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Abstract. Web service composition has been increasingly challenging
in recent years due to the escalating number of services and the diver-
sity of task objectives. Despite many researches have already addressed
the optimization of multiple Quality of Service (QoS) attributes, most
of the currently available methods have to build a large web service
dependency graph, which may incur excessive memory consumption and
extreme inefficiency. To address these issues, we present a novel web
service composition method by optimizing composition-segment candi-
dates. Firstly, we formalize the web service composition problem as a
Mixed-Integer Linear Programming (MILP) model and introduce some
effective techniques for complex cases, and then a standard solver can
be applied to this model. Afterwards, a candidate optimization method
is proposed to solve the MILP model efficiently, which runs sharply fast
without building a web service dependency graph. Experimental results
on both Web Service Challenge 2009’s datasets and substantial datasets
randomly generated show that the proposed method outperforms the
state-of-art while achieving a much ideal tradeoff among all the objec-
tives with better performance.
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1 Introduction

In service-oriented environments, many complex applications can be described as
a series of processes invoking services selected at runtime. Thus, the web service
composition problem has been widely studied [1,2]. Generally, many researchers
aim at optimizing a single global QoS [3] by searching for a solution in a huge
web service dependency graph [4]. When there are more than two objectives, i.e.,
QoS attributes considered, these methods usually fail to output a satisfactory
solution. These QoS attributes are usually conflicted with each other, which
makes it difficult to find a solution optimal for all the QoS attributes. Another
shortcoming of these methods is that seeking a near-optimal solution in a huge
dependency graph consumes much time and memory.

To address these issues, we aim at finding an ideal tradeoff among all the
objectives without building a web service dependency graph. We formalize the
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web service composition problem as a MILP model and apply a standard solver to
it for a near-optimal solution. Furthermore, we present a candidate optimization
method for a better tradeoff, which does not require any web service dependency
graph. The main contributions of this paper are summarized as follows.

• We formalize the web service composition problem as a novel MILP model,
which transforms min-max constraints into linear constraints by introducing
integer variables.

• A standard solver is applied to the MILP model and outputs a near-optimal
solution in most cases, and some effective techniques are introduced for com-
plex cases.

• A candidate optimization method is proposed to solve the MILP model
efficiently and obtains a composition with better tradeoff among all the
objectives.

To validate the methods proposed in this paper, we carry out extensive exper-
iments on both WSC-2009’s datasets and randomly generated datasets.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground and some related work. Section 3 formalizes the web service composition
problem into a MILP model and provides some practically useful techniques.
Section 4 proposes a candidate optimization method with no need to build a
web service dependency graph. Section 5 presents the experimental results, and
Sect. 6 provides the final remarks.

2 Background and Related Work

2.1 Background

The formal definition of web service is shown as follows.

Definition 1. Giving a set of concepts C (the size of C is |C| = m), we define
a Web Service (“service” for short) as a tuple si = {Ii, Oi, Ri, Ti}, where Ii =
{i1, . . . , ip} is the subscript set of inputs required to invoke the web service si and
Oi = {o1, . . . , oq} is the subscript set of outputs generated by invoking service
si. Each element cj , j ∈ Ii ∪ Oi is a semantic concept belonging to the set C,
namely, {cj |j ∈ Ii} ⊆ C and {cj |j ∈ Oi} ⊆ C. Ri and Ti are the nonfunctional
attributes which are the measures for judging how well the service si serves the
user.

Obviously, services are not independent to each other. Relevant services
can be combined by connecting matched inputs and outputs to construct
compositions.

Lemma 1. Giving an output co of a service si, as well as an input ci of another
service sj, if co and ci are equivalent concepts or co is a sub-concept of ci, co
matches ci.



22 F.-Y. Zuo et al.

Each service has its own QoS, which contributes to the global QoS of a
composition. The definition of QoS of a web service composition is dependent
on the structure of composition. There are two main kinds of structures, named
sequential structure and parallel structure. The first one means the services are
invoked in order, while the second one means they are invoked synchronously.

