
Automated Web Service Specification
Generation Through

a Transformation-Based Learning

Mehdi Bahrami(B) and Wei-Peng Chen

Fujitsu Laboratories of America, Sunnyvale, CA, USA
{mbahrami,wchen}@fujitsu.com

Abstract. Web Application Programming Interface (API) allows third-
party and subscribed users to access data and functions of a software
application through the network or the Internet. Web APIs expose data
and functions to the public users, authorized users or enterprise users.
Web API providers publish API documentations to help users to under-
stand how to interact with web-based API services, and how to use the
APIs in their integration systems. The exponential raise of the number
of public web service APIs may cause a challenge for software engineers
to choose an efficient API. The challenge may become more complicated
when web APIs updated regularly by API providers. In this paper, we
introduce a novel transformation-based approach which crawls the web
to collect web API documentations (unstructured documents). It gen-
erates a web API Language model from API documentations, employs
different machine learning algorithms to extract information and pro-
duces a structured web API specification that compliant to Open API
Specification (OAS) format. The proposed approach improves informa-
tion extraction patterns and learns the variety of structured and ter-
minologies. In our experiment, we collect a sheer number of web API
documentations. Our evaluation shows that the proposed approach find
RESTful API documentations with 75% accuracy, constructs API end-
points with 84%, constructs endpoint attributes with 95%, and assigns
endpoints to attributes with an accuracy 98%. The proposed approach
were able to produces more than 2,311 OAS web API Specifications.

Keywords: Web API service · REST API · Natural language
processing · Machine learning

1 Introduction

Web Application Programming Interface (API) [13] exposes data and software
functions to third-parties or subscribed users. Web APIs can be reached locally
or remotely by using REpresentational State Transfer (REST) [23] which is a
software architecture style that divides platform and programming language.
The web service REST APIs are core technology of software integration and it
c© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 103–119, 2020.
https://doi.org/10.1007/978-3-030-59592-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-59592-0_7

104 M. Bahrami and W.-P. Chen

has been used widely in cloud-based services and the Internet-of-Things (IoT)
devices. In addition, a third-party is able to efficiently integrate an external
functions or data through REST APIs in own native software applications.

API publishers charge users based on their number of API calls, usage of
API, or a flat rate. For instance, an API publisher may provide a range of free
API calls (e.g., 1000 free API calls per day) and charge additional fee for the
additional requests.

The power of APIs enable a web service provider to offer information without
sharing its own implementation. Different hardware devices also may use APIs
to expose their functionality and their internal data. For example, web APIs
in Internet-of-Tings (IoT) allows users to read or access data from a connected
device [11].

1.1 Motivation

This study aims answer to the following questions. (i) How we can construct API
specification from API documentation by employing machine-learning technol-
ogy? (ii) Is the approach scalable to apply the process to a variety of APIs?

With the rise in number of web APIs in the market, manually understanding
of all APIs and their endpoints is not only labor intensive but also it is an
error prone task for software engineers. Web APIs might be revised or updated
periodically, when it creating a significant overheads for software engineers to
keep track of all changes.

In a digital business when major digital services rely on different third-party
platforms, web API economy is the key point for determining the value of pro-
vided services. Software engineers need to choose the best web APIs for devel-
oping a reliable and cost effective service, which requires web API evaluation
by reading the API documentations. This concern raises several questions, How
software engineers find all relevant web APIs? How software engineers automat-
ically can evaluate web APIs without reading lengthy web API documentations?
The answer is accessing a machine-readable API specification. However, it raises
another challenge when majority of API providers do not have any standard API
specification.

In order to understand the variety of APIs in a standard format, we can
employ machine-learning to construct API specification. API Specification can
be used for automated API validation, automated API monitoring and auto-
mated API quality assessment [16]. An API Specification which aims to be gen-
erated by machine, allows software engineers to use automation on analyzing, val-
idating and code synthesis to generate software application. Machine-generated
API specification may also help API provider to offer better services such as
automated API testing when machine read API documentations and validate
information automatically. API specification opens door to a set of new tech-
nologies such as automated service integration when all required specifications
have been defined by machine.

