traditional online video platforms in China [10], while the number is 10 billion
in only one short video platform (Toutiao), which is 217 times more than the
traditional online videos [18].

– From the perspective of users.
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Growth Rate of Usage Time: According to QuestMobile’s report [16], app
usage time of short video grew 521.8% in 2018, while the usage time of online
video dropped 12%.

Relationship Among Videos. To show the video relationship from a macro
perspective, we draw the effect matrix between each pair of provinces from
Kuaishou’s real traces. To quantify the impact from province i to province j, we
take the number of overlapped videos from province i (in current time slot) and
province j (in the next time slot). We show the normalized value in Fig. 1. In the
figure, each small cube represents the effect depth from province i to province
j. Taking Shanxi province as an example, from the horizontal axis, the column
of cubes represents the video effect from Shanxi Province to each of the other
provinces, while from the ordinate axis, the row of cubes represents the video
effect from each of the other provinces to Shanxi Province. We can find that
there is influence between different regions, and the influence between different
regions is different. What’s more, the effect matrix is time-varying due to the
timeliness of short video network.

Traditional popularity prediction approaches are usually based on long-
term historical access pattern or fixed relationship, which can not reflect the
time-varying impact, and therefore become invalid in short video popularity
prediction.

 

 

Fig. 1. Popularity effect between any pair of the 31 provinces.
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3.2 Potential of Graph-Based Scheme

The characteristics above motivate the need for a lightweight prediction app-
roach which can work under huge amount of short videos with influence between
regions.

It is known that such relationship among short videos is often modeled by
graphs [6,20,22]. Inspired by their success, we model the popularity prediction
problem into a graph-based network. Instead of considering each video as a node,
we design a geo-distributed clustering scheme to reduce the size of the graph.
In particular, we cluster all the short videos into several geo-distributed regions
(e.g., provinces/states), and formulate each region as a node in the graph (Fig. 2
shows a simple example). Such graph-based clustering enjoys two significant
advantages when predicting video popularity, and therefore has the potential to
solve the above two challenges:

– Reduce the calculation scale. Due to the massive amount, it is impractical
to predict the popularity for each short video, while such clustering signif-
icantly reduces the calculation scale to the number of regions. Therefore,

Fig. 2. To predict top n popular videos (red) from N videos (red and white). (a) Predict
the popularity for each video. (b) Group the N videos to K regions, and predict top ni

videos in region ki (
∑K

1 ni = N). (c) Analyze these regions that constitute a simplified
graph. (Color figure online)

Fig. 3. The input and output of a GraphInf



GraphInf: A GCN-based Popularity Prediction System 67

GraphInf could handle much more short videos and keep the calculation
overhead unchanged.

– Get the relationship among videos in different regions. As GraphInf formu-
lates the problem into a simple graph network, it thus can get the influence
between the short videos (Fig. 2(a)), by updating the attributes of nodes and
links.

Overall, in such graph-based formulation, we can model a GCN network
which takes all the potential videos as input and predicts the future video popu-
larity, as shown in Fig. 3. Base on the analysis and observations above, the ques-
tion becomes that how to achieve short video popularity prediction on a graph,
with explosive video quantity and time-varying video influence? We therefore
design GraphInf , which will be introduced in the next section in detail.

4 GraphInf Framework

In this section, we first introduce how to formulate the popularity prediction
problem of short videos in a graph-based way in Subsect. 4.1. Then, we propose
GraphInf to deal with the challenges introduced in Sect. 3.1, and describe the
components of GraphInf in Subsect. 4.2. The notations to be used are shown in
Table 1.

4.1 Problem Formulation

Generally, different places have their own popular short videos. The popular
short videos of each place are mainly dominated by its local information (e.g.,
human behavior, age structure) and neighbors. In particular, we distinguish the
places by administrative regions, where each region could be a city, a province,
or a state. By clustering and analyzing all short videos in the region, we are
able to handle the large scale problem of the growing short videos. Then, the
connections among all regions are described by a graph G = (N , E). Each region
is denoted by a node and N is the set of all nodes. We assume that every two
regions are virtually adjacent by using an edge with a weight that represents their
relationship. All edges are included in the set E . Next, we formally introduce the
node and edge information used here.

Node Information. At each time slice t, every region has its own popular short
videos. We divide the short video source into two types of popularity according
to request times. One is the popular short videos (PVself ) whose request times
are over hundreds or even thousands. The other is the sub-popular short videos
(PVsub) with a smaller number of request times. Let sti and cti denote the types of
the popular and sub-popular short video of region i at time slice t, respectively.
Specifically, sti and cti are two vectors with the dimension M , which consists of
the request times of short videos. The number M indicates the top M short
videos of each type.



68 Y. Zhang et al.

Edge Information. Except the geographically adjacent information between
two regions, we think that region i is affected by the top short videos of all
other regions. Thus, we use the top short video information of all other regions
(PVother) as the edge information of region i. Let oti denote the edge information
of region i at time slice t. Mathematically, the representation of oti is

oti = [st1; ...; s
t
i−1; s

t
i+1; ...; s

t
N ]

with dimension (|N | − 1) × M .
When given the node and edge information of previous l ≥ 1 time slices, we

aim to predict the popularity in the next time slice t + 1 in each region. This
problem is formally described as below.

{st+1
i ; ct+1

i ; ot+1
i } = f({sti; cti; oti}, {st−1

i ; ct−1
i ; ot−1

i }, ...,
{st−l

i ; ct−l
i ; ot−l

i }),
(1)

Table 1. Notations

Symbol Definition

sti The popular videos of region i at time slice t

cti The sub-popular videos of region i at time slice t

oti The top short videos of all other region of region i at time slice t

wt
i←j The number of the same short videos appearing in both region j at

time slice t − 1 and region i at time slice t

W t
i W t

i = [wt
i←1, ..., w

t
i←(i−1), w

t
i←(i+1), ..., w

t
i←N ]

Xi The importance vector of each feature at region i, Xi = [x1
i , x

2
i , x

3
i ]

Rt+1
i The predicted popular videos of region i at time slice t + 1

Y t+1
i The ground truth indicating that the short videos of region i are

popular at time slice t + 1

where f(·) is the popularity prediction function of short videos. The difficulty
of solving problem (1) lies in how to obtain an appropriate graph representation
of the effect of hot topic between regions and then use it to overcome the rela-
tionship among videos in different regions to get popularity videos in explosive
video quantity. For this, we propose GraphInf to solve this problem.

4.2 GraphInf : A Novel Graph Network

GraphInf is tailored to deal with the challenges mentioned above in short videos.
In particular, the architecture of GraphInf given in Fig. 4 includes five layers:
embedding layer, normalization layer, input layer, GCN layer, and output layer.
Initially, we collect the raw data of node and edge information of all nodes at
time slice t, i.e., {sti; cti; oti},∀i ∈ N . Next, we describe the five steps in turn.
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Fig. 4. The architecture of GraphInf .

– Embedding layer. The edge information of region i adopted here is the top
short videos of all other regions. To quantify the effect of region j to region
i at time slice t, we calculate the weight wt

i←j to denote the number of the
same short videos appearing in both region j at time slice t − 1 and region
i at time slice t. Thus, we use vector W t

i denoting all weights of all other
nodes, i.e.,

W t
i = [wt

i←1, ..., w
t
i←(i−1), w

t
i←(i+1), ..., w

t
i←N ]

with dimension |N | − 1. (Line 3 in Algorithm 1)
– Normalization layer. After the embedding step, the raw data of region i at

time slice t turns to

Ht
i =

⎡
⎣

sti
cti

W t
i o

t
i

⎤
⎦ . (2)

The entries in Ht
i are the request times of corresponding short videos. To

eliminate the magnitude impact, we carry out the normalization of each entry
h of Ht

i following Eq. (3). (Line 4 in Algorithm 1)

h′ =
h − min(Ht

i )
max(Ht

i ) − min(Ht
i )
. (3)

– Input layer. In the input layer, we define the normalized term
Normalization(Ht

i ) as Ĥt
i to be the new input of region i at time slice t.

(Line 5 in Algorithm 1)
– GCN layer. We customized GCN layer that independent of the original GCN.

The overall operation of the GCN unit for region i follows the next three steps.

U t
i = Xi · Ĥt

i , (4)

Ũ t
i = Sort(U t

i ), (5)

Rt+1
i,m =

{
1 if U t

i,m ≥ Ũ t
i,k

0 otherwise
, (6)
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Each row of Ĥt
i denotes a pre-defined feature, say the popular, sub-popular,

and all other popular short videos of region i. We adopt GCN to learn the
importance of each feature at region i. Let Xi = [x1

i , x
2
i , x

3
i ] denote the impor-

tance of each feature at region i. Rt+1
i,m is the predicted outcome and indicates

whether the mTH video is a hot video in all short videos, 1 if it is, else 0 ,in
region i at time t+1. Where k represents a number of hot Videos defined.We
use the GCN layer to find the hot videos in the mount of short videos, to deal
with the explosive video quantity challenge. (Line 6–8 in Algorithm 1)

– Output layer. In the training process, when we obtain the output from the
GCN layer, we have to evaluate the loss between the training result and
ground truth so as to update all Xi,∀i ∈ N . We define the loss function of
each region as follows.

loss =
|U t

i (R
t+1
i )T − U t

i (Y
t+1
i )T |2

U t
i (Y

t+1
i )T

, (7)

where Y t+1
i is the ground truth indicating that the K short videos of region

i are popular at time slice t+1. If yes, the corresponding value in Y t+1
i is set

to be 1, otherwise 0. The superscript T is the operation of matrix transpose.
(Line 9 in Algorithm 1)

At last, we summarize GraphInf in Algorithm 1.

Algorithm 1. The pesudo code of GraphInf
input: The time sequence training dataset Dtrain including the video request times

{sti, c
t
i, o

t
i}, t ∈ Dtrain (Here, the data of the next time slice t + 1 is used as the

ground truth Y t+1
i ); the initialization Xi(0).

1: for t do
2: for i ∈ N do
3: Calculate W t

i

4: Calculate Ht
i

5: Ĥt
i = Normalization(Ht

i )
6: U t

i ← Xt
i · Ĥt

i

7: U t
i(K) ← The Kth value in Sort(U t

i )

8: Rt+1
i ← Find the values in U t

i that are larger than U t
i,K and denote them as

one
9: Calculate the loss compared with the ground truth Y t+1

i by using equation
(7)

10: if lossi − lossi−1 ≤ ε then
11: Terminate the algorithm
12: end if
13: Return Xi = Xi(t) and Rt+1

i

14: end for
15: end for
output: The importance of features Xi = [x1

i , x
2
i , x

3
i ] and the prediction popular

videos Rt+1
i
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5 Evaluation

In this section, we evaluate our approach GraphInf using real traces, and show
the results of applying GraphInf versus the existing representative policies.

5.1 Experiment Setting

Algorithms. We compare GraphInf with three representative solutions.

– RNN-based. As popular short videos of each place are mainly dominated by
its local information, there are some works that use historical data to predict
item popularity, by designing a recurrent network with memory [14]. So we
use the historical hot videos to illustrate the potential of RNN-based schemes.

– Graph-based. As we described in the Sect. 3.2, some efficient solutions are
modeled by graphs [6,20], so we use the historical sub-hot videos, as compar-
ison of GraphInf .

– Embedding. In order to improve the topic prediction accuracy, some works
embed specific characteristics of graph node into consideration [1] and achieve
more desirable results. We therefore further implement an embedding method
as comparison.

Table 2. Information about the dataset.

Dataset Cache size Access #. Server #. Video #.

Province 1 3.96T 5, 323, 508 30 1, 424, 564

Province 2 5.12T 9, 202, 618 72 1, 813, 058

Province 3 2.51T 3, 051, 059 10 876, 058

Province 4 2.39T 2, 765, 419 21 843, 219

Province 5 2.48T 2, 828, 645 6 862, 806

... ... ... ...

Total 78.75T 105, 231, 883 488 12, 089, 887

Datasets. The traces [28] are from 31 provinces with 1,128,989 accesses to
132,722 videos in 1 h (shown in Table 2). Each trace item contains the timestamp,
anonymized source IP, video ID and url, file size, location, server ID, cache status,
and consumed time (with no personal sensitive information). We then deploy and
evaluate GraphInf by comparing with representative algorithms.

5.2 System Performance

We first conduct a series of experiments to show the overall prediction perfor-
mance. In particular, we show the popular video prediction accuracy in each
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region, and then deeply look into these popular videos by analyzing their source
and the prediction accuracy correspondingly.

Overall Accuracy. As described in problem formulation section (Sect. 4.1), we
consider both node information (popular videos PVself and sub popular videos
PVsub) and edge information (popular videos from other regions PVother). Here
we divide them into: the top popular 300 videos from the same region, the top
301 to 600 videos from the same region, and the top popular 300 videos from
other 30 regions, respectively. We use this data as input for GraphInf , and the
output is a matrix of hot videos.

Figure 5 shows the average prediction accuracy in 19 min of all the provinces
in China. Figure 6 and 7 show the prediction accuracy comparison of ShanXi
and Tibet province in 19 min, respectively. The reason why we choose these two
provinces is that ShanXi is a populous province with 10 times the population but
only 12% area compared with the sparse Tibet (about 124 times the population
density). From these three figures, we can see that GraphInf exceeds the other
three methods in a populous province (Fig. 6). Surprisingly, we thought it would
be easier to predict hot topics in the sparse provinces because its data size is
relatively small and the topology is also simpler, but the results show that the
accuracy in Tibet is unexpectedly low. In order to figure this out, we further
conduct experiments to calculate the specific accuracy by video source (PVself ,
PVsub and PVother).

Source Accuracy. To analyze the power of GraphInf in detail, here we dif-
ferentiate these three video sources and check the source accuracy separately.
So in each experiment results, there are three bars, denoting the source accu-
racy from video source PVself , PVsub, and PVother, respectively. The results
are shown in Fig. 8. There are more than 2,500 videos (1 min) to get 300 hot
videos. The up 19 series of experiments illustrate the average source accuracy of
all the 31 cities (in 19 min), the middle 19 series of experiments show the results
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Fig. 7. Prediction accuracy comparison in Tibet Province, during 14min.

of ShanXi province, and the down 19 series of experiments show the results of
Tibet province. From these results we can see that Tibet is lower (any bar) than
the average (in the left 19 series experiments), but Henan is higher than the
average. So, we can get a result that we obtain a high accuracy of data sources
as input in popular province, and a low accuracy in sparse province. The reason
for this phenomenon is that it is hard to formulate the video from those sparse
provinces, mainly due to the relatively strong closure. Therefore, compared with
other cities, the prediction accuracy decreases significantly.

To summarize, the relationship between hot videos in different regions will
have an impact on future popularity. GraphInf uses a graph to model different
regions so as to extract the influence of hot videos in these regions, that’s why
GraphInf can get higher prediction accuracy when compared with existing algo-
rithms. The prediction accuracy of our algorithm will be further improved in the
conditions with strong population mobility or close region relationship.
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6 Conclusion

In this work, we shed light on the popularity prediction problem in short video
network. We first disclose the specific characteristics of such network from online
application data, i.e., explosive video quantity and relationship among videos.
Based on the observations, we formulate this problem to a graph and propose a
graph-based neural network by incorporating network embedding, normalization
and graph convolution. We evaluate the proposed GraphInf using real online
traces from Kuaishou Company and compare the results with three state-of-the-
art methods. Experimental results show that GraphInf significantly outperforms
the baselines with precise topic prediction in short video network.
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Abstract. Crowdsourcing is a way to solve problems that need human
contribution. Crowdsourcing platforms distribute replicated tasks to
workers, pay them for their contribution, and aggregate answers to pro-
duce a reliable conclusion. A fundamental problem is to infer a correct
answer from the set of returned results. Another challenge is to obtain
a reliable answer at a reasonable cost: unlimited budget allows hiring
experts or large pools of workers for each task but a limited budget
forces to use resources at best.

This paper considers crowdsourcing of simple boolean tasks. We first
define a probabilistic inference technique, that considers difficulty of
tasks and expertise of workers when aggregating answers. We then pro-
pose CrowdInc, a greedy algorithm that reduces the cost needed to reach
a consensual answer. CrowdInc distributes resources dynamically to tasks
according to their difficulty. We show on several benchmarks that Crowd-
Inc achieves good accuracy, reduces costs, and we compare its perfor-
mance to existing solutions.

1 Introduction

Crowdsourcing is a way to solve tasks that need human contribution. These tasks
include image annotation or classification, polling, etc. Employers publish tasks
on an Internet platform, and these tasks are realized by workers in exchange for
a small incentive [2]. Workers are very heterogeneous: they have different ori-
gins, domains of expertise, and expertise levels. One can even consider malicious
workers, that return wrong answers on purpose. To deal with this heterogeneity,
tasks are usually replicated: each task is assigned to a set of workers. Redun-
dancy is also essential to collect workers opinion: in this setting, work units are
the basic elements of a larger task that can be seen as a poll. One can safely
consider that each worker executes his assigned task independently, and hence
returns his own belief about the answer. As workers can disagree, the role of a
platform is then to build a consensual final answer out of the values returned. A
natural way to derive a final answer is Majority Voting (MV), i.e. choose as
conclusion the most represented answer. A limitation of MV is that all answers
have equal weight, regardless of expertise of workers. If a crowd is composed of
only few experts, and of a large majority of novices, MV favors answers from
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https://doi.org/10.1007/978-3-030-59618-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59618-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-59618-7_6


78 R. Singh et al.

novices. However, in some domains, an expert worker may give better answer
than a novice and his answer should be given more weight. One can easily replace
MV by a weighted vote. However, this raises the question of measuring workers
expertise, especially when workers competences are not known a priori.

Crowdsourcing platforms such as Amazon Mechanical Turk (AMT) do not
have prior knowledge about the expertise of their worker. A way to obtain initial
measure of workers expertise is to use Golden Questions [9]. Several tasks with
known ground truth are used explicitly or hidden to evaluate workers expertise.
As already mentioned, a single answer for a particular task is often not sufficient
to obtain a reliable answer, and one has to rely on redundancy, i.e. distribute
the same task to several workers and aggregate results to build a final answer.
Standard static approaches on crowdsourcing platforms fixprior number of k
workers per task. Each task is published on the platform and waits for bids by k
workers. There is no guideline to set the value for k, but two standard situations
where k is fixed are frequently met. The first case is when a client has n tasks
to complete with a total budget of B0 incentive units. Each task can be realized
by k = B0/n workers. The second case is when an initial budget is not known,
and the platform fixes an arbitrary redundancy level. In this case, the number
of workers allocated to each task is usually between 3 and 10 [7]. It is assumed
that the distribution of work is uniform, i.e. that each task is assigned the same
number of workers. An obvious drawback of static allocation of workers is that
all tasks benefit from the same work power, regardless of their difficulty. Even a
simple question where the variance of answers is high calls for sampling of larger
size. So, one could expect each task t to be realized by kt workers, where kt is a
number that guarantee that the likelihood to change the final answer with one
additional worker is low. However, without prior knowledge on task’s difficulty
and on variance in answers, this number kt cannot be fixed.

This paper proposes a new algorithm called CrowdInc to address the ques-
tions of answers aggregation, task allocation, and cost of crowdsourcing. For sim-
plicity, we consider boolean filtering tasks, i.e. tasks with answers in {0, 1}, but
the setting can be easily extended to tasks with any finite set of answers. These
tasks are frequent, for instance to decide whether a particular image belongs or
not to a given category of pictures. We consider that each binary task has a
truth label, i.e. there exists a ground truth for each task. Each worker is asked
to answer 0 or 1 to such a task and returns a so-called observed label, which
may differ from the ground truth. The difficulty of a task is a real value in [0, 1].
A task with difficulty 0 is a very easy task and a task with difficulty 1 a very
complex one. The expertise of a worker is modeled in terms of recall and speci-
ficity. Recall (also called true positive rate) measures the proportion of correct
observed labels given by a worker when the ground truth is 1. On contrary,
specificity (also called true negative rate) measures the proportion of correct
observed labels given by a worker when the ground truth is 0. We propose a
generating function to measure the probability of accuracy for each of the truth
label (0/1) based on the observed label, task difficulty, and worker expertise. We
rely on an Expectation Maximization (EM) based algorithm to maximize the
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probability of accuracy of ground truth for each task and jointly estimate the
difficulty of each task as well as expertise of the workers. The algorithm provides
a greater weight to expert workers. In addition, if a worker with high recall makes
a mistake in the observed label, then it increases the difficulty of the task (corre-
spondingly for specificity). Along with, if expert workers fail to return a correct
answer, then the task is considered difficult. The EM algorithm converges with
a very low error rate and at the end returns the task difficulty, worker expertise
and the final estimated label for each task based on observed labels. Additionally,
we propose a dynamic worker allocation algorithm that handles at the same time
aggregation of answers, and optimal allocation of a budget to reach a consensus
among workers. The algorithm works in two phases. For the initial Estimation
phase, as we do not have any prior information about the task difficulty and
worker expertise, we allocate one third of total budget to inspect the behavior of
each task. Based on the answers provided by the human workers for each task,
we first derive the difficulty of tasks, final aggregated answers, along with the
worker expertise using an EM algorithm. For each task, we estimate the likeli-
hood that the aggregated answer is the ground truth. We terminate tasks which
are above the derived threshold at that particular instance. The second phase is
an Exploration phase. Based on each of the estimated task difficulty, we start to
allocate workers for each of the remaining tasks. The process continues until all
tasks are terminated or the whole budget is consumed.

Related Work: Several papers have considered tools such as EM to aggregate
answers, or allocate tasks. We only highlight a few works that are close to our
approach, and refer interested readers to [20] for a more complete survey of
the domain. Zencrowd [4] considers workers competences in terms of accuracy
(ratio of correct answers) and aggregates answers using EM. PM [10] consid-
ers an optimization scheme based on Lagrange multipliers. Workers accuracy
and ground truth are the hidden variables that must be discovered in order to
minimize the deviations between workers answers and aggregated conclusion.
D&S [3] uses EM to synthesize answers that minimize error rates from a set
of patient records. It considers recall and specificity, but not difficulty of tasks.
The approach of [8] proposes an algorithm to assign tasks to workers, synthesize
answers, and reduce the cost of crowdsourcing. It assumes that all tasks have the
same difficulty, and that worker reliability is a consistent value in [0, 1] (hence
considering accuracy as a representation of competences). CrowdBudget [15] is
an approach that divides a budget B among K existing tasks to achieve a low
error rate, and then uses MV to aggregate answers. Workers answers follow an
unknown Bernoulli distribution. The objective is to affect the most appropriate
number of workers to each task in order to reduce the estimation error. Aggrega-
tion is done using Bayesian classifiers combination (BCC). The approach in [16]
extends BCC with communities and is called CBCC. Each worker is supposed
to belong to a particular (unknown) community, and to share characteristics of
this community (same recall and specificity). This assumption helps improving
accuracy of classification. Expectation maximization is used by [14] to improve
supervised learning when the ground truth in unknown. This work considers
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recall and specificity of workers and proposes maximum-likelihood estimator
that jointly learns a classifier, discovers the best experts, and estimates ground
truth. Most of the works cited above consider expertise of workers but do not
address tasks difficulty. An exception is GLAD (Generative model of Labels,
Abilities, and Difficulties) [19] that proposes to estimate tasks difficulty as well
as workers accuracy to aggregate final answers. The authors recall that EM is an
iterative process that stops only after converging, but demonstrate that the EM
approach needs only a few minutes to tag a database with 1 million images. The
authors in [1] consider difficulty and error parameter of the worker. Notice that
in most of the works, tasks difficulty is not considered and expertise is modeled in
terms of accuracy rather than recall and specificity. Generally the database and
machine learning communities focus on data aggregation techniques and leave
budget optimization apart. Raykar et al. [13] introduce sequential crowdsourced
labeling: instead of asking for all the labels in one shot, one decides at each step
whether evaluation of a task shall be stopped, and which worker should be hired.
The model incorporates a Bayesian model for workers (workers are only char-
acterized by their accuracy), and cost. Then, sequential crowdsourced labeling
amounts to exploring a (very large) Markov decision process (states contain all
pairs of task/label collected at a given instant) with a greedy strategy.

It is usually admitted [20] that recall and specificity give a finer picture
of worker’s competence than accuracy. Our work aggregates workers answers
using expectation maximization with three parameters: task difficulty, recall
and specificity of workers. The CrowdInc algorithm uses this EM aggregation to
estimate error and difficulty of tasks. This error allows to compute dynamically
a threshold to stop tasks which aggregated answers have reached a reasonable
reliability and to allocate more workers to the most difficult tasks, hence saving
costs. One can notice that we assign an identical cost to all tasks. This makes
sense, as the difficulty of tasks is initially unknown.

The rest of the paper is organized as follows. In Sect. 2, we introduce our
notations, the factors that influence results during aggregation of answers, and
the EM algorithm. In Sect. 3, we present a model for workers and our EM-
based aggregation technique. We detail the CrowdInc algorithm to optimize the
cost of crowdsourcing in Sect. 4. We then give results of experiments with our
aggregation technique and with CrowdInc in Sect. 5. Finally we conclude and
give future research directions in Sect. 6.

2 Preliminaries

In the rest of the paper, we will work with discrete variables and discrete prob-
abilities. A random variable is a variable whose value depends on random phe-
nomenon. For a given variable x, we denote by Dom(x) its domain (boolean,
integer, real, string, ...). For a particular value v ∈ Dom(x) we denote by x = v
the event “x has value v”. A probability measure Pr() is a function from a
domain to interval [0, 1]. We denote by Pr(x = v) the probability that event
x = v occurs. In the rest of the paper, we mainly consider boolean events, i.e.
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variables with domain {0, 1}. A probability of the form Pr(x = v) only considers
occurrence of a single event. When considering several events, we define the joint
probability Pr(x = v, y = v′) the probability that the two events occur simul-
taneously. The notation extends to an arbitrary number of variables. If x and
y are independent variables, then Pr(x = v, y = v′) = Pr(x = v) · Pr(y = v′).
Last, we will use conditional probabilities of the form Pr(x = v | y = v′), that
defines the probability for an event x = v when it is known that y = v′. We
recall that, when P (y = v′) > 0 Pr(x = v | y = v′) = Pr(x=v,y=v′)

Pr(y=v′) .

2.1 Factors Influencing Efficiency of Crowdsourcing

During task labeling, several factors can influence the efficiency of crowdsourc-
ing, and the accuracy of aggregated answers. The first one is Task difficulty.
Tasks submitted to crowdsourcing platforms by a client address simple questions,
but may nevertheless require some expertise. Even within a single application
type, the difficulty for the realization of a particular task may vary from one
experiment to another: tagging an image can be pretty simple if the worker only
has to decide whether the picture contains an animal or an object, or conversely
very difficult if the boolean question asks whether a particular insect picture
shows an hymenopteran (an order of insects). Similarly, Expertise of work-
ers plays a major role in accuracy of aggregated answers. In general, an expert
worker performs better on a specialized task than a randomly chosen worker
without particular competence in the domain. For example, an entomologist can
annotate an insect image more precisely than any random worker.

The technique used for Amalgamation also play a major role. Given a set
of answers returned for a task t, one can aggregate the results using majority
voting (MV), or more interesting, as a weighted average answer where individual
answers are pondered by workers expertise. However, it is difficult to get a prior
measure of workers expertise and of the difficulty of tasks. Many crowdsourcing
platforms use MV and ignore difficulty of tasks and expertise of workers to
aggregate answers or assign tasks to workers. We show in Sect. 5 that MV has
a low accuracy. In our approach, expertise and difficulty are hidden parameters
evaluated from the sets of answers returned. This allows considering new workers
with a priori unknown expertise. One can also start with an a priori measure
of tasks difficulty and of workers expertise. Workers expertise can be known
from former interactions. It is more difficult to have an initial knowledge of
tasks difficulties, but one can start with an a priori estimation. However, these
measures need to be re-evaluated on the fly when new answers are provided
by the crowd. Starting with a priori measures does not change the algorithms
proposed hereafter, but may affect the final aggregated results.

In Sect. 3, we propose a technique to estimate the expertise of workers and
difficulty of tasks on the fly. Intuitively, one wants to consider a task difficult if
even experts fail to provide a correct answer for this task, and consider it easy if
even workers with low competence level answer correctly. Similarly, a worker is
competent if he answers correctly difficult tasks. Notice however that to measure
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difficulty of tasks and expertise of workers, one needs to have the final answer for
each task. Conversely, to precisely estimate the final answer one needs to have
the worker expertise and task difficulty. This is a chicken and egg situation, but
we show in Sect. 3 how to get plausible value for both using EM.

The next issue to consider is the cost of crowdsourcing. Workers receive
incentives for their work, but usually clients have limited budgets. Some task
may require a lot of answers to reach a consensus, while some may require only
a few answers. Therefore, a challenge is to spend efficiently the budget to get the
most accurate answers. In Sect. 4, we discuss some of the key factors in budget
allocation. Many crowdsourcing platforms do not considers difficulty, and allo-
cate the same number of workers to each task. The allocation of many workers to
simple tasks is usually not justified and is a waste of budget that would be useful
for difficult tasks. Now, tasks difficulty is not a priori known. This advocates for
on the fly worker allocation once the difficulty of a task can be estimated. Last,
one can stop collecting answers for a task when there is an evidence that enough
answers have been collected to reach a consensus on a final answer. A imme-
diate solution is to measure the confidence of final aggregated answer and take
as Stopping Criterion for a task the fact that this confidence exceeds a cho-
sen threshold. However, this criterion does not works well in practice as clients
usually want high thresholds for all their tasks. This may lead to consuming all
available budget without reaching an optimal accuracy. Ideally, we would like
to have a stopping criterion that balances confidence in the final answers and
budget, and optimizes the overall accuracy of answers for all the tasks.

2.2 Expectation Maximization

Expectation Maximization [5] is an iterative technique to obtain maximum like-
lihood estimation of parameter of a statistical model when some parameters are
unobserved and latent, i.e. they are not directly observed but rather inferred from
observed variables. In some sense, the EM algorithm is a way to find the best
fit between data samples and parameters. It has many applications in machine
learning, data mining and Bayesian statistics.

Let M be a model which generates a set X of observed data, a set of missing
latent data Y, and a vector of unknown parameters θ, along with a likelihood
function L(θ | X ,Y) = p(X ,Y | θ). In this paper, observed data X represents
the answers provided by the crowd, Y depicts the final answers which need to be
estimated and are hidden, and parameters in θ are the difficulty of tasks and the
expertise of workers. The maximum likelihood estimate (MLE) of the unknown
parameters is determined by maximizing the marginal likelihood of the observed
data. We have L(θ | X ) = p(X | θ) =

∫
p(X ,Y | θ)dY. The EM algorithm

computes iteratively MLE, and proceeds in two steps. At the kth iteration of the
algorithm, we let θk denote the estimate of parameters θ. At the first iteration
of the algorithm, θ0 is randomly chosen.

E-Step: In the E step, the missing data are estimated given observed data
and current estimate of parameters. The E-step computes the expected value of
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L(θ | X ,Y) given the observed data X and the current parameter θk. We define

Q(θ | θk) = EY|X ,θk [L(θ | X ,Y)] (1)

In the crowdsourcing context, we use the E-Step to compute the probability
of occurrence of Y that is the final answer for each task, given the observed data
X and parameters θk obtained at kth iteration.

M-Step: The M-step finds parameters θ that maximize the expectation com-
puted in Eq. 1.

θk+1 = arg max
θ

Q(θ | θk) (2)

Here, with respect to estimated probability for Y for final answers from the last
E-Step, we maximize the joint log likelihood of the observed data X (answer
provided by the crowd), hidden data Y (final answers), to estimate the new
value of θk+1 i.e. the difficulty of tasks and the expertise of workers. The E and
M steps are repeated until the value of θk converges. A more general version of
the algorithm is presented in Algorithm 1.

Algorithm 1: General EM Algorithm
Data: Observed Data X
Result: Parameter values θ, Hidden data Y

1 Initialize parameters in θ0 to some random values.

2 while ||θk − θk−1|| > ε do

3 Compute the expected possible value of Y, given θk and observed data X
4 Use Y to compute the values of θ that maximize Q(θ | θk).

5 end

6 return parameter θk, Hidden data Y

3 The Aggregation Model

We address the problem of evaluation of binary properties of samples in a
dataset by aggregation of answers returned by participants in a crowdsourcing
system. This type of application is frequently met: one can consider for instance
a database of n images, for which workers have to decide whether each image
is clear or blur, whether a cat appears on the image, etc. The evaluated prop-
erty is binary, i.e. workers answers can be represented as a label in {0, 1}. From
now, we will consider that tasks are elementary work units which objective is to
associate a binary label to a particular input object. For each task, an actual
ground truth exists, but it is not known by the system. We assume a set of k
independent workers, which role is to realize a task, i.e. return an observed label
in {0, 1} according to their perception of a particular sample. We consider a set
of tasks T = {t1, . . . tn} for which a label must be evaluated. For a task tj ∈ T
the observed label given by worker 1 ≤ i ≤ k is denoted by lij . We let yj denote
the final label of a task tj obtained by aggregating the answers of all workers.
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Fig. 1. (left) Generative function for the probability to get lij = 1, given yj = 1, for
growing values of task difficulty. The curves represent different recall for the considered
workers. (right) The threshold values based on current estimate on consumed budget
and fraction of task remaining at the beginning of a round.

Lj =
⋃

i∈1..k

lij denotes the set of all labels returned by workers for task tj , L

denotes the set of all observed labels, L =
⋃

j∈1..n

Lj . The goal is to estimate the

ground truth by synthesizing a set of final label Y = {yj , 1 ≤ j ≤ n} from the
set of observed label L = {Lj} for all tasks.

Despite the apparent simplicity of the problem, crowdsourcing binary tag-
ging tasks hides several difficulties, originating from unknown parameters. These
parameters are the difficulty of each task, and the expertise of each worker. The
difficulty of task tj is modeled by a parameter dj ∈ (0, 1). Here value 0 means
that the task is very easy, and can be performed successfully by any worker. On
the other hand, dj = 1 means that task tj is very difficult. A standard way to
measure expertise is to define workers accuracy as a pair ξi = {αi, βi}, where
αi is called the recall of worker i and βi the specificity of worker i. The recall
is the probability that worker i annotates an image j with label 1 when the
ground truth is 1, i.e. αi = Pr(lij = 1|yj = 1). The specificity of worker i
is the probability that worker i annotates an image j with 0 when the ground
truth is 0, i.e. βi = Pr(lij = 0|yj = 0).