Definition 2. A composition containing the set of services S = {s1, . . . , sn} is
defined as Ω. If the services are chained in sequence, the composition is expressed
as Ω→ = s1 → . . . → sn; if in parallel, it is expressed as Ω‖ = s1 ‖ . . . ‖ sn. The
set of services involved in Ω is defined as Servs(Ω) = S. Moreover, the length
of a composition Ω is defined as Len(Ω) = |S|, namely, the number of services
in Ω. Taking the response time as an example, we compute the global QoS of Ω
as follow.

RT (Ω→) =
∑n

i=1 RT (si), si ∈ S
RT (Ω‖) = max1≤i≤n RT (si), si ∈ S

}

(1)

where RT (Ω) represents the global response time of the composition and RT (s)
represents the same of services s. Another QoS attribute is throughput, which
can be defined as follows:

TP (Ω→) = min1≤i≤n TP (si), si ∈ S
TP (Ω‖) = min1≤i≤n TP (si), si ∈ S

}

(2)

where TP (Ω) and TP (s) represent the global throughput and the service through-
put similarly.

Based on the above concepts, Multi-Objective Web Service Composition can
be described as Definition 3.

Definition 3. Giving a web services set S, a concepts set C and a given com-
position request R = {InR, OutR}, we define Multi-Objective Web Service Com-
position as finding a composition Ω which archives an ideal tradeoff among
Len(Ω), RT (Ω) and TP (Ω).

2.2 Related Work

In this subsection, we introduce some related works about single objective and
multi-objective web service composition. Meanwhile, we point out their main
drawbacks at last.

2.2.1 Single Objective Web Service Composition
For the single objective web service composition, the most popular objective is
the number of services in the final composition.

A heuristic A∗ search algorithm was proposed in [5] for web service composi-
tion, which used A∗ search algorithm in a dependency graph. Noting that some
useless services might exist in the final composition, Xia et al. [6] proposed an
algorithm to remove the useless service, which was useful to reduce the number
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of services. Fan et al. [4] transformed the web service composition problem into
a dynamic knapsack problem and applied dynamic programming technique on
it, which obtained a solution containing a small number of services.

Single objectives web service composition fails to meet the requirements in
many applications. Therefore, many researchers pay more attention to multi-
objective service composition of which goal is to find a proper composition
achieving an ideal tradeoff among all the objectives.

2.2.2 Multi-objective Web Service Composition
Graphs are natural and intuitive ways to express the complex interaction rela-
tions between entities. The web service dependency graph is useful to illustrate
the multi-objective web service composition problem. In Fig. 1, a web service
composition problem is shown as a layered directed graph. The composition
request is R = {{in1, in2, in3}, {out1, out2, out3, out4}}. Each rectangle in the
graph represents a web service. The response time and throughput of a web
service are shown in the above and below, respectively. Each circle represents
an input or an output of a service. In addition, the edges connecting circles and
rectangles denote the matching relations between them. Two dummy service Si

for the inputs and So for the outputs are added in the graph, whose response
time and throughputs are 0 ms and +∞ inv/s respectively.
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Fig. 1. An example of a service dependency graph.

As shown in the Fig. 1, there are many compositions with different QoS and
numbers of services satisfying the request R. The composition highlighted in
the graph Ω = S0 → (A||D) → (B||C||F ) → (G||I) → (J ||K||L) → So is
the optimal with response time of 110 ms. In addition, the throughput of Ω
is 180 inv/s, which is not optimal. Moreover, another composition Ω′ = Si →
(A||D) → (B||E||F ) → (G||I) → (J ||K||L) → So, has a response time of 130
ms, a throughput of 190 inv/s and the same length of 12. On the one hand, the
response time of Ω is shorter in comparison with the one of Ω′. On the another
hand, the throughput of Ω is less than Ω′. Although both Ω and Ω′ are Pareto
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optimal solutions, we prefer the former since TP (Ω′) changes little from TP (Ω)
(180 inv/s to 190 inv/s), while the response time of Ω has been greatly improved
(130 ms versus 110 ms).

