
Microservices Backlog - A Model
of Granularity Specification and Microservice

Identification

Fredy H. Vera-Rivera1,2,4(&) , Eduard G. Puerto-Cuadros1 ,
Hernán Astudillo3 , and Carlos Mauricio Gaona-Cuevas4

1 Universidad Francisco de Paula Santander, San José de Cúcuta, Colombia
fredyhumbertovera@ufps.edu.co

2 Foundation of Researchers in Science and Technology of Materials,
Bucaramanga, Colombia

3 Universidad Técnica Federico Santa María, Valparaíso, Chile
4 Universidad del Valle, Cali, Colombia

Abstract. Microservices are a software development approach where applica-
tions are composed of small independent services that communicate through
well-defined APIs. A major challenge of designing these applications is deter-
mining the appropriate microservices granularity, which is currently done by
architects using their judgment. This article describes Microservice Backlog
(MB), a fully automatic genetic-programming technique that uses the product
backlog’s user stories to (1) propose a set of microservices for optimal granu-
larity and (2) allow architects to visualize at design time their design metrics.
Also, a new Granularity Metric (GM) was defined that combines existing
metrics of coupling, cohesion, and associated user stories. The MB-proposed
decomposition for a well-known state-of-the-art case study was compared with
three existing methods (two automatics and one semi-automatic); it had con-
sistently better GM scoring and fewer average calls among microservices, and it
allowed to identify critical points. The wider availability of techniques like MB
will allow architects to automate microservices identification, optimize their
granularity, visually assess their design metrics, and identify at design time the
system critical points.

Keywords: Microservices architecture � Granularity � Decomposition �
Cohesion metrics � Coupling metrics � Complexity metrics � User stories

1 Introduction

The microservices architectural changes the way applications are created, tested,
implemented, and maintained. By using microservices, a large application can be
implemented as a set of small applications that can be developed, deployed, expanded,
managed, and monitored independently. Agility, cost reduction and granular scalability
entail some challenges such as the complexity of managing distributed systems [1]. The
appropriate size (granularity) of the microservice is one of their most discussed
properties and there are few patterns, methods, or models to determine how small a
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microservice should be. Thus Soldani et al. [2] argue that there is difficulty identifying
the business capacities and delimited contexts that can be assigned to each microser-
vice. Bogner et al. [3] note that methodologies and techniques must facilitate dimen-
sioning and versioning of microservices. Zimmerman [4] wonders how to find an
adequate service cut, (i.e. “how small or fine is small enough”). Jamshidi et al. [5]
notice the lack of agreement on the correct size of microservices.

We introduce the Microservice Backlog, which allows to analyze graphically
microservices granularity, starting from a set of functional requirements expressed as
user stories within a product backlog (prioritized and characterized list of functionalities
that an application must contain [6]); we propose a model that helps to define the size
and number of microservices using genetic programming; it shows the microservices
that are going to be part of an application detailing its dependencies, functionalities and
coupling, cohesion, and complexity metrics at design time. Therefore, we can observe
and evaluate the microservices’ granularity and analyze how the application will be
implemented and structured.

The major contributions from this work are: 1) a model for determining and
evaluating the granularity of microservices, establishing the number of user stories
assigned to a microservice and the number of microservices that are part of the
application, ensuring that microservices have low coupling and high cohesion, 2)
identified and adapted metrics of complexity, coupling, cohesion, and size of the
microservice, 3) mathematical formalization of an application based on microservices
in terms of user stories and metrics, and 4) A genetic algorithm to propose a decom-
position of user stories into microservices.

The remainder of this paper is organized as follows, Sect. 2 related works; Sect. 3
Methodology and evaluation methods used; Sect. 4 our approach; Sect. 5 discussing
results; and Sect. 6: Summarizes our conclusions.

