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Abstract. Blockchain technology is currently receiving increasing attention
with widely used in many fields such as finance, retail, Internet of Things, and
intelligent manufacturing. Although many blockchain applications are still in the
early stage, this technique is very promising and has great potential. Blockchain
is considered as one of the core technologies to trigger a new round of disruptive
changes after Internet. In the future, it is expected to change the development
prospects of many industries. However, the current blockchain systems suffer
from poor performance which affects large-scale application. In order to better
understand the performance of the blockchain systems, in this paper, we analyze
four mainstream blockchain systems (Ethereum, Fabric, Sawtooth and Fisco-
Bcos), and then perform a performance comparison through open source
blockchain benchmarking tools. After that, we propose several optimization
methods and discuss the future development of blockchain technique.
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1 Introduction

Blockchain is essentially a distributed ledger technique. It is the core technology of
Bitcoin [1] and other virtual currencies. It can record transactions between buyers and
sellers and ensure that these records are verifiable and permanently stored. At present,
according to different application scenarios and user needs, blockchain can be divided
into three categories: public blockchain, private blockchain, and consortium
blockchain.

The public blockchain is the most decentralized blockchain. These public block-
chains, such as Bitcoin and Ethereum [2], are not controlled by third-party organiza-
tions. Everyone can access the data records on the chain, participate in transactions, and
compete for the right to generate new blocks. Program developers have no right to
interfere with the users, and each participant (i.e. node) can join and exit the network
freely, and perform particular operations.
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The private blockchain is completely the opposite. The write permission of the
network is fully controlled by an organization or institution, and the data access is
regulated by the organization. It can be understood as a weakly centralized system.
Because the participating nodes is few and have strict restrictions. Compared with
public blockchains, the time for private blockchains to reach consensus is relatively
short, the transaction speed is faster, the efficiency is higher, and the cost is lower. This
type of blockchain is more suitable for internal use by specific institutions, such as the
Linux Foundation [3].

The consortium blockchain is a blockchain between the public and private
blockchains, which can achieve “partial decentralization”. Each node on the chain
usually has a corresponding physical institution or organization; participants authorize
to join the network and form a stakeholder alliance to jointly maintain the blockchain
operation. Similar to private blockchain, consortium blockchain has the characteristics
of low cost and high efficiency and is suitable for B2B transactions such as transactions
and settlement between different entities.

Due to the different design, these blockchains have different application scenarios.
Table 1 compares the three different blockchain systems. The public blockchain is
suitable for scenario that has high requirements on credibility and security, which does
not require high transaction speed. Private blockchain or consortium blockchain is more
suitable for applications with high requirements on privacy protection, transaction speed
and internal supervision. The consortium blockchain’s transaction confirmation time
and transactions per second are greatly different from the public blockchain, and the
requirements for security and performance are also higher than the public blockchain.

For example, Ethereum is one of the most well-known public blockchains. It
provides a decentralized Ethereum Virtual Machine to process peer-to-peer contracts
through its dedicated cryptocurrency Ether. Hyperledger [4] is the representative of the
consortium blockchain. As an open consortium, Hyperledger has incubated a series of
business blockchain technologies, including a distributed ledger framework, a smart
contract engine, a client library, a graphical interface, a utility library, and a sample
application. The current blockchain system cannot solve the impossible triangle
problem of “Decentralization, Scalability and Security” [27], so we need to find a
balance point to take the advantages of different blockchain systems.

Table 1. Comparison of public, private and consortium blockchain

Public blockchain Private blockchain Consortium blockchain

Participants Free Permissioned Permissioned
Features Completely decentralized

Poor performance
High fault tolerance

Trusted centralization
High performance
Low fault tolerance

Partially decentralized
Moderate performance
Moderate fault tolerance

Use cases Cryptocurrency Audit, Issuance Payment, Settlement
Project Bitcoin, Ethereum ConsenSys Hyperledger fabric
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In order to better understand the performance of different blockchain systems, in
this paper, we analyze four mainstream blockchain systems (Ethereum, Fabric, Saw-
tooth and Fisco-Bcos), and then perform a performance comparison through open
source blockchain benchmarking tools.

