
Qingyang Wang
Yunni Xia
Sangeetha Seshadri
Liang-Jie Zhang (Eds.)

LN
CS

 1
24

09

17th International Conference
Held as Part of the Services Conference Federation, SCF 2020
Honolulu, HI, USA, September 18–20, 2020, Proceedings

Services Computing –
SCC 2020

Lecture Notes in Computer Science 12409

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Qingyang Wang • Yunni Xia •

Sangeetha Seshadri • Liang-Jie Zhang (Eds.)

Services Computing –

SCC 2020
17th International Conference
Held as Part of the Services Conference Federation, SCF 2020
Honolulu, HI, USA, September 18–20, 2020
Proceedings

123

Editors
Qingyang Wang
Louisana State University
Baton Rouge, LA, USA

Yunni Xia
Chongqing University
Chongqing, China

Sangeetha Seshadri
IBM Almaden Research Center
San Jose, CA, USA

Liang-Jie Zhang
Kingdee International Software
Group Co. Ltd.
Shenzhen, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-59591-3 ISBN 978-3-030-59592-0 (eBook)
https://doi.org/10.1007/978-3-030-59592-0

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5729-2898
https://orcid.org/0000-0002-6219-0853
https://doi.org/10.1007/978-3-030-59592-0

Preface

Services account for a major part of the IT industry today. Companies increasingly like
to focus on their core expertise area and use IT services to address all their peripheral
needs. Services computing is a new science that aims to study and better understand the
foundations of this highly popular industry. It covers the science and technology of
leveraging computing and information technology to model, create, operate, and
manage business services. The International Conference on Services Computing (SCC
2020) contributes to building the pillars of this important science and shaping the future
of services computing.

SCC has been a prime international forum for both researchers and industry prac-
titioners to exchange the latest fundamental advances in the state of the art and practice
of business modeling, business consulting, solution creation, service delivery, and
software architecture design, development, and deployment.

This volume presents the accepted papers for SCC 2020, held as a fully virtual
conference, during September 18–20, 2020. For SCC 2020, we accepted eight full
papers and two short papers. Each was reviewed and selected by at least three inde-
pendent members of the SCC 2020 International Program Committee. We are pleased
to thank the authors whose submissions and participation made this conference pos-
sible. We also want to express our thanks to the Organizing Committee and Program
Committee members, for their dedication in helping to organize the conference and
reviewing the submissions. We owe special thanks to the keynote speakers for their
impressive speeches.

July 2020 Qingyang Wang
Yunni Xia

Sangeetha Seshadri
Liang-Jie Zhang

Organization

General Chair

Lakshmish Ramaswamy University of Georgia, USA

Program Chairs

Qingyang Wang Louisiana State University, USA
Yunni Xia Chongqing University, China
Sangeetha Seshadri IBM Almaden Research Center, USA

Services Conference Federation (SCF 2020)

General Chairs

Yi Pan Georgia State University, USA
Samee U. Khan North Dakota State University, USA
Wu Chou Vice President of Artificial Intelligence & Software at

Essenlix Corporation, USA
Ali Arsanjani Amazon Web Services (AWS), USA

Program Chair

Liang-Jie Zhang Kingdee International Software Group Co. Ltd., China

Industry Track Chair

Siva Kantamneni Principal/Partner at Deloitte Consulting, USA

CFO

Min Luo Georgia Tech, USA

Industry Exhibit and International Affairs Chair

Zhixiong Chen Mercy College, USA

Operation Committee

Jing Zeng Yundee Intelligence Co., Ltd, China
Yishuang Ning Tsinghua University, China
Sheng He Tsinghua University, China
Yang Liu Tsinghua University, China

Steering Committee

Calton Pu (Co-chair) Georgia Tech, USA
Liang-Jie Zhang (Co-chair) Kingdee International Software Group Co. Ltd., China

SCC 2020 Program Committee

Lizhen Cui Shandong University, China
Kenneth Fletcher University of Massachusetts Boston, USA
Pedro Furtado University of Coimbra, Portugal
Kurt Geihs University of Kassel, Germany
Alfredo Goldmanm USP, Brazil
Shigeru Hosono Tokyo University of Technology, Japan
Shijun Liu Shandong University, China
Massimo Mecella Sapienza Università di Roma, Italy
Marcio Oikawa Federal University of ABC, Brazil
Lukas Rupprecht IBM Almaden Research Center, USA
Andre Luis Schwerz Federal University of Technology Paraná, Brazil
Jun Shen University of Wollongong, Australia
Yang Syu Academia Sinica, Taiwan
Dingwen Tao University of Alabama, USA
Yu-Bin Yang Nanjing University, China
Muhammad Younas Oxford Brookes University, UK

viii Organization

Conference Sponsor – Services Society

Services Society (S2) is a nonprofit professional organization that has been created to
promote worldwide research and technical collaboration in services innovation among
academia and industrial professionals. Its members are volunteers from industry and
academia with common interests. S2 is registered in the USA as a “501(c)
organization,” which means that it is an American tax-exempt nonprofit organization.
S2 collaborates with other professional organizations to sponsor or co-sponsor
conferences and to promote an effective services curriculum in colleges and
universities. The S2 initiates and promotes a “Services University” program worldwide
to bridge the gap between industrial needs and university instruction.

The services sector accounted for 79.5% of the USA’s GDP in 2016. The world’s
most service-oriented economy, with services sectors accounting for more than 90%
of the GDP. S2 has formed 10 Special Interest Groups (SIGs) to support technology
and domain specific professional activities:

• Special Interest Group on Web Services (SIG-WS)
• Special Interest Group on Services Computing (SIG-SC)
• Special Interest Group on Services Industry (SIG-SI)
• Special Interest Group on Big Data (SIG-BD)
• Special Interest Group on Cloud Computing (SIG-CLOUD)
• Special Interest Group on Artificial Intelligence (SIG-AI)
• Special Interest Group on Edge Computing (SIG-EC)
• Special Interest Group on Cognitive Computing (SIG-CC)
• Special Interest Group on Blockchain (SIG-BC)
• Special Interest Group on Internet of Things (SIG-IOT)

About the Services Conference Federation (SCF)

As the founding member of the Services Conference Federation (SCF), the First
International Conference on Web Services (ICWS 2003) was held in June 2003 in Las
Vegas, USA. Meanwhile, the First International Conference on Web Services - Europe
2003 (ICWS-Europe 2003) was held in Germany in October 2003. ICWS-Europe 2003
was an extended event of ICWS 2003, and held in Europe. In 2004, ICWS-Europe was
changed to the European Conference on Web Services (ECOWS), which was held in
Erfurt, Germany. SCF 2019 was held successfully in San Diego, USA. To celebrate its
18th birthday, SCF 2020 was held virtually during September 18–20, 2020.

In the past 17 years, the ICWS community has expanded from Web engineering
innovations to scientific research for the whole services industry. The service delivery
platforms have been expanded to mobile platforms, Internet of Things (IoT), cloud
computing, and edge computing. The services ecosystem is gradually enabled, value
added, and intelligence embedded through enabling technologies such as big data,
artificial intelligence (AI), and cognitive computing. In the coming years, all the
transactions with multiple parties involved will be transformed to blockchain.

Based on the technology trends and best practices in the field, SCF will continue
serving as the conference umbrella’s code name for all service-related conferences.
SCF 2020 defines the future of New ABCDE (AI, Blockchain, Cloud, big Data,
Everything is connected), which enable IoT and enter the 5G for the Services Era. SCF
2020’s 10 collocated theme topic conferences all center around “services,” while each
focusing on exploring different themes (web-based services, cloud-based services, big
data-based services, services innovation lifecycle, AI-driven ubiquitous services,
blockchain driven trust service-ecosystems, industry-specific services and applications,
and emerging service-oriented technologies). SCF includes 10 service-oriented
conferences: ICWS, CLOUD, SCC, BigData Congress, AIMS, SERVICES, ICIOT,
EDGE, ICCC, and ICBC. The SCF 2020 members are listed as follows:

[1] The International Conference on Web Services (ICWS 2020, http://icws.org/) is
the flagship theme-topic conference for Web-based services, featuring Web ser-
vices modeling, development, publishing, discovery, composition, testing, adap-
tation, delivery, as well as the latest API standards.

[2] The International Conference on Cloud Computing (CLOUD 2020, http://
thecloudcomputing.org/) is the flagship theme-topic conference for modeling,
developing, publishing, monitoring, managing, delivering XaaS (Everything as a
Service) in the context of various types of cloud environments.

[3] The International Conference on Big Data (BigData 2020, http://bigdatacongress.
org/) is the emerging theme-topic conference for the scientific and engineering
innovations of big data.

[4] The International Conference on Services Computing (SCC 2020, http://thescc.
org/) is the flagship theme-topic conference for services innovation lifecycle that
includes enterprise modeling, business consulting, solution creation, services

http://icws.org/
http://thecloudcomputing.org/
http://thecloudcomputing.org/
http://bigdatacongress.org/
http://bigdatacongress.org/
http://thescc.org/
http://thescc.org/

orchestration, services optimization, services management, services marketing,
and business process integration and management.

[5] The International Conference on AI & Mobile Services (AIMS 2020, http://
ai1000.org/) is the emerging theme-topic conference for the science and tech-
nology of AI, and the development, publication, discovery, orchestration, invo-
cation, testing, delivery, and certification of AI-enabled services and mobile
applications.

[6] The World Congress on Services (SERVICES 2020, http://servicescongress.org/)
focuses on emerging service-oriented technologies and the industry-specific ser-
vices and solutions.

[7] The International Conference on Cognitive Computing (ICCC 2020, http://
thecognitivecomputing.org/) focuses on the Sensing Intelligence (SI) as a Service
(SIaaS) which makes systems listen, speak, see, smell, taste, understand, interact,
and walk in the context of scientific research and engineering solutions.

[8] The International Conference on Internet of Things (ICIOT 2020, http://iciot.org/)
focuses on the creation of IoT technologies and development of IOT services.

[9] The International Conference on Edge Computing (EDGE 2020, http://
theedgecomputing.org/) focuses on the state of the art and practice of edge
computing including but not limited to localized resource sharing, connections
with the cloud, and 5G devices and applications.

[10] The International Conference on Blockchain (ICBC 2020, http://blockchain1000.
org/) concentrates on blockchain-based services and enabling technologies.

Some highlights of SCF 2020 are shown below:

– Bigger Platform: The 10 collocated conferences (SCF 2020) are sponsored by the
Services Society (S2) which is the world-leading nonprofit organization (501 c(3))
dedicated to serving more than 30,000 worldwide services computing researchers
and practitioners. Bigger platform means bigger opportunities to all volunteers,
authors, and participants. Meanwhile, Springer sponsors the Best Paper Awards and
other professional activities. All the 10 conference proceedings of SCF 2020 have
been published by Springer and indexed in ISI Conference Proceedings Citation
Index (included in Web of Science), Engineering Index EI (Compendex and Inspec
databases), DBLP, Google Scholar, IO-Port, MathSciNet, Scopus, and ZBlMath.

– Brighter Future: While celebrating the 2020 version of ICWS, SCF 2020 high-
lights the Third International Conference on Blockchain (ICBC 2020) to build the
fundamental infrastructure for enabling secure and trusted service ecosystems. It
will also lead our community members to create their own brighter future.

– Better Model: SCF 2020 continues to leverage the invented Conference Block-
chain Model (CBM) to innovate the organizing practices for all the 10 theme
conferences.

xii About the Services Conference Federation (SCF)

http://ai1000.org/
http://ai1000.org/
http://servicescongress.org/
http://thecognitivecomputing.org/
http://thecognitivecomputing.org/
http://iciot.org/
http://theedgecomputing.org/
http://theedgecomputing.org/
http://blockchain1000.org/
http://blockchain1000.org/

Contents

Research Track

QoS Time Series Modeling and Forecasting for Web Services:
A Comprehensive Survey of Subsequent Applications
and Experimental Configurations. 3

Yang Syu and Chien-Min Wang

Web Service Composition by Optimizing Composition-
Segment Candidates . 20

Fang-Yuan Zuo, Ze-Han Shen, Shi-Liang Fan, and Yu-Bin Yang

Collaborative Learning Using LSTM-RNN
for Personalized Recommendation . 35

Benjamin A. Kwapong, Richard Anarfi, and Kenneth K. Fletcher

An Attention Model for Mashup Tag Recommendation 50
Kenneth K. Fletcher

Application Track

On the Diffusion and Impact of Code Smells in Web Applications 67
Narjes Bessghaier, Ali Ouni, and Mohamed Wiem Mkaouer

Microservices Backlog - A Model of Granularity Specification
and Microservice Identification . 85

Fredy H. Vera-Rivera, Eduard G. Puerto-Cuadros, Hernán Astudillo,
and Carlos Mauricio Gaona-Cuevas

Automated Web Service Specification Generation Through
a Transformation-Based Learning . 103

Mehdi Bahrami and Wei-Peng Chen

Performance Evaluation on Blockchain Systems: A Case Study
on Ethereum, Fabric, Sawtooth and Fisco-Bcos. 120

Rui Wang, Kejiang Ye, Tianhui Meng, and Cheng-Zhong Xu

Short Paper Track

Midiag: A Sequential Trace-Based Fault Diagnosis Framework
for Microservices . 137

Lun Meng, Yao Sun, and Shudong Zhang

An Empirical Study of Web API Quality Formulation 145
Esi Adeborna and Kenneth K. Fletcher

Author Index . 155

xiv Contents

Research Track

QoS Time Series Modeling and Forecasting
for Web Services: A Comprehensive Survey
of Subsequent Applications and Experimental

Configurations

Yang Syu(&) and Chien-Min Wang

Institute of Information Science, Academia Sinica, Taipei City, Taiwan (R.O.C.)
{yangsyu,cmwang}@iis.sinica.edu.tw

Abstract. Time-aware (time series-based) Web service QoS modeling and
forecasting have been investigated and addressed for over a decade and a large
number of studies and approaches have been produced. However, these existing
efforts lack a comprehensive and detailed review that profoundly and system-
atically organizes, analyzes, and discusses this body of work. Thus, to fill this
gap, the authors offered the paper QoS Time Series Modeling and Forecasting
for Web Services: A Comprehensive Survey, in which four essential research
concerns of this area, namely, problems, approaches, performance measures,
and QoS datasets, have been recognized and reviewed in detail. However, aside
from these essential research concerns, we also identified two optional research
concerns from the current studies, namely, the subsequent applications and
experimental configurations. Due to space restrictions, these two optional
research concerns were only briefly mentioned in the above survey article, and
thus, in this supplementary paper, the authors thoroughly present and review
these two optional research concerns.
The primary purpose of performing QoS time series modeling and forecasting

is to obtain accurate future QoS estimations for subsequent usage (application),
such as QoS-aware service composition and proactive service replacement for
SLA/QoS management. Therefore, in the section addressing the first optional
research concern, the application of each surveyed study is identified first, and
then these current applications are introduced in detail. However, to compre-
hensively and rigorously observe and evaluate the performance of a proposed or
employed approach under different conditions, a set of configuration settings
must be varied to run experimentation. Thus, in the second part of this paper, we
first define and discuss the identified experimental configuration parameters in
this research area and then list the parameters and settings that have been
considered in each surveyed study.

Keywords: Quality of service � Web services � Time series modeling and
forecasting � Time-aware dynamic attributes

© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-59592-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-59592-0_1

1 Introduction

In services computing research, the estimation and prediction of the dynamic QoS
attributes of Web/cloud services have been widely considered and investigated, and a
large body of research addresses this long-standing issue. From the existing studies and
approaches, we observe that in terms of the assumed and studied problem specifica-
tions, there are two major research branches in this area that are divided by considering
disparate factors causing dynamic QoS values (i.e., consumer-aware and time-aware
QoS prediction). The latter type of QoS prediction is also called time series-based QoS
forecasting or QoS time series prediction for Web services because, in essence, it is a
type and application of time series forecasting that concentrates on employing the
historical QoS observations of a target (i.e., a dynamic QoS property of a service) to
generate a forecast to predict the target’s future values. This research topic has been
studied for approximately a decade [1], and significant research results have been
produced and accumulated; however, based on our observations and investigations, the
current research on this topic lacks a referable survey to review, structure, and compare
these existing research works. Thus, in the 2018 International Conference on Services
Computing (SCC 2018), the authors published an initial paper [1] surveying Web
service QoS (WS QoS) time series modeling and forecasting research. In this pre-
liminary survey, based on an overview table organizing and demonstrating the char-
acteristics of the surveyed papers in a proposed structure, we discuss and explore these
reviewed studies from several different aspects; however, a shortcoming of this pre-
liminary survey is its insufficient depth and completeness. To fix the problem, we
subsequently offered an extended journal survey article [2] comprehensively reviewing
the targeted topic in detail. In this journal paper, for WS QoS time series modeling and
forecasting research, we identify four essential research concerns, namely, considered
problems, proposed or employed approaches, adopted performance measures, and
employed QoS datasets, and two optional research concerns: subsequent applications
and experimental configurations. In [2], the considered and reviewed studies were
thoroughly analyzed, organized, and compared in terms of the four essential research
concerns; however, due to the restricted space, the two optional research concerns are
only briefly mentioned. Thus, this paper tries to complete this section of the earlier
survey for Web service QoS time series modeling and forecasting research by pre-
senting the content of these two optional research concerns in detail.

Although we identify and consider both experimental configurations and subsequent
applications as two optional research concerns of WS QoS time series modeling and
forecasting in [2], this does not mean that they are insignificant or ignorable in this
research area; instead, they are also very important to the topic, but some of the reviewed
studies simply did not consider one or both of these two research concerns for various
reasons, such as a lack of space for their presentation, a lack of awareness of their
importance, or an exclusive concentration on the WS QoS modeling and forecasting
problem. Below, as a motivation behind this survey, we briefly explain the importance of
these two optional research concerns in the targeted and reviewed research field. The
main goal of WS QoS time series modeling and forecasting is to obtain a sequence of
estimated future QoS values for certain subsequent usage; in other words, without a
specific or concrete subsequent application, simply having an accurate QoS forecasting
approach is meaningless and useless; there must be some consumers consuming and

4 Y. Syu and C.-M. Wang

exploiting these QoS predictions in order tomake them valuable and useful. Furthermore,
some reviewed studies also employ or consider the performance of a subsequent appli-
cation (using a QoS forecasting approach as the source of future QoS values) as one of the
measures for judging the accuracy and applicability of a proposed/evaluated QoS fore-
casting approach, such as [3–5]; we believe that assessing aWSQoS prediction approach
in this way can more realistically and accurately reflect its applicability, reliability, and
performance because it is used and evaluated in a real-world context. On the other hand,
in both research and practice, one common way to fully test and comprehensively know
the performance of an employed or proposed approach is to feed or exercise the approach
using different problem instances (e.g., a number of disparate sequences of historic QoS
observations) and then observe and calculate the results of these different problem
instances. However, beyond varying problem instances, another common element/
dimension to vary in order to insightfully and rigorously assess an approach is the
problem parameters/experimental conditions (e.g., the size of available historic QoS
observations). For the experimental outcomes and conclusion to be convincing and
informative, an approach or a set of approaches must be evaluated under a variety of
different situations/conditions for the same problem instance; for example, an approach
may be tested with a poor, medium, and rich amount of training/learning materials so that
the performance of the approach under different conditions can be known, and then more
precise and informed decision and profound observation can be made.

Last, we discuss the content and contribution of this paper. Basically, as a sup-
plement to [2], the basic contribution, purpose, and possible usage of this survey paper
is the same as those described in [2]. First, we review current applications of WS QoS
time series modeling and forecasting and how they exploit QoS predictions in Sect. 2;
however, beyond realizing existing applications, a hope is to inspire the proposal and
development of more applications taking advantage of time-aware QoS forecasting
approaches in this research area. Subsequently, Sect. 3 fully reviews and introduces the
experimental considerations/configuration parameters appearing and considered in the
surveyed papers; an experimenter can refer to them to design his/her experiments,
avoiding missing any of the varied and tested properties/conditions. Finally, we con-
clude this paper in Sect. 4.

2 Subsequent Application

In this section, we first overview what applications have been considered in each of the
reviewed studies in Table 1, and then these disparate applications are introduced and
discussed in detail one after another.

First, Table 1 lists the surveyed studies ordered by the year of their publication;
more general information on these studies, including their publication type and venue
(journal/conference), study type (research approach/empirical comparison), and tar-
geted time-aware dynamic QoS attribute (e.g., response time) can be found in [2]. In
addition to this general information (shown in the first two columns of Table 1), the
table also enumerates the application assumed, adopted, or combined in each reviewed
study in its third column. Furthermore, in the fourth column of the table, we also
identify whether an application in a study (if any) has been realistically implemented/
simulated. In some of the reviewed papers, such as [6–8], the authors only briefly

QoS Time Series Modeling and Forecasting for Web Services 5

mention in a few sentences where their QoS forecasting approach could be used but do
not offer a practical implementation/simulation or theoretical process/framework/
discussion of the mentioned application; in this survey, we consider such studies as
having no application. For those studies that have an application in the third column of
Table 1, we further divide them into two classes in the fourth column of the table; the
first class indicates if the application of a study has been concretely implemented or
simulated, and the other contains those that the authors only theoretically discuss,
define, or propose in their paper without any realistic implementation or simulation.

Table 1. The reviewed Web service QoS time series modeling and forecasting studies and their
considered/combined subsequent applications.

Authors Year
published

Application Implementation/Simulation

Syu et al. [9] 2019 None None
Ding et al. [3] 2018 Cloud service recommendation

based on the ranking of aggregated
QoS predictions

Yes

Syu et al. [10] 2017 None None

Zhang et al. [11] 2017 None None
Fanjiang et al. [8] 2016 None None
Ye et al. [12] 2016 Long-term QoS-aware service

composition/selection
Yes

Nourikhah et al. [13] 2015 None None

Rehman et al. [14] 2014 None None
Leitner et al. [15] 2013 SLA violation prediction The implementation of the

proposed framework did not
include its application phase

YunNi et al. [4] 2013 Dependability prediction for
composite services

Yes

Amin et al. (a). [16] 2012 SLA violation prediction Yes

Amin et al. (b). [6] 2012 None None
Li et al. [5] 2012 Service recommendation based

on the ranking of the aggregations
of trustworthiness predictions and
functionality similarity

Yes

Senivongse et al.
[17]

2011 QoS-aware service
composition/selection

Yes

Solomon et al. [18] 2011 Business process (management)
performance prediction

Yes

Zadeh et al. [19] 2010 QoS monitoring A theoretical framework for QoS
monitoring

Cavallo et al. [20] 2010 SLA violation prediction Yes
Godse et al. [21] 2010 QoS-aware service

composition/selection
A theoretical QoS-aware service
selection process

Li et al. [7] 2010 None None

Mu et al. [22] 2009 QoS-aware service
composition/selection

Yes

Malak et al. [23] 2009 QoS-aware service
composition/selection and SLA
violation prediction

An agent-based theoretical
architecture for the management
of QoS

6 Y. Syu and C.-M. Wang

Below, we introduce and discusses the six disparate applications appearing in the
third column of Table 1 in detail, including how they use and benefit from WS QoS
time series modeling and forecasting approaches and why they want to integrate such
approaches with their application.

QoS-Aware Service Composition/Selection. As can be seen in Table 1, this is themost
common application in the reviewed papers (in five different studies [12, 17, 21–23]),
probably because in both services computing and Web service research, service
composition/selection has been one of the most widely studied and fertile research topic
for a very long time. In industry, modern software engineers often integrate/compose
multiple existingWeb services to rapidly obtain a required software application or system
(rather than creating it from scratch), and developing software applications/
systems in this way has already become quite prevalent in practice. In research, how-
ever, the focus of investigators is on automating the entire composition process (such as
those QoS-aware service composition applications listed in Table 1). A more detailed
introduction and definition of automated service composition/selection can be found in
[24]). When performing service composition/selection, there are usually multiple con-
siderations and conditions that must be satisfied or obeyed, including both the functional
and nonfunctional requirements of the requester. Among these different functional/
nonfunctional concerns, based on our investigations to date, QoS is the most widely
considered and well-studied nonfunctional properties in research [25]. In QoS-aware
service composition/selection, the main goal is to optimize the overall QoS performance
of a composed composite service, and because a composite service consists of multiple
component services, its overall QoS value is actually determined by the QoS values of its
component services using a set of QoS aggregation rules specifically designed for dif-
ferent flow structures and disparate types of QoS attributes. Thus, when performing QoS-
aware composition/selection, the QoS information for the available component services
must be known and would be identified by an automatic composition/selection approach.
In convention, such QoS information forWeb services is provided and published by their
providers, and traditional composition/selection approaches just directly accept and rely
on this static QoS data to perform their QoS calculations and optimization. In the real
world, however, the actual values of time-aware dynamic WS QoS attributes constantly
vary over time, and thus, the static QoS information offered by services providers is
inaccurate, and subsequently, the composition/selection results based on such unrealistic
QoS data are also be incorrect or inappropriate. To improve this deficiency, the
researchers reviewed in Table 1 try to employ aWSQoS time series forecasting approach
as the source of their QoS information, and then they perform service
composition/selection based on the predicted dynamic QoS values of available compo-
nent services.

Concentrating on this application, the QoS-aware service composition/selection
performed/assumed in the reviewed studies actually varies in terms of the problem
specification and considerations. For example, in [12], the authors design a forecasting
approach capable of performing long-term, multiple-step-ahead (i.e., a forecasting
horizon larger than one) QoS time series predictions, and when performing their QoS-
aware composition/selection, the considered QoS values are not only those for the next
time point/period (the assumption made in most of the reviewed studies) but also those

QoS Time Series Modeling and Forecasting for Web Services 7

at multiple future consecutive time points/periods. The authors of [12] consider that
cloud services are mostly rented and used over a long period of time, and thus, the
future long-term QoS performance must be known in advance and considered when
performing cloud service composition/selection. As another example, the assumption
made in [17] is that some component services are able to satisfy/implement multiple
abstract activities in a workflow (the convention is that the functionality of each
concrete service can fulfill only one specific abstract activity). Even with these dif-
ferences in the assumed and addressed QoS-aware service composition/selection
problems, however, the commonality of these studies is that they all employ a time-
aware QoS prediction approach to provide their time-aware dynamic QoS information,
seeking more reliable and precise composition/selection outcomes.

SLA Violation Prediction. Based on the table, this is the second most common
application in the reviewed studies (considered in four different papers [15, 16, 20, 23]).
Since Web/cloud services are usually external software components (their access mostly
must through Internet), typically, a service consumer has a contract with each of its
service providers to ensure that the nonfunctional performance of the exploited external
services reaches or surpasses a pre-negotiated minimal level; this contract is usually
called a service level agreement (SLA). A conventional SLA contract instance consists
of multiple service level objectives (SLOs), each including both a minimum threshold
and a penalty for each specific QoS attribute. An SLO instance, for example, could be
that the response time of a service must be within a certain duration (e.g., 0.1 s), and the
penalty could be that if a service provider violates this objective (i.e., an SLA violation
instance), the usage fee paid to the service provider would be reduced (e.g., only 50% of
the original price). A further introduction to SLA can be found in [15]. From the
perspective of service consumers, an SLA violation is definitely to be avoided because it
damages and decreases the reliability and stability of their service-based system. In
addition, service providers want to avoid SLA violations as completely as possible
because violations reduce their revenues and damage their reputations. To deal with
service violations, currently, there are two categories of approaches: conventional
reactive service substitution and innovative proactive service replacement. The former
type of approach constantly monitors the real-time QoS values of running services, and
when an SLA/SLO violation is detected during runtime, the approach automatically and
dynamically replaces the problematic service with another QoS-appropriate,
functionality-equivalent service to maintain the enacted SLA contract. However, the
shortcoming of this approach is that the users of an SLA-violated system will experience
violated QoS until the runtime substitution is made. To overcome this deficiency,
proactive service replacement has been proposed and studied in research. This technique
depends on SLA violation prediction to anticipate future SLA violation, and before the
violation actually occurs, the predicted QoS/SLA-violated service would be proactively
replaced to prevent the violation from happening. In this way, the users do not need to
tolerate or suffer from any inconvenience or performance decrease caused by QoS/SLA
violation at all.

The key to proactive service replacement is the accuracy of the SLA violation
prediction; if a violation is wrongly anticipated or missed, an unnecessary service
substitution would be conducted or the prevention of a violation will fail. Currently,

8 Y. Syu and C.-M. Wang

there are two types of approaches for SLA violation prediction, direct and indirect
prediction, and all the reviewed SLA violation prediction applications in Table 1
belong to the latter type, in which the future QoS value of a time-aware dynamic QoS
attribute is first estimated using a WS QoS time series modeling and forecasting
approach, and then this forecasted value is compared with the threshold specified in the
corresponding SLO to determine whether a violation is going to occur or not.

Service Recommendation. Due to their popularity, prevalence, and convenience,
currently, there are many Web/cloud services available on the Web or within service
registries, and because of this enormous number of services, manually selecting an
appropriate and required service can be a difficult and time-consuming task. In this
case, service recommendation can help service consumers to automatically and quickly
choose the most suitable option from a large set of candidate services by ranking them
based on the adopted selection criteria. When conducting such recommendation/
selection, currently, aside from functionality, the most widely considered nonfunctional
criterion for services is QoS. When performing computation for the recommendation,
the recommended service would actually be used in the future, but most traditional
recommendation approaches only refer to the static QoS information offered by service
providers without considering the variation and volatility of time-aware dynamic QoS
attributes. Thus, offering recommendations based on present or static QoS data would
result in an incorrect ranking of services and potentially the subsequent inappropriate
selection and recommendation of a service. To fix this issue, the service recommen-
dation applications reviewed in Table 1 exploit a time-aware WS QoS forecasting
approach to obtain the estimated future QoS values of their candidate services and then
perform recommendation/ranking based on these predicted QoS values. Finally, a
difference between the reviewed service recommendation applications is their con-
sidered criterion; when performing ranking, [3] considers only the QoS properties of
candidate services, but [5] takes both the predicted trustworthiness and the service’s
similarity in functionality to the specified requirements into account.

Dependability Prediction. Calculation of the dependability of a software system has
been a long-standing research issue. In general, the dependability of a software system
depends on that of its components/modules and its architecture. Similarly, because a
service-based system (a service composition/composite service instance) consists of
multiple component services, its overall dependability is determined by the depend-
ability of its component services and the composition structures of these component
services (which can be viewed as the architecture of the composite service). Unlike
traditional software systems, whose components probably all run on the same machine
or in the same internal environment, leading to relatively stable and controllable
dependability performance, service-oriented systems usually integrate and use external
services on the Internet, which causes the overall dependability of such systems to vary
largely over time depending on network traffic and the conditions of service providers
(this explains why the prediction of dependability for service composition is required).

As mentioned in [4], software dependability is an abstract term, and a number of
different definitions exist. In the reviewed application in [4], the authors consider
process-normal-completion-probability as the metric for the dependability of a service.
As a time-aware dynamic QoS attribute, the actual value of the process-normal-

QoS Time Series Modeling and Forecasting for Web Services 9

completion-probability of a service changes constantly; thus, to predict the overall
dependability of a composite service, the process-normal-completion-probability val-
ues of its component services must be forecasted first using a QoS time series modeling
and forecasting approach, and then these estimated individual dependability values
need to be aggregated based on the workflow structures of the composite service. In
[4], both the dependability prediction approach for component services and a set of
dependability aggregation rules defined for different composition/workflow structures
are proposed and developed by the authors.

Business Process Performance Prediction. A business process comprises both a set
of activities that can be implemented or fulfilled by Web services and a logical
sequence that structures those activities in a specific order of execution, and one of the
main purposes of business process management (BPM) is to measure and ensure the
key performance indicators (KPIs) when running business process instances during
runtime. In [17], the authors need to know the future KPI values of a business process
(BP) instance managed by their developed BPM framework. To do so, the authors first
develop a simulator capable of computing and simulating the overall KPI values of a
BP instance based on the KPI performance of its components (in [17], a BP instance is
concretized by a set of Web services, and thus, the KPI performance of BP components
is actually the QoS values of those Web services); however, to calculate and simulate
future KPI values for a BP instance, the simulator requires component services’ future
QoS values instead of the current measured QoS values or statistical QoS information
offered by service providers (with current or static QoS data, the simulator can only
produce current KPI simulation rather than its future estimation). To addressed this
problem, the authors employ the outputs of WS QoS time series modeling and fore-
casting approaches as the inputs of their developed BP KPI simulator; in this way, with
the predicted QoS values, the future KPI performance of a BP instance can be simu-
lated and obtained.

QoS Monitoring. Because Web/cloud services are mostly external components, to
observe and know their real QoS values, their real-time performance must somehow be
constantly measured and recorded. Such dynamic QoS information is necessary to
perform subsequent QoS-based actions (such as the detection of an SLA violation as
discussed above). In practice, such task is usually done by a QoS monitoring infras-
tructure or mechanism; however, performing QoS monitoring is a heavy burden on all
the participants, including service consumers, providers, and the network environment.
In terms of service consumers, for example, some services may not be free for access,
and a service consumer need to periodically send a request to each of the monitored
services. As another example, service providers running services could receive a large
number of detective service requests, which impose a heavy load on their machines and
could lead measured QoS values to become unrealistic and imprecise because the
limited computing resources of service providers are shared by many monitoring
requests (e.g., causing slower response time). Thus, to relieve the heavy burden placed
on these service participants and address the problem (distorted measurement of QoS
values), the authors of [19] propose using QoS time series forecasting to estimate and
obtain QoS values rather than gathering them by truly invoking monitored services. In
this way, a current QoS value is produced by employing a sequence of historical QoS

10 Y. Syu and C.-M. Wang

observations and exercising a time-aware QoS prediction model, and no additional QoS
monitoring action (e.g., sending and processing detective service requests) is required.

Despite these different usages, the commonality of these applications is that they all
use WS QoS time series modeling and forecasting approaches as the source of the
values of the focal time-aware dynamic QoS attributes in order to enhance (QoS-aware
service composition/selection and recommendation), relieve (QoS monitoring), and
achieve (SLA violation prediction, dependability prediction, and business process
performance prediction) their applications.

3 Experimental Configurations

This section reviews different experimental configuration settings (parameters) that
have been adopted, varied, and experimented with in the surveyed papers. From the
reviewed studies, we have identified and categorized three different types of experi-
mental configuration settings, problem-based, approach-specific, and application-
related variations of experimentation, as listed in Table 2. First, problem-based con-
figuration parameters (experimental variations) are those that originate from WS QoS
time series modeling and the forecasting problem itself. More specifically, they are the
varying factors in the specification and definition of the targeted research problem. In
general, since such configuration settings are based on the studied problem, they are
common to all studies focusing on this problem (namely, they all should be considered
and varied in the experiments of the reviewed studies); however, this is not the case in
the current research, as noted in the second column of Table 2 and discussed in
Sect. 3.1. The second recognized type of configuration settings is approach specific. As
indicated by its name, such configuration settings are approach dependent, and because
the time-aware (time series-based) QoS modeling and forecasting approaches consid-
ered or proposed in each study are not the same, approach-specific configuration set-
tings are not common to all the reviewed studies (but in theory, they are common to
those studies adopting the same QoS time series prediction approach). In the reviewed
studies, most of the identified and varied approach-specific configuration settings are
the internal parameters of the prediction approach, as described in Sect. 3.2. Finally,
application configuration settings are those that are related to the subsequent applica-
tion considered in the study rather than to QoS time series modeling and the forecasting
problem or approach (therefore, this type of configuration setting is also not common to
all the reviewed studies but can be common to those studies integrating or combining
the same subsequent application). By varying such configuration parameters, the
experimenters can observe and assess both the performance and the reaction of the
subsequent application (directly) and the employed QoS forecasting approach (indi-
rectly). We review and discuss this last type of configuration settings in Sect. 3.3.

QoS Time Series Modeling and Forecasting for Web Services 11

Table 2. The reviewed studies and their considered experimental configuration settings
(parameters).

Authors Problem based Approach specific Application related

Syu et al. [9] The number of QoS
observations for training,
the number of QoS
observations for testing,
and the granularity of time
of QoS observations

None None

Ding et al. [3] The density of QoS
observations (of a QoS
time series) for training

The number of similar users
considered for filling missing
historical QoS entries

The number of ranked
services (top-k) in a
service
recommendation

Syu et al. [10] None None None
Zhang et al. [11] The size of the QoS

forecasting horizon
(N-step-ahead prediction)

The dimension of phase
space reconstruction and
univariate-based vs.
multivariate-based QoS
forecasting

None

Fanjiang et al. [8] None None None

Ye et al. [12] The number of QoS
observations for training

None The number of
retrieved service
compositions

Nourikhah et al. [13] The size of the QoS
forecasting horizon

None None

Rehman et al. [14] None None None
Leitner et al. [15] The number of QoS

observations for training
None None

YunNi et al. [4] None None None

Amin et al. (a). [16] None None None
Amin et al. (b). [6] The number of QoS

observations for training
None None

Li et al. [5] None None The number of ranked
services (top-k) in a
service
recommendation

Senivongse et al.
[17]

None None None

Solomon et al. [18] None None None
Zadeh et al. [19] None None None

Cavallo et al. [20] The granularity of time of
QoS observations

None None

Godse et al. [21] None None None
Li et al. [7] The number of QoS

observations for training
None None

Mu et al. [22] None None The number of
candidate services for
an abstract activity in
a service composition

Malak et al. [23] None None None

12 Y. Syu and C.-M. Wang

3.1 Problem-Based Experimental Configuration Setting

Below, sequentially, we first review the five identified problem-based experimental
configuration parameters, and then a general discussion on them is offered, including a
discussion of what is lacking in the current studies and their experiments.

The Number of QoS Observations for Training. As shown in Table 2, this is the
most widely considered and experimented with configuration setting in the reviewed
research. In the targeted research problem, this experimental parameter determines how
many historical QoS observations (i.e., available training/learning materials) in a QoS
time series modeling and forecasting problem instance are available for the adopted or
compared time-aware QoS prediction approaches. In research, such as in many
machine learning problems and time series forecasting studies, this experimental
parameter has been widely considered and tested because it is quite intuitive for
researchers to know and wonder about the performance and cost of an approach based
on different amounts of available resources (i.e., changing the value of this experi-
mental parameter to see the relationship between available materials and resulting
performance/cost). In the experiments of the reviewed studies, this parameter has been
varied to observe its impact on modeling/forecasting accuracy and the time to generate
a QoS predictor. The common experimental result across the studies is that prediction
accuracy does improve along with more training/learning resources; however, using
more QoS observations in the training phase of an approach also causes a longer
generation time for predictions (i.e., higher cost).