Automated Web Service Specification Generation 105

1.2 Related Works

Although there are some existing standardization initiatives around API spec-
ification to produce a machine readable API specification but only major API
providers offers this type of format for their API specifications. API providers
may offer Open API Specification (OAS), YAML which is a human-friendly and
cross language machine readable format. Our goal in this study is to provide
a platform that produces OAS from any API documentations. Therefore, our
approach should be able to understand the variety of APIs.

There are also some studies around producing API specifications. For
instance, Robillard et al. [20] presented a field study by performing survey and
in-person interview to recommend how to design API documentations. However,
this study does not provide an automated approach to produce API specification.

Although the title of a study by Gu et al. [10] is similar to our work, it is
not an information extraction platform. The authors present a natural language
query-based platform to find API usage.

Zhong et al. [25] defined a method to create specification for Java APIs which
cannot be applied to REST API documentations. In another study, [7] shown a
composition architecture for API description. In a recent study, [24] enriches API
Guru by constructing API endpoints. However, our study focuses on a variety
of API documentations without considering a predefined OAS. Another alter-
native option is using web annotation to construct API specification which is
explained by Bahrami et al. [3]. Our approach in this paper employs several
machine learning algorithms to mitigate software engineers’ issues by mining
a large number of API documentations. It extracts information and constructs
OAS API Specifications for more than 2,311 APIs. Once we have a large number
of API specification, the API OAS file can be used to produce other artifact such
as automated API validation, automated code generation and API recommen-
dation.

This paper organized as follows. In the next section, we describe i) API Cor-
pus (Sect. 2.2) construction that includes a web-crawler and a REST API Filter
(Sect. 2.3) which uses a logistic-regression for filtering out non-REST API doc-
umentations; ii) Information Extraction (Sect. 2.6) that uses an API Language
Model (Word2Vec) and transformation-based learning algorithm; Table Extrac-
tion (Sect. 2.8) extracts HTML table tags and it constructs a SVM model to
detect API attributes (e.g., parameter); Sect. 3 defines our datasets and evalua-
tion results of each component. Finally, Sect. 4 summarizes this study.

2 Proposed Approach

Our proposed approach consist of an end-to-end platform with different compo-
nents. Figure 1 shows the key component of the proposed approach. Our goal
is extracting information from API documentations which is published by API
providers.

106 M. Bahrami and W.-P. Chen

2.1 Parallel Web Crawler

In the first step, we collect a massive number of API documentations. By col-
lecting a large number of API documentations, first, it allows us our proposed
machine learning algorithm to learn from a variety of data that enables the plat-
form to learn different API documentations with different structures. Second,
the proposed method learns from a volume of data that improves the accuracy
of information extraction. We use a parallel web crawler to collect a massive
number of API documentations which have been published by API providers. It
stores HTML file on a local disk.

Fig. 1. An overview of the key component of the proposed approach

2.2 API Corpus

API corpus is a collection of HTML pages of API documentations which are
collected by parallel web-crawler agents.

2.3 REST API Filter

This component allows API Learning to filter out the non-REST pages from
API Corpus. The REST API Filter employs a logistic regression model which
explained by [22] to detect REST API documentations. For each API documen-
tations we generate an array of k REST keywords where keyk

j represents the
term frequency of jth keyword in each document doci. The following equation
shows the logistic regression function. It is a linear classification model which
classifies the REST content and non-REST contents of collected HTML pages.

F (x) =
1

1 + e−(tf(doci,keyk
j)−th)

(1)

Automated Web Service Specification Generation 107

In Eq. 1, tf represents the linear function of variable doc (term frequency) for
each API documentations and keyk

j that indicates each keyj in kth REST key-
words. It clusters pages into REST or non-REST API documentations.

2.4 Tasks

In order to extract information from API Corpus, we have a set of rule-based reg-
ular expression patterns for different tasks. Each task includes an initial regular
expression pattern for the given task. For example, a task may define a regular
expression to extract API endpoint or to extract default value, maximum and
minimum values of a parameter. Each initial regular expression pattern can be
improved iteratively through a transformation-based learning [18]. In a related
study, [12] define a model to train a regular expression pattern to improve the
acceptance of a language per positive sample cases, authors apply some restric-
tion rules to the initial regular expression but it cannot extend the initial regular
expression. In our proposed method, we use both extension phase (by using API
Language Model and other rules) to extend the initial pattern, and reduction
phase that uses restriction rules to improve the pattern for accepting of a lan-
guage for a given task.