The contributions are summarized as follows:

1. A detailed performance comparison of Ethereum, Fabric [5], Sawtooth [6] and
Fisco-Bcos [7] is presented.

2. Major performance bottlenecks are revealed.
3. Some future optimization methods are proposed.

The rest of the paper is organized as follows: Sect. 2 introduces the architectures of
different blockchains. Section 3 describes the motivation and goals of our research.
Section 4 introduces the experimental method. Section 5 presents the experimental
results and proposed some possible optimizations; Sect. 6 introduces the related work.
Finally, we conclude the whole paper and present the future work in Sect. 7.

2 Background: Blockchain Architecture

2.1 Ethereum

The blockchain is derived from bitcoin. Generally, we call it blockchain 1.0, which is
mainly based on various electronic currencies. The most common industry applications
are micropayments, foreign exchange, and so on. With the development of blockchain,
blockchain 2.0 has emerged. The usage scenarios of Blockchain 2.0 are also richer than
Blockchain 1.0. It can not only be used in payments, but can also be used in stocks,
bonds, futures, loans, mortgages, property rights, smart property and smart contracts.
Bitcoin is the representative of blockchain 1.0, Ethereum is the representative of
blockchain 2.0. Ethereum is a platform, including digital currency Ether and Ether-
Script, which are used to build distributed applications. It can implement Turing-
complete virtual machines and use any currency, protocol and blockchain. The overall
architecture of Ethereum can be divided into three layers [26]: underlying services,
core layer, and top-level applications (see Fig. 1).

The underlying services include P2P network services, LevelDB database, cryp-
tographic algorithms, and basic services such as sharding optimization. Each node in a
P2P network is equal and provides services together. Nodes in the network can gen-
erate or review new data. The Ethereum blocks, transactions, and other data are ulti-
mately stored in the LevelDB database. Cryptographic algorithms are used to ensure
the privacy of data and the security of the blockchain. Sharding optimization makes it
possible to verify transactions in parallel.

The core layer contains core elements such as the blockchain, consensus algorithm,
and Ethereum virtual machine. It takes blockchain technology as the main body,
supplements Ethereum’s unique consensus algorithm, and uses EVM (Ethereum Vir-
tual Machine) to run smart contracts. This layer is the core component of Ethereum.
The first problem that the decentralized ledger of the blockchain structure needs to
solve is how to ensure the consistency and correctness of the ledger data on different
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nodes, and the consensus algorithm is used to solve this problem. EVM is a major
innovation of Ethereum. It is the operating environment of smart contracts in Ethereum,
which enables Ethereum to implement more complex logics.

The top-level applications include API interfaces, smart contracts, and Decentral-
ized Application (DApp). Ethereum’s DApp exchanges information with the smart
contract layer through Web3.j. All smart contracts run on the EVM and use RPC calls.

Various layers cooperate with each other and perform their duties to form a
complete Ethereum system. In the underlying services, data such as transactions and
blocks are stored in the LevelDB database. Cryptographic algorithms are used to
encrypt block generation and transaction transmission. Optimization of sharding speeds
up transaction verification. The consensus algorithm is used to solve the consistency of
the ledger among P2P network nodes. The DApp in the top-level application needs to
be executed on the EVM.