2 Related Works

Methods and techniques have been proposed to define the granularity of microservices,
for example:

Service Cutter a method and tool framework for service decomposition [7]. In
Service Cutter approach, coupling information is extracted from software engineering
artifacts. Its approach is more for SOA applications. Hassan and Bahsoon [8] propose
microservice ambients, which use “aspects” to define the adaptation behavior needed to
support changes in granularity at runtime. Hasselbring and Steinacker [9], to achieve
adequate granularity, propose a vertical decomposition in self-contained systems
throughout the business services. Gouigoux and Tamzalit [10] explain that choice of
granularity should be based on the balance between the costs of quality assurance and
the cost of deployment. Baresi et al. [11] propose Microservices Identification Through
Interface Analysis (MITIA), they address the problem of granularity by proposing an
automated process to identify candidate microservices through a light semantic anal-
ysis, independent of the domain of the concepts in the input specification concerning a
reference vocabulary. They perform an analysis of the semantic similarity of the
functionalities described in OpenApi. Tyszberowicz et al. [12] describe a systematic
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approach to identify microservices in the initial design phase that is based on speci-
fication the functional requirements of the system and that uses functional decompo-
sition. Abdullah et al. [13] design a method to automatically decompose a monolithic
application into microservices to improve the scalability and performance. They use the
application’s access logs and an unsupervised machine learning method, scale
weighted k-means. De Alwis et al. [14] mathematically define a business system and a
microservices-based system, then define heuristics to identify microservices. They
propose a microservice discovery algorithm. Mazlami et al. [15] present a Graph-based
clustering algorithm and a Class-based extraction model for the extraction of
microservices from monolithic software architecture based on source code. Chen et al.
[16] propose a top-down decomposition approach driven by data flows of business
logic. Taibi and Syst [17] propose a process-mining approach to identify business
processes in an existing monolithic solution based on three steps. In the first step, a
process-mining tool is used to identify business processes. In the second step, processes
with common execution paths are clustered and a set of microservices. In the third step,
they propose a set of metrics to evaluate the decomposition quality. Jin et al. [18]
propose Functionality-oriented Service Candidate Identification (FoSCI) framework to
identify service candidates from a monolithic system, through extracting and pro-
cessing execution traces. Microservices API patterns (MAP) [19] define some design
and implementation patterns.

The above methods are mainly used in migrations from monoliths to microservices.
The use of artificial intelligence is a subject of great interest, being the clustering
algorithms the most used. Few methods support development from scratch (greenfield
development). Different input data have been used, such as use cases, OpenApi
specification, source code, dataflow diagram, database, execution call graphs, execution
logs, and execution traces; mainly these methods are used at design and development
time. The proposed method is used at design time, it uses user stories as input data and
focuses on agile software development, none of the identified methods focus on these
aspects. We characterized the process of applications based on microservices in [20]
and we used that development process in [21].

3 Methodology

Based on one approach proposed by Hevner et al. [22]. The artifact to be created is the
intelligent model of specifying the granularity of microservices that are part of an
application. DSR implies a continuous and iterative assessment of the proposed artifact.
Figure 1 shows the research model.

1. Identify the problem. To identify the problem and its relevance, a review of the
state of the art was developed, research gaps were identified and the research questions
for this work were formulated.

2. Identify and adapt the metrics. A systematic literature review was done to
identify metrics that can be used to define the granularity. Section 3 shows these
metrics.
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3. Design the intelligent granularity model. A proposal of a formal specification
of the granularity model can be found in Sect. 4.1. While a definition of a genetic
algorithm for microservices decomposition is explained in Sect. 4.2

4. Evaluate in an academic case study. A state-of-the-art example called Cargo
Tracking [11] was used to verify properly functioning and objectives compliance from
our model. A comparison between results from the case of study and decomposition
performed with DDD are shown in Fig. 4.

5. Build the intelligent granularity model. A genetic algorithm was implemented
to generate the decomposition of the product backlog into microservices. An algorithm
was implemented to evaluate metrics for decomposition. Sections 4 and 5 detail this
implementation.

6. Experimental evaluation.Metrics of Cargo Tracking case study are analyzed by
four methods: Domain-driven design (DDD), Service Cutter, Microservices Identifi-
cation Through Interface Analysis (MITIA) [11] and our approach Microservices
Backlog. Since DDD is the most widely used method for microservices identification,
our first evaluation verified that obtained decomposition was consistent and close to
that performed by DDD. A second evaluation compares decomposition made by our
method versus other decompositions methods.