2.5 API Language Model

API Language Model is defined as a neural language model [5] that shows prob-
ability distribution on all sentences in API Corpus. It uses embedding of words
to predict word sequences and it is defined as follows.

∑

−k≤j−1, j≤k

log P (wt+j |wt) (2)

k denotes the previous words, j denotes the current word. Since this is a
domain-specific information extraction task, we cannot use existing language
models because it adds noise for our information extraction which is explained
in Sect. 2.6. To retrieve a similar word from the language model, we use a cosine
similarity [8] which measures the similarity of two words, W1,i and W2,i based
on their vector representations where i = [1..n] in defined API language model
of n APIs. By computing the similarity from the language model, it allows us to
retrieve all synonyms terminologies of (e.g., W1,i) which have been used in API
Corpus by different APIs.

2.6 Learning Diverse Extraction

We define several information extraction tasks where each task corresponds
to extraction a single information from API documentation. Accumulation of
output of all tasks (trained model) provide API specifications. In addition,
we use some tasks of trained model to categorize information. For example, a
task may classify the content of a table as a response type or a parameter type.

108 M. Bahrami and W.-P. Chen

We defined a set of positive and negative examples for each task. Each task
has an initial regular expression pattern and it is defined manually but it is
improved iteratively when it learns different positive and negative examples. We
use transformation-based learning where it consists of two phases that include
extension phase and reduction phase. In order to train a model that applies
different regular expression patterns to each task, we need to update the initial
regular expression pattern and expend the constant words which have been used
in initial pattern. The main target of two phases processing is updateding the
pattern. The second target is updating constant words which have been used
in initial patter because different API providers may require different patterns
to extract the same information in OAS (e.g., API endpoints). A trained task
should be trained based on both positive and negative examples. For instance,
Facebook uses the terminology of fields to describe the input parameters of an
endpoint1; but Google uses parameters to describe the input parameters of an
endpoint2.

By using API Language Model we can find synonymous of given constant
words from initial pattern (e.g., parameter) and add fields as an equivalent
terms in task definition. In this example, the final trained regular expres-
sion task should be able to extract fields from Facebook API documentations
and parameters from Google API documentations. It can construct API spec-
ification for both APIs. In the OAS of each API specification, the trained
task can extract both relevant information and constructs OAS parameters as:
paths→endpoint→HTTP Verb →parameters.

We develop a novel approach based on transformation-based learning as
explained in Fig. 2 that i) expends the acceptance of initial regular expression
(RE) pattern, and then, it reduces the RE pattern to only matched positive sam-
ple cases to minimize the acceptance of negative sample cases. After completion
of both phase, the final RE pattern learned from both positive and negative
examples; therefore, the task can provide a common RE pattern that maximizes
the positive cases and minimizes the negative cases. In addition, since different
API providers use a variety of terminologies for a single word, a constant reg-
ular expression is not capable to learn efficiently all synonyms words. We use
API Language Model that finds all synonyms words according to API Corpus,
then it applies the new set of synonyms words for each constant of RE pat-
tern. The model learns new words in addition to original constant that improves
acceptance of positive examples and reduces negative examples. Each OAS
API Specification consist of several objects, such as API metadata (e.g., title,
description), endpoints, attributes, responses, and etc. Therefore, we need a set
of different tasks to extract information and produce a structured based OAS file
(JSON). The following tasks shows some examples of IE Tasks in API Learning.

i) API Endpoint extraction task provides the key information of a REST
API and it provides a URL for an API endpoint along with its HTTP verb;

1 See https://developers.facebook.com/docs.
2 See https://developers.google.com/+/web/api/rest.

https://developers.facebook.com/docs
https://developers.google.com/+/web/api/rest