2.2 Hyperledger Fabric

Figure 2 shows the architecture of Fabric. Member management [23] provides member
registration, identity protection, content confidentiality, and transaction auditing
functions. All members of OBC (Open Blockchain) must be licensed to initiate
transactions, which is different from the public blockchain (all participants do not need
to log in and can submit directly). When an OBC member initiates a transaction, if the
Transaction Certificate Authority (TCA) function is enabled, the transaction certificate
will protect the member ID from being seen by unrelated parties. Block services [28]
are used to maintain a consistent distributed ledger throughout the network. Based on
the P2P communication network (gRPC), messages are transmitted between nodes
through HTTP messages. Highly optimized design makes the status synchronization
efficient and reliable. Consensus algorithms (PoW [8], PoS [9], PBFT [10], Raft [11])
are modular and pluggable. OBC provides a CLI client tool to enable developers to

Fig. 1. Ethereum architecture. Fig. 2. Fabric architecture.
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quickly test the ChainCode [22] or query the transaction status. ChainCode is used to
form a smart contract and is embedded in the transaction. All confirmation nodes must
execute it when confirming the transaction. ChainCode’s execution environment is a
sandbox (Docker [12]) and supports Go, Java, Node.js [24].

2.3 Hyperledger Sawtooth

Sawtooth’s design includes three main architectural layers: ledger layer, log layer, and
communication layer (see Fig. 3):

The implementation of the ledger layer is basically completed by extending the
functions of the log layer and the communication layer. For example, the two built-in
Endpoint Registry and IntergerKey Registry transaction families, and the MarketPlace
transaction family as an example, are derived by extending the underlying functions.

The log layer implements the core functions of Sawtooth. It implements consensus
algorithms, transactions, blocks, global storage managers, and data storage (block
storage and key-value storage). The block and transaction concepts are similar with
other blockchain projects.

The communication layer mainly implements communication between nodes
through the gossip protocol [13], which mainly includes protocol layer connection
management and basic flow control. Nodes send messages to each other to exchange
information. Information is usually encapsulated and transmitted in different types of
messages, such as transaction messages, transaction block messages, and connection
messages. Like many distributed systems, in the entire architecture, lots of messages
need to be sent between nodes through a chat protocol. To this end, the communication
layer implements a Token Bucket mechanism to control the transmission speed of data
packets.

Fig. 4. Fisco-Bcos architectureFig. 3. Sawtooth architecture
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2.4 Fisco-Bcos

Fisco-Bcos’ structure (see Fig. 4) is mainly divided into network layer and group layer.
The network layer is mainly responsible for communication between blockchain nodes.
The group layer is mainly responsible for processing intragroup transactions. Each
group runs a separate ledger. In a network adopting a group architecture, there may be
multiple different ledgers according to different business scenarios. Blockchain nodes
can select groups to join according to business relationships and participate in the data
sharing and consensus process of the corresponding ledgers.

The group architecture has good scalability. Once an organization participates in
such a consortium blockchain, it has an opportunity to flexibly and quickly enrich
business scenarios and expand business scale, and the system operation and mainte-
nance complexity and management costs also linearly decrease. On the other hand, each
group in the group structure independently executes the consensus process, and each
group independently maintains its own transaction transactions and data without being
affected by other groups. The advantage is that the groups can be decoupled, operate
independently, and achieving better privacy isolation. When messages are exchanged
across groups, authentication information is carried, which is credible and traceable.

3 Motivation

Nowadays, the poor performance is one of the main challenges of current blockchain
technology. The performance indicators of the blockchain mainly include transaction
throughput and latency. Transaction throughput represents the number of transactions
that can be processed at a fixed time, and latency represents the response and pro-
cessing time to transactions. In practical applications, two factors need to be com-
prehensively examined. It is incorrect to consider only transaction throughput without
latency. Long-term transaction response will hinder user experience and affect users’
experience. Considering latency without throughput will cause lots of transactions to be
queued. Some platforms must be able to handle large amount of concurrent users.
Technical solutions with low transaction throughput will be directly abandoned.

In order to solve the performance problems of the blockchain systems, we have
conducted in-depth research on mainstream blockchain systems, mainly including the
throughput, latency, and resource utilization of the blockchain systems. By analyzing
the architecture and adjusting the corresponding parameters, we understand the char-
acteristics of each blockchain system and find out the bottlenecks of the blockchain
systems. After that, our goal is to adopt some optimization measures to alleviate these
bottlenecks and improve the performance of blockchain systems.