To deal with the above problems, Zeng et al. [7] directly transformed the multi-
objective service composition into single-objective optimization and used tradi-
tional techniques to solve it. Furthermore, some researchers applied a systematic
search algorithm like Dijkstra’s algorithm with the same single-objective function
[8], which generated many solutions and recorded the best one until no more con-
cepts could be generated. Another important objective is the number of services
in the resulting composition, which is necessary to consider for conducting ser-
vices composition. Fan et al. [9] used a Knapsack-Variant algorithm with trans-
forming multi-objectives into one loss objective computed dynamically. However,
these methods have to build a huge dependency graph explicitly, which leads to a
long composition time, especially in an enormous number of services situation.

3 MILP Formalization of Web Service Composition

In this section, the problem of web service composition is formalized as a MILP
model. Once a MILP model of web service composition is obtained, some stan-
dard solvers such as groubi [10], can be applied to it and output a well enough
composition.

3.1 Notations and Variables

Given a composition request R = {InR, OutR}, two dummy services s0, sn+1

named the input service and the output service, are added to the model, which
represent the input and output of the request respectively. Some related nota-
tions are defined in Table 1. The constants Rmin and Rmax are minimum and
maximum response time and so do Tmin and Tmax for throughput.

Table 1. Some notations in this paper

Name Notation Description

Service set S S = {s0, . . . , sn+1}
Concept set C C = {c1, . . . , cm}
Service input Ii The input set of si is {cj |j ∈ Ii}, I0 = ∅, In+1 = OutR

Service output Oi The output set of si is {cj |j ∈ Oi}, O0 = InR, On+1 = ∅

Response time Ri The response time of si and R0 = Rn+1 = Rmin

Throughput Ti The throughput of si, T0 = Tn+1 = Tmax specially

For a formal description, we introduce some variables optimized by standard
solver in Table 2. In the composition context of this paper, the term response
time is treated as generated time of a concept or invoked time of a service.
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Table 2. The variables in MILP model

Notation Range Description

xi {0, 1} xi = 1 means si is selected

yj {0, 1} yj = 1 means ci is generated

sri [0,+∞) The time when si has been invoked

rj [0,+∞) The time when cj is generated at first time

sti [0,+∞) The throughput of si in the composition

tj [0,+∞) The throughput of cj in the composition

3.2 Criteria

Taking response time, throughput, and number of services into consideration,
we can formalize the criteria of this MILP model as follows:

max
x,y,sr,r,st,t

stn+1 − α

n∑

i=1

xi − βsrn+1 (3)

where α and β are weights of different single objectives, and they can be assigned
flexibly to adapt to the preference of user.

3.3 Constraints

Without building a huge dependency graph, we add some constraints to the
proposed MILP model, which guarantees that a solution of the MILP model is
also a valid web service composition.

3.3.1 Input and Output Constraints
For the input and output services, they must be invoked:

x0 = xn+1 = 1 (4)

One service can be invoked until its whole input concepts have been gener-
ated. A concept cannot be generated unless at least one service whose output
set contains it has been invoked.

|Ii|xi ≤
∑

j∈Ii

yj , i = 0, . . . , n + 1 (5)

yj ≤
∑

i∈{k|j∈Ok}
xi, j = 1, . . . , m (6)

If sets Ii in (5) and {k|j ∈ Ok} in (6) are empty sets, the right sides of them are
treated as zero.
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3.3.2 Response Time Constraints
In the MILP model, we pay attention to the criteria consisting of three parts.
The first part of criteria is to minimize the invoked time srn+1 of output service
sn+1, so only the lower bound need to be given. For each service, the constraint
of response time is shown as follows:

sri ≥ (1 − xi)Rmax

sri ≥ Ri

sri ≥ Ri + rj , j ∈ Ii

⎫
⎬

⎭
i = 0, 1, . . . , n + 1 (7)

The first inequality in (7) makes the invoked time sri reach the maximum
response time Rmax while si is not selected. The third inequality makes the
response time sri satisfy the definition of response time in Definition 2 when si
is selected. A special case is that the set Ii is an empty set, such as I0, in which
the third equation makes no sense (no constraint). To handle this case correctly,
we introduce the second inequality in which sri is greater than or equal to its
original response time Ri. For example, the response time sr0 of input service
s0 equals to R0.