Automated Web Service Specification Generation 109

Fig. 2. Learning diverse extraction framework

ii) Parameter attribute extraction returns a list of input/output parame-
ter and security information of an API endpoint. It also includes some specific
sub-tasks such as a minimum value of a parameter, a maximum value of a
parameter, the default value of a parameter and etc. Therefore, the method
need to understand and classify the content of HTML tables to recognize
input parameters, output parameter and etc. For each task we need a method
to detect and extract information from API documentation. We use regular
expression to define different task extract. The problem statement of informa-
tion extraction from API documentations can be defined for a target API (A).
Our goal is to extract a set of positive sample case and avoid negative sample
cases that can be extracted from an API documentations. Let sp,i be the set
of i positive sample case and sn,j be the set of j negative sample case. It can
be defined as sp,i ∈ L where i ∈ {1, ...,m}; and sp,i denotes a set of m posi-
tive sample case of language LA for the target APIs(A); and sn,j /∈ LA where
j ∈ {1, .., n}; and sn,j denotes n negative sample cases of language LA. (LA
represents acceptance language of target APIs, A). fP defines a function that
uses a set of regular expression patterns P , that accepts sp,i sample cases and
rejects sn,j in LA. Our objective function can be defined as maxx∈C fP (x)
where C denotes the API documentations that can be retrieved from API
Corpus. We can summarize the objective function as follows.

max
x∈C

fP (|sp(xA)| − |sn(xA)|) (3)

In this equation, we maximize acceptance of the positive sample cases fP

where it removes the negative sample cases of sn(xA) for different APIs (A);
and A ∈ {1, .., n} where n denotes the total number of APIs. It takes an

110 M. Bahrami and W.-P. Chen

initial regular expression as an input and find an improved regular expression
as output. The improvement process of given initial process id defined in
Sect. 2.6.

We use a transformation-based learning through two steps. First, we define
extension phase to maximize fPi

the acceptance more positive sample cases, and
in the second phase (reduction phase) improves the pattern by rejecting negative
sample cases for a given initial regular expression pattern. The final improved
regular expression aims to apply to majority of APIs where it learns different
structured and patterns from variety of API documentations.

Extension Phase. Objective of this phase is extending the given initial RE
pattern P0 that accepts more positive cases from training dataset, τ . Table 1
shows the algorithm of the extension of P0. Each regular expression decomposes
into different types. The algorithm processes each component type as follows.
In each iteration, it applies one extension rule and evaluate the pattern, if it
accepts more positive cases, then revise the pattern.

i) charTerm : This type of RE component refers to string values (e.g.,
default) and can be extended by similarity extension or character extension
method as follows.

a) Similarity extension. It uses the similarity of charTerm component
(Line 2 in Table 1) by inquiring the value of charTerm to API Language
Model. The model uses cosinesimilarity function to return similar terms
based on the vector representation of charTerm in API Corpus; and then,
it adds each return value with an OR operation with a pair of parenthesis
to Pi(charTerm).
b) Character extension. It applies all possible uppercase and lowercase
of a charTerm in each iteration (Line 3 in Table 1). API specification is
case sensitive, we cannot replace all words as lowercase or as uppercase
characters. For example, ‘POST ’ in REST API documentations shows
that this term is referring to a HTTP verb function and it is completely
different to ‘post ’ or ‘Post ’ which are regularly used in English language.

ii) Range : This type of RE component refers to a set of range values (e.g.,
[1–4] accepts number between 1 to 4).
iii) RE Component Replacement : This type of RE component decom-
poses each RE component into one or multiple RE components. Each compo-
nent of a RE pattern can be replaced with its equivalent RE if acceptance of
positive sample cases is equal or better than Pi −1. For example, [a−zA−Z]
can be replaced with ([a − z]|[A − Z]).