7. Propose the intelligent granularity model. Proposing intelligent granularity
model. Based on metrics and analytical evaluation including adjustment through
researching a Microservice Backlog is proposed as an intelligent specification and
granularity evaluation model.

4 Our Approach

Agile practices are techniques used to control one aspect of the development process.
One of the most widely used agile practices is Sprint/iteration planning [23], tradi-
tionally expressed in user stories within the product backlog. A model to define

Fig. 1. Research model
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microservices granularity from user stories and analyze some metrics is proposed.
A view of the model can be seen in Fig. 2.

1. Parameterize. It is responsible for taking input data and converting it into a
format that can be processed by the grouper. It extracts the key data, such as identifier,
name, description, estimated points, estimated time, scenario, observations, and
dependencies, from the user story. Later, with this data, the model can group the user
stories in microservices and calculate the metrics. The format of the user stories is a
JSON file or CVS where the key data are supplied.

2. Grouper. This component uses a genetic algorithm, which groups user histories
into microservices, considering cohesion and coupling metrics, as well as the number
of user stories associated with the microservice.

3. Metrics evaluator. This work considers the following metrics in the
microservices backlog [3]: 1) Complexity – Points: Estimated points of the effort
needed to develop the user story. The story points are an indicator of the speed of
development of the team. 2) Coupling – Absolute Importance of the Service (AIS):
The number of clients that invoke at least one operation of a microservice’s interface
[24]. 3) Coupling – Absolute Dependence of the Service (ADS): The number of other
microservices that microservice depends on. The number of microservices from which
invokes at least one operation [24]. 4) Coupling – Microservices Interdependence
(SIY): Number of interdependent microservices pairs [24]. 5) Cohesion - Lack of
cohesion (LC): Measured as the number of pairs of microservices not having any
dependency between them, adapted from [25]. LC of MSi was defined by us as the
number of pairs of microservices not having any interdependency between MSi.
6) Weighted Service Interface Count (WSIC): It is the number of exposed interface
operations of the microservice [26]. For our model, a user story is related to an

Fig. 2. Intelligent model of granularity specification

Microservices Backlog 89



operation (one-to-one); so, we adapt this metric as the number of user stories associated
wiht the microservice. 7) Development Time: Estimated time of development in hours
for the microservice. Summation of the estimated time of each user story that is part of
the microservice.

4. Optimization. This optimizer allows finding the most optimal solution that
meets certain conditions (non-functional requirements, test costs, cost of deployment,
etc.), performing operations of union and decomposition of the microservices candi-
dates. This optimizer will be addressed in future work, due to the time and scope of the
research.

5. Outputs of the model. The calculated metrics and the microservices backlog
diagram. Figure 3 shows Microservices Backlog for the Cargo Tracking application.

The microservices backlog in Fig. 3 was obtained by decomposition using DDD
and the next steps: 1) The user stories were loaded. 2) The dependencies between the
stories were defined. 3) The entities were identified. 4) The aggregates were defined, 5)
The delimited contexts were established, the entities and their respective user histories
were associated. 6) The metrics were calculated by the evaluator. Specific metrics for
each microservice and the whole application. It can be highlighted that the grouper
component of our model automatically identifies the candidate microservices, then the
steps 3 to 5 are automatic.

From the model, the designer can see the size of each microservice, as well as its
complexity, dependencies, coupling, cohesion, and development time. The architect
can notice at first sight that the orange microservice is a critical point of the system if
this microservice failure, then the whole system can fail because it is used by all the

Fig. 3. Microservices backlog for Cargo Tracking using DDD decomposition
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others. The architect at design time can already think about fault tolerance mechanisms,
load balancing and monitoring on that critical microservice. They can have a vision of
the global system in design time.