The generated time constraints of each concept are defined as follows.

rj =
{

Rmax if {k|j ∈ Ok} = ∅

mini∈{k|j∈Ok} sri otherwise j = 1, . . . ,m (8)

However, it’s esoteric that the minimum part in (8) can be transformed into a
linear constraint [11]. We introduce variables lji ∈ [0,+∞), zji ∈ {0, 1} for each
rj , i ∈ {k|j ∈ Ok}, which ensure the equivalence between the minimum part of
(8) and (9).

rj ≤ sri, ∀i ∈ {k|j ∈ Ok}
rj ≥ sri − lji, ∀i ∈ {k|j ∈ Ok}
li ≤ (1 − zji)Rmax, ∀i ∈ {k|j ∈ Ok}∑

i∈{k|j∈Ok} zji = 1

⎫
⎪⎪⎬

⎪⎪⎭
, j = 1, 2, . . . ,m (9)

3.3.3 Throughput Constraints
Similarly, we only need to give an upper bound for throughput, since the criteria
focus on the maximum throughput of output service. The throughput of a service
depends on the throughputs of its input concepts and its own throughput, more
precisely, on the minimum of them. If one service is not selected, we let its
throughput to be Tmin reasonably.

sti ≤ Tixi + (1 − xi)Tmin

sti ≤ tj ,∀j ∈ Ii

}

, i = 0, 1, . . . , n + 1 (10)

Intuitively, the throughput of a concept is the maximum throughputs of all
services which can generate the concept.

tj =
{

Tmin if {k|j ∈ Ok} = ∅

max∀i∈{k|j∈Ok} sti otherwise j = 1, . . . ,m (11)
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As same as the constraints of service generated time, the maximum part
in (11) can be transformed into a linear constraint by introducing variables
gji ∈ [0,+∞), uji ∈ {0, 1}.

tj ≥ sti, ∀i ∈ {k|j ∈ Ok}
tj ≤ sri + gji, ∀i ∈ {k|j ∈ Ok}
gi ≤ (1 − uji)Tmax, ∀i ∈ {k|j ∈ Ok}∑

i∈{k|j∈Ok} uji = 1

⎫
⎪⎪⎬

⎪⎪⎭

, j = 1, . . . ,m (12)

3.4 Practical Techniques for MILP Model

QoS-aware web service composition can be seen as an NP-hard problem, for
which there are no effective algorithms [12]. In practical terms, the above MILP
model equivalent to the original problem works not well in some cases. For this
reason, some effective techniques are applied to improve the performance of the
MILP model.

3.4.1 Throughput Constraints Simplification
The vital part of (3) is the throughput of output service, while the throughputs
of other services are inconsequential. We notice that the throughput of output
service in a composition is the minimum throughput of all the selected services.
Consequently, we can obtain the final correct throughput of output service with
the following steps.

• Let the throughputs of selected services (expect sn+1) to be their original
throughputs.

• Let other throughputs to be Tmax.
• Take the minimum throughput of all services as the throughput of output

service.

The formalized description (13) can replace (10), (11) and (12), which reduces
many constraints and variables. The second minimum equation can be trans-
formed into linear constraints with the similar method used in (9).

sti = Tixi + (1 − xi)Tmax, i = 0, 1, . . . , n
stn+1 = minn

i=0 sti

}

(13)

3.4.2 Response Time Constraints Approximation
However, there are numerous integer variables introduced in the response time
constraints, which causes a serious performance problem while applying a stan-
dard solver.

sri = Rixi + (1 − xi)Rmax, i = 0, 1, . . . , n
srn+1 =

∑n
i=0 sri

}

(14)

An efficient method is to replace the response time of output service with
the sum of the response time of all chosen services, and the detail is described
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in (14). It does greatly shorten the execution time while holding well enough
criteria, even though the approximations of response time constraints are not
completely accurate.