Reduction Phase. The objective of reduction phase is removing unnec-
essary accepted pattern elements from newPattern (returned pattern from
ExtensionPhase). As shown in Table 1, the algorithm takes a set of positive
and negative sample cases, sp and sn, respectively. It returns a new pattern, Pi

Automated Web Service Specification Generation 111

Table 1. Extension and reduction algorithms

112 M. Bahrami and W.-P. Chen

that can be used in substitute of newPattern (Pτ). i) OR reduction : In this
phase we remove each component if it does not decrease the acceptance rate of
positive cases.

ii) range restriction : Some ranges can be removed or shrank when it does
not change the validation rate.

iii) character restriction : It restricts the acceptance of charac-
ters. For instance, “POST \b+ (URI|URL)” can be restricted to “POST
\b[1,1000](URI|URL)”, if the validation rate did not decrease by revising the
pattern; then it can be decreased to a lower number in each iteration (i.e., “POST
\b[1,999](URI|URL)”). By performing both phases through several iterations,
the final pattern learns majority of sample cases. It satisfies the following con-
ditions: i) maximizes acceptance rate of positive sample cases; ii) minimizes the
rejection of positive sample cases: iii) maximizes the acceptance rate of rejec-
tion of negative sample cases; and iv) minimizes the acceptance rate of negative
sample cases.

2.7 Metadata Extraction

Metadata of an API is one of the set of extraction tasks. For instance, the API
title, API security protocol, and API host address. This component generates a
set of extracted information and add them into the structured data (info, host
in OAS file).

2.8 Table Extraction

Most of the API documentations uses HTML table tags to explain list of end-
points, attributes (e.g., parameters). Each HTML table tag may consist of differ-
ent OAS objects, such as parameters, responses, security, and security definition.

2.9 Plain Text Extraction

Some API providers describe their information as a flat HTML page which means
does not have some sort of semi-structured data, such as HTML table tags. The
API publisher may use both HTML table tags and plain-text flat description to
transfer their information to the readers. This component extracts information
from plain text information.

2.10 API Attribute Extraction

Component generates a set of different endpoint’s attributes, such as minimum
value of a parameter, maximum value of a parameter, default value of a param-
eter and etc. White List contains both manual annotation and automated API
validations which is created by calling the API and it contains the results of
API endpoint response. The final output is a Machine Readable OAS API
Specification for each API.

Automated Web Service Specification Generation 113

3 Experiment

We implemented all described components of API Learning.

3.1 API Corpus Construction

We used several sources to collect a comprehensive list (pointer list) of APIs,
such as ProgrammableWeb, API Harmony, Rapid API, API Guru and etc. We
use API title and API documentations URL from the list. Each source may also
consist of other metadata information of an API. The pointer list consists of
more than 20,000 APIs and some of the information might be incorrect (e.g.,
incorrect API Doc URL or a generic API title). In this experiment, we have
to process the content to fix incorrect information and we target REST APIs.
We used Scrapy3 for implementation of the parallel web-crawler. We consider
a web-crawler that composes of 32 parallel web-crawler agents. Table 2 shows
the size of API Corpus in different experiments. We show only some example of
different experiments for data acquisition with different maximum deep level of
URL extractions and maximum of page per APIs.

Table 2. API corpus size of different experiments

Exp# MaxDepth MaxPage # of files Size-GB

17 5 1,000 2,822,997 208.6

20 4 100 148,479 8.3

35 3 300 156,497 7.4

37 4 300 256,583 15.0

Table 3. An example of query of top 7 most similar words to a positive word of
[‘POST’]

HTTP Prediction HTTP Prediction

GET 0.867 Request 0.668

DELETE 0.828 Endpoint 0.639

PUT 0.777 URI 0.639

PATCH 0.746

Table 4. Detection of REST API documentations

Class Precision Recall F1

Positive REST page 0.91 0.93 0.92

Negative REST page 0.89 0.86 0.88

Average 0.91 0.91 0.91

3 https://scrapy.org/.

https://scrapy.org/

114 M. Bahrami and W.-P. Chen

3.2 API Language Model

We use Word2Vec which is described by Mikolov et al. in [15] and [14]. We
cleaned the API Corpus by removing scripts and HTML tags to produce the
model. API Language model allows the method to understand semantic defini-
tion of each word. We use Gensim [19] to create a Word2Vec [9,21] from API
Corpus. By providing a set of positive and/or negative words, we may inquiry
the model to find similar words. For example, Table 3 shows the synonyms words
of ‘POST’ in API Corpus for top 7 words. This result clearly shows that our API
Language Model can successfully detect synonyms words from API documenta-
tions where it is trained based on API Corpus. The parameter of Word2Vec is
described by Rong in [21]. We chose 300 for the window size which represents
the maximum windows distance between a selected word and a predicted word
within a sentence. The rest of the parameters of API Language Model shown in
Table 5.