4.1 Formal Specification of the Granularity Model

Specification formal of the granularity model will be given in terms of the metrics stated
in the previous section and by the target function (GM). It is intended to MINIMIZE
(GM). GM is defined below. Let microservice-based application MSBA as:

MSBA = MS, MTð Þ ð1Þ

Where MS is a set of microservices, MS = {MS1, MS2,…MSn} and MT is a set of
the metrics calculated for MSBA. Then:

MSi ¼ HU, MTSð Þ ð2Þ

Where MSi is the ith microservice, HU is the set of user stories associated with the
ith microservice, then HU = {HU1, HU2, …, HUm}. MTS is a set of metrics calculated
for MSi. In this case, the calculated and used metrics in the model correspond to the
coupling (CpT), the cohesion (CohT) and the number of stories associated with the
microservice (WsicT). These metrics are defined below.

Coupling Metrics. Coupling is defined by three metrics: 1) absolute importance of the
service (AIS), 2) absolute dependence of the service (ADS), and 3) microservices
interdependence (SIY). These metrics are calculated based on the dependencies of the
user stories for each microservice.

AISi is the number of clients invoking at least one operation of MSi. At the system
level, the AIS vector is defined, which contains the calculated AIS value for each
microservice. To calculate the total value of AIS at the system level (AisT), the AIS
vector norm is calculated. Thus:

AIS ¼ AIS1;AIS2; . . .;AISn½ � ð3Þ

AisT ¼ AISj j ð4Þ

ADSi is the number of other microservices on which the MSi depends. To calculate
the total value of ADS at the system level (AdsT), the ADS vector norm is calculated.
Then:

ADS ¼ ADS1;ADS2; . . .;ADSn½ � ð5Þ

AdsT ¼ ADSj j ð6Þ

SIY defines the number of pairs of microservices that depend bi-directionally on
each other divided by the total number of microservices. At the system level, the vector
SIY was defined:
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SIY ¼ SIY1; SIY2; . . .; SIYn½ � ð7Þ
SiyT ¼ SIYj j ð8Þ

Let the Cp vector as the system level coupling metric, calculating the norm of the
vector Cp we have the coupling value for the application (CpT):

Cp ¼ AisT, AdsT, SiyT½ � ð9Þ

CpT ¼ Cpj j ð10Þ

Cohesion Metric. In the same way, the cohesion for the ith microservice is defined by
the metric lack of cohesion (LC), The degree of cohesion of each microservice is
defined as the proportion of the Lack of cohesion metric divided by the total number of
microservices that are part of the application.

Cohi ¼ LCi=n ð11Þ

Where n is the number of microservices. At the system level, the vector Coh was
defined, calculating the norm of the vector Coh we have the cohesion value for the
application (CohT):

Coh ¼ Coh1;Coh2; . . .;Cohn½ � ð12Þ

CohT ¼ Cohj j ð13Þ

Indeed, the MT vector is defined as follows:

MT ¼ CpT; CohT; WsicT½ � ð14Þ

Where, CpT use (10), CohT use (13) and WsicT is defined as the highest WSIC
value. We adapt WSIC as the number of user stories assigned to each microservice.
Finally, the value of the target function GM use (14), it is defined as the MT vector
norm.

GM ¼ MTj j ð15Þ

This mathematical expression allows us to determine how good or bad is the
decomposition. The aim is to obtain a solution with low complexity, low coupling, and
high cohesion. The genetic algorithm seeks to find the best combination, the best
assignation of stories to microservices in such a way that GM is lower. The genetic
algorithm is then designed as follows.
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4.2 Genetic Algorithm for Microservices Decomposition

The genetic algorithms were established by Holland [27], it is iterative, in each iteration,
the best individuals are selected, everyone has a chromosome, which is crossed with
another individual to generate the new population (reproduction), some mutations are
generates to find the optimal solution to the problem [28]. Our genetic algorithm consists
in distributing or assigning user stories to microservices automatically, considering
coupling and cohesion metrics. The implemented methods are explained below:

Get Initial Population Method. There is a set of user stories HU = {HU1, HU2, HU3,
…, HUm}, which must be assigned to the microservices. We have a set of microservices
MS = {MS1, MS2, MS3, …, MSn} and some metrics calculated from the information
contained in the user story. Individuals are defined from the assignment of stories to
microservices, therefore, the chromosome of each individual is defined from an
assignment matrix of ones and zeros, wherein the columns there are user stories and in
the rows are the microservices, and the cross contains a 1 when the user story is assigned
to the microservice or zero if not. In Table 1, an example is presented for 2 microser-
vices MS = {MS1, MS2} and 5 user stories HU = {HU1, HU2, HU3, HU4, HU5}.