4 Experimental Methodology

We use transaction throughput and latency as the main performance metrics to eval-
uate the performance of Ethereum, Fabric, Sawtooth, and Fisco-Bcos. Transaction
throughput is the number of transactions that the system can process per second.
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The specific calculation method is the number of concurrent transactions divided by the
average response time. Latency is the time it takes for an application to send a
transaction proposal to the transaction commit. We use caliper to load and test the
blockchain system. Caliper [14] is a blockchain performance benchmarking framework
that allows users to test different blockchain solutions using predefined use cases and
obtain a set of performance test results. The Caliper project was originally launched in
May 2017. Huawei, a global information and communication technology company,
actively participated in the design and development of the project, which was accepted
by the hyperledger technical committee and added to the hyperledger project.

All tests were run in the following environments: 4 identically configured servers
with the Intel (R) Xeon (R) CPU E5-2630 v4 @ 2.20 GHz CPU, 64G DDR3 RAM, 4T
HDD and running Ubuntu18.04 LTS. And our test consists of three phases:

• Preparation stage: In this stage, the main process uses the blockchain configura-
tion file to create and initialize internal blockchain objects, deploy smart contracts
according to the information specified in the configuration, and start monitoring
objects to monitor the resource consumption of the back-end blockchain system.

• Testing phase: In this phase, the main process performs tests based on the con-
figuration file. Caliper will generate tasks based on the defined workload and assign
them to client child processes. Finally, the performance statistics returned by each
client will be stored for subsequent analysis.

• Reporting phase: Analyze the statistics of all clients for each test round and
generate reports.

During the testing phase, we tested these blockchain systems by selecting different
system settings. Each test involves sending transactions from peers at a fixed rate, and
these transactions are built in a docker container. Ethereum 1.2.1, Fabric 1.4.0, Saw-
tooth 1.0.5, Fisco-Bcos 2.0.0 have been tested.

5 Experimental Results

In this section, we have studied the impact of different system architectures on the
performance of different blockchain systems. The TPS (Transactions Per Second) and
latency obtained in the tests are the average values obtained after multiple tests.

5.1 Ethereum’s Performance

We use the Ethereum adapter through caliper, which includes assembling connection
profiles (also known as blockchain network profiles), using adapter interfaces from user
callback modules; transaction data collected by the adapter, and completing examples
of connection profiles. We prepare “open”, “query” and “transfer” workloads for
Ethereum. The “open” workload includes opening accounts and testing the writing
performance of the ledger. The “query” workload includes querying accounts and
testing the reading performance of the ledger. The “transfer” workload includes trading
between accounts and testing the transaction performance of the ledger. All chaincodes
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to be tested must be installed on the channel and peer. Ethereum will separately set up
accounts, query accounts, and conduct transactions at the same time.

First, we set the txNumber of “open”, “query”, and “transfer” to 100, 200, and 100,
and then we continue to increase the Send Rate for testing. The results show that when
we increase the Send Rate, the throughput of the query workload increases syn-
chronously with the Send Rate. The open workload will reach a bottleneck when
throughput reaches around 15, and it cannot continue to improve. The transfer work-
load will reach a bottleneck when the throughput reaches around 10 and cannot be
further improved (see Fig. 5). In terms of latency, the query workload does not cause
any latency. For the open workload and transfer workload, as the Send Rate increases,
the latency will increase slightly, but it is not obvious (see Fig. 6). We also conduct
corresponding tests by increasing txNumber, but the experimental results did not
change significantly.

