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Abstract. Today, the ability to track users’ sequence of online activities,
makes identifying their evolving preferences for recommendation prac-
ticable. However, despite the myriad of available online activity infor-
mation, most existing time-based recommender systems either focus on
predicting some user rating, or rely on information from similar users.
These systems, therefore, disregard the temporal and contextual aspects
of users preferences, revealed in the rich and useful historical sequential
information, which can potentially increase recommendation accuracy. In
this work, we consider such rich, user online activity sequence, as a com-
plex dependency of each user’s consumption sequence, and combine the
concept of collaborative filtering with long short-term memory recurrent
neural network (LSTM-RNN), to make personalized recommendations.
Specifically, we use encoder-decoder LSTM-RNN, to make sequence-to-
sequence recommendations. Our proposed model builds on the strength
of collaborative filtering while preserving individual user preferences for
personalized recommendation. We conduct experiments using Movielens
(https://grouplens.org/datasets/movielens) dataset to evaluate our pro-
posed model and empirically demonstrate that it improves recommenda-
tion accuracy when compared to state-of-the-art recommender systems.

Keywords: Recommender systems · Deep learning · Neural
networks · Recurrent neural networks · Long short-term memory
RNN · Sequence-to-sequence recommendations

1 Introduction

The comfort, simplicity and extensive reach of the internet has altered the tradi-
tional approach to marketing and commerce leading to a dominant new brand,
e-commerce and marketing. In this new form of service provision and commerce
approach, users become overwhelmed by abundance and variety of products and
services, resulting in the challenge of choice making. To ease this challenge the
use of recommender systems (RS) has recently become a subject of interest.

RS are one of the most successful applications of data mining and machine
learning technology in practice. They are typically based on the matrix com-
pletion problem formulation, where for each user-item-pair only one interac-
tion (e.g., a rating) is considered [1]. Collaborative filtering (CF) is one of such
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widely used and more effective service recommendation techniques. It bases its
recommendations on the ratings or behavior of other users in the system [2,3].
Traditional memory- and model-based CF recommendation methods, although
useful, are far from perfect, due to their disregard of time. Thus, they assume
consumption events to be independent from each other, which precludes such
methods from taking advantage of the temporal dynamics that naturally exist
in user behavior, for personalized recommendation. This makes them unsuit-
able to capture the temporal aspects of recommendations, such as user evolving
preferences or taste or context-dependent interests [4]. This is because, there
are many application scenarios where considering short-term user interests and
longer-term sequential patterns can be central to the success of a recommender
system [1]. For instance, to predict the next best item from a user sequential
events, sequential logs can also be used to derive longer-term behavior pat-
terns, to detect interest drifts of individual users over time, identify short-term
popularity trends in the community that can be exploited by recommendation
algorithms, or to reason about the best point in time to remind users of certain
items they have seen or purchased before [1].

Modern recurrent neural networks (RNN), such as the long short-term mem-
ory (LSTM), have proven very capable for sequence prediction problems and are
well-suited to capture the evolution of users taste [5]. As a result, Devooght and
Bersini [4] showed that CF can be viewed as a sequence prediction and demon-
strated that by applying LSTM-RNN to CF recommendations. Their work how-
ever, does not consider user sequential event information and so fails to person-
alize recommendations. Similar to our proposed method is the works proposed
by Ko et al. [6] and Donkers et al. [7]. In their work, Ko et al. [6] proposed a
collaborative RNN for dynamic recommender systems. They studied sequential
form of user event data and, by using ideas from CF, proposed a collaborative
sequence model based on RNN. Also, Donkers et al. [7] proposed a sequential
user-based RNN recommendation method. They showed, in their work, how indi-
vidual users can be represented in addition to sequences of consumed items in
a Gated Recurrent Unit (GRU), to effectively produce personalized next item
recommendations.

These works, however, have some limitations. First, they are not powerful
enough to represent and capture the complex dependencies that may exist within
user event sequences, especially, when the sequences are very long and might be
of variable lengths. Second, they fail to generate a distributed representation
(embedding) of the input sequence, which reduces the task performance of their
proposed models. Third, they base their recommendation on predicting either
the next item in the sequence or a fixed number of items in a sequence and that
makes them impractical, especially for applications where recommending items
in variable sequence length sequence is expected.