The resulting chromosome would be the union of the assignments of each user
story to each microservice, for this case, it would be: Chromosome: 10011 01100.
From this chromosome, it is possible to define the function of adaptation or objective
function, it uses (15).

Reproduction Method. A different assignment would be generated from selected
parents. In our method, the father and mother are randomly selected from the popu-
lation; to generate the child information is taken from the father and mother, from the
assignment matrix the first columns of the father are taken, and the last columns of the
mother are joined, generating a new assignment. It must be considered that a user story
cannot be assigned twice, this means that in the assignment matrix only one can appear
in each column. Example: Given the two chromosomes: 1) Father: 10011 01100.
2) Mother 01000 10111. The son would be 10000 01111.

Mutation Method. The mutation indicates changing a random bit of the chromosome,
changing a bit of the chromosome of this problem from 1 to 0 or from 0 to 1, implies
that a user story is assigned or unassigned to a microservice and this must be assigned
or unassigned to another microservice. This implies that the mutation is done on two
bits. Example: Mutate bit 7 of the obtained chromosome: 01011 10100. Mutated
chromosome: 00011 11100. The mutated chromosomes must be included in the pop-
ulation. This process is carried out randomly, the individuals to be mutated are selected

Table 1. Example of an assignment matrix

Microservices HU1 HU2 HU3 HU4 HU5

MS1 1 0 0 1 1
MS2 0 1 1 0 0
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from the population, the mutation of a bit is also carried out randomly, for the mutation
the value of the target function is calculated and included in the population.

Select Better Method: In the processes of genetic selection, the strongest survive, in
the case of the problem of the automatic generation of the assignment of user histories
to microservices, the n individuals who best adapt to the conditions of the problem
survive. The assignments that imply a lower GM. The selection is made from the
objective function, this is applied to each individual and the population is ordered in
ascending form, considering the first places, the best individuals, corresponding to the
assignments involving lower GM using (15).

Convergence: To determine the convergence of the method, the number of iterations
or generations of the population to be processed is defined. At the end of the iterations,
the algorithm is stopped, and the chromosome located in the first place is selected,
which would be the best assignment of user stories to microservices. For the case
studies used to evaluate the proposed method, a population of 1000 individuals were
generated, with 100 iterations or generations, with 500 children and 500 mutations in
each generation. The algorithm was tested several times obtaining the same result, even
with more individuals and more iterations.

5 Results

The genetic algorithm was implemented in Java, to evaluate its results we use a case
study and a quasi-experiment.

5.1 Evaluation in an Academic Case Study – Cargo Tracking Application

Baresi et al. [11] the describe Cargo Tracking application as follow, the focus of the
application is to move a Cargo (identified by a TrackingId) between two Locations
through a RouteSpecification. Once a Cargo becomes available, it is associated with
one of the Itineraries (lists of CarrierMovements), selected from existing Voyages.
HandlingEvents then trace the progress of the Cargo on the Itinerary. The Delivery of a
Cargo informs about its state, estimated arrival time, and is on track. From the domain
model proposed, we extracted and raised user stories and the product backlog is
detailed in Table 2. The points and times are input data to the model. I this case they
were estimated according to our experience and correspond to the effort and time
involved in developing each user story.