The Number of QoS Observations for Testing. This parameter determines how
many QoS values at consecutive multiple future time points could be predicted by
using the same QoS predictor (namely, how long a testing QoS time series is). Based
on our investigation, in this research area, most of the reviewed studies adopt off-line,
single predictor-based QoS time series forecasting, which means that a generated QoS
predictor would be used continuously for multiple QoS predictions without any
updating or regeneration of the predictor (except for [3], in which the authors consider
online QoS forecasting, and thus, their QoS predictor is revised each time a newly
detected QoS observation is available). In other words, the larger the value of this
experimental parameter is, the further into the future the predictor will be employed for
the QoS predictions (during which, over time, its internal data generation process may
become increasingly different from that implied in the training/learning materials of the
employed predictor). Among the reviewed studies, only the one presented in [9] has
considered and varied this experimental parameter, and their conclusion to this point is
that this parameter does influence the forecasting accuracy, and the impact could be
both positive and negative (for a detailed discussion, the readers can refer to the tenth
paragraph of Sect. 7 of [9]).

The Granularity of Time of QoS Observations. The granularity of time of a time
series depends on how often the data sampling is performed, such as hourly, daily,
weekly, or monthly (i.e., the interval/distance between two consecutive sampling time
points). In our problem context, coarser granularity of time means that a one-step-ahead
QoS prediction is for farther in the future, such as a future QoS value for the next hour

QoS Time Series Modeling and Forecasting for Web Services 13

compared to one for the next day; thus, a common intuition is that the forecasting
difficulty will increase along with the adopted granularity of time because it is more
difficult to predict farther into the future (for example, forecasting one hour later is
much easier than forecasting one week later). Among the reviewed studies, only the
authors of [9] [20] have varied this experimental configuration setting to see its impact
on forecasting accuracy; however, the authors of [20] only report their hourly based
experimental results in the paper (another set of experiments were performed on daily
based QoS time series), and thus, there is no way to compare the accuracy of hourly
based and daily based QoS forecasting in this case (i.e., unable to observe the influence
of the granularity of time). On the other hand, surprisingly, the empirical results
demonstrated in [9] violate the abovementioned intuition that coarser-grained granu-
larity for time may yield more accurate QoS forecasting performance. More specifi-
cally, based on the experimental data shown in [9], there is a turning point for the
granularity of time; before that point, the experimental results match the intuition, but
after surpassing it, greater granularity of time leads to more precise QoS prediction.

The Density of QoS Observations for Training. Except for [3], a common
assumption implicitly made in the reviewed papers is that all the historical QoS
observations of a predicted target are completely available. However, in the real world,
such an assumption may not always hold, and missing past QoS values do exist
(namely, QoS records are intermittent in a training QoS time series). In [3], the authors
consider and address this issue, proposing to employ the historical QoS records of a set
of similar service consumers at the same past time point to estimate and fill in the
missing QoS values. Afterwards, with the filled-in QoS time series, a predictor is
generated to perform subsequent time-aware QoS prediction. Because in this case, the
QoS values contained in the training/learning materials are not all real observations, the
density and precision of these estimated QoS values will influence the quality of the
generated predictor (it is unlikely or very difficult to fit a precise predictor with a
sequence of deviated data). In [3], the authors vary the value of the density of the
missing QoS observations to see its impact on the accuracy of subsequent WS QoS
time series forecasting, and they find that the lower the density of the missing QoS
values (i.e., the more real QoS observations available), the better the QoS time series
forecasting performance.

The Size of the QoS Forecasting Horizon. This experimental configuration setting
determines how many QoS values at consecutive multiple future time points for a
targeted QoS attribute would be forecasted in a single prediction. For this considera-
tion, most of the reviewed studies perform and adopt the most basic setting, namely,
one-step-ahead forecasting (the size of forecasting horizon is one). However, in some
contexts, such as the long-term rental of cloud services considered in [12], a number of
future QoS values at multiple later time points need to be known in the present to make
an informative long-term decision, and in this case, multiple/N-step-ahead predictions
(in which the size of the forecasting horizon is larger than one) must be performed. In
most of the reviewed studies (including the papers focusing on both one-step-ahead and
multiple/N-step-ahead predictions), the authors set only a fixed value for this config-
uration parameter to perform their experiments, and thus, they are unable to know the
relationship between forecasting accuracy and the size of forecasting horizon through

14 Y. Syu and C.-M. Wang

these experiments. In the surveyed studies, the authors of [11, 13] have varied the value
of this experimental configuration parameter to see its impact on prediction errors, and
their experimental results demonstrate that forecasting errors increase (i.e., worse
accuracy) when the stepping number becomes larger.

From the existing studies, we have identified five common factors varied for the
targeted and studied problem. In theory, for the experimentation and evaluation of a
study to be complete and convincing, each of the first three factors should be inde-
pendently varied and tested in an experiment to observe and realize its influence on (its
relationship with) the resulting performance and cost. However, as demonstrated in the
second column of Table 2, many of the surveyed papers actually did not consider any
of these factors in their experiments, and most of the other studies only adopt and test
one such configuration parameter, which we consider to be one of the major insuffi-
ciencies and issues in the current research in this area (namely, the design of the
experimentation of these studies is poor in terms of its coverage of different problem
conditions). Regarding the last two problem-based experimental configuration settings,
the fourth should be included and varied if the verified approach is capable of dealing
with missing historical QoS observations in design, and the last must be considered
when performing multiple (N-step-ahead) QoS time series forecasts in a single
prediction.

Finally, a problem-based experimental configuration setting that is never varied and
tested in current studies is the frequency of retraining/updating a QoS time series
predictor. In [11], the predictor is updated each time it receives a new QoS observation,
and in the other studies, the same predictor would be used for the entire prediction
problem instance (i.e., the whole testing QoS time series). We consider that the above
two situations are two extreme cases (namely, updating each time and never
revising/regenerating), and a suitable and cost-efficient updating/retraining frequency
between these two extreme cases for an encountered problem instance should be
studied and determined (such as varying and testing different frequencies to see the
resulting forecasting accuracy and total consumed time). For an optimal frequency or a
balance point between accuracy and time, a possible research direction is to analyze the
pattern and cycle of the change in the internal (data generation) process of the QoS time
series. For example, if the internal process does not change, the predictor generated for
the process is not obsolete and can still be used for subsequent QoS time series
forecasting; however, if the process changes, a new predictor must be obtained using
the most recent QoS observations (i.e., QoS data generated by the new internal process)
to replace the old predictor (similar to those done in [26]).

3.2 Approach-Specific Experimental Configuration Settings

The experimental configuration settings reviewed and identified in this section are
approach dependent/specific; thus, we only briefly review them because they are not
common to the entire research area and all the surveyed studies.

The Number of Considered Similar Users for Filling in Missing Historical QoS
Entries. The authors of [3] employ the historical QoS records of a set of similar
service users (data) and a collaborative filtering-based method (approach) to estimate

QoS Time Series Modeling and Forecasting for Web Services 15

the missing QoS values at past time points for a target user. In their experiments, the
number of included similar users is varied from 2 to 30 to see its influence on the
estimation of missing past QoS values and application (service recommendation)
performance. Their experimental results and discussion conclude that considering the
top-5 most similar users (their QoS records) is the best option, and considering either
fewer or more similar users may lead to worse outcomes (i.e., higher errors).

The Dimension of Phase Space Reconstruction. Phase space reconstruction is the
last step for the data preprocessing used in the QoS time series forecasting approach
proposed in [11]. In their experiments, the authors have varied the dimension value of
the phase space reconstruction and fixed the other parameter (i.e., step number) to
observe their empirical results (demonstrated in the form of a comparison between a
sequence of prediction values and the corresponding actual QoS observations). How-
ever, in the paper, the authors did not explicitly discuss the effect of different dimension
values on forecasting accuracy, and it is difficult to figure this out it based on their
experimental results.

Univariate-Based vs. Multivariate-Based QoS Forecasting. The time-aware QoS
prediction approach proposed in [11] is capable of performing both univariate-based
and multivariate-based QoS time series forecasting (i.e., an internal configuration
setting of this approach allows a choice of the kind of prediction), and the authors have
an empirical comparison for their prediction accuracy. The experimental results indi-
cate that for one-step-ahead forecasting (i.e., the size of forecasting horizon is one), the
univariate version of the approach is sufficient in terms of forecasting accuracy;
however, for multiple-step-ahead QoS prediction (the size of forecasting horizon is
larger than one), the multivariate-based approach is better than univariate one because
the authors consider multivariate QoS observations to contain more useful information.

3.3 Application-Related Experimental Configuration Setting

This section contains experimental configuration settings/parameters that are related to
the identified applications of WS QoS time series modeling and forecasting approaches
(i.e., those reviewed in Sect. 2); in experimentation, these values/settings have been
varied to see their impact on the resulting performance (of the application).

The Number of Ranked Services (top-k) in a Service Recommendation. In [3, 5],
their subsequent application is service recommendation (as reviewed in Table 1), and
they both adopt discounted cumulative gain (DCG, for which a higher resulting value
indicates better performance) to assess the ranking accuracy of the k recommended
services (i.e., the top-k candidates) in a recommendation that is based on the forecasted
QoS values. In their experimentation, the value of k is varied, and the experimental
results in [5] and the outcomes of response time-based experiments in [3] show that the
higher the value of k is (i.e., the more ranked and recommended services in a rec-
ommendation), the better the application performance is as measured in DCG; how-
ever, this is not the case for the throughput-based service recommendation experiments
reported in [3], in which higher values of k cause lower (worse) DCG values. Thus,
based on these empirical investigations, the configuration settings of a QoS-based

16 Y. Syu and C.-M. Wang

application should take the type and feature of time-aware dynamic QoS attributes into
account.

The Number of Retrieved Service Compositions. The application of the QoS time
series forecasting approach in [12] is service composition. With the application
approach of [12], for each service composition request, a set of service compositions
based on the predicted QoS values are returned. In their experiments, the authors have
varied the number of returned service compositions each time to see the impact on
application performance measured in three different metrics (i.e., accuracy, F-measure,
and fall-out), and their empirical results demonstrate that overall, the greater the
number of retrieved composition instances for a request, the worse the measured
application performance.

The Number of Candidate Services for an Abstract Activity in a Service Com-
position. In service composition/selection research, a widely studied and tested basic
varying factor is the number of available service candidates for each abstract activity
contained in a workflow. Obviously, the higher the number of candidate services, the
more difficult the composition/selection problem is because there are more possible
composition instances (i.e., a larger solution space). However, among the reviewed
studies that consider service composition/selection as their subsequent application, only
the authors of [22] have varied this application parameter from 5 to 30 in their
experiments to see its influence on computational cost; reasonably, their experimental
results indicate that the larger the number of available candidate services is, the higher
the cost.

Finally, we briefly mention an experimental configuration setting that did not belong
to the above three types. In Sect. 2, we explain how forecasted QoS values are used by
different subsequent applications (i.e., how a QoS forecasting approach and an appli-
cation are combined and used together), and their pattern of combination is the same
for each application (i.e., how they are combined is never varied and compared).
However, an exception found in the reviewed studies is [18], in which three different
combination patterns have been empirically tested and compared in their experimen-
tation to find the best one.

4 Conclusion

In this paper, we review two concerns of WS QoS time series modeling and forecasting
research, namely, its subsequent application and the experimental configuration set-
tings considered. In the paper, we have identified and introduced five different appli-
cations in current research that have been integrated and tested with a time-aware QoS
prediction approach. As a more reasonable and reliable source of the future values of
dynamic QoS attributes, we believe that most QoS-based applications and approaches
in services computing can benefit from QoS time series modeling and forecasting
(if they need to know QoS information for future time periods to perform their working
operations or processes). In addition, regarding this research concern, another possible
research direction that has not been well-studied thus far is how to efficiently combine a
prediction approach and its subsequent application; the combinations introduced in

QoS Time Series Modeling and Forecasting for Web Services 17

Sect. 2 are intuitive and sensible, but more efficient integration may exist. Regarding
the second reviewed concern, we exhaustively identify and categorize the different
factors varied in the performed experiments of the reviewed studies. To provide
comprehensive and rigorous evaluation and justification, each of the problem-based
experimental configuration parameters should be independently varied, tested, and
compared in an experiment. Finally, depending on the adopted approach and combined
applications, each of their internal configuration settings (i.e., approach-specific and
application-related settings) must also be identified and considered in experimentation.

Acknowledgement. This research is partially sponsored by the Ministry of Science and
Technology (Taiwan) under the Grant MOST 108-2221-E-001-007-MY2.

References

1. Syu, Y., Wang, C.-M., Fanjiang, Y.-Y.: A survey of time-aware dynamic QOS forecasting
research, its future challenges and research directions. In: Ferreira, J.E., Spanoudakis, G.,
Ma, Y., Zhang, L.-J. (eds.) SCC 2018. LNCS, vol. 10969, pp. 36–50. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94376-3_3

2. Syu, Y., Wang, C.-M.: QoS time series modeling and forecasting for web services: a
comprehensive survey. IEEE Trans, Netw. Serv. Manage. (Under review)

3. Ding, S., Li, Y., Wu, D., Zhang, Y., Yang, S.: Time-aware cloud service recommendation
using similarity-enhanced collaborative filtering and ARIMA model. Decis. Support Syst.
107, 103–115 (2018). https://doi.org/10.1016/j.dss.2017.12.012

4. YunNi, X., Jian, D., Xin, L., QingSheng, Z.: Dependability prediction of WS-BPEL service
compositions using petri net and time series models. In: 2013 IEEE 7th International
Symposium on Service Oriented System Engineering (SOSE), Redwood City, pp. 192–202.
IEEE (2013)

5. Li, M., Hua, Z., Zhao, J., Zou, Y., Xie, B.: ARIMA model-based web services
trustworthiness evaluation and prediction. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q.
(eds.) ICSOC 2012. LNCS, vol. 7636, pp. 648–655. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34321-6_51

6. Amin, A., Grunske, L., Colman, A.: An automated approach to forecasting QoS attributes
based on linear and non-linear time series modeling. In: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. Essen, Germany, pp. 130–
139. ACM (2012). Sec. 2351695

7. Li, J., Zhao, Y., Ren, J., Ma, D.: Towards adaptive web services QoS prediction. In: 2010
IEEE International Conference on Service-Oriented Computing and Applications (SOCA),
13–15 December 2010, pp. 1–8 (2010). https://doi.org/10.1109/soca.2010.5707146

8. Fanjiang, Y.-Y., Syu, Y., Kuo, J.-Y.: Search based approach to forecasting QoS attributes of
web services using genetic programming. Information and Software Technology, vol. 80,
pp. 158–174 (2016). http://dx.doi.org/10.1016/j.infsof.2016.08.009

9. Syu, Y., Wang, C., Fanjiang, Y.: Modeling and forecasting of time-aware dynamic QoS
attributes for cloud services. IEEE Trans. Netw. Serv. Manage. 16, 1 (2018) https://doi.org/
10.1109/tnsm.2018.2884983

10. Syu, Y., Kuo, J.-Y., Fanjiang, Y.-Y.: Time series forecasting for dynamic quality of web
services: an empirical study. J. Syst. Softw. 134, 279–303 (2017). https://doi.org/10.1016/j.
jss.2017.09.011

18 Y. Syu and C.-M. Wang

https://doi.org/10.1007/978-3-319-94376-3_3
https://doi.org/10.1016/j.dss.2017.12.012
https://doi.org/10.1007/978-3-642-34321-6_51
https://doi.org/10.1007/978-3-642-34321-6_51
https://doi.org/10.1109/soca.2010.5707146
http://dx.doi.org/10.1016/j.infsof.2016.08.009
https://doi.org/10.1109/tnsm.2018.2884983
https://doi.org/10.1109/tnsm.2018.2884983
https://doi.org/10.1016/j.jss.2017.09.011
https://doi.org/10.1016/j.jss.2017.09.011

11. Zhang, P., Wang, L., Li, W., Leung, H., Song, W.: A web service qos forecasting approach
based on multivariate time series. In: 2017 IEEE International Conference on Web Services
(ICWS), 25–30 June 2017, pp. 146–153 (2017). https://doi.org/10.1109/icws.2017.27

12. Ye, Z., Mistry, S., Bouguettaya, A., Dong, H.: Long-term QoS-aware cloud service
composition using multivariate time series analysis. IEEE Trans. Serv. Comput. 9(3), 382–
393 (2016). https://doi.org/10.1109/TSC.2014.2373366

13. Nourikhah, H., Akbari, M.K., Kalantari, M.: Modeling and predicting measured response
time of cloud-based web services using long-memory time series. J. Supercomput. 71, 1–24
(2014). https://doi.org/10.1007/s11227-014-1317-4

14. Rahman, Z.U., Hussain, O.K., Hussain, F.K.: Time series QoS forecasting for management
of cloud services. In: Proceedings of the 2014 Ninth International Conference on Broadband
and Wireless Computing, Communication and Applications (2014)

15. Leitner, P., Ferner, J., Hummer, W., Dustdar, S.: Data-driven and automated prediction of
service level agreement violations in service compositions. Distributed and Parallel Databases,
journal article 31(3), 447–470 (2013). https://doi.org/10.1007/s10619-013-7125-7

16. Amin, A., Colman, A., Grunske, L.: An approach to forecasting QoS attributes of web
services based on ARIMA and GARCH models. In: 2012 IEEE 19th International
Conference on Web Services (ICWS), Honolulu, HI, pp. 74–81. IEEE (2012)

17. Senivongse, T., Wongsawangpanich, N.: Composing services of different granularity and
varying qos using genetic algorithm. In: Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and Computer Science 2011,
San Francisco, CA, USA, 19–21 October 2011, pp. 388-393 (2011)

18. Solomon, A., Litoiu, M.: Business process performance prediction on a tracked simulation
model. In: Proceedings of the 3rd International Workshop on Principles of Engineering
Service-Oriented Systems, Waikiki, Honolulu, HI, USA (2011)

19. Zadeh, M.H., Seyyedi, M.A.: Qos monitoring for web services by time series forecasting. In:
2010 3rd IEEE International Conference on Computer Science and Information Technology
(ICCSIT), Chengdu, vol. 5. pp. 659–663. IEEE (2010)

20. Cavallo, B., Penta, M.D., Canfora, G.: An empirical comparison of methods to support QoS-
aware service selection. In: Proceedings of the 2nd International Workshop on Principles of
Engineering Service-Oriented Systems, Cape Town, South Africa, pp. 64–70. ACM (2010)
sec. 1808899

21. Godse, M., Bellur, U., Sonar, R.: Automating QoS based service selection. In: 2010 IEEE
International Conference on Web Services (ICWS), Miami, FL, pp. 534–541. IEEE (2010)

22. Mu, L., Jinpeng, H., Huipeng, G.: An adaptive web services selection method based on the
QoS prediction mechanism. In: IEEE/WIC/ACM International Joint Conferences on Web
Intelligence and Intelligent Agent Technologies, 2009. WI-IAT 2009, Milan, Italy, pp. 395–
402. IET (2009)

23. Malak, J.S., Mohsenzadeh, M., Seyyedi, M.A.: Web service qos prediction based on multi
agents. In: 2009 International Conference on Computer Technology and Development, 13–
15 November 2009, vol. 1, pp. 265-269 (2009). https://doi.org/10.1109/icctd.2009.79

24. FanJiang, Y.-Y., Syu, Y.: Semantic-based automatic service composition with functional and
non-functional requirements in design time: A genetic algorithm approach. Inf. Softw.
Technol. 56(3), 352–373 (2014). https://doi.org/10.1016/j.infsof.2013.12.001

25. Fanjiang, Y.-Y., Syu, Y., Ma, S.-P., Kuo, J.-Y.: An overview and classification of service
description approaches in automated service composition research. IEEE Trans. Serv.
Comput. 10(2), 176–189 (2017)

26. Wagner, N., Michalewicz, Z., Khouja, M., McGregor, R.R.: Time series forecasting for
dynamic environments: the DyFor genetic program model. IEEE Trans. Evol. Comput. 11
(4), 433–452 (2007). https://doi.org/10.1109/tevc.2006.882430

QoS Time Series Modeling and Forecasting for Web Services 19

https://doi.org/10.1109/icws.2017.27
https://doi.org/10.1109/TSC.2014.2373366
https://doi.org/10.1007/s11227-014-1317-4
https://doi.org/10.1007/s10619-013-7125-7
https://doi.org/10.1109/icctd.2009.79
https://doi.org/10.1016/j.infsof.2013.12.001
https://doi.org/10.1109/tevc.2006.882430

Web Service Composition by Optimizing
Composition-Segment Candidates

Fang-Yuan Zuo, Ze-Han Shen, Shi-Liang Fan, and Yu-Bin Yang(B)

State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China
yangyubin@nju.edu.cn

Abstract. Web service composition has been increasingly challenging
in recent years due to the escalating number of services and the diver-
sity of task objectives. Despite many researches have already addressed
the optimization of multiple Quality of Service (QoS) attributes, most
of the currently available methods have to build a large web service
dependency graph, which may incur excessive memory consumption and
extreme inefficiency. To address these issues, we present a novel web
service composition method by optimizing composition-segment candi-
dates. Firstly, we formalize the web service composition problem as a
Mixed-Integer Linear Programming (MILP) model and introduce some
effective techniques for complex cases, and then a standard solver can
be applied to this model. Afterwards, a candidate optimization method
is proposed to solve the MILP model efficiently, which runs sharply fast
without building a web service dependency graph. Experimental results
on both Web Service Challenge 2009’s datasets and substantial datasets
randomly generated show that the proposed method outperforms the
state-of-art while achieving a much ideal tradeoff among all the objec-
tives with better performance.

Keywords: Web service composition · Optimization · MILP

1 Introduction

In service-oriented environments, many complex applications can be described as
a series of processes invoking services selected at runtime. Thus, the web service
composition problem has been widely studied [1,2]. Generally, many researchers
aim at optimizing a single global QoS [3] by searching for a solution in a huge
web service dependency graph [4]. When there are more than two objectives, i.e.,
QoS attributes considered, these methods usually fail to output a satisfactory
solution. These QoS attributes are usually conflicted with each other, which
makes it difficult to find a solution optimal for all the QoS attributes. Another
shortcoming of these methods is that seeking a near-optimal solution in a huge
dependency graph consumes much time and memory.

To address these issues, we aim at finding an ideal tradeoff among all the
objectives without building a web service dependency graph. We formalize the
c© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 20–34, 2020.
https://doi.org/10.1007/978-3-030-59592-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-59592-0_2

Web Service Composition by Optimizing Composition-Segment Candidates 21

web service composition problem as a MILP model and apply a standard solver to
it for a near-optimal solution. Furthermore, we present a candidate optimization
method for a better tradeoff, which does not require any web service dependency
graph. The main contributions of this paper are summarized as follows.

• We formalize the web service composition problem as a novel MILP model,
which transforms min-max constraints into linear constraints by introducing
integer variables.

• A standard solver is applied to the MILP model and outputs a near-optimal
solution in most cases, and some effective techniques are introduced for com-
plex cases.

• A candidate optimization method is proposed to solve the MILP model
efficiently and obtains a composition with better tradeoff among all the
objectives.

To validate the methods proposed in this paper, we carry out extensive exper-
iments on both WSC-2009’s datasets and randomly generated datasets.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground and some related work. Section 3 formalizes the web service composition
problem into a MILP model and provides some practically useful techniques.
Section 4 proposes a candidate optimization method with no need to build a
web service dependency graph. Section 5 presents the experimental results, and
Sect. 6 provides the final remarks.

2 Background and Related Work

2.1 Background

The formal definition of web service is shown as follows.

Definition 1. Giving a set of concepts C (the size of C is |C| = m), we define
a Web Service (“service” for short) as a tuple si = {Ii, Oi, Ri, Ti}, where Ii =
{i1, . . . , ip} is the subscript set of inputs required to invoke the web service si and
Oi = {o1, . . . , oq} is the subscript set of outputs generated by invoking service
si. Each element cj , j ∈ Ii ∪ Oi is a semantic concept belonging to the set C,
namely, {cj |j ∈ Ii} ⊆ C and {cj |j ∈ Oi} ⊆ C. Ri and Ti are the nonfunctional
attributes which are the measures for judging how well the service si serves the
user.

Obviously, services are not independent to each other. Relevant services
can be combined by connecting matched inputs and outputs to construct
compositions.

Lemma 1. Giving an output co of a service si, as well as an input ci of another
service sj, if co and ci are equivalent concepts or co is a sub-concept of ci, co
matches ci.

22 F.-Y. Zuo et al.

Each service has its own QoS, which contributes to the global QoS of a
composition. The definition of QoS of a web service composition is dependent
on the structure of composition. There are two main kinds of structures, named
sequential structure and parallel structure. The first one means the services are
invoked in order, while the second one means they are invoked synchronously.

Definition 2. A composition containing the set of services S = {s1, . . . , sn} is
defined as Ω. If the services are chained in sequence, the composition is expressed
as Ω→ = s1 → . . . → sn; if in parallel, it is expressed as Ω‖ = s1 ‖ . . . ‖ sn. The
set of services involved in Ω is defined as Servs(Ω) = S. Moreover, the length
of a composition Ω is defined as Len(Ω) = |S|, namely, the number of services
in Ω. Taking the response time as an example, we compute the global QoS of Ω
as follow.

RT (Ω→) =
∑n

i=1 RT (si), si ∈ S
RT (Ω‖) = max1≤i≤n RT (si), si ∈ S

}

(1)

where RT (Ω) represents the global response time of the composition and RT (s)
represents the same of services s. Another QoS attribute is throughput, which
can be defined as follows:

TP (Ω→) = min1≤i≤n TP (si), si ∈ S
TP (Ω‖) = min1≤i≤n TP (si), si ∈ S

}

(2)

where TP (Ω) and TP (s) represent the global throughput and the service through-
put similarly.

Based on the above concepts, Multi-Objective Web Service Composition can
be described as Definition 3.

Definition 3. Giving a web services set S, a concepts set C and a given com-
position request R = {InR, OutR}, we define Multi-Objective Web Service Com-
position as finding a composition Ω which archives an ideal tradeoff among
Len(Ω), RT (Ω) and TP (Ω).

2.2 Related Work

In this subsection, we introduce some related works about single objective and
multi-objective web service composition. Meanwhile, we point out their main
drawbacks at last.

2.2.1 Single Objective Web Service Composition
For the single objective web service composition, the most popular objective is
the number of services in the final composition.

A heuristic A∗ search algorithm was proposed in [5] for web service composi-
tion, which used A∗ search algorithm in a dependency graph. Noting that some
useless services might exist in the final composition, Xia et al. [6] proposed an
algorithm to remove the useless service, which was useful to reduce the number

Web Service Composition by Optimizing Composition-Segment Candidates 23

of services. Fan et al. [4] transformed the web service composition problem into
a dynamic knapsack problem and applied dynamic programming technique on
it, which obtained a solution containing a small number of services.

Single objectives web service composition fails to meet the requirements in
many applications. Therefore, many researchers pay more attention to multi-
objective service composition of which goal is to find a proper composition
achieving an ideal tradeoff among all the objectives.

2.2.2 Multi-objective Web Service Composition
Graphs are natural and intuitive ways to express the complex interaction rela-
tions between entities. The web service dependency graph is useful to illustrate
the multi-objective web service composition problem. In Fig. 1, a web service
composition problem is shown as a layered directed graph. The composition
request is R = {{in1, in2, in3}, {out1, out2, out3, out4}}. Each rectangle in the
graph represents a web service. The response time and throughput of a web
service are shown in the above and below, respectively. Each circle represents
an input or an output of a service. In addition, the edges connecting circles and
rectangles denote the matching relations between them. Two dummy service Si

for the inputs and So for the outputs are added in the graph, whose response
time and throughputs are 0 ms and +∞ inv/s respectively.

A

D

B

E

C

F

G

H

I

J

M

K

L

Si So

in1

in2

in3

out1

out2

out3

out4

20ms

40ms

40ms

180inv/s

950inv/s

40ms

10ms

250inv/s

20ms

350inv/s

750inv/s

800inv/s

30ms

40ms

20ms

200inv/s

300inv/s

350inv/s
190inv/s

480inv/s

300inv/s
10ms

30ms

600inv/s

40ms

30ms

Fig. 1. An example of a service dependency graph.

As shown in the Fig. 1, there are many compositions with different QoS and
numbers of services satisfying the request R. The composition highlighted in
the graph Ω = S0 → (A||D) → (B||C||F) → (G||I) → (J ||K||L) → So is
the optimal with response time of 110 ms. In addition, the throughput of Ω
is 180 inv/s, which is not optimal. Moreover, another composition Ω′ = Si →
(A||D) → (B||E||F) → (G||I) → (J ||K||L) → So, has a response time of 130
ms, a throughput of 190 inv/s and the same length of 12. On the one hand, the
response time of Ω is shorter in comparison with the one of Ω′. On the another
hand, the throughput of Ω is less than Ω′. Although both Ω and Ω′ are Pareto

24 F.-Y. Zuo et al.

optimal solutions, we prefer the former since TP (Ω′) changes little from TP (Ω)
(180 inv/s to 190 inv/s), while the response time of Ω has been greatly improved
(130 ms versus 110 ms).

To deal with the above problems, Zeng et al. [7] directly transformed the multi-
objective service composition into single-objective optimization and used tradi-
tional techniques to solve it. Furthermore, some researchers applied a systematic
search algorithm like Dijkstra’s algorithm with the same single-objective function
[8], which generated many solutions and recorded the best one until no more con-
cepts could be generated. Another important objective is the number of services
in the resulting composition, which is necessary to consider for conducting ser-
vices composition. Fan et al. [9] used a Knapsack-Variant algorithm with trans-
forming multi-objectives into one loss objective computed dynamically. However,
these methods have to build a huge dependency graph explicitly, which leads to a
long composition time, especially in an enormous number of services situation.

3 MILP Formalization of Web Service Composition

In this section, the problem of web service composition is formalized as a MILP
model. Once a MILP model of web service composition is obtained, some stan-
dard solvers such as groubi [10], can be applied to it and output a well enough
composition.

3.1 Notations and Variables

Given a composition request R = {InR, OutR}, two dummy services s0, sn+1

named the input service and the output service, are added to the model, which
represent the input and output of the request respectively. Some related nota-
tions are defined in Table 1. The constants Rmin and Rmax are minimum and
maximum response time and so do Tmin and Tmax for throughput.

Table 1. Some notations in this paper

Name Notation Description

Service set S S = {s0, . . . , sn+1}
Concept set C C = {c1, . . . , cm}
Service input Ii The input set of si is {cj |j ∈ Ii}, I0 = ∅, In+1 = OutR

Service output Oi The output set of si is {cj |j ∈ Oi}, O0 = InR, On+1 = ∅

Response time Ri The response time of si and R0 = Rn+1 = Rmin

Throughput Ti The throughput of si, T0 = Tn+1 = Tmax specially

For a formal description, we introduce some variables optimized by standard
solver in Table 2. In the composition context of this paper, the term response
time is treated as generated time of a concept or invoked time of a service.

Web Service Composition by Optimizing Composition-Segment Candidates 25

Table 2. The variables in MILP model

Notation Range Description

xi {0, 1} xi = 1 means si is selected

yj {0, 1} yj = 1 means ci is generated

sri [0,+∞) The time when si has been invoked

rj [0,+∞) The time when cj is generated at first time

sti [0,+∞) The throughput of si in the composition

tj [0,+∞) The throughput of cj in the composition

3.2 Criteria

Taking response time, throughput, and number of services into consideration,
we can formalize the criteria of this MILP model as follows:

max
x,y,sr,r,st,t

stn+1 − α

n∑

i=1

xi − βsrn+1 (3)

where α and β are weights of different single objectives, and they can be assigned
flexibly to adapt to the preference of user.

3.3 Constraints

Without building a huge dependency graph, we add some constraints to the
proposed MILP model, which guarantees that a solution of the MILP model is
also a valid web service composition.

3.3.1 Input and Output Constraints
For the input and output services, they must be invoked:

x0 = xn+1 = 1 (4)

One service can be invoked until its whole input concepts have been gener-
ated. A concept cannot be generated unless at least one service whose output
set contains it has been invoked.

|Ii|xi ≤
∑

j∈Ii

yj , i = 0, . . . , n + 1 (5)

yj ≤
∑

i∈{k|j∈Ok}
xi, j = 1, . . . , m (6)

If sets Ii in (5) and {k|j ∈ Ok} in (6) are empty sets, the right sides of them are
treated as zero.

26 F.-Y. Zuo et al.

3.3.2 Response Time Constraints
In the MILP model, we pay attention to the criteria consisting of three parts.
The first part of criteria is to minimize the invoked time srn+1 of output service
sn+1, so only the lower bound need to be given. For each service, the constraint
of response time is shown as follows:

sri ≥ (1 − xi)Rmax

sri ≥ Ri

sri ≥ Ri + rj , j ∈ Ii

⎫
⎬

⎭
i = 0, 1, . . . , n + 1 (7)

The first inequality in (7) makes the invoked time sri reach the maximum
response time Rmax while si is not selected. The third inequality makes the
response time sri satisfy the definition of response time in Definition 2 when si
is selected. A special case is that the set Ii is an empty set, such as I0, in which
the third equation makes no sense (no constraint). To handle this case correctly,
we introduce the second inequality in which sri is greater than or equal to its
original response time Ri. For example, the response time sr0 of input service
s0 equals to R0.

The generated time constraints of each concept are defined as follows.

rj =
{

Rmax if {k|j ∈ Ok} = ∅

mini∈{k|j∈Ok} sri otherwise j = 1, . . . ,m (8)

However, it’s esoteric that the minimum part in (8) can be transformed into a
linear constraint [11]. We introduce variables lji ∈ [0,+∞), zji ∈ {0, 1} for each
rj , i ∈ {k|j ∈ Ok}, which ensure the equivalence between the minimum part of
(8) and (9).

rj ≤ sri, ∀i ∈ {k|j ∈ Ok}
rj ≥ sri − lji, ∀i ∈ {k|j ∈ Ok}
li ≤ (1 − zji)Rmax, ∀i ∈ {k|j ∈ Ok}∑

i∈{k|j∈Ok} zji = 1

⎫
⎪⎪⎬

⎪⎪⎭
, j = 1, 2, . . . ,m (9)

3.3.3 Throughput Constraints
Similarly, we only need to give an upper bound for throughput, since the criteria
focus on the maximum throughput of output service. The throughput of a service
depends on the throughputs of its input concepts and its own throughput, more
precisely, on the minimum of them. If one service is not selected, we let its
throughput to be Tmin reasonably.

sti ≤ Tixi + (1 − xi)Tmin

sti ≤ tj ,∀j ∈ Ii

}

, i = 0, 1, . . . , n + 1 (10)

Intuitively, the throughput of a concept is the maximum throughputs of all
services which can generate the concept.

tj =
{

Tmin if {k|j ∈ Ok} = ∅

max∀i∈{k|j∈Ok} sti otherwise j = 1, . . . ,m (11)

Web Service Composition by Optimizing Composition-Segment Candidates 27

As same as the constraints of service generated time, the maximum part
in (11) can be transformed into a linear constraint by introducing variables
gji ∈ [0,+∞), uji ∈ {0, 1}.

tj ≥ sti, ∀i ∈ {k|j ∈ Ok}
tj ≤ sri + gji, ∀i ∈ {k|j ∈ Ok}
gi ≤ (1 − uji)Tmax, ∀i ∈ {k|j ∈ Ok}∑

i∈{k|j∈Ok} uji = 1

⎫
⎪⎪⎬

⎪⎪⎭

, j = 1, . . . ,m (12)

3.4 Practical Techniques for MILP Model

QoS-aware web service composition can be seen as an NP-hard problem, for
which there are no effective algorithms [12]. In practical terms, the above MILP
model equivalent to the original problem works not well in some cases. For this
reason, some effective techniques are applied to improve the performance of the
MILP model.

3.4.1 Throughput Constraints Simplification
The vital part of (3) is the throughput of output service, while the throughputs
of other services are inconsequential. We notice that the throughput of output
service in a composition is the minimum throughput of all the selected services.
Consequently, we can obtain the final correct throughput of output service with
the following steps.

• Let the throughputs of selected services (expect sn+1) to be their original
throughputs.

• Let other throughputs to be Tmax.
• Take the minimum throughput of all services as the throughput of output

service.

The formalized description (13) can replace (10), (11) and (12), which reduces
many constraints and variables. The second minimum equation can be trans-
formed into linear constraints with the similar method used in (9).

sti = Tixi + (1 − xi)Tmax, i = 0, 1, . . . , n
stn+1 = minn

i=0 sti

}

(13)

3.4.2 Response Time Constraints Approximation
However, there are numerous integer variables introduced in the response time
constraints, which causes a serious performance problem while applying a stan-
dard solver.

sri = Rixi + (1 − xi)Rmax, i = 0, 1, . . . , n
srn+1 =

∑n
i=0 sri

}

(14)

An efficient method is to replace the response time of output service with
the sum of the response time of all chosen services, and the detail is described

28 F.-Y. Zuo et al.

in (14). It does greatly shorten the execution time while holding well enough
criteria, even though the approximations of response time constraints are not
completely accurate.

In summary, the MILP model with these techniques can be solved efficiently
without building a huge and complex dependency graph. Extensive experiments
applying groubi [10] solver are presented in Sect. 5. We notice that there is an
obvious gap between the MILP method and other methods, which means we can
still make great progress. Therefore, we propose a more effective and efficient
mechanism in the next section.

4 Composition-Segment Candidate Optimization

In this section, a mechanism of optimizing composition-segments candidates is
proposed to improve the performance of the MILP model. We define four kinds
of segment candidates in Definition 4, and the core idea of this mechanism is
to improve the score segment candidate in current composition with three other
kinds of segment candidates.