In summary, the MILP model with these techniques can be solved efficiently
without building a huge and complex dependency graph. Extensive experiments
applying groubi [10] solver are presented in Sect. 5. We notice that there is an
obvious gap between the MILP method and other methods, which means we can
still make great progress. Therefore, we propose a more effective and efficient
mechanism in the next section.

4 Composition-Segment Candidate Optimization

In this section, a mechanism of optimizing composition-segments candidates is
proposed to improve the performance of the MILP model. We define four kinds
of segment candidates in Definition 4, and the core idea of this mechanism is
to improve the score segment candidate in current composition with three other
kinds of segment candidates.

Definition 4. Composition-Segment Candidate (“segment candidate” for short)
of a service is defined as a local composition whose last service is exactly the
service. For a concept, its composition-segment candidate can generate it. Similar
to the criteria (3) of MILP model, the score of a composition-segment Ωs is
defined as:

Score(Ωs) = TP (Ωs) − α ∗ Len(Ωs) − β ∗ RT (Ωs) (15)

For each service and concept, we maintain four kinds of segment candidates—
Ss, Ns, Rs and Ts, which hold the best current segment candidates of different
objectives—score, length, response time and throughput respectively.

4.1 Generating Composition-Segment Candidates

To generate segment candidates, we construct the current output map Mc firstly,
of which the keys are services or concepts and the values are lists of segment
candidates.

Table 3. Segment candidates related to service I with α = 100, β = 20

Candidate no Composition-segment Len RT (ms) TP (inv/s) Score

1 Si → A → C 3 60 180 −1320

2 Si → A||D → E 4 80 750 −1250

3 Si → D → F 3 50 350 −950

4 Si → A||D → C||F → I 6 80 180 −2020

5 Si → A||D → E||F → I 6 100 350 −2250
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Algorithm 1 takes service si and map Mc as inputs and checks whether
service si can be invoked at line 2. Then, it initializes the list Ps with four sets
of precursors and adds all precursors to these sets respectively. The following
step is to create four candidates in order and assign their precursor sets with Ps

respectively. Finally, the method update attribute calculates their score, length
and QoS, and we append the four candidates to list Pc.

Algorithm 1: Generating Composition-Segment Candidates
Input: si, Mc

Output: Pc

1 Pc ← []
2 if Ii ⊆ Mc.keys then
3 Ps ← [set(), set(), set(), set()]
4 for concept c ∈ Ii do
5 for segment i, s ∈ Mc[c] do
6 Ps[i].add(s)

7 for segments set ps ∈ Ps do
8 s ← SegmentCandidate(si)
9 s.pre ← ps

10 update attribute(s)
11 Pc.append(s)

12 return Pc

Taking the generating process of service I in Fig. 1 as an example, we list some
segment candidates related with service I in Table 3 and shows the detailed process
in Fig. 2. Service I has three input concepts i1, i2, i3, and their segment candidates
are listed in the left (the green cell denotes score segment candidate). For each kind
of segment candidate, the newly generated candidate combines the corresponding
candidates of its inputs respectively. For example, the score segment candidate
(Candidate 5 in Table 3) of I consists of Candidate 2—the score segment candidate
of i1, and Candidate 3—the score segment candidate of i2 and i3.

Fig. 2. Segment candidates generation
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4.2 Optimizing Composition-Segment Candidates

After generating the segment candidates, the next step is to optimize the score
segment candidate with other kinds of segment candidates. We firstly analyze
the bottlenecks of score segment candidate. Algorithm 2 shows the process of
analyzing bottlenecks of score segment candidate Ss.