Discussion: Because the block production speed of Ethereum is fixed, one block is
generated every 15 s, the TPS of Ethereum is determined by the number of transactions
that can be packed in a block. Ethereum has no restrictions on blocks, but the speed of
network broadcasts limits the size of blocks. If the block size is too large, the latency
will become very high, resulting in network unavailability. At the same time, the total
amount of gas in the block will also limit the number of packaged transactions. The
total amount of gas used by all transactions in the block cannot exceed this limit.
Therefore, before the Istanbul upgrade, the theoretical value of TPS for Ethereum is
only 30. In view of the current situation, Ethereum needs to modify the architecture in
order to greatly improve the TPS. Therefore, Ethereum 2.0 (aka Serenity) is being
developed. Ethereum 2.0 contains many new features: sharding, proof of stake Casper,
new virtual machine eWASM, and more. These new features are currently imple-
mented in three phases: Phase 0 mainly implements the beacon chain. The main
function of the beacon chain is to implement PoS and provide the basis for sharding. In
Phase 1, Ethereum 2.0 will bring a shard chain. The shard chain is the key to the future
scalability of Ethereum. It allows transactions to be executed in parallel. The beacon
chain will also start managing multiple shards at this time. In phase 2, various functions

Fig. 5. Throughput of Ethereum with varying
workload.

Fig. 6. Latency of Ethereum with varying
workload.

Performance Evaluation on Blockchain Systems 127



are beginning to be integrated, the lighthouse chain and the shard chain have been
activated, and state execution will be added in this phase.

5.2 Hyperledger Fabric’s Performance

We deploy fabric1.4.0 to 3 physical machines. Each physical machine is regarded as an
Organization. Each Organization has 2 peers. Endorsement policy: Any member of
Org1MSP are acceptable. The database is GolevelDB [15]. We also use “open”,
“query” and “transfer” workloads for Hyperledger Fabric. Then we deploy caliper on
the remaining machine. We set txNumber to 200, 400, 200 respectively, and at the
same time, we continuously adjusted the batchsize and Send Rate for testing. The
results show that when we fixed the batchsize to 20, by increasing the Send Rate, the
TPS of the “query” workload increased linearly, the TPS of the “open” workload would
reach the bottleneck around 100, and the TPS of the “transfer” workload would reach
the bottleneck at around 50 (see Fig. 7). In terms of latency, there is almost no latency
in the “query” workload, and the latency in the “open” and “transfer” workloads will
increase as the Send Rate increases (see Fig. 8).

Next, we adjust the batchsize to 40, 60, 80, 100, 120, and leave the rest of the
settings unchanged. The results show that with the increase of Send Rate, “transfer”
workload’s TPS will increase with the increase of batchsize. When batchsize is larger
than 100, TPS no longer grows linearly and reaches a new bottleneck (see Fig. 9). For
the latency, under the condition that the batch size is unchanged, the latency of
“transfer” will decreases with the increase of Send Rate before reaching the bottleneck
of TPS, and the latency will increase with the increase of Send Rate after reaching the
bottleneck of TPS. As the batch size becomes larger, the latency will gradually
increase. When the TPS reaches the bottleneck, the latency is gradually reduced by the
effect of the batchsize (see Fig. 10).

Fig. 7. Throughput of Fabric with varying
workload (batchsize = 40).

Fig. 8. Latency of Fabric with varying work-
load (batchsize = 40).
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Discussion: Through the experimental results, we can find that, in order to better
improve the TPS and reduce the latency, when the Send Rate does not reach a
threshold, we can appropriately reduce the size of the batchsize. When Send Rate
exceeds the threshold, we need to choose a larger batchsize to increase the TPS and
reduce the latency. Matching batchsize with Send Rate can better improve Fabric’s
performance. At the same time, we noticed that the CPU resource utilization efficiency
was very poor during the experiment. Therefore, improving the CPU utilization
mechanism inside Fabric is also a feasible solution to improve TPS.