Definition 4. Composition-Segment Candidate (“segment candidate” for short)
of a service is defined as a local composition whose last service is exactly the
service. For a concept, its composition-segment candidate can generate it. Similar
to the criteria (3) of MILP model, the score of a composition-segment Ωs is
defined as:

Score(Ωs) = TP (Ωs) − α ∗ Len(Ωs) − β ∗ RT (Ωs) (15)

For each service and concept, we maintain four kinds of segment candidates—
Ss, Ns, Rs and Ts, which hold the best current segment candidates of different
objectives—score, length, response time and throughput respectively.

4.1 Generating Composition-Segment Candidates

To generate segment candidates, we construct the current output map Mc firstly,
of which the keys are services or concepts and the values are lists of segment
candidates.

Table 3. Segment candidates related to service I with α = 100, β = 20

Candidate no Composition-segment Len RT (ms) TP (inv/s) Score

1 Si → A → C 3 60 180 −1320

2 Si → A||D → E 4 80 750 −1250

3 Si → D → F 3 50 350 −950

4 Si → A||D → C||F → I 6 80 180 −2020

5 Si → A||D → E||F → I 6 100 350 −2250

Web Service Composition by Optimizing Composition-Segment Candidates 29

Algorithm 1 takes service si and map Mc as inputs and checks whether
service si can be invoked at line 2. Then, it initializes the list Ps with four sets
of precursors and adds all precursors to these sets respectively. The following
step is to create four candidates in order and assign their precursor sets with Ps

respectively. Finally, the method update attribute calculates their score, length
and QoS, and we append the four candidates to list Pc.

Algorithm 1: Generating Composition-Segment Candidates
Input: si, Mc

Output: Pc

1 Pc ← []
2 if Ii ⊆ Mc.keys then
3 Ps ← [set(), set(), set(), set()]
4 for concept c ∈ Ii do
5 for segment i, s ∈ Mc[c] do
6 Ps[i].add(s)

7 for segments set ps ∈ Ps do
8 s ← SegmentCandidate(si)
9 s.pre ← ps

10 update attribute(s)
11 Pc.append(s)

12 return Pc

Taking the generating process of service I in Fig. 1 as an example, we list some
segment candidates related with service I in Table 3 and shows the detailed process
in Fig. 2. Service I has three input concepts i1, i2, i3, and their segment candidates
are listed in the left (the green cell denotes score segment candidate). For each kind
of segment candidate, the newly generated candidate combines the corresponding
candidates of its inputs respectively. For example, the score segment candidate
(Candidate 5 in Table 3) of I consists of Candidate 2—the score segment candidate
of i1, and Candidate 3—the score segment candidate of i2 and i3.

Fig. 2. Segment candidates generation

30 F.-Y. Zuo et al.

4.2 Optimizing Composition-Segment Candidates

After generating the segment candidates, the next step is to optimize the score
segment candidate with other kinds of segment candidates. We firstly analyze
the bottlenecks of score segment candidate. Algorithm 2 shows the process of
analyzing bottlenecks of score segment candidate Ss.

Algorithm 2: Analyzing Bottlenecks of Candidate
Input: Ss

Output: Lb

1 Lb ← [null, null, null]
2 Bl ← 0, Br ← Rmin, Bt ← Tmax

3 for segment s ∈ Ss.pre do
4 if Len(s) > Bl then
5 Bl = Len(s), Lb[0] = s.concept

6 if RT(s) > Br then
7 Br = RT(s), Lb[1] = s.concept

8 if TP(s) < Bt then
9 Bt = TP(s), Lb[2] = s.concept

10 return Lb

For a score segment candidate Ss, Algorithm 2 finds its three kinds of bottle-
necks. The operations from line 4 to 6 find the precursor with maximum length
and record the corresponding concept in Lb. Similar operations are performed
with response time bottleneck. On the contrary, the throughput bottleneck gets
the minimal throughput concept of them.

Algorithm 3: Improving Bottlenecks of Candidate
Input: Mc, Pc

Output: Pc

1 while True do
2 Ss ← Pc[0], S′

s ← Ss, Lb ← bottleneck analyze(S′
s)

3 score pre set ← S′
s.pre, b1, b2, b3 = Lb

4 score pre set[b1] ← Mc[b1][1]
5 score pre set[b2] ← Mc[b2][2]
6 score pre set[b3] ← Mc[b2][3]
7 S′

s.pre ← score pre set
8 update attribute(S′

s)
9 if S′

s.score > Ss.score then
10 Pc[0] ← S′

s

11 else
12 break

13 return Pc

Algorithm 3 improves the score segment candidate Ss in list Pc. Taking cur-
rent output map Mc and candidates list Pc as the inputs, we use Algorithm 2

Web Service Composition by Optimizing Composition-Segment Candidates 31

to get bottlenecks Lb, and then replace bottleneck candidates with the currently
best candidates in Mc to improve Ss. Finally, the near-optimal score segment
candidate Ss is generated by repeating the two foregoing steps until the score of
Ss isn’t able to be greater.

As shown in Fig. 2, the optimal score segment candidate is Candidate 4
instead of Candidate 5 (whose color is red). By calling Algorithm 2, we can
obtain bottlenecks Lb = [i1, i1, i2]. Then, Algorithm 3 handles each bottleneck
of Lb in a same way. Taking the first element i1 in Lb as an example, we replace
the score segment candidate(Candidate 2) of i1 with its length segment can-
didate(Candidate 1) in Ss, which reduce its length. Finally, the score segment
candidate of I becomes Candidate 4.

4.3 Greedy Selection

Having generated four candidates Pc of service si and optimized the score candi-
date Ss in Pc, we compare each kind of candidate in Pc with the corresponding
one in previous list Mc[si] respectively and store the better ones. If the map
Mc does not contain si, we insert the key-value pair (si, Pc) into Mc directly.
For each output concept of si, we create four kinds of segment candidates and
assign their precursors with the corresponding service candidates in Pc. Then,
we perform similar operations to reserve the better ones. After greedy selection,
Candidate 4 is reserved as the final score segment candidate of service I in Fig. 2.

By repeating the three above steps until the output map Mc is not chang-
ing, the score segment candidate of output service sn+1 appears, and the final
composition is achieved.

5 Experimental Results

Extensive experiments have been carried out to evaluate the performance of our
proposed methods. To make the conclusion more convincing, we evaluate our
methods on two different groups of datasets.

Table 4. The characteristics of datasets

Datasets D-01 D-02 D-03 D-04 D-05 R-01 R-02 R-03 R-04 R-05

#Service 572 4129 8138 8301 15211 1000 3000 5000 7000 9000

RT.opt (ms) 500 1690 760 1470 4070 1430 975 805 1225 1420

TP.opt (inv/s) 15000 6000 4000 4000 4000 1000 2500 1500 2000 2500

Len.opt 5 20 10 40 30 7 12 12 14 16

5.1 Datasets

To evaluate the performance of the proposed composition mechanisms, we con-
ducted a group of experiments using five public repositories from the Web Service
Challenge 2009 and five randomly generated datasets. As shown in Table 4, the

32 F.-Y. Zuo et al.

group of datasets of the WSC 2009 ranges from 572 to 15211 services. We eval-
uate further the performance of our algorithms with another group of datasets1.
And the optimal values (RT.opt, TP.opt, Len.opt) of single objectives for each
dataset are shown in it, which are computed by the memory-based algorithm.

5.2 Performance Analysis

To validate our approaches, we compare them with three different the-state-of-
arts in the same experimental environment. For each dataset, we mainly show
the solicitude for the global QoS of generated solution (RT for response time and
TP for throughput), the length of composition (Len) and the execution time of
method (Time including the time of building service dependency graphs).

Table 5. Detailed comparisons with other methods

Datasets D-01 D-02 D-03 D-04 D-05 R-01 R-02 R-03 R-04 R-05

Method in [13] RT (ms) 500 1690 760 1470 4070 1430 975 805 1225 1420

TP (inv/s) 3000 3000 2000 2000 1000 1000 1000 500 1000 500

Len 10 20 10 42 33 8 19 18 21 19

Time (ms) 73 1324 3591 10121 14925 26 161 531 1023 2066

RT (ms) 840 2200 2450 4150 4990 1430 1305 1520 2095 1975

TP (inv/s) 15000 6000 4000 2000 4000 1000 2500 1500 2000 2500

Len 5 20 10 44 32 13 18 20 30 19

Time (ms) 68 1373 3736 9283 12717 38 175 503 992 2053

Method in [14] RT (ms) 760 2270 1300 2140 5340 1580 1815 1640 1840 2300

TP (inv/s) 10000 6000 3000 1000 4000 1000 2000 1000 2000 1500

Len 6 21 12 47 36 9 18 17 19 20

Time (ms) 70 1252 3795 9813 14544 25 163 473 845 2096

Method in [9] RT (ms) 680 1800 760 1600 4260 1430 975 1090 1225 1605

TP (inv/s) 14000 6000 4000 3500 4000 1000 2000 1500 2000 2500

Len 5 20 10 43 33 8 16 15 17 18

Time (ms) 317 1684 3713 10651 13223 76 443 1136 1804 1613

MILP Method

(α = 1, β = 0.2)

RT (ms) 760 2050 810 3560 4130 1430 1560 1535 1620 2210

TP (inv/s) 15000 6000 4000 4000 4000 1000 2500 1500 2000 2500

Len 5 20 10 62 30 7 12 12 15 16

Time (ms) 196 1113 2138 3558 4723 245 964 2259 3058 4828

Candidate

Optimization Method

(α = 10, β = 7)

RT (ms) 680 1800 790 1470 4260 1430 975 805 1225 1420

TP (inv/s) 15000 6000 4000 2000 4000 1000 2000 500 2000 2500

Len 6 23 12 45 41 8 16 16 15 18

Time (ms) 35 98 72 459 274 7 75 90 101 230

As shown in Table 5, [13] can generate two different solutions (one with the
optimal response time and another with the optimal throughput). The method in
[9] makes an excellent tradeoff of three attributes. Obviously, the execution time
of compositions generated by methods [13], [14] and [9] is so long that some of
them are longer than ten seconds. Moreover, our candidate optimization method
runs not only fast but also archives ideal tradeoffs.
1 https://wiki.citius.usc.es/inv:downloadable results:ws-random-qos.

https://wiki.citius.usc.es/inv:downloadable_results:ws-random-qos

Web Service Composition by Optimizing Composition-Segment Candidates 33

To measure the performance intuitively, we define Ability(RT) = RT.opt
RT ,

Ability(TP) = TP
TP.opt , Ability(Len) = Len.opt

Len and Ability(Time) = min(Time)
Time .

Moreover, we have Ability(RT, TP) = [Ability(RT) +Ability(TP)]/2, and the
whole performance Ability(RT, TP,Len, T ime) is defined in the same manner.
As shown in Fig. 3, the candidate optimization method has an outstanding
Ability(Time) and outperforms other methods in Ability(RT, TP,Len, T ime).

Fig. 3. Radar charts to compare the performance of five methods on several datasets.

6 Conclusions

In this paper, we formalize the multi-objective web service composition problem
as a MILP model and propose a candidate optimization method to solve the
model effectively and efficiently. A large number of experiments show that our
candidate optimization method runs sharply fast while performing better than
the state-of-the-art on QoS and number of services. Both the MILP method and
the candidate optimization method save much running time with no need to
build a service dependency graph.

Acknowledgment. This work is funded by the National Natural Science Founda-
tion of China (No. 61673204), and the Fundamental Research Funds for the Central
Universities (No. 14380046).

34 F.-Y. Zuo et al.

References

1. Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: Qsynth: a tool for QoS-
aware automatic service composition. In: 2010 IEEE International Conference on
Web Services, pp. 42–49. IEEE (2010)

2. Wagner, F., Ishikawa, F., Honiden, S.: QoS-aware automatic service composition
by applying functional clustering. In: 2011 IEEE International Conference on Web
Services, pp. 89–96. IEEE (2011)

3. Strunk, A.: QoS-aware service composition: a survey. In: 2010 Eighth IEEE Euro-
pean Conference on Web Services, pp. 67–74. IEEE (2010)

4. Fan, S.-L., Yang,Y.-B.,Wang,X.-X.: Efficientweb service composition via knapsack-
variant algorithm. In: Ferreira, J.E., Spanoudakis, G., Ma, Y., Zhang, L.-J. (eds.)
SCC 2018. LNCS, vol. 10969, pp. 51–66. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94376-3 4

5. Rodriguez-Mier, P., Mucientes, M., Lama, M.: Automatic web service composition
with a heuristic-based search algorithm. In: 2011 IEEE International Conference
on Web Services (ICWS), pp. 81–88. IEEE (2011)

6. Chen, M., Yan, Y.: Redundant service removal in QoS-aware service composition.
In: 2012 IEEE 19th International Conference on Web Services, pp. 431–439. IEEE
(2012)

7. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

8. Yan, Y., Chen, M., Yang, Y.: Anytime QoS optimization over the PlanGraph for
web service composition. In: Proceedings of the 27th Annual ACM Symposium on
Applied Computing, pp. 1968–1975. ACM (2012)

9. Fan, S.-L., Ding, F., Guo, C.-H., Yang, Y.-B.: Supervised web service composition
integrating multi-objective QoS optimization and service quantity minimization.
In: Jin, H., Wang, Q., Zhang, L.-J. (eds.) ICWS 2018. LNCS, vol. 10966, pp. 215–
230. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94289-6 14

10. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2019)
11. Bertsimas, D., Mazumder, R., et al.: Least quantile regression via modern opti-

mization. Ann. Stat. 42(6), 2494–2525 (2014)
12. Jatoth, C., Gangadharan, G., Buyya, R.: Computational intelligence based QoS-

aware web service composition: a systematic literature review. IEEE Trans. Serv.
Comput. 10(3), 475–492 (2015)

13. Xia, Y.M., Yang, Y.B.: Web service composition integrating QoS optimization
and redundancy removal. In: 2013 IEEE 20th International Conference on Web
Services, pp. 203–210. IEEE (2013)

14. Chattopadhyay, S., Banerjee, A., Banerjee, N.: A scalable and approximate mecha-
nism for web service composition. In: 2015 IEEE International Conference on Web
Services (ICWS), pp. 9–16. IEEE (2015)

https://doi.org/10.1007/978-3-319-94376-3_4
https://doi.org/10.1007/978-3-319-94376-3_4
https://doi.org/10.1007/978-3-319-94289-6_14

Collaborative Learning Using
LSTM-RNN for Personalized

Recommendation

Benjamin A. Kwapong(B), Richard Anarfi, and Kenneth K. Fletcher

University of Massachusetts Boston, Boston, MA 02125, USA
{benjamin.kwapong001,richard.anarfi001,kenneth.fletcher}@umb.edu

Abstract. Today, the ability to track users’ sequence of online activities,
makes identifying their evolving preferences for recommendation prac-
ticable. However, despite the myriad of available online activity infor-
mation, most existing time-based recommender systems either focus on
predicting some user rating, or rely on information from similar users.
These systems, therefore, disregard the temporal and contextual aspects
of users preferences, revealed in the rich and useful historical sequential
information, which can potentially increase recommendation accuracy. In
this work, we consider such rich, user online activity sequence, as a com-
plex dependency of each user’s consumption sequence, and combine the
concept of collaborative filtering with long short-term memory recurrent
neural network (LSTM-RNN), to make personalized recommendations.
Specifically, we use encoder-decoder LSTM-RNN, to make sequence-to-
sequence recommendations. Our proposed model builds on the strength
of collaborative filtering while preserving individual user preferences for
personalized recommendation. We conduct experiments using Movielens
(https://grouplens.org/datasets/movielens) dataset to evaluate our pro-
posed model and empirically demonstrate that it improves recommenda-
tion accuracy when compared to state-of-the-art recommender systems.

Keywords: Recommender systems · Deep learning · Neural
networks · Recurrent neural networks · Long short-term memory
RNN · Sequence-to-sequence recommendations

1 Introduction

The comfort, simplicity and extensive reach of the internet has altered the tradi-
tional approach to marketing and commerce leading to a dominant new brand,
e-commerce and marketing. In this new form of service provision and commerce
approach, users become overwhelmed by abundance and variety of products and
services, resulting in the challenge of choice making. To ease this challenge the
use of recommender systems (RS) has recently become a subject of interest.

RS are one of the most successful applications of data mining and machine
learning technology in practice. They are typically based on the matrix com-
pletion problem formulation, where for each user-item-pair only one interac-
tion (e.g., a rating) is considered [1]. Collaborative filtering (CF) is one of such
c© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 35–49, 2020.
https://doi.org/10.1007/978-3-030-59592-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_3&domain=pdf
http://orcid.org/0000-0001-8850-8594
https://grouplens.org/datasets/movielens
https://doi.org/10.1007/978-3-030-59592-0_3

36 B. A. Kwapong et al.

widely used and more effective service recommendation techniques. It bases its
recommendations on the ratings or behavior of other users in the system [2,3].
Traditional memory- and model-based CF recommendation methods, although
useful, are far from perfect, due to their disregard of time. Thus, they assume
consumption events to be independent from each other, which precludes such
methods from taking advantage of the temporal dynamics that naturally exist
in user behavior, for personalized recommendation. This makes them unsuit-
able to capture the temporal aspects of recommendations, such as user evolving
preferences or taste or context-dependent interests [4]. This is because, there
are many application scenarios where considering short-term user interests and
longer-term sequential patterns can be central to the success of a recommender
system [1]. For instance, to predict the next best item from a user sequential
events, sequential logs can also be used to derive longer-term behavior pat-
terns, to detect interest drifts of individual users over time, identify short-term
popularity trends in the community that can be exploited by recommendation
algorithms, or to reason about the best point in time to remind users of certain
items they have seen or purchased before [1].

Modern recurrent neural networks (RNN), such as the long short-term mem-
ory (LSTM), have proven very capable for sequence prediction problems and are
well-suited to capture the evolution of users taste [5]. As a result, Devooght and
Bersini [4] showed that CF can be viewed as a sequence prediction and demon-
strated that by applying LSTM-RNN to CF recommendations. Their work how-
ever, does not consider user sequential event information and so fails to person-
alize recommendations. Similar to our proposed method is the works proposed
by Ko et al. [6] and Donkers et al. [7]. In their work, Ko et al. [6] proposed a
collaborative RNN for dynamic recommender systems. They studied sequential
form of user event data and, by using ideas from CF, proposed a collaborative
sequence model based on RNN. Also, Donkers et al. [7] proposed a sequential
user-based RNN recommendation method. They showed, in their work, how indi-
vidual users can be represented in addition to sequences of consumed items in
a Gated Recurrent Unit (GRU), to effectively produce personalized next item
recommendations.

These works, however, have some limitations. First, they are not powerful
enough to represent and capture the complex dependencies that may exist within
user event sequences, especially, when the sequences are very long and might be
of variable lengths. Second, they fail to generate a distributed representation
(embedding) of the input sequence, which reduces the task performance of their
proposed models. Third, they base their recommendation on predicting either
the next item in the sequence or a fixed number of items in a sequence and that
makes them impractical, especially for applications where recommending items
in variable sequence length sequence is expected.

To address the above limitations, this paper employs Encoder-Decoder
LSTM-RNN, which is suitable for processing user sequence event data, for
sequence-to-sequence recommendations. We build a flexible model to represent
complex dependencies within long sequences, by building a stronger correlation

Collaborative Learning Using LSTM-RNN for Personalized Recommendation 37

between user consumption sequence. We achieve this by modeling each user con-
sumption instance as a dependency on all previous consumptions for personalize
recommendations. The summary of our contributions are as follows:

1. We build a strong correlation between user consumption sequence by mod-
eling each user’s consumption instance as a dependency on all previous con-
sumptions. This allows us the ability to represent complex dependencies
within long sequences and explore the extra details and information embed-
ded in sequential events in order to preserve user preferences.

2. We employ encoder-decoder LSTM-RNN because of the length of consump-
tion preferences of users. LSTM-RNNs work better on long-term dependencies
than traditional RNNs.

3. We build on the strength of collaborative filtering, by using other user’s
consumption preferences, while preserving individual user preferences and
improves personalize recommendation accuracy. This bridges the gap created
by most existing models, where recommendation is based on either modeling
each user’s individual preferences or describing all users by a single prototyp-
ical behavioral profile (global learning).

4. We perform experiments to evaluate our proposed model and compare it to
baseline methods such as Bayesian Personalized Ranking Matrix Factoriza-
tion [8] and Adaptive Hinge Pairwise Matrix Factorization [9].

The remainder of this paper is as follows. In Sect. 2 we discuss works related to
sequence-to-sequence recommendations, then RNN-based CF recommendation
methods and finally, personalized recommendations using RNN. Our proposed
work is discussed in detail in Sect. 3. In Sect. 4, we present experiments to eval-
uate our proposed method and also discuss our results. Finally, the paper is
concluded in Sect. 5.

2 Related Works

This section reviews several existing works in literature related to our proposed
work. We also provide a distinction between our proposed method and existing
related works.

2.1 Sequence-to-Sequence (seq2seq) Recommender Systems

Many real world problems can be modeled as sequence-to-sequence (seq2seq)
problems [10–12]. Recurrent neural networks (RNNs) have proven to be an effec-
tive tool in seq2seq predictions. This has led to some very useful work in the
area of seq2seq predictions using RNN techniques. Chu et al. [13] built a RNN
for seq2seq prediction using GRU. The network treats a user’s recent ratings
or behaviors as an ordered sequence. Each of these user ratings or behaviors
is modeled by the network’s hidden layers. Furthermore, they integrate the
GRU with back propagation neural network to increase the prediction accu-
racy. Hidasi et al. [14] proposed a session-based recommendation method by

38 B. A. Kwapong et al.

modifying the basic GRU-RNN. The GRU-RNN modification was achieved by
introducing session-parallel mini-batches based output sampling and ranking loss
function. In their work, the network input is the actual state of the session while
the output is the item of the next event in the session. For stability purposes,
the input vector was normalized and this reinforced their memory effect.

In their work, Kuan et al. [15] proposed a Heterogeneous Attribute Recur-
rent Neural Networks (HA-RNN) model. HA-RNN combined sequence modeling
and attribute embedding in item recommendation. Different from conventional
RNNs, HA-RNN develops a hierarchical attribute combination mechanism to
deal with variable lengths of attributes. The model uses attributes in the output
layer and shares the parameters with the input layer to offer additional model
regularization. It takes the union of identity and attributes as a sequence element
and is able to capture the global sequential dependencies between items as well
as between attributes.

Smirnova et al. [16] proposed a class of Contextual RNNs(CRNNs) for rec-
ommendation that can take into account the contextual information both in the
input and output layers. Their method modifies the behavior of RNN by com-
bining the context embedding with the item embedding and explicitly parame-
terizing the hidden unit transitions as a function of context information in the
model dynamics.

Balakrishnan et al. [17] proposed a deep-playlist generation model, which uses
LSTM-RNN to predict similarity between songs. Yang et al. [18] examined three
state of the art deep neural network approaches: LSTM, Encoder-Decoder and
Memory network in sequence prediction field to handle the software sequence
learning and prediction task. Then, modified approaches based on these state of
the art models were proposed to deal with additional information in sequence.
These approaches focused on adding information to enrich embedding input of
LSTM-RNN, adding a classifier to encoder-decoder neural network as an assist-
ing model and processing data to be structured for memory unit in memory
network.

2.2 Collaborative Filtering-Based Recommendations Using RNN

Often, when given a number of users with a record of their history, the next spe-
cific user consumption can be predicted in one of two ways; observing that user’s
history in isolation or finding similar users with a close consumption pattern.
We review some related work focused on the latter. Devooght et al. [4] explored
the use of RNN for the collaborative filtering problem. Using RNNs, they re-
framed collaborative filtering as a sequence prediction problem, leading to richer
models and taking the evolution of users’ taste into account. Their experiments
showed that the LSTM-RNNs produce very good results on the Movielens and
Netflix datasets, and is especially good in terms of short term prediction and
item coverage as compared to standard nearest neighbors and matrix factoriza-
tion methods. Their conclusions however, was based on the vanilla LSTM-RNN,
the basic form of LSTM-RNN.

Collaborative Learning Using LSTM-RNN for Personalized Recommendation 39

Similarly, leveraging user online activity sequences, Ko et al. [6] proposed a
flexible and expressive collaborative sequence model based on RNNs. The model
is designed to capture a user’s contextual state as a personalized hidden vector
by summarizing cues from a data-driven, thus variable, number of past time
steps, and representing items by a real-valued embedding. They found that, by
exploiting the inherent structure in the data, their formulation led to an efficient
and practical method.

Another example of collaborative filtering-based sequence modeling can be
seen in the work of Bansal et al. [19]. In their paper, they presented a method
leveraging deep RNNs to encode a text sequence into a latent vector. GRUs were
trained end-to-end to carry out the collaborative filtering task. In their appli-
cation case study of scientific paper recommendation, the GRU training yielded
models with significantly higher accuracy. Performance was further improved by
multi-task learning, where the text encoder network is trained for a combination
of content recommendation and item meta-data prediction.

2.3 Personalized Recommendation Using RNN

In the area of personalized recommendation Wu et al. [20], in their paper, out-
lined how they built a deep RNN (DRNN) to address the problem of collaborative
filtering’s failure to exploit current viewing history of the user which leads to
an inability to provide a real-time customized recommendation. Their network
tracks how users browse the website using multiple hidden layers. Each hidden
layer models how the combinations of web pages are accessed and in what order.
They developed an optimizer to automatically tune the parameters of their neu-
ral network to achieve a better performance. Their results on real world dataset
showed that the DRNN approach outperforms previous collaborative filtering
approaches significantly.

Donkers et al. [7] proposed how individual users can be represented in addi-
tion to sequences of consumed items in a new type of GRU, to effectively produce
personalized next item recommendations. First, they used GRU-RNN to model
the temporal dynamics of consumption sequences. Then, through a gated archi-
tecture with additional input layers, they explicitly represented an individual
user. Their user-based GRUs were uniquely designed and optimized for the pur-
pose of generating personalized next item recommendations.

Quadrana et al. [21] addressed the challenge of personalizing session-based
recommendation by proposing a model based Hierarchical RNN (HRNN). Their
HRNN model builds extra features on top of the standard RNN. First, there is
an additional GRU layer to model information across user sessions and to track
the evolution of the user interests over time. Also incorporated is a user-parallel
mini-batch mechanism for efficient training.

To make the most out of encoder-decoder LSTM-RNNs, our methods in
this work stand out from all of the above related works especially in how we
practically capture and model the consumption complexities of the users for
personalized recommendation. We build a very unique strong coherence between
the various user events in each unique user consumption sequence. This especially

40 B. A. Kwapong et al.

S1 S2 Sk

Encoder-Decoder LSTM-RNN

Trained Model

S1 S2 SrS1 S2 Sq

User 1 User 2 User n

Active
User

S1 S2 Sm

S1 S2 · · · Sp

Consumption Sequence

Recommended List

After Model Fitting

Collaborative Learning

Prediction Phase
Learning Phase

Fig. 1. Overview of the proposed collaborative learning model for personalized recom-
mendation

helps different user patterns to be loosely coupled with each other, thereby better
differentiating between unique user consumption patterns resulting in a more
user aware model to improve personalized recommendation.

3 LSTM-RNN Based Collaborative Learning Model

In this section, we progressively give a detailed description of our proposed col-
laborative learning model for personalized recommendation. Figure 1 gives an
overview of our proposed collaborative learning model for personalized recom-
mendation. As shown in Fig. 1, our model comprises two main phases: learning
phase and the prediction phase. In the learning phase, the timestamped user
consumption sequence of a number of users are collated and fed into an encoder-
decoder LSTM-RNN for model fitting to begin. After model fitting is complete,
the trained model is now ready to make predictions based on user consumption
sequences. With the fitted model, we feed in the consumption sequence of an
active user to generate a list of items to be recommend. Section 3.2 discusses the
technical details of our model.

Given a number of users and their item consumption history, how best can
we make a personalized recommendation list of items to a specific user? As a
case study, in this work, we use movies from the Movielens dataset as the item
of consumption in question. Our quest, now, is to make a personalized movie
recommendation for any user of our choice, based on the user’s consumption
history.

Collaborative Learning Using LSTM-RNN for Personalized Recommendation 41

3.1 Problem Definition

Formally, let U = {u1, u2, ..., un} be a set of users and S = {s1, s2, ..., sm} be a set
of services. We assume the number of users and services to be fixed. For each user
u ∈ U , we associate a consumption sequence CS(u) = [csut0 , cs

u
t1 , ..., cs

u
tk

], where
each csutk ∈ S and t0 ≺ t1 ≺ ... ≺ tk denotes the time sequence of the service
invocations. It must be noted that each service invocation in u’s consumption
sequence is an exclusive choice over S. In addition, we focus on the consumption
sequences to exploit the temporal order implicit in user consumption events.

Given a set of consumption sequences, C = {CS(u1), CS(u2), ..., CS(un)} and
a collaborative learning model L, we obtain a predictive model, P, after L has
learned on C over a period of time.

L(C) :−→ P (1)

Let a be an active user, such that a ∈ U , with a consumption sequence, CS(a),
we can predict the next p consumption sequence of a, using P.

3.2 Personalized Encoder-Decoder LSTM-RNN

The LSTM. Long Short-Term Memory (LSTM) networks are a special kind of
Recurrent Neural Network (RNN), capable of learning long-term dependencies.
They were introduced by Hochreiter and Schmidhuber [22] to address the van-
ishing gradient and exploding gradient issues in RNN, when the number of items
in the sequence gets large (long term dependencies). Figure 2 shows a schematic
diagram of a single LSTM block. An LSTM is composed of a cell, an input
gate, an output gate and a forget gate. The major component is the cell state
(“memory”) which runs through the entire chain with occasional information
updates from the input(add) and forget(remove) gates. An LSTM network com-
putes a mapping from an input sequence x = (x1, ..., xT) to an output sequence
y = (y1, ..., yT) by calculating the network unit activations using the following
equations iteratively from t = 1toT [23]:

it = σ(Wixxt + Wimmt−1 + Wicct + bi) (2)

ft = σ(Wfxxt + Wfmmt−1 + Wfcct−1 + bf) (3)

ct = ft � ct−1 + it � g(Wcxxt + Wcmmt−1 + bc) (4)

ot = σ(woxxt + Wommt−1 + Wocct + bo) (5)

mt = ot � h(ct) (6)

yt = φ(Wymmt + by) (7)

– f : forget gate’s activation vector
– i: input gate’s activation vector
– o: output gate’s activation vector
– h: output vector of the LSTM unit

42 B. A. Kwapong et al.

Fig. 2. Detailed schematic of an LSTM block as used in the hidden layers of a recurrent
neural network [24]

– g: cell input activation function, generally tanh
– h: cell output activation functions, generally tanh
– c: cell activation vector
– W : weight matrices parameters
– b: bias vector parameters
– �: element-wise product of the vectors
– σ: the logistic sigmoid function
– φ: the network output activation function

The Encoder-Decoder. Figure 3 shows a simplified model of the encoder-
decoder network architecture. An encoder is a network that takes the input and
encodes it into an internal representation (feature/context vector), that holds
the information and features, which best represents the input. The decoder is
also a network that uses the vector from the encoder to generate an output
sequence. In general, these networks only predict probabilities and the idea here
is to first calculate the initial state of the input into a hidden state which is fed
to the decoder to decode the information into the output sequence. A softmax
takes the decoder’s hidden state at time step t, and translates it into probability.

Our Model: The Personalized Encoder-Decoder LSTM-RNN. To pre-
pare the data for training and subsequent testing, the input and expected output
strings are tokenized into integers and the respective tokenizers are trained for
our model. The encoded integers are then padded to the maximum input and
output lengths respectively and the output sequence is one-hot encoded. We
employ the encoder-decoder LSTM architecture to recommend a list of items
for a user, based on his/her consumption preference. The choice of LSTM stems

Collaborative Learning Using LSTM-RNN for Personalized Recommendation 43

Fig. 3. A simplified illustration of an LSTM Encoder Decoder [25]

Input Sequence

NULL

Encoder

Embedding

Decoder

So�max

Thought
Vector

Output Sequence

Predict
Probabili�es

Predict
Probabili�es

Predict
Probabili�es

Fig. 4. Encoder-Decoder set-up for our experiments

from the fact that a comprehensive model and relationship will be learned from
the user’s consumption preference as well as the consumption preference of sim-
ilar users thus introducing long-term dependencies [22]. The encoder-decoder
architecture helps us to recommend a list of items to the user based on his/her
consumption history and/or the consumption history of similar users. Figure 4
shows the basic set-up we used for our experiments. The encoder is basically a
stack of LSTM cells. The thought vector is the final hidden state of the encoder.
The actual outputs from the encoder are not passed to the decoder but rather
the final hidden state. The decoder is also a stack of LSTM cells. The initial
states of the decoder are set to the final states of the encoder. The model is
trained using cross-entropy loss. At each step, the network produces a proba-
bility distribution over possible next tokens. The parameters for the model are
carefully selected to provide the best training and subsequent prediction.

44 B. A. Kwapong et al.

4 Experiments and Evaluation

We conducted several experiments to evaluate our proposed collaborative learn-
ing model for personalized recommendation. These experiments were done to
ascertain the performance of our proposed model on seq2seq recommendations
compared to other state of the art recommendation methods. Specifically, We
considered a variation of our collaborative learning model where input to the
encoder is reversed. The idea of reversed input comes from Sutskever et al. [11],
where their tests proved that reversing input sequence presents some benefits to
the model. In addition, we considered two variants of matrix factorization (MF)
methods; Bayesian Personalized Ranking Matrix Factorization [8] and Adaptive
Hinge Pairwise Matrix Factorization [9].

4.1 Dataset Description

We used the publicly available Movielens 10M1 dataset. Movielens dataset is a
benchmark dataset consisting of 10 million ratings and 100,000 tags from 72,000
users on 10,000 Movies. For each user, we obtained an ordered sequence of movie
consumption using the timestamps in the dataset. Using the dataset, our goal is
to predict the next n sequence of movies.

4.2 Baselines

Matrix Factorization (MF)-based methods have become classical technique for
collaborative filtering as a result of its established success in recommendation
systems [6]. In view of this, we find it plausible to compare our model to two
MF based models.

– Bayesian Personalized ranking Matrix Factorization (BPR-MF):
BPR-MF is a state of the art MF method for recommending Top-N items [4].
It is based on Bayesian Personalized Ranking loss function.

– Adaptive Hinge Matrix Factorization (AHP-MF): AHP-MF is based
on the Adaptive hinge pairwise loss function (AHP). The AHP loss, in the
SpotLight library, is an approximation for the Weighted Approximate-Rank
Pairwise (WARP) loss scheme, proposed by Weston et al. [9]. According to
Weston et al. [9], WARP loss yields better performance. For its competi-
tiveness, we decided to consider AHP Matrix Factorization as one of our
baselines.

1 https://grouplens.org/datasets/movielens.

https://grouplens.org/datasets/movielens

Collaborative Learning Using LSTM-RNN for Personalized Recommendation 45

4.3 Metrics

The following metrics were chosen:

– Recall: Recall refers to sensitivity of the model. It captures the effectiveness
of the model in terms of outputting relevant predictions. It can be computed
as:

Recall(Wi) =
tPositive(Wi)

tPositive(Wi) + fNegative(Wi)

– Precision: It assesses the predictive power of the algorithm [26].

Precision(Wi) =
tPositive(Wi)

tPositive(Wi) + fPositive(Wi)

– F-Measure: This is defined on both recall and precision. It could be viewed
as the weighted average of recall and precision. It rewards higher sensitivity
[26].

F − Measure = 2 × Precision × Recall

Precision + Recall

Where tPositive, fPositive and fNegative are true positive, false positive and
false negative respectively. Higher precision, recall and F-measure values indi-
cates better performance.

4.4 Results and Discussions

We applied our method to the consumption preferences of 5000 users from the
movielens dataset which translates into a combination of 625,000 different con-
sumption preferences. In this section, we compare the results from our model
with the results from the baselines described in the previous section.

Our main aim was to recommend a list of items (in this case, movies) to a
user, based on what he has previously consumed and what other similar users
have consumed. By similar users, we are referring to users who have similar
consumption preferences and therefore are more likely to have similar future
preferences.

All our LSTM models were fed with user consumption one after the other into
the encoder and a sequence of outputs are obtained from the decoder. Details of
the setup of our experiments are listed below:

1. 127,000 user consumption preferences with an encoder-decoder setup, both
with a hidden state of 256 units. We trained the network over 20 epochs while
updating the parameters using Adam optimization.

2. Input to encoder is reversed, 127,000 user consumption preferences with an
encoder-decoder setup, both with a hidden state of 256 units. We trained the
network over 20 epochs while updating the parameters using Adam optimiza-
tion.

3. 625,000 user consumption preferences with an encoder-decoder setup, both
with a hidden state of 256 units. We trained the network over 15 epochs while
updating the parameters using Adam optimization.

46 B. A. Kwapong et al.

Table 1. Training (Model) Parameters

Models Learning rate Loss Epochs Batch Emb Dim Optimizer

BPR-MF 0.05 bpr 10 256 32 ADAM

AHP-MF 0.01 Adaptive Hinge 10 256 32 ADAM

4. Input to encoder is reversed, 625,000 user consumption preferences with an
encoder-decoder setup, both with a hidden state of 256 units. We trained the
network over 15 epochs while updating the parameters using Adam optimiza-
tion. Table 1 shows the training parameters used for our baselines.

We evaluate the results of our experiments in terms of Recall@10, Preci-
sion@10 and F-Measure@10. Recall@k is equivalent to the hit-rate metric [21],
and it measures the proportion of cases out of all test cases in which the relevant
item is amongst the top-k items. This is an accurate model for certain practical
scenarios where no recommendation is highlighted and their absolute order does
not matter. Precision@k measures the fraction of correct recommendations in
the top-k positions of each recommendation list. The training and validation
accuracies from our experiments are captured in Figs. 5 and 6.

As expected, our experiments showed that increasing the number of users
from 1000 to 5000 has a significant effect on the overall performance of the
model. This shows that the collaboration from other users actually helps to
improve the performance of our model by 27%. We also observed that reversing
the input data gave an extra boost to the performance by a 14% margin. This
shows that the idea of collaborative learning for personalized recommendation
helps improve recommendation accuracy by a great deal.