To address the above limitations, this paper employs Encoder-Decoder
LSTM-RNN, which is suitable for processing user sequence event data, for
sequence-to-sequence recommendations. We build a flexible model to represent
complex dependencies within long sequences, by building a stronger correlation
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between user consumption sequence. We achieve this by modeling each user con-
sumption instance as a dependency on all previous consumptions for personalize
recommendations. The summary of our contributions are as follows:

1. We build a strong correlation between user consumption sequence by mod-
eling each user’s consumption instance as a dependency on all previous con-
sumptions. This allows us the ability to represent complex dependencies
within long sequences and explore the extra details and information embed-
ded in sequential events in order to preserve user preferences.

2. We employ encoder-decoder LSTM-RNN because of the length of consump-
tion preferences of users. LSTM-RNNs work better on long-term dependencies
than traditional RNNs.

3. We build on the strength of collaborative filtering, by using other user’s
consumption preferences, while preserving individual user preferences and
improves personalize recommendation accuracy. This bridges the gap created
by most existing models, where recommendation is based on either modeling
each user’s individual preferences or describing all users by a single prototyp-
ical behavioral profile (global learning).

4. We perform experiments to evaluate our proposed model and compare it to
baseline methods such as Bayesian Personalized Ranking Matrix Factoriza-
tion [8] and Adaptive Hinge Pairwise Matrix Factorization [9].

The remainder of this paper is as follows. In Sect. 2 we discuss works related to
sequence-to-sequence recommendations, then RNN-based CF recommendation
methods and finally, personalized recommendations using RNN. Our proposed
work is discussed in detail in Sect. 3. In Sect. 4, we present experiments to eval-
uate our proposed method and also discuss our results. Finally, the paper is
concluded in Sect. 5.

2 Related Works

This section reviews several existing works in literature related to our proposed
work. We also provide a distinction between our proposed method and existing
related works.

2.1 Sequence-to-Sequence (seq2seq) Recommender Systems

Many real world problems can be modeled as sequence-to-sequence (seq2seq)
problems [10–12]. Recurrent neural networks (RNNs) have proven to be an effec-
tive tool in seq2seq predictions. This has led to some very useful work in the
area of seq2seq predictions using RNN techniques. Chu et al. [13] built a RNN
for seq2seq prediction using GRU. The network treats a user’s recent ratings
or behaviors as an ordered sequence. Each of these user ratings or behaviors
is modeled by the network’s hidden layers. Furthermore, they integrate the
GRU with back propagation neural network to increase the prediction accu-
racy. Hidasi et al. [14] proposed a session-based recommendation method by
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modifying the basic GRU-RNN. The GRU-RNN modification was achieved by
introducing session-parallel mini-batches based output sampling and ranking loss
function. In their work, the network input is the actual state of the session while
the output is the item of the next event in the session. For stability purposes,
the input vector was normalized and this reinforced their memory effect.

In their work, Kuan et al. [15] proposed a Heterogeneous Attribute Recur-
rent Neural Networks (HA-RNN) model. HA-RNN combined sequence modeling
and attribute embedding in item recommendation. Different from conventional
RNNs, HA-RNN develops a hierarchical attribute combination mechanism to
deal with variable lengths of attributes. The model uses attributes in the output
layer and shares the parameters with the input layer to offer additional model
regularization. It takes the union of identity and attributes as a sequence element
and is able to capture the global sequential dependencies between items as well
as between attributes.

Smirnova et al. [16] proposed a class of Contextual RNNs(CRNNs) for rec-
ommendation that can take into account the contextual information both in the
input and output layers. Their method modifies the behavior of RNN by com-
bining the context embedding with the item embedding and explicitly parame-
terizing the hidden unit transitions as a function of context information in the
model dynamics.