5.3 Hyperledger Sawtooth’s Performance

For Sawtooth, we first select Sawtooth 1.0.5 as the test benchmark. By modifying the
protocol buffer and sawtooth-sdk version levels listed as dependencies in
packages/caliper-sawtooth/package.json in caliper, then rebuild the Caliper project and
test. We prepare “query” and “smallbank” workloads for Sawtooth. The “smallbank”
workload includes transaction savings, deposit checking, send payment, write check,
and amalgamate operations. We set txNumber to 500, 500, the number of accounts in
smallbank to 30, the number of transactions per block to 10, and then test. The results
show that with the increase of the Send Rate, the TPS of the “query” workload also
increases. For the “smallbank” workload, a bottleneck occurs when the throughput
reaches about 44 (see Fig. 11). In terms of latency, the latency of “query” can be
ignored, and the latency of “smallbank” will continue to increase with the increase of
the Send Rate. The initial period will show a linear growth trend. When the Send Rate
is too high, it will show an exponential growth trend (see Fig. 12). Then we adjust the
number of transactions per block.

Fig. 9. Throughput of Fabric with different
batchsize (“transfer” workload).

Fig. 10. Latency of Fabric with different
batchsize (“transfer” workload).
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Discussion: Through testing, we found that increasing the number of transactions per
block within a certain range can increase TPS. When the number of transactions per
block is set to 2000, the TPS can reach about 2000. In terms of consensus algorithms,
sawtooth supports a variety of consensus algorithms, such as PBFT, PoET [15], Raft,
etc. With the continuous improvement of consensus algorithms, the performance of
sawtooth will also be improved. In terms of performance, the development team spent a
lot of energy to migrate the core components of Sawtooth from Python to Rust. As the
migration work is gradually completed, the performance of sawtooth will be further
improved.

5.4 Fisco-Bcos’s Performance

For Fisco-Bcos, we first deploy our own Fisco-Bcos network. Then we add a new
network configuration file and create a test script that includes initialization, run, and
end phases. Finally, we add the new test script as a test round to the test profile,
ensuring that the correct callback was specified for Caliper. We prepare two basic
workloads “set” and “get” for Fisco-Bcos. “Set” is responsible for generating a “hello
world” smart contract and deploying this smart contract. “Get” is responsible for
calling the smart contract and outputting “hello world”. We set txNumber to 5000,
5000, and then test. The results show that with the increase of the Send Rate, the TPS
of the “get” workload increases linearly, while the TPS of the “set” workload will reach
the bottleneck around 1500 (see Fig. 13). For the latency, the latency of the “set” and
“get” workloads hardly changes with the Send Rate. The latency of the “set” workload
is slightly higher than the “get” workload, and the “get” workload has almost no
latency (see Fig. 14).

Fig. 11. Throughput of Sawtooth with
varying workload.

Fig. 12. Latency of Sawtooth with
varying workload.
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Discussion: Fisco-Bcos is mainly optimized in terms of network transmission models
and computing storage processes which provides great help for performance improve-
ment. In terms of architecture, from the perspectives of storage, networking, and
computing, Fisco-Bcos is upgraded around high availability and high ease-using. At the
same time, based on the design principles of modularity, tiering, and pluggability, Fisco-
Bcos continues to reshape the core modules to ensure the robustness of the system.

5.5 Comparison Analysis

By comparing the four blockchain systems, we can find that in a general setup, the TPS
of Ethereum is significantly lower than the other three systems. The performance of
Fabric is much better than Ethereum, but under our test conditions, it is far from the
theoretical value of Fabric performance. The TPS of Sawtooth and Fisco-Bcos is better
than the Fabric, which is also the consortium blockchain.

In terms of latency, the average latency of Ethereum and Fabric will be slightly
larger, the average latency of Sawtooth will be smaller, and the average latency of
Fisco-Bcos is the smallest (see Table 2). Due to the test platform limitation, we may
not be able to measure the theoretical peak performance of the blockchain system. At
the same time, because the architecture and functions of the blockchain system are not
the same, we cannot use a relatively uniform workload. Therefore, the experimental
results can be used as a reference.

Fig. 13. Throughput of Fisco-Bcos with
varying workload.

Fig. 14. Latency of Fisco-Bcos with
varying workload.