From Table 2 BPR-MF had quite a good score (10%) in terms of precision
as compared to AHP-MF. It was observed that the Adaptive Model (AHP-MF)
produced low outputs, approximately 4.89% on recall, 7.26% precision and 5.84%
F-measure.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 3 5 7 9 11 13 15 17 19

Ac
cu

ra
cy

Number of epochs

Training Accuracy - 1000 Users

Forward Pass

Reverse Pass

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 3 5 7 9 11 13 15 17 19

Ac
cu

ra
cy

Number of epochs

Valida�on Accuracy - 1000 Users

Forward Pass

Reverse Pass

Fig. 5. A plot of training and validation accuracies for 1000 users

Collaborative Learning Using LSTM-RNN for Personalized Recommendation 47

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 101112131415

Ac
cu

ra
cy

Number of epochs

Training Accuracy - 5000 Users

Forward Pass

Reverse Pass

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 101112131415

Ac
cu

ra
cy

Number of epochs

Valida�on Accuracy - 5000 Users

Forward Pass

Reverse Pass

Fig. 6. A plot of training and validation accuracies for 5000 users

Table 2. Recall@k, Precision@k and F-Measure@k, (where k=10) on Movielens dataset

Model Recall Precision F-Measure

BPR-MF 0.0679 0.1021 0.0816

AHP-MF 0.0489 0.0726 0.0584

Encoder-Decoder (1000 Users) 0.2068 0.2074 0.2071

Encoder-Decoder (1000 Users Reverse) 0.2454 0.2461 0.2457

Encoder-Decoder (5000 Users) 0.2723 0.2731 0.2727

Encoder-Decoder (5000 Users Reverse) 0.2998 0.3006 0.3002

5 Conclusions and Future Work

In this paper, we built a user consumption-sensitive Long Short-Term Memory
recurrent neural network; specifically, an encoder-decoder model to tackle the
real world problem of sequence to sequence prediction. Our model helped us to
bridge the gap and benefit from the desirable attributes of both personalized
recommendations based solely on a user’s consumption history, and generic rec-
ommendation which is based on collaborative filtering. We have demonstrated
that our method can significantly outperform popular baselines that are used
for this task. We also noticed that the format in which the data is modeled has
a very big impact on the performance of the network. In the near future, we will
work on various data modeling formats and analyze which one is best suited for
what purpose.

References

1. Quadrana, M., Cremonesi, P., Jannach, D.: Sequence-aware recommender systems.
CoRR abs/1802.08452 (2018)

2. Fletcher, K.K.: A method for dealing with data sparsity and cold-start limitations
in service recommendation using personalized preferences. In: 2017 IEEE Interna-
tional Conference on Cognitive Computing (ICCC), pp. 72–79, June 2017

48 B. A. Kwapong et al.

3. Fletcher, K.K., Liu, X.F.: A collaborative filtering method for personalized
preference-based service recommendation. In: Proceedings of the 2015 IEEE Inter-
national Conference on Web Services, pp. 400–407, June 2015

4. Devooght, R., Bersini, H.: Collaborative filtering with recurrent neural networks.
CoRR abs/1608.07400 (2016)

5. Kwapong, B.A., Anarfi, R., Fletcher, K.K.: Personalized service recommendation
based on user dynamic preferences. In: Ferreira, J.E., Musaev, A., Zhang, L.J.
(eds.) Services Computing - SCC 2019, pp. 77–91. Springer International Publish-
ing, Cham (2019)

6. Ko, Y.J., Maystre, L., Grossglauser, M.: Collaborative recurrent neural networks
for dynamic recommender systems. In: Journal of Machine Learning Research:
Workshop and Conference Proceedings, vol. 63 (2016)

7. Donkers, T., Loepp, B., Ziegler, J.: Sequential user-based recurrent neural network
recommendations. In: Proceedings of the Eleventh ACM Conference on Recom-
mender Systems, pp. 152–160. ACM (2017)

8. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press
(2009)

9. Weston, J., Bengio, S., Usunier, N.: WSABIE: scaling up to large vocabulary image
annotation. IJCAI 11, 2764–2770 (2011)

10. Park, S., Kim, B., Kang, C.M., Chung, C.C., Choi, J.W.: Sequence-to-sequence
prediction of vehicle trajectory via LSTM encoder-decoder architecture. arXiv
preprint arXiv:1802.06338 (2018)

11. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

12. Vinyals, O., Kaiser, �L., Koo, T., Petrov, S., Sutskever, I., Hinton, G.: Grammar
as a foreign language. In: Advances in Neural Information Processing Systems, pp.
2773–2781 (2015)

13. Chu, Y., Huang, F., Wang, H., Li, G., Song, X.: Short-term recommendation with
recurrent neural networks. In: 2017 IEEE International Conference on Mechatron-
ics and Automation (ICMA), pp. 927–932. IEEE (2017)

14. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

15. Liu, K., Shi, X., Natarajan, P.: Sequential heterogeneous attribute embedding for
item recommendation. In: 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), pp. 773–780, November 2017

16. Smirnova, E., Vasile, F.: Contextual sequence modeling for recommendation with
recurrent neural networks. arXiv preprint arXiv:1706.07684 (2017)

17. Balakrishnan, A., Dixit, K.: DeepPlaylist: using recurrent neural networks to pre-
dict song similarity (2016)

18. Yang, Q., He, Z., Ge, F., Zhang, Y.: Sequence-to-sequence prediction of personal
computer software by recurrent neural network. In: 2017 International Joint Con-
ference on Neural Networks (IJCNN), pp. 934–940, May 2017

19. Bansal, T., Belanger, D., McCallum, A.: Ask the GRU: multi-task learning for
deep text recommendations. In: Proceedings of the 10th ACM Conference on Rec-
ommender Systems, pp. 107–114. ACM (2016)

20. Wu, S., Ren, W., Yu, C., Chen, G., Zhang, D., Zhu, J.: Personal recommendation
using deep recurrent neural networks in NetEase. In: 2016 IEEE 32nd International
Conference on Data Engineering (ICDE), pp. 1218–1229.IEEE (2016)

http://arxiv.org/abs/1802.06338
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1706.07684

Collaborative Learning Using LSTM-RNN for Personalized Recommendation 49

21. Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-
based recommendations with hierarchical recurrent neural networks. In: Proceed-
ings of the Eleventh ACM Conference on Recommender Systems, pp. 130–137.
ACM (2017)

22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

23. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural net-
work architectures for large scale acoustic modeling. In: Fifteenth Annual Confer-
ence of the International Speech Communication Association (2014)

24. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10),
2222–2232 (2017)

25. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

26. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-Score and ROC:
a family of discriminant measures for performance evaluation. In: Sattar, A., Kang,
B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg
(2006). https://doi.org/10.1007/11941439 114

http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/11941439_114

An Attention Model for Mashup Tag
Recommendation

Kenneth K. Fletcher(B)

University of Massachusetts Boston, Boston, MA 02125, USA
kenneth.fletcher@umb.edu

Abstract. Mashups have emerged as a popular technique to compose
value-added web services/APIs, to fulfill some complicated business
needs. This has increased the number of available mashups over the inter-
net. The increase however, poses a new requirement of organizing and
managing these mashups for better understanding and discovery. For this
reason, tags have become highly important because they describe items
and allows for easy discovery. Most existing tag recommendation meth-
ods typically follow a manual process based on controlled vocabulary,
or consider tags as words in isolation contained in mashup descriptions.
Such methods therefore fail to characterize the diverse functional features
of mashups. This work proposes an attention model to automatically rec-
ommend mashup tags. Specifically, our proposed model has two levels of
attention mechanisms applied at the word- and sentence-levels and subse-
quently recommend top-N words with highest attention weights as tags.
Our model is based on the intuition that not every word in a mashup
description is equally relevant in identifying its functional aspects. There-
fore, determining the relevant sections involves modeling the interactions
of the words, not just their presence in isolation. We demonstrate the
effectiveness of our method by conducting extensive experiments on a
real-world dataset crawled from www.programmableweb.com. We also
compare our method with some baseline tag recommendation methods
for verification.

Keywords: Mashup · Tags · Tag recommendation · Attention
mechanism · GRU · Mashup development

1 Introduction

Mashups represent a type of lightweight Web applications that compose sev-
eral existing Web APIs or services in an agile manner, to meet users’ complex
application needs [1,2]. The benefits of the mashup technology has increased
its demand and consequently, the number of mashups available in online repos-
itories like www.programmableweb.com. For instance, over the past few years,
the number of mashups on www.programmableweb.com has increased rapidly
by almost 200% to 7,953, belonging to more than 430 predefined categories, as
at October 2019 [3]. With this much mashups, developers are now faced with
c© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 50–64, 2020.
https://doi.org/10.1007/978-3-030-59592-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_4&domain=pdf
http://orcid.org/0000-0001-8850-8594
www.programmableweb.com
www.programmableweb.com
www.programmableweb.com
https://doi.org/10.1007/978-3-030-59592-0_4

An Attention Model for Mashup Tag Recommendation 51

the challenge of organizing and managing these mashups for better understand-
ing of their functionalities and discovery. Among all the different techniques of
organizing and managing web services, tagging is widely known to be an efficient
technique [4]. Tagging is the way of annotating services with some meaningful
terms, in order to capture their functionalities based on their service descriptions.

Existing methods to automatically recommend tags for traditional web ser-
vices are typically based on topic-modeling [5–7] and clustering [6,8]. Although
such tag recommendation techniques are effective in recommending tags for tra-
ditional web services, their application to recommending tags for mashups is
limited. This is because:

1. Mashup descriptions are typically short (empirical study discussed in Sect. 2.1
revealed 2–3 sentences on an average). For this reason, topic-modeling based
methods like LDA will fail to identify functionally related tags because they
suffer from low efficiency, excessive long training time and low accuracy, espe-
cially in applications where the input document is relatively short [1,9],

2. the potentially inaccurate representations of mashup functionalities learned
by the topic models will introduce the intention gap limitation during simi-
larity computation of functional descriptions of mashups [6], and

3. Such methods fail to recommend accurate tags because they do not model the
interactions between words but rather consider their presence in isolation [10].

On the other hand, there are few existing works that have proposed methods
specific to recommend tags for mashups. These methods are either (1) a man-
ual process that is based on controlled vocabulary, like the current tag rec-
ommender system on www.programmableweb.com (see Sect. 2.1). (2) based on
learned interactions between mashups and web APIs [4]. Since mashups have
different functionalities than their constituent web APIs, such methods will miss
newer terms used to describe a particular mashup or recommend redundant
or similar tags thereby failing to uncover the new functionalities of a mashup.
Therefore, there is the need for a method to recommend mashup tags that over-
comes the above limitations in order to accurately recommend tags that reveals
the value-added functionalities in mashup descriptions.

In this paper, we propose just such a method for mashup tag recommenda-
tion. Our proposed method employs attention mechanism in natural language
processing (NLP), to learn the interactions between words in mashup description
in order to reveal the functional properties in those descriptions. Specifically, we
first train a vector representation of words using web APIs and mashup descrip-
tions. Then using this trained embeddings, we train an attention model to learn
the interactions between the words in a mashup description. The attention model
assigns weights to each word in the mashup description. We finally recommend
top-N words with highest weights as mashup tags.

www.programmableweb.com

52 K. K. Fletcher

To sum up, the contributions of this work are in threefold:

1. We employ the GloVe [11] word embedding framework to train a word embed-
ding model by integrating web API and mashup descriptions into existing
corpus. By training on web API and mashup data, our model reduces the
issue of out-of-vocabulary words, inherent with word embedding models.

2. We employ the hierarchical attention model [10] to accurately recommend tags
for mashups. Typically, the same word or sentence may have different impor-
tance in different context. In order to capture this notion, our model includes
both word - and sentence - levels of attention mechanisms [12,13]. This tech-
nique will allow our model to pay more or less attention to individual words and
sentences when constructing the representation of the mashup description.

3. We conduct extensive experiments to evaluate and validate our proposed
method against state of the art methods using a collection of 6,270 mashups
from www.programmableweb.com [1,2].

The rest of this paper is organized as follows: In Sect. 2, we present our find-
ings on an empirical study on mashup dataset and give some background infor-
mation about word embeddings and attention mechanism in NLP. We present
our proposed method in detail in Sect. 3, followed by our experiments, evalua-
tions and results analysis in Sect. 4. In Sect. 5 we discuss some of the current
state-of-the-art mashup tag recommendation works. Finally, we conclude our
paper and discuss some directions for our future work in Sect. 6.

2 Background

In this section we give some background information relating to our proposed
method. First, we present our findings on an empirical study we conducted on a
mashup dataset from www.programmableweb.com. We subsequently give a brief
description of word embeddings and attention in NLP and how they are used in
our work.

2.1 Empirical Study

We study one of the popular online web APIs and mashups repository, www.
programmableweb.com, which is by far the largest online web APIs repository
that contains over 19,000 web APIs and 6,270 mashups with various functionali-
ties [1–3]. We crawled web APIs, mashups and user profiles from this online web
API repository and analyzed the mashup descriptions and tags. Table 1 shows
details of the crawled dataset. Each web API is described by fields such as an
ID, short description, primary and secondary categories, number of developers
and followers, and much more. Similarly, for the mashup dataset, each mashup is
described by an ID, description, primary and secondary categories, tags, related
web APIs, date mashup was created and so on.

Generally, mashup descriptions are very short. According to our study, on
an average, there are 3 sentences in a mashup description and 17 words in a

www.programmableweb.com
www.programmableweb.com
www.programmableweb.com
www.programmableweb.com

An Attention Model for Mashup Tag Recommendation 53

Table 1. Statistical information of the dataset

Item type Number

Number of Web APIs 17,564

Number of Mashups 6,270

Number of User Profiles 87,857

User-Web API Invocation Matrix Density 2.2159 × 10−6

User-Web API Interaction Matrix Density 1.1417 × 10−5

sentence. In addition, only a small portion of the words in a mashup descrip-
tion are functionally related and they are usually the most reliable information
responsible for accurate tag recommendation. Figure 1 for instance, shows an
example mashup from www.programmableweb.com. For this mashup, there are
3 tags, and a description with 2 sentences. Also, it can be seen that the main
words that are functionally related are find, bank, location, and search.

We also studied mashup tags from our dataset. We observed that tagging of
mashups are typically a manual process that uses some pre-defined controlled
vocabulary. For instance, in our example mashup in Fig. 1, Mapping, Banking,
and Financial are the tags for the mashup. These words are also the pre-defined
categories used to categorize mashups. Although using controlled vocabulary for
tagging helps retrieve all the items tagged under a particular topic, it is easy to
miss newer terms and jargon/slang used to describe a particular functionality in
a mashup description. For this specific mashup example in Fig. 1, we can argue
that searching is a functionality of this mashup as depicted by words like find
and search, present in the description. However, due to the use of controlled
vocabulary for tagging, find and search were not selected as tags. Therefore
in order to provide flexible mashup discovery and management, we propose a
method to automatically recommend tags for mashups.

2.2 Word Embedding

Word embeddings are basically a form of word representation that bridges the
human understanding of language to that of a machine [14]. Word embeddings
are dense, semantically-meaningful and distributed representations of text in an

Fig. 1. An example mashup from www.programmableweb.com

www.programmableweb.com
www.programmableweb.com

54 K. K. Fletcher

n-dimensional space which becomes essential for solving most NLP problems. By
embedding words by some low-dimensional vectors, we can capture the semantic
relevance between words in context. Word embedding techniques are popular
these days because they overcome the limitations of on-hot encoding words such
as similarity, vocabulary size and computational issues. The importance of word
embeddings in the field of deep learning is evidenced by the numerous researches
that leverage it. One such research in the field of word embeddings is GloVe [11],
which we employ to embed words in our proposed method.

2.3 Attention Mechanism

Attention has been a popular concept and a useful tool in the deep learning
community in recent years. To some extent, it is motivated by how we pay visual
attention to different regions of an image or correlate words in one sentence [15].
It can be employed to explain the relationship between words in one sentence or
close context. For instance in the mashup description in Fig. 1, when we see help,
we expect to encounter a need word like find very soon. Attention in the deep
learning can be broadly interpreted as a vector of importance weights. That is, in
order to predict or infer an element (target element), such as a word in a sentence,
we need to estimate how strongly it is correlated with (“attends to”) other
elements. We then approximate the target element by taking the sum of their
values weighted by the attention vector. In our work, we employ this mechanism
to find the interactions between words in a mashup description in order to reveal
the functional aspects of the mashup. We subsequently recommend words with
higher weights as mashup tags.

3 Attention Model for Mashup Tag Recommendation

The proposed model for mashup tag recommendation is shown in Fig. 2. The
input to our trained network is a mashup description and the output of the net-
work is a mashup description vector containing both sentence and word weights.
We recommend top-N words with highest weights as tags for the mashup.

Formally, let D = {s1, s2, .., sL} be a mashup description of a new mashup
m′, made up of L sentences (s) and each sentence s = {w1, w2, .., wT } consist of
T words (w). For each word wit in an ith sentence, where t ∈ [1, T], we learn an
embedding xit using the GloVe embedding model E [11] such that:

xit = E(wit), t ∈ [1, T] (1)

where xit is the embedded vector of wit. We seek to find a learning model L,
that can learn the attention weights of both words and sentences in D, using the
embedded vectors xit, such that

L(D) :−→ {w′
it...} (2)

An Attention Model for Mashup Tag Recommendation 55

The mashup tag recommendation problem can be formulated as given a new
mashup m′ with description D, we want to automatically recommend some rel-
evant tags G = {g1, g2, .., gn} with G ∈ D, that can characterize the functional
properties of m′, where G is ranked based on the learned weights.

Our proposed attention model for mashup tag recommendation has 3 main
components: Word Embedding, Word-Level Attention, and Sentence-Level Atten-
tion. We discuss each of these components and our entire network in detail in
the sections that follow.

3.1 GloVe Word Embeddings

Global Vectors (GloVe) is an unsupervised learning algorithm for obtaining vec-
tor representations for words [11]. Training is performed on aggregated global
word-word co-occurrence statistics from a corpus, and the resulting representa-
tions showcase interesting linear substructures of the word vector space. GloVe
is essentially a log-bilinear model with a weighted least-squares objective. The
main intuition underlying the model is the simple observation that ratios of word-
word co-occurrence probabilities have the potential for encoding some form of
meaning. The goal of Glove is very straightforward, i.e., to enforce the word vec-
tors to capture sub-linear relationships in the vector space. Although there are
many word embedding techniques, we employ GloVe to learn word embeddings
for our proposed model because it proves to perform better than others in the
word analogy tasks. This is because, Glove adds practical meaning into word
vectors by considering the relationships between word pairs rather than words
in isolation. Finally, Glove gives lower weight for highly frequent word pairs so
as to prevent frequency of a word to dominate the training progress.

We included web API and mashup descriptions from our dataset into an
available corpus to train our word embeddings. We did this in order to learn
the vector representations of words used to describe the functional properties of
mashups and web APIs. This was necessary in order to reduce out-of-vocabulary
words.

3.2 Word-Level Attention

The word-level attention mechanism consist of two main parts: (1) a bi-
directional gated recurrent unit (GRU) encoder which learns and returns rel-
evant word contexts, and (2) an attention mechanism that learns and computes
a vector of importance weights for each word context.

Bi-directional GRU encoder. For each embedded word xit, we use a bi-directional
GRU encoder to extract relevant contexts of every sentence st ∈ D. By using a
bi-directional GRU we can get annotations of words by summarizing information
from both forward GRU,

−−−→
GRU which reads a sentence st from wi1 to wiT and a

backward GRU,
←−−−
GRU which reads st from wiT to wi1, resulting in a summarized

variable hit.

56 K. K. Fletcher

B
i-d

ire
ct

io
na

l G
R

U

hit + tanh Uit

Ww bw

x x

Uw

Softmax qit

ℎ

si x +

d

xhi Ui

bsWs

qi

Us

Softmaxtanh

ℎ

B
i-d

ire
ct

io
na

l G
R

U

Multi-layer Perceptron

Multi-layer PerceptronCorpus

Glove Word Embedding

Glove
Embeddings

Word-Level Attention

Sentence-Level Attention

Σ

Σ

Fig. 2. Overview of the proposed attention model for mashup tag recommendation.

−→
hit =

−−−→
GRU(xit), t ∈ [1, T]

←−
hit =

←−−−
GRU(xit), t ∈ [T, 1]

hit = [
−→
hit,

←−
hit]

(3)

Word Attention. Not all words contribute equally to the representation of the
sentence meaning. Hence, we introduce attention mechanism to extract such
words that are important to the meaning of the sentence and aggregate the
representation of those informative words to form a sentence vector [10]. The
attention mechanism at the word-level consist of one-layer multi-layer percep-
tron (MLP). The goal of this layer is to learn through training with randomly
initialized weights (W) and biases (b). The layer uses the tanh function to ensure
that the network does not falter. The tanh function achieves this by correcting
input values to be between −1 and 1 and also maps zeros to near-zero. The input
to this layer are the word annotations hit with another hidden layer. These anno-
tations are subsequently improved by the word weights, Ww and word biases,
bw as

uit = tanh(Wwhit + bw) (4)

We jointly train a word context vector uw which is randomly initialized. The
jointly learned context vector uw is then multiplied with the new annotations,
uit and subsequently normalized to an importance weight per word αit by a
softmax function as

αit =
exp(uT

it, uw)
∑

t exp(uT
it, uw)

(5)

An Attention Model for Mashup Tag Recommendation 57

Finally, we sum these importance weights, concatenated with the previously
calculated context annotations, hit to obtain the sentence vector si

si =
∑

t

αithit (6)

3.3 Sentence-Level Attention

In order to reward sentences that are clues to correctly projecting the function-
ality of a mashup description, we again use attention mechanism and introduce
a sentence level context vector us and use the vector to measure the importance
of the sentences. More concretely, the whole network for the word-level attention
mechanism is run with focus on the sentences. We should note that there is no
embedding layer as we already obtained the sentence vectors si from word-level
attention as input. The bi-directional GRU encoder for the sentence-level will
yield: −→

hi =
−−−→
GRU(si), i ∈ [1, L]

←−
hi =

←−−−
GRU(si), i ∈ [L, 1]

hi = [
−→
hi ,

←−
hi]

(7)

Sentence Attention. Trainable weights and biases are again randomly initialized
and jointly learned during the training process. The final output is a document
vector d which can be used as features for mashup tag recommendation.

ui = tanh(Wshi + bs) (8)

αi =
exp(uT

i , us)∑
t exp(uT

i , us)
(9)

d =
∑

i

αihi (10)

where d is the mashup description vector that summarizes all the information
of sentences in a mashup description.

4 Experiments

We conducted several experiments to evaluate our proposed method. These
experiments were done to ascertain the performance of our proposed method
on mashup tag recommendations compared to other existing recommendation
methods. We discuss our experimental setup and results in this section.

58 K. K. Fletcher

Fig. 3. Proposed models

4.1 Dataset Description

We evaluate our proposed method using web API and mashup dataset crawled
from www.programmableweb.com. See Sect. 2.1 for details on the dataset. We
follow a 70/10/20 proportions for splitting the original dataset into train-
ing/validation/test sets [2,16]. For each baseline, we randomly divided our
dataset into five different sets of 70/10/20 proportions also representing training,
validation and test respectively. We then use our proposed method to recommend
tags for a new mashup. In Sect. 4.4, we present the average results from these
five sets. All models were trained on the same set of hyperparameters which were
tuned with the validation set. We train our model based on the parameters in
Figs. 3a and b. Figures 4a and b show the accuracy and loss of our model when
trained on the training parameters respectively.

4.2 Evaluation Metrics

The following were the metrics we evaluated our method against. Our choice of
these metrics is purely based on the fact that they are well-known to evaluate
ranking-based methods.

Recall @ K: The Recall of top-k recommendation tags is the fraction of tags
among the real tag set for a mashup that are recommended. It is defined as:

Recall@K =
|tagsrec ∩ tagsactual|

|tagsactual| (11)

www.programmableweb.com

An Attention Model for Mashup Tag Recommendation 59

Where tagsrec is the recommended tag set, and tagsactual is the actual tag set
for the mashup.

Precision @ K: The Precision of top-k recommendation is the fraction of rec-
ommended tags that are among the real tag set for a mashup. It is defined as:

Precision@K =
|tagsrec ∩ tagsactual|

|tagsrec| (12)

Where tagsrec is the recommended tag set, and tagsactual is the actual tag set
for the mashup.

F-Measure @ K: The F-Measure is a measure of the recommendation accuracy.
It is the weighted harmonic mean of the precision and recall. It is defined as:

F − Measure@K = 2 ∗ Precision ∗ Recall

Precision + Recall
(13)

4.3 Baselines

We compare our model to the following baseline methods to demonstrate its
effectiveness.

– Topic Sensitive Method (TSM): this method exploits various types of
relationships as features and propose a topic-sensitive approach based on
Factorization Machines for mashup tag recommendation [4].

– Mashup Tag Recommendation (MAT): this method simultaneously
incorporate the composition relationships between mashups and APIs as well
as the annotation relationships between APIs and tags to discover the latent
topics [17].

Fig. 4. Performance of our attention model

60 K. K. Fletcher

– Tag-LDA: Compared with MAT, this method takes only the annotation
relationships between tags and APIs into account. The remaining recommen-
dation steps are same as MAT.

– Proposed Method (ATT): This is the proposed mashup tag recommen-
dation method in this work.

4.4 Results and Discussions

We used our trained model to recommend tags for mashups based on their
descriptions. Figures 5a, b and c shows some results. Our results show that our
model is able to recommend meaningful tags to mashups based on their descrip-
tions. However, some of the tags are also not so meaningful. We attribute this
to the fact that the word embedding component is not able to adequately learn
words that describe the functionalities of mashup. We intend to remedy this by
crawling and incorporating more text from www.programmableweb.com to learn
their embeddings. Another reason why we think our model recommends not so
meaningful tags sometimes is because of the short text in the mashup descrip-
tions. We intend to leverage knowledge graphs for mashups as side information
to help resolve this issue as well.

Fig. 5. Some results from our proposed model.

www.programmableweb.com

An Attention Model for Mashup Tag Recommendation 61

Fig. 6. Performance of our model against other baselines

We also performed a performance comparison of our proposed model with
other baselines. Figure 6 shows the results with respect to recall, precision, and
F-Measure. From the results in the figure, we can see that besides precision @
6, our proposed model outperformed all other baselines. Overall, the average
F-Measure of our proposed model shows significant improvements over all other
baseline models as follows: 4.7% over TSM, 23.3% over MAT, and 24.2% over
Tag-LDA.

5 Related Work

Several works have been proposed for tag recommendation. In their paper, Shi
et al. [4,17] proposed an automatic mashup tag recommendation model. It simul-
taneously incorporated the composition relationships between mashups and APIs
as well as the annotation relationships between APIs and tags to discover the

62 K. K. Fletcher

latent topics. They developed a tag filtering algorithm to further select the most
relevant tags with consideration of popularity.

Yin et al. [18] tackled the problem of personalized tag recommendation. They
analyzed the application of Tags in social recommendation systems and proposed
diversified coverage based tag recommendation algorithms. It included a corre-
lation measure based on the local and the global tag co-occurrence matrices by
integrating the users’ personal interests and the degree of tag recognition, using
the WordNet dictionary to define the semantic diversity and alleviate semantic
redundancy in their results and a greedy based diversified coverage tag recom-
mendation algorithm. Zhou et al. [19] implemented automatic tag recommen-
dation in large-scale evolving software information sites based on the semantics
of software objects. This was to alleviate the problem of rapid growth of tags
by reducing inappropriate tags and different tags referring to the same content.
They proposed a tag-based multi-classification algorithm that handles millions
of software objects.

Zhong et al. [20] implemented a tag recommendation model, combining
language models with topic model LDA. They proposed topic representations
based on Skip-grams and LDA, taking context information into corpus training.
With measurable representation of topics, their algorithm generates topic-related
words from an external corpus instead of a topic bag. In their work, Belem et al.
[21] addressed the tag recommendation problem from two perspectives. The
first perspective, centered at the object, aimed at suggesting relevant tags to a
target object, jointly exploiting tag co-occurrences, terms extracted from multi-
ple textual features, and various metrics to estimate tag relevance. The second
perspective, centered at both object and user, aimed at performing personal-
ized tag recommendation to a target object-user pair, exploiting, in addition to
the aforementioned dimensions, a metric that captures user interests. Another
content-based approach in [22] suggest tags according to the text description of
a resource. By considering both the description and tags of a given resource as
summaries to the resource written in two languages, they adopted word align-
ment models in statistical machine translation to bridge their vocabulary gap.
Based on the translation probabilities between the words in descriptions and the
tags estimated on a large set of description-tags pairs, they built a word trigger
method (WTM) to suggest tags according to the words in a resource descrip-
tion. This group of methods ignore the semantic ambiguity of tags, hence the
recommendation results are somewhat unsatisfactory [23,24].

Co-occurrence based methods explore tag co-occurrences to expand tag set of
documents as done in [21] and [25], where they approached the problem from a
demand-driven basis according to an initial set of tags applied to an object. By so
doing, it reduces the space of possible solutions, so that its complexity increases
polynomially with the size of the tag vocabulary. This approach however, only
exploits co-occurrence data, hence there may exist the problem of topic drift [26].

An Attention Model for Mashup Tag Recommendation 63

6 Conclusion and Future Work

This work presents a method to recommend tags for mashups. Our proposed
method employs attention mechanism in natural language processing (NLP), to
learn the interactions between words in mashup description in order to reveal the
functional properties in those descriptions. We first train a vector representation
of words using web APIs and mashup descriptions. Then using this trained
embeddings, we train an attention model to learn the interactions between the
words in a mashup description. The attention model assigns weights to each
word in the mashup description and highest weights are recommended as mashup
tags. We have showed how our model is constructed, trained and discussed some
results from our model.

While most of the results are encouraging, we will continue to tune our
model and include more text from www.programmableweb.com in order to learn
more embeddings of such words. These we plan to do as future work along with
validating our model with current state-of-the-art methods.

References

1. Fletcher, K.K.: A quality-based web API selection for mashup development using
affinity propagation. In: Ferreira, J.E., Spanoudakis, G., Ma, Y., Zhang, L.-J. (eds.)
SCC 2018. LNCS, vol. 10969, pp. 153–165. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94376-3 10

2. Fletcher, K.: Regularizing matrix factorization with implicit user preference embed-
dings for web API recommendation. In: 2019 IEEE International Conference on
Services Computing (SCC), pp. 1–8. IEEE (2019)

3. Santos, W.: Research Shows Interest in Providing APIs Still High. Accessed 18 Oct
2018

4. Shi, M., Liu, J., Zhou, D., Tang, Y.: A topic-sensitive method for mashup tag
recommendation utilizing multi-relational service data. IEEE Trans. Serv. Comput.
(2018)

5. Si, X., Sun, M.: Tag-LDA for scalable real-time tag recommendation. J. Inf. Com-
put. Sci. 6(2), 1009–1016 (2009)

6. Krestel, R., Fankhauser, P., Nejdl, W.: Latent Dirichlet allocation for tag rec-
ommendation. In: Proceedings of the Third ACM Conference on Recommender
Systems, pp. 61–68. ACM (2009)

7. Fang, L., Wang, L., Li, M., Zhao, J., Zou, Y., Shao, L.: Towards automatic tagging
for web services. In: 2012 IEEE 19th International Conference on Web Services,
pp. 528–535. IEEE (2012)

8. Lin, M., Cheung, D.W.: Automatic tagging web services using machine learning
techniques. In: Proceedings of the 2014 IEEE/WIC/ACM International Joint Con-
ferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol.
02, pp. 258–265. IEEE Computer Society (2014)

9. Kwapong, B.A., Anarfi, R., Fletcher, K.K.: Personalized service recommendation
based on user dynamic preferences. In: Ferreira, J.E., Musaev, A., Zhang, L.-J.
(eds.) SCC 2019. LNCS, vol. 11515, pp. 77–91. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-23554-3 6

www.programmableweb.com
https://doi.org/10.1007/978-3-319-94376-3_10
https://doi.org/10.1007/978-3-319-94376-3_10
https://doi.org/10.1007/978-3-030-23554-3_6
https://doi.org/10.1007/978-3-030-23554-3_6

64 K. K. Fletcher

10. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of the 2016 conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 1480–1489 (2016)

11. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014)

12. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

13. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual
attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

14. Gupta, S.: Word Embeddings in NLP and its Applications. Accessed 15 Nov 2019
15. Weng, L.: Attention? Attention! Accessed 15 Nov 2019
16. Fletcher, K.K.: A quality-aware web API recommender system for mashup devel-

opment. In: Ferreira, J.E., Musaev, A., Zhang, L.-J. (eds.) SCC 2019. LNCS,
vol. 11515, pp. 1–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23554-3 1

17. Shi, M., Liu, J., Zhou, D., Tang, M., Xie, F., Zhang, T.: A probabilistic topic model
for mashup tag recommendation. In: 2016 IEEE International Conference on Web
Services (ICWS), pp. 444–451, June 2016

18. Yin, Y., Zhao, Y., Zhang, B.: GDC: an efficient tag recommendation algorithm. In:
2015 12th International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), pp. 1382–1387. IEEE (2015)

19. Zhou, P., Liu, J., Yang, Z., Zhou, G.: Scalable tag recommendation for software
information sites. In: 2017 IEEE 24th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), pp. 272–282. IEEE (2017)

20. Zhong, S., Lei, K., Huang, X., Wu, J.: Topic representation: a novel method of
tag recommendation for text. In: 2017 IEEE 2nd International Conference on Big
Data Analysis (ICBDA), pp. 671–676. IEEE (2017)

21. Belém, F., Martins, E., Almeida, J., Gonçalves, M.: Personalized and object-
centered tag recommendation methods for web 2.0 applications. Inf. Process.
Manag. 50, 524–553 (2014)

22. Liu, Z., Chen, X., Sun, M.: A simple word trigger method for social tag suggestion.
In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing. EMNLP 2011, Stroudsburg, PA, USA, pp. 1577–1588. Association for
Computational Linguistics (2011)

23. Si, X., Sun, M.: Tag-LDA for scalable real-time tag recommendation. J. Comput.
Inf. Syst. 6, November 2008

24. Wang, H., Chen, B., Li, W.J.: Collaborative topic regression with social regulariza-
tion for tag recommendation. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence. IJCAI 2013, pp. 2719–2725. AAAI Press
(2013)

25. Menezes, G.V., et al.: Demand-driven tag recommendation. In: Balcázar, J.L.,
Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol.
6322, pp. 402–417. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15883-4 26

26. Zhao, W., Guan, Z., Liu, Z.: Ranking on heterogeneous manifolds for tag recom-
mendation in social tagging services. Neurocomputing 148, 521–534 (2015)

http://arxiv.org/abs/1409.0473
https://doi.org/10.1007/978-3-030-23554-3_1
https://doi.org/10.1007/978-3-030-23554-3_1
https://doi.org/10.1007/978-3-642-15883-4_26
https://doi.org/10.1007/978-3-642-15883-4_26

Application Track

On the Diffusion and Impact of Code
Smells in Web Applications

Narjes Bessghaier1(B), Ali Ouni1, and Mohamed Wiem Mkaouer2

1 Ecole de Technologie Superieure (ETS), University of Quebec, Montreal, QC,
Canada

narjes.bessghaier.1@ens.etsmtl.ca, ali.ouni@etsmtl.ca
2 Rochester Institute of Technology (RIT), Rochester, NY, USA

mwmvse@rit.edu

Abstract. Web applications (web apps) have become one of the largest
parts of the current software market over years. Modern web apps offer
several business benefits over other traditional and standalone applica-
tions. Mainly, cross-platform compatibility and data integration are some
of the critical features that encouraged businesses to shift towards the
adoption of Web apps. Web apps are evolving rapidly to acquire new
features, correct errors or adapt to new environment changes especially
with the volatile context of the web development. These ongoing amends
often affect software quality due to poor coding and bad design practices,
known as code smells or anti-patterns. The presence of code smells in a
software project is widely considered as form of technical debt and makes
the software harder to understand, maintain and evolve, besides leading
to failures and unforeseen costs. Therefore, it is critical for web apps to
monitor the existence and spread of such anti-patterns. In this paper,
we specifically target web apps built with PHP being the most used
server-side programming language. We conduct the first empirical study
to investigate the diffuseness of code smells in Web apps and their rela-
tionship with the change proneness of affected code. We detect 12 types
of common code smells across a total of 223 releases of 5 popular and
long-lived open-source web apps. The key findings of our study include:
1) complex and large classes and methods are frequently committed in
PHP files, 2) smelly files are more prone to change than non-smelly files,
and 3) Too Many Methods and High Coupling are the most associated
smells with files change-proneness.

Keywords: Code smells · Web applications · PHP · Diffuseness ·
Change proneness

1 Introduction

Web applications as defined by Google1 are: “...modern web capabilities to deliver
an app-like user experience...”. Web apps are characterized by their inherent
1 https://developers.google.com/web/updates/2015/12/getting-started-pwa.

c© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 67–84, 2020.
https://doi.org/10.1007/978-3-030-59592-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_5&domain=pdf
https://developers.google.com/web/updates/2015/12/getting-started-pwa
https://doi.org/10.1007/978-3-030-59592-0_5

68 N. Bessghaier et al.

heterogeneous nature in (1) target platforms as web apps are usually split in
their client and server sides, and (2) formalisms as web apps are typically built
with a mixture of programming and formatting languages. Such heterogeneity
makes the evolution of web applications unique and different than traditional
software systems.

Like any software application, web apps evolve rapidly to add new users func-
tionalities, fix bugs, and adapt to new environmental changes. Such frequent and
unavoidable changes, in the volatile context of the web development, can alter
the quality of these applications. Indeed, acknowledged software design princi-
ples and practices are needed to be in place and empowered to support web
apps development life-cycle. However, as software decays, some bad design and
implementation practices may appear, which are known as code smells or anti-
patterns [4,8]. Code smells are symptoms of poor design and implementation
choices applied by developers that may hinder the comprehensibility and main-
tainability of software systems. Common code smells include, large classes, long
methods, long parameter list, high coupling, complex class, etc. [4,8].