3.3 Information Extraction

In order to extract information, we defined several tasks with initial pattern of
RE as described in Sect. 2.6. Some defined patterns have been used for table
extraction and detecting table mapping as described in Sect. 2.8. Figure 3 shows
a comparison between acceptance of R0 ∈ LA and Rfinal ∈ LA for 5 differ-
ent tasks. The average of iteration in these tasks to achieve (Rfinal) is 14.
Table 4 shows 5 different tasks as follows. Default Value: learns template to
extract default values of a parameter; Maximum Value: learns a template to
extract maximum value of a parameter; Optional Parameters: learns a template
to find whether is optional or mandatory; Parameter Description: learns a tem-
plate to extract parameter description section (e.g., heading title of the section);
Introduction block of output parameter : learns a template to detect if a section
corresponds to output parameters of an API (e.g., heading title of a section).
Table 4 shows the given input (P0) to algorithms and shows the result after
processing extension and reduction phase as output (Pfinal) which corresponds

Table 5. Hyper parameters of API language model

of sentences: 10,140,000

of words: 23,103,011

of word types: 1,580,559

of unique words (after word types drops): 213,167

of windows in CBOW: 300

Min. count=5 (training parameter)

Min. count leaves 20,960,959 word corpus (90% of original)

downsampling leaves estimated 18,603,396 word corpus

of parallel workers: 64

Automated Web Service Specification Generation 115

Fig. 3. A comparison between F1 evaluation of R0 (baseline) and Rfinal

to improved regular expression through the transformation-based learning. As
shown in Fig. 4, both the word token (new terminologies) and new pattern have
been updated according to API Language Model, RE extension phase and RE
reduction phase. By performing on more positive and negative sample cases,
(Pfinal) can be improved. After applying (Pfinal) of each task to the API Cor-
pus, the proposed platform generates a set of extracted information as a JSON
file for each API which includes: i) API metadata, ii) API endpoints, and iii)
HTML tables that corresponds to API attributes. The defined tasks helps us
to extract different OAS objects but our ultimate goal is using extracted infor-
mation to interact with APIs. We use two strategies to evaluate our extracted
information. First, we annotated the extracted information for a large number
of APIs, that includes API endpoint and tables. Second, we perform API call
to validate the extracted information which can be applied to all extracted end-
points. In the first approach of evaluation, We annotated 200 APIs that consist
of 1,780 extracted tables (API endpoint attributes), and extracted endpoints
for 350 APIs that consist of 2,929 endpoints. To the best of our knowledge this
large number of annotation of API documentations have been collected for the
first time. Each annotation shows that whether an API endpoint extracted cor-
rectly from the source or not. The same annotation completed for HTML table
to check whether the produced structured file (JSON format) of HTML table
is correct or is not correct. We correctly extracted 86.75% of API endpoints
and 81.29% of table according to annotated information (Avg = 84.02%). Sec-
ond, our automated API validation applies to all extracted API endpoints that
contain 54,873 endpoints and check the response code. It shows that 76% of
endpoints were valid.

We use Scikit-Learn to train a logistic-regression [1] model with L1 penalty
to detect REST API documentations. We create an annotation tools based on
Selenium [2] that allows a user to quickly annotate API documentations by using
a semi-automated platform. The Selenium browser automatically open different
API documentations from pointer list and a user manually annotates API doc-
umentations as: i) relevant to REST API documentations (Positive Class); ii)
relevant but explaining different API documentations (Reference Class); or, iii)
irrelevant to REST API (Negative Class). We train the model with considering

116 M. Bahrami and W.-P. Chen

Fig. 4. Sample tasks of learning about API specifications

three classes as well as only positive/negative classes (reference pages consid-
ered as part of positive class). Due to page limitation, Table 4 shows only the
performance of the model for detecting positive pages versus negative pages.