In literature, [20] the expertise of workers is often quantified in terms of
accuracy, i.e. Pr(lij = yj). However, if the data samples are unbalanced, i.e.
the number of samples with actual ground truth 1 (respectively 0) is much
larger than the number of samples with ground truth 0 (respectively 1), defining
competences in terms of accuracy leads to bias. Indeed, a worker who is good in
classifying images with ground truth 1 can obtain bad scores when classifying
image with ground truth 0, and yet get a good accuracy (this can be the case
of a worker that always answers 1 when tagging a task). Recall and Specificity
overcomes the problem of bias and separates the worker expertise, considering
their ability to answer correctly when the ground truth is 0 and when it is 1,
and hence give a more precise representation of workers competences.
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Recall and specificity allows us to build a probabilistic model (a generative
model) for workers answers. We assume that workers have constant behaviors
and are faithful, i.e. do not return wrong answers intentionally. We also assume
that workers do not collaborate (their answers are independent variables). Under
these assumptions, knowing the recall αi and specificity βi of a worker i, we build
a model that generates the probability that he returns an observed label lij for
a task j with difficulty dj :

Pr(lij = yj |dj , αi, yj = 1) =
1 + (1 − dj)(1−αi)

2
(3)

Pr(lij = yj |dj , βi, yj = 0) =
1 + (1 − dj)(1−βi)

2
(4)

Figure 1-(left) shows the probability of associating label 1 to a task for which
the ground truth is 1 when the difficulty of the tagging task varies, and for
different values of recall. The range of task difficulty is [0, 1]. The vertical axis
is the probability of getting lij = 1. One can notice that this probability takes
values between 0.5 and 1. Indeed, if a task is too difficult, then returning a value is
close to making a random guess of a binary value. Unsurprisingly, as the difficulty
of task increases, the probability of correctly labeling the task decreases. This
generative function applies for every worker. For a fixed difficulty of task, workers
with higher recalls have higher probability to correctly label a task. Also, note
that when the difficulty of a task approaches 1, the probability of answering
with label lij = 1 decreases for every value of αj . However, for workers with
high recall, the probability of a correct annotation is always greater than with
a smaller recall. Hence, the probability of correct answer depends both on the
difficulty of task and on expertise of the worker realizing the task.

3.1 Aggregating Answers

For a given task j, with unknown difficulty dj , the answers returned by k workers
(observed data) is a set Lj = {l1j , . . . , lkj}, where lij is the answer of worker i to
task j. In addition, workers expertise are vectors of parameters α = {α1, . . . αk}
and β = {β1, . . . βk} and are also unknown. The goal is to infer the final label yj ,
and to derive the most probable values for dj , αi, βi, given the observed answers
of workers. We use a standard EM approach to infer the most probable actual
answer Y = {y1, . . . yn} along with the hidden parameters Θ = {dj , αi, βi}. Let
us consider the E and M phases of the algorithm.

E Step: We assume that all answers in L =
⋃

1≤j≤k

Lj are independently

given by the workers as there is no collaboration between them. So, in every
Lj = {l1j , . . . , lkj}, lij ’s are independently sampled variables. We compute the
posterior probability of yj ∈ {0, 1} for a given task j given the difficulty of task
dj , worker expertise αi, βi, i ≤ k and the worker answers Lj = {lij | i ∈ 1..k}.
Using Bayes’ theorem, considering a particular value λ ∈ {0, 1} we have:

Pr[yj = λ|Lj , α, β, dj ] =
Pr(Lj |yj = λ, α, β, dj) · Pr(yj = λ|α, β, dj)

Pr(Lj | α, β, dj)
(5)
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One can remark that yj and α, β, dj are independent variables. We assume
that both values of yj are equiprobable, i.e. Pr(yj = 0) = Pr(yj = 1) = 1

2 . We
hence get:

Pr[yj =λ|Lj , α, β, dj ] = Pr(Lj |yj=λ,α,β,dj)·Pr(yj=λ)
Pr(Lj |α,β,dj)

= Pr(Lj |yj=λ,α,β,dj)· 12
Pr(Lj |α,β,dj)

(6)

Similarly, the probability to obtain a particular set of labels is given by:

Pr(Lj | α, β, dj) = 1
2 · Pr(Lj | yj =0, α, β, dj) + 1

2 · Pr(Lj | yj =1, α, β, dj) (7)

Overall we obtain:

Pr[yj =λ|Lj , α, β, dj ] = Pr(Lj |yj=λ,α,β,dj)
Pr(Lj |yj=0,α,β,dj)+Pr(Lj |yj=1α,β,dj)

(8)

Let us consider one of these terms, and let us assume that every lij in Lj

takes a value λp. We have

Pr(Lj | yj =λ, α, β, dj) =
k∏

i=1

Pr(lij = λp | αi, βi, dj , yj =λ) (9)

If λp = 0 then Pr(lij = λp | αi, βi, dj , yj = 0) is the probability to classify

correctly a 0 as 0, as defined in Eq. 4 denoted by δij = 1+(1−dj)
(1−βi)

2 . Similarly, if
λp = 1 then Pr(lij = λp | αi, βi, dj , yj =1) is the probability to classify correctly

a 1 as 1, expressed in Eq. 3 and denoted by γij = 1+(1−dj)
(1−αi)

2 . Then the
probability to classify yj = 1 as λp = 0 is (1−γij) and the probability to classify
yj = 1 as λp = 0 is (1 − δij). We hence have Pr(lij = λp | αi, βi, dj , yj = 0) =
(1 − λp) · δij + λp · (1 − γij). Similarly, we can write Pr(lij = λp | αi, βi, dj , yj =
1) = λp · γij + (1 − λp) · (1 − δij). So Eq. 8 rewrites as:

Pr[yj =λ|Lj , α, β, dj ] =
∏k

i=1 Pr(lij = λp | yj =λp), αi, βi, dj

Pr(Lj | yj =0, α, β, dj) + Pr(Lj | yj =1, α, β, dj)

=
∏k

i=1(1 − λp).[(1 − λp)δij + λp(1 − γij)] + λp.[λp.γij + (1 − λp)(1 − δij)]
Pr(Lj | yj =0, α, β, dj) + Pr(Lj | yj =1, α, β, dj)

=
∏k

i=1(1 − λp).[(1 − λp)δij + λp(1 − γij)] + λp.[λp.γij + (1 − λp)(1 − δij)]
∏k

i=1(1 − λp)δij + λp(1 − γij) +
∏k

i=1 λp.γij + (1 − λp)(1 − δij)

(10)

In the E step, as every αi, βi, dj is fixed, one can compute E[yj |Lj , αi, βi, dj ]
and also choose as final value for yj the value λ ∈ {0, 1} such that Pr[yj =
λ|Lj , αi, βi, dj ] > Pr[yj = (1 − λp)|Lj , αi, βi, dj ]. We can also estimate the like-
lihood for the values of variables P (L ∪ Y | θ) for parameters θ = {α, β, d}, as
Pr(yj = λ,L | θ) = Pr(yj = λp, L).P r(Lj | yj = λp, θ) = Pr(yj = λp).P r(Lj |
yj = λp, θ)
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M Step: With respect to the estimated posterior probabilities of Y computed
during the E phase of the algorithm, we compute the parameters θ that max-
imize Q(θ, θt). Let θt be the value of parameters computed at step t of the
algorithm. We use the observed values of L, and the previous expectation for Y .
We maximize Q′(θ, θt) = E[logPr(L, Y | θ) | L, θt] (we refer interested readers
to [6]-Chap. 9 and [5] for explanations showing why this is equivalent to maximiz-
ing Q(θ, θt)). We can hence compute the next value as: θt+1 = arg max

θ
Q′(θ, θt).

Here in our context the values of θ are αi, βi, dj . We maximize Q′(θ, θt) using
bounded optimization techniques, truncated Newton algorithm [11] provided by
the standard SciPy1 implementation. We iterate E and M steps, computing at
each iteration t the posterior probability and the parameters θt that maximize
Q′(θ, θt). The algorithm converges, and stops when the improvement (difference
between two successive joint log-likelihood values) is below a threshold, fixed in
our case to 1e−7.

4 Cost Model

A drawback of many crowdsourcing approaches is that task distribution is static,
i.e. tasks are distributed to a fixed number of workers, without considering their
difficulty, nor checking if a consensus can be reached with fewer workers. Consider
again the simple boolean tagging setting, but where each task realization are
paid, and with a fixed total budget B0 provided by the client. For simplicity, we
assume that all workers receive 1 unit of credit for each realized task. Hence, to
solve n boolean tagging tasks, one can hire only n/B0 workers per task. In this
section, we show a worker allocation algorithm that builds on collected answers
and estimated difficulty to distribute tasks to worker at run time, and show its
efficiency w.r.t. other approaches.

Our algorithm works in rounds. At each round, only a subset Tavl ⊆ T of the
initial tasks remain to be evaluated. We collect labels produced by workers for
these tasks. We aggregate answers using the EM approach described in Sect. 3.
We denote by yq

j as the final aggregated answer for task j at round q, dq
j is the

current difficulty of task and αq
i , βq

i denotes the estimated expertise of a worker
i at round q. We let Dq = {dq

1 . . . dq
j} denote the set of all difficulties estimated

as round q. We fix a maximal step size τ ≥ 1, that is the maximal number of
workers that can be hired during a round for a particular task. For every task
tj ∈ Tavl with difficulty dq

j at round q, we allocate aq
j = �(dq

j/max Dq) × τ�
workers for the next round. Once all answers for a task have been received,
the EM aggregation can compute final label yq

j ∈ {0, 1}, difficulty of task dq
j ,

expertise of all workers αq
1, . . . , α

q
k, βq

1 , . . . , β
q
k. Now, it remains to decide whether

the confidence in answer yq
j obtained at round q is sufficient (in which case, we

do not allocate workers to this task in the next rounds). Let kq
j be the number

of answers obtained for task j at round q. The confidence ĉq
j in a final label yq

j

is defined as follows:

1 docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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ĉq
j(y

q
j = 1) = 1

kq
j

· ∑kq
j

i=1

{

lij × (
1+(1−dq

j )
(1−α

q
i
)

2 ) + (1 − lij) × (1 − 1+(1−dq
j )

(1−α
q
i
)

2 )
}

(11)

ĉq
j(y

q
j = 0) = 1

kq
j

· ∑kq
j

i=1

{

(1 − lij) × (
1+(1−dq

j )
(1−β

q
i
)

2 ) + (lij) × (1 − 1+(1−dq
j )

(1−β
q
i
)

2 )
}

(12)

Intuitively, each worker adds its probability of doing an error, which depends
on the final label yq

j estimated at round q and on his competences, i.e. on the
probability to choose lij = yq

j . Let us now show when to stop the rounds of
our evaluation algorithm. We start with n tasks, and let Tavl denote the set of
remaining tasks at round q. We define rq ∈ [0, 1] as the ratio of task that are still
considered at round q compared to the initial number of task, i.e. rq = |Tavl|

n . We
start with an initial budget B0, and denote by Bq

c the total budget consumed
at round q. We denote by Bq the fraction of budget consumed at that current
instance, Bq = Bq

c

B0
. We define the stopping threshold Thq ∈ [0.5, 1.0] as Thq =

1+(1−Bq)rq

2 .
The intuition behind this function is simple: when the number of remaining

tasks decreases, one can afford a highest confidence threshold. Similarly, as the
budget decreases, one shall derive a final answer for tasks faster, possibly with
a poor confidence, as the remaining budget does not allow hiring many workers.
Figure 1-(right) shows the different threshold based on the current estimate of
the budget on the horizontal axis. Each line depicts the corresponding fraction
of task available in the considered round. Observe that when rq approaches
1, the threshold value falls rapidly, as large number of tasks remain without
definite final answer, and have to be evaluated with the remaining budget. On
the other hand, when there are less tasks (e.g. when rq = 0.10), the threshold
Thq decreases slowly.

We can now define a crowdsourcing algorithm (CrowdInc) with a dynamic
worker allocation strategy to optimize cost and accuracy. This strategy allo-
cates workers depending on current confidence on final answers, and available
resources. CrowdInc is decomposed in two phases, Estimation and Convergence.
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ĉ02
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Fig. 2. A possible state for Algorithm 2
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Estimation: As difficulty of tasks is not known a priori, the first challenge is
to estimate it. To get an initial measure of difficulties, each task needs to be
answered by a set of workers. Now, as each worker receives an incentive for a
task, this preliminary evaluation has a cost, and finding an optimal number of
workers for difficulty estimation is a fundamental issue. The initial budget gives
some flexibility in the choice of an appropriate number of workers for preliminary
evaluation of difficulty. Choosing a random number of workers per task does not
seem a wise choice. We choose to devote a fraction of the initial budget to
this estimation phase. We devote one third of the total budget (B0/3) to the
estimation phase. It leaves a sufficient budget (2 · B0/3) for the convergence
phase. Experiments in the next Section show that this seems a sensible choice.
After collection of answers for each task, we apply the EM based aggregation
technique of Sect. 3 to estimate the difficulty of each task as well as the expertise
of each worker. Considering this as an initial round q = 0, we let d0j denote the
initially estimated difficulty of each task j, and α0

i , β
0
i denote the expertise of

each worker and y0
j denote the final aggregated answer. Note that if the difficulty

of some tasks is available a priori and is provided by the client, we may skip the
estimation step. However, in general clients do not possess such information
and this initial step is crucial in estimation of parameters. After this initial
estimation, one can already compute Th0 and decide to stop evaluation of tasks
with a sufficient confidence level.

Convergence: The difficulty of task dq
j and the set of remaining tasks Tavl

are used to start the convergence phase. Now as the difficulty of each task is
estimated, we can use the estimated difficulty dq

j to allocate the workers dynam-
ically. The number of workers allocated at round q > 0 follows a difficulty aware
worker allocation policy. At each round, we allocate aq

j workers to remaining
task tj . This allocation policy guarantees that each remaining task is allocated
at least one worker, at most τ workers, and that the more difficult tasks (i.e.
have the more disagreement) are allocated more workers than easier tasks.

Algorithm 2 gives a full description of CrowdInc. We also show the informa-
tion memorized at each step of the algorithms in Fig. 2. Consider a set of n tasks
that have to be annotated with a boolean tag in {0, 1}. CrowdInc starts with
the Estimation phase and allocates k workers for an initial evaluation round
(q = 0). After collection of answers, and then at each round q > 0, we first apply
EM based aggregation to estimate the difficulty dq

j of each of task tj ∈ Tavl,
the confidence ĉq

j in final aggregated answer yq
j , and the expertise αq

i , β
q
i of the

workers. Then, we use the stopping threshold to decide whether we need more
answers for each task. If ĉq

j is greater than Thq, the task tj is removed from Tavl.
This stopping criterion hence takes a decision based on the confidence in the
final answers for a task and on the remaining budget. Consider, in the example
of Fig. 2 that the aggregated answer for task t1 has high confidence, and that
ĉq
j ≥ Thq. Then, t1 does not need further evaluation, and is removed from Tavl.

Once solved tasks have been removed, we allocate aq
j workers to each remaining

task tj in Tavl following our difficulty aware policy. Note that, each task gets a
different number of workers based on task difficulty. The algorithm stops when
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Algorithm 2: CrowdInc
Data: A set of tasks T = {t1, . . . , tn}, a budget = B0

Result: Final Answer: Y = y1, . . . , yn, Difficulty: dj ,Expertise: αi, βi

1 Initialization : Set every dj , αi, βi to a random value in [0, 1].
2 Tavl = T ; q = 0; B = B − (B0/3); Bc = B0/3; r = (B0/3)/n
3 //Initial Estimation:

4 Allocate r workers to each task in Tavl and get their answers
5 Estimate dq

j , α
q
i , β

q
i , ĉqj , 1 ≤ j ≤ n, 1 ≤ i ≤ B0/3 using EM aggregation

6 Compute the stopping threshold Thq.
7 for j = 1, . . . , n do
8 if ĉqj > Thq then Tavl = T \ {j};

9 end
10 //Convergence:

11 while (B > 0) && (Tavl �= ∅) do
12 q = q + 1; l = |Tavl|
13 Allocate aq

1, . . . , a
q
l workers to tasks t1, . . . tl based on difficulty.

14 Get the corresponding answers by all the newly allocated workers.
15 Estimate dq

j , α
q
i , β

q
i , ĉqj using aggregation model.

16 B = B − ∑

i∈1..|Tavl|
aq
i

17 Compute the stopping threshold Thq

18 for j = 1, . . . , n do
19 if ĉqj > Thq then Tavl = Tavl \ {j};

20 end

21 end

either all budget is exhausted or there is no additional task left. It returns the
aggregated answers for all tasks.

5 Experiments

We evaluate the algorithm on three public available dataset, namely the product
identification [17], duck identification [18] and Sentiment Analysis [12] bench-
marks. We briefly detail each dataset and the corresponding tagging tasks. All
tags appearing in the benchmarks were collected via Amazon Mechanical Turk.

In the Product Identification use case, workers were asked to decide
whether a product-name and a description refer to the same product. The answer
returned is True or False. There are 8315 samples and each of them was evaluated
by 3 workers. The total number of unique workers is 176 and the total number
of answers available is 24945. In the Duck Identification use case, workers had
to decide if sample images contain a duck. The total number of tasks is 108 and
each of task was allocated to 39 workers. The total number of unique worker is
39 and the total number of answers is 4212. In the Sentiment Popularity use
case, workers had to annotate movie reviews as Positive or Negative opinions.
The total number of tasks was 500. Each task was given to 20 unique workers
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and a total number of 143 workers were involved, resulting in a total number of
10000 answers. All these information are synthesized in Table 1.

Table 1. Datasets description.

Dataset Number

of tasks

Number of

tasks with

ground

truth

Total Number of

answers provided

by crowd

Average

number of

answers for

each task

Number of

unique

crowd

workers

Product

Identification

8315 8315 24945 3 176

Duck Identification 108 108 4212 39 39

Sentiment

Popularity

500 500 10000 20 143

Table 2. Comparison of EM + aggregation (with Recall, specificity & task difficulty)
w.r.t MV, D&S, GLAD, PMCRH, LFC, ZenCrowd.

Evaluation of Aggregation: We first compared our aggregation technique to
several methods: MV, D&S [3], GLAD [19], PMCRH [10], LFC [14], and Zen-
Crowd [4]. We ran the experiment 30 times with different initial values for tasks
difficulty and workers expertise. The standard deviation over all the iteration
was less than 0.05%. Hence our aggregation is insensitive to initial prior values.
We now compare Recall, Specificity and Balanced Accuracy of all methods. Bal-
anced Accuracy is the average of recall and specificity. We can observe in Table 2
that our method outperforms other techniques in Duck Identification, Product
Identification, and is comparable for Sentiment Popularity.

Evaluation of CrowdInc: The goal of the next experiment was to verify that
the cost model proposed in CrowdInc achieves at least the same accuracy but
with a smaller budget. We have used Duck identification and Sentiment popu-
larity for this test. We did not consider the Product Identification benchmark:
indeed, as shown in Table 1, the Product Identification associates only 3 answers
to each task. This does not allow for a significant experiment with CrowdInc.
We compared the performance of CrowdInc to other approaches in terms of
cost and accuracy. The results are given in Fig. 3. Static(MV) denotes the tra-
ditional crowdsourcing platforms with majority voting as aggregation technique
and Static(EM) shows more advanced aggregation technique with EM based
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Fig. 3. Comparison of cost vs. Accuracy.

aggregation technique. Both algorithms allocate all the workers (and hence use
all their budget) at the beginning of crowdsourcing process.

The following observation can be made from Fig. 3. First, CrowdInc achieves
better accuracy than a static(MV) approach. This is not a real surprise, as MV
already showed bad accuracy in Table 2. Then, CrowdInc achieves almost the
same accuracy as a Static(EM) based approach in Duck identification, and the
same accuracy in Sentiment Popularity. Last, CrowdInc uses a smaller budget
than static approaches in all cases.

Table 3 shows the time (in seconds) needed by each algorithm to aggregate
answers. Static(MV) is the fastest solution: it is not surprising, as the complexity
is linear in the number of answers. We recall however that MV has the worst
accuracy of all tested aggregation techniques. We have tested aggregation with
EM when the number of workers is fixed a priori and is the same for all tasks
(Static(EM)). CrowdInc uses EM, but on a dynamic sets of workers and tasks,
stopping easiest tasks first. This results in a longer calculus, as EM is used sev-
eral times on sets of answers of growing sizes. The accuracy of static(EM) and
CrowdInc are almost the same. Aggregation with CrowdInc takes approximately
11% longer than static(EM) but for a smaller budget, as shown in the Fig. 3. To
summarize the CrowdInc aggregation needs more time and a smaller budget to
aggregate answers with a comparable accuracy. In general, clients using crowd-
sourcing services can wait several days to see their task completed. Hence, when
time is not a major concern CrowdInc can reduce the cost of crowdsourcing.
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Table 3. Running time (in seconds) of CrowdInc, MV and Static EM.

Dataset/Methods CrowdInc Static(EM) Static(MV)

Duck Identification 843.26 106.81 0.073

Sentiment Popularity 1323.35 137.79 0.102

6 Conclusion and Discussions

In this paper, we introduced an aggregation technique for crowdsourcing plat-
forms. Aggregation is based on expectation maximization and jointly estimates
the answers, the difficulty of tasks, and the expertise of workers. Using difficulty
and expertise as latent variables improves the accuracy of aggregation in terms of
recall and specificity. We also proposed CrowdInc an incremental labeling tech-
nique that optimizes the cost of answers collection. The algorithm implements a
worker allocation policy that takes decisions from a dynamic threshold computed
at each round, which helps achieving a trade off between cost and accuracy. We
showed in experiments that our aggregation technique outperforms the existing
state-of-the-art techniques. We also showed that our incremental crowdsourcing
approach achieves the same accuracy as EM with static allocation of workers,
better accuracy than majority voting, and in both cases at lower costs.

The ideas proposed in this paper can lead to several improvements that
will be considered in future work. In the paper, we addressed binary tasks for
simplicity, but the approach can be easily extended to tasks with a finite number
m of answers. The difficulty of each task tj remains a parameter dj . Expertise is
the ability to classify a task as m when its ground truth is m. An EM algorithm
just has to consider probabilities of the form Pr(Lij = m|yj = m) to derive
hidden parameters and final labels for each task. An easy improvement is to
consider incentives that depend on workers characteristics. This can be done
with a slight adaptation of costs in the CrowdInc algorithm. Another possible
improvement is to try to hire experts when the synthesized difficulty of a task
is high, to avoid hiring numerous workers or increase the number of rounds.
Another interesting topic to consider is the impact of answers introduced by a
malevolent user on the final aggregated results.

Last, we think that the complexity of CrowdInc can be improved. The com-
plexity of each E-step of the aggregation is linear in the number of answers. The
M-step maximizes the log likelihood with an iterative process (truncated New-
ton algorithm). However, the E and M steps have to be repeated many times.
The cost of this iteration can be seen in Table 3, where one clearly see the differ-
ence between a linear approach such as Majority Voting (third column), a single
round of EM (second column), and CrowdInc. Using CrowdInc to reduce costs
results in an increased duration to compute final answers. Indeed, the calculus
performed at round i to compute hidden variables for a task t is lost at step i+1
if t is not stopped. An interesting idea is to consider how a part of computations
can be reused from a round to the next one to speed up convergence.
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4. Demartini, G., Difallah, D.E., Cudré-Mauroux, Ph.: Zencrowd: leveraging proba-
bilistic reasoning and crowdsourcing techniques for large-scale entity linking. In:
Proceedings of WWW 2012, pp. 469–478. ACM (2012)

5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22 (1977)

6. Flach, P.A.: Achine Learning - The Art and Science of Algorithms that MakeSense
of Data. Cambridge University Press, Cambridge (2012)

7. Garcia-Molina, H., Joglekar, M., Marcus, A., Parameswaran, A., Verroios, V.: Chal-
lenges in data crowdsourcing. Trans. Knowl. Data Eng. 28(4), 901–911 (2016)

8. Karger, D.R., Oh, S., Shah, D.: Iterative learning for reliable crowdsourcing sys-
tems. In: Proceedings of NIPS 2011, pp. 1953–1961 (2011)

9. Le, J., Edmonds, A., Hester, V., Biewald, L.: Ensuring quality in crowdsourced
search relevance evaluation: the effects of training question distribution. In: SIGIR
2010 Workshop on Crowdsourcing for Search Evaluation, vol. 2126, pp. 22–32
(2010)

10. Li, Q., Li, Y., Gao, J., Zhao, B., Fan, W., Han, J.: Resolving conflicts in hetero-
geneous data by truth discovery and source reliability estimation. In: Proceedings
of SIGMOD 2014, pp. 1187–1198. ACM (2014)

11. Nash, S.G.: Newton-type minimization via the Lanczos method. SIAM J. Num.
Anal. 21(4), 770–788 (1984)

12. Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectiv-
ity summarization based on minimum cuts. In: Proceedings of the 42nd annual
meeting on Association for Computational Linguistics, pp. 271. Association for
Computational Linguistics (2004)

13. Raykar, V., Agrawa, P.: Sequential crowdsourced labeling as an epsilon-greedy
exploration in a Markov decision process. In: Artificial Intelligence and Statistics,
pp. 832–840 (2014)

14. Raykar, V.C.: Learning from crowds. J. Mach. Learn. Res. 11, 1297–1322 (2010)
15. Tran-Thanh, L., Venanzi, M., Rogers, A., Jennings, N.R.: Efficient budget allo-

cation with accuracy guarantees for crowdsourcing classification tasks. In: Pro-
ceedings of AAMAS 2013, pp. 901–908. International Foundation for Autonomous
Agents and Multiagent Systems (2013)

16. Venanzi, M., Guiver, J., Kazai, G., Kohli, P., Shokouhi, M.: Community-based
Bayesian aggregation models for crowdsourcing. In: Proceedings of WWW 2014,
pp. 155–164. ACM (2014)

17. Wang, J., Kraska, T., Franklin, M.J., Feng, J.: Crowder: crowdsourcing entity
resolution. Proc. VLDB Endowment 5(11), 1483–1494 (2012)

18. Welinder, P., Branson, S., Perona, P., Belongie, S.J.: The multidimensional wisdom
of crowds. In: Proceedings of NIPS 2010, pp. 2424–2432 (2010)



Reducing the Cost of Aggregation in Crowdsourcing 95

19. Whitehill, J., Wu, T., Bergsma, J., Movellan, J.R., Ruvolo, P.L.: Whose vote should
count more: optimal integration of labels from labelers of unknown expertise. In:
Proceedings of NIPS 2009, pp. 2035–2043 (2009)

20. Zheng, Y., Li, G., Li, Y., Shan, C., Cheng, R.: Truth inference in crowdsourcing:
is the problem solved? Proc. VLDB Endowment 10(5), 541–552 (2017)



Web API Search: Discover Web API
and Its Endpoint with Natural

Language Queries

Lei Liu(B), Mehdi Bahrami, Junhee Park, and Wei-Peng Chen

Fujitsu Laboratories of America, Inc.,
1240 E Arques Avenue, Sunnyvale, CA 94085, USA

{lliu,mbahrami,jpark,wchen}@fujitsu.com

Abstract. In recent years, Web Application Programming Interfaces
(APIs) are becoming more and more popular with the development of
the Internet industry and software engineering. Many companies provide
public Web APIs for their services, and developers can greatly accelerate
the development of new applications by relying on such APIs to execute
complex tasks without implementing the corresponding functionalities
themselves. The proliferation of web APIs, however, also introduces a
challenge for developers to search and discover the desired API and its
endpoint. This is a practical and crucial problem because according to
ProgrammableWeb, there are more than 22,000 public Web APIs each
of which may have tens or hundreds of endpoints. Therefore, it is diffi-
cult and time-consuming for developers to find the desired API and its
endpoint to satisfy their development needs. In this paper, we present
an intelligent system for Web API searches based on natural language
queries by using a two-step transfer learning. To train the model, we col-
lect a significant amount of sentences from crowdsourcing and utilize an
ensemble deep learning model to predict the correct description sentences
for an API and its endpoint. A training dataset is built by synthesizing
the correct description sentences and then is used to train the two-step
transfer learning model for Web API search. Extensive evaluation results
show that the proposed methods and system can achieve high accuracy
to search a Web API and its endpoint.

Keywords: Web APIs · Neural networks · Deep learning

1 Introduction

A Web API is an application programming interface exposed via the Web, com-
monly used as representational state transfer (RESTful) services through Hyper-
Text Transfer Protocol (HTTP). As the Internet industry progresses, Web APIs
become more concrete with emerging best practices and more popular for mod-
ern application development [1]. Web APIs provide an interface for easy software
development through abstracting a variety of complex data and web services,
c© Springer Nature Switzerland AG 2020
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Fig. 1. Examples of ProgrammableWeb page of the Dropbox API (left) and documen-
tations for Dropbox API (right).

which can greatly accelerate application development. Web APIs have also been
widely used by technical companies due to their inherent flexibility. For example,
Twitter offers public APIs to enable third parties to access and analyze historical
tweets. Amazon provides free advertising APIs to developers as a way to promote
their products. On the other hand, developers also benefit from the burgeoning
API economy [2]. Developers can access various datasets and services via Web
APIs and incorporate these resources into their development [3].

Due to these advantages, Web APIs have been widely developed in recent
years. According to ProgrammableWeb1, there are more than 22,000 public Web
APIs available today, and this number is rapidly increasing. Moreover, an API
has a number of endpoints, which specify the location of resources that develop-
ers need to access to carry out their functions. As an example shown in Fig. 1,
the Dropbox API has 136 endpoints, and each endpoint has its own concrete
function. In order to achieve the given function, an HTTP request has to be sent
to the corresponding endpoint using a given HTTP method, as shown in Fig. 1.

The proliferation of Web APIs, however, makes it difficult for developers
to search and discover a desired API and its endpoint. As aforementioned, the
developer needs to know the endpoint in order to call an API. Therefore, the
API level search is insufficient. In light of this, in this paper, we focus on building
a Web API search system that can provide endpoint level search results based
on a natural language query describing developers’ needs. With the proposed
dataset collection and generation methods and the two-step transfer learning
model, the API search system can achieve high accuracy to search a Web API
and its endpoint to satisfy developers’ requirements.

2 Related Works and Our Contributions

API search or recommendation for developers has been extensively studied in
the past. However, there are several key differences from our work:

1 Available at: https://www.programmableweb.com.

https://www.programmableweb.com


98 L. Liu et al.

Keyword-Based Search vs. Deep Learning-Based Search: Online Web
API platforms such as ProgrammableWeb, Rapid API2, and API Harmony3

provides API search functions. However, strict keyword matching is used in
these platforms to return a list of APIs given a user’s query. Strict keyword
search (syntactical representation) does not allow users to search semantically.
On the other hand, deep learning-based method can enable semantic search,
which means that users can search content for its meaning in addition to key-
words, and maximize the chances the users will find the information they are
looking for. For example, in the Fitbit API documentation, the word “glucose” is
used. If the users search “blood sugar”, the keyword-based search engine cannot
return the Fitbit API. Thanks to the word embedding, the deep learning-based
search engine, with semantic representation, is more advanced and intelligent to
handle the scenario where exact keyword matching does not succeed. Supporting
semantic search would help developers identify appropriate APIs in particular
during the stage of application development when developers would not have
clear ideas about which specific APIs to utilize or they would like to look for
other similar APIs.

Programming-Language API Search vs. RESTful Web API Search: In
the past decade, there are many works investigated search approaches for pro-
gramming language APIs, for example, Java APIs or C++ APIs. [4] proposed
RACK, a programming language API recommendation system that leverages
code search queries from Stack Overflow4 to recommend APIs based on a devel-
oper’s query. The API text description has also been used for searching APIs.
[5] proposed sourcerer API search to find Java API usage examples in large code
repositories. [6] conducted a study by using a question and answering system to
guide developers with unfamiliar APIs. [7] identified the problems of API search
by utilizing Web search. Based on the observations, the authors presented a pro-
totype search tool called Mica that augments standard Web search results to
help programmers find the right API classes and methods given a description of
the desired function as input, and help programmers find examples when they
already know which methods to use. Compared to programming language API
search, the Web API and its endpoint search is a new domain, and the major
challenge is the lack of training datasets.

Web API-Level Search vs. Endpoint Level Search: There are several stud-
ies related to Web API search in recent years. [8] developed a language model
based on the collected text such as the API description on the Web to support
API queries. [10] used the API’s multi-dimensional descriptions to enhance the
search and ranking of Web APIs. The recent works in [11,12] investigated API
level recommendation with a natural language query. As multiple APIs are fre-
quently being used together for software development, many researchers have

2 Available at: https://rapidapi.com.
3 Available at: https://apiharmony-open.mybluemix.net.
4 Available at: https://stackoverflow.com.

https://rapidapi.com
https://apiharmony-open.mybluemix.net
https://stackoverflow.com
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Fig. 2. Procedure for building the training dataset.

also focused on recommending API mashups, or recommending an API based
on another API as the input, such as [13–17].

However, although there are many existing works regarding Web API search
or recommendation, there is no study supporting API endpoint level discovery
with natural language input. In addition, majority of the related works have
been carried out using internal APIs or a limited number of APIs, not on a large
number of public Web APIs. In practice, the recommendation with only API
information is insufficient for developers because, in order to actually use the API
in the application design, developers need endpoint level information. A web API
may have tens or hundreds of endpoints. With only API level search results, it
is still burdensome for developers to discover which endpoint should be used. To
the best of our knowledge, this paper is the first work that proposes the endpoint
level search on a large number of Web APIs whereas all the previous works only
support API level search or recommendation. The novelty and contributions of
this work are threefold:

– Currently, the key bottleneck for building a machine learning-based Web API
search system is the lack of publicly available training datasets. Although the
services like API Harmony provide structured API specification, where we
can collect information such as API and its endpoint descriptions to build the
training dataset, the majority of existing web APIs lack such structured API
specifications. For example, API Harmony only supports 1,179 APIs, which
is just a small percentage of all the Web APIs. In this paper, we propose a
method to collect useful information directly from API documentation, and
then build a training dataset, which can support more than 9,000 Web APIs
for search purposes.

– As the information we collected, in particular, the endpoint descriptions from
the API documentation may contain a lot of noise. We propose deep learning
methods to predict correct API endpoint description sentences. The evalua-
tion results show that decent accuracy can be achieved.

– We propose a two-step transfer learning method to support endpoint level
Web API search, whereas all the previous works only support API level search.
The evaluation results show that our proposed model can achieve high search
accuracy.
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3 Training Dataset Generation

In this section, the method for collecting and generating the training dataset is
detailed. The entire procedure is shown in Fig. 2.

Fig. 3. Correct endpoint descriptions
sentence span from endpoint name.

Fig. 4. Ensemble LSTM+ANN model to
support endpoint description prediction.