Algorithm 2: Analyzing Bottlenecks of Candidate
Input: Ss

Output: Lb

1 Lb ← [null, null, null]
2 Bl ← 0, Br ← Rmin, Bt ← Tmax

3 for segment s ∈ Ss.pre do
4 if Len(s) > Bl then
5 Bl = Len(s), Lb[0] = s.concept

6 if RT(s) > Br then
7 Br = RT(s), Lb[1] = s.concept

8 if TP(s) < Bt then
9 Bt = TP(s), Lb[2] = s.concept

10 return Lb

For a score segment candidate Ss, Algorithm 2 finds its three kinds of bottle-
necks. The operations from line 4 to 6 find the precursor with maximum length
and record the corresponding concept in Lb. Similar operations are performed
with response time bottleneck. On the contrary, the throughput bottleneck gets
the minimal throughput concept of them.

Algorithm 3: Improving Bottlenecks of Candidate
Input: Mc, Pc

Output: Pc

1 while True do
2 Ss ← Pc[0], S′

s ← Ss, Lb ← bottleneck analyze(S′
s)

3 score pre set ← S′
s.pre, b1, b2, b3 = Lb

4 score pre set[b1] ← Mc[b1][1]
5 score pre set[b2] ← Mc[b2][2]
6 score pre set[b3] ← Mc[b2][3]
7 S′

s.pre ← score pre set
8 update attribute(S′

s)
9 if S′

s.score > Ss.score then
10 Pc[0] ← S′

s

11 else
12 break

13 return Pc

Algorithm 3 improves the score segment candidate Ss in list Pc. Taking cur-
rent output map Mc and candidates list Pc as the inputs, we use Algorithm 2
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to get bottlenecks Lb, and then replace bottleneck candidates with the currently
best candidates in Mc to improve Ss. Finally, the near-optimal score segment
candidate Ss is generated by repeating the two foregoing steps until the score of
Ss isn’t able to be greater.

As shown in Fig. 2, the optimal score segment candidate is Candidate 4
instead of Candidate 5 (whose color is red). By calling Algorithm 2, we can
obtain bottlenecks Lb = [i1, i1, i2]. Then, Algorithm 3 handles each bottleneck
of Lb in a same way. Taking the first element i1 in Lb as an example, we replace
the score segment candidate(Candidate 2) of i1 with its length segment can-
didate(Candidate 1) in Ss, which reduce its length. Finally, the score segment
candidate of I becomes Candidate 4.

4.3 Greedy Selection

Having generated four candidates Pc of service si and optimized the score candi-
date Ss in Pc, we compare each kind of candidate in Pc with the corresponding
one in previous list Mc[si] respectively and store the better ones. If the map
Mc does not contain si, we insert the key-value pair (si, Pc) into Mc directly.
For each output concept of si, we create four kinds of segment candidates and
assign their precursors with the corresponding service candidates in Pc. Then,
we perform similar operations to reserve the better ones. After greedy selection,
Candidate 4 is reserved as the final score segment candidate of service I in Fig. 2.

By repeating the three above steps until the output map Mc is not chang-
ing, the score segment candidate of output service sn+1 appears, and the final
composition is achieved.

5 Experimental Results

Extensive experiments have been carried out to evaluate the performance of our
proposed methods. To make the conclusion more convincing, we evaluate our
methods on two different groups of datasets.

Table 4. The characteristics of datasets

Datasets D-01 D-02 D-03 D-04 D-05 R-01 R-02 R-03 R-04 R-05

#Service 572 4129 8138 8301 15211 1000 3000 5000 7000 9000

RT.opt (ms) 500 1690 760 1470 4070 1430 975 805 1225 1420

TP.opt (inv/s) 15000 6000 4000 4000 4000 1000 2500 1500 2000 2500

Len.opt 5 20 10 40 30 7 12 12 14 16

5.1 Datasets

To evaluate the performance of the proposed composition mechanisms, we con-
ducted a group of experiments using five public repositories from the Web Service
Challenge 2009 and five randomly generated datasets. As shown in Table 4, the
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group of datasets of the WSC 2009 ranges from 572 to 15211 services. We eval-
uate further the performance of our algorithms with another group of datasets1.
And the optimal values (RT.opt, TP.opt, Len.opt ) of single objectives for each
dataset are shown in it, which are computed by the memory-based algorithm.