Several research efforts have been dedicated to studying code smells in tra-
ditional desktop software systems. It refers to bad coding practices that are
committed mostly without the developers’ knowledge [35]. Some studies focused
on analyzing how code smells are introduced in the codebase [2,34,35], and how
long they persist in the system [28,34]. Other studies focused on the impact of
code smells on systems change and fault-proneness [21,32], and whether develop-
ers perceive these smells as problematic [2]. However, little is known about code
smells diffuseness and impact for web applications. We cannot assume without
empirical evidence the applicability of the prior findings on web apps as they
widely differ. A dynamic web application package may encompass different tech-
nologies as JS, HTML, CSS, and PHP combining both programming and for-
matting aspects, which unlock another dimension of complexity, in comparison
with traditional desktop applications. For example, web apps support combining
code fragments, allowing to code PHP or JS inside HTML pages and vice versa.
This coding practice emerges new types of code smells violating the separation of
concerns design principle [30]. On a technical level, heterogeneous and dynamic
web apps are more complex. Intensive computing tasks are performed to deal
with databases and the HTTP client side’s requests, which require more coding
and maintenance efforts jeopardizing their quality and performance.

In this paper, we conduct the first empirical study on the diffuseness of code
smells in web applications and investigate the impact of code smells on the source
code change-proneness, i.e., to investigate whether smelly files tend to require a
higher frequency of changes when updating the files, as a side effect of their infec-
tion with bad programming practices. Moreover, we individually investigate how
each smell type can contribute differently to the change-proneness. In particular,
we focus our study on PHP-based web applications, being the top programming
language used in server-side applications development. Indeed, nearly 79% of
web apps are using PHP2. However, despite the popularity of the language in

2 https://w3techs.com/technologies/overview/programming language.

https://w3techs.com/technologies/overview/programming_language

On the Diffusion and Impact of Code Smells in Web Applications 69

web development, no previous studies have empirically examined the behavior of
code smells and how they impact the system’s maintainability. To conduct our
empirical study, we mined the historical changes of 223 releases from 5 popular
web projects, phpMyAdmin, Joomla, WordPress, Piwik, and Laravel, to detect
the existence of 12 common code smell types. The study provides empirical
evidence that files containing code smells are more susceptible to change than
non-smelly files, which negatively hinders the development of web apps, when
containing code smells, as developers spend a larger amount of time and effort to
update them. Results show that, at least, smelly-files are 2 times more prone to
changes. Specifically, developers tend to write long and complex methods which
make the code more hard to understand and modify. The obtained results indi-
cate that the High Method Complexity and the Excessive Method Length code
smells are frequently committed in PHP files. On the other hand, other smells
such as the Too Many Methods and High Coupling are not frequently occur-
ring, but they are the most smells leading to higher change-proneness. Findings
from this study provide empirical evidence for practitioners that detecting and
assessing code smells impact is of paramount importance to effectively reduce
maintenance costs, as well as for the research community to concentrate their
refactoring efforts on most harmful code smells. Further, this study serves as
a first step to assess the magnitude of the severity of change-proneness related
smells compared to other factors such as the number of occurrences of the smell
and a class fault-proneness. We encourage the community to further harvest
the data we collected by publishing our dataset for replication and extension
purposes [1].

The rest of the paper is structured as follows. Section 2 presents the related
literature on the diffuseness and impact of code smells. Section 3 describes the
design of our empirical study. Section 4 presents and discusses the main findings.
Threats to validity are discussed in Sect. 5. We conclude and highlight our main
future research directions in Sect. 6.

2 Related Work

A number of studies exist on code smells in traditional software systems. We
divide the existing works on 2 main categories (i) studies on the diffuseness and
evolution of code smells, and (ii) studies on the impact of code smells.

2.1 Diffuseness and Evolution of Code Smells

There exists little knowledge of code smells in web applications. Recently,
Rio et al. [31] targeted the survival probability of six code smell types using
PHPMD3, a PHP-based code smells detection tool, in 4 web applications. They
considered three scattered smells (concern coupled entities) and three localised
smells (concern an entity in itself). The findings did not show consistent behav-
ior across the four systems. The survivability rate varies with the type of smells
3 https://phpmd.org.

https://phpmd.org

70 N. Bessghaier et al.

for each application. However, the introduction and removal events are higher in
favor of localised smells. This can be explained by how code practices coupling
several system components are harder to maintain. Nguyen et al. [19] proposed a
detection tool WebScent of six kinds of the so-called embedded code smells that
violate three design principles (separation of concerns, software modularity, and
compliance with coding standards). The approach consisted of detecting code
smells in the portions of PHP scripts responsible for generating the client-side
code. The analysis highlighted that up to 81% of server files suffer from embed-
ded code smells. Consequently, these files have a lower quality than smell-free
files. Ouni et al. [22,24] introduced an automated approach to detect Web service
anti-patterns in WSDL-based Web services.

However, to the best of our knowledge, no study has investigated the dif-
fuseness of code smells in Web server-side projects and their relationship with
development activities. Thus, we present the related literature on code smells
in other programming languages. Palomba et al. [28] have investigated the dif-
fuseness of code smells in desktop software systems and found that code smells
related to large and complex code are most persistent in the system. They also
investigated the correlation between the smell types and systems characteristics
(e.g., number of classes, number of methods, and lines of code LOC). Code smells
are indeed diffused in large systems. Interestingly, this correlation does hold with
smell types representing the more functional and sophisticated side of the system
as like Long method and complex class. Olbrich et al. [20] analyzed the evolu-
tion of God Class, and Shotgun Surgery code smells in two open-source projects.
The study first concluded that the evolution of smells is not steady along with
the evolution of the systems. Concerning the change-proneness, they highlighted
that smelly files exhibit more change. Same results are witnessed when consid-
ering the God Class, and Brain Class in the evolution of three projects [21].
The study consisted of analyzing the impact of smells on the change frequency
(number of commits in which a file has changed) and change size (code churn) of
files. An important conclusion highlighted that classes containing the examined
smells are more prone to change frequency and change size. However, when the
God and Brain classes are normalized with respect to size (per LOC), they are
less subject to change. In the same line, Chatzigeorgiou et al. [5] studied the
evolution of Long method, Feature Envy, and State Checking code smells in 24
releases of two Java projects (JFlex, and JFreeChart). In all examined releases,
the Long Method, which signifies a large-sized piece of code, had exponential
growth as a system evolves. Contrary to the Feature Envy and State Checking,
which have shown a steady low rate of evolution.

2.2 Relationship Between Code Smells and Development Activities

Khomh et al. [12] conducted an empirical analysis on 13 different releases of
Azureus and Eclipse, considering 9 code smells, to investigate three relationships.
(i) smelly classes are more exposed to frequent updates than others (3 to 8 times
in favor of smelly classes). (ii) the more a class has instances of smells, the more

On the Diffusion and Impact of Code Smells in Web Applications 71

it is change-prone. (iii) particular but not common kinds of smells lead to more
change-proneness than others. An extended study examined code smells impact
in 54 releases of four projects [13] confirmed that smelly classes are more subject
to change and faults. These results were confirmed by Spadini et al. [33], who
found that the presence of test smells yields to more code changes, which might
produce bugs in the production code. Saboury et al. [32] have carried out an
empirical investigation on the impact of 12 JavaScript code smells on the fault-
proneness of modified classes of five projects. They compared the fault-proneness
between smelly and non-smelly files using the survival analysis test to capture a
longitudinal behavior. The results show that non-smelly files have a 65% chance
less than files with smells. As well, they opted for a Cox Hazard test to asses the
impact of three factors on the survivability of faults (LOC, Code churn, and the
number of Previous Bugs). Their results indicate that the number of Previous-
Bugs, which means the number of fault-fixing changes, is fault-inducing. Aniche
et al. [2] examined when code smells are introduced and how long they survive
using the survival analysis test. Their study highlighted some important points
(i) code smells are more introduced from the first release of the system, and (ii)
code smells that are present with the first commits tend to survive more.

3 Empirical Study Design

As presented in Fig. 1, our empirical study aims at analyzing the diffuseness
and impact of code smells in web applications. The diffuseness refers to the rate
of code smells in code components (classes, methods), i.e., how many parts of
the application are affected by at least one instance of code smells. The analysis
of smells distribution helps to better assess (1) the impact of code smells on
the change-proneness of smelly files, and (2) how specific code smell types could
result into different change sizes. It is worth noting that some smell types could
lead to more change-proneness but are poorly diffused and vise versa.

W
eb

 a
pp

 re
po

sit
or

y
(G

ith
ub

)

Code smells
detection in
each release

Perform clone
repository

Track files changes in
all commits between

two releases

List of Code
smells

Identify smelly and
non-smelly files

Quantified changes for
smelly and non-smelly

files

RQ1

RQ2

RQ3

Data analysis

Fig. 1. Overview of our empirical study.

To collect our dataset for our empirical study, we considered a set of common
code smell types in Web software applications. To detect instance of code smells
in our benchmark, we use PHPMD [29], a widely used tool for quality assurance

72 N. Bessghaier et al.

and code smells detection specialized for PHP software applications. We consid-
ered a list of 12 smell types as they are most known, and widely being discussed
in recent studies [7,9,15,16,31]. It is worth noting that we selected class-level
and method-level code smells that affect the source code’s understandability or
might aggravate the performance to capture a broad analysis of our studied
phenomena. Although, PHPMD supports the detection of 36 types of design
flaws, we basically considered common code smell types [3,18,23,25–27,31] and
excluded smells related to low level violations such as calling the var dump()
function in the production code. Table 1 provides the list of the considered code
smells along with their definitions.

3.1 Research Questions

We formulate the following research questions.

– RQ1: What is the diffuseness of code smells in web apps? We aim to know
the most diffused and frequently occurring code smells to recognize which
bad coding practices are more common and thus prioritize their refactoring.

– RQ2: To what extent files affected by code smells exhibit a different level of
change-proneness as compared to non-smelly files? We aim to assess whether
smelly files undergo more maintenance activities compared to non-smelly files
by testing the following null hypotheses:
H20 : Smelly files are not more prone to change during the software evolution
as compared to non-smelly files.

– RQ3: What is the relationship between specific types of code smells and the
level of change-proneness? We investigate whether some smell types con-
tribute more to the change-proneness of smelly classes. To answer our research
question, we test the validity of the following null hypothesis.
H30 : Smelly files undergo the same level of change-proneness for all smell
types.

To answer our research questions, we mined 223 releases of 5 popular open-
source PHP web-based applications. PhpMyAdmin4 is a framework to handle
the administration of MySQL over the Web and supports MariaDB. Joomla5

is a Content Management System (CMS) which enables you to build websites
and powerful online applications. WordPress6 is a CMS system written in PHP
and paired with MySQL or MariaDB database. Piwik7 is an analytics and full
featured PHP MySQL software to download and install on webserver. Laravel8

is a web application framework with expressive, powerful syntax and provides
tools required for large, robust applications. We chose applications with differ-
ent sizes ranging from 12 to 662 KLOCs. As presented in Table 2, the studied
4 https://github.com/phpmyadmin/phpmyadmin.
5 https://github.com/joomla/joomla-cms.
6 https://github.com/WordPress/WordPress.
7 https://github.com/matomo-org/matomo.
8 https://github.com/laravel/laravel.

https://github.com/phpmyadmin/phpmyadmin
https://github.com/joomla/joomla-cms
https://github.com/WordPress/WordPress
https://github.com/matomo-org/matomo
https://github.com/laravel/laravel

On the Diffusion and Impact of Code Smells in Web Applications 73

Table 1. List of code smells considered in our study

Code smell Description

Excessive Number Of Children (ENOC) A class with too many descendants usually

indicates an unbalanced class hierarchy [29,31]

Excessive Depth Of Inheritance (EDOI) A class with a deep inheritance tree can lead to

an unmaintainable code as the coupling would

increase [29,31]

High Coupling (HC) A class with too many dependencies makes it

harder to maintain and evolve [8,16,29,31]

Empty Catch Block (ECB) Fixing an execution failure of an unknown

exception type will require more efforts to

understand the error condition [29]

Goto Statement (GTS) Goto makes the logic of an application hard to

understand [29]

High Method Complexity (HMC) The cyclomatic complexity at the method level

represents the number of decision points (e.g.,

if, for, while). The higher the number of

decision points, the higher the number of test

cases needed to test all the different execution

paths [9,29]

High NPath Complexity (HNPC) The NPath complexity is the number of ways

(nested if/else statements) the code can get

executed, which would decrease the readability

of the code and cause testing issues [29]

Excessive Method Length (EML) When a method exceeds 100 NCLOC, it is

considered a broad method that does too much.

These methods are likely to end up processing

data differently than what their context

suggests until they become hard to understand

and maintain [7,9,16,29,31]

Excessive Class Length (ECL) Large classes are a good suspect for refactoring,

as their size represents a challenge to manage

efficiently, and maintain them [15,16,29,31]

Excessive Parameter List (EPL) A long parameter set can indicate that a

method is doing too many different things,

which makes it harder to understand its

behavior [7,17,29,31]

Too Many Public Methods (TMPM) A large number of public methods indicate that

the class does not preserve its data

encapsulated. Consequently, changing the

internal behavior of the class requires

additional efforts not to risk damaging some

dependencies. In practice, we cannot restrict

the number of public methods. Only what could

be exposed should be public. If external classes

are extensively accessing these methods, they

should be moved to reduce the coupling [29]

Too Many Methods (TMM) The Too Many Methods is the symptom of a

class that contains a large number of methods

that typically do not belong to its

responsibilities and consequently decreases the

cohesion level [29]

74 N. Bessghaier et al.

projects belong to different application domains and actively engineered during
9 to 15 years. Table 2 reports the number of considered releases, the number of
stars on Github, and we count the applications size in terms of the number of
classes, methods, and KLOCs for each project using the PHPLOC tool9.

Table 2. The studied systems statistics.

Name Releases Period Stars # classes KLOCs # smells

phpMyAdmin 55 2014–2020 4.7k 30–645 228–328 60,695

Joomla 34 2011–2019 3.4k 1,102–2,631 271–662 75,616

WordPress 74 2005–2019 13.4k 24–496 37–391 106,962

Piwik 38 2010–2020 12.6k 1,017–2,095 242–374 39,896

Laravel 22 2012–2020 57.3k 95–248 12–40 1,647

3.2 Analysis Method

To answer RQ1, we first compute the absolute number of code smells present in
each application (aggregation of releases). Then, we assess the number of affected
classes for each smell type. To better position the number of smells with respect
to the size of the application, we assess the diffuseness of smells per KLOC.

To answer RQ2, we use the git versioning system to mine the change his-
tory of the five applications. We identify all modified PHP files in each commit
between the releases rj−1 and rj . Then, we extract the number of modification
each modified file has undergone using the following git command:
$ git show --stat --no-commit-id --oneline -r SHA1..SHA2"∗.php"
Then, we identify the nature of the returned modified files whether it is a smelly
or a non-smelly class. Thereafter, we compute the change-proneness of a modified
class c as the sum of the changes performed in all commits between the releases
rj−1 and rj .

Change-proneness(c, rj) =
i=n∑

i=1

churn(c, comi) (1)

where n is the number of commits between releases rj−1 and rj , the function
churn(c, comi) returns the code churn in terms of number of added, removed and
modified lines of code in the class c in commit comi using the GitHub API10.

After the extraction of all data, we compare the change-proneness of smelly
and non-smelly classes using the beanplot representation [11]. A beanplot
extends the boxplot’s visualization by representing the density of data distri-
bution along with the individual observations. To assess H20, we verify whether

9 https://github.com/sebastianbergmann/phploc.
10 https://developer.github.com/v3/.

https://github.com/sebastianbergmann/phploc
https://developer.github.com/v3/

On the Diffusion and Impact of Code Smells in Web Applications 75

there is a significant difference between the two tested populations (smelly, non-
smelly). Therefore, after the data normality check (p-value = 0.8 and p-value =
0.6), we apply the parametric independent t-test [14] to check the magnitude of
difference between our two groups. The t-test serves to evaluate the alternative
hypothesis stating how likely one sample exhibits dominance compared with the
other sample. We consolidate the test by measuring the parametric Cohen-d
effect size. As stated by [6], the effect size tells how important the difference
between the two samples is. An effect size is considered small if 0.2 ≤ d < 0.5,
medium if 0.5 ≤ d < 0.8 and large if d ≥ 0.8. It is worth noting that we consider a
class as smelly only if it has at least one instance of code smell. We narrowed the
gap between smelly and non-smelly classes to deeply analyze the phenomenon of
change-proneness considering most harmful smells. Moreover, if a class changes
from smelly to non-smelly in some releases and vise versa, it contributes to both
sets of smelly and non-smelly classes.

To answer RQ3, we assess the impact of smells types on the change-
proneness. We compute the number of occurrences of each smell type in the
smelly classes of each release. We quantify the impact of each smell type for
each project as the correlation score between the sum of the frequency count of
each smell type STi and the class state {0 or 1} representing whether a class
has changed or not between two releases rj−1 → rj . To statistically analyze
the effect of each smell type on a class change-proneness, we opted for a logis-
tic regression test [10] similar to khomh et al. [12] to reject the null hypothesis
H30 stating that classes undergo the same change size for all types of smells.
The logistic regression should decide whether the class would change for each
smell type. To asses the change of a class based on a set of smells, a class would
represent the dependent variable Ci that would change if one of the smell types
STj (independent variable) changes as well. In a logistic model, the dependent
variable could take only two values (changed = 1, not changed = 0). Thus, our
multivariate model equation applied to a class Ci in a release rt is defined as
follows:

P (Ci) =
e(CP +

∑12
1 bj ∗ STj)

1 + e(CP +
∑12

1 bj ∗ STj)
∈ [0, 1] (2)

where P is the likelihood that a class changes; CP is the change proneness of a
class {0,1}; and bj is the number of occurrences of a smell type STj .

We apply our logistic regression model for each smell type detected in the
223 releases in our benchmark. Then, we count the number of times the p-value
of a smell is significant (the probability is closer to 1).

4 Study Results and Analysis

4.1 RQ1: Code Smells Diffuseness

Figure 2 reports (i) the absolute number of code smells distribution in the ana-
lyzed projects, (ii) the number of affected classes by each code smell type, and
(iii) the density of code smells per KLOCs using the beanplot visualization. For

76 N. Bessghaier et al.

the sake of clarity, we aggregate the occurrences of each code smell in our studied
projects into one single dataset. From the beanplots and Table 3, we observe the
existence of three main categories of code smell distributions (1) highly diffused
and highly frequent, (2) highly diffused and slightly frequent, and (3) slightly
diffused and slightly frequent.

Highly Diffused and Highly Frequent Smells: As shown in Fig. 2 and Table
3, the High Method Complexity smell is the most diffused (99%) and frequent
(42%) code smell. It typically manifests in the form of a high cyclomatic com-
plexity level within the methods. We found that this smell has a high number
of occurrences with 1,250 instances in the two last studied releases of Joomla
(3.9.13 and 3.9.14). For instance, the class Joomla.CMS.Form.Form in release
3.9.13 has a cyclomatic complexity of 64 in its method filterField() respon-
sible for applying an input filter to a value based on field data. These methods
are in general very long (on average, 261 LOC found in Joomla studied releases).
Moreover, we found that the High NPath Complexity occurs also in 99% of the
releases, representing 27% of the total number of detected smells. It has a total
of 820 occurrences in Joomla 3.9.13. Alike, Excessive Method Length impacts
95% of the releases, representing 16% of the smells with a peak reaching 556
in WordPress 5.3.2. Indeed, we found 12 long methods using AJAX with an
average of 143 LOC. Moreover, from a qualitative sense, the diffuseness of smell
instances per KLOC is reported in Fig. 2c which confirms that the High Method
Complexity, the High NPath Complexity, and the Excessive Method Length are
the most diffused smells with an average of 24, 17, and 13 instances respectively.

Highly Diffused and Slightly Frequent Smells: This category of smells
occur in the majority of the studied releases but with a limited number of
instances. As shown in Fig. 2 and Table 3, we observe that the High Coupling
smell exists in 98% of the releases, but representing only 2% of the accumulated
number of smells. For instance, we found that the High Coupling smell reaches
the bar of 99 instances in both releases of Piwik 3.13.0 and 3.13.1. On average,
each of the infected releases has 25 instances of this smell. As compared to other
studies in Android apps, the High Coupling is found to have weak diffuseness and
frequency as pointed by Mannan et al. [16]. To better understand this disparity
in terms of diffuseness, we conducted a closer analysis on the 3.13.0 release of
Piwik. Most of the instances are located in the Archive, and ArchiveProcessor
packages. In particular, the class CronArchive in Archive package has a cou-
pling between objects (CBO) score of 33 surpassing the established threshold of
13 which is considered as normal [29]. Hence, this disparity in the diffuseness
rate of the High Coupling between Android and web apps could be related to
the small size of Android apps along with their different structure and workflow
which typically come with a low coupling between code components.

Moreover, we found that the Excessive Class Length, the Too Many Public
Methods, the Excessive Number Of Children, and the Too Many Methods are
not frequent as they have a maximum number of occurrences per class that do
not exceed 5. For example, the Too Many Public Methods smell represents 5%
of the total number of smells, and is distributed across 86% of the releases as

On the Diffusion and Impact of Code Smells in Web Applications 77

shown in Fig. 2 and Table 3. Most diffused instances are in Joomla with a high
number of occurrences of 234 in the last five releases (from v3.9.7 to v3.9.14).
Likewise, among the highly diffused, but slightly frequent code smells, we found
the Too Many Public Methods smell which have more instances per KLOC (6). In
addition, the Empty Catch Block and Excessive Parameter List code smells are
impacting 65% and 89% of releases with the highest number of occurrences of 69
in Piwik (2.17.1 and 2.18.0) and 40 in Piwik 2.12.1 respectively. The Excessive
Parameter List has the highest occurrence number (19) of all slightly frequent
smells in the method image() in the package com.tecnick.tcpdf. The Excessive
Parameter List is a one single-metric violation that straightforwardly detects
the smell. Besides, it is also worth noting that, Wordpress and phpMyAdmin
applications have no instance of the Empty Catch Block, which is limited to one
instance per KLOC.

Fig. 2. The absolute number, % affected classes, and density per KLOC of smells.

Slightly Diffused and Slightly Frequent Smells: As shown in Fig. 2 and
Table 3, the Excessive Depth Of Inheritance and the Go to Statement code

78 N. Bessghaier et al.

smells are slightly diffused and not frequent. Overall, the Excessive Depth Of
Inheritance smell exists only in 20 classes, impacting only 4% of the studied
releases, and it represents nearly 1% of the total number of detected code smells.
For instance, we found that the highest number of occurrences of the Excessive
Depth Of Inheritance smell is 10 in Piwik 1.8.0. Similarly, the Goto Statement
smell represents nearly 1% of the total number of code smells and affects 2% of
the studied releases. This particular smell occurs only in phpMyAdmin (10% of
the releases of phpMyAdmin), with a negligible percentage of ∼1% of the total
number of code smells detected in phpMyAdmin. Since its spread is limited to a
few classes, the correction of Goto Statement becomes easier for developers.

Table 3 reports the diffuseness of code smells according to the accumu-
lated number of releases. The “% of affected releases” column represents the
percentage of affected releases by a particular smell. For example, the Too
Many Methods smell impacts 77% of the releases. The “max instances” col-
umn reports the highest number of occurrences of a given smell in a class. For
instance, the Too Many Methods smell has the highest number of occurrences in
the libraries.simplepi.e.simplepi.e.php file in Joomla 2.5.3 which has 5
classes having respectively 102, 40, 40, 35, and 26 methods exceeding the basic
threshold of 25 [29].

To sum up, most of the smells are quite diffused in the studied subjects. Par-
ticularly, smells related to long and complex code fragments (i.e., High Method
Complexity, High NPath Complexity, and Excessive Method Length) have the
highest number of instances per KLOC, and impact the highest number of
classes. Our findings align with those of Palomba et al. [28] on Java traditional
code smells, where Long method and Complex Class code smells are the most
diffused. Moreover, 3/4 of the analyzed code smells are not frequent (i.e., limited
number of occurrences per release), but affecting 68% of the studied projects.
Besides, Joomla is the most affected project having the maximum number of
occurrences of four smells High Method Complexity, High NPath Complexity,
Excessive Method Length, and Too Many Public method. By studying code smells
diffuseness, we aim to assess the interplay between the magnitude of the diffuse-
ness for each smell type and code maintainability.

4.2 RQ2: The Impact of Code Smells on the Change-Proneness

The beanplots in Fig. 3 illustrate the change size range of both smelly and
non-smelly classes. As previously found in studies targeting Java object-oriented
systems [13,28], code smells lead to more code changes in a class and thus require
higher maintenance efforts. As reported in Fig. 3, we witnessed similar findings,
as we found that smelly classes clearly exhibit a higher level of change-proneness
as compared to non-smelly classes. The median of change-proneness (CP) of
smelly classes is 12.8 which is almost three times higher than the non-smelly
classes (4.1). For example, the median change in Laravel is 2 against a median
of 4 in the smelly classes. The intense density shape in the non-smelly class set
demonstrates how the majority of non-smelly classes experience similar change

On the Diffusion and Impact of Code Smells in Web Applications 79

Table 3. Diffuseness of code smells in the analyzed projects

Code smell % affected releases % of smells Max instances

High Method Complexity 99% 42% 96

High NPath Complexity 99% 27% 76

Excessive Method Length 95% 16% 42

High Coupling 98% 2% 2

Excessive Class Length 98% 2% 3

Excessive Parameter List 89% 1% 19

Too Many Public Methods 86% 5% 5

Excessive Number of Children 78% ∼1% 1

Too Many Methods 77% 1% 5

Goto Statement 2% ∼1% 1

Empty Catch Block 65% 1% 4

Excessive Depth of Inheritance 4% ∼1% 1

rate. For instance, 41 non-smelly classes in Laravel that are responsible for lan-
guages setting underwent almost the same modifications size. Unlike the smelly-
classes, each has its maintenance requirements, which seems to be related to the
co-existence of different types of code smells such as High Method Complexity
and Excessive Method Length. Referring to statistical evidence, the t-test shows
a statistically significant difference with a p-value = 0.03, while Cohen d shows
a large effect size of 1.8, allowing us to reject the null hypothesis H20. To sum
up, the majority of releases are affected by smells. However, the large portion of
the modified classes in each project are smells-free. Still, smelly classes undergo
more changes, and thus, exhibiting a higher level of change-proneness than non
smelly classes.

Fig. 3. Change-proneness of smelly and non-smelly classes.

80 N. Bessghaier et al.

4.3 RQ3: The Impact of Code Smells Types on the
Change-Proneness

Table 4 reports the results of the logistic regression model for RQ3. The reported
values refer to the percentage of releases for which the correspondent smell type
is statistically significant in the logistic model with a p − value < 0.05. We
observe that the existence of smells does impact the majority of projects in terms
of increasing the proneness of their infected files, and this impact varies from
one project to another. More precisely, we highlight the High Method Complexity
(HMC), Excessive Method Length (EML) and Too Many Methods (TMM) smell
types, as they exhibit the highest impact on the change-proneness on 32%, 28%
and 25% of the releases, respectively. In particular, HMC has shown an impact
on two out of the five projects, namely Piwik and WordPress, and EML has an
impact on phpMyAdmin and Laravel, while TMM impacted 3 projects (Joomla,
Laravel and phpMyAdmin). On the other side, we observe that other smells such
as the Excessive Parameter List, the Excessive Number of Children, and Goto
Statement do not have statistically significant impact on the change-proneness
on any release or project. This can be due to the fact that the latter smells are
found to be slightly diffused and slightly frequent, as observed in RQ1.

Table 4. The results of the logistic regression model reporting the number of releases
and projects for which each smell type is statistically significant.

Code smell % sig. releases Projects

High method complexity 32% Piwik, WordPress

Excessive method length 28% phpMyAdmin, Laravel

Too many methods 25% Joomla, Laravel, phpMyAdmin

High coupling 21% Piwik, WordPress, phpMyAdmin

Excessive class length 13% phpMyadmin, Laravel

High NPath complexity 12% Piwik

Too many public methods 4% WordPress

Empty catch block 1.2% –

Excessive depth of inheritance 0.9% –

Excessive parameter list 0% –

Excessive number of children 0% –

Goto statement 0% –

The main insights that we can draw from these findings could be summarized
as follows (1) the slightly diffused and slightly frequent code smells have no sta-
tistically significant impact on change-proneness of files across the five projects.
Hence, not all smells should be given equal removal priority. For instance, the
GoTo Statement and Excessive Depth Of Inheritance are not seen as problem-
atic, as they do not cause an increase in the number of code changes; (2) Classes

On the Diffusion and Impact of Code Smells in Web Applications 81

in Joomla tend to experience an increase on change percentage whenever there
is a variation in the number of Too Many Methods instances. (3) diffuseness
and frequency of smells do not necessarily correlate with their ability to impact
change-proneness of files. For example, The High method Complexity smell has
shown the highest diffuseness in 99% of the releases (cf. Table 3), yet, its statisti-
cally significant impact on files change-proneness is limited to only two projects.

We can conclude that the impact of smells varies by type and by project.
Existence of smells is alarming since they increase the chance of experiencing
higher change rate, especially with Too Many Methods and High Coupling that
scored the highest impact in our experiment. Since for each project, at least one
single smell is showing an effect on the change-proneness. Thus, we reject the
null hypothesis H30. knowing the types of code smells leading to more change-
proneness will aid in preparing specific refactoring plans and focus on fixing the
most harmful design and implementation practices.

5 Threats to Validity

The Construct validity concerns errors in measurements. In our context, we relied
on the git versioning systems of each project to count the number of changes.
For each release, we were interested in quantifying the changes in modified files.
Moreover, while we considered 12 common code smells based on recent studies
[18,31], there could be other code smell types to be considered. Moreover, similar
to Khomh et al. [12], we used the logistic regression test to determine which
smells are significant with the change-proneness.

The Internal validity concerns the factors that can limit the applicability
of our observations. We assessed the cause-effect relation between the presence
of code smells and the change-proneness of a file as the probability of smell
to exert an impact on the state of a class. Still, we cannot assume that the
changes made on a file are the result of code smells refactoring activities. Other
improvement activities (exp. adding new functionalities) could yield to these
changes. However, we expect that classes with high change-proneness represent
the business logic of the system that does too much and gets frequently modified.
Thus, these classes are more prone to having code smells and possibly exhibit
more refactoring operations.

The External validity concerns the generalizability of our findings. We have
analyzed a total of 5 PHP Web projects with different communities, sizes, and
application domains and with a minimum of 9 years of history. We are aware
that we cannot generalize our finding to other projects. In the future, we plan to
reduce this threat further by analyzing more projects from more industrial and
open-source software projects and other web programming languages.

6 Conclusion

This paper reported a large study conducted on 223 releases of five popular
web-based applications. The empirical study aimed at understanding the dif-
fuseness of code smells in web open source apps and their relation with source

82 N. Bessghaier et al.

code change-proneness. The statistical analysis of the obtained results show that
most diffused and frequent code smells are related to the size and complexity of
code fragments. Moreover, our findings indicate that classes with such smells are
more prone to change than other classes which may require more maintenance
efforts. To provide better insights, we individually investigated the relationship
between each smell type and the change-proneness using a logistic regression
model. Results showed that specific smells do have an impact on the change-
proneness of a class. However, the type of these change-inducing smells tend
to be context related. Our findings indicate that code smells should be carefully
monitored by web programmers, since they are diffused in web applications and
related to maintainability aspects such as change-proneness. As future work, we
first plan to replicate our study on other open source and industrial web appli-
cations. We plan also to analyze the impact of the co-occurences of code smells
on the change-proneness. Moreover, we plan to investigate the impact of smelly-
files on the fault-proneness. More interestingly, we will develop automated code
smells refactoring recommendation and prioritization techniques in the context
of web apps to better monitor code smells.

References

1. Replication package. https://github.com/Narjes-b/SmellsAnalysis-WebApps
2. Aniche, M., Bavota, G., Treude, C., Gerosa, M.A., van Deursen, A.: Code smells for

model-view-controller architectures. Empirical Soft. Eng. 23(4), 2121–2157 (2018)
3. Boukharata, S., Ouni, A., Kessentini, M., Bouktif, S., Wang, H.: Improving web ser-

vice interfaces modularity using multi-objective optimization. Autom. Sofw. Eng.
26(2), 275–312 (2019)

4. Brown, W.H., Malveau, R.C., McCormick, H.W., Mowbray, T.J.: AntiPatterns:
Refactoring Software, Architectures, and Projects In Crisis. Wiley, New York
(1998)

5. Chatzigeorgiou, A., Manakos, A.: Investigating the evolution of bad smells in
object-oriented code. In: Seventh International Conference on the Quality of Infor-
mation and Communications Technology, pp. 106–115. IEEE (2010)

6. Cohen, J.: Statistical Power Analysis for The Behavioral Sciences. Erihaum, Hills-
dale (1988)

7. Delchev, M., Harun, M.F.: Investigation of code smells in different software
domains. Full-scale Softw. Eng. 31, 31–36 (2015)

8. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, Boston (2018)

9. Hecht, G., Benomar, O., Rouvoy, R., Moha, N., Duchien, L.: Tracking the soft-
ware quality of android applications along their evolution (t). In: International
Conference on Automated Software Engineering (ASE), pp. 236–247 (2015)

10. Hosmer, D.W., Lemeshow, S., Cook, E.: Applied Logistic Regression, 2nd edn.
Wiley, New York (2000)

11. Kampstra, P., et al.: Beanplot: a boxplot alternative for visual comparison of dis-
tributions. J. Stat. Softw. 28(1), 1–9 (2008)

12. Khomh, F., Di Penta, M., Gueheneuc, Y.G.: An exploratory study of the impact
of code smells on software change-proneness. In: WCRE, pp. 75–84 (2009)

https://github.com/Narjes-b/SmellsAnalysis-WebApps

On the Diffusion and Impact of Code Smells in Web Applications 83

13. Khomh, F., Di Penta, M., Guéhéneuc, Y.G., Antoniol, G.: An exploratory study of
the impact of antipatterns on class change-and fault-proneness. Empirical Softw.
Eng. 17(3), 243–275 (2012). https://doi.org/10.1007/s10664-011-9171-y

14. Kim, T.K.: T test as a parametric statistic. Korean J. Anesthesiol. 68(6), 540
(2015)

15. Liu, X., Zhang, C.: The detection of code smell on software development: a mapping
study. In: 5th International Conference on Machinery, Materials and Computing
Technology (ICMMCT 2017). Atlantis Press (2017)

16. Mannan, U.A., Ahmed, I., Almurshed, R.A.M., Dig, D., Jensen, C.: Understanding
code smells in android applications. In: IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MOBILESoft), pp. 225–236 (2016)

17. Martin, R.C.: Clean Code: A Handbook of Agile Software Craftsmanship. Pearson
Education, London (2009)

18. Mon, C.T., Hlaing, S., Tin, M., Khin, M., Lwin, T.M., Myo, K.M.: Code readability
metric for PHP. In: IEEE 8th Global Conference on Consumer Electronics (GCCE),
pp. 929–930 (2019)

19. Nguyen, H.V., Nguyen, H.A., Nguyen, T.T., Nguyen, A.T., Nguyen, T.N.: Detec-
tion of embedded code smells in dynamic web applications. In: IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp. 282–285 (2012)

20. Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N.: The evolution and impact of
code smells: a case study of two open source systems. In: International Symposium
on Empirical Software Engineering and Measurement, pp. 390–400 (2009)

21. Olbrich, S.M., Cruzes, D.S., Sjøberg, D.I.: Are all code smells harmful? A study
of god classes and brain classes in the evolution of three open source systems. In:
International Conference on Software Maintenance, pp. 1–10 (2010)

22. Ouni, A., Gaikovina Kula, R., Kessentini, M., Inoue, K.: Web service antipatterns
detection using genetic programming. In: Annual Conference on Genetic and Evo-
lutionary Computation (GECCO), pp. 1351–1358 (2015)

23. Ouni, A., Kessentini, M., Bechikh, S., Sahraoui, H.: Prioritizing code-smells cor-
rection tasks using chemical reaction optimization. Softw. Qual. J. 23(2), 323–361
(2015)

24. Ouni, A., Kessentini, M., Inoue, K., Cinnéide, M.O.: Search-based web service
antipatterns detection. IEEE Trans. Serv. Comput. 10(4), 603–617 (2017)

25. Ouni, A., Kessentini, M., Ó cinnéide, M., Sahraoui, H., Deb, K., Inoue, K.: MORE:
a multi-objective refactoring recommendation approach to introducing design pat-
terns and fixing code smells. Softw. Evol. Process 29(5), e1843 (2017)

26. Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., Deb, K.: Multi-criteria code
refactoring using search-based software engineering: an industrial case study. ACM
Trans. Softw. Eng. Methodol. 25(3), 1–53 (2016)

27. Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., Hamdi, M.S.: Improving multi-
objective code-smells correction using development history. J. Syst. Softw. 105,
18–39 (2015)

28. Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A.:
On the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation. Empirical Softw. Eng. 23(3), 1188–1221 (2018). https://
doi.org/10.1007/s10664-017-9535-z

29. PHPMD (2020). https://phpmd.org
30. Pressman, R.S.: Software engineering: a practitioner’s approach. Palgrave Macmil-

lan, London (2005)

https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1007/s10664-017-9535-z
https://phpmd.org

84 N. Bessghaier et al.

31. Rio, A., Brito e Abreu, F.: Code smells survival analysis in web apps. In: Piat-
tini, M., Rupino da Cunha, P., Garćıa Rodŕıguez de Guzmán, I., Pérez-Castillo,
R. (eds.) QUATIC 2019. CCIS, vol. 1010, pp. 263–271. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29238-6 19

32. Saboury, A., Musavi, P., Khomh, F., Antoniol, G.: An empirical study of code
smells in Javascript projects. In: International Conference on Software Analysis,
Evolution and Reengineering, pp. 294–305 (2017)

33. Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., Bacchelli, A.: On the rela-
tion of test smells to software code quality. In: IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 1–12. IEEE (2018)

34. Tufano, M., et al.: An empirical investigation into the nature of test smells. In:
International Conference on Automated Software Engineering, pp. 4–15 (2016)

35. Tufano, M., et al.: When and why your code starts to smell bad. In: IEEE Inter-
national Conference on Software Engineering, vol. 1, pp. 403–414 (2015)

https://doi.org/10.1007/978-3-030-29238-6_19

Microservices Backlog - A Model
of Granularity Specification and Microservice

Identification

Fredy H. Vera-Rivera1,2,4(&) , Eduard G. Puerto-Cuadros1 ,
Hernán Astudillo3 , and Carlos Mauricio Gaona-Cuevas4

1 Universidad Francisco de Paula Santander, San José de Cúcuta, Colombia
fredyhumbertovera@ufps.edu.co

2 Foundation of Researchers in Science and Technology of Materials,
Bucaramanga, Colombia

3 Universidad Técnica Federico Santa María, Valparaíso, Chile
4 Universidad del Valle, Cali, Colombia

Abstract. Microservices are a software development approach where applica-
tions are composed of small independent services that communicate through
well-defined APIs. A major challenge of designing these applications is deter-
mining the appropriate microservices granularity, which is currently done by
architects using their judgment. This article describes Microservice Backlog
(MB), a fully automatic genetic-programming technique that uses the product
backlog’s user stories to (1) propose a set of microservices for optimal granu-
larity and (2) allow architects to visualize at design time their design metrics.
Also, a new Granularity Metric (GM) was defined that combines existing
metrics of coupling, cohesion, and associated user stories. The MB-proposed
decomposition for a well-known state-of-the-art case study was compared with
three existing methods (two automatics and one semi-automatic); it had con-
sistently better GM scoring and fewer average calls among microservices, and it
allowed to identify critical points. The wider availability of techniques like MB
will allow architects to automate microservices identification, optimize their
granularity, visually assess their design metrics, and identify at design time the
system critical points.