3.1 Crowdsourcing from ProgrammableWeb

The information collection starts from ProgrammableWeb, which provides a
directory service for more than 22,000 Web APIs. We can use web scraping
to extract API data for each Web API. As an example, Fig. 1 shows the Pro-
grammableWeb page regarding the Dropbox API. From this page, we can collect
the API title, API description and API keywords, which are essential for API
level search. However, as we target on endpoint level search, we need to collect
descriptions for each endpoint of the API, which are not available at Program-
mmableWeb. However, in programmableWeb page, we can find an URL for the
documentation of the given API. In general, API documentation includes the
list of endpoints and the description of each endpoint, as the example of the
Dropbox API documentation shown in Fig. 1. Therefore, by further scraping the
API documentation, we can collect data regarding endpoint descriptions.

However, by checking documentation of many Web APIs, we found it is a
challenge to identify the correct endpoint descriptions. This is because there is no
standard template for providers to write API documentations, and the quality of
API documentation varies significantly. In some good quality and well-structured
API documentation (such as the Dropbox API documentation in Fig. 1), the
endpoint descriptions may directly follow the endpoint name, and there is an
“description” tag for readers to easily to find the correct endpoint descriptions.
On the other hand, in bad quality or poorly structured API documentation, the
endpoint descriptions may have a certain distance from the endpoint name and
without any tag, which are relatively hard to find.

We take the API Harmony data as an example to evaluate if there is any
pattern regarding the distances between the endpoint name and its descriptions
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in API documentation. API Harmony is a catalog service of 1,179 web APIs,
which provides structured data for these APIs according to the OpenAPI Spec-
ification (formerly Swagger Specification). From the structured data for a given
API, we can retrieve its endpoints and the descriptions for each endpoint. We
can assume these descriptions are ground-truth endpoint descriptions as they
have been evaluated by users. We also collect the corresponding API documen-
tation (i.e. a couple of HTML pages) for each given API from the websites of
API providers using Web crawlers. After that, we check where the endpoint
description is located in the corresponding documentation and how far it is from
the endpoint name. The result is depicted in Fig. 3. It can be seen that only
about 30% endpoint descriptions are the first sentence after the endpoint name.
From this result, we can see that the correct endpoint descriptions can be 1 to 6
sentences before endpoint name or after endpoint name, so there is no particular
pattern regarding the sentence distance between endpoint name and its correct
endpoint descriptions in API documentation.

Based on the observation of the results in Fig. 3. We defined two terms: raw
endpoint descriptions and correct endpoint descriptions. Raw endpoint descrip-
tions are the sentences surrounding endpoint names in Web API documenta-
tion. For example, according to Fig. 3, we may define raw endpoint descriptions
include 12 sentences (6 sentences before and 6 sentences after) for each endpoint
name in API documentation. Among these raw endpoint descriptions, 1 or more
sentences accurately describe the endpoint functions, and these sentences are
referred to as correct endpoint descriptions. Such correct endpoint descriptions
are essential in order to achieve accurate endpoint level search.

Due to the challenge of identifying the correct endpoint descriptions from raw
endpoint descriptions, as well as the rapid growth of Web APIs, we need to design
an automatic approach that can predict the correct endpoint descriptions from
API documentation. To address this issue, in Sects. 3.2 and 3.3, we present how
to collect raw endpoint descriptions from API documentation, and how to predict
correct endpoint descriptions from raw endpoint descriptions, respectively.

3.2 Collection of Raw API Endpoint Descriptions from API
Documentations

As aforementioned, raw endpoint descriptions are the surrounding sentences of
each endpoint name in API documentation. An API may have a list of end-
points (E) and each endpoint is defined as Ei. For each API, we extract each of
its endpoints (Ei) and raw description for this endpoint (Ei,D) from API doc-
umentation for a large number of APIs. We use a regular expression method,
similar to [8], to extract the list of API endpoints (E). Regarding Ei,D, different
API providers use different approaches to list endpoints and explain the descrip-
tion of endpoints. For example, some use a semi-structured information to list
endpoints, some explain an endpoint and its description through a paragraph,
and some use endpoint as header and explain the description. Our objective
of information extraction is collecting all possible Ei,D for each endpoint Ei in
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each HTML page, where i ∈ [1, ..l] and l represents the total number of end-
points in one HTML page. We extract information from semi-structured pages
by processing HTML table tags and the table headers. To this end, we define
a placeholder Pi that contains both Ei and Ei,D. Pi represents a section of the
HTML page which appears between two same HTML headers ([h1, h2, ..., h6]),
and Ei is located in the section. Therefore, a raw endpoint description is the text
around API endpoint as EiD = [SM , SN ] which denotes M sentences before and
N sentences after appearing Ei inside Pi. Algorithm 1 explains the detailed infor-
mation of extracting endpoint description for the given endpoint list. By using
the proposed method and setting M = 6 and N = 6, we collected 2, 822, 997
web-pages with the size of 208.6 GB for more than 20, 000 public APIs. Such
huge raw data contains a lot of noises. Therefore, in Sect. 3.3, we propose a deep
learning method to predict and filter the correct endpoint descriptions from the
raw descriptions.

Algorithm 1. Raw Endpoint Description Extraction
1: procedure get Raw Desc(html,E,M,N)

� Extracts raw endpoint description Ei,D ∀ i ∈ E
2: root = html.root
3: for Ei in E do
4: Tag = Find Tag of Ei in html
5: if Tag!=Null then
6: while Tag!=root do
7: for hi in [h1, h2, ..., h6] do
8: if hi == Tag.name then
9: Pi = Tag

10: Break else
11: Tag = Tag.parent

12: sents = sent token(Pi.content)
13: pos = find(Ei) in sents
14: raw sents = sents[pos − M : pos + N ]
15: return raw sents

3.3 Prediction of Correct Endpoint Descriptions

Deep Learning Models: We propose a deep learning method to predict the correct
endpoint description sentences from raw endpoint descriptions for each endpoint.
To train the deep learning model, we generated a training dataset based on API
Harmony. For each endpoint of the APIs in API Harmony, a correct description
is presented, which can be considered as ground-truth. For each API in API Har-
mony, we directly collect its documentation. After that, for each of the endpoint
that this API has, we extract M sentences before and N sentences after the given
endpoint name from the documentations, by using the algorithm presented in
Sect. 3.2. Next, we compare the similarity for each of these M+N sentences with
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the ground-truth endpoint description in API Harmony using spaCy5, which cal-
culates the similarity score by comparing word vectors. The sentence with the
highest similarity can be considered as the correct endpoint description (i.e.
ground-truth selected by API Harmony). The remaining N + M − 1 sentences
which are not selected by API Harmony as endpoint descriptions can be treated
as incorrect endpoint descriptions.

If the ground-truth endpoint description in API Harmony for a given end-
point contains K sentences where K > 1, in this case, “K-grams” of M sentences
before and N sentences after need to be generated. For example, if K = 2 which
means ground-truth endpoint description contains two sentences (GTS1, GTS2),
we need to collect “2-grams” sentence pairs (Ti, Tj) from API documentation,
such as (before 3rd, before 2nd), (before 2rd, before 1st), (after 1st, after 2nd),
(after 2nd, after 3rd) where “before 3rd” means the 3rd sentence before end-
point name. After that, the average similarity score is computed according to
the following equation:

Simscore = (Sim(GTS1, Ti) + Sim(GTS1, Tj)
+ Sim(GTS2, Ti) + Sim(GTS2, Tj))/4

(1)

where Sim represents the similarity score between two given inputs. Simi-
larly, the “K-gram” with the highest similarity can be considered as the correct
endpoint descriptions (i.e. selected by API Harmony). The remaining “K-grams”
which are not selected by API Harmony can be treated as incorrect endpoint
descriptions.

For each correct or incorrect endpoint descriptions (with a label 1 or 0), we
compute the following features to be used for the deep learning models:

– Endpoint Vector: Vector representation of endpoint names.
– Description Vector: Vector representation of correct or incorrect description

sentences.
– HTTP Verb: HTTP method verbs (such as GET, POST, PUT, PATCH,

DELETE, OPTIONS, HEAD) presented in the given sentence. If no such
verb in the sentence, mark it as NONE. Those keywords are encoded by
one-hot labels.

– Cosine Similarity: Cosine similarity between Endpoint and Description Vec-
tors.

– spaCy Similarity: The average similarity score between the endpoint and
description text calculated by SpaCy.

– HTML Section: Check if the given sentence and the endpoint name are in the
same HTML section by checking the HTML tag. If yes, mark the sentence as
“1”, otherwise “0”.

– Description Tag: Check if there is any HTML header tag with name “Descrip-
tion” or “description” in the given HTML section. If yes, mark the sentence
as “1”, otherwise “0”.

5 Available at: https://spacy.io/.

https://spacy.io/
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– Number of Tokens: Number of words including special characters in the
description.

– Endpoint Count: Number of times that the endpoint name is found in the
given sentence.

Note that the features for the description classification model are selected
by observing ground-truth examples. For example, we observed that in many
cases, the endpoint name and its description are similar, then we utilized spaCy
similarity as one of the features. Extensive convincing examples can be found: in
Gmail API, the endpoint “/userId/drafts” has the description “lists the drafts in
the user’s mailbox”; in Spotify API, the endpoint “/albums” has the description
“get several albums” etc. Other features are also based on such observations.

Fig. 5. Proposed deep learning models to predict correct endpoint descriptions: (a)
CNN+ANN; (b) LSTM+ANN.

In many cases, the endpoint name is concatenated by multiple words, such as
“/UserID”. To compute word vectors for it, we firstly split such endpoint names
into individual words, such as “User” and “ID”, and then get the correspond-
ing word embedding. Such splitting is achieved by building a word frequency
list according to all the words that appeared in API and endpoint description
sentences. We assume the words with higher frequency will have a lower cost
for the splitting. By using dynamic programming, we can split such endpoint
names with the target of minimizing the overall splitting cost. The GloVe [18]
pre-trained word vectors with 6B tokens, 400K vocabulary, and 300-dimensional
vectors are used for word embedding. If the endpoint and description have mul-
tiple words, we get their vectors by averaging the embedding of all the words.

The deep learning models predict whether a given sentence is a correct end-
point description or not. Fig. 5(a) presents our designed convolutional neural
network (CNN)+ANN model and Fig. 5(b) shows a long short-term memory
(LSTM)+ANN model. Here, ANN refers to an artificial neural network with
Dense, Batch Normalization and Dropout layers. The inputs to the models are
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the features aforementioned, and the output is a binary indication (0 or 1) repre-
senting whether the sentence is a correct endpoint description or not for the given
endpoint. In CNN+ANN model, the endpoint vectors and description vectors are
sent to CNNs, and all the other features are sent to an ANN. The outputs of the
CNNs and the ANN are merged and then sent to another ANN with multiple
Dense, Dropout and Batch Normalization layers. The overall architecture for the
LSTM+ANN model is similar to the CNN+ANN model. The only difference is
that endpoint vector and description vector features are sent to LSTM networks,
rather than CNNs, as shown in Fig. 5(a) and Fig. 5(b) respectively.

Performance Evaluation of Models: By using the above method, we extract the
training dataset from API documentation, as summarized in Table 1. Note that
correct and incorrect endpoint description sentences are imbalanced because
only a small percentage of sentences are correct endpoint description sentences
(selected by API Harmony), whereas all the rest sentences are incorrect descrip-
tion sentences. Therefore, we collect more incorrect endpoint description sen-
tences compared with correct endpoint description sentences.

Table 1. Collected training dataset.

Training Dataset # of Records

Correct endpoint
description sentences

5,464

Incorrect endpoint
description sentences

33,757

Table 2. Testing results for the deep
learning models in Fig. 5 and tradi-
tional machine learning models.

Models Testing
accuracy

Decision Tree [19] 76.64%

Random Forest [20] 79.92%

CNN+ANN (Fig. 5(a)) 90.31%

LSTM+ANN (Fig. 5(b)) 98.13%

Since the training dataset for correct and incorrect endpoint description sen-
tences is imbalanced, we firstly randomly select 5,588 sentences out of the 33,757
incorrect endpoint description sentences, and together with the 5,464 correct
endpoint description sentences, we train the deep learning models depicted in
Fig. 5. We use 65%, 20%, and 15% of the dataset for training, validation, and
testing respectively. The testing result is shown in Table 2, which shows that
both CNN+ANN and LSTM+ANN models can achieve more than 90% testing
accuracy, and the LSTM+ANN model outperforms the CNN+ANN model. For
comparison purposes, we also evaluate the performance of two traditional learn-
ing models: Decision Tree and Random Forest. Decision Tree is a flowchart graph
or diagram that helps explore all of the decision alternatives and their possible
outcomes [19]. Random Forest is an ensemble learning method for classification,
regression, and other tasks, that operates by constructing a multitude of deci-
sion trees at training time and outputting the class based on voting [20]. The
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testing result in Table 2 shows that the proposed deep learning models greatly
outperform the traditional learning models such as Decision Tree and Random
Forest.

Blind Testing and Model Improvement: In the above testing, the training and
testing datasets are all retrieved from API documentation related to the APIs
included in API Harmony. However, API Harmony only covers a small percent-
age of Web APIs, and most of these APIs are made by big providers which are
likely to have high-quality documentations. However, as we are targeting a wider
coverage of Web APIs in the recommendation system, it is essential to evaluate
the model performance over a large API documentation corpus, in particular for
those not covered by API Harmony.

To conduct this blind testing, we manually label 632 sentences in documen-
tations of APIs that are not covered by API Harmony. We compute all the fea-
tures of these 632 sentences and send them as input to our trained LSTM+ANN
model aforementioned. The results are summarized in Table 3. From the results,
we can see that with only one trained model, the blind testing performance is
not good as the model cannot distinguish the incorrect endpoint descriptions
well. The reason is that when we train the model, we use the random under-
sampling method in order to have a balanced training dataset between correct
and incorrect description sentences. However, this method may discard poten-
tially useful information which could be important for training the model. The
samples chosen by random under-sampling may be biased samples, and thus,
they may not be an accurate representation and provide sufficient coverage for
incorrect descriptions, thereby, causing inaccurate results. To improve the model
to cover a wider range of APIs, we applied an ensemble approach, as shown in
Fig. 4.

Table 3. Blind testing results of
ensemble method with multiple mod-
els.

# of Models Accuracy Recall Precision

1 Model 31.80% 96.05% 14.57%

3 Models 78.80% 69.74% 32.32%

5 Models 80.70% 76.32% 35.80%

7 Models 84.97% 82.99% 43.45%

Table 4. Summary of training dataset.

Dataset Number

of APIs

Number

of

endpoints

Number

of queries

API

Harmony

1,127 9,004 232,296

Popular

API List

1,603 12,659 447,904

Full API

List

9,040 49,083 1,155,821

In Fig. 4, each model Mi is one trained model mentioned above. Here, the
LSTM+ANN model is used as it outperforms CNN+ANN. Each Mi is trained
with correct endpoint description sentences and different incorrect endpoint
description sentences. This is achievable because we have much more incor-
rect endpoint descriptions sentences than the correct ones. In this case, each
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Mi makes different decisions based on the learned features. They can predict
independently and vote to jointly decide whether the input sentence is correct
endpoint descriptions or not.

Table 3 shows the performance of the ensemble approach. It can be seen that
the ensemble approach can improve the overall performance in terms of accuracy
and precision, compared with only one model. Moreover, the ensemble approach
with 7 models outperforms others, which will be used in the rest of this paper.
The only issue is that some incorrect endpoint descriptions are wrongly predicted
as correct endpoint descriptions, which result in more false-positive predictions
and will introduce some noise to the training dataset of the API search model.

3.4 Synthesizing Queries for Training Dataset

In the previous steps, we have collected the data regarding API titles, API key-
words, API descriptions, and correct endpoint descriptions. The API descriptions
and correct endpoint descriptions may contain many sentences. Therefore, we
firstly conduct sentence tokenization, and in turn, for each of the tokenized sen-
tence, text normalization is carried out, including conducting word-stemming
lemmatization and removing stop words, symbols, special characters, HTML
tags, unnecessary spaces, and very short description sentence with only 1 word.
After that, these processed sentences are used to build the training dataset.

We consider there are 4 major types of queries when a developer wants to
search a Web API:

– Question type queries: developers may enter a question to search a Web API,
for example, a question type query might be “which API can get glucose?”

– Command type queries: instead of asking a question, developers may directly
enter a command type query to search an API, such as “get weather infor-
mation.”

– Keyword type queries: in many cases, developers may just input a couple of
keywords to search an API. One example query is “fitness, health, wearable.”

– API title-based queries: in some cases, developers may already have an idea
regarding what API to use. Developers may just need to search an endpoint
for this given API. One example of such a query is “post photos to Instagram.”
In this case, the search engine should return the endpoint of the Instagram
API, rather than the endpoint of other similar APIs.

We define rule-based methods to synthesize training queries based on part-of-
speech (POS) tagging and dependency parsing (also known as syntactic parsing).
POS tagging is the process of marking up a word in a text as corresponding to
a particular part of speech, based on both its definition and its context. Depen-
dency parsing is the task of recognizing a sentence and assigning a syntactic
structure to it. Figure 6(a) shows an example sentence with its POS tagging and
dependency parsing results, which can be generated by many NLP tools such are
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Spacy, NLTK, CoreNLP, etc. In this work, we use SpaCy, and the annotation of
the POS tagging6 and dependencies7 can be found in SpaCy documentations.

Considering the fact that most of the sentences in API descriptions and
endpoint descriptions are long, whereas in real practice, developers are unlikely
to enter a very long query to a search engine, therefore we use POS tagging and
dependency parsing to synthesize simplified question-type and command-type
queries. We defined several rules, and if the description sentence satisfies a rule,
simplified question-type and command-type queries are generated. For example,
a rule is defined as

for subject in sentence:
If subject.dep == nsubj and subject.head.pos == VERB:

# Simplified question-type query:
Q_query = \Which endpoint" + VERB + dobj NOUN phrase
# Simplified command-type query:
C_query = VERB + dobj NOUN phrase

Such a rule is feasible because the syntactic relations form a tree, every word
has exactly one head. We can, therefore, iterate over the arcs in the depen-
dency tree by iterating over the words in the sentence. If the original endpoint
description sentence is “this endpoint gets a music playlist according to an artist
ID,” by using the rule, we can generate a simplified question-type query “which
endpoint get a music playlist?”, and a simplified command-type query “get a
music playlist”. The training dataset includes the API and endpoint description
sentence, as well as the simplified question-type query and simplified command-
type query. If an API or endpoint description sentence cannot be applied to
any of the pre-defined rules, no simplified question-type query and simplified
command-type query can be generated. In this case, only the API or endpoint
description sentences will be included in the training dataset.

The keyword-based queries are generated from the API keywords that we col-
lected from ProgrammableWeb. For example, the Spotify API has two category
keywords “music” and “data mining” on ProgrammableWeb. So the keyword
query can be “music, data mining”. The keyword-based query can also be gen-
erated by concatenating the noun phrases of an API or endpoint description
sentence. Given the same example, “this endpoint gets a music playlist accord-
ing to an artist ID,” the corresponding keyword-based query is “this endpoint,
a music playlist, an artist ID.”

The API title-based queries can be generated by using the API title col-
lected from ProgrammableWeb. In addition, to emulate an API title-based query,
we also attach the API title to the end of the short question-type queries and
command-type queries. For the same example, the API title-based queries are
“which endpoint get a music playlist with Spotify?” and “get a music playlist
with Spotify.”

6 https://spacy.io/api/annotation#pos-tagging.
7 https://spacy.io/api/annotation#dependency-parsing.

https://spacy.io/api/annotation#pos-tagging
https://spacy.io/api/annotation#dependency-parsing
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By using the proposed methods, we can build a training dataset for API/
endpoint search. The dataset has 3 columns, which are the query, its correspond-
ing API and endpoint respectively. Note that, we cannot judge which endpoint
should be used for the synthesized queries related to API description, API title,
and ProgrammableWeb keywords. In this case, the endpoint field in the training
dataset regarding these queries is marked as “N/A”.

4 Web API Search: Deep Learning Model
and Performance Evaluation

4.1 Deep Learning Model

The target of the API search engine is to search both API and its endpoint
based on a natural language query. In this paper, we propose a two-step transfer
learning method. The proposed model was designed by a performance compar-
ison of multiple different architectures, and we picked up the model with the
best performance. Figures 6(b) and (c) show the first step, which is to predict
API and endpoint separately, and Fig. 6(d) shows the second step, which pre-
dicts API and its endpoints jointly, by reusing the models trained in the first
step. The recurrent neural network model has also been widely used for text
modeling. Especially, LSTM is gaining popularity as it specifically addresses the
issue of learning long-term dependencies [21]. Therefore, we implement the rec-
ommendation model based on LSTM networks. As shown in Fig. 6(b) and 6(c),
LSTM models in the first step include four layers: an input layer to instantiate
a tensor and define the input shape, an embedding layer to convert tokens into

Fig. 6. (a) Ensemble LSTM+ANN model to support endpoint description prediction;
(b) Bidirectional LSTM model to predict API (first step); (c) Bidirectional LSTM
model to predict endpoint (first step); (d) Final model to predict both API and its
endpoint (second step).
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vectors, a bidirectional LSTM layer to access the long-range context in both
input directions, and a dense layer with softmax activation function to linearize
the output into a prediction result.

The training data that we used to train Fig. 6(b) and Fig. 6(c) are different.
The model in Fig. 6(b) is trained by query and its corresponding API data,
while the model in Fig. 6(c) is trained by query and its corresponding endpoint
data. We fine-tune parameters in different models in order to make the training
process consistent across different models. We train all models with a batch size
of 512 examples. The maximum sentence length is 25 tokens. The GloVe [18]
pre-trained word vectors with 6B tokens, 400K vocabulary, and 300-dimensional
vectors are used for word embedding. A sentence is represented by averaging
the embedding of all the words. We choose 500 hidden units for bi-directional
LSTM.

After the two models in Fig. 6(b) and Fig. 6(c) are trained and well-fitted,
we re-use these models for the second step to build the final model to predict
both API and its endpoint simultaneously. The network architecture is shown
in Fig. 6(d). The last dense layer of models in Fig. 6(b) and Fig. 6(c) is removed,
and the rest layers are re-used in the final model. The parameters and weights in
the corresponding layers are frozen, which means that these layers are not train-
able when we train the final model in step 2. A concatenate layer is deployed
to merge the output from two bidirectional LSTM layers. In turn, the output of
the concatenate layer is sent to a neural network with dense layers and dropout
layers. The final prediction is given by the last dense layer with softmax acti-
vation function. The loss function is categorical cross-entropy loss. The query
and API/endpoint combination in the training dataset is used to train the final
model. We set the dropout rate to 0.4 and used early stopping to avoid overfit-
ting. The size of the output layer for models in Fig. 6(b), Fig. 6(c), and Fig. 6(d)
equals to the number of APIs, number of endpoints, and number of API/endpoint
pairs, respectively.

4.2 Performance Evaluation

To evaluate the performance of the API search, we test the model performance
for the following dataset:

– API Harmony: As aforementioned, we consider API Harmony as the ground-
truth dataset for API endpoint descriptions. Therefore, the testing results of
the API search model for API Harmony can validate the overall efficiency of
the proposed model when the training dataset is accurate.

– Full API list: The full API list is a comprehensive dataset that we collected in
Sect. 3. The full API list covers 9,040 APIs. This number is smaller than the
number of APIs in ProgrammableWeb because some of the documentation
links in ProgrammableWeb cannot be accessed or the documentations are
lacking endpoint information.

– Popular API list: We use the full API list and extract metadata about APIs
from ProgrammableWeb and GitHub to rank the APIs in the full API list
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based on their popularity. The popularity rank is computed based on the fol-
lowing extracted subjects where each one contains a number for a given API:
(1) number of SDKs, (2) number of articles, (3) number of changelogs, (4)
number of sample source codes, (5) number of “how to” articles, (6) number
of libraries, (7) number of developers, (8) number followers, and (9) number
of Github projects using this API. Items (1)–(8) are collected directly from
ProgrammableWeb. Item (9) is collected from GitHub projects by searching
API’s host address and base path via GitHub APIs. The numbers collected
in (1)-(9) are normalized and considered with the same weight for ranking
API popularity. Based on the final ranking, we select the top 1,000 APIs for
this dataset. If the providers of the top 1,000 APIs have other APIs which
are not ranked in the top 1,000, we also add those APIs into this dataset. By
doing so, the popular API list covers 1,603 APIs, which can be considered as
the most popular Web APIs.

Performance Evaluation: The summary of the training dataset of the API Har-
mony, popular API list, and full API list is shown in Table 4. The training
dataset is split into 80% for training and 20% for testing. The testing accuracy
for the API search model is shown in Table 5. In this table, the top 1 accu-
racy shows the possibility that the correct API/endpoint is ranked as the first
search result. Similarly, the top 10 accuracy represents the possibility that the
correct API/endpoint is ranked as one of the first 10 search results. All the
APIs/endpoints in search results are ranked by the possibility score given by the
softmax function. This evaluation result shows that the proposed method can
achieve very good accuracy for endpoint level search.

We compare the performance of the proposed 2 step transfer learning with the
models that use traditional LSTM [21] or bi-LSTM [22] to recommend both API
and its endpoint using the API Harmony dataset. The result is shown in Table 6,
which validates that the proposed 2 step transfer learning model outperforms
previous LSTM or bi-LSTM in terms of endpoint search accuracy.

Table 5. API/endpoint search accu-
racy.

Input Dataset Top 1
accuracy

Top 10
accuracy

API Harmony 91.13% 97.42%

Popular API List 82.72% 93.81%

Full API List 78.85% 89.69%

Table 6. Comparison of the proposed
2 step transfer learning model with the
LSTM and bi-LSTM for endpoint level
search by using API Harmony dataset.

Model Top 1
accuracy

Top 10
accuracy

LSTM 72.15% 80.27%

Bi-LSTM 74.48% 82.98%

2 step
transfer
learning

91.13% 97.42%
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5 Conclusions

In this paper, we propose novel approaches to support an end-to-end procedure
to build a Web API search system on a large number of public APIs. To the
best of our knowledge, it is the first work that provides API endpoint level
searches with a large API coverage (over 9,000 APIs) and high search accuracy.
Our future work is to open the system to the public and collect users’ query
and their feedback. It is worth noting that the problem/application of Web
API search is very practical for both academia and industry. Considering the
fact that the state-of-the-art works only has a small API coverage (e.g. 1,179
APIs in API Harmony), constructing an API search system with 9,040 APIs and
49,083 endpoints is a significant improvement to this application. As Web APIs
are rapidly growing and becoming more and more important for future software
engineering, we hope the proposed application and its associated methods would
be beneficial for the whole community.
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Abstract. Anti-patterns are symptoms of poor design and implemen-
tation solutions applied by developers during the development of their
software systems. Recent studies have identified a variety of Web ser-
vice anti-patterns and defined them as sub-optimal solutions that result
from bad design choices, time pressure, or lack of developers experience.
The existence of anti-patterns often leads to software systems that are
hard to understand, reuse, and discover in practice. Indeed, it has been
shown that service designers and developers tend to pay little attention
to their service interfaces design. Web service antipatterns detection is
a non-trivial and error-prone task as different anti-pattern types typ-
ically have interleaving symptoms that can be subjectively interpreted
and hence detected in different ways. In this paper, we introduce an auto-
mated approach that learns from a set of interleaving Web service design
symptoms that characterize the existence of anti-pattern instances in a
service-based system. We build a multi-label learning model to detect 8
common types of Web service anti-patterns. We use the ensemble classi-
fier chain (ECC) model that transforms multi-label problems into several
single-label problems which are solved using genetic programming (GP)
to find the optimal detection rules for each anti-pattern type. To evalu-
ate the performance of our approach, we conducted an empirical study
on a benchmark of 815 Web services. The statistical tests of our results
show that our approach can detect the eight Web service antipattern
types with an average F-measure of 93% achieving a better performance
compared to different state-of-the-art techniques. Furthermore, we found
that the most influential factors that best characterize Web service anti-
patterns include the number of declared operations, the number of port
types, and the number of simple and complex types in service interfaces.

Keywords: Web service design · Service interface · Service
anti-patterns · Genetic programming · Ensemble classifier chain

1 Introduction

Web services have become a popular technology for deploying scale-out applica-
tion logic and are used in both open source and industry software projects such
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as Amazon, Yahoo, Fedex, Netflix, and Google. An advantage of using Web ser-
vices and Service-Based Systems (SBS) is their loose coupling, which leads to
agile and rapid evolution, and continuous re-deployment. Typically, SBSs use
of a collection Web services that communicate by messages through declared
operations in the services interfaces (API).

Being the most used implementation of the Service Oriented Architecture
(SOA), Web services are based on a number of widely acknowledged design
principles, qualities and structural features that are different from traditional
systems [2,20,29,30]. While there is no generalized recipe for what is considered
to be a good service design, there exists guidelines about how to develop service-
oriented designs while following a set of quality principles like service reusability,
flexibility, and loose coupling principles [10,20,29]. However, like any software
system, Web service must evolve to add new user requirements, fix defects or
adapt to new environment changes. Such frequent changes, as well as other
business factors, developers expertise, and deadline pressure may, in turn, lead
to the violation of design quality principles. The existence of bad programming
practices, inducing poor design, also called “anti-patterns” or “design defects”,
are an indication of such violations [20,21,25]. Such antipatterns include the God
Object Web service which typically refers to a Web service with large interface
implementing a multitude of methods related to different technical and business
abstractions. The God Object Web Service is not easy to discover and reuse and
often unavailable to end users because it is overloaded [12]. Moreover, when many
clients are utilizing one interface, and several developers work on one underlying
implementation, there are bound to be issues of breakage in clients and developer
contention for changes to server-side implementation artifacts [12]. To this end,
such anti-patterns should be detected, prevented and fixed in real world SBS to
adequately fit in the required system’s design with high QoS [12,29].

While recent works attempted to detect and fix Web service antipatterns
[18–21,25,33], the detection of such antipatterns is still a challenging and diffi-
cult task. Indeed, there is no consensual way to translate formal definition and
symptoms into actionable detection rules. Some efforts attempted to manually
define detection rules [18,19,25]. However, such manual rules are applied, in
general, to a limited scope and require a non-trivial manual effort and human
expertise to calibrate a set of detection rules to match the symptoms of each
antipattern instance with the actual characteristics of a given Web service. Other
approaches attempted to use machine learning to better automate the detection
of antipatterns [20,21,32]. However, these detection approaches formulated to
the detection as a single-label learning problem, i.e., dealing with antipatterns
independently and thus ignoring the innate relationships between the different
antipattern symptoms and characteristics. As a result, existing machine learning-
based approaches lead to several false positives and true negatives reducing the
detection accuracy. Indeed, recent studies showed that different types of Web
service antipatterns may exhibit similar symptoms and can thus co-exist in the
same Web service [12,20,25]. That is, similar symptoms can be used to char-
acterize multiple antipattern types making their identification even harder and
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error-prone [12,20]. For example, the God Object Web service (GOWS) antipat-
tern is typically associated with the Chatty Web service (CWS) antipattern
which manifests in the form of a Web service with a high number of opera-
tions that are required to complete abstraction. Consequently, the GOWS and
the CWS typically co-occur in Web services. Inversely, the GOWS antipattern
has different symptoms than the fine-grained Web service (FGWS) antipattern
which typically refers to a small Web service with few operations implementing
only apart of an abstraction. Hence, knowing that a Web service is detected as
a FGWS antipattern, it cannot be a GOWS or a CWS as they have different
innate characteristics/symptoms.

In this paper, our aim is to provide an automated and accurate technique
to detect Web service anti-patterns. We formulate the Web services antipat-
terns detection problem as a multi-label learning (MLL) problem to deal with
the interleaving symptoms of existing Web service antipatterns by generating
multiple detection rules that can detect various antipattern types. We use the
ensemble classifier chain (ECC) technique [28] that converts the detection task
of multiple antipattern types into several binary classification problems for each
individual antipattern type. ECC involves the training of n single-label binary
classifiers, where each one is solely responsible for detecting a specific label, i.e.,
antipattern type. These n classifiers are linked in a chain, such that each binary
classifier is able to consider the labels identified by the previous ones as additional
information at the classification time. For the binary classification, we exploit
the effectiveness of genetic programming (GP) [13,14,20] to find the optimal
detection rules for each antipattern. The goal of GP is to learn detection rules
from a set of real-world instances of Web service antipatterns. In fact, we use
GP to translate regularities and symptoms that can be found in real-world Web
service antipattern examples into actionable detection rules. A detection rule is
a combination of Web service interface quality metrics with their appropriate
threshold values to detect various types of antipatterns.

We implemented and evaluated our approach on a benchmark of 815 Web ser-
vices from different application domains and sizes and eight common Web service
antipattern types. To evaluate the performance of our GP-ECC approach, and
the statistical analysis of our results show that the generated detection rules can
identify the eight considered antipattern types with an average precision of 89%,
and recall of 93% and outperforms state-of-the-art techniques [20,25]. Moreover,
we conducted a deep analysis to investigate the symptoms, i.e., features, that are
the best indicators of antipatterns. We found that the most influential factors
that best characterize Web service anti-patterns include the number of declared
operations, the number of port types, and the number of simple and complex
types in service interfaces.

This paper is structured as follows: the paper’s background is detailed in
Sect. 2. Section 3 summarizes the related studies. In Sect. 4, we describe our GP-
ECC approach for Web service antipatterns detection. Section 5 presents our
experimental evaluation, and discusses the obtained results. Section 6 discusses
potential threats to the validity our our approach. Finally, Sect. 7 concludes and
outlines our future work.
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2 Background

This section describes the basic concepts used in this paper.

2.1 Web Service Anti-Patterns

Anti-patterns are symptoms of bad programming practices and poor design
choices when structuring the web interfaces.They typically engender web inter-
faces to become harder to maintain and understand [17].

Various types of antipatterns, characterized by how they hinder the quality
of service design, have been recently introduced with the purpose of identifying
them, in order to suggest their removal through necessary refactorings [12,16,25].
Typical web service antipatterns are described in Table 1:

Table 1. The list of considered Web service antipatterns.

Antipatterns definitions

Chatty Web service (CWS): is a service where a high number of operations, typically
attribute-level setters or getters, are required to complete one abstraction. This
antipattern may have many fine-grained operations, which degrades the overall
performance with higher response time [12]

Fine grained Web service (FGWS): is a too fine-grained service whose overhead
(communications, maintenance, and so on) outweighs its utility. This defect refers to a
small Web service with few operations implementing only a part of an abstraction. It
often requires several coupled Web services to complete an abstraction, resulting in
higher development complexity, reduced usability [12]

God object Web service (GOWS): implements a multitude of methods related to
different business and technical abstractions in a single service. It is not easily reusable
because of the low cohesion of its methods and is often unavailable to end users
because it is overloaded [12]

Ambiguous Web service (AWS): is an antipattern where developers use ambiguous or
meaningless names for denoting the main elements of interface elements (e.g., port
types, operations, messages). Ambiguous names are not semantically and syntactically
sound and affect the service discoverability and reusability [19]

Data Web service (DWS): contains typically accessor operations, i.e., getters and
setters. In a distributed environment, some Web services may only perform some
simple information retrieval or data access operations. A DWS usually deals with very
small messages of primitive types and may have high data cohesion [25]

CRUDy Interface (CI): is a service with RPC-like behavior by declaring create, read,
update, and delete (CRUD) operations, e.g., createX(), readY(), etc. Interfaces
designed in that way might be chatty because multiple operations need to be invoked to
achieve one goal. In general, CRUD operations should not be exposed via interfaces [12]

Redundant PortTypes (RPT): is a service where multiple portTypes are duplicated
with the similar set of operations. Very often, such portTypes deal with the same
messages. RPT antipattern may negatively impact the ranking of the Web Services [12]

Maybe It is Not RPC (MNR): is an antipattern where the Web service mainly provides
CRUD- type operations for significant business entities. These operations will likely
need to specify a significant number of parameters and/or complexity in those
parameters. This antipattern causes poor system performance because the clients often
wait for the synchronous responses [12]
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We focus our study on these eight antipattern types as they are the most
common ones in SBSs based on recent studies [15,16,21,22,25,30,33].