A critical point of the proposed method is the dependencies between user stories.
They must be identified and provided as input to the method, this information is
included within the user stories. The parameterizing component offers functionality to
define dependencies between user stories. We define a dependence between HUi and
HUj when HUi calls or executes HUj. For example, to create a voyage (HU1) you must
get the locations (HU12), this implies that the HU1 has a dependence on HU12. Table 3
presents the dependencies identified by us among the user stories. The dependencies
were calculated according to the logic of the application understood by us. To illustrate
the proposed genetic algorithm the statement of these dependencies is valid.
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Dependencies are used to calculate the metrics, for example, to calculate the AIS metric
of the decomposition obtained with DDD for the microservice called Localization (see
Fig. 4). MS1 (Voyage) = {HU1, HU3, HU13}, MS2 (Tracking) = {HU2, HU5, HU14},
MS3 (Localization) = {HU4, HU12}, MS4 (Voyage Planning) = {HU6, HU7, HU8, HU9, HU10,
HU11}. AIS is the number of clients that invoke at least one operation of a
microservice’s interface. Then we count the number of microservices that invoke or use
HU4 o HU12 from the dependencies. HU4 is not used by any other user stories, it does
not appear in any dependencies (See Table 3), while HU12 is used by HU1, HU2, HU3.
HU8, HU9, and HU10 corresponding to 3 microservices, therefore AIS = 3. Similarly,
other metrics are calculated.

Table 2. Product backlog for Cargo Tracking application

ID Name Points Estimated dev. time (hours)

HU1 Create voyage 3 5
HU2 Handle cargo event 3 5
HU3 Add carrier movement 5 7
HU4 Create location 2 3
HU5 View tracking 3 5
HU6 Create cargo 7 10
HU7 Route cargo 5 7
HU8 Create leg 2 3
HU9 Book cargo 5 7
HU10 Change cargo destination 1 2
HU11 Create delivery 7 10
HU12 Get locations 2 3
HU13 Get carrier status 3 5
HU14 Get routes status 3 5
Total 51 77

Table 3. User stories dependences

User stories Dependences User stories Dependences

HU1 {HU12, HU3} HU8 {HU12}
HU2 {HU12} HU9 {HU12}
HU3 {HU12} HU10 {HU12}
HU4 {} HU11 {HU6, HU13, HU14}
HU5 {} HU12 {}
HU6 {HU7, HU9, HU11} HU13 {HU5}
HU7 {HU8} HU14 {HU5}
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Figure 4 presents the microservice backlog for the decompositions generated by the
genetic algorithm compared with DDD for Cargo Tracking. Our method obtained the
same number of microservices, this being an important approximation to DDD. Our
method does not consider the semantic similarity between user stories. For example,
HU4 and HU12, both are related to the Localization concept, as they are concepts
related to the same, they must be associated with the same entity and therefore to the
same microservice. In our method those stories were assigned in separate microser-
vices, so they do not have any dependence between them (i.e. HU4 has not dependence
with HU12). The decomposition performed by our method is different from DDD, our
model does not group the entities and their stories or operation that make up the
aggregate into a microservice.

With the decomposition obtained with the genetic algorithm, the critical point of
failure of the proposed DDD solution is removed, Localization microservice is used for
all microservices. The number of calls between microservices is reduced, thus
improving performance. The maximum number of operations associated with a
microservice is also reduced, as well as the estimated development time. In the
decomposition generated by genetic programming, two microservices can function
independently without depending on other microservices. Whereas in the solution
proposed by DDD, one microservice can function independently. In the decomposition
proposed by DDD, there are more dependencies. Therefore, the proposed model and
the genetic algorithm considerably improves the decomposition and identification of
microservices. To generalize this result, validation must be carried out in future work
with more complex case studies specifically with real industry cases.

By distributing user stories differently, shorter development times of the entire
system can be obtained. Considering that each microservice is developed by an
independent team in parallel.

Fig. 4. Microservices backlog for the result of the DDD vs genetic algorithm.
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5.2 Quasi-Experimental Evaluation

To evaluate the results obtained by the model of specification of the granularity, we use
the work done by Baresi et al. [11], they propose a decomposition to microservices of
the Cargo Tracking case study using interface analysis and semantic similarity
(MITIA), they also propose the decomposition of that same case using Service Cutter,
we take those results and propose an experiment to compare our model with these
methods, we include the decomposition performed by DDD. Also, we include a
hypothetical case where only one user story was added per microservice, we call it
14MS, this corresponds to the case of the finest granularity, additionally, we include the
monolithic solution. MITIA and Service Cutter propose the result of the decomposition
in a domain model from there we determine the association of user stories and
microservices. We use a quasi-experiment for evaluating our method against the other
methods. The definition of the quasi-experiment is detailed below.