Table 6. OAS-based table type detection training dataset

Type # Type #

Parameters 5,979 Response 6,290

Security 8,225 Security definition 150

We also collect a set of available OAS-based API specifications as ground-truth
from different API providers who offers OAS JSON files, such as Spotify and API
directories, such as API Guru. We train a SVM model with the following con-
figuration by using Scikit-learn [17] package in Python. penalty=l2, dual=False,
tol=1e−3 The model trains with 14,450 data points (70% of dataset) as shown
in Table 6. The model predicts four different table types from testing dataset
(6,194 data points; 30% of dataset) with an accuracy of 95%. The next step
is assigning tables according to their predicted type (e.g., parameter) to API
endpoints, which defines API endpoint attributes. We use a page segmentation
algorithm that assigns extracted endpoints to their attributes according their
appearance in API documentations (e.g., a table attribute appears after end-
point). We evaluate this assignment process manually for correctness of assign-
ment of 223 API endpoints to their attributes. In this annotated dataset, only
3 out of 223 of assignment were incorrect that defines an accuracy of 98.65%
of the assignments of attributes to API endpoints. API Learning at the end

Automated Web Service Specification Generation 117

produces 2,311 API specifications and consolidate information with other avail-
able OAS resources which produces 3,311 API specifications and it showcases in
our API directory. A partial sample OAS file that collected from our proposed
approach is shown in Fig. 5. In addition we deployed the valid APIs in Fujitsu
RunMyProcess platform4. A demonstration of the previous study and deploy-
ment can be found in Bahrami et al. [4] and Choudhary et al. [6]. The deployed
APIs can be accessible through Fujitsu RunMyProcess platform where users are
able to efficiently design and test a web-based software application by accessing
a large number of public APIs.

Fig. 5. A partial snapshot of a produced API specification in OAS format that collected
from different sources and API documentation

Table 7 shows a comparison between our approach and D2Spec as a related
work [24]. The results of our approach shows that our approach is scalable when
it construct 73% correct API endpoints from a sheer number of API endpoints
(54,873). Our approach also capable to extract parameter, detect the type of
parameters where the related work is only limited to API endpoint construction.
Although the performance of endpoint extraction is equal to our results, the total
number of extracted endpoints and APIs are much smaller than our outcomes
(22% of our 54,873 endpoints). We also evaluate the API endpoints with using
API call and API match to our ground through (existing) OAS files.

4 Available at: https://www.runmyprocess.com.

https://www.runmyprocess.com

118 M. Bahrami and W.-P. Chen

Table 7. Comparison of related works

Feature D2Spec (Yang et al. 2018) Our approach

of labeled APIs 120 200

Endpoint evaluation method Endpoint matching Manual annotation, API call

of generated API Spec. 120 1,923

of Endpoints 2,486 54,873

Endpoint evaluation 84% (22% of our dataset) 84%

Parameter extraction No Yes

Parameter type detection No 81.29% Acc.

4 Conclusion

In this paper, we introduced a novel framework that collects a large number
of API documentations. Our web crawler collected more than 20,000 APIs and
we targeted REST APIs. We used a logistic regression model to detect REST
API documentations. The framework processes all collected HTML pages as
an API corpus and generates an API Language Model to understand the vari-
ety of terminologies of different API documentations. The proposed approach
improves a set of information extraction regular expression patterns by extend-
ing the acceptance of sample cases and reducing elements that do not improve
the acceptance rate. We used the improved patterns to extract OAS objects. We
extracted HTML table tags and each table type detected by a SVM model and
produces OAS API attributes. Our experimental results show that we have suc-
cessfully extracted API specification from heterogeneous API documentations
with an accuracy of 84%.