2.2 Multi-label Learning

Multi-label learning (MLL) is the machine learning task of automatically assign-
ing an object into multiple categories based on its characteristics [5,28,31].
Single-label learning is limited by one instance with only one label. MLL is a non-
trivial generalization by removing the restriction and it has been a hot topic in
machine learning [5]. MLL has been explored in many areas in machine learning
and data mining fields through classification techniques. There exists different
MLL techniques [3,5,28,31,35] including (1) problem transformation methods
and algorithms, e.g., the classifier chain (CC) algorithm, the binary relevance
(BR) algorithm, label powerset (LP) algorithm, and (2) algorithm adaptation
methods such as the K-Nearest Neighbors (ML.KNN), as well as (3) ensemble
methods such as the ensemble classifier chain (ECC), and random k-labelset
(RAKEL).

The Classifier Chain (CC) Model. The CC model combines the computa-
tional efficiency of the BR method while still being able to take the label depen-
dencies into account for classification. With BR, the classifier chains method
involves the training of q single-label binary classifiers and each one will be solely
responsible for classifying a specific label l1, l2, ..., lq. The difference is that, in
CC, these q classifiers are linked in a chain {h1 → h2 → ... → hq} through the
feature space. That is, during the learning time, each binary classifier hj incor-
porates the labels predicted by the previous h1, ..., hj−1 classifiers as additional
information. This is accomplished using a simple trick: in the training phase, the
feature vector x for each classifier hj is extended with the binary values of the
labels l1, ..., lj−1.

The Ensemble Classifier Chain (ECC) Model. One of the limitation of the
CC model is that the order of the labels is random. This can lead may lead to a
single standalone CC model be poorly ordered. Moreover, there is the possible
effect of error propagation along the chain at classification time, when one (or
more) of the first classifiers predict poorly [28]. Using an ensemble of chains,
each with a random label order, greatly reduces the risk of these events having
an overall negative effect on classification accuracy. A majority voting method
is used to select the best model. Moreover, a common advantage of ensembles is
their performance in increasing overall predictive performance [3,28].

2.3 Genetic Programming

Genetic Programming (GP) [13], a sub-family of Genetic Algorithms (GA), is
a computational paradigm that were inspired by the mechanics of natural evo-
lution, including survival of the fittest, reproduction, and mutation. GP begins
with a set of random population of candidate solutions, also called individuals or
chromosomes. Each individual of the population, is represented in the form of a
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computer program or tree and evaluated by a fitness function to quantitatively
measure its ability to solve the target problem.

In this paper, we apply GP to the problem of Web service antipatterns
detection. Hence, we show how GP can effectively explore a large space of solu-
tions, and provide intelligible detection rules with ECC. Also, we bridge the
gap between MLL and GP based on the ECC method to solve the problem of
antipatterns detection, where each Web service may contain different interleav-
ing antipatterns, e.g., GOWS, CWS and CI. For the binary labels, our ECC
model adopts GP to learn detection rules for each antipattern type.

3 Related Work

Detecting and specifying antipatterns in SOA and Web services is a relatively
new field. The first book in the literature was written by Dudney et al. [12]
and provides informal definitions of a set of Web service antipatterns. More
recently, Rotem-Gal-Oz described the symptoms of a range of SOA antipatterns
[30]. Furthermore, Král et al. [16] listed seven “popular” SOA antipatterns that
violate accepted SOA principles. In addition, a number of research works have
addressed the detection of such antipatterns. Recently, Palma et al. [25] have
proposed a rule-based approach called SODA-W that relies on declarative rule
specification using a domain-specific language (DSL) to specify/identify the key
symptoms that characterize an antipattern using a set of WSDL metrics. In
another study, Rodriguez et al. [29] and Mateos et al. [19] provided a set of
guidelines for service providers to avoid bad practices while writing WSDLs.
Based on some heuristics, the authors detected eight bad practices in the writ-
ing of WSDL for Web services. Mateos et al. [18] have proposed an interesting
approach towards generating WSDL documents with less antipatterns using text
mining techniques. Ouni et al. [20,22] proposed a search-based approach based
on evolutionary computation to find regularities, from examples of Web service
antipatterns, to be translated into detection rules. However, detections rules
based approaches tend to have a higher number of false positives. Ouni et al.
[21] introduced a machine learning based approach to build detection models for
different Web service antipattern types. However, the major limitation of the
current approaches is that deal with the Web service antipatterns problem as
a single label learning problem ignoring the valuable information related to the
shared symptoms between different antipattern types. As a consequence, they
suffer from reduced accuracy related to several false positives and true negatives.

To fix such antipatterns, Daagi et al. [9] proposed an automated approach
based on formal concept analysis to fix the GOWS antipattern. Ouni et al.
[23,24] introduced a hybrid approach based on graph partitioning and search
based optimization to improve the design quality of web service interfaces to
reduce coupling and increase cohesion. Later, Wang et al. [33] have formulated
an interactive approach to find the optimal design of Web service and reduce
the number of antipatterns.
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4 Approach

In this section, we provide the problem formulation for Web service antipatterns
detection as a MLL problem. Then, we describe the details of our approach.

4.1 Problem Formulation

We define the Web services antipatterns detection problem as a multi-label
learning problem. Each antipattern type is denoted by a label li. A MLL prob-
lem can be formulated as follows. Let X = Rd denote the input feature space.
L = {l1, l2, ...lq} denote the finite set of q possible labels, i.e., antipattern types.
Given a multi-label training set D = {(x1, y1) , (x2, y2) , .....(xN , yN ) }(xi ∈
X, yi ⊆ L) , the goal of the multi-label learning system is to learn a function
h : X → 2L from D which predicts a set of labels for each unseen instance based
on a set of known data.

4.2 Approach Overview

The main goal of our approach is to generate a set of detection rules for each
antipattern type while taking into consideration the dependencies between the
different antipatterns and their interleaving symptoms. Figure 1 presents an
overview of our approach to generate service antipatterns detection rules using
the GP-ECC model. Our approach consists of two phases: training phase and
detection phase. In the training phase, our goal is to build an ensemble classifier
chain (ECC) model learned from real-world antipattern instances identified from
existing Web services based on several GP models for each individual antipat-
tern. In the detection phase, we apply this model to detect the proper set of labels
(i.e., antipattern type) for a new unlabeled data (i.e., a new Web service).
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training set

Training 
set

GP model 
for A1

Learn GP model
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Fig. 1. The Web service antipatterns detection framework using GP-ECC.
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Our approach takes as inputs a set of Web services with known labels, i.e.,
antipatterns (phase A). Then, extracts a set of features characterizing the con-
sidered antipattern types from which a GP algorithm will learn (phase B). Next,
an ECC algorithm will be built (phase C). The ECC algorithm consists of a set
of classifier chain models (CC), each with a random label order. Each CC model,
learns eight individual GP models for each of the eight considered antipattern
types. The ith binary GP detector will learn from the training data while consid-
ering the existing i already detected antipatterns by the i − 1 detected antipat-
terns to generate the optimal detection rule that can detect the current ith

antipattern. In total, the ECC trains n multi-label CC classifiers CC1, ..., CCn;
each classifier is given a random chain ordering; each CC builds 8 binary GP
models for each antipattern type. Each binary model uses the previously pre-
dicted binary labels into its feature space. Then, our framework searches for the
near optimal GP-ECC model from these n multi-label chain classifiers using an
ensemble majority voting schema based on each label confidence [28].

In the detection phase, the returned GP-ECC model is a machine learning
classifier that assigns multiple labels, i.e., antipattern types, to a new Web ser-
vice based on its current features, i.e., its symptoms (phase D). In the next
subsections, we provide the details of each phase.

4.3 Phase A : Training Data Collection

Our proposed technique leverages knowledge from a set of examples containing
real world instances of web service antipatterns. The base of examples contains
different web service antipatterns from different application domains (e.g., social
media, weather, online shopping, etc.), which were gathered from various Web
service online repositories and search engines, like ProgrammableWeb, and Ser-
viceXplorer, etc. To ensure the correctness of our dataset, the studied antipattern
instances were manually inspected and verified according to existing guidelines
from the literature [12,16,20,25]. Our dataset is publicly available [1].

4.4 Phase B : Features Extraction Module

The proposed techniques leverages a set of popular and widely used metrics
related to web services [20–22,25,27,32,34]. As shown in Table 2, our technique
develops its detection rules using suite of over 42 quality metrics including (i)
code level metrics, (ii) WSDL interface metrics, and (iii) measurements of per-
formance. Code metrics are calculating using service Java artefacts, being mined
using the JavaTM API for XML Web Services (JAX-WS)1 [8] as well as the
ckjm tool2 (Chidamber & Kemerer Java Metrics) [6]. WSDL metrics capture
any design properties of Web services, in the structure of the WSDL interface
level. Furthermore, a set of dynamic metrics is also captured, using web service
invocations, e.g., availability, and response time.

1 http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html.
2 http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/.

http://docs.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
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4.5 Phase C : Multi-label Learning Using GP-ECC

As outlined in the previous Sect. 4.2, our solution uses the ECC classifier [28]
to model the multi-label learning task into multiple single-label learning tasks.
Our multi-label ECC is a detection model for the identification of web service
antipatterns. Each classifier chain (CC) represents a GP model (binary decision
tree) for each smell type while considering the previously detected smells (if any),
i.e., each binary GP model uses the previously predicted binary labels into its
feature space. The motivation behind the choice of GP-based models is driven
by its efficiency in the resolution of similar software engineering problems such
as, design defects, and code smells identification [3,14,20,22].

In our approach, we adopted the Non-dominated Sorting Genetic Algorithm
(NSGA-II) [11] as a search algorithm to generate antipatterns detection rules.
NSGA-II is a powerful and widely-used evolutionary algorithm which extends
the generic model of GP learning to the space of programs. Unlike other evolu-
tionary search algorithms, in our NSGA-II adaptation, solutions are themselves
programs following a tree-like representation instead of fixed length linear string
formed from a limited alphabet of symbols [13]. More details about NSGA-II
can be found in Deb et al. [11].

We describe in the following subsections the three main adaptation steps: (i)
solution representation, (ii) the generation of the initial generation (iii) fitness
function, and (iv) change operators.

(i) Solution Representation. A solution consists of a rule that can detect
a specific type of anti-pattern in the form of:

IF (Combination of metrics and their thresholds) THEN antipattern type.

In MOGP, the solution representation is a tree-based structure of functions
and terminals. Terminals represent various structural, dynamic, and service ori-
ented metrics, extracted from Table 2. Functions are logic operators such as OR
(union), AND (intersection), or XOR (eXclusive OR). Thus, each solution is
encoded as a binary tree with leafnodes (terminals) correspond to one of metrics
described in Table 2 and their associated threshold values randomly generated.
Internal-nodes (functions) connect sub-tress and leaves using the operators set
C = {AND,OR,XOR}. Figure 2 is a simplified illustration of a given solution.

(ii) Generation of the Initial Population. The initial population of solu-
tions is generated randomly by assigning a variety of metrics and their thresholds
to the set of different nodes of the tree. The size of a solution, i.e., the tree’s
length, is randomly chosen between lower and upper bound values. These two
bounds have determined and called the problem of bloat control in GP, where
the goal is to identify the tree size limits. Thus, we applied several trial and
error experiments using the HyperVolume (HP) performance indicator [13] to
determine the upper bound after which, the sign remains invariant.

(iii) Fitness Function. The fitness function evaluates how good is a candi-
date solution in detecting web service antipatterns. Thus, to evaluate the fitness
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Table 2. List of Web service quality metrics used.

Metric Description Metric level

Service interface metrics

NPT Number of port types Port type

NOD Number of operations declared Port type

NCO Number of CRUD operations Port type

NOPT Average number of operations in port types Port type

NPO Average number of parameters in operations Operation

NCT Number of complex types Type

NAOD Number of accessor operations declared Port type

NCTP Number of complex type parameters Type

COUP Coupling Port type

COH Cohesion Port type

NOM Number of messages Message

NST Number of primitive types Type

ALOS Average length of operations signature Operation

ALPS Average length of port types signature Port type

ALMS Average length of message signature Message

RPT Ratio of primitive types over all defined types Type

RAOD Ratio of accessor operations declared Port type

ANIPO Average number of input parameters in operations Operation

ANOPO Average number of output parameters in operations Operation

NPM Average number of parts per message Message

AMTO Average number of meaningful terms in operation names Operation

AMTM Average number of meaningful terms in message names Message

AMTP Average number of meaningful terms in port type names Type

Service code metrics

WMC Weighted methods per class Class

DIT Depth of Inheritance Tree Class

NOC Number of Children Class

CBO Coupling between object classes Class

RFC Response for a Class Class

LCOM Lack of cohesion in methods Class

Ca Afferent couplings Class

Ce Efferent couplings Class

NPM Number of Public Methods Class

LCOM3 Lack of cohesion in methods Class

LOC Lines of Code Class

DAM Data Access Metric Class

MOA Measure of Aggregation Class

MFA Measure of Functional Abstraction Class

CAM Cohesion Among Methods of Class Class

AMC Average Method Complexity Method

CC The McCabe’s cyclomatic complexity Method

Service Performance Metrics

RT Response Time Method

AVL Availability Service
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OR

OR AND

COH<0,3 NPT>3 NCT>5 NST>8

Fig. 2. A simplified example of a solution for GOWS antipattern.

of each solution, we use two objective functions, based on two well-known met-
rics [14,20], to be optimized, i.e., precision and recall. The precision objective
function aims at maximizing the detection of correct antipatterns over the list of
detected ones. The recall objective function aims at maximizing the coverage of
expected antipatterns from the base of examples over the actual list of detected
instances. Precision and recall of a solution S are defined as follows.

Precision(S) =
|{Detected antipatterns} ∩ {Expected antipatterns}|

|{Detected antipatterns}| (1)

Recall(S) =
|{Detected antipatterns} ∩ {Expected antipatterns}|

|{Expected antipatterns}| (2)

(iv) Change Operators. Crossover and mutation are used as change oper-
ators to evolve candidate solutions towards optimality.

Crossover. We adopt the “standard” random, single-point crossover. It selects
two parent solutions at random, then picks a sub-tree on each one. Then, the
crossover operator swaps the nodes and their relative subtrees from one parent
to the other. Each child thus combines information from both parents.

Mutation. The mutation operator aims at slightly changing a solution, with-
out losing its main properties. It can be applied for both function or terminal
nodes. For a given solution to mutated, one or multiple nodes are randomly
selected, then changed according to their type. For functions, a logic operator
can be replaced with any randomly selected logic operator, while for terminals,
metrics may be swapped with another metric, or a metric threshold can be
changed.

ECC Majority Voting. As shown in Fig. 1, for each CC, MOGP will generate
an optimal rule for each type of web service antipattern, i.e., binary detection.
Then, ECC allows to find the best CC that provides the best MLL from all
the trained binary models. Each CCi model is likely to be unique and able to
achieve different multi-label classifications. These classifications are summed by
label so that each label receives a number of votes. A threshold is used to select
the most popular labels which form the final predicted multi-label set. This is a
generic voting scheme used in MLL transformation methods [28].

4.6 Phase D: Detection Phase

After constructing the GP-ECC model in the training phase, it will be then used
to detect a set of labels for a new Web service. It takes as input the set of features
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extracted from a given Web service using the feature extraction module. As
output, it returns the detection results for each individual label, i.e., antipattern.

5 Empirical Study

In this section, we describe our empirical study to evaluate our GP-ECC app-
roach. We report the research questions, the experimental setup, and results.

5.1 Research Questions

We designed our empirical study to answer the three following research questions.

– RQ1: (Performance) How accurately can our GP-ECC approach detect
Web service anipatterns?

– RQ2: (Sensitivity) What types of anipatterns does our GP-ECC approach
detect correctly?

– RQ3: (Features influence) What are the most influential features that can
indicate the presence of anipatterns?

5.2 Experimental Setup

We evaluate our approach on a benchmark of 815 Web services [1]. Table 3
summarizes the experimental dataset. Furthermore, as a sanity check, all
antipatterns were manually inspected and validated based on literature guide-
lines [12,30] as discussed in Sect. 4.3. Web services were collected from differ-
ent Web service search engines including eil.cs.txstate.edu/ServiceXplorer, pro-
grammableweb.com, biocatalogue.org, webservices.seekda.com, taverna.org.uk
and myexperiment.org. Furthermore, for better generalisability, our empirical
study, our collected Web services are drawn from 9 different application domains,
e.g., financial, science, search, shipping, etc.

We considered eight common types of Web service antipatterns, i.e., god
object Web service (GOWS), fine-grained Web service (FGWS), chatty Web ser-
vice (CWS), data Web service (DWS), ambiguous Web service (AWS), redundant
port types (RPT), CRUDy interface (CI), and Maybe It is Not RPC (MNR), (cf.
Sect. 2). In our experiments, we conducted a 10-fold cross-validation procedure
to split our data into training data and evaluation data.

To answer RQ1, we conduct experiments to justify our GP-ECC approach.

Baseline Learning Methods. We first compare the performance of our meta-
algorithm ECC. We used GP, decision tree (J48) and random forest (RF) as
corresponding basic classification algorithms. We also compared with the widely
used MLL algorithm adaptation method, K-Nearest Neighbors (ML.KNN).
Thus, in total, we have 4 MLL algorithms to be compared. One fold is used
for the test and 9 folds for the training.
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Table 3. The list of Web services used in our evaluation.

Category # of services # of antipatterns

Financial 185 115

Science 52 18

Search 75 33

Shipping 58 23

Travel 105 49

Weather 65 21

Media 82 19

Education 55 28

Messaging 63 43

Location 75 39

All 815 388

State-of-the-Art Detection Methods. Moreover, we compare the perfor-
mance of our approach with two state-of-the-art approaches, SODA-W [25] and
P-EA [20] for Web service antipattern detection. The SODA-W approach of
Palma et al. [25] manually translates antipattern symptoms into detection rules
and algorithms based on a literature review of Web service design. P-EA [20]
adopts parallel GP technique to detect Web service antipatterns based on a set
of Web service interface metrics. Both approaches detect antipattern types in an
independent manner.

To compare the performance of each method, we use common performance
metrics, i.e., precision, recall, and F-measure [14,20,28]. Let l a label in the
label set L. For each instance i in the antipatterns learning dataset, there are
four outcomes, True Positive (TPl) when i is detected as label l and it correctly
belongs to l; False Positive (FPl) when i is detected as label l and it actually
does not belong to l; False Negative (FNl) when i is not detected as label l when
it actually belongs to l; or True Negative (TNl) when i is not detected as label l
and it actually does not belong to l. Based on these possible outcomes, precision
(Pl), recall (Rl) and F-measure (Fl) for label l are defined as follows:

Pl =
TPl

TPl + FPl
; Rl =

TPl

TPl + FNl
; Fl =

2 × Pl × Rl

Pl + Rl

Then, the average precision, recall, and F-measure of the | L | labels are
calculated as follows:

Precision =
1

| L |
∑

l∈L

Pl ; Recall =
1

| L |
∑

l∈L

Rl ; F1 =
1

| L |
∑

l∈L

Fl

Statistical Test Methods. To compare the performance of each method, we
perform Wilcoxon pairwise comparisons [7] at 99% significance level (i.e., α =
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0.01) to compare GP-ECC with each of the 9 other methods. We also used the
non-parametric effect Cliff’s delta (d) [7] to compute the effect size. The effect
size d is interpreted as Negligible if | d |< 0.147, Small if 0.147 ≤| d |< 0.33,
Medium if 0.33 ≤| d |< 0.474, or High if | d |≥ 0.474.

To answer RQ2, we investigated the antipattern types that were detected to
find out whether there is a bias towards the detection of specific types.

To answer RQ3, we aim at identifying the features that are the most impor-
tant indicators of whether a Web service has a given antipattern or not. For each
antipattern type, we count the percentage of rules in which the feature appears
across all obtained optimal rules by GP. The more a feature appears in the set of
optimal trees, the more the feature is relevant to characterize that antipattern.

5.3 Results

Results for RQ1 (Performance). Table 4 reports the average precision, recall
and F-measure scores for the compared methods. We observe that we see that
ECC performs well with GP as a base method as compared to J48 and RF. We
used GP-ECC as the base for determining statistical significance. In particular,
the GP-ECC method achieves the highest F-measure with 0.91 compared to
the J48 and RF methods achieving an F-measure of 0l9 and 0.89, respectively,
with medium and large effect sizes. The same performance was achieved by
GP-ECC in terms of precision and recall, with 0.89 and 0.93, respectively. The
statistical analysis of the obtained results confirms thus the suitability of the
GP formulation compared to decision tree and random forest algorithms. We
can also see overall superiority for of the ECC and in particular the GP-ECC
compared to the transformation method ML.KNN in terms of precision, recall
and F-measure with large effect size. One of the reasons that ML.KNN does
not perform well is that it ignores the label correlation, while ECC consider the
label correlation by using an ensemble of classifiers. Moreover, among the 3 base
learning algorithms, GP performs the best, followed by J48 and RF.

Moreover, we observe from Table 4 that GP-ECC achieved a higher superi-
ority than both state-of-the-art approaches, P-EA and SODA-W. While P-EA
achieves promising results with an average F-measure of 83%, it is still less than
GP-ECC. Moreover, SODA-W achives an F-measure of 72% which lower than
other approaches. We conjecture that a key problem with P-EA and SODA-W
is that they detect separately possible antipatterns without looking at the rela-
tionship between them. Through a closer manual inspection of the false positive
and true negative instances by P-EA and SODA-W, we found a number of Web
services that are detected at the same time as god object Web services (GOWS)
and fine-grained Web services (FGWS) which would reduce the overall accuracy
as GOWS and FGWS cannot co-occur in the same Web service. Other missing
chatty Web service (CWS) instances were identified in Web services that are
detected as GOWS. Indeed, GP-ECC makes the hidden relationship between
antipatterns more explicit which has shown higher accuracy.
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Table 4. The achieved results by ECC with the base algorithms GP, J48, and RF;
ML.KNN; and existing approaches SODA-W and P-EA.

Approach Precision Recall F1

Score p-value (d)* Score p-value (d)* Score p-value (d)*

GP-ECC 0.89 - 0.93 - 0.91 -

J48-ECC 0.87 <0.01 (M) 0.9 <0.01 (M) 0.88 <0.01 (M)

RF-ECC 0.86 <0.01 (M) 0.89 <0.01 (M) 0.87 <0.01 (M)

ML.KNN 0.83 <0.01 (L) 0.84 <0.01 (L) 0.83 <0.01 (L)

P-EA 0.82 <0.01 (L) 0.85 <0.01 (L) 0.83 <0.01 (L)

SODA-W 0.7 <0.01 (L) 0.74 <0.01 (L) 0.72 <0.01 (L)

*p-value(d) reports the statistical difference (p-value) and effect-size (d)
between GP-ECC and the algorithm/approach in the current row.
The effect-size (d) is N : Negligible − S : Small − M : Medium − L : Large

Results for RQ2 (Sensitivity). Figure 3 reports the sensitivity analysis of
each specific antipattern type. We observe that GP-ECC does not have a bias
towards the detection of any specific antipattern type. As shown in the figure,
GP-ECC achieved good performance and low variability in terms of the median
F-measure, ranging from 87% to 93%, across the 8 considered antipattern types.
The highest F-measure was obtained for the god object (GOWS) and fine-
grained (FGWS) antipatterns (93%) which heavily relies on the notion of size.
This higher performance is reasonable since the existing guidelines [12,30] rely
heavily on the notion of size in terms of declared operations, port types, and
simple/complex data types used. But for antipatterns such as the ambiguous
Web service (AWS), the notion of size is less important, it rather relies an the
meaningfulness and length of operations and messages identifiers. This aspect
makes this type of antipatterns hard to detect using such information as it often
depends on human interpretations.

AWS CI CWS DWS FGWS GOWS MNR RPT

70

75

80

85

90

95

100

Fig. 3. F-measure achieved by GP-ECC for each antipattern across all categories.

Results for RQ3 (Features Influence). To better understand what features,
i.e., metrics, are most used by our GP-ECC model to generate detection rules
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among all the generated rules, we count the percentage of rules in which the
feature appears. Table 5 shows the statistics for each smell type with the top-10
features (cf. Table 2), from which the three most influencing features values are
in bold. We observe that the number of operations declared (NOD), the number
of messages (NOM), the number of simple and complex types (NST and NCT),
and the cohesion (COH) are the most influencing parameters. Other features
such as the number of input parameters in operations (NIPO) and the coupling
(COUP) are also influencing the existence of antipatterns. We also found that
some features such the average length of operation signatures (ALOS) are specific
to the ambiguous Web service (AWS) antipattern and do not participate to
characterize any of the other considered antipattern types.

Table 5. The most influential features for each antipattern.

GOWS FGWS CWS DWS AWS RPT CI MNR

NOD 98 100 91 86 52 96 93 83

NOM 92 90 100 92 55 91 89 93

COH 89 84 89 87 23 92 92 85

WMC 82 82 81 65 45 81 72 83

NIPO 79 75 89 84 92 61 93 98

NCT 81 85 91 93 41 54 86 91

NST 89 86 96 96 82 32 80 93

ALOS 34 32 41 18 100 9 39 23

COUP 76 69 93 82 71 52 89 100

LCOM 88 77 88 85 46 81 86 79

We thus observe that different interface service level measures play a crucial
role in the emergence of antipatterns, while those related to the source code are
less influencial. These findings suggest that more attention has to be paid to the
design of their service interface to avoid the presence of antipatterns and their
impact on the software quality. This finding aligns also with previous research
advocating the importance of service interface design [4,12,18,24,26,33]

6 Threats to Validity

Threats to construct validity could be related to the performance measures.
We basically used standard performance metrics such as precision, recall and
F-measure that are widely accepted in MLL and software engineering [20,25].
Another potential threat could be related to the selection of learning techniques.
Although we use the GP, J48 and RF which are known to have high performance,
we plan to compare with other ML techniques in our future work.
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Threats to internal validity relate to errors in our experiments. Our approach
relies on the used metrics to characterize antipatterns. We mitigated this issues
by using popular and well-accepted metrics and tools to neasure our metrics.

Threats to external validity relate to the generalizability of our results. Our
approach relies on learning from existing services, and so, their diversity is crit-
ical for our learning process. We mitigated this threat by choosing independent
services, issued from different providers, and they were also developed in mul-
tiple application domains. Also, our training set was manually validated, how-
ever, such human activity is prone to error sand personal bias. The reduction of
such bias can be achieved by following existing literature gidelines [12,16] ran-
domly choosing a statistically significant sample that is reclassified by the three
authors. Then, the kappa agreement is calculated and its corresponding score is
0.83, which is considered a high score for inter-rater agreement [7].

7 Conclusion and Future Work

Web service antipatterns are symptoms of potential problems threatening the
longevity of services. Although such antipatterns can facilitate the coding the
quick delivery of services, their long-term impact hinders the maintainability and
evolvability of services. This paper developed a novel technique, leveraging an
existing set of manually verified antipatterns, to develop a metric-based detection
rules using ensemble classifier chain. We transform multi-label problems into
several single-label problems that are solved using the genetic programming.
Our experiments show the effectiveness of our detection strategy by achieving
an F-Measure of 93%, when analyzing a large set of 815 web services.

As part of our future investigations, we plan on extending the set of metrics
we used as well as other RESTFul Web services, in order to explore potential
features, which may further improve the accuracy of our detection strategy.
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Abstract. E-Government services are persistent targets of the orga-
nized crime by hackers, which hinders the delivery of services. Compu-
tational trust is an important technique for the security work of service
providers (SPs). However, it relies on data collection about users’ past
behaviors conventionally from other SPs, which incurs the uncertainty of
data and thus impacts the quality of data. Motivated by this issue, this
paper proposes a novel smart contract based user-centric computational
trust framework (UCCT) which collects the behavioral data of the user.
It uses smart contract as a rational trustworthy agent to automatically
monitor and manage the user’s behaviors on the user side, so as to pro-
vide deterministic data quality assurance services for the computational
trust. Furthermore, a privacy-preserving way of the data sharing is pro-
vided for the user and a personalized security mechanism for the SP.
A new ledger is also introduced to provide a user-centric and efficient
search. The results of experiments conducted on a Hyperledger Fabric
based blockchain platform demonstrate that the time cost of user-centric
ledger in UCCT can be less than 1 s. Moreover, even if a more compli-
cated contract is provided, the improvement of transaction per second
(TPS), which is made by UCCT, is not less than 8%.

Keywords: Computational trust · Data quality · Smart contract

1 Introduction

Domestic experiences show that the e-governance services are persistently tar-
geted by hackers and organized crimes, which hinders the delivery of services
and impact the confidentiality, integrity, and availability of information [1]. Ser-
vices and users maintain a fragile trust relationship because of uncertainty and
suspicion [2]. Computational trust is an appealing technique that provides a
dynamic and measurable value to ensure flexible and controllable security in
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e-Government services. To do that, it needs to collect past behaviors about the
specific user from the other services. How to get a high quality behavioral data on
e-Government ecosystem, however, is still challenging. Besides, little information
is available on how internet-based data collection can be accomplished.

Computational trust in e-Government ecosystem does not have a central-
ized party that records users’ past behaviors. The SP needs to communicate
with other SPs whom the user has visited to collect the user’s past behavioral
data. Alexopoulos et al. [4] pointed out that the issues of trust, information
responsibility, and consensus among nodes hindered the data collection process
and brought uncertainty to the data quality. For example, Aguirre and Alonso
attempted to share security alarms among different domains to enhance the
global security [5] and Vasilomanolakis et al. transformed the data collection
of intrusion detection into data sharing between different intrusion detection
systems [6]. The trustworthiness between different nodes reduces confidence in
data sharing [5,6]. Researches in [8,9,11,14] tried to collect data from the other
services to correct the trust evaluation results. Yu et al. pointed out that the
subjectivity [7] of the other services could not be ignored, especially when the
other services are not interested in or may intentionally provide profitable infor-
mation to maximize their own gain. More importantly, the collection of users’
past behaviors conflicts with users’ privacy protection demands. Atote et al. [10]
pointed out some challenges in privacy protection of user information such as
the sale of personal privacy data.

To address the above issues, this paper proposes UCCT, a new approach
for the reliable computational trust towards the decentralized network. It uses
a contract-based method to solve the problem of data quality uncertainty and
privacy leaking. Users can deploy a smart contract to rationally supervise and
manage their own interaction information, and control the data sharing in a
privacy preserving way. Besides, the contract-based method provides a flexible
and personalized security between the SP and the user.

The contributions of this paper are three-fold:

1. A smart contract based framework is proposed to supervise and manage users’
past behaviors, which provides a high quality data and a privacy-preserving
data sharing.

2. A user-centric ledger is proposed to provide an efficient search.
3. Experiments based on the blockchain platform are conducted to evaluate the

reliability and the performance of UCCT.

The remainder of this paper is organized as follows: Section 2 reviews related
work. Section 3 formulates the data quality uncertainty problem. Section 4 pro-
poses the UCCT framework for data management and addresses the accompany-
ing threat of data fraud resulting from local storage of behavior data. Section 5
demonstrates the experimental results. Section 6 concludes the paper.
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2 Related Work

2.1 Trust Agent

It is common to build a trustworthy environment among people or machines.
Jøsang [15] pointed out that instead of establishing a trust relationship between
two perceptual entities, it was better to make a rational agent who acted as a
proxy for perceptual entities to participate in the establishment of trust so that
they would act only in accordance with rules and instructions. That means, only
trust those users who have security agents [16]. Aberer et al. also stated that
agents that store and process trust-related data could not be unconditionally
trusted, and their malicious behaviors also need to be considered [3]. Hammadi
et al. [20] introduced service-independent agents, which functioned as a third
party, to perform trust evaluation that raised the single point failure [7].

2.2 Data Quality

Users’ interaction data are distributed over different services, and it is difficult
to collect the data of specified objects in an unreliable, decentralized network
which greatly affected the data quality of computational trust. Aberer et al. [3]
summarized three major factors that could affect the reliability of trust calcula-
tion results: the reliability of network, the trustworthiness of the other services
that provide opinion, and the subjective uncertainty of the other services. Even
so, Teacy et al. [8] proved that comprehensive direct and indirect interaction
information are important to improve the quality of data and enhance the relia-
bility of computational trust. For example, almost all of the trust studies, such as
PET [11], TRAVOS [8], FIRE [9], Zhang-Cohen [12], ARICA [13], Dossier [14],
integrated the indirect information for trust evaluation. The reliability of those
indirect information, however, was uncertain. Besides, it is usually hard to get
the indirect information. Furthermore, little information is available on how
internet-based data collection can be accomplished.

2.3 Smart Contract

Contract is an important way of delivering service. Ruohomaa and Kutvonen
pointed out that the explicit expression of implicit expectations through con-
tracts can encourage more trust and reduce uncertainty [17]. However, the con-
tract is usually closely connected with business. For example, Schnjakin et al. [18]
presented the service and business in contract, giving users a clear service con-
tent. Due to the technical difficulty and business connection issues, the appli-
cation of contract is challenging. The Smart Contract was first to the pub-
lic at the presence of the blockchain platform named Ethereum [19], and it is
widely adopted by many well-known blockchain platforms, such as the Hyper-
ledger Fabric [21], to perform transactions. Smart contracts in blockchain can
be enforced and the transactions can be traced, which provide a reliable decen-
tralized environment. Many works have utilized the blockchain and the smart
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contract technology to solve their current security problems. For example, Chen
et al. [22] deployed a cost-effective payment collection supervision system based
on blockchain technology. With the use of smart contracts combined with the
food industry standards, Tao et al. [23] performed an automatic food quality
detection and warning of substandard food in the entire industrial chain. Yong
et al. [24] addressed the problems of vaccine expiration and vaccine record fraud
through the blockchain and the smart contract technology.