Balakrishnan et al. [17] proposed a deep-playlist generation model, which uses
LSTM-RNN to predict similarity between songs. Yang et al. [18] examined three
state of the art deep neural network approaches: LSTM, Encoder-Decoder and
Memory network in sequence prediction field to handle the software sequence
learning and prediction task. Then, modified approaches based on these state of
the art models were proposed to deal with additional information in sequence.
These approaches focused on adding information to enrich embedding input of
LSTM-RNN, adding a classifier to encoder-decoder neural network as an assist-
ing model and processing data to be structured for memory unit in memory
network.

2.2 Collaborative Filtering-Based Recommendations Using RNN

Often, when given a number of users with a record of their history, the next spe-
cific user consumption can be predicted in one of two ways; observing that user’s
history in isolation or finding similar users with a close consumption pattern.
We review some related work focused on the latter. Devooght et al. [4] explored
the use of RNN for the collaborative filtering problem. Using RNNs, they re-
framed collaborative filtering as a sequence prediction problem, leading to richer
models and taking the evolution of users’ taste into account. Their experiments
showed that the LSTM-RNNs produce very good results on the Movielens and
Netflix datasets, and is especially good in terms of short term prediction and
item coverage as compared to standard nearest neighbors and matrix factoriza-
tion methods. Their conclusions however, was based on the vanilla LSTM-RNN,
the basic form of LSTM-RNN.
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Similarly, leveraging user online activity sequences, Ko et al. [6] proposed a
flexible and expressive collaborative sequence model based on RNNs. The model
is designed to capture a user’s contextual state as a personalized hidden vector
by summarizing cues from a data-driven, thus variable, number of past time
steps, and representing items by a real-valued embedding. They found that, by
exploiting the inherent structure in the data, their formulation led to an efficient
and practical method.

Another example of collaborative filtering-based sequence modeling can be
seen in the work of Bansal et al. [19]. In their paper, they presented a method
leveraging deep RNNs to encode a text sequence into a latent vector. GRUs were
trained end-to-end to carry out the collaborative filtering task. In their appli-
cation case study of scientific paper recommendation, the GRU training yielded
models with significantly higher accuracy. Performance was further improved by
multi-task learning, where the text encoder network is trained for a combination
of content recommendation and item meta-data prediction.

2.3 Personalized Recommendation Using RNN

In the area of personalized recommendation Wu et al. [20], in their paper, out-
lined how they built a deep RNN (DRNN) to address the problem of collaborative
filtering’s failure to exploit current viewing history of the user which leads to
an inability to provide a real-time customized recommendation. Their network
tracks how users browse the website using multiple hidden layers. Each hidden
layer models how the combinations of web pages are accessed and in what order.
They developed an optimizer to automatically tune the parameters of their neu-
ral network to achieve a better performance. Their results on real world dataset
showed that the DRNN approach outperforms previous collaborative filtering
approaches significantly.

Donkers et al. [7] proposed how individual users can be represented in addi-
tion to sequences of consumed items in a new type of GRU, to effectively produce
personalized next item recommendations. First, they used GRU-RNN to model
the temporal dynamics of consumption sequences. Then, through a gated archi-
tecture with additional input layers, they explicitly represented an individual
user. Their user-based GRUs were uniquely designed and optimized for the pur-
pose of generating personalized next item recommendations.

Quadrana et al. [21] addressed the challenge of personalizing session-based
recommendation by proposing a model based Hierarchical RNN (HRNN). Their
HRNN model builds extra features on top of the standard RNN. First, there is
an additional GRU layer to model information across user sessions and to track
the evolution of the user interests over time. Also incorporated is a user-parallel
mini-batch mechanism for efficient training.

To make the most out of encoder-decoder LSTM-RNNs, our methods in
this work stand out from all of the above related works especially in how we
practically capture and model the consumption complexities of the users for
personalized recommendation. We build a very unique strong coherence between
the various user events in each unique user consumption sequence. This especially
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Fig. 1. Overview of the proposed collaborative learning model for personalized recom-
mendation

helps different user patterns to be loosely coupled with each other, thereby better
differentiating between unique user consumption patterns resulting in a more
user aware model to improve personalized recommendation.