Keywords: Microservices architecture � Granularity � Decomposition �
Cohesion metrics � Coupling metrics � Complexity metrics � User stories

1 Introduction

The microservices architectural changes the way applications are created, tested,
implemented, and maintained. By using microservices, a large application can be
implemented as a set of small applications that can be developed, deployed, expanded,
managed, and monitored independently. Agility, cost reduction and granular scalability
entail some challenges such as the complexity of managing distributed systems [1]. The
appropriate size (granularity) of the microservice is one of their most discussed
properties and there are few patterns, methods, or models to determine how small a

© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 85–102, 2020.
https://doi.org/10.1007/978-3-030-59592-0_6

http://orcid.org/0000-0003-4003-497X
http://orcid.org/0000-0001-9361-5837
http://orcid.org/0000-0002-6487-5813
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-59592-0_6

microservice should be. Thus Soldani et al. [2] argue that there is difficulty identifying
the business capacities and delimited contexts that can be assigned to each microser-
vice. Bogner et al. [3] note that methodologies and techniques must facilitate dimen-
sioning and versioning of microservices. Zimmerman [4] wonders how to find an
adequate service cut, (i.e. “how small or fine is small enough”). Jamshidi et al. [5]
notice the lack of agreement on the correct size of microservices.

We introduce the Microservice Backlog, which allows to analyze graphically
microservices granularity, starting from a set of functional requirements expressed as
user stories within a product backlog (prioritized and characterized list of functionalities
that an application must contain [6]); we propose a model that helps to define the size
and number of microservices using genetic programming; it shows the microservices
that are going to be part of an application detailing its dependencies, functionalities and
coupling, cohesion, and complexity metrics at design time. Therefore, we can observe
and evaluate the microservices’ granularity and analyze how the application will be
implemented and structured.

The major contributions from this work are: 1) a model for determining and
evaluating the granularity of microservices, establishing the number of user stories
assigned to a microservice and the number of microservices that are part of the
application, ensuring that microservices have low coupling and high cohesion, 2)
identified and adapted metrics of complexity, coupling, cohesion, and size of the
microservice, 3) mathematical formalization of an application based on microservices
in terms of user stories and metrics, and 4) A genetic algorithm to propose a decom-
position of user stories into microservices.

The remainder of this paper is organized as follows, Sect. 2 related works; Sect. 3
Methodology and evaluation methods used; Sect. 4 our approach; Sect. 5 discussing
results; and Sect. 6: Summarizes our conclusions.

2 Related Works

Methods and techniques have been proposed to define the granularity of microservices,
for example:

Service Cutter a method and tool framework for service decomposition [7]. In
Service Cutter approach, coupling information is extracted from software engineering
artifacts. Its approach is more for SOA applications. Hassan and Bahsoon [8] propose
microservice ambients, which use “aspects” to define the adaptation behavior needed to
support changes in granularity at runtime. Hasselbring and Steinacker [9], to achieve
adequate granularity, propose a vertical decomposition in self-contained systems
throughout the business services. Gouigoux and Tamzalit [10] explain that choice of
granularity should be based on the balance between the costs of quality assurance and
the cost of deployment. Baresi et al. [11] propose Microservices Identification Through
Interface Analysis (MITIA), they address the problem of granularity by proposing an
automated process to identify candidate microservices through a light semantic anal-
ysis, independent of the domain of the concepts in the input specification concerning a
reference vocabulary. They perform an analysis of the semantic similarity of the
functionalities described in OpenApi. Tyszberowicz et al. [12] describe a systematic

86 F. H. Vera-Rivera et al.

approach to identify microservices in the initial design phase that is based on speci-
fication the functional requirements of the system and that uses functional decompo-
sition. Abdullah et al. [13] design a method to automatically decompose a monolithic
application into microservices to improve the scalability and performance. They use the
application’s access logs and an unsupervised machine learning method, scale
weighted k-means. De Alwis et al. [14] mathematically define a business system and a
microservices-based system, then define heuristics to identify microservices. They
propose a microservice discovery algorithm. Mazlami et al. [15] present a Graph-based
clustering algorithm and a Class-based extraction model for the extraction of
microservices from monolithic software architecture based on source code. Chen et al.
[16] propose a top-down decomposition approach driven by data flows of business
logic. Taibi and Syst [17] propose a process-mining approach to identify business
processes in an existing monolithic solution based on three steps. In the first step, a
process-mining tool is used to identify business processes. In the second step, processes
with common execution paths are clustered and a set of microservices. In the third step,
they propose a set of metrics to evaluate the decomposition quality. Jin et al. [18]
propose Functionality-oriented Service Candidate Identification (FoSCI) framework to
identify service candidates from a monolithic system, through extracting and pro-
cessing execution traces. Microservices API patterns (MAP) [19] define some design
and implementation patterns.

The above methods are mainly used in migrations from monoliths to microservices.
The use of artificial intelligence is a subject of great interest, being the clustering
algorithms the most used. Few methods support development from scratch (greenfield
development). Different input data have been used, such as use cases, OpenApi
specification, source code, dataflow diagram, database, execution call graphs, execution
logs, and execution traces; mainly these methods are used at design and development
time. The proposed method is used at design time, it uses user stories as input data and
focuses on agile software development, none of the identified methods focus on these
aspects. We characterized the process of applications based on microservices in [20]
and we used that development process in [21].

3 Methodology

Based on one approach proposed by Hevner et al. [22]. The artifact to be created is the
intelligent model of specifying the granularity of microservices that are part of an
application. DSR implies a continuous and iterative assessment of the proposed artifact.
Figure 1 shows the research model.

1. Identify the problem. To identify the problem and its relevance, a review of the
state of the art was developed, research gaps were identified and the research questions
for this work were formulated.

2. Identify and adapt the metrics. A systematic literature review was done to
identify metrics that can be used to define the granularity. Section 3 shows these
metrics.

Microservices Backlog 87

3. Design the intelligent granularity model. A proposal of a formal specification
of the granularity model can be found in Sect. 4.1. While a definition of a genetic
algorithm for microservices decomposition is explained in Sect. 4.2

4. Evaluate in an academic case study. A state-of-the-art example called Cargo
Tracking [11] was used to verify properly functioning and objectives compliance from
our model. A comparison between results from the case of study and decomposition
performed with DDD are shown in Fig. 4.

5. Build the intelligent granularity model. A genetic algorithm was implemented
to generate the decomposition of the product backlog into microservices. An algorithm
was implemented to evaluate metrics for decomposition. Sections 4 and 5 detail this
implementation.

6. Experimental evaluation.Metrics of Cargo Tracking case study are analyzed by
four methods: Domain-driven design (DDD), Service Cutter, Microservices Identifi-
cation Through Interface Analysis (MITIA) [11] and our approach Microservices
Backlog. Since DDD is the most widely used method for microservices identification,
our first evaluation verified that obtained decomposition was consistent and close to
that performed by DDD. A second evaluation compares decomposition made by our
method versus other decompositions methods.

7. Propose the intelligent granularity model. Proposing intelligent granularity
model. Based on metrics and analytical evaluation including adjustment through
researching a Microservice Backlog is proposed as an intelligent specification and
granularity evaluation model.

4 Our Approach

Agile practices are techniques used to control one aspect of the development process.
One of the most widely used agile practices is Sprint/iteration planning [23], tradi-
tionally expressed in user stories within the product backlog. A model to define

Fig. 1. Research model

88 F. H. Vera-Rivera et al.

microservices granularity from user stories and analyze some metrics is proposed.
A view of the model can be seen in Fig. 2.

1. Parameterize. It is responsible for taking input data and converting it into a
format that can be processed by the grouper. It extracts the key data, such as identifier,
name, description, estimated points, estimated time, scenario, observations, and
dependencies, from the user story. Later, with this data, the model can group the user
stories in microservices and calculate the metrics. The format of the user stories is a
JSON file or CVS where the key data are supplied.

2. Grouper. This component uses a genetic algorithm, which groups user histories
into microservices, considering cohesion and coupling metrics, as well as the number
of user stories associated with the microservice.

3. Metrics evaluator. This work considers the following metrics in the
microservices backlog [3]: 1) Complexity – Points: Estimated points of the effort
needed to develop the user story. The story points are an indicator of the speed of
development of the team. 2) Coupling – Absolute Importance of the Service (AIS):
The number of clients that invoke at least one operation of a microservice’s interface
[24]. 3) Coupling – Absolute Dependence of the Service (ADS): The number of other
microservices that microservice depends on. The number of microservices from which
invokes at least one operation [24]. 4) Coupling – Microservices Interdependence
(SIY): Number of interdependent microservices pairs [24]. 5) Cohesion - Lack of
cohesion (LC): Measured as the number of pairs of microservices not having any
dependency between them, adapted from [25]. LC of MSi was defined by us as the
number of pairs of microservices not having any interdependency between MSi.
6) Weighted Service Interface Count (WSIC): It is the number of exposed interface
operations of the microservice [26]. For our model, a user story is related to an

Fig. 2. Intelligent model of granularity specification

Microservices Backlog 89

operation (one-to-one); so, we adapt this metric as the number of user stories associated
wiht the microservice. 7) Development Time: Estimated time of development in hours
for the microservice. Summation of the estimated time of each user story that is part of
the microservice.

4. Optimization. This optimizer allows finding the most optimal solution that
meets certain conditions (non-functional requirements, test costs, cost of deployment,
etc.), performing operations of union and decomposition of the microservices candi-
dates. This optimizer will be addressed in future work, due to the time and scope of the
research.

5. Outputs of the model. The calculated metrics and the microservices backlog
diagram. Figure 3 shows Microservices Backlog for the Cargo Tracking application.

The microservices backlog in Fig. 3 was obtained by decomposition using DDD
and the next steps: 1) The user stories were loaded. 2) The dependencies between the
stories were defined. 3) The entities were identified. 4) The aggregates were defined, 5)
The delimited contexts were established, the entities and their respective user histories
were associated. 6) The metrics were calculated by the evaluator. Specific metrics for
each microservice and the whole application. It can be highlighted that the grouper
component of our model automatically identifies the candidate microservices, then the
steps 3 to 5 are automatic.

From the model, the designer can see the size of each microservice, as well as its
complexity, dependencies, coupling, cohesion, and development time. The architect
can notice at first sight that the orange microservice is a critical point of the system if
this microservice failure, then the whole system can fail because it is used by all the

Fig. 3. Microservices backlog for Cargo Tracking using DDD decomposition

90 F. H. Vera-Rivera et al.

others. The architect at design time can already think about fault tolerance mechanisms,
load balancing and monitoring on that critical microservice. They can have a vision of
the global system in design time.

4.1 Formal Specification of the Granularity Model

Specification formal of the granularity model will be given in terms of the metrics stated
in the previous section and by the target function (GM). It is intended to MINIMIZE
(GM). GM is defined below. Let microservice-based application MSBA as:

MSBA = MS, MTð Þ ð1Þ

Where MS is a set of microservices, MS = {MS1, MS2,…MSn} and MT is a set of
the metrics calculated for MSBA. Then:

MSi ¼ HU, MTSð Þ ð2Þ

Where MSi is the ith microservice, HU is the set of user stories associated with the
ith microservice, then HU = {HU1, HU2, …, HUm}. MTS is a set of metrics calculated
for MSi. In this case, the calculated and used metrics in the model correspond to the
coupling (CpT), the cohesion (CohT) and the number of stories associated with the
microservice (WsicT). These metrics are defined below.

Coupling Metrics. Coupling is defined by three metrics: 1) absolute importance of the
service (AIS), 2) absolute dependence of the service (ADS), and 3) microservices
interdependence (SIY). These metrics are calculated based on the dependencies of the
user stories for each microservice.

AISi is the number of clients invoking at least one operation of MSi. At the system
level, the AIS vector is defined, which contains the calculated AIS value for each
microservice. To calculate the total value of AIS at the system level (AisT), the AIS
vector norm is calculated. Thus:

AIS ¼ AIS1;AIS2; . . .;AISn½ � ð3Þ

AisT ¼ AISj j ð4Þ

ADSi is the number of other microservices on which the MSi depends. To calculate
the total value of ADS at the system level (AdsT), the ADS vector norm is calculated.
Then:

ADS ¼ ADS1;ADS2; . . .;ADSn½ � ð5Þ

AdsT ¼ ADSj j ð6Þ

SIY defines the number of pairs of microservices that depend bi-directionally on
each other divided by the total number of microservices. At the system level, the vector
SIY was defined:

Microservices Backlog 91

SIY ¼ SIY1; SIY2; . . .; SIYn½ � ð7Þ
SiyT ¼ SIYj j ð8Þ

Let the Cp vector as the system level coupling metric, calculating the norm of the
vector Cp we have the coupling value for the application (CpT):

Cp ¼ AisT, AdsT, SiyT½ � ð9Þ

CpT ¼ Cpj j ð10Þ

Cohesion Metric. In the same way, the cohesion for the ith microservice is defined by
the metric lack of cohesion (LC), The degree of cohesion of each microservice is
defined as the proportion of the Lack of cohesion metric divided by the total number of
microservices that are part of the application.

Cohi ¼ LCi=n ð11Þ

Where n is the number of microservices. At the system level, the vector Coh was
defined, calculating the norm of the vector Coh we have the cohesion value for the
application (CohT):

Coh ¼ Coh1;Coh2; . . .;Cohn½ � ð12Þ

CohT ¼ Cohj j ð13Þ

Indeed, the MT vector is defined as follows:

MT ¼ CpT; CohT; WsicT½ � ð14Þ

Where, CpT use (10), CohT use (13) and WsicT is defined as the highest WSIC
value. We adapt WSIC as the number of user stories assigned to each microservice.
Finally, the value of the target function GM use (14), it is defined as the MT vector
norm.

GM ¼ MTj j ð15Þ

This mathematical expression allows us to determine how good or bad is the
decomposition. The aim is to obtain a solution with low complexity, low coupling, and
high cohesion. The genetic algorithm seeks to find the best combination, the best
assignation of stories to microservices in such a way that GM is lower. The genetic
algorithm is then designed as follows.

92 F. H. Vera-Rivera et al.

4.2 Genetic Algorithm for Microservices Decomposition

The genetic algorithms were established by Holland [27], it is iterative, in each iteration,
the best individuals are selected, everyone has a chromosome, which is crossed with
another individual to generate the new population (reproduction), some mutations are
generates to find the optimal solution to the problem [28]. Our genetic algorithm consists
in distributing or assigning user stories to microservices automatically, considering
coupling and cohesion metrics. The implemented methods are explained below:

Get Initial Population Method. There is a set of user stories HU = {HU1, HU2, HU3,
…, HUm}, which must be assigned to the microservices. We have a set of microservices
MS = {MS1, MS2, MS3, …, MSn} and some metrics calculated from the information
contained in the user story. Individuals are defined from the assignment of stories to
microservices, therefore, the chromosome of each individual is defined from an
assignment matrix of ones and zeros, wherein the columns there are user stories and in
the rows are the microservices, and the cross contains a 1 when the user story is assigned
to the microservice or zero if not. In Table 1, an example is presented for 2 microser-
vices MS = {MS1, MS2} and 5 user stories HU = {HU1, HU2, HU3, HU4, HU5}.

The resulting chromosome would be the union of the assignments of each user
story to each microservice, for this case, it would be: Chromosome: 10011 01100.
From this chromosome, it is possible to define the function of adaptation or objective
function, it uses (15).

Reproduction Method. A different assignment would be generated from selected
parents. In our method, the father and mother are randomly selected from the popu-
lation; to generate the child information is taken from the father and mother, from the
assignment matrix the first columns of the father are taken, and the last columns of the
mother are joined, generating a new assignment. It must be considered that a user story
cannot be assigned twice, this means that in the assignment matrix only one can appear
in each column. Example: Given the two chromosomes: 1) Father: 10011 01100.
2) Mother 01000 10111. The son would be 10000 01111.

Mutation Method. The mutation indicates changing a random bit of the chromosome,
changing a bit of the chromosome of this problem from 1 to 0 or from 0 to 1, implies
that a user story is assigned or unassigned to a microservice and this must be assigned
or unassigned to another microservice. This implies that the mutation is done on two
bits. Example: Mutate bit 7 of the obtained chromosome: 01011 10100. Mutated
chromosome: 00011 11100. The mutated chromosomes must be included in the pop-
ulation. This process is carried out randomly, the individuals to be mutated are selected

Table 1. Example of an assignment matrix

Microservices HU1 HU2 HU3 HU4 HU5

MS1 1 0 0 1 1
MS2 0 1 1 0 0

Microservices Backlog 93

from the population, the mutation of a bit is also carried out randomly, for the mutation
the value of the target function is calculated and included in the population.

Select Better Method: In the processes of genetic selection, the strongest survive, in
the case of the problem of the automatic generation of the assignment of user histories
to microservices, the n individuals who best adapt to the conditions of the problem
survive. The assignments that imply a lower GM. The selection is made from the
objective function, this is applied to each individual and the population is ordered in
ascending form, considering the first places, the best individuals, corresponding to the
assignments involving lower GM using (15).

Convergence: To determine the convergence of the method, the number of iterations
or generations of the population to be processed is defined. At the end of the iterations,
the algorithm is stopped, and the chromosome located in the first place is selected,
which would be the best assignment of user stories to microservices. For the case
studies used to evaluate the proposed method, a population of 1000 individuals were
generated, with 100 iterations or generations, with 500 children and 500 mutations in
each generation. The algorithm was tested several times obtaining the same result, even
with more individuals and more iterations.

5 Results

The genetic algorithm was implemented in Java, to evaluate its results we use a case
study and a quasi-experiment.

5.1 Evaluation in an Academic Case Study – Cargo Tracking Application

Baresi et al. [11] the describe Cargo Tracking application as follow, the focus of the
application is to move a Cargo (identified by a TrackingId) between two Locations
through a RouteSpecification. Once a Cargo becomes available, it is associated with
one of the Itineraries (lists of CarrierMovements), selected from existing Voyages.
HandlingEvents then trace the progress of the Cargo on the Itinerary. The Delivery of a
Cargo informs about its state, estimated arrival time, and is on track. From the domain
model proposed, we extracted and raised user stories and the product backlog is
detailed in Table 2. The points and times are input data to the model. I this case they
were estimated according to our experience and correspond to the effort and time
involved in developing each user story.

A critical point of the proposed method is the dependencies between user stories.
They must be identified and provided as input to the method, this information is
included within the user stories. The parameterizing component offers functionality to
define dependencies between user stories. We define a dependence between HUi and
HUj when HUi calls or executes HUj. For example, to create a voyage (HU1) you must
get the locations (HU12), this implies that the HU1 has a dependence on HU12. Table 3
presents the dependencies identified by us among the user stories. The dependencies
were calculated according to the logic of the application understood by us. To illustrate
the proposed genetic algorithm the statement of these dependencies is valid.

94 F. H. Vera-Rivera et al.

Dependencies are used to calculate the metrics, for example, to calculate the AIS metric
of the decomposition obtained with DDD for the microservice called Localization (see
Fig. 4). MS1 (Voyage) = {HU1, HU3, HU13}, MS2 (Tracking) = {HU2, HU5, HU14},
MS3 (Localization) = {HU4, HU12}, MS4 (Voyage Planning) = {HU6, HU7, HU8, HU9, HU10,
HU11}. AIS is the number of clients that invoke at least one operation of a
microservice’s interface. Then we count the number of microservices that invoke or use
HU4 o HU12 from the dependencies. HU4 is not used by any other user stories, it does
not appear in any dependencies (See Table 3), while HU12 is used by HU1, HU2, HU3.
HU8, HU9, and HU10 corresponding to 3 microservices, therefore AIS = 3. Similarly,
other metrics are calculated.

Table 2. Product backlog for Cargo Tracking application

ID Name Points Estimated dev. time (hours)

HU1 Create voyage 3 5
HU2 Handle cargo event 3 5
HU3 Add carrier movement 5 7
HU4 Create location 2 3
HU5 View tracking 3 5
HU6 Create cargo 7 10
HU7 Route cargo 5 7
HU8 Create leg 2 3
HU9 Book cargo 5 7
HU10 Change cargo destination 1 2
HU11 Create delivery 7 10
HU12 Get locations 2 3
HU13 Get carrier status 3 5
HU14 Get routes status 3 5
Total 51 77

Table 3. User stories dependences

User stories Dependences User stories Dependences

HU1 {HU12, HU3} HU8 {HU12}
HU2 {HU12} HU9 {HU12}
HU3 {HU12} HU10 {HU12}
HU4 {} HU11 {HU6, HU13, HU14}
HU5 {} HU12 {}
HU6 {HU7, HU9, HU11} HU13 {HU5}
HU7 {HU8} HU14 {HU5}

Microservices Backlog 95

Figure 4 presents the microservice backlog for the decompositions generated by the
genetic algorithm compared with DDD for Cargo Tracking. Our method obtained the
same number of microservices, this being an important approximation to DDD. Our
method does not consider the semantic similarity between user stories. For example,
HU4 and HU12, both are related to the Localization concept, as they are concepts
related to the same, they must be associated with the same entity and therefore to the
same microservice. In our method those stories were assigned in separate microser-
vices, so they do not have any dependence between them (i.e. HU4 has not dependence
with HU12). The decomposition performed by our method is different from DDD, our
model does not group the entities and their stories or operation that make up the
aggregate into a microservice.

With the decomposition obtained with the genetic algorithm, the critical point of
failure of the proposed DDD solution is removed, Localization microservice is used for
all microservices. The number of calls between microservices is reduced, thus
improving performance. The maximum number of operations associated with a
microservice is also reduced, as well as the estimated development time. In the
decomposition generated by genetic programming, two microservices can function
independently without depending on other microservices. Whereas in the solution
proposed by DDD, one microservice can function independently. In the decomposition
proposed by DDD, there are more dependencies. Therefore, the proposed model and
the genetic algorithm considerably improves the decomposition and identification of
microservices. To generalize this result, validation must be carried out in future work
with more complex case studies specifically with real industry cases.

By distributing user stories differently, shorter development times of the entire
system can be obtained. Considering that each microservice is developed by an
independent team in parallel.

Fig. 4. Microservices backlog for the result of the DDD vs genetic algorithm.

96 F. H. Vera-Rivera et al.

5.2 Quasi-Experimental Evaluation

To evaluate the results obtained by the model of specification of the granularity, we use
the work done by Baresi et al. [11], they propose a decomposition to microservices of
the Cargo Tracking case study using interface analysis and semantic similarity
(MITIA), they also propose the decomposition of that same case using Service Cutter,
we take those results and propose an experiment to compare our model with these
methods, we include the decomposition performed by DDD. Also, we include a
hypothetical case where only one user story was added per microservice, we call it
14MS, this corresponds to the case of the finest granularity, additionally, we include the
monolithic solution. MITIA and Service Cutter propose the result of the decomposition
in a domain model from there we determine the association of user stories and
microservices. We use a quasi-experiment for evaluating our method against the other
methods. The definition of the quasi-experiment is detailed below.

Scope: Compare the granularity specification model with the decomposition methods
selected from the state of the art (DDD, Service Cutter, MITIA, 14MS and monolithic)
for the Cargo Tracking case study. The GM granularity metric is evaluated in the
decompositions obtained with each method to determine the accuracy of the proposed
model. GM is calculated from coupling metrics, cohesion and number of operations
assigned to each microservice.

Planning. 1) Objects of study: Microservices Backlog, DDD, Service Cutter, MITIA,
14 MS, and monolithic solution. 2) Independent variables: User stories dependences,
decomposition obtained by each method. 3) Dependent variables: GM, Metrics: AisT,
AdsT, SiyT, CpT, CohT, and number of microservices.

Hypothesis Formulation. H0: Our microservices backlog model does not present a
better decomposition in microservices, therefore the value of GM is greater than GM of
the other methods, then the application has not better coupling and cohesion. H1: Our
microservices backlog model presents a better decomposition in microservices,
therefore the value of GM is lower than GM of the other methods, then the application
has better coupling and cohesion.

Operation. The quasi-experiment is carried out in the laboratory, the decomposition
for the Cargo Tracking case study is determined for each one of the methods (see
Table 4). Based on the dependencies of the user histories, the metrics are calculated
and the value of GM for each decomposition (see Table 5). Another set of metrics were
calculated for better analysis (see Table 6).

Analysis & Interpretation. The data collected correspond to the values calculated for
the metrics and the GM function for each one of the methods compared. From the
results obtained for each metric, the lowest and highest value is identified, to evaluate
the hypotheses proposed. The data and hypothesis raised are simple and their validation
does not require additional statistical analysis. Rejecting the Ho hypothesis indicates
that the decomposition proposed by our model is better than the decomposition pro-
posed by the other methods.

Microservices Backlog 97

Experiment Results and Discussions. First, the decomposition obtained by each of
the methods is detailed. Table 4 shows these results. Second, we tabulate the results
obtained for each metric. these can be seen in Table 5. Finally, we identify the methods
that obtained lower and higher values for each metric including GM.

MITIA considers the semantic similarity between the operations, for that reason a
distribution closer to DDD can be appreciated. The Service Cutter has one less
microservice, but the distribution is like DDD, although the number of operations
exposed by MS3 is greater. Based on the calculated metrics, it can be appreciated that
our decomposition presents a smaller coupling compared to the other methods. In this
case, the cohesion is given in terms of the number of microservices that are part of the
application, having more microservices this value will be greater; for this reason, the
highest cohesion is presented by the decomposition with 14MS. But the value of the
cohesion of our method is equal to that obtained with DDD and greater than Service
Cutter and MITIA.

As future work, other cohesion metrics will be considered and revised to be more
precise in their calculation. Our method presents the lowest number of user stories or
operations associated with a microservice (WsicT), with a value of 4 stories. The
highest value is presented by Service Cutter with 10 stories associated with a single
microservice, thus Service Cutter has a greater complexity of both implementation and
operation.

Table 4. Comparison of the decompositions of the methods evaluated

ID Number of
microservices

Microservices decomposition

Our approach:
microservices backlog

4 MS1 = {HU1, HU2, HU3, HU12}
MS2 = {HU4, HU6, HU7, HU11}
MS3 = {HU5, HU13, HU14}
MS4 = {HU8, HU9, HU10}

DDD 4 MS1 = {HU1, HU3, HU13}
MS2 = {HU2, HU5, HU14}
MS3 = {HU4, HU12}
MS4 = {HU6, HU7, HU8, HU9, HU10, HU11}

Service cutter 3 MS1 = {HU4, HU12}
MS2 = {HU2, HU5}
MS3 = {HU1, HU3, HU6, HU7, HU8, HU9,
HU10, HU11, HU13, HU14}

MITIA 4 MS1 = {HU3, HU9, HU10, HU13}
MS2 = {HU1, HU2, HU5, HU11, HU14}
MS3 = {HU6}
MS4 = {HU4, HU7, HU8, HU12}

98 F. H. Vera-Rivera et al.

Table 5 shows that the value of the GM obtained by our model is lower than all the
other methods analyzed, additionally, the coupling (CpT) was the lowest, with the
fewest number of stories associated with a microservice (WsicT), the cohesion (CohT)
was the highest compared to DDD, Service Cutter, and MITIA. Therefore, we reject the
H0 hypothesis, which indicates that the decomposition proposed by our model is better
than the decomposition proposed by the other methods, in terms of the metrics proposed
in this work. The value obtained in the GM function for the monolithic application is the
highest, in the same way, the GM value for 14MS is not the lowest, the appropriate
solution is an intermediate point between the finest granularity (14MS) and the thickest
granularity (Monolith), therefore, the mathematical formalization fits the expected.

Also, we calculate other metrics to evaluate the proposed methods: 1) Points:
Greater number of story points associated with a microservice. 2) Average of Calls:
that indicates the average of calls that a microservice makes to another microservice.
3) Development time: Each user story has an associated estimated development time,
therefore the estimated development time of the MSi is the sum of the development
time of each user story associated with the MSi, Table 6 shows these metrics.

The lowest number of story points without considering the metrics calculated for 14
MS corresponds to MITIA with 19 points. The shortest development time was the
decomposition proposed by MITIA with 30 h. Our method obtains one close value of
21 points and 30 h of development respectively, being these values better than DDD
and Service Cutter. The average number of calls of our approach is less than DDD,
Service Cutter, and MITIA. This metric measure or determine the degree of depen-
dence that have the microservices that are part of the application, a larger value implies

Table 5. Metrics calculated for the decompositions of the methods evaluated

Metrics Methods
14MS DDD Service cutter MITIA Our approach Monolith

Number of MS 14 4 3 4 4 1
AisT 6.93 3.74 2.24 4.24 1,73 0
AdsT 5.48 3,74 2.24 4.69 2,24 0
SiyT 1.41 0 0 2,45 0 0
Coupling CpT 8.94 5.29 3.16 6.78 2.83 0
Cohesion CohT 3.44 1.5 1.15 1.06 1.5 0
WsicT 1 6 10 5 4 14
GM 9.63 8.14 10.55 8.49 5.12 14

Table 6. Other metrics for microservices backlog

Metrics 14MS DDD Service cutter MITIA Our approach Monolith

Max. points 7 27 41 19 21 52
Avg. calls 1.14 2.25 2.67 3 1.50 0
Dev. time (hours) 10 39 61 30 30 77

Microservices Backlog 99

a greater dependence and lower performance because they require the execution of
operations that belong to other microservices in other containers.

6 Conclusions

This paper proposes the Microservices Backlog a genetic-programming technique that
calculates at design time each microservices’ granularity. This model uses as inputs the
user stories expressed in the product backlog, to decompose the functionalities or
requirements of the application into microservices. To evaluate our proposal, the case
study Cargo Tracking was used, the decomposition made with DDD, service Cutter and
Microservices Identification Through Interface Analysis (MITIA) were compared. The
decomposition performed by our model has less coupling, greater cohesion, fewer
operations associated with a microservice, a better average of calls from one
microservice to another and lower value in the proposed objective mathematical
function (GM) used in the genetic algorithm. This algorithm allows us to model and
evaluates the level of granularity of the microservices that are part of the application at
design time.

To model and define the right granularity we identify and adapt metrics of com-
plexity: estimated story points; metrics of coupling: absolute importance of the service
(AIS), absolute dependence of the service (ADS), microservices interdependence
(SIY); metrics of cohesion: lack of cohesion (LC) and degree of cohesion (CohT); and
metrics of size of the microservice: weighted service interface count (WSIC). These
metrics were used to determine the most suitable decomposition with less coupling,
high cohesion, and fewer assigned user stories. Mathematical formalization of an
application based on microservices in terms of user stories and metrics was proposed.
Too coarse-grained microservices could lead to significant drawbacks, while too fine-
grained services could increase the system’s overall complexity and performance, our
model found the right service granularity at design time, based on the mathematical
function proposed GM for the genetic program.

References

1. Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Gil, S.: Evaluating the
monolithic and the microservice architecture pattern to deploy web applications in the cloud.
In: 10th Computing Colombian Conference, pp. 583–590 (2015)

2. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.-J.: The pains and gains of microservices: a
systematic grey literature review. J. Syst. Softw. 146, 215–232 (2018)

3. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintainability of
service- and microservice-based systems. In: Proceedings of the 27th International
Workshop on Software Measurement and 12th International Conference on Software
Process and Product Measurement on - IWSM Mensura 2017, pp. 107–115 (2017)

4. Zimmermann, O.: Microservices tenets: agile approach to service development and
deployment. Comput. Sci. Res. Dev. 32(3–4), 301–310 (2017)

5. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices: the journey so
far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

100 F. H. Vera-Rivera et al.

6. Beck, K., Fowler, M.: Planning Extreme Programming. Addison Wesley, Boston (2001)
7. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a systematic

approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski,
I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44482-6_12

8. Hassan, S., Ali, N., Bahsoon, R.: Microservice ambients: an architectural meta-modelling
approach for microservice granularity. In: Proceedings - 2017 IEEE International Conference
on Software Architecture, ICSA 2017, pp. 1–10 (2017)

9. Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility and
reliability in e-commerce. In: Proceedings - 2017 IEEE International Conference on
Software Architecture Workshops, ICSAW 2017: Side Track Proceedings, pp. 243–246
(2017)

10. Gouigoux, J.P., Tamzalit, D.: From monolith to microservices: lessons learned on an
industrial migration to a web oriented architecture. In: Proceedings - 2017 IEEE
International Conference on Software Architecture Workshops, ICSAW 2017: Side Track
Proceedings, pp. 62–65 (2017)

11. Baresi, L., Garriga, M., De Renzis, A.: Microservices identification through interface
analysis. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017. LNCS, vol.
10465, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67262-5_2

12. Tyszberowicz, S., Heinrich, R., Liu, B., Liu, Z.: Identifying microservices using functional
decomposition. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.) SETTA 2018. LNCS, vol.
10998, pp. 50–65. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99933-3_4

13. Abdullah, M., Iqbal, W., Erradi, A.: Unsupervised learning approach for web application
auto-decomposition into microservices. J. Syst. Softw. 151, 243–257 (2019)

14. De Alwis, A.A.C., Barros, A., Polyvyanyy, A., Fidge, C.: Function-splitting heuristics for
discovery of microservices in enterprise systems. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q.
(eds.) ICSOC 2018. LNCS, vol. 11236, pp. 37–53. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03596-9_3

15. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic software
architectures. In: 2017 IEEE International Conference on Web Services (ICWS), pp. 524–
531 (2017)

16. Chen, R., Li, S., Li, Z.: From monolith to microservices: a dataflow-driven approach. In:
2017 24th Asia-Pacific Software Engineering Conference (APSEC), pp. 466–475 (2017)

17. Taibi, D., Systä, K.: From monolithic systems to microservices: a decomposition framework
based on process mining. In: International Conference on Cloud Computing and Services
Science - CLOSER 2019, no. March (2019)

18. Jin, W., Liu, T., Cai, Y., Kazman, R., Mo, R., Zheng, Q.: Service candidate identification
from monolithic systems based on execution traces. IEEE Trans. Softw. Eng. (2019)

19. Zimmermann, O., Stocker, M., Zdun, U., Lübke, D., Pautasso, C.: Microservice API Patterns
(2019). https://www.microservice-api-patterns.org/introduction. Accessed 17 Dec 2019

20. Vera-Rivera, F.H.: A development process of enterprise applications with microservices.
J. Phys: Conf. Ser. 1126(17), 012017 (2018)

21. Vera-Rivera, F.H., Vera-Rivera, J.L., Gaona-Cuevas, C.M.: Sinplafut: a microservices –

based application for soccer training. J. Phys: Conf. Ser. 1388(2), 012026 (2019)
22. Bichler, M.: Design science in information systems research. MIS Q. 28(1), 75–105 (2006)
23. Versionone Enterprise, “13 Anual State of Agile Report” (2018). http://stateofagile.com/

#ufh-i-521251909-13th-annual-state-of-agile-report/473508

Microservices Backlog 101

https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1007/978-3-319-99933-3_4
https://doi.org/10.1007/978-3-030-03596-9_3
https://doi.org/10.1007/978-3-030-03596-9_3
https://www.microservice-api-patterns.org/introduction
http://stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508
http://stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508

24. Rud, D., Schmietendorf, A., Dumke, R.R.: Product metrics for service-oriented infrastruc-
tures. In: Conference: Applied Software Measurement. Proceedings of the International
Workshop on Software Metrics and DASMA Software Metrik Kongress (IWSM/MetriKon
2006) (2006)

25. Candela, I., Bavota, G., Russo, B., Oliveto, R.: Using cohesion and coupling for software
remodularization: is it enough? ACM Trans. Softw. Eng. Methodol. 25(3), 1–28 (2016)

26. Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: A metrics suite for evaluating flexibility and
complexity in service oriented architectures. In: Feuerlicht, G., Lamersdorf, W. (eds.)
ICSOC 2008. LNCS, vol. 5472, pp. 41–52. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01247-1_5

27. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Michigan (1975)

28. Herrera, F., Lozano, M., Verdegay, J.L.: Algoritmos Genéticos: Fundamentos, Extensiones y
Aplicaciones. ProQuest (1995)

102 F. H. Vera-Rivera et al.

https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1007/978-3-642-01247-1_5

Automated Web Service Specification
Generation Through

a Transformation-Based Learning

Mehdi Bahrami(B) and Wei-Peng Chen

Fujitsu Laboratories of America, Sunnyvale, CA, USA
{mbahrami,wchen}@fujitsu.com

Abstract. Web Application Programming Interface (API) allows third-
party and subscribed users to access data and functions of a software
application through the network or the Internet. Web APIs expose data
and functions to the public users, authorized users or enterprise users.
Web API providers publish API documentations to help users to under-
stand how to interact with web-based API services, and how to use the
APIs in their integration systems. The exponential raise of the number
of public web service APIs may cause a challenge for software engineers
to choose an efficient API. The challenge may become more complicated
when web APIs updated regularly by API providers. In this paper, we
introduce a novel transformation-based approach which crawls the web
to collect web API documentations (unstructured documents). It gen-
erates a web API Language model from API documentations, employs
different machine learning algorithms to extract information and pro-
duces a structured web API specification that compliant to Open API
Specification (OAS) format. The proposed approach improves informa-
tion extraction patterns and learns the variety of structured and ter-
minologies. In our experiment, we collect a sheer number of web API
documentations. Our evaluation shows that the proposed approach find
RESTful API documentations with 75% accuracy, constructs API end-
points with 84%, constructs endpoint attributes with 95%, and assigns
endpoints to attributes with an accuracy 98%. The proposed approach
were able to produces more than 2,311 OAS web API Specifications.