Our approach, named UCCT, uses the smart contract as a trustworthy ratio-
nal agent to execute compiled, business independent computer code, monitor and
manage user’s past behavior data in a privacy-preserving way and provide high-
quality data services for the computational trust. The contract takes the SP’s
trust model as an input and feeds back with evaluation results. Hence, the SP
can flexibly adjust its model or parameters and build up a personalized security
mechanism.

3 Problem Formulation

This section analyzes the problem studied in this research. Given a user, one
SP needs to select a number of services from the neighbor nodes or the similar
services to collect the past behavior data for the trust evaluation procedure since
it does not know which services the user has accessed. It is difficult to gather
all those data accurately. Due to the poor data quality, the computation trust
cannot provide a reliable trust value.

Throughout the paper, the notations are listed as Table 1.

Table 1. Notations

Notation Description

S The service that can be provided to the user

C The user that uses the service

SPe The SP that starts a trust evaluation about a C

SPo The SP that excludes the SPe

Dc The past behavior data collected about C

Dc
i The past behavior data collected from service i about C

fact:SPe& C Direct information between SPe and C

fact:SPo& C Direct information between SPo and C

opin:SPo& C Indirect information between SPo and C

As shown in Fig. 1, the evaluator SP (SPe) needs two types of data from the
given user (C, the assessed): the direct information (past behavior data between
C and SPe, denoted as fact:SPe&C) and the indirect information (past behavior
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Fig. 1. Data sources of the trustworthiness calculation procedure

data between C and the other SPs (SPo, those that C has been accessed exclude
the SPe). The SPo, most of the time, can only provide the opinion on C, denoted
it as opin:SPo&C).

Assume that C has accessed n services, then the data D about C can be
denoted as Dc = {Dc

i |i ∈ [1, n]}.
As illustrated in Eq. (1), SPe tries to get the best high-quality data about the

given C from the network. The ideal situation is that all these services provide
the direct information.

arg max P (the data quality of C) = P

(
n⋂

i=1

(Dc
i = fact : Si&C)

)

=
n∏

i=1

P (Dc
i = fact : Si&C)

(1)

But there are many factors affecting the data quality in a decentralized network.
We define the three influencing factors mentioned in [3,4] as: N-network condi-
tions, T-the credibility of the SPo, and Q-the quality of the data provided by
the SPo. Then the key lies in how to improve the reliability of data quality and
reduce the impact of N, T, and Q. For the convenience of analysis, we assume
that N has only two status: reachable and unreachable. T is defined as provid-
ing data in a cooperative and non-cooperative way. Q is defined as providing
the interaction record with C or other data opinions of non-client interaction
records.

Assumption 1. The network condition is reliable, that is, it will not affect SPe

to collect the data. However, the T status of SPo and C is not confirmed, but
if they get to cooperate, they will provide the data information about C’s direct
interaction behavior data.

Then we can derive an Eq. (2).

P (Dc
i = fact : Si&C) = P (Ti = cooperative) (2)
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Assumption 2. Both the network situation and the status of the other services
SPo are uncertain, but it can still be guaranteed that the direct information of C
will be provided in the case of SPo’s cooperation.

It is noted that the network situation is independent of whether SPo cooperates
or not. Then further, we get the Eq. (3).

P (Dc
i = fact : Si&C) = P (Ni = reachable) · P (Ti = cooperative) (3)

Assumption 3. The network situation is uncertain, nor is the status of the
other services SPo, nor is there any guarantee that SPo will provide information
about C’s direct interaction behavior even in case of SPo’s cooperation.

Similarly, we get the Eq. (4).

P (Dc
i = fact : Si&C) = P (Ni = reachable) · P (Ti = cooperative)

· P (Qi = fact)
(4)

Combined with the Eq. (1) and (4), we will obtain the traditional method for
data collecting on computational trust, which can be expressed as:

P (the data quality of C) =
n∏

i=1

[P (Ni = reachable)·

P (Ti = cooperative) · P (Qi = fact)]

(5)

From the perspective of SP, the data quality is difficult to guarantee when
there are multiple influencing factors and nodes involved. It can be noted that the
Eq. (5) is an exponential function on nodes under the conditions of determined
T, N, and Q factors. As the number of nodes increases, the probability of SPe

obtain a high-quality data of C drops down sharply. If the number of nodes is
determined, it is a power function about probability. That is, the better network,
the more cooperative and honest the SPo, and the higher the data quality.
However, the number of services accessed by users in Web Services is usually
relatively large, which means that it might be difficult to ensure high data quality
through this power function. From the perspective of the exponential function,
we can obtain higher data quality only by reducing the number of participating
nodes (the limit is 1). So, can we benefit from high data quality by reducing the
number of participating nodes?

From the perspective of the C, it has all the behavior data that the SP needs.
Hence, the Eq. (5) can be transformed into Eq. (6) and can quickly achieve a high
probability of data quality if we can ensure that the C is honest and provides an
accurate description about itself.

P (the data quality of C) = P (Qc = fact) (6)

In that case, the influencing factors are constrained to C only, including the net-
work between SPe and C, the credibility of C, and the preservation of interaction
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history on C. Firstly, if the network between SPe and C is poor, which means
that SPe cannot provide services to C, the computational trust of C is mean-
ingless. Secondly, for C’s credibility, this is the goal of SPe for collecting data of
C. As a such, we only need to consider one factor, namely, how to promise the
quality of data preserved on C. In other words, the problem of SPe collecting a
high-quality behavior data about C from the network is transformed into how
C manages its data rationally and shares the data under privacy protection.
Therefore, we need to design a good way for C to manage its data correctly and
share its data securely in a decentralized environment.

4 User-Centric Based Computation Trust Framework

In this paper, we propose the smart contract based User-Centric Computation
Trust framework (UCCT). As shown in Fig. 2, it uses the smart contract as
a rational trustworthy agent to automatically monitor and manage the user’s
behaviors on the user side to provide deterministic data quality assurance ser-
vices for the computational trust. Meanwhile, a different anti-fraud ledger is
provided to avoid the data fraud. Besides, a personal module is provided for the
SPs to publish its trust models or security policies here, and a trust certification
(TC) profile is created for each user to organize the behavior data.

Fig. 2. UCCT framework

4.1 Trust Certification Profile

The accuracy of the past behavior data provided by the user can effectively
reduce the uncertainty of data quality in computational trust. For the manage-
ment of behavior data and unified data understanding, a behavior-management
structure is needed. This article assigns a trust certification (TC) file for each
user and the TC is automatically maintained and updated by the smart contract
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Fig. 3. TC structure for the user’s past behavior data presented by XML schema

service. The TC structure shown in Fig. 3 includes a unique ID (idvalue), the
total amount of interaction (totalcount), the number of good records (benign-
count), the number of misbehavior records (misbehaviorcount), and the interac-
tion sequence that including the interaction index (index), and the evaluation
result (judgement). All those misbehaviors construct a Merkle tree which leads
to a hash value (hashcodevalue) of this TC by a hash function, such as sha256.
The signature (signature) is a security protection technique of cryptography.

The behaviors of the user are recorded in the TC file, and the disclosure of
this file will cause harm to the user’ privacy. For the consideration of the content
security of the TC file and the limited storage on the blockchain, the TC file
is stored locally on the user’s disk and its data can only be operated after the
smart contract is authorized by the user.

The sequence of behavior is quite important. Since older behaviors may lose
influence quickly, majority of the outstanding trust models, taking [9,14] as
examples, use the recency of the behaviors as a time weight function to give
recent behaviors more weights than older ones. With the TC, A SP can easily
learn much information on past behaviors about the user.

4.2 Smart Contract Based Data Management

Smart Contract based Data Management (SCDM) is responsible for the inter-
action recording on the user’s side and sharing data in a privacy protection
way for the SP and the user. All these works are done by managing the TC
profile. Firstly, the data need to be updated into TC correctly and efficiently.
Secondly, the validity of this TC profile needs to be checked before trust evalu-
ation, including efficiency and correctness. Thirdly, the TC profile needs to be
renewed simultaneously when the user is accessing multiple services at the same
time.

To solve it, a two-level smart contract model is proposed for service. It
includes a root smart contract (RSC) and a service-related smart contract
(SRSC) management (SRSCM) module. The RSC is a critical part that is
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responsible for setting security policies, such as the privileges. It contains a
TC management (TCM) module and a privacy-preserving based data sharing
(DS) module which is responsible for TC updating and data sharing in a privacy
preserving way respectively. The SRSC monitors interactions between this user
and service, and the SRSCM manages all those SRSC, including SRSC creating
and revoking.

When the user tries to access the SP, the following working flow is presented
as a Smart contract based Trust Evaluation Protocol (STEP) in Fig. 4.

Fig. 4. UCCT procedure

1. The service starts a RSC contract.
2. The RSC’s TCM reads and verifies the user’s TC signature.
3. Anti-fraud checks to find out if there is a TC fraud.
4. The RSC’s DS computes the trust value of this user by using the TC and

the trust model in a privacy-preserving way.
5. The RSC sends this trust value back to the service.
6. The SRSCM uses this value to match a security level and to get an appro-

priate policy.
7. A SRSC is created by SRSCM to supervise the interactions between this

user and SP under the previous policy.
8. The SRSC monitors interactions.
9. The monitor result is sent to RSC.

10. RSC receives result and find out if it is a misbehavior.
11. The misbehavior record is reported to the ledger first.
12. The ledger inserts this record into this user’s data block.
13. RSC updates the TC.
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The anti-fraud procedure is described in next subsection. The privacy pre-
serving based data sharing is mainly realized by a smart contract. It takes the
SP’s trust model as an input and executes the computation on the user’s side
and feeds back the result to the SP. The SP does not get anything except the
result.

4.3 Anti-fraud Ledger

The TC file, stores the user’s behaviors on the user’s side and gives the SP a
full view of this user, can be accessed and manipulated easily. For example, at
the time of t1, the user behaves nicely and its credibility is high. Denote the TC
at this time as TC1 and suppose that this user keeps a copy of this TC1. At
the time of t2, assume that, this user has performed some misbehaviors, and the
trust value is significantly dropped down. Denote the TC at this time as TC2.
Then, in order to continue to maintain a good credibility, the user could use the
old legitimate TC1 to deceive the SP. We call it TC fraud and it can happen
because the users can gain more resources or authority than they should have.

There would be two cases of TC fraud: 1) the user replaces the TC1 with
TC2; 2) the user copies the TC1 to a new machine to get a better service. Due to
the advantages of blockchain ledger, it can properly fitted in to fix the problem.
However, the current blockchain ledger is a chronological ledger, which means
that transactions of all users are grouped in blocks in a chronological order and
is time-consuming to get the data of a user. To solve this, a Decentralized black
trust ledger (Debt) is brought in with user-centric feature in the chronological
ledger. As illustrated in Fig. 5, it contains a Roster Router (RR) and several Ros-
ter Page Trees (RPT). Each RPT contains multiple Roster Page Nodes (RPN)
which stands for different misbehavior users.

Fig. 5. Debt structure
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The main step of anti-fraud check procedure is as follows:

1. The RR is a hash map which is used to locate a subledger-RPT.
2. The RPT is a red-black tree which gives an efficient search operation that is

used to find out the position of the user’s personal block-RPN.
3. A RootHash value is read from this RPN and compared with the hashcodevalue

in TC to find out if they match.

All those operations mentioned above use the user’s TC id as the key. The final
goal is trying to get the RootHash value in RPN. As illustrated in the RPN
structure in Fig. 6, the user’s past misbehaviors are constructed in a Merkle tree
and lead to a RootHash value stored in RPN head. Any new coming misbehavior
will cause the change of RootHash value in the RPN head.

Fig. 6. RPN structure and Updating with a misbehavior record

4.4 Personal Module

Trust definition and trust model related thresholds are different among SPs.
To provide a flexible security, SPs may define its own trust model or the other
models here and set up with a changeable thresholds so as to adjust their security
levels through users’ trust performance. Besides, the management policies are
also published here as the reference for the evaluation basis.

5 Performance Evaluation

This section experimentally evaluates UCCT through comparison with three
different approaches from the viewpoint of cost performance.

5.1 Experiment Setup

Baseline. We build up a simple e-governance service by using GoAhead [25]
and a Hyperledger fabric (HF) based platform. The deployment information of
those two services is listed in Table 2. We define that the index.html contains
two GET services: /edemo/type/get and /edemo/get/list. The first one requires
a valid parameter id and should not be accessed frequently by the same user,
and the second one must be accessed under authorization.
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Table 2. Network deployment

Service Deployment

Hyperledger Fabric (HF) 8 peers (192.168.0.11-18)

3 order nodes (192.168.0.19-21)

3 zookeepers (192.168.0.22-24)

4 kafka (192.168.0.25-28)

E-governance Service Deployed on 192.168.0.10

/edemo/index.html, /edemo/type/select, /edemo/get/list

Comparing Approaches. The Debt and the SCDM are the most important
parts in UCCT. We have implemented UCCT with a SCDM contract and a Debt
ledger. For comparison, we have implemented three approaches:

– WS: the e-governance service as the baseline with no blockchain.
– WS(HF): the WS with the origial Hyperledger fabric platform and a simple

transaction contract named chaincode example02 [26].
– WS(HF-UCCT): the WS(HF) with a self defined SCDM contract named

chaincode rsc, which contains the procedure (1–5 and 11–14) described in
Sect. 4.2 and the ledger replaced with Debt.

Evaluation Metric. We try to find out how much the UCCT would hinder
the interaction separately and how much the UCCT would help with the misbe-
havior’s detection. Three metrics are used: cost, transaction per second (TPS),
and misbehavior detection efficiency (MDE).

Three series of experiments are designed. The first one focuses on the cost of
insert and search operation in Debt with a batch number from 100 to 10,000,000.
The second one focuses on cost and TPS, and tries to learn how much overhead
the UCCT introduces to the service. The third one tries to find out the response
speed to misbehaviors. We simulate a series of user behaviors and use the trust
model defined in [9] to compute the trust value. Moreover, this value is used
to setup the security level as shown in Table 3. At the initial state, a user
has already executed 1,500 interactions with 30 misbehaviors. Then this user
intentionally executes 20 misbehaviors to harm the SP through /edemo/type/get
service with an illegal parameter value. The MDE compares and shows how fast
those approaches could stop misbehaviors. With a bigger MDE, the service would
detect the malicious user and end this interaction earlier.

Table 3 presents the corresponding settings. Each experiment is executed
for 10 times and the results are averaged. All experiments are implemented in
Go 1.13 and conducted on the same machine condition with Intel(R) Xeon(R)
Bronze 3104 CPU @ 1.70 GHz and 64 GB memory, running Centos7 ×64.
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Table 3. Experiment Settings

Metric Target Test method

Experiment series Cost Debt Batch size from 100 to 10,000,000

TPS WS 1 to 200 parallel service requests

WS(HF)

WS(HF-UCCT)

MDE WS Static security policy

WS(HF-UCCT)-α Deny service if trust ≤ 60

WS(HF-UCCT)-β Deny service if trust ≤ 40

5.2 Results and Analysis

We introduce the UCCT to provide a reliable data collection method. There
are two aspects of reliability. Firstly, Data Quality Guarantee. Collaboration
data sharing between nodes is difficult. The UCCT provides a user-centric based
data management through a rational smart contract service. Secondly, Privacy
Protection. In this paper, the data are managed by the users themselves and
shared without any raw data leaking. This makes sure that the behavior data
are protected and accessed under authorization.

Fig. 7. Debt performance on search and insert operation

Figure 7 shows the overhead of Debt on insert and search operations. Both
of them are tested through batch parameters. As demonstrated, when the batch
size is within 500,000, the time cost is less than 1 s. When it increases to 1
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million, the time cost is between 2.2 s to 2.4 s. This result gives us a hint on how
to set up the partition size of RR and the RPT sizes. The RPT size equals the
RPN number that it has, and if its maximum value is below 500,000, we can get
a high performance on ledger operation.

Experiment 2 compares the impact of smart contract which would hinder
the use of the framework. Figure 8 (a) gives a description of the average cost
of concurrent request and it is obvious that the smart contract based service
can cause performance degradation. To ease up this degradation, we set up an
evaluation cycle in practical application so that it would hinder the interaction
only at the beginning of several interactions. Figure 8 (b) shows the compar-
ison of TPS between WS(HF) and WS(HF-UCCT), and we still make a TPS
improvement by 8%–10% under a more complicated contract in Fig. 4.

Fig. 8. UCCT overhead and TPS comparison

Figure 9 shows the results of experiment 3. By using a real trust model
defined in FIRE [9] and setting a connection between this value and security
level. The UCCT is capable of intercepting abnormal interactions flexibly. When
a user tried to access /edemo/type/select or /edemo/get/list in a wrong way for
many times. The WS is certainly capable of finding some of it by consuming
its resources, while it may run out of service. The UCCT, however, evaluate the
past behaviors and adjust the privilege dynamically, and is capable of protecting
itself. As shown in Fig. 9 (a), the WS(HF-UCCT)-α with a higher security level,
compared with the WS(HF-UCCT)-β, is capable of intercepting more misbe-
haviors. The WS, however, needs to process all those requests. In Fig. 9 (b), the
WS(HF-UCCT)-α intercepts 80% of the misbehaviors and the WS(HF-UCCT)-
β intercepts only 45%. That means, the SP can adjust those security parameters
flexibly to meet their own security demands.
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Fig. 9. Continuous misbehavior requests and MDE performance

6 Conclusion and Future Work

The data collection is fundamental to the computational trust. We propose the
UCCT to provide SP with high-quality behavioral data of users and flexible
and personalized security mechanism, and provide users with privacy protection
based data sharing. The blockchain and smart contract technology, have no
doubt, will significantly influence the way of dealing with trust related issues.
Despite these benefits, the overhead is inevitable and the data management
method based on blockchain requires delicate design. In addition, the ledger
may need appropriate modifications to fit in the application. The ledger designed
in this paper provides the capability of high-performance on insert and search
operations. Even though, more work needs to be focused to provide a more
reliable and efficient service. We plan to improve two parts of work, the smart
contract based service performance and the Debt, which will provide a more
efficient contract-based service and a more reliable user-centric ledger.
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Abstract. Twitter is a popular social networking platform that is widely used in
discussing and spreading information on global events. Twitter trending hashtags
have been one of the topics for researcher to study and analyze. Understanding
the posting behavior patterns as the information flows increase by rapid events
can help in predicting future events or detection manipulation. In this paper, we
investigate similar-context trending hashtags to characterize general behavior of
specific-trend and generic-trend within same context. We demonstrate an analysis
to study and compare such trends based on spatial, temporal, content, and user
activity. We found that the characteristics of similar-context trends can be used
to predict future generic trends with analogous spatiotemporal, content, and user
features. Our results show that more than 70% users participate in location-based
hashtag belongs to the location of the hashtag. Generic trends aim to have more
influence in users to participate than specific trends with geographical context.
The retweet ratio in specific trends is higher than generic trends with more than
79%.

Keywords: Trend · Twitter · Spatiotemporal · Frequency · Context

1 Introduction

The popularity use of social networks services such as Facebook and Twitter by millions
of users promote wealth of data. Social networks services, especially Twitter, have been
a hub for many global events [1]. Understanding the posting behavior of participants of
such networks can help in predicting pattern for future decisions. The use of hashtags has
been known in socialmedia arguments and exchange of thoughts in popular events.Hash-
tags are referred and constructed with only one specific word that starts with # symbol
within the tweet [2]. Thewealth of data of suchhashtags has promoted studies fromdiffer-
ent domains to relate the impact of social media on real-life situation. Grover et al. inves-
tigated the social media discussions impact on voting behavior during election [3], and
Gunaratne et al. studied temporal trends based on pro and anti vaccination discourse on
Twitter [4]. Therefore, hashtags have been a target for adversaries attacks to manipulate
its content by flooding it with unrelated content for hidden agenda [5, 6].

In Twitter, users can read or participate in popular hashtags (known as trends) during
their evolving in time [7]. Such data can be used to display lists of recommendations.
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For example, the followers that a user follows are used by Twitter to recommend another
list of followers based on his preferences [8]. Also, based on the user’s location a list
of popular hashtags within the preferred location is presented in trending list (user can
change the location preference) [9]. However, an active trending hashtag can exceed
the location of its people, if it has worldwide users participants or remained active in
posting for hours or days. Such hashtag can be trending in worldwide list, as it evolves
and remains active for certain time regardless of users’ locations. Thus, it is important
to study hashtag’s features that can be a key start to explore users opinion, identify
communities and influence, as well as to predict future outcome or detect adversaries’
attacks.

One of the perspectives to study hashtags is to study themwithin a context. A similar-
context hashtag can refer to specific topic or domain that the main keywords are linked
somehow to each others [10]. For example, if we have a hashtags that discusses a topic
directly or indirectly; such as #climate or #climatechange or #Globalwarming then, we
can consider them all as similar-context hashtags as they address climate topic or domain.
Therefore, a context trends refers to hashtags that are linked somehow as cause and effect
perspective. For example: #bushfire is an effect of #climatechange and both are under
the category of #climate.

Most of studies focus on content context from sentiment perspective [11–15]. Yaqub
et al. analyzed Twitter content based on political context of 2016 US presidential elec-
tions to evaluate how the content represents public opinion accurately [14].Another study
presents information retrieval techniques models to identify key terms and context in
Twitter [13]. Henry et al. proposed a data filter model for hashtags based on the context
[16].

Main factors of Similar-context Hashtags 

Frequency  Location  Topic Users 

Fig. 1. Main factors of similar-context trending hashtags.

Understanding the spatiotemporal features of trending hashtags is essential to explore
different behavior patterns of different trending events. As people interests are unlike,
hashtags vary in their dynamics and context. Therefore, the main goal of this study is to
investigate and discover part of spatial, temporal, content and user features in similar-
context trends. We attempt to find how similar-context hashtags can support each other’s
or interact. We pose the following research questions:

RQ1: What is the spatiotemporal behavior of similar-context trending hashtags?
RQ2: In case of location-based hashtags event, how often is participants belong to

same location?
RQ3: What is the condition and ratio of tweets/retweet in similar-contexts hashtags?
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RQ4: In similar-context trending hashtags, how often they share the same users?

In summary, our findings indicate that spawning trending hashtags that are specific-
trends induce generic trends. We found that more general trends attract more users from
location of specific trends hashtags with similar-context with estimation of more than
%70.Generic trends aim to havemore influence in users to participate than specific trends
with geographical context. We find specific-trends have more retweet than tweets, with
more than 79%. The major contributions of this work are as follows:

– Conducted context-based study for similar trends according to selected criteria that
help to better understanding of trending hashtags

– Studied growth of trends across time and location
– Characterize main factors that affect trending hashtags (Fig. 1): frequency, location,
topic, and user activity.

The rest of the paper is organized as follows. Section 2 surveys the related work
in the literature. Background and collection of data is presented in Sect. 3. Section 4
demonstrates our analysis of similar-context trending hashtags. Discussion of the results
is in Sect. 5. Section 6 presents conclusion and future work.

2 Related Work

Studyingdifferentpropertiesof socialnetworkssuchasusers interactionsand information
diffusion have been proposed in literature from the beginning of social networks. Many
researches have discussed different aspects of Twitter’s hashtags (Fig. 2).Guille et al. sur-
veyed main study areas in the literature for information diffusion in Online Social Net-
works (OSNs) to threeareas: todetect interesting topics,modeldiffusionprocessand iden-
tify influencers users [17]. Modeling OSNs information diffusion process can be either
predictive modeling or explanatory modeling. In predictive modeling, the objective is to
learn how the network graph has unfold by learning past diffusion traces of the network
through temporal and spatial features. In explanatorymodeling, the goal is to identify the
complete cascade sequence to retrace the path of information diffusion. Therefore, diffu-
sionmodeling is helpful to understand information propagation in online social networks.
Huang et al. proposed a predictive model framework using Deep-Neural-Network [18].
Their model aims to overcome the challenges of dynamicity and impact factors as hash-
tags change over time. Their solution is based on embedding dynamic and static factors
and using a cumulative popularity value as a trigger.

Similarly, studies aimed to predict popularity of hashtags [19–21]. Xu et al. proposed
a predictive model that is based on temporal analysis to estimate peak time and volume
of bursting hashtags [19]. They found that tightness of diffusion network has a role
in peak popularity of bursting hashtags. Some studies used differential equations in
predicting information diffusion in social network [22, 23]. Davoudi et al. used linear
ordinary differential equations (ODEs) to study temporal patterns as dynamic carrying
capacity in order to predict influenced users [22]. Wang et al. used diffusive logistic
(DL) equation to model temporal and spatial information diffusion [23]. Their model
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predicts the density of influence users on the early phase of information diffusion. The
model achieved 92.08% accuracy in the first 6 h.

Fig. 2. Studying Hashtags in OSNs.

There are several studies to uderstand the temporal dynamics of information diffusion
based on user influence in Twitter [22–25]. In a recent study, Stai et al. proposed an
epidemic model for information spread in Twitter to model temporal behavior of a
hashtag propagation [24]. The evaluation result of their model shows a constant infection
rates for hashtags that belong to general topics or event-specific topics that have global
impact for long duration of use. In general, they found that the type of hashtag has a role
of the infection rate to increase or decrease over time.

Furthermore, another studies discuss the classification of trending topics in Twitter
[26–30]. A recent study proposed a framework model called TORHID (Topic Relevant
Hashtag Identification) that retrieves and identifies hashtags that are related to a specific
topic in Twitter [26]. Their model starts with small tweets of a hashtag to work as seeds,
then uses Support Vector Machine to classify new tweets as relevant or not. Their model
achieved 67.25% accuracy. An analysis study for trending topics for the year of 2018
is proposed by [27]. They built their analysis on six criteria: lexical analysis, time to
reach, trend reoccurrence, trending time, tweets count, and language analysis. Based
on their studied dataset, they found that more than 17% of trending topics ranked for
less than 10 min and more than 50% of studied trends couldn’t hold for more than an
hour. Lee et al. proposed a model to classify trending topics in Twitter into 18 categories
such as sport, politics, etc. [28]. They used bag-of-words approach and network-based
classification to build their model. Their model was able to classify trends with 65% and
70% accuracy. Another study proposed a model to classify trends into positive, negative,
and neutral based on timestamp parameter [29]. The authors assume if the topic of a
trend is promoting constructive idea then it is positive trend. The negative trend based on
their model is a trend that aims to defame a person or organization while they consider
a trend to be neutral if it is related to events such as sport or entertainment.

Hashtag recommendation based on topic model that use Latent Dirichlet Allocation
(LDA) to retrieve similar information are proposed in [31–34]. Gupta et al. presented
a large scale empirical analysis study of Twitter hashtags during the 2019 elections in
India [31]. They explore the relationship between popularity of candidate on Twitter
compared to the election outcome through analyzing positive and negative hashtags
toward each candidate. The results show that influence score can predict the election
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outcome.KimandShimproposed a recommendation systemcalledTWILITE [32]. They
use a probabilistic modeling based on LDA, so their system recommends top-K users to
follow and Top-K tweets to read. Godin et al. proposed unsupervised binary language
classifier model based on Expectation-Maximization algorithm and Naïve bayes method
[34]. Their model achieved 97.4% accuracy, 97% precision and 97.4% recall.

Understandingretweetdynamics inTwitter isanother studyarea.BiandChoproposed
aBayesiannonparametricmodel toanalyzeuserbehavior [35].Theirmodelcandetermine
automatically theparameterof themodelbasedon the inputdata.Theirmodelachievedfor
retweetinga topicaprecisionof64%.AstudybyTenetal.proposedamathematicalmodel
to investigate and construct evolution of retweet graph [36]. Similarly, Ko et al. presented
a mathematical model to measure Twitter dynamic shared-information in tendencies of
public using South Korean presidential election data [37]. They measured information-
shared based on two scales, hour and day. They concluded that by using day-scale, they
couldmeasure the public attention.

3 Background

In this section, we introduce background information about trends properties and our
data collection.

3.1 Trends Properties

As mentioned earlier, in Twitter, trends are defined as popular hashtags that are selected
based on Twitter’s algorithms to decide popularity of any hashtag [7]. A hashtag is a
tag symbol # attached to topic/keywords to group all related posts to make it easier for
users to read and share written posts under topic tag [2]. As posting events are growing
in a hashtag, and users involvement increases to some threshold, then a hashtag become
trending based on rate of events (posts) per unit of time.

Fig. 3. Spawning Hashtags phenomenon in similar-context trends.

Hu et al. defines general terms to understand the three phases in popularity evolution
prediction of hashtags [20]. These terms are burst, peak, and fade. Peak is the highest
value that a trend reaches in a unit time. Burst is the increase rate before reaching peak
of a trend. Fade is the opposite of burst, which indicates the decrease of posting and
popularity to reach the inactive state.

In term of understanding trends features, Zubiaga et al. present a topology of trending
topics based on its category in Twitter: news, ongoing events, memes, and communica-
tion [30]. They define 15 features for trending topics that are independent of language
of tweets and focus on averages and diversity values that are extracted from tweets.
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Similarly, Naaman et al. define five types of features for trending topics [7]. These fea-
tures include content, interaction, time-based, participation, and social network features.
Therefore, emerging trends can reveal information about global and local communities
with geographic context.

3.1.1 Spawning Trends

Once a hashtag reaches popularity, it will remain in trends list for certain time that Twitter
decides based on the count of tweets. Therefore, we observe hashtags that were created
in certain incidents are reproduced and reactivated as a current incident happen again.
For example, the first tweet using hashtag #cavefire was back to 2011 and the first tweet
for #ClimateEmergency was back to 2009. We call this phenomenon as spawning trends
(Fig. 3). It relates the specific trends with generic trends in similar-context. A specific
trend is a trendinghashtag that its keywords indicate a specific locationor specific event or
person. For example, #USA indicates a location based hashtag, and #USA2020elections
indicates a specific event. While a generic trend is a trending hashtag that its keywords
more general in term of scale to include wider participants regardless of location or
any specific events and its usually to draw attention. Examples of generic hashtags are
#climate, and #Football.

Table 1. Collected data statistics of each hashtag for the first 10 h

Hour #CaveFire #SydneyIsChoking #ClimateEmergency #ClimateAction

0 406 60 119 46

1 1165 1068 2111 276

2 852 1075 1588 231

3 426 825 1730 216

4 326 858 1469 353

5 300 855 1275 502

6 326 638 1233 711

7 422 263 1264 609

8 561 166 956 701

9 1058 133 932 672

10 810 77 784 778

3.2 Data Collection

In order to maintain validity of the model, we collect a real data from Twitter for the
experiment. Our data collection process was performed using an available plug in tool
called Tweet Archiver [38]. This tool collects tweets in present time. We used similar
events hashtags for different dates and duration to capture for purpose of study and
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compare. For example, the hashtag of the incident of bushfire in USA “#CaveFire”
tweets was collected for duration of nine days starting from the beginning of the event
25th Nov 2019 till 3rd December 2019. The total number of tweets and retweets that are
collected is 15,377. The majority of this total took place in the first two days with 11,149
tweets/retweets.

A similar incident of bushfire was happening in Australia has lead to a hashtag
“#SydneyIsChoking”. Meanwhile, another similar-context hashtags where raised as
well; #ClimateAction, and #ClimateEmergency. The last three hashtags data was col-
lected in 10th –11th Dec 2019. The collection was conducted for 24 h and the total
tweets/retweets is 35,961. Table 1 shows details information about collected data for the
first 10 h for all hashtags. All trends were collected based on the trending list of each
country and worldwide list.

Fig. 4. Hashtags flow distribution (a) show distribution per hour for first 24 h duration. (b) Show
distribution average per minute for each hashtag.

4 Similar-Context Hashtags Analysis

In this section, we demonstrate our analysis on the collected data of context-based
trending hashtags. We focus on the four features: temporal, spatial, content, and user
activity. We investigate each feature and observe the pattern based on arithmetic mean
and frequency count.

4.1 Temporal Analysis

Twitter hashtags satisfied dynamic evolving distribution pattern. The trending hashtags
as events are independent of each other. Therefore, the occurrence of one hashtag does not
affect the probability of another hashtag to appear. Besides, each hashtag has an average
rate of tweet/retweet per time period. The arrival of tweets/retweet in a hashtag is in a
random pattern. Figure 4 shows the frequency of hashtags for first 24 h. It shows in (a)
how a first hour has a sharp increase rate to reach peak in #Cavefire, #SydenyIsChoking,
and ClimateEmergency. For #ClimateAction, it has a steady growth for more than 12 h
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then after the 15th hour, it starts to fade. This shows how generic trend is spawned from
a similar-context specific trends.

In #ClimateEmergency and #SydneyIsChoking both remained inactive in 15th and
16th hours. For #CaveFire, it continues as this relates to more collection duration
compared to other hashtags.

Fig. 5. (a) Specific-Trend percentage of users based on their location in #SydneyIsChoking. (b)
Specific-Trend percentage of users based on their location in #CaveFire.

Fig. 6. (a) Generic-Trend participants location in #ClimateEmergency (b) Generic-Trend partic-
ipants location in #ClimateAction

The information flow per minute as in Fig. 4 (b) shows almost similarity for #Clima-
teEmergency and #ClimateAction. This might indicate that both hashtags share similar
users especially that the collection time for both hashtags was the same. In other words,
shared users have included both hashtags in their tweets as shown in Table 2. This might
also indicate that even if users are not similar in both hashtags, users put more than a
hashtag in their posts as in Fig. 8.

4.2 Spatial Analysis

We analyze our data spatial information to identify the location of users participated
among all context-based trends in our datasets. We preprocess our data and retrieve
location information to verify users participation based on their given location. We
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found that specific-trend hashtags #SydneyIsChoking and #CaveFire shows in Fig. 5
(a) and (b) have a percentage of 70% and 74% in respectively for users who belong to
location of these hashtags. It is good to note that both specific-trends data was collected
in different dates.

Fig. 7. Ratio of tweets and retweets in studied
hashtags.

Fig. 8. Appearance of hashtags keywords
across the studied hashtags.

On the other hand, the generic-trend hashtags #ClimateAction and #ClimateEmer-
gency as shown in Fig. 6 (a) and (b) have more participants from specific-trends hashtag
locations: Australia, and USA in the first two places. However, users from Australia
have the largest share with a percentage of 60% in #ClimateEmergency and 21% in
#ClimateAction. While users from USA have a total of 19%, 17% in respectively.

4.3 Content

Hashtag is a mixture of original tweets or retweets of other authors. As shown in Fig. 7, it
is very clear that retweets are more than tweets no matter how long the hashtag remains.
This is applied for all generic and specific trends. However, the retweet in specific trends
is above 78% while in generic trends is below 72%. This indicates that specific trends
users are reporting of incident more than discussing it. In terms of original tweets,
hashtags with generic trends have about 31% while in specific it is 18%.