3 LSTM-RNN Based Collaborative Learning Model

In this section, we progressively give a detailed description of our proposed col-
laborative learning model for personalized recommendation. Figure 1 gives an
overview of our proposed collaborative learning model for personalized recom-
mendation. As shown in Fig. 1, our model comprises two main phases: learning
phase and the prediction phase. In the learning phase, the timestamped user
consumption sequence of a number of users are collated and fed into an encoder-
decoder LSTM-RNN for model fitting to begin. After model fitting is complete,
the trained model is now ready to make predictions based on user consumption
sequences. With the fitted model, we feed in the consumption sequence of an
active user to generate a list of items to be recommend. Section 3.2 discusses the
technical details of our model.

Given a number of users and their item consumption history, how best can
we make a personalized recommendation list of items to a specific user? As a
case study, in this work, we use movies from the Movielens dataset as the item
of consumption in question. Our quest, now, is to make a personalized movie
recommendation for any user of our choice, based on the user’s consumption
history.
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3.1 Problem Definition

Formally, let U = {u1, u2, ..., un} be a set of users and S = {s1, s2, ..., sm} be a set
of services. We assume the number of users and services to be fixed. For each user
u ∈ U , we associate a consumption sequence CS(u) = [csut0 , cs

u
t1 , ..., cs

u
tk

], where
each csutk ∈ S and t0 ≺ t1 ≺ ... ≺ tk denotes the time sequence of the service
invocations. It must be noted that each service invocation in u’s consumption
sequence is an exclusive choice over S. In addition, we focus on the consumption
sequences to exploit the temporal order implicit in user consumption events.

Given a set of consumption sequences, C = {CS(u1), CS(u2), ..., CS(un)} and
a collaborative learning model L, we obtain a predictive model, P, after L has
learned on C over a period of time.

L(C) :−→ P (1)

Let a be an active user, such that a ∈ U , with a consumption sequence, CS(a),
we can predict the next p consumption sequence of a, using P.

3.2 Personalized Encoder-Decoder LSTM-RNN

The LSTM. Long Short-Term Memory (LSTM) networks are a special kind of
Recurrent Neural Network (RNN), capable of learning long-term dependencies.
They were introduced by Hochreiter and Schmidhuber [22] to address the van-
ishing gradient and exploding gradient issues in RNN, when the number of items
in the sequence gets large (long term dependencies). Figure 2 shows a schematic
diagram of a single LSTM block. An LSTM is composed of a cell, an input
gate, an output gate and a forget gate. The major component is the cell state
(“memory”) which runs through the entire chain with occasional information
updates from the input(add) and forget(remove) gates. An LSTM network com-
putes a mapping from an input sequence x = (x1, ..., xT ) to an output sequence
y = (y1, ..., yT ) by calculating the network unit activations using the following
equations iteratively from t = 1toT [23]:

it = σ(Wixxt + Wimmt−1 + Wicct + bi) (2)

ft = σ(Wfxxt + Wfmmt−1 + Wfcct−1 + bf ) (3)

ct = ft � ct−1 + it � g(Wcxxt + Wcmmt−1 + bc) (4)

ot = σ(woxxt + Wommt−1 + Wocct + bo) (5)

mt = ot � h(ct) (6)

yt = φ(Wymmt + by) (7)

– f : forget gate’s activation vector
– i: input gate’s activation vector
– o: output gate’s activation vector
– h: output vector of the LSTM unit
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Fig. 2. Detailed schematic of an LSTM block as used in the hidden layers of a recurrent
neural network [24]

– g: cell input activation function, generally tanh
– h: cell output activation functions, generally tanh
– c: cell activation vector
– W : weight matrices parameters
– b: bias vector parameters
– �: element-wise product of the vectors
– σ: the logistic sigmoid function
– φ: the network output activation function

The Encoder-Decoder. Figure 3 shows a simplified model of the encoder-
decoder network architecture. An encoder is a network that takes the input and
encodes it into an internal representation (feature/context vector), that holds
the information and features, which best represents the input. The decoder is
also a network that uses the vector from the encoder to generate an output
sequence. In general, these networks only predict probabilities and the idea here
is to first calculate the initial state of the input into a hidden state which is fed
to the decoder to decode the information into the output sequence. A softmax
takes the decoder’s hidden state at time step t, and translates it into probability.