Keywords: Web API service · REST API · Natural language
processing · Machine learning

1 Introduction

Web Application Programming Interface (API) [13] exposes data and software
functions to third-parties or subscribed users. Web APIs can be reached locally
or remotely by using REpresentational State Transfer (REST) [23] which is a
software architecture style that divides platform and programming language.
The web service REST APIs are core technology of software integration and it
c© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 103–119, 2020.
https://doi.org/10.1007/978-3-030-59592-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-59592-0_7

104 M. Bahrami and W.-P. Chen

has been used widely in cloud-based services and the Internet-of-Things (IoT)
devices. In addition, a third-party is able to efficiently integrate an external
functions or data through REST APIs in own native software applications.

API publishers charge users based on their number of API calls, usage of
API, or a flat rate. For instance, an API publisher may provide a range of free
API calls (e.g., 1000 free API calls per day) and charge additional fee for the
additional requests.

The power of APIs enable a web service provider to offer information without
sharing its own implementation. Different hardware devices also may use APIs
to expose their functionality and their internal data. For example, web APIs
in Internet-of-Tings (IoT) allows users to read or access data from a connected
device [11].

1.1 Motivation

This study aims answer to the following questions. (i) How we can construct API
specification from API documentation by employing machine-learning technol-
ogy? (ii) Is the approach scalable to apply the process to a variety of APIs?

With the rise in number of web APIs in the market, manually understanding
of all APIs and their endpoints is not only labor intensive but also it is an
error prone task for software engineers. Web APIs might be revised or updated
periodically, when it creating a significant overheads for software engineers to
keep track of all changes.

In a digital business when major digital services rely on different third-party
platforms, web API economy is the key point for determining the value of pro-
vided services. Software engineers need to choose the best web APIs for devel-
oping a reliable and cost effective service, which requires web API evaluation
by reading the API documentations. This concern raises several questions, How
software engineers find all relevant web APIs? How software engineers automat-
ically can evaluate web APIs without reading lengthy web API documentations?
The answer is accessing a machine-readable API specification. However, it raises
another challenge when majority of API providers do not have any standard API
specification.

In order to understand the variety of APIs in a standard format, we can
employ machine-learning to construct API specification. API Specification can
be used for automated API validation, automated API monitoring and auto-
mated API quality assessment [16]. An API Specification which aims to be gen-
erated by machine, allows software engineers to use automation on analyzing, val-
idating and code synthesis to generate software application. Machine-generated
API specification may also help API provider to offer better services such as
automated API testing when machine read API documentations and validate
information automatically. API specification opens door to a set of new tech-
nologies such as automated service integration when all required specifications
have been defined by machine.

Automated Web Service Specification Generation 105

1.2 Related Works

Although there are some existing standardization initiatives around API spec-
ification to produce a machine readable API specification but only major API
providers offers this type of format for their API specifications. API providers
may offer Open API Specification (OAS), YAML which is a human-friendly and
cross language machine readable format. Our goal in this study is to provide
a platform that produces OAS from any API documentations. Therefore, our
approach should be able to understand the variety of APIs.

There are also some studies around producing API specifications. For
instance, Robillard et al. [20] presented a field study by performing survey and
in-person interview to recommend how to design API documentations. However,
this study does not provide an automated approach to produce API specification.

Although the title of a study by Gu et al. [10] is similar to our work, it is
not an information extraction platform. The authors present a natural language
query-based platform to find API usage.

Zhong et al. [25] defined a method to create specification for Java APIs which
cannot be applied to REST API documentations. In another study, [7] shown a
composition architecture for API description. In a recent study, [24] enriches API
Guru by constructing API endpoints. However, our study focuses on a variety
of API documentations without considering a predefined OAS. Another alter-
native option is using web annotation to construct API specification which is
explained by Bahrami et al. [3]. Our approach in this paper employs several
machine learning algorithms to mitigate software engineers’ issues by mining
a large number of API documentations. It extracts information and constructs
OAS API Specifications for more than 2,311 APIs. Once we have a large number
of API specification, the API OAS file can be used to produce other artifact such
as automated API validation, automated code generation and API recommen-
dation.

This paper organized as follows. In the next section, we describe i) API Cor-
pus (Sect. 2.2) construction that includes a web-crawler and a REST API Filter
(Sect. 2.3) which uses a logistic-regression for filtering out non-REST API doc-
umentations; ii) Information Extraction (Sect. 2.6) that uses an API Language
Model (Word2Vec) and transformation-based learning algorithm; Table Extrac-
tion (Sect. 2.8) extracts HTML table tags and it constructs a SVM model to
detect API attributes (e.g., parameter); Sect. 3 defines our datasets and evalua-
tion results of each component. Finally, Sect. 4 summarizes this study.

2 Proposed Approach

Our proposed approach consist of an end-to-end platform with different compo-
nents. Figure 1 shows the key component of the proposed approach. Our goal
is extracting information from API documentations which is published by API
providers.

106 M. Bahrami and W.-P. Chen

2.1 Parallel Web Crawler

In the first step, we collect a massive number of API documentations. By col-
lecting a large number of API documentations, first, it allows us our proposed
machine learning algorithm to learn from a variety of data that enables the plat-
form to learn different API documentations with different structures. Second,
the proposed method learns from a volume of data that improves the accuracy
of information extraction. We use a parallel web crawler to collect a massive
number of API documentations which have been published by API providers. It
stores HTML file on a local disk.

Fig. 1. An overview of the key component of the proposed approach

2.2 API Corpus

API corpus is a collection of HTML pages of API documentations which are
collected by parallel web-crawler agents.

2.3 REST API Filter

This component allows API Learning to filter out the non-REST pages from
API Corpus. The REST API Filter employs a logistic regression model which
explained by [22] to detect REST API documentations. For each API documen-
tations we generate an array of k REST keywords where keyk

j represents the
term frequency of jth keyword in each document doci. The following equation
shows the logistic regression function. It is a linear classification model which
classifies the REST content and non-REST contents of collected HTML pages.

F (x) =
1

1 + e−(tf(doci,keyk
j)−th)

(1)

Automated Web Service Specification Generation 107

In Eq. 1, tf represents the linear function of variable doc (term frequency) for
each API documentations and keyk

j that indicates each keyj in kth REST key-
words. It clusters pages into REST or non-REST API documentations.

2.4 Tasks

In order to extract information from API Corpus, we have a set of rule-based reg-
ular expression patterns for different tasks. Each task includes an initial regular
expression pattern for the given task. For example, a task may define a regular
expression to extract API endpoint or to extract default value, maximum and
minimum values of a parameter. Each initial regular expression pattern can be
improved iteratively through a transformation-based learning [18]. In a related
study, [12] define a model to train a regular expression pattern to improve the
acceptance of a language per positive sample cases, authors apply some restric-
tion rules to the initial regular expression but it cannot extend the initial regular
expression. In our proposed method, we use both extension phase (by using API
Language Model and other rules) to extend the initial pattern, and reduction
phase that uses restriction rules to improve the pattern for accepting of a lan-
guage for a given task.

2.5 API Language Model

API Language Model is defined as a neural language model [5] that shows prob-
ability distribution on all sentences in API Corpus. It uses embedding of words
to predict word sequences and it is defined as follows.

∑

−k≤j−1, j≤k

log P (wt+j |wt) (2)

k denotes the previous words, j denotes the current word. Since this is a
domain-specific information extraction task, we cannot use existing language
models because it adds noise for our information extraction which is explained
in Sect. 2.6. To retrieve a similar word from the language model, we use a cosine
similarity [8] which measures the similarity of two words, W1,i and W2,i based
on their vector representations where i = [1..n] in defined API language model
of n APIs. By computing the similarity from the language model, it allows us to
retrieve all synonyms terminologies of (e.g., W1,i) which have been used in API
Corpus by different APIs.

2.6 Learning Diverse Extraction

We define several information extraction tasks where each task corresponds
to extraction a single information from API documentation. Accumulation of
output of all tasks (trained model) provide API specifications. In addition,
we use some tasks of trained model to categorize information. For example, a
task may classify the content of a table as a response type or a parameter type.

108 M. Bahrami and W.-P. Chen

We defined a set of positive and negative examples for each task. Each task
has an initial regular expression pattern and it is defined manually but it is
improved iteratively when it learns different positive and negative examples. We
use transformation-based learning where it consists of two phases that include
extension phase and reduction phase. In order to train a model that applies
different regular expression patterns to each task, we need to update the initial
regular expression pattern and expend the constant words which have been used
in initial pattern. The main target of two phases processing is updateding the
pattern. The second target is updating constant words which have been used
in initial patter because different API providers may require different patterns
to extract the same information in OAS (e.g., API endpoints). A trained task
should be trained based on both positive and negative examples. For instance,
Facebook uses the terminology of fields to describe the input parameters of an
endpoint1; but Google uses parameters to describe the input parameters of an
endpoint2.

By using API Language Model we can find synonymous of given constant
words from initial pattern (e.g., parameter) and add fields as an equivalent
terms in task definition. In this example, the final trained regular expres-
sion task should be able to extract fields from Facebook API documentations
and parameters from Google API documentations. It can construct API spec-
ification for both APIs. In the OAS of each API specification, the trained
task can extract both relevant information and constructs OAS parameters as:
paths→endpoint→HTTP Verb →parameters.

We develop a novel approach based on transformation-based learning as
explained in Fig. 2 that i) expends the acceptance of initial regular expression
(RE) pattern, and then, it reduces the RE pattern to only matched positive sam-
ple cases to minimize the acceptance of negative sample cases. After completion
of both phase, the final RE pattern learned from both positive and negative
examples; therefore, the task can provide a common RE pattern that maximizes
the positive cases and minimizes the negative cases. In addition, since different
API providers use a variety of terminologies for a single word, a constant reg-
ular expression is not capable to learn efficiently all synonyms words. We use
API Language Model that finds all synonyms words according to API Corpus,
then it applies the new set of synonyms words for each constant of RE pat-
tern. The model learns new words in addition to original constant that improves
acceptance of positive examples and reduces negative examples. Each OAS
API Specification consist of several objects, such as API metadata (e.g., title,
description), endpoints, attributes, responses, and etc. Therefore, we need a set
of different tasks to extract information and produce a structured based OAS file
(JSON). The following tasks shows some examples of IE Tasks in API Learning.

i) API Endpoint extraction task provides the key information of a REST
API and it provides a URL for an API endpoint along with its HTTP verb;

1 See https://developers.facebook.com/docs.
2 See https://developers.google.com/+/web/api/rest.

https://developers.facebook.com/docs
https://developers.google.com/+/web/api/rest

Automated Web Service Specification Generation 109

Fig. 2. Learning diverse extraction framework

ii) Parameter attribute extraction returns a list of input/output parame-
ter and security information of an API endpoint. It also includes some specific
sub-tasks such as a minimum value of a parameter, a maximum value of a
parameter, the default value of a parameter and etc. Therefore, the method
need to understand and classify the content of HTML tables to recognize
input parameters, output parameter and etc. For each task we need a method
to detect and extract information from API documentation. We use regular
expression to define different task extract. The problem statement of informa-
tion extraction from API documentations can be defined for a target API (A).
Our goal is to extract a set of positive sample case and avoid negative sample
cases that can be extracted from an API documentations. Let sp,i be the set
of i positive sample case and sn,j be the set of j negative sample case. It can
be defined as sp,i ∈ L where i ∈ {1, ...,m}; and sp,i denotes a set of m posi-
tive sample case of language LA for the target APIs(A); and sn,j /∈ LA where
j ∈ {1, .., n}; and sn,j denotes n negative sample cases of language LA. (LA
represents acceptance language of target APIs, A). fP defines a function that
uses a set of regular expression patterns P , that accepts sp,i sample cases and
rejects sn,j in LA. Our objective function can be defined as maxx∈C fP (x)
where C denotes the API documentations that can be retrieved from API
Corpus. We can summarize the objective function as follows.

max
x∈C

fP (|sp(xA)| − |sn(xA)|) (3)

In this equation, we maximize acceptance of the positive sample cases fP

where it removes the negative sample cases of sn(xA) for different APIs (A);
and A ∈ {1, .., n} where n denotes the total number of APIs. It takes an

110 M. Bahrami and W.-P. Chen

initial regular expression as an input and find an improved regular expression
as output. The improvement process of given initial process id defined in
Sect. 2.6.

We use a transformation-based learning through two steps. First, we define
extension phase to maximize fPi

the acceptance more positive sample cases, and
in the second phase (reduction phase) improves the pattern by rejecting negative
sample cases for a given initial regular expression pattern. The final improved
regular expression aims to apply to majority of APIs where it learns different
structured and patterns from variety of API documentations.

Extension Phase. Objective of this phase is extending the given initial RE
pattern P0 that accepts more positive cases from training dataset, τ . Table 1
shows the algorithm of the extension of P0. Each regular expression decomposes
into different types. The algorithm processes each component type as follows.
In each iteration, it applies one extension rule and evaluate the pattern, if it
accepts more positive cases, then revise the pattern.

i) charTerm : This type of RE component refers to string values (e.g.,
default) and can be extended by similarity extension or character extension
method as follows.

a) Similarity extension. It uses the similarity of charTerm component
(Line 2 in Table 1) by inquiring the value of charTerm to API Language
Model. The model uses cosinesimilarity function to return similar terms
based on the vector representation of charTerm in API Corpus; and then,
it adds each return value with an OR operation with a pair of parenthesis
to Pi(charTerm).
b) Character extension. It applies all possible uppercase and lowercase
of a charTerm in each iteration (Line 3 in Table 1). API specification is
case sensitive, we cannot replace all words as lowercase or as uppercase
characters. For example, ‘POST ’ in REST API documentations shows
that this term is referring to a HTTP verb function and it is completely
different to ‘post ’ or ‘Post ’ which are regularly used in English language.

ii) Range : This type of RE component refers to a set of range values (e.g.,
[1–4] accepts number between 1 to 4).
iii) RE Component Replacement : This type of RE component decom-
poses each RE component into one or multiple RE components. Each compo-
nent of a RE pattern can be replaced with its equivalent RE if acceptance of
positive sample cases is equal or better than Pi −1. For example, [a−zA−Z]
can be replaced with ([a − z]|[A − Z]).

Reduction Phase. The objective of reduction phase is removing unnec-
essary accepted pattern elements from newPattern (returned pattern from
ExtensionPhase). As shown in Table 1, the algorithm takes a set of positive
and negative sample cases, sp and sn, respectively. It returns a new pattern, Pi

Automated Web Service Specification Generation 111

Table 1. Extension and reduction algorithms

112 M. Bahrami and W.-P. Chen

that can be used in substitute of newPattern (Pτ). i) OR reduction : In this
phase we remove each component if it does not decrease the acceptance rate of
positive cases.

ii) range restriction : Some ranges can be removed or shrank when it does
not change the validation rate.

iii) character restriction : It restricts the acceptance of charac-
ters. For instance, “POST \b+ (URI|URL)” can be restricted to “POST
\b[1,1000](URI|URL)”, if the validation rate did not decrease by revising the
pattern; then it can be decreased to a lower number in each iteration (i.e., “POST
\b[1,999](URI|URL)”). By performing both phases through several iterations,
the final pattern learns majority of sample cases. It satisfies the following con-
ditions: i) maximizes acceptance rate of positive sample cases; ii) minimizes the
rejection of positive sample cases: iii) maximizes the acceptance rate of rejec-
tion of negative sample cases; and iv) minimizes the acceptance rate of negative
sample cases.

2.7 Metadata Extraction

Metadata of an API is one of the set of extraction tasks. For instance, the API
title, API security protocol, and API host address. This component generates a
set of extracted information and add them into the structured data (info, host
in OAS file).

2.8 Table Extraction

Most of the API documentations uses HTML table tags to explain list of end-
points, attributes (e.g., parameters). Each HTML table tag may consist of differ-
ent OAS objects, such as parameters, responses, security, and security definition.

2.9 Plain Text Extraction

Some API providers describe their information as a flat HTML page which means
does not have some sort of semi-structured data, such as HTML table tags. The
API publisher may use both HTML table tags and plain-text flat description to
transfer their information to the readers. This component extracts information
from plain text information.

2.10 API Attribute Extraction

Component generates a set of different endpoint’s attributes, such as minimum
value of a parameter, maximum value of a parameter, default value of a param-
eter and etc. White List contains both manual annotation and automated API
validations which is created by calling the API and it contains the results of
API endpoint response. The final output is a Machine Readable OAS API
Specification for each API.

Automated Web Service Specification Generation 113

3 Experiment

We implemented all described components of API Learning.

3.1 API Corpus Construction

We used several sources to collect a comprehensive list (pointer list) of APIs,
such as ProgrammableWeb, API Harmony, Rapid API, API Guru and etc. We
use API title and API documentations URL from the list. Each source may also
consist of other metadata information of an API. The pointer list consists of
more than 20,000 APIs and some of the information might be incorrect (e.g.,
incorrect API Doc URL or a generic API title). In this experiment, we have
to process the content to fix incorrect information and we target REST APIs.
We used Scrapy3 for implementation of the parallel web-crawler. We consider
a web-crawler that composes of 32 parallel web-crawler agents. Table 2 shows
the size of API Corpus in different experiments. We show only some example of
different experiments for data acquisition with different maximum deep level of
URL extractions and maximum of page per APIs.

Table 2. API corpus size of different experiments

Exp# MaxDepth MaxPage # of files Size-GB

17 5 1,000 2,822,997 208.6

20 4 100 148,479 8.3

35 3 300 156,497 7.4

37 4 300 256,583 15.0

Table 3. An example of query of top 7 most similar words to a positive word of
[‘POST’]

HTTP Prediction HTTP Prediction

GET 0.867 Request 0.668

DELETE 0.828 Endpoint 0.639

PUT 0.777 URI 0.639

PATCH 0.746

Table 4. Detection of REST API documentations

Class Precision Recall F1

Positive REST page 0.91 0.93 0.92

Negative REST page 0.89 0.86 0.88

Average 0.91 0.91 0.91

3 https://scrapy.org/.

https://scrapy.org/

114 M. Bahrami and W.-P. Chen

3.2 API Language Model

We use Word2Vec which is described by Mikolov et al. in [15] and [14]. We
cleaned the API Corpus by removing scripts and HTML tags to produce the
model. API Language model allows the method to understand semantic defini-
tion of each word. We use Gensim [19] to create a Word2Vec [9,21] from API
Corpus. By providing a set of positive and/or negative words, we may inquiry
the model to find similar words. For example, Table 3 shows the synonyms words
of ‘POST’ in API Corpus for top 7 words. This result clearly shows that our API
Language Model can successfully detect synonyms words from API documenta-
tions where it is trained based on API Corpus. The parameter of Word2Vec is
described by Rong in [21]. We chose 300 for the window size which represents
the maximum windows distance between a selected word and a predicted word
within a sentence. The rest of the parameters of API Language Model shown in
Table 5.

3.3 Information Extraction

In order to extract information, we defined several tasks with initial pattern of
RE as described in Sect. 2.6. Some defined patterns have been used for table
extraction and detecting table mapping as described in Sect. 2.8. Figure 3 shows
a comparison between acceptance of R0 ∈ LA and Rfinal ∈ LA for 5 differ-
ent tasks. The average of iteration in these tasks to achieve (Rfinal) is 14.
Table 4 shows 5 different tasks as follows. Default Value: learns template to
extract default values of a parameter; Maximum Value: learns a template to
extract maximum value of a parameter; Optional Parameters: learns a template
to find whether is optional or mandatory; Parameter Description: learns a tem-
plate to extract parameter description section (e.g., heading title of the section);
Introduction block of output parameter : learns a template to detect if a section
corresponds to output parameters of an API (e.g., heading title of a section).
Table 4 shows the given input (P0) to algorithms and shows the result after
processing extension and reduction phase as output (Pfinal) which corresponds

Table 5. Hyper parameters of API language model

of sentences: 10,140,000

of words: 23,103,011

of word types: 1,580,559

of unique words (after word types drops): 213,167

of windows in CBOW: 300

Min. count=5 (training parameter)

Min. count leaves 20,960,959 word corpus (90% of original)

downsampling leaves estimated 18,603,396 word corpus

of parallel workers: 64

Automated Web Service Specification Generation 115

Fig. 3. A comparison between F1 evaluation of R0 (baseline) and Rfinal

to improved regular expression through the transformation-based learning. As
shown in Fig. 4, both the word token (new terminologies) and new pattern have
been updated according to API Language Model, RE extension phase and RE
reduction phase. By performing on more positive and negative sample cases,
(Pfinal) can be improved. After applying (Pfinal) of each task to the API Cor-
pus, the proposed platform generates a set of extracted information as a JSON
file for each API which includes: i) API metadata, ii) API endpoints, and iii)
HTML tables that corresponds to API attributes. The defined tasks helps us
to extract different OAS objects but our ultimate goal is using extracted infor-
mation to interact with APIs. We use two strategies to evaluate our extracted
information. First, we annotated the extracted information for a large number
of APIs, that includes API endpoint and tables. Second, we perform API call
to validate the extracted information which can be applied to all extracted end-
points. In the first approach of evaluation, We annotated 200 APIs that consist
of 1,780 extracted tables (API endpoint attributes), and extracted endpoints
for 350 APIs that consist of 2,929 endpoints. To the best of our knowledge this
large number of annotation of API documentations have been collected for the
first time. Each annotation shows that whether an API endpoint extracted cor-
rectly from the source or not. The same annotation completed for HTML table
to check whether the produced structured file (JSON format) of HTML table
is correct or is not correct. We correctly extracted 86.75% of API endpoints
and 81.29% of table according to annotated information (Avg = 84.02%). Sec-
ond, our automated API validation applies to all extracted API endpoints that
contain 54,873 endpoints and check the response code. It shows that 76% of
endpoints were valid.

We use Scikit-Learn to train a logistic-regression [1] model with L1 penalty
to detect REST API documentations. We create an annotation tools based on
Selenium [2] that allows a user to quickly annotate API documentations by using
a semi-automated platform. The Selenium browser automatically open different
API documentations from pointer list and a user manually annotates API doc-
umentations as: i) relevant to REST API documentations (Positive Class); ii)
relevant but explaining different API documentations (Reference Class); or, iii)
irrelevant to REST API (Negative Class). We train the model with considering

116 M. Bahrami and W.-P. Chen

Fig. 4. Sample tasks of learning about API specifications

three classes as well as only positive/negative classes (reference pages consid-
ered as part of positive class). Due to page limitation, Table 4 shows only the
performance of the model for detecting positive pages versus negative pages.

Table 6. OAS-based table type detection training dataset

Type # Type #

Parameters 5,979 Response 6,290

Security 8,225 Security definition 150

We also collect a set of available OAS-based API specifications as ground-truth
from different API providers who offers OAS JSON files, such as Spotify and API
directories, such as API Guru. We train a SVM model with the following con-
figuration by using Scikit-learn [17] package in Python. penalty=l2, dual=False,
tol=1e−3 The model trains with 14,450 data points (70% of dataset) as shown
in Table 6. The model predicts four different table types from testing dataset
(6,194 data points; 30% of dataset) with an accuracy of 95%. The next step
is assigning tables according to their predicted type (e.g., parameter) to API
endpoints, which defines API endpoint attributes. We use a page segmentation
algorithm that assigns extracted endpoints to their attributes according their
appearance in API documentations (e.g., a table attribute appears after end-
point). We evaluate this assignment process manually for correctness of assign-
ment of 223 API endpoints to their attributes. In this annotated dataset, only
3 out of 223 of assignment were incorrect that defines an accuracy of 98.65%
of the assignments of attributes to API endpoints. API Learning at the end

Automated Web Service Specification Generation 117

produces 2,311 API specifications and consolidate information with other avail-
able OAS resources which produces 3,311 API specifications and it showcases in
our API directory. A partial sample OAS file that collected from our proposed
approach is shown in Fig. 5. In addition we deployed the valid APIs in Fujitsu
RunMyProcess platform4. A demonstration of the previous study and deploy-
ment can be found in Bahrami et al. [4] and Choudhary et al. [6]. The deployed
APIs can be accessible through Fujitsu RunMyProcess platform where users are
able to efficiently design and test a web-based software application by accessing
a large number of public APIs.

Fig. 5. A partial snapshot of a produced API specification in OAS format that collected
from different sources and API documentation

Table 7 shows a comparison between our approach and D2Spec as a related
work [24]. The results of our approach shows that our approach is scalable when
it construct 73% correct API endpoints from a sheer number of API endpoints
(54,873). Our approach also capable to extract parameter, detect the type of
parameters where the related work is only limited to API endpoint construction.
Although the performance of endpoint extraction is equal to our results, the total
number of extracted endpoints and APIs are much smaller than our outcomes
(22% of our 54,873 endpoints). We also evaluate the API endpoints with using
API call and API match to our ground through (existing) OAS files.

4 Available at: https://www.runmyprocess.com.

https://www.runmyprocess.com

118 M. Bahrami and W.-P. Chen

Table 7. Comparison of related works

Feature D2Spec (Yang et al. 2018) Our approach

of labeled APIs 120 200

Endpoint evaluation method Endpoint matching Manual annotation, API call

of generated API Spec. 120 1,923

of Endpoints 2,486 54,873

Endpoint evaluation 84% (22% of our dataset) 84%

Parameter extraction No Yes

Parameter type detection No 81.29% Acc.

4 Conclusion

In this paper, we introduced a novel framework that collects a large number
of API documentations. Our web crawler collected more than 20,000 APIs and
we targeted REST APIs. We used a logistic regression model to detect REST
API documentations. The framework processes all collected HTML pages as
an API corpus and generates an API Language Model to understand the vari-
ety of terminologies of different API documentations. The proposed approach
improves a set of information extraction regular expression patterns by extend-
ing the acceptance of sample cases and reducing elements that do not improve
the acceptance rate. We used the improved patterns to extract OAS objects. We
extracted HTML table tags and each table type detected by a SVM model and
produces OAS API attributes. Our experimental results show that we have suc-
cessfully extracted API specification from heterogeneous API documentations
with an accuracy of 84%.

References

1. Abney, S.: Semisupervised Learning for Computational Linguistics. Chapman and
Hall/CRC, Boca Raton (2007)

2. Automation, S.B.: Selenium ide (2014)
3. Bahrami, M., Chen, W.P.: WATAPI: composing web API specification from API

documentations through an intelligent and interactive annotation tool. In: 2019
IEEE International Conference on Big Data (Big Data), pp. 4573–4578. IEEE
(2019)

4. Bahrami, M., Park, J., Liu, L., Chen, W.P.: API learning: applying machine learn-
ing to manage the rise of API economy. In: Companion Proceedings of the The
Web Conference 2018, pp. 151–154 (2018)

5. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

6. Choudhary, S., Thomas, I., Bahrami, M., Sumioka, M.: Accelerating the digital
transformation of business and society through composite business ecosystems.
In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC,
vol. 926, pp. 419–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
15032-7 36

https://doi.org/10.1007/978-3-030-15032-7_36
https://doi.org/10.1007/978-3-030-15032-7_36

Automated Web Service Specification Generation 119

7. Cremaschi, M., De Paoli, F.: Toward automatic semantic API descriptions to sup-
port services composition. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.)
ESOCC 2017. LNCS, vol. 10465, pp. 159–167. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67262-5 12

8. Dehak, N., Dehak, R., Glass, J.R., Reynolds, D.A., Kenny, P.: Cosine similarity
scoring without score normalization techniques. In: Odyssey, p. 15 (2010)

9. Goldberg, Y., Levy, O.: Word2vec explained: deriving Mikolov et al’.s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)

10. Gu, X., Zhang, H., Zhang, D., Kim, S.: Deep API learning. In: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 631–642. ACM (2016)

11. Hou, L., Zhao, S., Li, X., Chatzimisios, P., Zheng, K.: Design and implementation
of application programming interface for internet of things cloud. Int. J. Netw.
Manag. 27(3), e1936 (2017)

12. Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Jagadish, H.: Regular
expression learning for information extraction. In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pp. 21–30. Association for
Computational Linguistics (2008)

13. Masse, M.: REST API Design Rulebook: Designing Consistent RESTful Web Ser-
vice Interfaces. O’Reilly Media, Inc., Sebastopol (2011)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

16. Myers, B.A., Stylos, J.: Improving API usability. Commun. ACM 59(6), 62–69
(2016)

17. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12(Oct), 2825–2830 (2011)

18. Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning.
In: Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky,
D. (eds.) Natural Language Processing Using Very Large Corpora. TLTB, vol.
11, pp. 157–176. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-
2390-9 10

19. Rehurek, R., Sojka, P.: Gensim-python framework for vector space modelling. NLP
Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, vol. 3,
no. 2 (2011)

20. Robillard, M.P., Deline, R.: A field study of API learning obstacles. Empir. Softw.
Eng. 16(6), 703–732 (2011)

21. Rong, X.: Word2vec parameter learning explained. arXiv preprint arXiv:1411.2738
(2014)

22. Schmidt, M., Le Roux, N., Bach, F.: Minimizing finite sums with the stochastic
average gradient. Math. Program. 162(1–2), 83–112 (2017)

23. Thomas, R., et al.: Architectural styles and the design of network-based software
architectures. University of California, Irvine (2000)

24. Yang, J., Wittern, E., Ying, A.T., Dolby, J., Tan, L.: Automatically extracting web
API specifications from HTML documentation. arXiv preprint arXiv:1801.08928
(2018)

25. Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring resource specifications from nat-
ural language API documentation. In: Proceedings of the 2009 IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp. 307–318 (2009)

https://doi.org/10.1007/978-3-319-67262-5_12
https://doi.org/10.1007/978-3-319-67262-5_12
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-94-017-2390-9_10
https://doi.org/10.1007/978-94-017-2390-9_10
http://arxiv.org/abs/1411.2738
http://arxiv.org/abs/1801.08928

Performance Evaluation on Blockchain
Systems: A Case Study on Ethereum, Fabric,

Sawtooth and Fisco-Bcos

Rui Wang1,2, Kejiang Ye1(&), Tianhui Meng1, and Cheng-Zhong Xu3

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, China

{rui.wang2,kj.ye,th.meng}@siat.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

3 State Key Laboratory of IoT for Smart City, University of Macau, Zhuhai,
Macao, Special Administrative Region of China

czxu@um.edu.mo

Abstract. Blockchain technology is currently receiving increasing attention
with widely used in many fields such as finance, retail, Internet of Things, and
intelligent manufacturing. Although many blockchain applications are still in the
early stage, this technique is very promising and has great potential. Blockchain
is considered as one of the core technologies to trigger a new round of disruptive
changes after Internet. In the future, it is expected to change the development
prospects of many industries. However, the current blockchain systems suffer
from poor performance which affects large-scale application. In order to better
understand the performance of the blockchain systems, in this paper, we analyze
four mainstream blockchain systems (Ethereum, Fabric, Sawtooth and Fisco-
Bcos), and then perform a performance comparison through open source
blockchain benchmarking tools. After that, we propose several optimization
methods and discuss the future development of blockchain technique.

Keywords: Blockchain � Ethereum � Fabric � Sawtooth � Fisco-Bcos

1 Introduction

Blockchain is essentially a distributed ledger technique. It is the core technology of
Bitcoin [1] and other virtual currencies. It can record transactions between buyers and
sellers and ensure that these records are verifiable and permanently stored. At present,
according to different application scenarios and user needs, blockchain can be divided
into three categories: public blockchain, private blockchain, and consortium
blockchain.

The public blockchain is the most decentralized blockchain. These public block-
chains, such as Bitcoin and Ethereum [2], are not controlled by third-party organiza-
tions. Everyone can access the data records on the chain, participate in transactions, and
compete for the right to generate new blocks. Program developers have no right to
interfere with the users, and each participant (i.e. node) can join and exit the network
freely, and perform particular operations.

© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 120–134, 2020.
https://doi.org/10.1007/978-3-030-59592-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-59592-0_8

The private blockchain is completely the opposite. The write permission of the
network is fully controlled by an organization or institution, and the data access is
regulated by the organization. It can be understood as a weakly centralized system.
Because the participating nodes is few and have strict restrictions. Compared with
public blockchains, the time for private blockchains to reach consensus is relatively
short, the transaction speed is faster, the efficiency is higher, and the cost is lower. This
type of blockchain is more suitable for internal use by specific institutions, such as the
Linux Foundation [3].

The consortium blockchain is a blockchain between the public and private
blockchains, which can achieve “partial decentralization”. Each node on the chain
usually has a corresponding physical institution or organization; participants authorize
to join the network and form a stakeholder alliance to jointly maintain the blockchain
operation. Similar to private blockchain, consortium blockchain has the characteristics
of low cost and high efficiency and is suitable for B2B transactions such as transactions
and settlement between different entities.

Due to the different design, these blockchains have different application scenarios.
Table 1 compares the three different blockchain systems. The public blockchain is
suitable for scenario that has high requirements on credibility and security, which does
not require high transaction speed. Private blockchain or consortium blockchain is more
suitable for applications with high requirements on privacy protection, transaction speed
and internal supervision. The consortium blockchain’s transaction confirmation time
and transactions per second are greatly different from the public blockchain, and the
requirements for security and performance are also higher than the public blockchain.

For example, Ethereum is one of the most well-known public blockchains. It
provides a decentralized Ethereum Virtual Machine to process peer-to-peer contracts
through its dedicated cryptocurrency Ether. Hyperledger [4] is the representative of the
consortium blockchain. As an open consortium, Hyperledger has incubated a series of
business blockchain technologies, including a distributed ledger framework, a smart
contract engine, a client library, a graphical interface, a utility library, and a sample
application. The current blockchain system cannot solve the impossible triangle
problem of “Decentralization, Scalability and Security” [27], so we need to find a
balance point to take the advantages of different blockchain systems.

Table 1. Comparison of public, private and consortium blockchain

Public blockchain Private blockchain Consortium blockchain

Participants Free Permissioned Permissioned
Features Completely decentralized

Poor performance
High fault tolerance

Trusted centralization
High performance
Low fault tolerance

Partially decentralized
Moderate performance
Moderate fault tolerance

Use cases Cryptocurrency Audit, Issuance Payment, Settlement
Project Bitcoin, Ethereum ConsenSys Hyperledger fabric

Performance Evaluation on Blockchain Systems 121

In order to better understand the performance of different blockchain systems, in
this paper, we analyze four mainstream blockchain systems (Ethereum, Fabric, Saw-
tooth and Fisco-Bcos), and then perform a performance comparison through open
source blockchain benchmarking tools.

The contributions are summarized as follows:

1. A detailed performance comparison of Ethereum, Fabric [5], Sawtooth [6] and
Fisco-Bcos [7] is presented.

2. Major performance bottlenecks are revealed.
3. Some future optimization methods are proposed.

The rest of the paper is organized as follows: Sect. 2 introduces the architectures of
different blockchains. Section 3 describes the motivation and goals of our research.
Section 4 introduces the experimental method. Section 5 presents the experimental
results and proposed some possible optimizations; Sect. 6 introduces the related work.
Finally, we conclude the whole paper and present the future work in Sect. 7.

2 Background: Blockchain Architecture

2.1 Ethereum

The blockchain is derived from bitcoin. Generally, we call it blockchain 1.0, which is
mainly based on various electronic currencies. The most common industry applications
are micropayments, foreign exchange, and so on. With the development of blockchain,
blockchain 2.0 has emerged. The usage scenarios of Blockchain 2.0 are also richer than
Blockchain 1.0. It can not only be used in payments, but can also be used in stocks,
bonds, futures, loans, mortgages, property rights, smart property and smart contracts.
Bitcoin is the representative of blockchain 1.0, Ethereum is the representative of
blockchain 2.0. Ethereum is a platform, including digital currency Ether and Ether-
Script, which are used to build distributed applications. It can implement Turing-
complete virtual machines and use any currency, protocol and blockchain. The overall
architecture of Ethereum can be divided into three layers [26]: underlying services,
core layer, and top-level applications (see Fig. 1).

The underlying services include P2P network services, LevelDB database, cryp-
tographic algorithms, and basic services such as sharding optimization. Each node in a
P2P network is equal and provides services together. Nodes in the network can gen-
erate or review new data. The Ethereum blocks, transactions, and other data are ulti-
mately stored in the LevelDB database. Cryptographic algorithms are used to ensure
the privacy of data and the security of the blockchain. Sharding optimization makes it
possible to verify transactions in parallel.

The core layer contains core elements such as the blockchain, consensus algorithm,
and Ethereum virtual machine. It takes blockchain technology as the main body,
supplements Ethereum’s unique consensus algorithm, and uses EVM (Ethereum Vir-
tual Machine) to run smart contracts. This layer is the core component of Ethereum.
The first problem that the decentralized ledger of the blockchain structure needs to
solve is how to ensure the consistency and correctness of the ledger data on different

122 R. Wang et al.

nodes, and the consensus algorithm is used to solve this problem. EVM is a major
innovation of Ethereum. It is the operating environment of smart contracts in Ethereum,
which enables Ethereum to implement more complex logics.

The top-level applications include API interfaces, smart contracts, and Decentral-
ized Application (DApp). Ethereum’s DApp exchanges information with the smart
contract layer through Web3.j. All smart contracts run on the EVM and use RPC calls.