In terms of appearance of each hashtag across thewhole data set content, Fig. 8 shows
that the majority of appearance for each hashtags is about 16% for #SydneyIsChoking,
#climateAction, and 17% #ClimateEmergency. The case of #CaveFire to not appear in
other hashtags is due to the timing of collection data as the incident trend was previous to
the rest. However, within its data there are 58 appearances for #ClimateEmergency but
not vise versa. This emphasizes the spawning trend phenomenon, where the sequence
of events impacts the popularity and reproduce/reactivate hashtag in similar-context.
Besides, Fig. 8 shows that using same hashtags within same tweets is minimal in general
with less than 17%.

4.4 Users Activity

In order to analyze users activity, we measure the activity of users compared to the
content. In other words, we explore the participation of users per tweet/retweet as in
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Fig. 9. The participation of users based on their tweet/retweet across all studied hashtags

Fig. 10. Percentage of users who participate with only one tweet/retweet for studied sample of
specific-trends and generic-trends

Fig. 9 and Fig. 10. The majority of users have post only one tweet/retweet across the
studied hashtags as Fig. 9. Users who have been recorded with the highest activity was
in #CaveFire, one account with 285 posts found to belong to a climate news account. In
Fig. 10, generic trends’ users tend to participate with 58% with one post.

Table 2. Users appearance a cross other hashtags.

#CaveFire #SydneyIsChoking #ClimateAction #ClimateEmergency

#CaveFire 22 88 127

#SydneyIsChoking 545 1710

#ClimateAction 1864

#ClimateEmergency
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In Table 2, the duplicate accounts that found across hashtags shows that generic
trends have more duplicates of users. Therefore, it can imply the influence of generic
trends compare to specific trends. In other words, it shows how specific trends events
can lead to re-activate the generic trends in similar-context.

5 Discussion

The results of our analysis provide a strong indication that we can use the characteristics
of similar-context specific trends to predict similar future generic trends in spatiotem-
poral, content, and user features. The findings show that users who participate with
previous local hashtag within the same context tend to participate in future hashtags
within context. We summarize our findings in the following:

InformationFlow (RQ1): The dynamics of trends tend to change based on the popularity
of topics and influence of users. Myers et al. found that 71% of influence in Twitter
diffusion volume is due to internal events [39]. Therefore, similar-context hashtags that
are trending in same time have evolution influence on each other, as users tend to include
more similar hashtags in their posts as shown in Fig. 4b and Fig. 8.

Local vs Global Trends (RQ 2): In specific-trends it shows that users belong to the event
location, participate more in their geographical trends. This supports a study [40] that
indicates that popular topics across regional boundaries while specific topics remain
within their region. Therefore, specific-trends have more shares of its location users as
a hashtag gets popular. This can be justified by comparing Australia’s users to USA’s,
where both have incidents of bushfire. As the incident was going on in Australia, it had
more participants in both the specific and generic-trends.

Content (RQ 3): We find specific-trends have more retweet than tweets, with more
than 79%. This can be explained, as within a specific location people tend to spread
the information more than to create it. This is due to the fact of dealing with specific
incident trends as news [30]. Results show that the percentage of tweets within generic
trends is approximately half of the retweet percentage of its trends. This indicates the
discussion dialogs and comments compared to specific trends. Also, the appearance of
each hashtag across other hashtags is about 16% for majority of generic trends. This can
be an indication of different users who participate within one of the studied hashtags
and trying to promote other similar-context hashtags as well.

User activity (RQ 4): In general, the results show that users participate with majority
with one post (tweet or retweet) within the first 24 h of a trending hashtag. Generic trends
aim to have more participants with one post with 58% compared to specific trends with
only 36% for one post per user. This indicates The Spawning phenomena where users
tend to reactivate generic trends from specific trends considering duration and timing of
popularity. Therefore, generic trends gain more shared users with specific trend in the
same context.
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6 Conclusion and Future Work

In this paper, we investigate similar-context trending hashtags in Twitter. Our analysis
shows that participants in specific-trend related to location based hashtags represents
more than 70% of participants. Participants in specific-trends have less user’s activity in
terms of creating tweets compared to generic trends in the first 24 h. The ratio of tweet
and retweet shows that generic trends aim to havemore discussions between users, while
in specific trends users aim to retweet more. Based on our data, generic trends found to
share more users with other specific and generic trends in general with a percentage of
16%.

For future work we might explore other associate features with more dataset sample
to detect communities with similar-context trends. Also, we might compare the different
context based hashtags with each other to find how theymight change in terms of domain
and users, for example political trends vs health.
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Abstract. Performance logs contain rich information about a system’s state.
Large-scale web service infrastructures deployed in the cloud are notoriously
difficult to troubleshoot, especially performance bugs. Detecting, isolating and
diagnosing fine-grained performance anomalies requires integrating system per-
formancemeasures across space and time. To achieve scale, we present ourmegat-
ables approach, which automatically interprets performance log data and outputs
millibottleneck predictions along with supporting visualizations. We evaluate our
method with three illustrative scenarios, and we assess its predictive ability. We
also evaluate its ability to extract meaningful information from many log samples
drawn from the wild.

Keywords: Cloud computing · Performance debugging · Anomaly detection ·
Data mining · Log data analysis · Information integration

1 Introduction

Cloud applications—especially those subjected to “bursty”workloads like ecommerce or
social networking platforms—confront a common performance bug termed the “long-
tail latency problem.” This pathology is characterized by a small number of requests
taking seconds to return even though most requests only take a few milliseconds to
complete. Businesses have reported the economic impact this problem poses. Amazon
found that every increase of 100 ms in page loading time is correlated to roughly 1%
loss in sales; similarly, Google found that a 500 ms additional delay to return search
results could reduce revenues by up to 20% [1, 2].

This is a puzzling problem because requests with long response times (order of sec-
onds) start to happen at low CPU utilization levels (around 40%), when none of the hard-
ware resources is anywhere near saturation on average. According to the millibottleneck
theory of performance bugs, transient resource bottlenecks on the order of milliseconds,
called millibottlenecks, can propagate through a distributed system via RPC calls and
have their effects amplified, causing severe performance bugs despite their very short
lifespan [3]. Given the evolution of cloud-enabled microservice architectures and their
inherent reliance on RPC calls, performance has become less predictable.Moreover, per-
formance anomalies have become harder to diagnose given the number of independent
services and potential dependencies among them—possibly exponential in the number
of services comprising such a system.
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Previous Work. Recent approaches like DeepLog operate over arbitrary text and
attempt to isolate “macro-level” system events like crashes [4]. Seer relies on distributed
event traces and microbenchmarks to mine microservice QoS violations [5]. Our auto-
mated approach operates over the diverse performance monitoring outputs with the
objective of isolating much more precise (shorter and transient) performance anomalies.

In this paper, we showour system for automatically extracting data fromperformance
monitoring logfiles to identifymillisecond-scale performance pathologies—megatables.
Our method goes beyond extraction as our approach interprets and analyzes the sig-
nals or performance patterns inherent in performance data and isolates those interesting
performance phenomena.

Fig. 1. Tomcat JVM Millibottleneck

Example 1. Figure 1 is a representative set of graphs necessary for effectively isolating
and diagnosing millibottlenecks. In this case, these graphs correspond to a millibottle-
neck induced by JVMgarbage collection. Each graph corresponds to a specific diagnostic
step. The top graph shows the number of requests associated with very long response
time, defined as requests exceeding 1 s to be processed, for each 50 ms interval. The
middle graph depicts the queue size of each component for each 50 ms window. We
determine the size of a queue using the number of requests waiting to be processed by
the given component during each interval. The bottom graph depicts the resources that
are temporarily saturating over the same interval. In this case, the Tomcat node’s CPU
is saturated due to Java Garbage Collection. This period of saturation coincides with the
appearance of VLRT and the growth in queue size among dependent components. Given
the correlation among these three variables—number of VLRT, component queue size
and resource utilization—we can conclude the Tomcat CPU millibottleneck is induced
by the Tomcat node’s JVM Garbage Collection process. We have detailed this milli-
bottleneck and its diagnostic procedure, briefly explained here, in our prior work [6].
megatables automates this process.
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Challenges. Detecting and isolating millibottlenecks is particularly challenging due
to their very short lifespan. According to the Sampling Theorem, multi-second sam-
pling periods are insufficient to detect sub-second phenomena. On the other hand, an
increased sampling frequency suggests increased logging overhead. Finding the right
balance between these competing objectives is non-trivial. Moreover, understanding
how millibottlenecks propagate across a system requires logging inter-node communi-
cation such that the message latency can be measured at fine-grained timescales, which
most native logs do not contain. Extracting relevant resource data from a variety of
performance monitor logs requires a flexible approach to data extraction. Thirdly, sys-
tematically identifying millibottlenecks requires the careful extraction and integration
of important event and resource data spanning an entire system topology, i.e. space and
time. Due to the diversity of millibottlenecks, a system needs to be able to make infer-
ences from the performance patterns inherent in the data. It is impossible to know a
priori which features are relevant to a given situation. Moreover, a system needs to be
able to generalize across different types of millibottlenecks.

Fig. 2. Megatables Usage. Left graph shows the amount of experiment data extracted by
megatables. Right graph shows the number of experiments where megatables was used.

Contributions. megatables begins by extracting data from component and resource
monitor logs. Next, we transform the data into features salient to isolating and detecting
millibottlenecks. We feed these features into machine learning models. Specifically, we
leverage a Teamed Classifier approach. In this design, models are trained for each type
of system and millibottleneck. Each model outputs one classification decision, and the
decision with the highest confidence becomes the decision of the team. Finally, new
data is fed into our trained models to generate predictions and supporting visualizations
automatically.

To isolate and diagnose nuanced, fine-grained performance anomalies, we need to
support a broad array of experimental configurations, since these bugs can materialize
under a range of conditions. As Fig. 2 shows, we have run over 20,000 experiments
generating over 100 TB of data spread across 400K various log files generated by our
experimental computer science infrastructure, elba. As our first contribution, we present
three illustrative examples of megatables ability to automatically diagnose millibottle-
necks associatedwith different resources. Secondly,we demonstratemegatablesmodels’
coverage and accuracy. Figure 2 shows megatables data extraction covers 98% of the
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performance data generated by our infrastructure. As our final contribution, we show
megatables coverage of performance data from the wild. Specifically, we gather a large
random sample of performance log data from the wild, i.e. Github, and use megatables
to process it.

2 Definitions

Recently, researchers have found that millibottlenecks, also termed very short bottle-
necks (VSBs) or transient bottlenecks in the literature, can cause very long response
time requests (VLRTs), which are those that take one to two orders of magnitude longer
to complete than average [6, 7].

Definition 2.1 (Millibottlenecks). Very short-lived resource saturations caused by an
underlying resource contention. They are associated with inducing very long response
time requests through an intermediary transmission mechanism termed cross-tier queue
overflow.

Definition 2.2 (Very Long Response Time Requests). Very long response time
requests (VLRT) are those requests that exceed some critical threshold to be returned,
for example requests associated with response times exceeding 1 s. VLRT requests are
oftenmasked by the normal requests that only take a fewmilliseconds, particularly when
the response time is averaged over (typical) measurement periods of minutes.

Millibottlenecks and their associated VLRT requests appear and disappear on the
order of hundreds of milliseconds. For example, Fig. 1 shows request latency over two
short intervals where the number of VLRT requests during each 50 ms window exceeds
6x the average, i.e. the two large peaks.

Definition 2.3 (Point-in-Time Response Time). It is the average system response time
over a defined interval using the time it takes requests initiated within the interval to
complete a round trip.

VLRT requests can occur for very different reasons. Potential root causes span dif-
ferent system levels, including CPU dynamic voltage and frequency scaling (DVFS)
control at the architectural layer [8], Java garbage collection (GC) at the system soft-
ware layer [6], virtual machine (VM) consolidation at theVM layer [9], and performance
interference of memory thrashing [10].

3 Illustrative Scenarios

In this section,wediscuss howweusedmegatables to automatically isolate anddetect two
millibottlenecks due to different sources of resource contention. The first is a bottleneck
induced by database (Mysql) disk IO. The other bottleneck is induced by dirty pages
being flushed to disk. megatables automatically generates the following graphs at the
end of its processing.
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Fig. 3. Database IO as Millibottleneck. These provide visual evidence of a millibottleneck
indicated by the appearance of VLRT, queue extension and temporary resource saturation.

3.1 Database IO as Millibottleneck

In Fig. 3, we illustrate megatables ability to isolate a millibottleneck due to Mysql’s
temporary disk saturation. Specifically, we review the period where the number of VLRT
requests begins to grow and remains above 5. We can see the number of VLRT requests
begins to decline quickly eventually returning to 0 in less than 250 ms.

To understand what occurs during this interval, megatables begins by extracting
request traces generated by our specialized event tracing framework, milliScope, found
in component logs. This data captures execution flow dependencies. As themiddle figure
shows, we observe obvious Cross-Tier Queue Overflow evidenced by the components’
queue lengths elongating over the period of interest. Megatables uses the extracted
request trace data to calculate a few metrics every 50 ms: point-in-time response time,
the number of VLRT requests, i.e. those exceeding 1 s, and component queue length.

Megatables also extracts resource data from performance logs output by resource
monitors. This data provides a representation of system state. In our scenario, there was
one resource monitor, collectl¸ measuring CPU, Disk Memory and Network at 50 ms
intervals. We seeMysql’s disk is temporarily saturated, i.e. utilization reaches 100%, but
returns to 0% after approximately 300 ms from the first moment it saturates. Megatables
represents the extracted data for each resource category as a multivariate timeseries.

As mentioned earlier, megatables uses a data-driven approach to detect and analyze
millibottlenecks. In short, it learns state and event-specific patterns consistent with the
presence of millibottlenecks by relying on machine learning to systematically identify
such patterns. In our case, diagnosing this database IO millibottleneck requires finding
patterns where events such as the number of VLRT, the number of queued requests and
the average Point-in-Time response time are maximal at the same time as state indicators
such as Mysql disk resources are temporarily saturated.

We transform the event-based metrics and system state data into salient numerical
features for detectingmillibottlenecks. Specifically,we apply fixed-widthwindows to the
event-based metrics mentioned earlier like point-in-time response time, the number of
VLRT requests, i.e. those exceeding 1 s, and component queue length to create feature
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column vectors. These feature column vectors are concatenated into a matrix of row
vectors such that each row represents a sample. In this scenario, we would construct an
event feature column vector as follows: {PIT, VLRT, Apache_Queue, Tomcat_Queue,
Mysql_Queue}.

Weconstruct systemstate column feature vectors from the extracted resource data in a
similar fashion. Each resource measurement every 50ms is a component of a fixed width
vector. In this case, each components’ CPU, Disk, Memory and Network utilization are
vector components. In our scenario, wewould construct a state column vector as follows:
{Apache_CPU, Apache_Disk, Apache_Mem_Used, Apache_Net_Bandwth, …}. Like
the event vectors, these vectors are concatenated into a matrix of row vectors where each
row of the matrix is a sample.

We model the problem of determining the existence of a millibottleneck over some
interval of time as a multi-class classification problem. To identify millibottlenecks, we
use models trained over previously labeled data. Our labels indicate whether a millibot-
tleneck is present, and if one exists what kind it is. Thesemodels are used to predict labels
for each event and state matrix sample. In this case, the model indicates the presence of
a Mysql (database) IO millibottleneck indicated by the red “X’s” in the bottom figure.

3.2 Memory Dirty Page as Millibottleneck

In Fig. 4, we illustrate megatables ability to isolate a millibottleneck due to memory
dirty page being flushed to disk. Specifically, we review the period where the number
of VLRT requests begins to grow. We can see the number of VLRT requests begins to
decline quickly eventually returning to 0 in less than 250 ms.

As in the prior situation,megatables begins by extracting request traces and calculates
the associated event metrics. As the middle figure shows, we observe obvious Cross-
Tier Queue Overflow evidenced by the components’ queue lengths elongating over the
period of interest. As before, megatables also extracts all resource data from the pertinent
performance logs, in this case, collectl.We seeMysql’sCPU temporarily saturates during
the period of interest.

This situation highlights the need to create features to represent magnitudes like
counters, percentages or rations and derivatives like velocity and acceleration. In the
prior situation, we created features directly from data extracted from performance logs.
In this case, Mysql flushing dirty pages to disk is a phase change. Diagnosing this type
of millibottleneck requires features to account for a magnitude such as CPU utilization
and a velocity measure like the change in dirty pages. As such, derivative measures are
also components of the event and state feature matrices. In this illustration, the sudden
change in the number of dirty pages is the primary signal. During this period of interest,
we see this change corresponds to the other conditions present during this period: Mysql
CPU suddenly and temporarily saturating, queue lengths elongating and the number of
VLRT requests increasing.
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Fig. 4. Dirty Page as Millibottleneck Example (Color figure online)

This scenario also highlights the need to look for performance patterns across mul-
tiple resources across multiple components simultaneously. To account for this mul-
tiplicity, we employ a team-based classification approach to learning. Specifically, we
trainmillibottleneck-specificmodelsmeaningwe train over data containing negative and
positive examples where the positive examples are of the same type. During prediction,
we feed the feature vectors corresponding to a period of interest into each model. The
model with the highest confidence is the final prediction for the given input. In this case,
the model trained on data consisting of memory dirty page examples returns with the
highest probability indicated by the red “X’s” in the bottom figure.

4 megatables

Our system for automatically identifyingmillisecond-scale performance patterns at scale
and with high confidence, megatables, consists of two primary components as shown
in Fig. 5. First, our system automatically transforms event and resource monitoring log
data into relational structures. Then, we transform the data “important” to detecting
millibottlenecks into column feature vectors, which are assembled into an Event and
State matrix. We use both matrices as inputs to a machine learning component com-
posed of Teamed Classifiers. Our Team Classification design enables us to train system
and pathology-specific models. Finally, megatables outputs millibottleneck detection
predictions and supporting visualizations for any input period of interest.



Finding Performance Patterns from Logs with High Confidence 171

Fig. 5. Megatables System Overview. Request traces and performance (resource) logs are trans-
formed into features, which are used by machine learning models to detect the presence of
performance anomalies like millibottlenecks.

4.1 Millibottleneck Detection

megatables employs a Teamed Classifiers machine learning model to generate its milli-
bottleneck predictions. Teamed Classifiers are an ensemble-based method. Models are
arranged in layers, and each model is free to have its own form.

In our case, we employ random forests and decision trees as the form for each “team
member,” i.e.model instance. These forms seemed to best approximate ourmanual detec-
tion procedure, which is a combination of rules-based filtering and statistical correlation.
Besides its lack of scalability, our previous method relied upon some subjective assess-
ment. These non-parameteric forms provide a scalable mechanism for understanding,
i.e. simple Boolean logic can explain the application of a label to a period.

We train a model to classify each type of millibottleneck. As highlighted in Sect. 2,
we have identified approximately 10 different sources of millibottlenecks. Each model
enables us to capture the millibottleneck-specific event and state dependencies across
the systems’ components. Decision trees and random forests, which are collections
of decision trees, use tree-based data structures to partition data to minimize some
information theoretic measure like entropy. These model forms are particularly robust
for modeling non-linear relationships, and several of our millibottlenecks have non-
linear components like phase transitions associated with buffer flushing. The numbers
of trees and minimum number of samples per leaf are hyperparameters for these model
forms. We achieved our best results using 100 trees and 2 samples per leaf for these
hyperparameters.

Labeling Data. Given our treatment of millibottleneck detection as a supervised
machine learning problem, our training data needs to contain labels. We label our data
using two approaches. For certain classes of millibottlenecks, we can label the data using
simple, deterministic rules like those induced by JVM1.5Garbage Collection. This prior
enables us to label any temporary spike in CPU coinciding with regular garbage collec-
tion intervals as a millibottleneck. Our second approach amounts to manually labeling
periods that we have previously diagnosed [7–10].

4.2 Feature Creation

megatables transforms rawperformance data into salient numerical features for detecting
millibottlenecks. We model systems with event and state matrices. These matrices are
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composed of event and state feature vectors. Our method for constructing these matrices
must generalize and scale across different topologies, computer architectures, component
(or application) software and resource monitors.

Event Matrix. We use request trace data to calculate metrics every 50 ms, specifically:
Point-in-Time Response Time, Number of Very Long Response Time (VLRT) requests,
and Queue Length for each system component. From these metrics, we create 100 ms
windows and apply mean and max/min aggregate functions to windows values. Finally,
we normalize each component of our vector using min-max scaling.

Besides accounting for different system topologies, our approach needs to account
for different numbers of nodes in the topology, different numbers of CPUs on each node
and different resources.

State Matrix. State features are obtained from CPU, Disk, Memory and Network
resource monitoring data. As mentioned earlier, each resource on each node is rep-
resented as a multivariate time series. To accommodate this multiplicity, we employ
fixed-sized windows and apply mean, max/min, and standard deviation to each variable.
We also calculate first and second derivatives for each variable to account for each vari-
able’s change in velocity and acceleration over each period. Like our event matrix, we
normalize each vector component using min-max scaling.

4.3 Data Extraction

Performance logs are semi-structured data but present some unique challenges relative
to other semi-structured log data. Specifically, there are fewer semantics, i.e. limited
metadata, and generally performance logs do not have fixed schemas. Consequently,
layouts are not fixed a priori due to runtime factors such as system behavior, monitoring
parameters, (i.e. which resources to monitor), and system architecture characteristics.
Lastly, these logs can also have complex record structures such as containing multiple
record types and degenerative sub-structures such as variable length record sizes. Prior
work has assumed records are fixed size or occur within a fixed amount of space [11].

Figure 6 illustrates some of the challengeswith extracting performance data automat-
ically. The sections highlighted in Red correspond to active processes at the specified
time. The sections highlighted in Blue correspond to context switch data. Each high-
lighted section represents different types of records, i.e. multiple record types A and
B. Moreover, each record type has two records, i.e. A has 2 and B has 2. Lastly, A’s
records are variable length, i.e. 95 and 90 “rows” respectively. Note: the number in braces
represents the number of intermediate rows, which have been removed for space.
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Fig. 6. Data Extraction and Relation Induction. Each of the shaded regions correspond to two
different types of records. In this case, there are two instances of each record structure, which are
extracted into two relations—one for each record type. (Color figure online)

To automatically extract data, megatables interprets files by matching log text to
Layout Templates, specific but common layout-based patterns we have defined. Next,
it induces a graph using information obtained from one (or more) Layout Templates’
matching text. We developed a novel record boundary detection algorithm, which we
describe later, irrespective of the record size. Finally, megatables uses the Layout
Template and identified record boundaries to induce relations from the matching text.

5 Evaluation

We explore our method’s diagnostic and extraction performance by assessing its recon-
struction recall and coverage across two different datasets. The first data set comes from
executing thousands of system benchmark experiments using a common, reddit-style
bulletin board system. The second data set comes from randomly sampling thousands
of performance log samples obtained from the source code website GitHub.

5.1 Reconstructing Distributions

Webegin by assessingmegatables ability to reconstruct the ground truth distributions for
Point-in-Time Response Time and the number of VLRT request. As we have shown in
the case examples earlier, these are strong indicators of the presence of millibottlenecks.

Figure 7 compares the ground truth Point-in-Time Response Time and VLRT dis-
tributions to their predicted equivalents. The figure provides strong visual evidence
of our approach’s ability to reconstruct these distributions across millibottleneck and
non-millibottleneck periods. Secondly, we compare VLRT and Point-in-Time Response
Time as indicators of the presence of millibottlenecks. Figure 8 compares the predicted
data distributions for Point-in-Time response time and the number of VLRT requests
split between millibottleneck and non-millibottleneck periods. These graphs suggest
some interesting results. First, the number of VLRT requests provides better separabil-
ity between the classes. For periods with no millibottlenecks, there is less than 0.01%
weight in the tail suggesting that when there are no VLRT, millibottlenecks are not likely
present. The Point-in-Time graphs suggest this metric does not separate the classes as
well. Approximately 70% of the weight of the distribution occurs between 0 and 2000
for the Millibottleneck case. In the No Millibottleneck case, over 90% of the weight of
the distribution occurs between these same thresholds. This overlap in the distributions
suggests that a Point-in-Time prior can lead to millibottleneck misclassification.
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Fig. 7. VLRT and Point-in-Time comparison among predicted and ground truth Millibottleneck
and No Millibottleneck periods

Fig. 8. VLRT and Point-in-Time Distribution comparisons for periods with Millibottlenecks and
No Millibottlenecks detected

5.2 Data Extraction Coverage

We evaluate megatables coverage of performance monitor data by collecting a dataset
from the wild via a popular public source code repository, GitHub. We eliminated those
files from the sample that did not originate from performance monitoring programs.
We retrieved this dataset by querying Github for keywords such as “log,” “nagios,” and
“top.” The latter two terms refer to two popular open source resource monitoring tools.
Given their widespread use, we thought they should be included in our sample. Table 1
details our Github sample’s characteristics.
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We adopted Gao et al.’s record type categorization for describing log format/layout
variety [11] with one modification. For files with interleaved record structures, we do not
distinguish between those with single line and multiple line records. Instead, we use the
number of interleaved record structures to explicitly illustrate their variety. Our sample
covers at least 7 unique monitors not currently deployed in our infrastructure, including:
top (profiling and processes), vmstat (vmware), oprofile, nagios, logstat (kvm) and a
bespoke CPU/network monitoring tool.

Table 1. Github Sample Characteristics

Record Types # of Samples Average Size (# of
Lines)

One (Single Line) 336 350

One (Multiple Lines) 434 120

Two or More 497 1559

Github Coverage. Figure 9 show megatables ability of our method to extend beyond
the monitors used in our experimental computer science infrastructure. On average, we
were able to correctly extract over 70% of the data obtained from GitHub into relations.
Instances where most of the data could not be extracted were primarily due to our
approach treating network message labels as attribute labels instead of elements of an
enumeration. Despite this result, repairing this error can be accomplished with some
simple post-processing.

Fig. 9. Performance logs randomly sampled fromGithub. Each graph compares the coverage and
size for files containing a Single Record Type (left) and Multiple Record Types (right).

Boundary Identification. We induce a graph, termed Record Boundary Graph (RBG),
from the instances where log text matches a Layout Template. A vertex in the RBG
corresponds to a template matching some text, termed an “instance.” A directed edge
is induced for vertices j → k if the instance corresponding to vertex j appears in the
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file (from top to bottom) before the instance corresponding to vertex k. After edges are
induced, we find all simple cycles (or elementary circuits) in the graph. We bound the
time complexity of this operation by limiting the number of visits a vertex can be visited
to two. Next, we sort the identified simple cycles in descending order according to their
length. We use the longest simple cycle identified in the RBG as the principle record
boundary for defining candidate relations.

6 Related Work

Previous work on diagnosing performance bugs on distributed cloud systems generally
follow a two-step approach. First, data is extracted from artifacts like source code or
logs [12]. Then, these artifacts are interpreted with methods like machine learning or
program analysis techniques to infer a systemmodel.We describe previous work aligned
to each of these steps; however, unlike megatables, few encompass both steps under one
system.

Log Analysis. Several approaches employ machine learning to detect performance
anomalies from log files [4, 12–15]. Generally, these approaches learn a model either
online or offline from execution logs with performance bugs labeled accordingly. Xu
et al. uses Principal Component Analysis (PCA) and critical thresholds to identify peri-
ods of anomalous system performance [12]. Du et al. uses a deep neural net and statis-
tical outlier thresholds to detect performance anomalies [4]. One recent approach does
not employ machine learning but instead relies on reconstructing programmers’ event
logging to profile system behavior [16].

Log Data Extraction. Approaches from previous work in automated information
extraction has generally relied upon wrapper induction techniques. Specifically, this
work has been applied to web data extraction using structural regularities among HTML
tags to separate data from its presentation [17–19]. Work from the systems and program-
ming language communities feature similar work on log data extraction. Some work has
synthesized transformations to automatically generate a transformation program from
user provided transformation actions. RecordBreaker is one such example of such an
approach [20]. Other work from this community has relied on source code interposi-
tion techniques to decorate logging statements corresponding to specific strings inserted
into the output [21]. Lastly, Datamaran uses parse trees to generate regular expressions,
which are used to isolate log data structures [11].

7 Conclusion

Cloud computing has made it possible to decompose larger, on-premises monolithic
applications into a set of smaller, atomistic distributed services called microservices that
are deployable on public clouds such as AWS. This emerging cloud pattern represents
the next step in enabling application owners to instantaneously scale their IT infrastruc-
tures according to their demand. While this evolution has enabled better economies of
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scale, it has come at the expense of performance predictability and ease of performance
diagnosis. In this paper, we introduced our approach, megatables, for automatically
detecting and analyzing fine-grained performance anomalies like millibottlenecks from
disparate system logs. We demonstrated through three different scenarios that we can
successfully use megatables to automatically detect millibottlenecks on different com-
ponents due to different resource contention. Secondly, we showed its predictive ability
and coverage by reconstructing the long tail latency distribution from a large catalog
of systems’ experiments. Finally, we demonstrated that our approach extends beyond
the array of performance monitors present in our infrastructure by applying it to a large
random sample of performance monitoring logs gathered from the wild.
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Abstract. Scholarly digital libraries provide access to scientific pub-
lications and comprise useful resources for researchers who search for
literature on specific subject areas. CiteSeerX is an example of such a
digital library search engine that provides access to more than 10 million
academic documents and has nearly one million users and three million
hits per day. Artificial Intelligence (AI) technologies are used in many
components of CiteSeerX including Web crawling, document ingestion,
and metadata extraction. CiteSeerX also uses an unsupervised algorithm
called noun phrase chunking (NP-Chunking) to extract keyphrases out
of documents. However, often NP-Chunking extracts many unimportant
noun phrases. In this paper, we investigate and contrast three supervised
keyphrase extraction models to explore their deployment in CiteSeerX
for extracting high quality keyphrases. To perform user evaluations on
the keyphrases predicted by different models, we integrate a voting inter-
face into CiteSeerX. We show the development and deployment of the
keyphrase extraction models and the maintenance requirements.

Keywords: Scholarly digital libraries · Keyphrase extraction ·
Information extraction

1 Introduction

Online scholarly digital libraries usually contain millions of scientific documents
[29]. For example, Google Scholar is estimated to have more than 160 million
documents [38] Open access digital libraries have witnessed a rapid growth in
their document collections as well in the past years [30]. For example, CiteSeerX’s
collection increased from 1.4 million to more than 10 million within the last
decade. On one hand, these rapidly-growing scholarly document collections offer
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rich domain specific information for knowledge discovery, but, on the other hand,
they pose many challenges to navigate and search for useful information in these
collections.

Keyphrases of scientific papers provide important topical information about
the papers in a highly concise form and are crucial for understanding the evo-
lution of ideas in a scientific field [21,28,46]. In addition, keyphrases play a
unique role in many downstream applications such as finding good index terms
for papers [42], summarizing scientific papers [2,40,41], suggesting keywords in
query formulation and expansion [45], recommending papers to readers [26],
identifying reviewers for paper submissions [5], and clustering papers for fast
retrieval [22]. Due to the high importance of keyphrases, several online digital
libraries such as the ACM Digital Library have started to impose the require-
ment for author-supplied keyphrases. Specifically, these libraries require authors
to provide keyphrases that best describe their papers. However, keyphrases have
not been integrated into all sharing mechanisms. For example, the AAAI digi-
tal library (http://www.aaai.org/) does not provide keyphrases associated with
the papers published in the AAAI conferences. In an effort to understand the
coverage of papers with author-supplied keyphrases in open access scholarly dig-
ital libraries, we performed the following analysis: we randomly sampled 2, 000
papers from CiteSeerX, and manually inspected each paper to determine whether
a paper contains author-supplied keyphrases and if the paper was published
by ACM. Note that in most of the ACM conference proceeding templates, the
authors need to provide keyphrases (keywords) after the “Abstract” section. For
completeness, the ACM templates from years 1998, 2010, 2015, and 2017 were
adopted for visual inspection. Out of our 2, 000 sample, only 31 (1.5%) papers
were written using ACM templates and only 769 papers (38%) contain author-
supplied keyphrases. Out of 31 papers written using ACM templates, 25 contain
author-supplied keyphrases. The fact that around 62% of papers sampled do not
have author-supplied keyphrases indicates that automatic keyphrase extraction
is needed for scholarly digital libraries.

To date, many methods on the keyphrase extraction task have been pro-
posed that perform better than NP-chunking or tf-idf ranking. Such methods
include KEA [16], Hulth [27], TextRank [36], Maui [35], CiteTextRank [18],
ExpandRank [49], CeKE [9], PositionRank [15], Key2Vec [34], BiLSTM-CRF
[4], and CRFs based on word embeddings and document specific features [39].
However, keyphrase extraction has not been integrated into open access digital
libraries. Most existing scholarly digital libraries [53] such as Google Scholar
and Microsoft Academic do not display keyphrases. Recently, SemanticScholar
started to display keyphrase-like terms called “topics.” The CiteSeerX website
currently displays keyphrases extracted using an unsupervised phrase chunking
method [12].

In this application paper, we first review keyphrase extraction in scholarly
digital libraries, using CiteSeerX as a case study. We investigate the impact
of displaying keyphrases on promoting paper downloading by analyzing search
engine access logs in three years from 2016 to 2018. Then, we interrogate the qual-
ity of several supervised keyphrase extraction models to explore their deployment

http://www.aaai.org/
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Fig. 1. Number of documents crawled and ingested from past few years in CiteSeerX.

in CiteSeerX and perform a large scale keyphrase extraction - first of its kind
for this task. Moreover, to get user evaluations on the predicted keyphrases on a
large scale, we implement and integrate a voting interface, which is widely used
in social networks and multimedia websites, such as Facebook and YouTube. We
show the development and deployment requirements of the keyphrase extraction
models and the maintenance requirements.

2 CiteSeerX Overview and Motivation

There are in general two types of digital library search engines. The first
type obtains publications and metadata from publishers, such as ACM Digi-
tal Library, IEEE Xplore, and Elsevier. The other type, such as CiteSeerX [17],
crawls the public Web for scholarly documents and automatically extracts meta-
data from these documents.

CiteSeer was launched in 1998 [17] and its successor CiteSeerX [54] has been
online since 2008. Since then, the document collection has been steadily growing
(see Fig. 1). The goal of CiteSeerX is to improve the dissemination of and access
to academic and scientific literature. Currently, CiteSeerX has 3 million unique
users world-wide and is hit 3 million times a day. CiteSeerX reaches about 180
million downloads annually [47]. Besides search capabilities, CiteSeerX also
provides an Open Archives Initiative (OAI) protocol for metadata harvesting.
CiteSeerX receives about 5,000 requests per month to access the OAI service.
Researchers are interested in more than just CiteSeerX metadata. For example,
CiteSeerX receives about 10 requests for data per month via the contact form
on the front page [50]. These requests include graduate students seeking project
datasets and researchers that were looking for large datasets for experiments.
CiteSeerX hosts a dump of the database and other data on Google Drive.