Scope: Compare the granularity specification model with the decomposition methods
selected from the state of the art (DDD, Service Cutter, MITIA, 14MS and monolithic)
for the Cargo Tracking case study. The GM granularity metric is evaluated in the
decompositions obtained with each method to determine the accuracy of the proposed
model. GM is calculated from coupling metrics, cohesion and number of operations
assigned to each microservice.

Planning. 1) Objects of study: Microservices Backlog, DDD, Service Cutter, MITIA,
14 MS, and monolithic solution. 2) Independent variables: User stories dependences,
decomposition obtained by each method. 3) Dependent variables: GM, Metrics: AisT,
AdsT, SiyT, CpT, CohT, and number of microservices.

Hypothesis Formulation. H0: Our microservices backlog model does not present a
better decomposition in microservices, therefore the value of GM is greater than GM of
the other methods, then the application has not better coupling and cohesion. H1: Our
microservices backlog model presents a better decomposition in microservices,
therefore the value of GM is lower than GM of the other methods, then the application
has better coupling and cohesion.

Operation. The quasi-experiment is carried out in the laboratory, the decomposition
for the Cargo Tracking case study is determined for each one of the methods (see
Table 4). Based on the dependencies of the user histories, the metrics are calculated
and the value of GM for each decomposition (see Table 5). Another set of metrics were
calculated for better analysis (see Table 6).

Analysis & Interpretation. The data collected correspond to the values calculated for
the metrics and the GM function for each one of the methods compared. From the
results obtained for each metric, the lowest and highest value is identified, to evaluate
the hypotheses proposed. The data and hypothesis raised are simple and their validation
does not require additional statistical analysis. Rejecting the Ho hypothesis indicates
that the decomposition proposed by our model is better than the decomposition pro-
posed by the other methods.
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Experiment Results and Discussions. First, the decomposition obtained by each of
the methods is detailed. Table 4 shows these results. Second, we tabulate the results
obtained for each metric. these can be seen in Table 5. Finally, we identify the methods
that obtained lower and higher values for each metric including GM.

MITIA considers the semantic similarity between the operations, for that reason a
distribution closer to DDD can be appreciated. The Service Cutter has one less
microservice, but the distribution is like DDD, although the number of operations
exposed by MS3 is greater. Based on the calculated metrics, it can be appreciated that
our decomposition presents a smaller coupling compared to the other methods. In this
case, the cohesion is given in terms of the number of microservices that are part of the
application, having more microservices this value will be greater; for this reason, the
highest cohesion is presented by the decomposition with 14MS. But the value of the
cohesion of our method is equal to that obtained with DDD and greater than Service
Cutter and MITIA.

As future work, other cohesion metrics will be considered and revised to be more
precise in their calculation. Our method presents the lowest number of user stories or
operations associated with a microservice (WsicT), with a value of 4 stories. The
highest value is presented by Service Cutter with 10 stories associated with a single
microservice, thus Service Cutter has a greater complexity of both implementation and
operation.

Table 4. Comparison of the decompositions of the methods evaluated

ID Number of
microservices

Microservices decomposition

Our approach:
microservices backlog

4 MS1 = {HU1, HU2, HU3, HU12}
MS2 = {HU4, HU6, HU7, HU11}
MS3 = {HU5, HU13, HU14}
MS4 = {HU8, HU9, HU10}

DDD 4 MS1 = {HU1, HU3, HU13}
MS2 = {HU2, HU5, HU14}
MS3 = {HU4, HU12}
MS4 = {HU6, HU7, HU8, HU9, HU10, HU11}

Service cutter 3 MS1 = {HU4, HU12}
MS2 = {HU2, HU5}
MS3 = {HU1, HU3, HU6, HU7, HU8, HU9,
HU10, HU11, HU13, HU14}