Our Model: The Personalized Encoder-Decoder LSTM-RNN. To pre-
pare the data for training and subsequent testing, the input and expected output
strings are tokenized into integers and the respective tokenizers are trained for
our model. The encoded integers are then padded to the maximum input and
output lengths respectively and the output sequence is one-hot encoded. We
employ the encoder-decoder LSTM architecture to recommend a list of items
for a user, based on his/her consumption preference. The choice of LSTM stems
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Fig. 3. A simplified illustration of an LSTM Encoder Decoder [25]
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Fig. 4. Encoder-Decoder set-up for our experiments

from the fact that a comprehensive model and relationship will be learned from
the user’s consumption preference as well as the consumption preference of sim-
ilar users thus introducing long-term dependencies [22]. The encoder-decoder
architecture helps us to recommend a list of items to the user based on his/her
consumption history and/or the consumption history of similar users. Figure 4
shows the basic set-up we used for our experiments. The encoder is basically a
stack of LSTM cells. The thought vector is the final hidden state of the encoder.
The actual outputs from the encoder are not passed to the decoder but rather
the final hidden state. The decoder is also a stack of LSTM cells. The initial
states of the decoder are set to the final states of the encoder. The model is
trained using cross-entropy loss. At each step, the network produces a proba-
bility distribution over possible next tokens. The parameters for the model are
carefully selected to provide the best training and subsequent prediction.
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4 Experiments and Evaluation

We conducted several experiments to evaluate our proposed collaborative learn-
ing model for personalized recommendation. These experiments were done to
ascertain the performance of our proposed model on seq2seq recommendations
compared to other state of the art recommendation methods. Specifically, We
considered a variation of our collaborative learning model where input to the
encoder is reversed. The idea of reversed input comes from Sutskever et al. [11],
where their tests proved that reversing input sequence presents some benefits to
the model. In addition, we considered two variants of matrix factorization (MF)
methods; Bayesian Personalized Ranking Matrix Factorization [8] and Adaptive
Hinge Pairwise Matrix Factorization [9].

4.1 Dataset Description

We used the publicly available Movielens 10M1 dataset. Movielens dataset is a
benchmark dataset consisting of 10 million ratings and 100,000 tags from 72,000
users on 10,000 Movies. For each user, we obtained an ordered sequence of movie
consumption using the timestamps in the dataset. Using the dataset, our goal is
to predict the next n sequence of movies.

4.2 Baselines

Matrix Factorization (MF)-based methods have become classical technique for
collaborative filtering as a result of its established success in recommendation
systems [6]. In view of this, we find it plausible to compare our model to two
MF based models.

– Bayesian Personalized ranking Matrix Factorization (BPR-MF):
BPR-MF is a state of the art MF method for recommending Top-N items [4].
It is based on Bayesian Personalized Ranking loss function.

– Adaptive Hinge Matrix Factorization (AHP-MF): AHP-MF is based
on the Adaptive hinge pairwise loss function (AHP). The AHP loss, in the
SpotLight library, is an approximation for the Weighted Approximate-Rank
Pairwise (WARP) loss scheme, proposed by Weston et al. [9]. According to
Weston et al. [9], WARP loss yields better performance. For its competi-
tiveness, we decided to consider AHP Matrix Factorization as one of our
baselines.

1 https://grouplens.org/datasets/movielens.

https://grouplens.org/datasets/movielens


Collaborative Learning Using LSTM-RNN for Personalized Recommendation 45

4.3 Metrics

The following metrics were chosen:

– Recall: Recall refers to sensitivity of the model. It captures the effectiveness
of the model in terms of outputting relevant predictions. It can be computed
as:

Recall(Wi) =
tPositive(Wi)

tPositive(Wi) + fNegative(Wi)

– Precision: It assesses the predictive power of the algorithm [26].

Precision(Wi) =
tPositive(Wi)

tPositive(Wi) + fPositive(Wi)

– F-Measure: This is defined on both recall and precision. It could be viewed
as the weighted average of recall and precision. It rewards higher sensitivity
[26].

F − Measure = 2 × Precision × Recall

Precision + Recall

Where tPositive, fPositive and fNegative are true positive, false positive and
false negative respectively. Higher precision, recall and F-measure values indi-
cates better performance.