In the early stage, the crawl seeds were mostly homepages of scholars in
computer and information sciences and engineering (CISE). In the past decade,
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Table 1. The number of full text documents, the total number of keyphrase-clicks,
and unique keyphrases clicked for years 2016, 2017, and 2018 in CiteSeerX.

Year #Docs. #Keyphrase-Clicks #Unique-Keyphrases

(Millions) (Millions) (Millions)

2016 8.44 4.41 1.60

2017 10.1 7.17 1.86

2018 10.1 7.52 1.74

CiteSeerX added to the crawls seed URLs from the Microsoft Academic Graph
[44], and directly incorporated PDFs from PubMed, arXiv, and digital reposito-
ries in a diverse spectrum of disciplines. A recent work on subject category clas-
sification of scientific papers estimated that the fractions of papers in physics,
chemistry, biology, materials science, and computer science are 11.4%, 12.4%,
18.6%, 5.4%, and 7.6%, respectively [51]. CiteSeerX is increasing its document
collection by actively crawling the Web using new policies and seeds to incorpo-
rate new domains. We expect this to encourage users from multiple disciplines
to search and download academic papers and to be useful for studying cross
discipline citation and social networks.

Since CiteSeerX was developed, many artificial intelligence techniques have
been developed and deployed in CiteSeerX [54], including but not limited to
header extraction [23], citation extraction [13], document type classification
[11], author name disambiguation [48], and data cleansing [43]. In addition, an
unsupervised NP-Chunking method is deployed for automatic keyphrase extrac-
tion. Besides author-submitted keyphrases, CiteSeerX extracts on average 16
keyphrases per paper using NP-Chunking. Users can search for a particular
keyphrase by clicking it. This feature provides a shortcut for users to explore
scholarly papers in related topics of the current paper they are browsing. All
automatically extracted keyphrases are displayed on the summary page, and
they deliver detailed domain knowledge in scholarly documents. Every time
a keyphrase is clicked, CiteSeerX searches the clicked keyphrase and refreshes
the search results. To understand how keyphrases promote paper browsing and
downloading, we analyze the access logs retrieved from three web servers from
2016 to 2018.

2.1 Click-Log Analysis

Table 1 shows the total number of documents, keyphrase clicks, and unique
keyphrases clicked from 2016 to 2018. The total number of keyphrase clicks
increased significantly by ∼63% from 2016 to 2017. For years 2017 and 2018,
although the total number of documents stayed about the same (10.1 million),
the total number of keyphrase clicks increased by 5%. Although there is a slight
decrease in the number of unique keyphrases clicked, the increase in the number
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of keyphrase clicks from year 2016 to year 2018 showcases the increasing use and
the popularity of keyphrases.

Figure 2 shows the ranking versus the number of clicks (#clicks) in logarith-
mic scale for the 10,000 most popular keyphrases during the three years. We can
see that the #click decreases exponentially as the rank increases, which mimics
the Zipf’s law for all three years.

Fig. 2. log(Rank) vs log(Clicks) for top-10, 000 keyphrases clicked by users of CiteSeerX
during years 2016, 2017, and 2018.

Fig. 3. Venn Diagram for all 3 years based on unique keyphrases.

Figure 3 shows the Venn diagram for the unique keyphrases clicked during
years 2016, 2017, and 2018. As seen from the figure, in two consecutive years,
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Table 2. Top-20 keyphrases clicked during years 2016, 2017, and 2018.

Year Keywords

2016 DgNe, local, bullying, violence, bullied, bully, aggressive, aggression, R. Nobrega,

experimental result, data, wide range, machine, lpEu, dvd, last year, recent year,

Artificial intelligence, key word, new technology

2017 Key word, experimental result, wide range, large number, string theory, bullying,

Violence, bullied, bully, aggressive, aggression, recent year, new method,

Artificial intelligence, important role, machine learning, neural network,

Online version, environmental protection agency, wide variety

2018 JMQi, experimental result, key word, large number, wide range, aggression,

Violence, bullying, bully, bullied, aggressive, recent year, case study, wide variety,

Different type, sustainable development, informational security, VWBc,

Sensor network, simulation result

only about one third of the keyphrases are common, whereas two third of the
keyphrases are new. For example, 1.6 million unique keyphrases were clicked in
2016 but only about 551k (33%) were carried to 2017. Similarly, 1.86 million
unique keyphrases were clicked in 2017, but only 555k (30%) were carried out
in 2018. This trend implies that user interests have been rapidly evolving over
these years, but there is still a considerable number of topics searched among
several years. These conclusions are made based on the analysis of open-access
documents from a three years time period. However, further analysis is needed
for more comprehensive conclusions.

Table 2 shows the top-20 most frequent keyphrases clicked. We can see that
the extracted keyphrases are not always terminological concepts as seen usu-
ally in author-submitted keyphrases. Examples such as “local”, “experimental
results”, “wide range”, and “recent year” were extracted just because they are
noun phrases. This indicates that more sophisticated models are necessary to
improve the quality of extracted keyphrases. It is interesting that these phrases
were highly clicked, but investigating the reason is beyond the scope of this
paper.

3 AI-Enabled Keyphrase Extraction

Here we describe three supervised keyphrase extraction models that we explore
to integrate into CiteSeerX: KEA [16], Hulth [27], and Citation-enhanced
Keyphrase Extraction (CeKE) [9]. Unlike KEA and Hulth, which only use the
title and abstract of a given research article, CeKE exploits citation contexts
along with the title and abstract of the given document. A citation context is
defined as the text within a window of n words surrounding a citation mention.
A citation context includes cited and citing contexts. A citing context for a tar-
get paper p is a context in which p is citing another paper. A cited context for
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a target paper p is a context in which p is cited by another paper. For a target
paper, all cited contexts and citing contexts are aggregated into a single context.

Figure 4 shows an example of a small citation network using a paper (Paper
1) and its citation network neighbors. We can see the large overlap between the
authors-submitted keyphrases and the citation contexts.

Fig. 4. A small citation network for Paper 1.

KEA: Frank et al. [16] used statistical features for the keyphrase extraction task
and proposed a method named KEA. KEA uses following statistical features: tf-
idf, i.e., the term frequency - inverse document frequency of a candidate phrase
and the relative position of a candidate phrase, i.e., the position of the first
occurrence of a phrase normalized by the number of words of the target paper.
KEA extracts keyphrases from the title and abstract of a given paper.

Hulth: Hulth [27] argued that adding linguistic knowledge such as syntactic
features can yield better results than relying only on statistics such as a term
frequency (tf) and n-grams. Hulth showed remarkable improvement by adding
part-of-speech (POS) tag as a feature along with statistical features. The features
used in Hulth’s approach are tf, cf (i.e., collection frequency), relative position
and POS tags (if a phrase is composed by more than one word, then the POS
will contain the tags of all words). Similar to KEA, Hulth extracts keyphrases
only from the title and abstracts.

Citation-Enhanced Keyphrase Extraction (CeKE): Caragea et al. [9] pro-
posed CeKE and showed that the information from the citation network in con-
junction with traditional frequency-based and syntactical features improves the
performance of the keyphrase extraction models.

CeKE uses the following features: tf-idf ; relative position ; POS tags of all
the words in a phrase ; first position of a candidate phrase, i.e., the distance
of the first occurrence of a phrase from the beginning of a paper; tf-idf-Over,
i.e., a boolean feature, which is true if the tf-idf of a candidate phrase is greater
than a threshold θ; firstPosUnder, also a boolean feature, which is true if the
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distance of the first occurrence of a phrase from the beginning of a target paper
is below a certain threshold β. Citation Network based features include: inCited
and inCiting, i.e., boolean features that are true if the candidate phrase occurs
in cited and citing contexts, respectively; and citation tf-idf, i.e., the tf-idf score
of each phrase computed from the aggregated citation contexts.

In our experiments, we compare three variants of CeKE: CeKE-Target that
uses only the text from the target document; CeKE-Citing that uses the text
from the target document and its citing contexts; CeKE-Cited that uses the text
from the target document and its cited contexts; and CeKE-Both that uses both
types of contexts.

Table 3. The dataset description.

ACM-CiteSeerX-KE

Num. (#) Papers Avg. # keyphrases # keyphrases

#unigrams #bigrams #trigrams # >trigrams

1,846 3.79 3,027 3,015 871 83

4 Experiments and Results

In this section, we first describe the dataset used for training and testing the
keyphrase extraction models, the process of finding candidate phrases, and then
present experimental results.

4.1 Dataset

We matched 30, 000 randomly selected ACM papers against all CiteSeerX papers
by title and found 6, 942 matches. Among these papers, 6, 942, 5, 743, and 5, 743
papers have citing, cited, and both types of contexts, respectively. To create a
dataset, we consider the documents for which we have both types of contexts and
at least 3 author-supplied keyphrases appearing in titles or abstracts. We name
this dataset as ACM-CiteSeerX-KE. Using these criteria, we identified 1,846
papers, which we used as our dataset for evaluation. The gold-standard con-
tains the author-supplied keyphrases present in a paper (its title and abstract).
Table 3 shows a summary of ACM-CiteSeerX-KE and contains the number
of papers in the dataset, the average number of author-supplied keyphrases, and
the number of n-gram author-supplied keyphrases, for n = 1, 2, 3, and n > 3.

4.2 Generating Candidate Phrases

We generate candidate phrases for each document by applying POS filters. Con-
sistent with previous works [9,27,31,36,49], these candidate phrases are identi-
fied using POS-tags of words, consisting of only nouns and adjectives. We apply
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Porter stemmer on each word. The initial position of each word is kept before
removing any words. Second, to generate candidate phrases, contiguous words
extracted in the first step are merged into n-grams (n = 1, 2, 3). Finally, we
eliminate candidate phrases that end with an adjective and unigrams that are
adjectives [9,49].

Evaluation Metrics. To evaluate the performance of the keyphrase extraction
methods, we use the following metrics: precision, recall and F1-score for the
positive class since the correct identification of positive examples (keyphrases) is
more important. These metrics are widely used in previous works [9,27,36,49].
The reported values are averaged in 10-fold cross-validation experiments, where
folds were created at document level and candidate phrases were extracted from
the documents in each fold to form the training and test sets. In all experiments,
we used Näıve Bayes on the feature vectors extracted by each model.

Table 4. The comparison of different models using 10-fold cross-validation on ACM-
CiteSeerX-KE.

Model
Pr Re F1 Time/Doc

(%) (%) (%) (Sec)

NP-Chunking 04.26 29.19 07.44 1.01

Hulth 25.91 16.15 19.86 4.47

KEA 30.41 20.78 24.65 4.53

CeKE-Target 27.31 35.57 30.86 4.69

CeKE-Citing 25.65 40.45 31.37 6.61

CeKE-Cited 26.49 42.73 32.68 7.14

CeKE-Both 25.07 42.19 31.42 7.97

4.3 Results and Discussion

Table 4 shows the performance of NP-Chunking, KEA, Hulth, CeKE-Target,
CeKE-Citing, CeKE-Cited, and CeKE-Both. The table shows the evaluation
measures and time taken by each method using 10-fold cross-validation on
ACM-CiteSeerX-KE. In NP-Chunking, the given text is first tokenized and
tagged by a POS tagger. Based on the POS-tagging result, a grammar-based
chunk parser is applied to separate two types of phrase chunks: (1) nouns or
adjectives, followed by nouns (e.g., “relational database” or “support vector
machine”), and (2) two chunks of (1) connected with a preposition or conjunc-
tion (e.g., “strong law of large numbers”). Time is measured on a computer
with Xenon E5-2630 v4 processor and 32 GB RAM. In CiteSeerX, the header
extraction tool can extract the title, abstract, and citing contexts for a target
document. However, to extract cited contexts in CiteSeerX, there is an overhead
of 1.2 s per document on average to search and extract it from the CiteSeerX
database.
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It can be seen from Table 4 that, CeKE-Cited achieves the highest recall and
F1 of 42.73% and 32.68%, respectively. KEA achieves the highest precision of
30.41% compared with other models with top-5 predictions. NP-Chunking takes
the shortest time of 1.01 s to extract keyphrases from a document. However, NP-
Chunking suffers from low precision and F1. CeKE variants outperform Hulth
and KEA in terms of recall and F1, i.e., CeKE-Citing achieves an F1 of 32.68%
as compared with 24.65% achieved by KEA. Moreover, CeKE variants that make
use of citation contexts outperform CeKE-Target that does not use any citation
contexts.

It can be seen from the table that CeKE-Cited achieves highest F1 of 32.68%.
However, CeKE-Citing takes less time compared with CeKE-Cited, i.e., CeKE-
Citing takes 6.61 s on average per document compared with 7.14 s taken by
CeKE-Cited. CeKE-Citing and CeKE-Both achieve comparable F1 of 31.37%
and 31.42%, respectively. In terms of speed, CeKE-Target is the fastest among
other variants because it does not need to perform POS tagging for citation con-
texts. Citing contexts can be extracted relatively straightforward from the con-
tent of the document. On the other hand, to extract cited contexts, we need the
citation graph, from which we can obtain documents citing the target paper. We
plan to select CeKE-Citing to deploy along with Hulth and KEA for the follow-

Title: Incorporating site-level knowledge to extract structured data from web
forums

Abstract: Web forums have become an important data resource for many web ap-
plications, but extracting structured data from unstructured web forum pages is
still a challenging task [...]. In this paper, we study the problem of structured data
extraction from various web forum sites. Our target is to find a solution as general
as possible to extract structured data, such as post title, post author, post time,
and post content from any forum site. In contrast to most existing information
extraction methods, which only leverage the knowledge inside an individual page,
we incorporate both page-level and site-level knowledge and employ Markov
logic networks (MLNs) [...]. The experimental results on 20 forums show a very
encouraging information extraction performance, and demonstrate the ability of
the proposed approach on various forums. [...]

Author-supplied keyphrases: Web forums, Structured data, Information extrac-
tion, Site level knowledge, Markov logic networks

CeKE-Citing predicted keyphrases: web forum, Site Level Knowledge, forum,
structured data
Hulth predicted keyphrases: forum, page, Knowledge, post, Site Level Knowledge,
web forum, structured data
KEA predicted keyphrases: Site Level Knowledge, web forum, forum, post

Fig. 5. The title, abstract, author-supplied keyphrases and predicted keyphrases of an
ACM paper. The phrases marked with cyan in the title and abstract shown in the
figure are author-supplied keyphrases.
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ing reasons: CeKE-citing is faster than CeKE-cited and CeKE-Both; extracting
cited contexts has an extra overhead to find it within a citation network; and
cited context may not be present for all the articles.

Anecdotal Example: To demonstrate the quality of extracted phrases by dif-
ferent methods (CeKE-Citing, Hulth, and KEA), we select an ACM paper at ran-
dom from the testing corpus and manually compared the keyphrases extracted
by the three methods and the author-supplied keyphrases (Fig. 5). Specifically,
the cyan bold phrases shown in the text on the top of the figure represent
author-supplied keyphrases, whereas the bottom of the figure shows author-
supplied keyphrases and predicted keyphrases by each evaluated model. It can
be seen from the figure that the CeKE-Citing predicted four keyphrases out
of which three are ASKs. Hulth predicted seven keyphrases out of which three
are author-supplied keyphrases. KEA predicted three keyphrases out of which
two belong to author-supplied keyphrases. The predicted keyphrases by all three
models that do not belong to author-supplied keyphrases are single words. This
example demonstrates that CeKE-citing exhibits a better performance than the
other two models.

Fig. 6. A clip of a portion of a CiteSeerX paper’s summary page containing a
“Keyphrase” section that displays keyphrases extracted. Each keyphrase has a thum-
bup and a thumbdown button. A logged in user can vote by clicking these buttons.

5 Crowd-Sourcing

The comparison between different keyphrase extraction models relies on ground
truth datasets compiled from a small number of papers. We propose to evaluate
keyphrase extraction models using crowd-sourcing, in which we allow users to
vote for high quality keyphrases on papers’ summary pages in CiteSeerX. These
keyphrases are extracted using different models, but the model information is
suppressed to reduce judgment bias. Voting systems are ubiquitous in social
networks and multimedia websites, such as Facebook and YouTube, but they
are rarely seen in scholarly digital libraries. A screenshot of an example of the
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voting interface is shown in Fig. 6. A database is already setup to store the total
number of counts for each voting type as well as each voting action. The database
contains the following tables.

– Model table. This table contains information of keyphrase extraction mod-
els.

– Voting table. This table contains the counts of upvotes and downvotes of
keyphrases extracted using all models from all papers. The table also records
the time the voting of a keyphrase is last updated. The same keyphrase
extracted by two distinct models will have two entries in this table.

– Action table. This table contains information of all voting actions on
keyphrases, such as the action time, the type of action (upvote vs. down-
vote), the IDs of keyphrases voted, and the IDs of voters. A voter must log
in first before they can vote. If a voter votes a keyphrase extracted by two
models, two actions will be recorded in this table. If a user reverses his vote,
two actions (unvote and vote) are recorded in this table.

The extraction modules can be evaluated by the summation of eligible votes
over all papers. In classic supervised machine learning, predicted keyphrases
are evaluated by comparing extraction results against the author-supplied
keyphrases [10]. However, the list of author-supplied keyphrases may not be
exhaustive, i.e., certain pertinent keyphrases may be omitted by authors, but
extracted by trained models. Crowd-sourcing provides an alternative approach
that evaluates the pertinence of keyphrases from the readers’ perspectives. How-
ever, there are certain potential biases that should be considered when deploying
the system. One factor that can introduce bias is ordering because voters may
not go through the whole list and vote all items. To mitigate this bias, we will
shuffle keyphrases when displaying them on papers’ summary pages. Another
bias is the “Mathew’s Effect” in which items with higher votes tend to receive
more upvotes. We will hide the current votes of keyphrases to mitigate this effect.

We plan to collect votes after opening the voting system for at least 6 months.
Using this approach, the keyphrase extraction models can be evaluated at two
levels. At the keyphrase level, we only consider keyphrases with at least 10 votes
and apply a binary judgment for keyphrase quality. A keyphrase is “favored”
if the number of upvotes is higher than the downvotes, otherwise, it is labeled
as “disfavored”. We can then score each model based on the number of favored
vs. disfavored. At the vote level, we can score each model using upvotes and
downvotes of all keyphrases. The final scores should be normalized by the number
of keyphrase extracted by a certain model and voted by users.

6 Development and Deployment

Although CiteSeerX utilizes open source software packages, many core com-
ponents are not directly available from open source repositories and require
extensive programming and testing. The current CiteSeerX codebase inherited
little from its predecessor’s (CiteSeer) for stability and consistency. The core
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part of the main web apps were written by Dr. Isaac Councill and Juan Pablo
Fernández-Ramı́rez and many components were developed by other graduate
students, postdocs and software engineers, which took at least 3–4 years.

CiteSeerX has been using keyphrases extracted using an unsupervised NP-
Chunking method. This method is fast and achieves high recall, but it has a
relatively low precision. Thus, we are exploring supervised models to extract
keyphrases more accurately into CiteSeerX. Our keyphrase extraction module
employs three methods: CeKE, Hulth, and KEA. The keyphrase extraction mod-
ule runs on top of several dependencies, which handle metadata extraction from
PDF files and document type classification in CiteSeerX. For example, GROBID
[1] is used to extract titles, abstracts, and citing contexts. We also developed a
program to extract cited contexts for a given article from the CiteSeerX database.
In addition, a POS tagger1 is a part of our keyphrase extraction module and is
integrated in the keyphrase extraction module. Even though we selected CeKE-
Citing, the keyphrase extraction package supports other variants of CeKE and it
is straightforward to switch between them. Figure 7 shows the CiteSeerX system
architecture and schematic diagram of our keyphrase extraction module.

(a) CiteSeerX architecture. (b) Schematic diagram of
keyphrase extraction module.

Fig. 7. CiteSeerX architecture and the keyphrase extraction module.

7 Maintenance

The keyphrase extraction module is developed and maintained by about 3 grad-
uate students and a postdoctoral scholar in an academic setting. The keyphrase
extraction project received partial financial support from the National Science
Foundation. The maintenance work includes, but is not limited to fixing bugs,
answering questions from GitHub users, updating extractors with improved
algorithms, and rerunning new extractors on existing papers. Specific to the
1 We have used NLP Stanford part of speech tagger.
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keyphrase extraction module, it can easily integrate new models trained on dif-
ferent or large data for the existing methods. In future, we aim to integrate
new keyphrase extraction models. The key bottleneck is to integrate keyphrase
modules into the ingestion system, so both author-supplied keyphrases and pre-
dicted keyphrases can be extracted with other types of content at scale. One
solution is to encapsulate keyphrase extraction modules into Java package files
(.jar files) or Python libraries so they can easily be invoked by PDFMEF [52], a
customizable multi-processing metadata extraction framework for scientific doc-
uments. Currently, the CiteSeerX group is developing a new version of digital
library framework that employs PDFMEF as part of the information extraction
pipeline. The encapsulation solution can potentially reduce the maintenance cost
and increase modularity.

8 Related Work

Both supervised and unsupervised methods have been developed for keyphrase
extraction [24]. These methods generally consists of two phases. In the first phase,
candidate words or phrases are extracted from the text using heuristics such as
POS patterns for words or n-grams [27]. In the second phase, the candidate
phrases are predicted as keyphrases or non-keyphrases, using both supervised
and unsupervised approaches.

In the supervised studies, keyphrase extraction is formulated as a binary
classification problem or a sequential labeling. In the binary classification, the
candidate phrases are classified as either keyphrase or non-keyphrase. In the
sequential labeling, each token in a paper (sequence) is labeled as part of a
keyphrase or not [4,19,39]. The prediction is done based on different features
extracted from the text of a document, e.g., a word or phrase POS tags, tf-
idf scores, and position information, used in conjunction with machine learning
classifiers such as Näıve Bayes, Support Vector Machines, and Conditional Ran-
dom Field [16,18,27,37]. The features extracted from external sources such as
WordNet and Wikipedia [33,35]; from the neighbourhood documents, e.g., a
document’s citation network [8,9] were also used for the keyphrase extraction.

In unsupervised keyphrase extraction, the problem is usually formulated as a
ranking problem. The phrases are scored using methods based on tf-idf and topic
proportions [6,32,55]. The graph-based algorithms such as PageRank [20,36,49]
and its variants [15,18,31] are also widely used in unsupervised models. Blank,
Rokach, and Shani [7] ranked keyphrases for a target paper using keyphrases from
the papers that are cited by the target paper and keyphrases from the papers
that cite at least one paper that the target paper cites. The best performing
model in SemEval 2010 [14] used term frequency thresholds to filter out unlikely
phrases. Adar and Datta [3] extracted keyphrases by mining abbreviations from
scientific literature and built a semantic hierarchical keyphrase database. Many
of the above approaches, both supervised and unsupervised, are compared and
analyzed in the ACL survey on keyphrase extraction by Hasan and Ng [25].

Usually, the performance of the supervised keyphrase extraction models is
better than the unsupervised models [25].
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9 Conclusions and Future Directions

By analyzing access logs of CiteSeerX in the past 3 years, we found that there
are 3% of keyphrases common across all years, while there are many keyphrases
which are only clicked during a particular year. In this application paper, we pro-
posed to integrate three supervised keyphrase extraction models into CiteSeerX
which are more robust than the previously used NP-Chunking method. To eval-
uate the keyphrase extraction methods from a user perspective, we implemented
a voting system on papers’ summary pages in CiteSeerX to vote on predicted
phrases without showing the model information to reduce potential judgment
bias from voters.

In the future, it would be interesting to integrate other keyphrase extrac-
tion models as well as other information extraction tools such as name-entity
extraction tool to improve the user experience.
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Abstract. The edge computing paradigm is featured by the ability to
off-load computing tasks from mobile devices to edge clouds and pro-
vide high cost-efficient computing resources, storage and network ser-
vices closer to the edge. A key question for workflow scheduling in the
edge computing environment is how to guarantee user-perceived qual-
ity of services when the supporting edge services and resources are with
unstable, time-variant, and fluctuant performance. In this work, we study
the workflow scheduling problem in the multi-user edge computing envi-
ronment and propose a Deep-Q-Network (DQN) -based multi-workflow
scheduling approach which is capable of handling time-varying perfor-
mance of edge services. To validate our proposed approach, we conduct
a simulative case study and compare ours with other existing methods.
Results clearly demonstrate that our proposed method beats its peers in
terms of convergence speed and workflow completion time.

Keywords: Workflow scheduling · Edge computing · Probability
distribution model · Reinforcement learning · Deep Q network

1 Introduction

The edge computing paradigm is emerging as a high performance computing
environment with a large-scale, heterogeneous collection of autonomous systems
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and flexible computational architecture [1–6]. It provides the tools and technolo-
gies to build data or computational intensive parallel applications with much
more affordable prices compared to traditional parallel computing techniques.
Hence, there has been an increasingly growth in the number of active research
work in edge computing such as scheduling, placement, energy management,
privacy and policy, security, etc. Workflow scheduling in cloud and edge envi-
ronment has recently drawn enormous attention thanks to its wide application
in both scientific and economic areas. A workflow is usually formulized as a
Directed-Acyclic-Graph (DAG) with several n tasks that satisfy the precedent
constraints. Scheduling workflows over an edge environment is referred to as
matching tasks onto edge services created on edge nodes. For multi-objective
scheduling, objectives can sometimes be conflicting. e.g., for execution time
minimization, fast services are more preferable than slow ones. However, fast
services are usually more expensive and thus execution time minimization may
contradict the cost reduction objective. It is widely acknowledged as well that
to scheduling multi-task workflow on distributed platforms is an NP-hard prob-
lem. It is therefore extremely time-consuming to yield optimal schedules through
traversal-based algorithms. Fortunately, heuristic and meta-heuristic algorithms
with polynomial complexity are able to produce approximate or near optimal
solutions of schedules at the cost of acceptable optimality loss [7–12]. Good
examples of such algorithms are multi-objective particle swarm optimization
(MOPSO) and non-dominated sorting genetic algorithm-II (NSGA-II).

Recently, as novel machine learning algorithms are becoming increasingly ver-
satile and powerful, considerable research efforts are paid to using reinforcement
learning (RL) and Q-learning-based algorithms [13–15] in finding near-optimal
workflow scheduling solutions. Nevertheless, most existing contributions in this
direction focused on scheduling workflows over centralized clouds. How to apply
Q-learning-based algorithms and models to the problem of scheduling workflows
upon distributed edge computing platforms is still to be clearly addressed. In
this work, we propose a DQN-based multi-workflow scheduling method. The
proposed model takes the probability mass functions (PMF) of historical per-
formance data of edge services as the inputs and is capable of improving the
scheduling plans via optimizing the probability of a workflow satisfying the
completion-time constraint. We conduct a simulated experiment and compare
our method with other baseline algorithms. The results show that our method
outperforms baseline algorithms in terms of workflow completion time.

2 Related Work

Scheduling multi-workflows upon distributed infrastructures, e.g., grids, clouds
and edge, is usually known to be NP-hard and thus traversal-based algorithms
can be ineffective in terms of computational complexity. Instead, heuristic and
meta-heuristic procedures with polynomial complexity can yield high-quality
and sub-optimal solutions at the cost of a certain level of optimality degradation.
For example, [16] leveraged a multi-objective bio-inspired procedure (MOBFOA)
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by augmenting the tradtional BFOA with Pareto-optimal fronts. Their method
deals with the reduction of flow-time, completion duration, and operational cost.
[17] considered a multi-objective genetic optimization (BOGA) and optimizd
both electricity consumption and DAG reliability. [18] considered an augmented
GA with the Efficient Tune-In (GA-ETI) mechanism for the optimization of
turnaround time. [19] employed a non-dominated-sorting-based Hybrid PSO
approach and aimed at minimizing both turnaround time and cost. [20] intro-
duced a fuzzy dominance sort based heterogeneous finishing time minimization
approach for the optimization of both cost and turnaround time of DAG exe-
cuted on IaaS clouds.

Recently, deep reinforcement learning (DRL) methods shed new light on
the problem we are interested in [21–27]. It was shown that the multi-agent
training methods can be effective in dealing with multi-constraint and multi-
objective optimization problems. For example, [28] employed a sequential coop-
erative game approach for heterogeneous workflow scheduling. [29] developed
a reinforcement-learning-based method for multi-DAG execution with user-
defined priorities specified at different times. [30] proposed a distributed load
management and access control approach for the SaaS environment by using
a fuzzy game-theoretic model. [31] proposed modified Q-learning method for
turn-around time reduction and load balancing by considering weighted fit-
ness value function. However, Q-learning-based algorithms and models intended
for edge-infrastructure-based workflow scheduling is very rare. A highly effi-
cient reinforcement-learning-based approach for scheduling and managing multi-
workflows upon distributed, mobile, and resource-constrained edge services is in
high need.

Fig. 1. Edge computing environment
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3 Model and System

3.1 System Architecture

As shown in Fig. 1, an edge computing environment can be seen as a collection
of multiple edge servers usually deployed near base stations. By this way, users
are allowed to off-load compute-intensive and latency-sensitive applications, e.g.,
Augmented Reality (AR), Virtual Reality (VR), Artificial Intelligence (AI), to
edge servers. Within an edge computing environment, there exist n users in
an edge computing environment, denote by U = {u1, u2, ..., un}, and m base
stations, denote by B = {b1, b2, ..., bm}. Each user has an application to be
executed, and users mobile device is allowed to offload tasks on edge servers
near the base station by wireless access point. For generality, we regard mobile
applications as workflows, denote by a directed acyclic graph(DAG) W = (T,D),
where T = {t1, t2, ..., tn} represents a set of tasks. Tasks have multiple types
which have different size of input data. D = {di,j |i, j ∈ [1, n]} represents a set of
precedence dependencies, where di,j = 1 means tj can be executed only when ti
is completed, otherwise di,j = 0. Si = {s1, s2, ..., sn} represents the list of servers
which signal coverage covers user i, thus user i can offload tasks on these servers.

Users are allowed to offload tasks to the edge via wireless access points. The
action profile of users can be expressed as ai = {s1, s2, ..., sm}, where sj indicates
server sj . For a server sj , a list of users who offload tasks to it can be represented
as ULj = {i|sj ∈ ai}. For an action profile A = {a1, a2, ..., an} of all users, the
uplink data rate of wireless channel of user ui to server sj can be estimated by

Ri,j(A) = B · log2(1 +
pigi,j∑

k∈ULj
pkgk,j + σ

) (1)

where B is the channel bandwidth, pi the transmit power of user ui, gi,j the
channel gain from user ui to server sj , and σ the backgroud noise power. It can
thus be seen from this equation, if too many users choose to offload its tasks to
the same server, the uplink data rate decreases and further causes low offloading
efficiency.

Assume user ui chooses to offload its task tj to server sk, according to the
Eq. 1, the transmission time for offloading the input data of size Ci,j,k can be
estimated by

TTi,j,k(A) =
Ci,j,k

Ri,j
=

Ci,j,k

Blog2(1 + pigi,j∑
k∈ULj

pkgk,j+σ )
(2)

We assume that all wireless channels obey the quasi-static block fading rule
[32]. This rule means that the state of the channel remains unchanged during
transmission. Thus, the probability distribution of the completion time of the
task is

Ti,j,k = TTi,j,k(A) + TEi,j,k (3)

PMFTE
i,j,k(t) = Prob(TEi,j,k) (4)
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Prob(Ti,j,k) = PMFT
i,j,k(t) = PMFTE

i,j,k(t − TTi,j,k) (5)

where TE is historical execution time, PMF (t) indicates the probability mass
function of the historical execution time.

3.2 Promblem Formulation

Based on the above system model, we are interested in knowing the highest
probability of meeting the completion-time constraints. The resulting scheduling
problem can be described as follows:

max f = Probavg =
1
N

N∑

i=1

Pr(CTi <= Cg
i ) (6)

subject to,
i ∈ [1, N ], CTi ≥ 0, Cg

i ≥ 0 (7)

where Cg
i is a completion-time threshold for user ui and CTi the actual comple-

tion time of a user’s workflow.

4 Our Approach

4.1 Decomposition of the Global Constraint

For the evaluation of effectiveness of the actions by agents during the training
process, we first have to decompose the global constraint to local ones. Given
a workflow with n tasks, denoted by W = {t1, t2, ..., tn} and Cg as the global
completion-time constraint, the local constraint of subtask can be represented by
Cl = {Cl

1, C
l
2, ..., C

l
n}. We consider dividing the global constraint in proportion

to the expected completion time of each part, where specific steps are as follows:

1. Obtain the server list whose coverage reach user k, denoted by Sk =
{s1, s2, ..., sn}.

2. For task ti, its completion time on server sj is represented by a PMF that
we mentioned above. The expected completion time ei,j can be estimated by
{ei,j |

∫ ei,j

0
PMF (X) = 0.5}.

3. Task ti has multiple candidate servers Sk to be scheduled into, the expected
completion time of task ti is Et

i = avg(ei), where ei = {ei,1, ei,2, ..., ei,n}.
4. For any part pg, it consists of tasks Tg = {t1, t2, ..., tn}. The expected com-

pletion time of this part is thus Ep
g = max(Et

t1 , E
t
t2 , ..., E

t
tn)

5. Eventually, we can divide the global constraint into smaller ones as follows:

Cl
i = Cg · Ep

i∑n
j=1 Ep

j

(8)
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4.2 Deep-Q-Network-based Solution to the Workflow Scheduling
Problem

As mentioned earlier, we employ DQN for solving the optimization formulations
given above. According to DQN, the value function updated by time difference
can be expressed as:

Q(s, a) = (1 − α)Q(s, a) + α[R(a) + γ max
a′∈A

Q(s′, a′)] (9)

where Q(s, a) is the state-action value function at current state, Q(s′, a′) is the
state-action value function at the next state, α is the update step size, R(a) is
the reward derived based on the PMF of the workflow completion time according
to (12) and γ is the reward decay factor. The loss function of deep q network
can be computed by

L(θ) = Es,a,r,s′ [(Q∗(s, a|θ) − y)2] (10)

y = R(a) + δ max
a′∈A

Q∗(s′, a′) (11)

where y presents the target Q network whose parameters are periodically
replaced by evaluate Q network Q∗. The DQN procedure is shown in
Algorithm 1.