MITIA 4 MS1 = {HU3, HU9, HU10, HU13}
MS2 = {HU1, HU2, HU5, HU11, HU14}
MS3 = {HU6}
MS4 = {HU4, HU7, HU8, HU12}
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Table 5 shows that the value of the GM obtained by our model is lower than all the
other methods analyzed, additionally, the coupling (CpT) was the lowest, with the
fewest number of stories associated with a microservice (WsicT), the cohesion (CohT)
was the highest compared to DDD, Service Cutter, and MITIA. Therefore, we reject the
H0 hypothesis, which indicates that the decomposition proposed by our model is better
than the decomposition proposed by the other methods, in terms of the metrics proposed
in this work. The value obtained in the GM function for the monolithic application is the
highest, in the same way, the GM value for 14MS is not the lowest, the appropriate
solution is an intermediate point between the finest granularity (14MS) and the thickest
granularity (Monolith), therefore, the mathematical formalization fits the expected.

Also, we calculate other metrics to evaluate the proposed methods: 1) Points:
Greater number of story points associated with a microservice. 2) Average of Calls:
that indicates the average of calls that a microservice makes to another microservice.
3) Development time: Each user story has an associated estimated development time,
therefore the estimated development time of the MSi is the sum of the development
time of each user story associated with the MSi, Table 6 shows these metrics.

The lowest number of story points without considering the metrics calculated for 14
MS corresponds to MITIA with 19 points. The shortest development time was the
decomposition proposed by MITIA with 30 h. Our method obtains one close value of
21 points and 30 h of development respectively, being these values better than DDD
and Service Cutter. The average number of calls of our approach is less than DDD,
Service Cutter, and MITIA. This metric measure or determine the degree of depen-
dence that have the microservices that are part of the application, a larger value implies

Table 5. Metrics calculated for the decompositions of the methods evaluated

Metrics Methods
14MS DDD Service cutter MITIA Our approach Monolith

Number of MS 14 4 3 4 4 1
AisT 6.93 3.74 2.24 4.24 1,73 0
AdsT 5.48 3,74 2.24 4.69 2,24 0
SiyT 1.41 0 0 2,45 0 0
Coupling CpT 8.94 5.29 3.16 6.78 2.83 0
Cohesion CohT 3.44 1.5 1.15 1.06 1.5 0
WsicT 1 6 10 5 4 14
GM 9.63 8.14 10.55 8.49 5.12 14

Table 6. Other metrics for microservices backlog

Metrics 14MS DDD Service cutter MITIA Our approach Monolith

Max. points 7 27 41 19 21 52
Avg. calls 1.14 2.25 2.67 3 1.50 0
Dev. time (hours) 10 39 61 30 30 77
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a greater dependence and lower performance because they require the execution of
operations that belong to other microservices in other containers.

6 Conclusions

This paper proposes the Microservices Backlog a genetic-programming technique that
calculates at design time each microservices’ granularity. This model uses as inputs the
user stories expressed in the product backlog, to decompose the functionalities or
requirements of the application into microservices. To evaluate our proposal, the case
study Cargo Tracking was used, the decomposition made with DDD, service Cutter and
Microservices Identification Through Interface Analysis (MITIA) were compared. The
decomposition performed by our model has less coupling, greater cohesion, fewer
operations associated with a microservice, a better average of calls from one
microservice to another and lower value in the proposed objective mathematical
function (GM) used in the genetic algorithm. This algorithm allows us to model and
evaluates the level of granularity of the microservices that are part of the application at
design time.

To model and define the right granularity we identify and adapt metrics of com-
plexity: estimated story points; metrics of coupling: absolute importance of the service
(AIS), absolute dependence of the service (ADS), microservices interdependence
(SIY); metrics of cohesion: lack of cohesion (LC) and degree of cohesion (CohT); and
metrics of size of the microservice: weighted service interface count (WSIC). These
metrics were used to determine the most suitable decomposition with less coupling,
high cohesion, and fewer assigned user stories. Mathematical formalization of an
application based on microservices in terms of user stories and metrics was proposed.
Too coarse-grained microservices could lead to significant drawbacks, while too fine-
grained services could increase the system’s overall complexity and performance, our
model found the right service granularity at design time, based on the mathematical
function proposed GM for the genetic program.
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