References

1. Abney, S.: Semisupervised Learning for Computational Linguistics. Chapman and
Hall/CRC, Boca Raton (2007)

2. Automation, S.B.: Selenium ide (2014)
3. Bahrami, M., Chen, W.P.: WATAPI: composing web API specification from API

documentations through an intelligent and interactive annotation tool. In: 2019
IEEE International Conference on Big Data (Big Data), pp. 4573–4578. IEEE
(2019)

4. Bahrami, M., Park, J., Liu, L., Chen, W.P.: API learning: applying machine learn-
ing to manage the rise of API economy. In: Companion Proceedings of the The
Web Conference 2018, pp. 151–154 (2018)

5. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

6. Choudhary, S., Thomas, I., Bahrami, M., Sumioka, M.: Accelerating the digital
transformation of business and society through composite business ecosystems.
In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC,
vol. 926, pp. 419–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
15032-7 36

https://doi.org/10.1007/978-3-030-15032-7_36
https://doi.org/10.1007/978-3-030-15032-7_36

Automated Web Service Specification Generation 119

7. Cremaschi, M., De Paoli, F.: Toward automatic semantic API descriptions to sup-
port services composition. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.)
ESOCC 2017. LNCS, vol. 10465, pp. 159–167. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67262-5 12

8. Dehak, N., Dehak, R., Glass, J.R., Reynolds, D.A., Kenny, P.: Cosine similarity
scoring without score normalization techniques. In: Odyssey, p. 15 (2010)

9. Goldberg, Y., Levy, O.: Word2vec explained: deriving Mikolov et al’.s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)

10. Gu, X., Zhang, H., Zhang, D., Kim, S.: Deep API learning. In: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 631–642. ACM (2016)

11. Hou, L., Zhao, S., Li, X., Chatzimisios, P., Zheng, K.: Design and implementation
of application programming interface for internet of things cloud. Int. J. Netw.
Manag. 27(3), e1936 (2017)

12. Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Jagadish, H.: Regular
expression learning for information extraction. In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pp. 21–30. Association for
Computational Linguistics (2008)

13. Masse, M.: REST API Design Rulebook: Designing Consistent RESTful Web Ser-
vice Interfaces. O’Reilly Media, Inc., Sebastopol (2011)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

16. Myers, B.A., Stylos, J.: Improving API usability. Commun. ACM 59(6), 62–69
(2016)

17. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12(Oct), 2825–2830 (2011)

18. Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning.
In: Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky,
D. (eds.) Natural Language Processing Using Very Large Corpora. TLTB, vol.
11, pp. 157–176. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-
2390-9 10

19. Rehurek, R., Sojka, P.: Gensim-python framework for vector space modelling. NLP
Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, vol. 3,
no. 2 (2011)

20. Robillard, M.P., Deline, R.: A field study of API learning obstacles. Empir. Softw.
Eng. 16(6), 703–732 (2011)

21. Rong, X.: Word2vec parameter learning explained. arXiv preprint arXiv:1411.2738
(2014)

22. Schmidt, M., Le Roux, N., Bach, F.: Minimizing finite sums with the stochastic
average gradient. Math. Program. 162(1–2), 83–112 (2017)

23. Thomas, R., et al.: Architectural styles and the design of network-based software
architectures. University of California, Irvine (2000)

24. Yang, J., Wittern, E., Ying, A.T., Dolby, J., Tan, L.: Automatically extracting web
API specifications from HTML documentation. arXiv preprint arXiv:1801.08928
(2018)

25. Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring resource specifications from nat-
ural language API documentation. In: Proceedings of the 2009 IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp. 307–318 (2009)

https://doi.org/10.1007/978-3-319-67262-5_12
https://doi.org/10.1007/978-3-319-67262-5_12
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-94-017-2390-9_10
https://doi.org/10.1007/978-94-017-2390-9_10
http://arxiv.org/abs/1411.2738
http://arxiv.org/abs/1801.08928

	Automated Web Service Specification Generation Through a Transformation-Based Learning
	1 Introduction
	1.1 Motivation
	1.2 Related Works

	2 Proposed Approach
	2.1 Parallel Web Crawler
	2.2 API Corpus
	2.3 REST API Filter
	2.4 Tasks
	2.5 API Language Model
	2.6 Learning Diverse Extraction
	2.7 Metadata Extraction
	2.8 Table Extraction
	2.9 Plain Text Extraction
	2.10 API Attribute Extraction

	3 Experiment
	3.1 API Corpus Construction
	3.2 API Language Model
	3.3 Information Extraction

	4 Conclusion
	References