Algorithm 1. Deep Q Learning algorithm
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do

Initialise sequence s1 = {x1} and preprocessed sequenced φ = φ(si)
for t = 1, T do

With probability epsilon select a random action at

otherwise select at = maxa Q∗(φ(st), a; θ)
Execute action at in emulator and observe reward rt and state st
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φt, at, rt, φt+1) from D

Set yj =

{
rj , terminalφj+1

rj + γ maxa′ Q(φj+1, a
′; θ), non − terminalφj+1

Perform a gradient descent step on (yj − Q(φj , aj ; θ)
2)

end for
end for

The DQN environment includes components of environment observation,
action space, policy setting, and reward design [33]. Note that the former 3
components can be implemented by using the standard DQN setting, while the
reward design one should be developed based on the optimization formulation
and the constraint decomposition configuration given in the previous sections.
The reward function is designed as:

Ri(a) = Pr(X ≤ Cl
i)

3 (12)

where Cl
i is based on the decomposition of the global constraint given in (8).
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(a) The dataset shown on the Google map(b) The dataset shown on the coordinates

Fig. 2. An example of edge servers with their coverages and edge users in Melbourne
BCD

5 Case Study

In this section, we conduct simulative case studies to prove the effectiveness, in
terms of workflow completion time, network loss value, and convergence speed
of the algorithm of our method. The types of server, workflow and task are ran-
domly generated. We assume as well that edge servers and users are located
according to the position dataset of [34] as illustrated in Fig. 2. Edge servers
have 3 different types, i.e., type1, type2, and type3, in terms of their resource
configuration and performance. User applications are expressed in the form of
multiple workflows as given in Fig. 3, where each workflow task is responsible
for executing a GaussCLegendre calculation with 8, 16, or 32 million decimal
digits. The historical execution time for GaussCLegendre calculations over dif-
ferent types of edge servers are based on data from [35] shown in Fig. 4. For
the comparison purpose, we compare our proposed method with other existing
methods, i.e., NSPSO [36] and NSGA [37] as well.

5.1 Experiment Configuration

We test our methods and its peers by using a workstation with the Intel Core
i7 CPU @ 2.80 GHz, NVIDIA GeForce GTX 1050 Ti, and 8 GB RAM configu-
ration. Table 1 shows basic parameters used in the experiments.

5.2 Performance Evaluation

Based on the above configurations and datasets, we repeated invoking our pro-
posed method to schedule workflows based on performance data of edge servers
measured at 3 different time periods given in Fig. 4. It can be seen from Figs. 5
and 6 that the network loss decreases rapidly with time and the probability of
satisfying global constraint increases with iterations.
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(a) CyberShake (b) Epigenomics (c) Inspiral

(d) Montage (e) Sipht

Fig. 3. Five typical workflow templates

(a) type1 server performance measured at 3 different time periods

(b) type2 server performance measured at 3 different time periods

(c) type3 server performance measured at 3 different time periods

Fig. 4. The historical task execution time for the GaussCLegendre calculation based
on different edge of servers
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Table 1. The parameters used in the experiment

Parameter Value Meaning

ε 0.3 The probability of select random action

γ 0.9 The reward discount factor

lr 0.001 The learning rate of gradient descent algorithm

min ε 0.05 The minimum value of ε

batch size 512 Sample size each step

memory size 10000 The size of samples

ε decrement 0.00001 ε decreases each time

replace target iter 500 Network parameter update interval

Fig. 5. The loss of evaluation network Fig. 6. The probability of satisfying
global constraint

As can be seen from Fig. 7, our method clearly outperforms baseline algo-
rithms at all 3 time periods in terms of workflow completion time.
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Fig. 7. Workflow completion time at 3 different time periods

6 Conclusion

In this work, a novel probability-mass function and DQN-based approach to
scheduling multi-workflows upon a distributed edge-computing environment is
proposed. The proposed method is capable of handling time-varying performance
of edge services through probability-mass functions of historical performance
data and leveraging a Deep-Q-network framework for yielding high-quality work-
flow scheduling plans. To validate our proposed approach, we conduct a simula-
tive case study based on a well-known edge-service-position dataset and demon-
strate that our proposed method beats its peers in terms of the scheduling per-
formance.
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gram of Sichuan Province under Grant 2020 JDRC0067.
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Abstract. Content caching in mobile edge networks has stirred up
tremendous research attention. However, most existing studies focus on
predicting content popularity in mobile edge servers (MESs). In addi-
tion, they overlook how the content is cached, especially how to cache
the content with user devices. In this paper, we propose CMU, a three-
layer (Cloud-MES-Users) content caching framework and investigate the
performance of different caching strategies under this framework. A user
device who has cached the content can offer the content sharing service
to other user devices through device-to-device communication. In addi-
tion, we prove that optimizing the transmission performance of CMU is
an NP-hard problem. We provide a solution to solve this problem and
describe how to calculate the number of distributed caching nodes under
different parameters, including time, energy and storage. Finally, we eval-
uate CMU through a numerical analysis. Experiment results show that
content caching with user devices could reduce the requests to Cloud and
MESs, and decrease the content delivery time as well.

Keywords: Mobile edge networks · Cooperative caching ·
Device-to-device communication · Content delivery

1 Introduction

To cope with massive data traffic brought by the ever-increasing mobile users,
the traditional centralized network model exhibits the disadvantages of high
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delay, poor real-time and high energy consumption. To solve these problems,
the mobile edge network model is proposed, which can provide cloud computing
and caching capabilities at the edge of cellular networks. According to the survey
report by Cisco [1], the number of connected devices and connections will reach
28.5 billion by 2022, especially mobile devices, such as smartphones, which will
reach 12.3 billion. Cisco also points out that traffic of video will account for 82%
of the total IP traffic. Due to the massive content transmission traffic generated
by user requests, content caching is regarded as a research hotspot of mobile
edge network [2,3]. Liu et al. [4] also indicates that mobile edge caching can
efficiently reduce the backhaul capacity requirement by 35%.

When a user requests the content in a traditional centralized network, the
content will be provided by a remote server or Cloud, wherein there is usually
duplicated traffic during the content transmission. By caching the content from
the Cloud to the edge of the network (e.g., gateway and base station), the dupli-
cated traffic can be avoided when the user chooses the closest mobile edge server.
At the same time, it has a better network quality than the traditional central-
ized network. Due to the limited storage space, user devices cannot cache all the
contents. But with the development of the hardware, the computing and stor-
age capabilities of mobile devices have been improved greatly. Even though the
storage capabilities of a user device cannot be compared with that of Cloud and
MES, we can build a huge local content caching network relying on the explosive
growth of mobile devices, which could use D2D to provide content sharing ser-
vices [13,14]. More and more studies show that a local content caching network
has a great potential to achieve content sharing.

In this paper, we apply a three-layer content caching framework in the mobile
edge network and aim to investigate the performance of different caching ways
under this framework. Caching the content from Cloud and MES to user device
could reduce the requests to Cloud and MES, as well as save the valuable band-
width resources. It can also reduce the content transmission time and energy con-
sumption. Paakkonen et al. [18] studies the performance of local content caching
network when using different caching ways. We refer their caching strategies
and make these caching strategies applicable to both MESs and user devices.
We assume that the content popularity is known and it conforms to the ZipF
model [22]. The main contributions of this paper can be summarized as follows.
(1) We combine MESs and user devices to cache the content to create a multi-
layer mobile edge caching framework. To the best of our knowledge, content
caching that is assisted by user devices in mobile edge network has not been
well studied in previous work. (2) We prove that minimizing transmission costs
between MESs and user devices is an NP-Hard problem. We provide a solution
to solve this problem and describe how to calculate the number of distributed
caching nodes in a cluster. (3) We evaluate the performance of different caching
strategies under the proposed framework through a numerical analysis. Results
show that caching contents with user devices is feasible and effective.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 introduces the proposed framework. Problem description and
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theoretical derivation are presented in Sect. 4. Numerical analysis results are
shown in Sect. 5. Finally, the paper is concluded in Sect. 6.

2 Related Work

Recent studies use different machine learning methods to predict the popular
content or apply other technologies to maximize the storage and computing
capabilities of MESs [5–12]. For example, Chen et al. [5] used a self-supervising
deep neural network to train the data and predict the distribution of contents.
Liu et al. [9] proposed a novel MES-enabled blockchain framework, wherein
mobile miners utilize the closest MES to compute or cache the content (stor-
ing the cryptographic hashs of blocks). In these studies, even there are many
caching strategies, the predicted contents are simply copied in MESs and the
main optimization objective is the MES. A survey of content caching for mobile
edge network [3] indicated that mobile traffic could reduce one to two thirds
by caching at the edge of the network. In addition, D2D as one of the key
technologies of 5G could easily help user to utilize the locally stored resources.
And the QoE of users could have a great improvement by local content caching
[15,17]. Video traffic accounts for the vast majority of IP traffic [1], and Wu
et al. [16] proposed a user-centric video transmission mechanism based on D2D
communications allowing mobile users to cache and share videos with each other.
Paakkonen et al. [18] also investigated different D2D caching strategies.

Existing studies have combined the local devices with the cellular network
for traffic offloading. Kai et al. [23] considered a D2D-assisted MES scenario that
achieves the task offloading. Zhang et al. [24] focused on the requested contents
cached in the nearby peer mobile devices. They aimed to optimize the D2D
throughput while guaranteeing the quality of D2D channels. However, devices
randomly cached the popular contents and there was no global content caching
policy. In addition, devices are distributed within a small range so that the
communication could be established at any time. But in practice, we should
consider the scenario where the requesting device is far from the caching device.

3 System Model

The mobile edge network structure used in this paper is shown in Fig. 1. The
top layer is the Cloud, followed by the mobile edge server layer and the local
user device layer. In the local user device layer, the devices (nodes) are divided
into two types, i.e., Normal node and Caching node. When a device requests the
content, the sequence of the request is Local >> MES >> Cloud.

3.1 Caching Strategies

Four caching strategies are adopted, and some contents are randomly distributed
across the MESs in the beginning.
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Fig. 1. The architecture of the mobile edge network.

Default Caching (DC): Some contents are randomly stored in the MESs and
remain unchanged. If the MESs do not have the requested content, the request
will be sent to the Cloud.

Replication Caching (RC): User caching nodes are called the caching nodes,
and MES is called the caching server. The MESs and user nodes store a full
copy of each content when the transmission process is finished. User nodes are
regarded as the content servers after they cache the contents. They could send
the desired content to the requesting device by the D2D communication. But if
the caching node leaves, all the caching contents are lost. It has to request the
desired content from the farther caching nodes or the MESs.

Distributed Replication Caching (DRC): User caching nodes are called
the distributed caching nodes, and MES is called the distributed caching server.
Assuming that the number of user nodes is N , and n (n<<N) nodes are selected
as the distributed caching nodes by MESs. Distributed caching nodes are respon-
sible for content sharing to the normal nodes. Note that, distributed caching
nodes do not actively request any content for themselves. If a distributed caching
node requests the content for a normal node from the upper layer, all distributed
caching nodes cache the full copy of each content, which is returned from the
upper layer. That is to say each content is cached in n nodes. When a distributed
caching node leaves its cluster, an available node from that cluster will replace it.
Using this strategy, the cached contents are not easily lost. But there is an addi-
tional compensation consumption when a new distributed caching node recovers
the previously cached content.

Distributed Fragment Caching (DFC): Different from DRC, the content
is divided into several parts according to the number of distributed caching
nodes in the requesting cluster. That is to say each distributed caching node
stores a part of the content. The upper layer performs the content fragmentation



214 Z. Guo et al.

automatically during the experiment. Note that MESs use the DRC caching
strategy when user nodes use DFC.

3.2 User State

We assume that state space of a user is State = {Leave, Stay,Request}, and
the state-transition is a Markov chain with two reflective walls on a straight line
as shown in Fig. 2.

Fig. 2. The state-transition diagram.

Where Leave means the user leaves and deletes the cached contents. The
probability of Leave is pl. We assume that a user returns back to the cluster
conforming to the Poisson process. Stay means the user stay in the place with no
actions, and the probability of Stay is ps. Request means the user requests the
desired content, and the probability of Request is pr. We have ps + pr + pl = 1.
We assume that the number of all the users is N , N = {1, 2, ..., n}. The state
matrix of the user is denoted by State = {Stateij | i ∈ N, j = 1, 2, 3}. We use
0 and 1 to represent the user state, where 1 represents that the user is in the
corresponding state. The users can utilize the Service Set Identifier (SSID) to
access the cached content and sense the state of other users. In addition, the
users could receive the data from the MESs while they share the data to the
other user devices. To avoid the transmission game, we define a game strategy
set of an ∈ {0}∪N , wherein an > 0 means the user of n is willing to provide the
content sharing service. The value of an is subtracted by 1 whenever the content
is transmitted successfully. If an = 0, the user n is willing to request its desired
content, and set an with the default value after successfully requesting.

4 Theoretical Analysis

We first introduce the NP-Hard problem and present how to calculate the perfor-
mance of each caching strategy. Then, the derivation of calculating the number
of the distributed caching nodes is presented.

4.1 Problem Formulation and Solution

The contents are denoted as R = {r1, ..., rE}, and the size of each content is set
to s.There are m MESs and the set of MESs is denoted as S = {S1, ..., Sm}. The



Towards Cooperative Content Caching with User Device 215

set of α = {α1, ..., αm} means the maximum storage space of the MESs, while
β = {β1, ..., βn} is the maximum storage space of the users. And we have β <<α.
The content caching matrix of the MESs is X = {Xm,E | Sm ∈ S, rE ∈ R}, and
the content matrix of the users is Y = {Yn,E | n ∈ N , rE ∈ R}. If a mobile edge
server of m has cached the content of E, then Xm,E = 1, otherwise Xm,E = 0.
The content matrix of the users has the same operations. The storage space of
the MESs and the users should meet the following constraints.

⎧
⎪⎪⎨

⎪⎪⎩

E∑

i=1

Xm,i · s ≤ αm, Sm ∈ S
E∑

i=1

Yn,i · s ≤ βn, n ∈ N
(1)

When the storage space reaches to the maximum capacity and a copy of new
content needs to be cached, the Least Recently Used (LRU) algorithm is utilized
to realize the space release and content replace. In addition, we assume that the
transmission consumption of the users is ηu, and the transmission rate is TRu.
The values for each MES are marked as ηs and TRs. Similarly, the symbols of
the Cloud are ηc and TRc. We assume that CE is the energy consumption and
TE is the time overhead caused by transmitting the content of E. We should
make sure that the energy consumption and the time overhead are minimized
during each transmission. e.g., node k transmits the content of E to node o,
CE

k,o and TE
k,o should reach the minimum. That is to say the distance or the

route path between them should be minimized. The distance matrix of the users
is denoted as DU = {DUi,j | i, j = 1, 2, ..., n; i �= j}, while for each MES, the
expression is DS = {DSi,j | i, j = 1, 2, ...,m; i �= j}. When the content of E is
transmitted from node k to node o, the following constraints (Problem 1, P1)
should be satisfied.

(P1) Min (CE + TE)

s.t.
E∑

i=1

Xk,i · s ≤ αk, Sk ∈ S

E∑

i=1

Yk,i · s ≤ βk, k ∈ N

DSk,o = Min
g �=o

{DSg,o | g = 1, 2, ...,m;Xg,E = 1}
DUk,o = Min

g �=o
{DUg,o | g = 1, 2, ..., n;Yg,E = 1}

Where, after the transmission is completed, the required caching space should
not exceed the maximum storage capacity of the node. During the transmission
process, the shortest distance or route path should be chosen.

Theorem 1. Energy consumption and time overhead reach the minimum in P1
is an NP-Hard problem.

Proof. Travel Sale-man Problem (TSP) is a classical NP-Hard problem. During
the experiment, we assume that any object (i.e., any user) of o ∈ {N} requests
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the content from the Cloud. The Cloud sends the content to the request object
of o going through the MES layer and the user layer. The route path of the user
layer is Ruser, and the consumption of the single-hop routing is νu. Let Rsever

denote the route path of the MES layer, and the consumption of the single-hop
routing is νs. We have νall = νu ∗Ruser +νs ∗Rsever, and our goal is to minimize
νall. We treat the request object of o as the Sale-man and consider the Cloud
as the destination. The total number of the travel itinerary between them is
Ruser +Rsever, and there are RRsever

user schemes. We need to find the smallest νall

of these schemes. Therefore, P1 is equivalent to the Travel Sale-man Problem,
i.e., P1 is NP-Hard.

Since P1 is NP-hard, we need to resort to a sub-optimal solution for P1. We
use a clustering algorithm to reduce the number of the available route paths, e.g.,
the improved K-means++ algorithm. In RC, the requesting nodes give priority
to scanning other nodes within their own clusters. Frequent communication can
enrich the cache community greatly. In the distributed caching strategies, each
cluster has its own distributed caching nodes, wherein the normal nodes could
request the contents from the closest distributed caching nodes.

The clustering algorithms can be used for both the MES layer and the user
layer, and we take the user layer as an example to illustrate. The coordinate
vectors of the users is regarded as the training sample, which is denoted as
I =

{
Ii | Ii ∈ R2, i = 1, 2, 3, ..., n

}
, e.g., Ii = {xi, yi}. There are K clusters, e.g.,

Φ = {Φ1, ..., ΦK}. The center of the cluster is denoted as π = {πi, ..., πK}. The
number of the cluster members is denoted as ϕ = {ϕ1, ..., ϕK}. We calculate the
euclidean distance of each sample from the center. For ∀Ii ∈ Φi, we have:

‖Ii − πi‖2 = min
j

‖Ii − πj‖2. (2)

The indicator function g is used to check whether the distance between the center
and each sample is the shortest, which is expressed as

gi,j =

{
1, ‖Ii − πi‖2 = min

j
‖Ii − πj‖2

0, Otherwise.
(3)

When
n∑

i=1

K∑

j=1

gi,j is at its maximum, the error rate of cluster is the lowest. The

new centres will be calculated by the following expression.

πj =

n∑

i=1

gi,jIi

n∑

i=1

gi,j

. (4)

We use the improved K-means++ algorithm as shown in Algorithm1.
If the center nodes are randomly selected and they are too close to each other,

the convergence will become slow, which degrades the performance of K-means.
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Therefore, how to select the initial center nodes is optimized in Algorithm 1 (line
1–line 11). We select the farthest node from the existing centres every time, so
the selected center could cover all the samples as far as possible. When the center
selection process is completed, the iteration process is enabled (line 12–line 17).

4.2 Performance Formulation

To better describe the performance, we have B = {b1, ..., bn, bn+1, ..., bn+m}. For
example, bE

u = 1 is utilized to represent that the content of E is transmitted by
the user node of u.

Algorithm 1. K-means++
Input: I, K
Output: Φ
1: Initialize the number of cluster center k = 0, the number of iteration n = 0, distance

array D = {0}, cluster center array π = {0} ;
2: Let k = 1, a node ∀Ik ∈ I is randomly selected as the first center, update π;
3: while k < K do
4: D = {0};
5: for each non-central node ∀Ii ∈ I do
6: Calculate the shortest distance by equation (2);
7: Update D;
8: end for
9: Select the node with the maximum value in D as the new center;

10: Update k and π;
11: end while
12: Let the number of iteration n = 1.
13: repeat
14: Partition each non-central node from I by equation (3).
15: Calculate the new centres by equation (4) and update π ;
16: until πj(n + 1) == πj(n), ∀j = 1, 2, ..., K

Default Caching and Replication Caching have the same performance
expressions from the aspects of storage, energy and time. The utilized storage
space is represented as follows.

(
m∑

i=1

E∑

j=1

Xi,j +
n∑

i=1

E∑

j=1

Yi,j) · s. (5)

CE is expressed as:

CE =

⎧
⎨

⎩

ηu · s bE
u = 1

ηs · s bE
u = 0, bE

s = 1
(ηs + ηc) · s bE

u = 0, bE
s = 0

(6)
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TE is expressed as:

TE =

⎧
⎨

⎩

s
TRu

bE
u = 1

s
TRs

bE
u = 0, bE

s = 1
( s

TRs
+ s

TRc
) bE

u = 0, bE
s = 0

(7)

Distributed Caching. When using the distributed caching strategies of DRC
and DFC, the requesting nodes first request a distributed caching node. If the
required content is not found, the distributed caching node will request the
closest distributed caching server. Then, the required content is cached by the
distributed caching node and transmitted to the requesting nodes by D2D com-
munication. To prevent the requesting nodes from the same cluster to occupy
too much bandwidth resources of the closest distributed caching server, contents
are always sent from distributed caching servers to distributed caching nodes by
default. If the distributed caching server does not have the requested content, it
will request the Cloud with the same process. There are K clusters in the user
layer divided by K-means++. However, each cluster cannot specify only one
node as the distributed caching node. If there is only one distributed caching
node, it will be difficult to handle a large number of concurrent requests, because
transmitting the content to the requesting nodes from one distributed caching
node by D2D communication is infeasible.

Taking the user cluster as an example, ξ denotes the number of distributed
caching nodes. It is assumed that ξK nodes are selected from cluster K as the
distributed caching nodes to cache and share the contents. For the distributed
caching strategies of DRC and DFC, the multi-objective optimization problem
(Problem 2, P2) is expressed as follows.

P2 : min f1 =
ξK∑

i=1

E∑

j=1

Yi,j · s

min f2 =
⌈

ϕK−ξK
ξK

⌉
· T

min f3 =
ϕK−ξK∑

i=1

·Ci

s.t. 0 < ξK < ϕK ,
E∑

i=1

Yk,i · s ≤ βk, k ∈ ξK .

Where, f1 denotes the storage space, and f1 of each node can not exceed the limit
value. Similarly, f2 denotes the time required to complete all of the requests, and
f3 denotes the energy consumption caused by all of the successful requests. The
optimization object of f1 is opposite to f2 and f3. When f1 decreases, fewer
distributed caching nodes provide the content sharing services, but at the same
time, f2 and f3 increase. When minimizing f2 and f3, f1 increases.

In order to solve P2, the Linear Weighting Method is adopted to make P2
become a single-objective optimization problem. The weight vectors are denoted
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as u = {ui | ui ≥ 0, i = 1, 2, 3}, and
3∑

i=1

ui = 1. Each weight coefficient is corre-

sponding to fi in P2. Then P2 can be expressed as follows.

min
ξK

3∑

i=1

uifi(ξK). (8)

Let ui = ξi. And ξi is satisfied by expression (9).

fi(ξi) = min
ξk∈ϕK

fi(ξk) i = 1, 2, 3. (9)

Where, ξi is the optimization value making the object of fi reach the minimum.
Then we have the following expression.

u = [1, ϕK − 1, ϕK − 1]T . (10)

We substitute Eq. (10) into Eq. (8).

min F (ξK) =
β̄

2ϕK − 1
· ξK +

(ϕK − 1) · T̄

2ϕK − 1
· ϕK − ξK

ξK

+
(ϕK − 1) · C̄

2ϕK − 1
· (ϕK − ξK).

(11)

β̄ is the average caching space, T̄ is the average transmission time and C̄ is the
average energy consumption. We take the derivative of ξK and set Eq. (11 ) to
0. Then we have the following expression.

β̄

2ϕK − 1
− (ϕK − 1) · T̄

2ϕK − 1
· ϕK

ξ2K
− ϕK − 1

2ϕK − 1
· C̄ = 0

β̄ − (ϕ2
K − ϕK) · T̄

ξ2K
− (ϕK − 1) · C̄ = 0

(ϕ2
K − ϕK) · T̄

ξ2K
= β̄ − (ϕK − 1) · C̄

ξK =
√∣

∣
∣
(ϕ2

K−ϕK)·T̄
β̄−(ϕK−1)·C̄

∣
∣
∣.

The result is an efficient solution to Eq. (11). It is round up to an integer and
considered as the number of the distributed caching nodes. We then discuss the
performance of DRC and DFC.

1) Distributed Replication Caching (DRC): MES layer has KS clusters,
e.g., ψ = {ψ1, ..., ψKS}. The number of the distributed caching servers in each
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Algorithm 2. Adding and deleting the content
Input: rE , S, α, X
Output: X
1: Initialize the content r = null;
2: for i=0 to the number of the distributed caching servers do
3: while the caching space of Si >= αi do
4: Find r by LRU;
5: Delete r and update X.
6: end while
7: end for
8: for i=0 to the number of the distributed caching servers do
9: if Xi,E == 0 then

10: Cache rE and update Xi,E = 1.
11: end if
12: end for

cluster is denoted as S̄. The utilized caching space can be estimated by the
following expression.

KS∑

i=1

E∑

j=1

Xm,j · s · S̄i +
K∑

k=1

E∑

j=1

Yn,j · s · ξk

Sm ∈ ψi, n ∈ Φk.

(12)

The distributed caching servers within a cluster cache the same contents so that
only the copies of the content cached in one distributed caching server need to
be recorded. Then, multiplying the copies by the content size and the number
of the distributed caching servers, the result is the utilized caching space. In
addition, in order to guarantee the consistency of the distributed caching servers,
Algorithm 2 is applied to add and delete the content. We take the MES layer as an
example to illustrate the algorithm. The energy consumption can be calculated
by Eq. (6). But if the content of E is transmitted from the upper layer, it needs
to be cached in the distributed caching server, as well as the distributed caching
nodes. So each layer will have additional transmission consumption: multiplying
the number of distributed caching servers or nodes by CE . When a distributed
caching node leaves, an available node from the same cluster will be selected as
the new distributed caching node. The selection rule follows Algorithm1 (line 1–
line 11 ). The extra consumption caused by recovering the cached content is also
calculated by Eq. (6). We denote N̄r as the number of nodes requesting content of
E simultaneously. If the requesting nodes are more than the distributed caching
nodes, some requesting nodes have to wait until the distributed caching nodes
have the capacity to provide the content sharing services. The required time is
calculated by the following expression.



Towards Cooperative Content Caching with User Device 221

TE =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s
TRu

⌈
N̄r

ξ

⌉
bE
u = 1

s
TRu

⌈
N̄r

ξ

⌉
+ s

TRs
bE
u = 0, bE

s = 1
s

TRu

⌈
N̄r

ξ

⌉
+ s

TRs
+ s

TRc
bE
u = 0, bE

s = 0.

(13)

2) Distributed Fragment Caching (DFC): The content is divided into sev-

eral parts. The size of each part of the content is different across the clusters.
The caching space is expressed as follows.

KS∑

i=1

E∑

j=1

Xm,j · s +
K∑

k=1

E∑

j=1

Yn,j · s

Sm ∈ ψi, n ∈ Φk.

(14)

If the target distributed caching node is busy, other parts of the required content
will be transmitted from other distributed caching nodes. The required time is
expressed as follows.

TE =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s
TRu

⌈
N̄r

ξ

⌉
bE
u = 1

s
TRu

⌈
N̄r

ξ

⌉
+ s

TRs·ξ bE
u = 0, bE

s = 1
s

TRu

⌈
N̄r

ξ

⌉
+ s

TRs·ξ + s
TRc

bE
u = 0, bE

s = 0.

(15)

The energy consumption can be calculated by Eq. (6). There is no extra transmis-
sion consumption when the content is transmitted from the upper layer, because
the total size that needs to be transmitted is equal to the size of the original
content. When a node is selected as the new distributed caching node, the extra

consumption caused by recovering the cached content is calculated by
E∑

i=1

Ci,

wherein

Ci =
{

ηu · s
ξ if Yi, = 1

0 Otherwise.
(16)

If all the distributed caching nodes are busy, the MESs will help to recover the
cached content. Then, for each content that needs to be recovered, the extra
consumption is calculated by C = ηs · s

ξ .

5 Experiment

5.1 Experiment Setup

10 MESs and 100 user nodes are randomly distributed within 500 × 500m. The
simulation ends after the transmission is performed for 5000 times successfully.
The caching space of each MES is 100 MB, while the size of each user node is
20 MB. We assume that the expectation of the Poisson process for the leaving
nodes is 100. All the MESs are distributed caching servers in their own clus-
ters, and they will not leave their places. The transmission parameters are set
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according to a survey report [25], where ηu is 5 j/MB. The MESs and the Cloud
utilize the cellular network, where ηs and ηc are 100 j/MB. The transmission
rate of the user is between 54 Mb/s and 11 Mb/s within 200 m, while for the
MESs, the value is between 1 Mb/s and 0.5 Mb/s within 500 m. The value for
the Cloud is set to 0.5 Mb/s. There are 1000 video items and the size of each
item is 20 Mb. The popularity distribution of the items is generally modeled as a
ZipF distribution. The default shape parameter θ is set to 0.56 [26]. The default
game strategy value of a is set to 1. The default requesting probability of pr is
0.6, and ps is equal to pl, i.e., 0.2.

In addition, we add two comparison objects, i.e., DRC-Extra and DFC-Extra.
All user nodes in RC could cache the contents, while only the distributed caching
nodes have the caching ability in DRC and DFC. Therefore, to guarantee the
same caching capacity, we increase the caching space of the distributed caching
nodes in DRC-Extra and DFC-Extra. The new caching space of each distributed
caching node is calculated as follows.

new caching space =
the total caching space of RC

the number of the distributed caching nodes
. (17)

We calculate the average transmission time (ATT), average energy
consumption (AEC) and the number of local requests (LR) that are
served by the caching nodes or the distributed caching nodes. These metrics
are used to evaluate the effect on reducing the requests to the MESs and the
Cloud. The caching space (CS) is adopted for choosing an appropriate caching
strategy when the caching space is restricted.

5.2 Numerical Analysis

The DC strategy is utilized as a baseline for numerical analysis. In DC, contents
are randomly stored across the MESs and the cached contents remain unchanged
during the whole experiment. The numerical analysis results under different
parameters are shown in Fig. 3a to Fig. 3o.

In Fig. 3a to Fig. 3d, items and θ are set to 1000 and 0.56 respectively, while
pr changes from 0.1 to 0.9. The increase of the request probability means fewer
nodes leave away and more different contents are cached. As a result, the caching
space increases (Seen in Fig. 3c), while the energy consumption decreases (Seen
in Fig. 3b). For DFC, DFC-Extra and RC, the copies of local contents increase
with the growth of pr. So the transmission time of them decreases. For DRC
and DRC-Extra, since they have to cache the full copy of each content and the
caching space is limited, the amount of the content cached locally is small. They
have to request new contents from the upper layer frequently, so the transmission
time of DRC and DRC-extra remains unchanged. Since the amount of content
cached on MESs increases, DRC and DRC-Extra spend less time than DC. Note
that the time consumption of DFC-Extra is high when pr is equal to 0.1. The
low request rate causes a large number of distributed caching nodes to leave,
and the requesting nodes have to wait for new distributed caching nodes to
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(a) ATT (s) (b) AEC (J) (c) CS (MB) (d) LR

(e) ATT (s) (f) AEC (J) (g) CS (MB) (h) LR

(i) ATT (s) (j) AEC (J) (k) CS (MB) (l) LR

(m) ATT (s) (n) AEC (J) (o) CS (MB) (p) LR

Fig. 3. Experimental results under different parameters. a to d, items = 1000, θ =
0.56, pr ∈ [0.1, 0.9]. e to h, θ = 0.56, pr = 0.6, items ∈ [100, 1000]. i to l, pr = 0.6,
items = 1000 , θ ∈ [0.1, 2]. m to p, pr = 0.6, θ = 0.56, items = 1000.

recover the cached content. Compared with RC, cached contents are not lost
when using distributed caching strategies so that the caching space remains
unchanged. Meanwhile, the extra consumption of recovering the cached contents
causes higher energy consumption when using distributed caching strategies.

In Fig. 3e to Fig. 3h, θ and pr are set to 0.56 and 0.6 respectively, while items
change from 100 to 1000. When the number of items is 100 (most of the contents
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are cached locally), the performance of each strategy is optimal, especially DRC
and DRC-Extra. It means that the distributed caching strategies perform better
with a larger caching space. The increase of items means more different contents
can be requested and the content caching update is more frequent, which causes
the increase of the transmission time (Seen in Fig. 3e), the energy consumption
(Seen in Fig. 3f) and the caching space (Seen in Fig. 3g). Meanwhile, it reduces
the number of local requests (Seen in Fig. 3h). The caching space of distributed
caching strategies remains unchanged because the number of the distributed
servers is fixed and the cached contents are not lost. The caching space of RC
fluctuates greatly caused by the leaving caching nodes. DRC and DRC-Extra
have to cache several full backups after each successful request, resulting in the
highest energy consumption (Seen in Fig. 3f).

In Fig. 3i to Fig. 3l, pr = 0.6 and items are set to 0.6 and 1000 respectively,
while θ changes from 0.1 to 2. The parameter of θ determines the popularity
of the items. When θ is too small or too large, some contents will be requested
frequently. The performance of each strategy is optimal when θ is equal to 2,
where the popularity of the items is high. When θ changes from 0.1 to 1, the
transmission time increases (Seen in Fig. 3i), wherein the popularity of items are
evenly distributed gradually. The cached contents update frequently, resulting
in more energy consumption (Seen in Fig. 3j) and fewer local requests (Seen in
Fig. 3l). When θ is greater than 1, some contents are requested frequently. The
transmission time and energy consumption decrease, while the number of local
requests increases. The caching space (Seen in Fig. 3k) remains high because
other requested contents are still cached.

In Fig. 3m to Fig. 3p, pr, items and θ are set to 0.6, 1000 and 0.56 respec-
tively. We evaluate the performance under different successful requests. As
depicted in Fig. 3m, DFC-Extra has the minimum transmission time, and the
transmission time of RC and DFC is gradually approaching to each other. In the
beginning, the amount of the cached content of RC is small. However, the cached
content of RC is enriched gradually and the transmission time decreases, while
the transmission time of the distributed caching strategies increases due to the
small amount of the cached content and frequent content caching updates. The
energy consumption increases slightly (Seen in Fig. 3m) caused by updating and
recovering the content. The caching space (Seen in Fig. 3o) of the distributed
caching strategies remains unchanged after it reaches the maximum limit, while
the caching space of RC still fluctuates. The local requests (Seen in Fig. 3p) of
DFC-Extra and RC tend to grow faster due to caching a large number of popular
contents.

The findings are summarized as follows. (1) The transmission time and energy
consumption of RC, DFC and DFC-Extra are better than other caching strate-
gies in most cases. DFC-Extra performs best, but it needs a large cache space and
presents high energy consumption as well. (2) RC performs well in all the scenar-
ios. However, the cached contents are easily lost and the performance degrades
if the nodes in the community are not willing to share the contents. (3) All the
distributed caching strategies work badly when the nodes leave frequently (e.g.,
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pr = 0.1). However, all of them work well under high request probability and
popularity (e.g., θ = 2). The distributed caching strategies need more caching
space to work better, but they also cause higher energy consumption. DRC and
DRC-Extra seem to present the worst performance, but they can keep working
when only one distributed caching node provides service. In DFC and DFC-
Extra, the nodes have to wait when one of the distributed caching nodes is lost.
(4) More importantly, using user devices to cache the content could not only
reduce the requests to the Cloud and the MESs, but also decrease the content
transmission time as shown in Fig. 3a and Fig. 3d.

6 Conclusions

In this paper, we propose CMU, a three-layer (Cloud-MESs-Users) content
caching framework, which could offload the traffic from Cloud-MESs to user
devices. We describe the content caching problem and evaluate the performance
of different caching strategies under this framework. Numerical results show that
content caching with user devices could reduce the requests to Cloud-MESs, as
well as decrease the content transmission time. To attract more nodes to partic-
ipate in content caching and sharing, an incentive mechanism is needed for the
distributed caching strategies in the future.
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