4.4 Results and Discussions

We applied our method to the consumption preferences of 5000 users from the
movielens dataset which translates into a combination of 625,000 different con-
sumption preferences. In this section, we compare the results from our model
with the results from the baselines described in the previous section.

Our main aim was to recommend a list of items (in this case, movies) to a
user, based on what he has previously consumed and what other similar users
have consumed. By similar users, we are referring to users who have similar
consumption preferences and therefore are more likely to have similar future
preferences.

All our LSTM models were fed with user consumption one after the other into
the encoder and a sequence of outputs are obtained from the decoder. Details of
the setup of our experiments are listed below:

1. 127,000 user consumption preferences with an encoder-decoder setup, both
with a hidden state of 256 units. We trained the network over 20 epochs while
updating the parameters using Adam optimization.

2. Input to encoder is reversed, 127,000 user consumption preferences with an
encoder-decoder setup, both with a hidden state of 256 units. We trained the
network over 20 epochs while updating the parameters using Adam optimiza-
tion.

3. 625,000 user consumption preferences with an encoder-decoder setup, both
with a hidden state of 256 units. We trained the network over 15 epochs while
updating the parameters using Adam optimization.
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Table 1. Training (Model) Parameters

Models Learning rate Loss Epochs Batch Emb Dim Optimizer

BPR-MF 0.05 bpr 10 256 32 ADAM

AHP-MF 0.01 Adaptive Hinge 10 256 32 ADAM

4. Input to encoder is reversed, 625,000 user consumption preferences with an
encoder-decoder setup, both with a hidden state of 256 units. We trained the
network over 15 epochs while updating the parameters using Adam optimiza-
tion. Table 1 shows the training parameters used for our baselines.

We evaluate the results of our experiments in terms of Recall@10, Preci-
sion@10 and F-Measure@10. Recall@k is equivalent to the hit-rate metric [21],
and it measures the proportion of cases out of all test cases in which the relevant
item is amongst the top-k items. This is an accurate model for certain practical
scenarios where no recommendation is highlighted and their absolute order does
not matter. Precision@k measures the fraction of correct recommendations in
the top-k positions of each recommendation list. The training and validation
accuracies from our experiments are captured in Figs. 5 and 6.

As expected, our experiments showed that increasing the number of users
from 1000 to 5000 has a significant effect on the overall performance of the
model. This shows that the collaboration from other users actually helps to
improve the performance of our model by 27%. We also observed that reversing
the input data gave an extra boost to the performance by a 14% margin. This
shows that the idea of collaborative learning for personalized recommendation
helps improve recommendation accuracy by a great deal.

From Table 2 BPR-MF had quite a good score (10%) in terms of precision
as compared to AHP-MF. It was observed that the Adaptive Model (AHP-MF)
produced low outputs, approximately 4.89% on recall, 7.26% precision and 5.84%
F-measure.
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Fig. 5. A plot of training and validation accuracies for 1000 users
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Table 2. Recall@k, Precision@k and F-Measure@k, (where k=10) on Movielens dataset

Model Recall Precision F-Measure

BPR-MF 0.0679 0.1021 0.0816

AHP-MF 0.0489 0.0726 0.0584

Encoder-Decoder (1000 Users) 0.2068 0.2074 0.2071

Encoder-Decoder (1000 Users Reverse) 0.2454 0.2461 0.2457

Encoder-Decoder (5000 Users) 0.2723 0.2731 0.2727

Encoder-Decoder (5000 Users Reverse) 0.2998 0.3006 0.3002

5 Conclusions and Future Work

In this paper, we built a user consumption-sensitive Long Short-Term Memory
recurrent neural network; specifically, an encoder-decoder model to tackle the
real world problem of sequence to sequence prediction. Our model helped us to
bridge the gap and benefit from the desirable attributes of both personalized
recommendations based solely on a user’s consumption history, and generic rec-
ommendation which is based on collaborative filtering. We have demonstrated
that our method can significantly outperform popular baselines that are used
for this task. We also noticed that the format in which the data is modeled has
a very big impact on the performance of the network. In the near future, we will
work on various data modeling formats and analyze which one is best suited for
what purpose.
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