5.2 Performance Analysis

To validate our approaches, we compare them with three different the-state-of-
arts in the same experimental environment. For each dataset, we mainly show
the solicitude for the global QoS of generated solution (RT for response time and
TP for throughput), the length of composition (Len) and the execution time of
method (Time including the time of building service dependency graphs).

Table 5. Detailed comparisons with other methods

Datasets D-01 D-02 D-03 D-04 D-05 R-01 R-02 R-03 R-04 R-05

Method in [13] RT (ms) 500 1690 760 1470 4070 1430 975 805 1225 1420

TP (inv/s) 3000 3000 2000 2000 1000 1000 1000 500 1000 500

Len 10 20 10 42 33 8 19 18 21 19

Time (ms) 73 1324 3591 10121 14925 26 161 531 1023 2066

RT (ms) 840 2200 2450 4150 4990 1430 1305 1520 2095 1975

TP (inv/s) 15000 6000 4000 2000 4000 1000 2500 1500 2000 2500

Len 5 20 10 44 32 13 18 20 30 19

Time (ms) 68 1373 3736 9283 12717 38 175 503 992 2053

Method in [14] RT (ms) 760 2270 1300 2140 5340 1580 1815 1640 1840 2300

TP (inv/s) 10000 6000 3000 1000 4000 1000 2000 1000 2000 1500

Len 6 21 12 47 36 9 18 17 19 20

Time (ms) 70 1252 3795 9813 14544 25 163 473 845 2096

Method in [9] RT (ms) 680 1800 760 1600 4260 1430 975 1090 1225 1605

TP (inv/s) 14000 6000 4000 3500 4000 1000 2000 1500 2000 2500

Len 5 20 10 43 33 8 16 15 17 18

Time (ms) 317 1684 3713 10651 13223 76 443 1136 1804 1613

MILP Method

(α = 1, β = 0.2)

RT (ms) 760 2050 810 3560 4130 1430 1560 1535 1620 2210

TP (inv/s) 15000 6000 4000 4000 4000 1000 2500 1500 2000 2500

Len 5 20 10 62 30 7 12 12 15 16

Time (ms) 196 1113 2138 3558 4723 245 964 2259 3058 4828

Candidate

Optimization Method

(α = 10, β = 7)

RT (ms) 680 1800 790 1470 4260 1430 975 805 1225 1420

TP (inv/s) 15000 6000 4000 2000 4000 1000 2000 500 2000 2500

Len 6 23 12 45 41 8 16 16 15 18

Time (ms) 35 98 72 459 274 7 75 90 101 230

As shown in Table 5, [13] can generate two different solutions (one with the
optimal response time and another with the optimal throughput). The method in
[9] makes an excellent tradeoff of three attributes. Obviously, the execution time
of compositions generated by methods [13], [14] and [9] is so long that some of
them are longer than ten seconds. Moreover, our candidate optimization method
runs not only fast but also archives ideal tradeoffs.
1 https://wiki.citius.usc.es/inv:downloadable results:ws-random-qos.

https://wiki.citius.usc.es/inv:downloadable_results:ws-random-qos
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To measure the performance intuitively, we define Ability(RT ) = RT.opt
RT ,

Ability(TP ) = TP
TP.opt , Ability(Len) = Len.opt

Len and Ability(Time) = min(Time)
Time .

Moreover, we have Ability(RT, TP ) = [Ability(RT ) +Ability(TP )]/2, and the
whole performance Ability(RT, TP,Len, T ime) is defined in the same manner.
As shown in Fig. 3, the candidate optimization method has an outstanding
Ability(Time) and outperforms other methods in Ability(RT, TP,Len, T ime).

Fig. 3. Radar charts to compare the performance of five methods on several datasets.

6 Conclusions

In this paper, we formalize the multi-objective web service composition problem
as a MILP model and propose a candidate optimization method to solve the
model effectively and efficiently. A large number of experiments show that our
candidate optimization method runs sharply fast while performing better than
the state-of-the-art on QoS and number of services. Both the MILP method and
the candidate optimization method save much running time with no need to
build a service dependency graph.
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