Table 2. Performance comparison of 4 blockchain systems in our testing environment

TPS Latency

Ethereum 10–30 5 s
Fabric 100–200 1–10 s
Sawtooth 500–2000 0.5–5 s
Fisco-Bcos 1500–3000 0.5 s
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6 Related Work

Due to the current performance problems of the blockchain, many systems can hardly
be deployed in practice. Therefore, how to improve the performance of blockchain
systems has been a popular research problem.

Dinh et al. were among the early researchers to the private blockchain. They pro-
posed a benchmarking tool, blockbench [16], to compare the performance of Ethereum,
Parity, and Hyperledger Fabric, and tested it through a set of micro and macro bench-
marks. Because they studied earlier, they only studied the performance of Fabric v0.6.

Thakkar et al. conducted some research on Hyperledger Fabric v1.0, tested Fabric
by adjusting configuration parameters, and proposed some simple optimization
schemes based on the test results [17]. The current Fabric v1.4 architecture has many
improvements compared to the old version, so many of their conclusions need to be re-
examined in the new version.

Gorenflo et al. changed the fabric’s architecture to reduce the calculation and I/O
overhead during transaction sequencing and verification, thereby increasing the
throughput from 3,000 to 20,000 [29].

Pongnumkul et al. compared the performance of Ethereum and Fabric, but the
workload they choose a bit single [18]. Rouhani et al. analyzed the performance of two
Ethereum clients, Geth and Parity [19]. Ampel et al. analyzed the performance of
Sawtooth and identified some potential problems [20]. Hao et al. studied the impact of
consensus algorithms on the performance of private blockchains [21].

Hyperledger Caliper is a blockchain performance benchmark framework, which
allows users to test different blockchain solutions with predefined use cases and get a
set of performance test results. This project is developing rapidly, and currently sup-
ports many projects in Hyperledger, and it is still expanding.

The development of the blockchain system is fast, and many past studies can no
longer serve as a reasonable reference. At the same time, many new blockchain plat-
forms are constantly appearing. Therefore, we need to conduct a new evaluation of the
current mainstream blockchain system performance.

7 Conclusion and Future Work

In this work, we firstly analyzed the architecture of Ethereum, Hyperledger Fabric,
Hyperledger Sawtooth and Fisco-Bcos in detail. Then we used the Hyperledger caliper
as the benchmark tool and tested these blockchain systems in detail. We take trans-
action throughput and latency as the main performance metrics, install test tool in the
blockchain systems, deploy smart contracts according to the information specified in
the configuration, and start monitoring objects to monitor the resource consumption of
the backend blockchain system. According to our defined workloads, the test tool will
test the blockchain systems. A comprehensive analysis of the performance of the
blockchain system was made by adjusting parameters such as Send Rate and batchsize,
and finally the results were obtained. Based on the analysis results, we give some
possible performance optimization schemes. We can see that the performance gap
between the public blockchain and the consortium blockchain is very large. Therefore,
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Ethereum needs to develop a new generation as soon as possible to improve their
performance. For Fabric, as one of the most concerned members in the consortium
blockchains, its performance is not as good as the emerging consortium blockchains.
Sawtooth is also an open source distributed ledger platform. It is also used to run smart
contracts and aims at digital financial asset management. The overall architecture is
clear and highly modular, so the ability to customize is also strong. Fisco-Bcos is
derived from the Ethereum C++ version. After years of development, major changes
have been made in terms of scalability, performance, and ease-using. Fisco-Bcos 2.0
has added a group architecture to overcome the bottleneck of system throughput and its
performance is very good.

There are still many shortcomings in this experiment. Due to the configuration of
the experimental environment, the performance we get is far from the theoretical
performance. In terms of workloads, we have only a few types of workloads that make
it impossible to perform a complete assessment of the performance of the entire
blockchain system.

In the future, we plan to use cloud services to conduct larger-scale experiments. We
will continue to study the performance optimization methods of blockchain systems,
and at the same time add consensus algorithms to our research direction. In addition,
we will conduct more in-depth research on the architecture of the blockchain systems to
improve the performance of the blockchain systems.
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