Various layers cooperate with each other and perform their duties to form a
complete Ethereum system. In the underlying services, data such as transactions and
blocks are stored in the LevelDB database. Cryptographic algorithms are used to
encrypt block generation and transaction transmission. Optimization of sharding speeds
up transaction verification. The consensus algorithm is used to solve the consistency of
the ledger among P2P network nodes. The DApp in the top-level application needs to
be executed on the EVM.

2.2 Hyperledger Fabric

Figure 2 shows the architecture of Fabric. Member management [23] provides member
registration, identity protection, content confidentiality, and transaction auditing
functions. All members of OBC (Open Blockchain) must be licensed to initiate
transactions, which is different from the public blockchain (all participants do not need
to log in and can submit directly). When an OBC member initiates a transaction, if the
Transaction Certificate Authority (TCA) function is enabled, the transaction certificate
will protect the member ID from being seen by unrelated parties. Block services [28]
are used to maintain a consistent distributed ledger throughout the network. Based on
the P2P communication network (gRPC), messages are transmitted between nodes
through HTTP messages. Highly optimized design makes the status synchronization
efficient and reliable. Consensus algorithms (PoW [8], PoS [9], PBFT [10], Raft [11])
are modular and pluggable. OBC provides a CLI client tool to enable developers to

Fig. 1. Ethereum architecture. Fig. 2. Fabric architecture.

Performance Evaluation on Blockchain Systems 123

quickly test the ChainCode [22] or query the transaction status. ChainCode is used to
form a smart contract and is embedded in the transaction. All confirmation nodes must
execute it when confirming the transaction. ChainCode’s execution environment is a
sandbox (Docker [12]) and supports Go, Java, Node.js [24].

2.3 Hyperledger Sawtooth

Sawtooth’s design includes three main architectural layers: ledger layer, log layer, and
communication layer (see Fig. 3):

The implementation of the ledger layer is basically completed by extending the
functions of the log layer and the communication layer. For example, the two built-in
Endpoint Registry and IntergerKey Registry transaction families, and the MarketPlace
transaction family as an example, are derived by extending the underlying functions.

The log layer implements the core functions of Sawtooth. It implements consensus
algorithms, transactions, blocks, global storage managers, and data storage (block
storage and key-value storage). The block and transaction concepts are similar with
other blockchain projects.

The communication layer mainly implements communication between nodes
through the gossip protocol [13], which mainly includes protocol layer connection
management and basic flow control. Nodes send messages to each other to exchange
information. Information is usually encapsulated and transmitted in different types of
messages, such as transaction messages, transaction block messages, and connection
messages. Like many distributed systems, in the entire architecture, lots of messages
need to be sent between nodes through a chat protocol. To this end, the communication
layer implements a Token Bucket mechanism to control the transmission speed of data
packets.

Fig. 4. Fisco-Bcos architectureFig. 3. Sawtooth architecture

124 R. Wang et al.

2.4 Fisco-Bcos

Fisco-Bcos’ structure (see Fig. 4) is mainly divided into network layer and group layer.
The network layer is mainly responsible for communication between blockchain nodes.
The group layer is mainly responsible for processing intragroup transactions. Each
group runs a separate ledger. In a network adopting a group architecture, there may be
multiple different ledgers according to different business scenarios. Blockchain nodes
can select groups to join according to business relationships and participate in the data
sharing and consensus process of the corresponding ledgers.

The group architecture has good scalability. Once an organization participates in
such a consortium blockchain, it has an opportunity to flexibly and quickly enrich
business scenarios and expand business scale, and the system operation and mainte-
nance complexity and management costs also linearly decrease. On the other hand, each
group in the group structure independently executes the consensus process, and each
group independently maintains its own transaction transactions and data without being
affected by other groups. The advantage is that the groups can be decoupled, operate
independently, and achieving better privacy isolation. When messages are exchanged
across groups, authentication information is carried, which is credible and traceable.

3 Motivation

Nowadays, the poor performance is one of the main challenges of current blockchain
technology. The performance indicators of the blockchain mainly include transaction
throughput and latency. Transaction throughput represents the number of transactions
that can be processed at a fixed time, and latency represents the response and pro-
cessing time to transactions. In practical applications, two factors need to be com-
prehensively examined. It is incorrect to consider only transaction throughput without
latency. Long-term transaction response will hinder user experience and affect users’
experience. Considering latency without throughput will cause lots of transactions to be
queued. Some platforms must be able to handle large amount of concurrent users.
Technical solutions with low transaction throughput will be directly abandoned.

In order to solve the performance problems of the blockchain systems, we have
conducted in-depth research on mainstream blockchain systems, mainly including the
throughput, latency, and resource utilization of the blockchain systems. By analyzing
the architecture and adjusting the corresponding parameters, we understand the char-
acteristics of each blockchain system and find out the bottlenecks of the blockchain
systems. After that, our goal is to adopt some optimization measures to alleviate these
bottlenecks and improve the performance of blockchain systems.

4 Experimental Methodology

We use transaction throughput and latency as the main performance metrics to eval-
uate the performance of Ethereum, Fabric, Sawtooth, and Fisco-Bcos. Transaction
throughput is the number of transactions that the system can process per second.

Performance Evaluation on Blockchain Systems 125

The specific calculation method is the number of concurrent transactions divided by the
average response time. Latency is the time it takes for an application to send a
transaction proposal to the transaction commit. We use caliper to load and test the
blockchain system. Caliper [14] is a blockchain performance benchmarking framework
that allows users to test different blockchain solutions using predefined use cases and
obtain a set of performance test results. The Caliper project was originally launched in
May 2017. Huawei, a global information and communication technology company,
actively participated in the design and development of the project, which was accepted
by the hyperledger technical committee and added to the hyperledger project.

All tests were run in the following environments: 4 identically configured servers
with the Intel (R) Xeon (R) CPU E5-2630 v4 @ 2.20 GHz CPU, 64G DDR3 RAM, 4T
HDD and running Ubuntu18.04 LTS. And our test consists of three phases:

• Preparation stage: In this stage, the main process uses the blockchain configura-
tion file to create and initialize internal blockchain objects, deploy smart contracts
according to the information specified in the configuration, and start monitoring
objects to monitor the resource consumption of the back-end blockchain system.

• Testing phase: In this phase, the main process performs tests based on the con-
figuration file. Caliper will generate tasks based on the defined workload and assign
them to client child processes. Finally, the performance statistics returned by each
client will be stored for subsequent analysis.

• Reporting phase: Analyze the statistics of all clients for each test round and
generate reports.

During the testing phase, we tested these blockchain systems by selecting different
system settings. Each test involves sending transactions from peers at a fixed rate, and
these transactions are built in a docker container. Ethereum 1.2.1, Fabric 1.4.0, Saw-
tooth 1.0.5, Fisco-Bcos 2.0.0 have been tested.

5 Experimental Results

In this section, we have studied the impact of different system architectures on the
performance of different blockchain systems. The TPS (Transactions Per Second) and
latency obtained in the tests are the average values obtained after multiple tests.

5.1 Ethereum’s Performance

We use the Ethereum adapter through caliper, which includes assembling connection
profiles (also known as blockchain network profiles), using adapter interfaces from user
callback modules; transaction data collected by the adapter, and completing examples
of connection profiles. We prepare “open”, “query” and “transfer” workloads for
Ethereum. The “open” workload includes opening accounts and testing the writing
performance of the ledger. The “query” workload includes querying accounts and
testing the reading performance of the ledger. The “transfer” workload includes trading
between accounts and testing the transaction performance of the ledger. All chaincodes

126 R. Wang et al.

to be tested must be installed on the channel and peer. Ethereum will separately set up
accounts, query accounts, and conduct transactions at the same time.

First, we set the txNumber of “open”, “query”, and “transfer” to 100, 200, and 100,
and then we continue to increase the Send Rate for testing. The results show that when
we increase the Send Rate, the throughput of the query workload increases syn-
chronously with the Send Rate. The open workload will reach a bottleneck when
throughput reaches around 15, and it cannot continue to improve. The transfer work-
load will reach a bottleneck when the throughput reaches around 10 and cannot be
further improved (see Fig. 5). In terms of latency, the query workload does not cause
any latency. For the open workload and transfer workload, as the Send Rate increases,
the latency will increase slightly, but it is not obvious (see Fig. 6). We also conduct
corresponding tests by increasing txNumber, but the experimental results did not
change significantly.

Discussion: Because the block production speed of Ethereum is fixed, one block is
generated every 15 s, the TPS of Ethereum is determined by the number of transactions
that can be packed in a block. Ethereum has no restrictions on blocks, but the speed of
network broadcasts limits the size of blocks. If the block size is too large, the latency
will become very high, resulting in network unavailability. At the same time, the total
amount of gas in the block will also limit the number of packaged transactions. The
total amount of gas used by all transactions in the block cannot exceed this limit.
Therefore, before the Istanbul upgrade, the theoretical value of TPS for Ethereum is
only 30. In view of the current situation, Ethereum needs to modify the architecture in
order to greatly improve the TPS. Therefore, Ethereum 2.0 (aka Serenity) is being
developed. Ethereum 2.0 contains many new features: sharding, proof of stake Casper,
new virtual machine eWASM, and more. These new features are currently imple-
mented in three phases: Phase 0 mainly implements the beacon chain. The main
function of the beacon chain is to implement PoS and provide the basis for sharding. In
Phase 1, Ethereum 2.0 will bring a shard chain. The shard chain is the key to the future
scalability of Ethereum. It allows transactions to be executed in parallel. The beacon
chain will also start managing multiple shards at this time. In phase 2, various functions

Fig. 5. Throughput of Ethereum with varying
workload.

Fig. 6. Latency of Ethereum with varying
workload.

Performance Evaluation on Blockchain Systems 127

are beginning to be integrated, the lighthouse chain and the shard chain have been
activated, and state execution will be added in this phase.

5.2 Hyperledger Fabric’s Performance

We deploy fabric1.4.0 to 3 physical machines. Each physical machine is regarded as an
Organization. Each Organization has 2 peers. Endorsement policy: Any member of
Org1MSP are acceptable. The database is GolevelDB [15]. We also use “open”,
“query” and “transfer” workloads for Hyperledger Fabric. Then we deploy caliper on
the remaining machine. We set txNumber to 200, 400, 200 respectively, and at the
same time, we continuously adjusted the batchsize and Send Rate for testing. The
results show that when we fixed the batchsize to 20, by increasing the Send Rate, the
TPS of the “query” workload increased linearly, the TPS of the “open” workload would
reach the bottleneck around 100, and the TPS of the “transfer” workload would reach
the bottleneck at around 50 (see Fig. 7). In terms of latency, there is almost no latency
in the “query” workload, and the latency in the “open” and “transfer” workloads will
increase as the Send Rate increases (see Fig. 8).

Next, we adjust the batchsize to 40, 60, 80, 100, 120, and leave the rest of the
settings unchanged. The results show that with the increase of Send Rate, “transfer”
workload’s TPS will increase with the increase of batchsize. When batchsize is larger
than 100, TPS no longer grows linearly and reaches a new bottleneck (see Fig. 9). For
the latency, under the condition that the batch size is unchanged, the latency of
“transfer” will decreases with the increase of Send Rate before reaching the bottleneck
of TPS, and the latency will increase with the increase of Send Rate after reaching the
bottleneck of TPS. As the batch size becomes larger, the latency will gradually
increase. When the TPS reaches the bottleneck, the latency is gradually reduced by the
effect of the batchsize (see Fig. 10).

Fig. 7. Throughput of Fabric with varying
workload (batchsize = 40).

Fig. 8. Latency of Fabric with varying work-
load (batchsize = 40).

128 R. Wang et al.

Discussion: Through the experimental results, we can find that, in order to better
improve the TPS and reduce the latency, when the Send Rate does not reach a
threshold, we can appropriately reduce the size of the batchsize. When Send Rate
exceeds the threshold, we need to choose a larger batchsize to increase the TPS and
reduce the latency. Matching batchsize with Send Rate can better improve Fabric’s
performance. At the same time, we noticed that the CPU resource utilization efficiency
was very poor during the experiment. Therefore, improving the CPU utilization
mechanism inside Fabric is also a feasible solution to improve TPS.

5.3 Hyperledger Sawtooth’s Performance

For Sawtooth, we first select Sawtooth 1.0.5 as the test benchmark. By modifying the
protocol buffer and sawtooth-sdk version levels listed as dependencies in
packages/caliper-sawtooth/package.json in caliper, then rebuild the Caliper project and
test. We prepare “query” and “smallbank” workloads for Sawtooth. The “smallbank”
workload includes transaction savings, deposit checking, send payment, write check,
and amalgamate operations. We set txNumber to 500, 500, the number of accounts in
smallbank to 30, the number of transactions per block to 10, and then test. The results
show that with the increase of the Send Rate, the TPS of the “query” workload also
increases. For the “smallbank” workload, a bottleneck occurs when the throughput
reaches about 44 (see Fig. 11). In terms of latency, the latency of “query” can be
ignored, and the latency of “smallbank” will continue to increase with the increase of
the Send Rate. The initial period will show a linear growth trend. When the Send Rate
is too high, it will show an exponential growth trend (see Fig. 12). Then we adjust the
number of transactions per block.

Fig. 9. Throughput of Fabric with different
batchsize (“transfer” workload).

Fig. 10. Latency of Fabric with different
batchsize (“transfer” workload).

Performance Evaluation on Blockchain Systems 129

Discussion: Through testing, we found that increasing the number of transactions per
block within a certain range can increase TPS. When the number of transactions per
block is set to 2000, the TPS can reach about 2000. In terms of consensus algorithms,
sawtooth supports a variety of consensus algorithms, such as PBFT, PoET [15], Raft,
etc. With the continuous improvement of consensus algorithms, the performance of
sawtooth will also be improved. In terms of performance, the development team spent a
lot of energy to migrate the core components of Sawtooth from Python to Rust. As the
migration work is gradually completed, the performance of sawtooth will be further
improved.

5.4 Fisco-Bcos’s Performance

For Fisco-Bcos, we first deploy our own Fisco-Bcos network. Then we add a new
network configuration file and create a test script that includes initialization, run, and
end phases. Finally, we add the new test script as a test round to the test profile,
ensuring that the correct callback was specified for Caliper. We prepare two basic
workloads “set” and “get” for Fisco-Bcos. “Set” is responsible for generating a “hello
world” smart contract and deploying this smart contract. “Get” is responsible for
calling the smart contract and outputting “hello world”. We set txNumber to 5000,
5000, and then test. The results show that with the increase of the Send Rate, the TPS
of the “get” workload increases linearly, while the TPS of the “set” workload will reach
the bottleneck around 1500 (see Fig. 13). For the latency, the latency of the “set” and
“get” workloads hardly changes with the Send Rate. The latency of the “set” workload
is slightly higher than the “get” workload, and the “get” workload has almost no
latency (see Fig. 14).

Fig. 11. Throughput of Sawtooth with
varying workload.

Fig. 12. Latency of Sawtooth with
varying workload.

130 R. Wang et al.

Discussion: Fisco-Bcos is mainly optimized in terms of network transmission models
and computing storage processes which provides great help for performance improve-
ment. In terms of architecture, from the perspectives of storage, networking, and
computing, Fisco-Bcos is upgraded around high availability and high ease-using. At the
same time, based on the design principles of modularity, tiering, and pluggability, Fisco-
Bcos continues to reshape the core modules to ensure the robustness of the system.

5.5 Comparison Analysis

By comparing the four blockchain systems, we can find that in a general setup, the TPS
of Ethereum is significantly lower than the other three systems. The performance of
Fabric is much better than Ethereum, but under our test conditions, it is far from the
theoretical value of Fabric performance. The TPS of Sawtooth and Fisco-Bcos is better
than the Fabric, which is also the consortium blockchain.

In terms of latency, the average latency of Ethereum and Fabric will be slightly
larger, the average latency of Sawtooth will be smaller, and the average latency of
Fisco-Bcos is the smallest (see Table 2). Due to the test platform limitation, we may
not be able to measure the theoretical peak performance of the blockchain system. At
the same time, because the architecture and functions of the blockchain system are not
the same, we cannot use a relatively uniform workload. Therefore, the experimental
results can be used as a reference.

Fig. 13. Throughput of Fisco-Bcos with
varying workload.

Fig. 14. Latency of Fisco-Bcos with
varying workload.

Table 2. Performance comparison of 4 blockchain systems in our testing environment

TPS Latency

Ethereum 10–30 5 s
Fabric 100–200 1–10 s
Sawtooth 500–2000 0.5–5 s
Fisco-Bcos 1500–3000 0.5 s

Performance Evaluation on Blockchain Systems 131

6 Related Work

Due to the current performance problems of the blockchain, many systems can hardly
be deployed in practice. Therefore, how to improve the performance of blockchain
systems has been a popular research problem.

Dinh et al. were among the early researchers to the private blockchain. They pro-
posed a benchmarking tool, blockbench [16], to compare the performance of Ethereum,
Parity, and Hyperledger Fabric, and tested it through a set of micro and macro bench-
marks. Because they studied earlier, they only studied the performance of Fabric v0.6.

Thakkar et al. conducted some research on Hyperledger Fabric v1.0, tested Fabric
by adjusting configuration parameters, and proposed some simple optimization
schemes based on the test results [17]. The current Fabric v1.4 architecture has many
improvements compared to the old version, so many of their conclusions need to be re-
examined in the new version.

Gorenflo et al. changed the fabric’s architecture to reduce the calculation and I/O
overhead during transaction sequencing and verification, thereby increasing the
throughput from 3,000 to 20,000 [29].

Pongnumkul et al. compared the performance of Ethereum and Fabric, but the
workload they choose a bit single [18]. Rouhani et al. analyzed the performance of two
Ethereum clients, Geth and Parity [19]. Ampel et al. analyzed the performance of
Sawtooth and identified some potential problems [20]. Hao et al. studied the impact of
consensus algorithms on the performance of private blockchains [21].

Hyperledger Caliper is a blockchain performance benchmark framework, which
allows users to test different blockchain solutions with predefined use cases and get a
set of performance test results. This project is developing rapidly, and currently sup-
ports many projects in Hyperledger, and it is still expanding.

The development of the blockchain system is fast, and many past studies can no
longer serve as a reasonable reference. At the same time, many new blockchain plat-
forms are constantly appearing. Therefore, we need to conduct a new evaluation of the
current mainstream blockchain system performance.

7 Conclusion and Future Work

In this work, we firstly analyzed the architecture of Ethereum, Hyperledger Fabric,
Hyperledger Sawtooth and Fisco-Bcos in detail. Then we used the Hyperledger caliper
as the benchmark tool and tested these blockchain systems in detail. We take trans-
action throughput and latency as the main performance metrics, install test tool in the
blockchain systems, deploy smart contracts according to the information specified in
the configuration, and start monitoring objects to monitor the resource consumption of
the backend blockchain system. According to our defined workloads, the test tool will
test the blockchain systems. A comprehensive analysis of the performance of the
blockchain system was made by adjusting parameters such as Send Rate and batchsize,
and finally the results were obtained. Based on the analysis results, we give some
possible performance optimization schemes. We can see that the performance gap
between the public blockchain and the consortium blockchain is very large. Therefore,

132 R. Wang et al.

Ethereum needs to develop a new generation as soon as possible to improve their
performance. For Fabric, as one of the most concerned members in the consortium
blockchains, its performance is not as good as the emerging consortium blockchains.
Sawtooth is also an open source distributed ledger platform. It is also used to run smart
contracts and aims at digital financial asset management. The overall architecture is
clear and highly modular, so the ability to customize is also strong. Fisco-Bcos is
derived from the Ethereum C++ version. After years of development, major changes
have been made in terms of scalability, performance, and ease-using. Fisco-Bcos 2.0
has added a group architecture to overcome the bottleneck of system throughput and its
performance is very good.

There are still many shortcomings in this experiment. Due to the configuration of
the experimental environment, the performance we get is far from the theoretical
performance. In terms of workloads, we have only a few types of workloads that make
it impossible to perform a complete assessment of the performance of the entire
blockchain system.

In the future, we plan to use cloud services to conduct larger-scale experiments. We
will continue to study the performance optimization methods of blockchain systems,
and at the same time add consensus algorithms to our research direction. In addition,
we will conduct more in-depth research on the architecture of the blockchain systems to
improve the performance of the blockchain systems.

Acknowledgment. This work is supported by Key-Area Research and Development Program of
Guangdong Province (NO. 2020B010164003), National Natural Science Foundation of China
(No. 61702492), Shenzhen Basic Research Program (No. JCYJ20170818153016513), Shenzhen
Discipline Construction Project for Urban Computing and Data Intelligence, Science and
Technology Development Fund of Macao S.A.R (FDCT) under number 0015/2019/AKP, and
Youth Innovation Promotion Association CAS.

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf.
Accessed 9 Jan 2020

2. Ethereum blockchain app platform. https://www.ethereum.org/. Accessed 9 Jan 2020
3. The Linux Foundation Homepage. https://www.linuxfoundation.org/. Accessed 9 Jan 2020
4. Hyperledger Homepage. https://www.hyperledger.org/. Accessed 9 Jan 2020
5. Hyperledger Fabric Homepage. https://www.hyperledger.org/projects/fabric. Accessed 9 Jan

2020
6. Hyperledger Sawtooth Homepage. https://www.hyperledger.org/projects/sawtooth. Acces-

sed 9 Jan 2020
7. Fisco-Bcos Homepage. http://www.fisco-bcos.org/. Accessed 9 Jan 2020
8. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols (extended abstract).

In: Preneel, B. (ed.) Secure Information Networks. ITIFIP, vol. 23, pp. 258–272. Springer,
Boston, MA (1999). https://doi.org/10.1007/978-0-387-35568-9_18

9. King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. Self-published
paper, vol. 19 (2012)

10. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. OSDI 99, 173–186 (1999)

Performance Evaluation on Blockchain Systems 133

https://bitcoin.org/bitcoin.pdf
https://www.ethereum.org/
https://www.linuxfoundation.org/
https://www.hyperledger.org/
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/sawtooth
http://www.fisco-bcos.org/
https://doi.org/10.1007/978-0-387-35568-9_18

11. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: 2014
USENIX Annual Technical Conference (USENIX ATC 2014), pp. 305–319 (2014)

12. Docker Homepage. https://www.docker.com/. Accessed 9 Jan 2020
13. Demers, A., et al.: Epidemic algorithms for replicated database maintenance. ACM SIGOPS

Oper. Syst. Rev. 22(1), 8–32 (1988)
14. Hyperledger Caliper Homepage. https://hyperledger.github.io/caliper/. Accessed 9 Jan 2020
15. Level DB Database Homepage. https://github.com/a/leveldb. Accessed 9 Jan 2020
16. Dinh, T.T.A., et al.: Blockbench: a framework for analyzing private blockchains. In:

Proceedings of the 2017 ACM International Conference on Management of Data, pp. 1085–
1100. ACM (2017)

17. Thakkar, P., Nathan, S., Viswanathan. B.: Performance benchmarking and optimizing
hyperledger fabric blockchain platform. In: 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 264–276. IEEE (2018)

18. Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Performance analysis of private
blockchain platforms in varying workloads. In: 2017 26th International Conference on
Computer Communication and Networks (ICCCN), pp. 1–6. IEEE (2017)

19. Rouhani, S., Deters, R.: Performance analysis of ethereum transactions in private
blockchain. In: 2017 8th IEEE International Conference on Software Engineering and
Service Science (ICSESS), pp. 70–74. IEEE (2017)

20. Ampel, B., Patton, M., Chen, H.: Performance Modeling of Hyperledger Sawtooth
Blockchain. In: 2019 IEEE International Conference on Intelligence and Security
Informatics (ISI), pp. 59–61. IEEE (2019)

21. Hao, Y., et al.: Performance analysis of consensus algorithm in private blockchain. In: 2018
IEEE Intelligent Vehicles Symposium (IV), pp. 280–285. IEEE (2018)

22. Chaincodes. http://hyperledger-fabric.readthedocs.io/en/release-1.1/chaincode4noah.html.
Accessed 9 Jan 2020

23. Membership Service Providers (MSP). http://hyperledger-fabric.readthedocs.io/en/release-1.
1/msp.html. Accessed 9 Jan 2020

24. Node SDK for Fabric Client/Application. https://github.com/hyperledger/fabric-sdk-node.
Accessed 9 Jan 2020

25. Omohundro, S.: Cryptocurrencies, smart contracts, and artificial intelligence. AI Matters 1
(2), 19–21 (2014)

26. Yan, Y., Zheng, K., Guo, Z.: Ethereum Technical Details and Actual Combat, 1st edn. China
Machine Press, Beijing (2018)

27. On sharding blockchains. https://github.com/ethereum/wiki/wiki/Sharding-FAQ. Accessed 9
Jan 2020

28. Barger, A., et al.: Scalable communication middleware for permissioned distributed ledgers.
In: Proceedings of the 10th ACM International Systems and Storage Conference, p. 1, May
2017

29. Gorenflo, C., et al.: FastFabric: scaling hyperledger fabric to 20,000 transactions per second.
In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
pp. 455–463. IEEE (2019)

30. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: On security analysis of proof-of-
elapsed-time (PoET). In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616,
pp. 282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_19

134 R. Wang et al.

https://www.docker.com/
https://hyperledger.github.io/caliper/
https://github.com/a/leveldb
http://hyperledger-fabric.readthedocs.io/en/release-1.1/chaincode4noah.html
http://hyperledger-fabric.readthedocs.io/en/release-1.1/msp.html
http://hyperledger-fabric.readthedocs.io/en/release-1.1/msp.html
https://github.com/hyperledger/fabric-sdk-node
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://doi.org/10.1007/978-3-319-69084-1_19

Short Paper Track

Midiag: A Sequential Trace-Based Fault
Diagnosis Framework for Microservices

Lun Meng1, Yao Sun2, and Shudong Zhang3(&)

1 College of Public Administration, Hohai University, Nanjing 210098, China
m_l_01@163.com

2 Nanjing Institute of Big Date, Jinling Institute of Technology,
Nanjing 211169, China

suny216@jit.edu.cn
3 Information Engineering College, Capital Normal University,

Beijing 100048, China
zsd@cnu.edu.cn

Abstract. Cloud applications are often deployed in shared data centers to
optimize resource allocation and improve management efficiency. However,
since a cloud application often has a large amount of different microservices, it
is difficult for operators to analyze these microservices with a unified model. To
deal with the above problem, this paper proposes a sequential trace-based fault
diagnosis framework called as Midiag by mining the patterns of microservices’
system call sequences. Midiag collects system calls with a non-invasive light-
weight tool, and then uses k-means to cluster system call sequences as patterns
with the longest common subsequence. The GRU-based neural network is
employed to model the patterns of system call sequences to predict the next
system call, and thus we can diagnose faults by comparing the predicted next
system call and the actual next one in the specific pattern. We have validated
Midiag with many different types of applications deployed in containers. The
results demonstrate that Midiag can well classify these applications as different
types and accurately diagnose the injected faults.

Keywords: Fault diagnosis � System call � Microservices � Cloud applications

1 Introduction

Microservice architectures is increasingly used to develop various applications due to its
advantages such as efficient development, quick deployment and flexible scaling. In
recent years, software applications based on amicroservice architecture have beenwidely
deployed in cloud computing data centers, and their infrastructures (e.g. Kubernetes,
Mesos) have also developed rapidly to support andmanage large-scale microservices. As
various microservice applications have different resource requirements and behavior
characteristics, the operators of a data center pay muchmore attention to the management
strategies of microservices. A microservice architecture includes heterogeneous soft-
ware, e.g., open-source software, third-party services and application-specific software.
Analyzing and understanding microservice-based applications is the key to ensure

© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 137–144, 2020.
https://doi.org/10.1007/978-3-030-59592-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-59592-0_9

applications’ reliability. Existing methods usually study the attributes of a single service
or application, e.g., executable file name, port number, file metadata. However, these
attributes are not the inherent attributes of microservices, which can be dynamically
adjusted or hidden with operation and maintenance. Thus, the application-specific
analysis cannot dynamically adapt to changing cloud computing. Some tools inspect
packets, but analyzing the runtime behavior of deployed microservices has much over-
head. Furthermore, these tools cannot accurately analyze the characteristics of
microservices in the code level. Moreover, the strict privacy policy of cloud computing
prohibits the intrusive analysis of microservices, which increases the difficulty of pro-
filing microservices.

To address the above challenges, this paper proposes a sequential trace-based fault
diagnosis framework for microservices called as Midiag. We collect sequential system
calls to trace the runtime behaviors of various microservices with a unified, efficient
and non-invasive way, when microservices interact with the host operating system,
e.g., accessing file systems, synchronizing threads. Then, we employ k-means to cluster
the collected sequential system calls as sequence patterns with Longest Common
Subsequence (LCS). Finally, we employ the GRU-based neural network to model a
sequence pattern, predict the next system call, and then diagnose faults by comparing
the expected system call and the actual one in the specific pattern.

2 Related Work

Monitoring technologies are the basis of fault diagnosis by identifying the deviations
from normal system behaviors. Existing works have proposed many models for fault
diagnosis, such as subsequence analysis [1], behavioral Markov model [2], finite state
automata [3], dynamic Bayesian network [4], and deep neural network [5]. Ref. [6]
proposes a mandatory security policy generated by normal application behaviors in the
system call level, which can realize simple admission controls regardless of the
dependency of cross-system call sequences. The above method is limited to network-
based applications and their communication protocols [7], while Midiag is generally
applicable for various applications. Ref. [8] and [9] propose outlier detection methods
based on semi-supervised learning (e.g., clustering) with labeled and unlabeled sam-
ples. The above methods are suitable for small-scale systems, but they are difficult to
deal with the actual deployment scenarios of applications with various microservices
and complex dependencies [10]. Midiag diagnoses faults by automatically analyzing
system calls without applications’ domain knowledge.

3 Midiag Design

Figure 1 shows the system architecture of Midiag, which includes trace collector, trace
pattern miner, microservice modeler and fault diagnostor.

138 L. Meng et al.

3.1 Trace Collector

We deploy a trace collector in every host to collect the traces of Docker containers
deployed in the host. The trace collector employs a kernel virtualization tool that is IO
Visor (https://github.com/iovisor) to collect the kernel events of interest without cus-
tomizing the kernel by dynamically injecting user-defined bytecodes into kernel hook
functions. IO Visor combines open source components to build networking, security
and tracing in datacenters. We adopt bcc that is a component of IO Visor supporting
immediate compilation to allow IO Visor programs running at the host speed in kernel.
When a microservice is loaded, the Docker container notifies the daemon of the user
space with PID, and the trace collector starts to collect system calls. The collector
monitors the system calls of every microservices deployed on an operating system; the
trace collector registers the PIDs of monitored Docker containers in the PID table; the
trace collector sends the system call sequences of microservices registered in the PID
table to the trace pattern miner for further mining trace patterns.

3.2 Trace Pattern Miner

Microservices carry out a series of activities by invoking system calls. Since different
microservices have various system call patterns, we classifying microservices with
similar system call sequences for improving the accuracy of fault diagnosis. The system
calls collected from the trace collector are stored in the database for persistent storage,
and the trace pattern miner employs k-means to cluster system call sequences with
historical traces. In the training stage, the trace pattern miner clusters the system call
sequences collected from the trace collectors as k microservice types with k-means. In
the testing stage, the trace pattern miner takes a test system call sequence collected
from a trace collector as an input, and then selects the cluster with the highest similarity
as its microservice type. Trace pattern miner measures the similarities between the

Trace Pattern MinerMicroservice ModellerFault diagnostor

Midiag

Trace Collector

Node 1

Docker container 2

Microservice

Docker container 1

Microservice

Trace Collector

Node 2

Database

Fig. 1. Midiag system architecture

Midiag: A Sequential Trace-Based Fault Diagnosis Framework 139

https://github.com/iovisor

system call sequence to be detected and the central points of k clusters, and then the
most similar microservice type is regarded as its microservice type.

First, we calculate the similarity between system call sequences. The longest
common subsequence (LCS) is the longest subsequences between two sequences. We
suppose that sequence Z = (z1, z2,…,zk) is the LCS of sequence X = (x1, x2,…,xm) and
sequence Y = (y1, y2,…,yn), and then we conclude that:

• If Xm = Yn, then Zk = Xm = Yn, and Zk−1 is the LCS of Xm−1 and Yn−1;
• If Xm 6¼ Yn, Zk is the LCS of Xm and Yn−1 or the LCS of Xm−1 and Yn.

We calculate c [i, j] to record the length of the LCS of Xi and Yj as:

c i; j½ � ¼
0; i ¼ 0 or j ¼ 0

c i� 1; j� 1½ � þ 1; i; j[0 and xi ¼ yi
max c i; j� 1½ �; c i� 1; j½ �ð Þ; i; j[0 and xi 6¼ yi

8
<

:
:

The LCS of X and Y can be recursively performed in the following way:

• When xm = yn, we calculate the LCS of Xm-1 and Yn-1, and then add xm or yn to the
tail to obtain the LCS of X and Y.

• When xm 6¼ yn, we calculate the LCS of Xm-1 and Y and the LCS of X and Yn-1.

After obtaining the system call sequence of each microservice, we calculate the
distance between two system call sequences, and then use the distance to measure the
similarity between system call sequences as:

D X; Yð Þ ¼ 1� lcs X; Yð Þj j
Xj j þ Yj j � lcs X; Yð Þj j

where |X| and |Y| are the lengths of system call sequence X and that of the system
call sequence Y, and lcs(X,Y) is the LCS between X and Y. If X and Y are exactly the
same, then d(x, y) = 0; if X and Y have no common subsequence, then d(x, y) = 1.

With the distance between the system call sequences and patterns, we cluster
microservices’ system call sequences, so that the microservices’ system call patterns
can be categorized to improve the accuracy of fault diagnosis. The k-means method
firstly randomly finds a representative system call sequence for each cluster, and
respectively assigns other objects to respective clusters according to the distances
between them and the representative of clusters. If replacing a cluster representative
with a new object can improve the quality of the obtained cluster, the representative of
the cluster can be replaced with a new one. System call sequences can be classified into
k different categories after iterations.

3.3 Microservice Modeler

We take system call sequences as the input of GRU neural networks with the attention
mechanism to train GRU neural networks, and then obtain the trained GRU neural
network, where each neural network pattern corresponds to a type of system call
sequences. k GRU neural network patterns are respectively established for k types of

140 L. Meng et al.

microservices’ system call sequences. We construct a GRU-based neural network
model for each system call pattern as follows.

The first (n−1) system calls of the corresponding system call sequences are encoded
as the hidden variables of a neural network’s input layer. The hidden variables present
context variables containing data flow information of the whole system call sequence.
The attention mechanism is employed to allocate weight coefficients to the hidden
variables. The more layers a network has, the stronger ability to learn and predict
system call sequences it has. However, when the number of layers is too high, the
training of the pattern is difficult to converge, so we employ a 3-layer GRU network.
We add a full connection layer at the end to reduce the output’s dimension. The
Softmax function is used as the output layer of the neural network, and the corre-
sponding tag is the category of system call sequence. The neural network pattern is
trained with the gradient descent and the back-propagation loss, the parameters of the
pattern are continuously adjusted, and then the trained GRU-based neural network
pattern is obtained.

3.4 Fault Diagnostor

The similarities between the system call sequence to be detected with the representative
sequences of k clusters are measured. We first classify a system call sequence as the
cluster with the greatest similarity. For each cluster, we train a GRU-based model with
the dataset of system call sequences. The original input sequence is reconstructed into a
variable vector, and the fault diagnosis is carried out on the newly added sequence. The
input sequence is converted into an encoding vector before being input into the GRU-
based model. The output of the GRU layer is repeated S times to construct an inter-
mediate sequence, where S is the length of the input sequence. The intermediate
sequence passes through a time distribution dense layer with a Softmax activation
function, and then the sequence is decoded as an original input sequence by another
GRU layer.

The system call sequence to be detected is the input of the GRU neural network
built in the specific cluster. The difference between the predicted system call and the
actual one is measured as the abnormality degree. After the last system call is removed
from the system call sequence, the system call sequence is used as the input of the GRU
neural network trained in the corresponding cluster. The pattern encodes this system
call sequence as a hidden variable, and generates the hidden variable into a context
variable containing data flow information with the attention mechanism. GRU predicts
the category of the next system call in the system call sequence, and outputs the
normalized discrete probability distribution through the Softmax function. The Man-
hattan distance is used to calculate the difference between the probability distribution
vector of the next system call predicted by the GRU neural network and the vector of
the next actual system call. The distance is taken as an anomaly degree, where the
larger the distance is, the larger the anomaly degree of the system call is.

Midiag: A Sequential Trace-Based Fault Diagnosis Framework 141

4 Evaluation

The experimental environment includes eight virtual machines (VMs) running on
Ubuntu 18; each VM has a 2.40 GHz virtual CPU core and 32 GB memory; each VM
employs bcc and JIT to collect system calls.

This section evaluates Midiag with precision that is the ratio of correctly detected
faults and injected faults in ref. [11]. We choose sixteen microservices categorized as
SQL database (i.e., PostgreSQL, Ingres r3, MaxDB, InterBase), NoSQL database (i.e.,
MongoDB, Cassandra, HBASE, Memcache), Web server (i.e., Apache, Nginx,
Lighttpd, Appweb), FTP client (i.e., File Zilla, Fire FTP, gFTP, LFTP). To train the
GRU-based model, we collect one thousand system call sequences for each microser-
vice. A single GRU-based model is trained with the dataset of system call sequences

Fig. 2. System call sequence length on precision

Fig. 3. Fault diagnosis threshold on precision

142 L. Meng et al.

generated by all microservices, and then a sample is detected with the unified model.
Furthermore, Midiag trains multiple GRU-based models with multiple datasets of
system call sequences generated by microservices in different clusters, respectively. If
the loss returned by the GRU-based model is higher than the threshold, the detected
sample is detected as a fault. Each experiment is repeated 100 times.

Firstly, we evaluate the length of system call sequence on precision. Figure 2
shows that the longer the length is, the more accurate the precision is, before the
threshold of the sequence length reaches 900, and Midiag can achieve the best pre-
cision 0.91. However, the precision decreases after that, because the longer sequence
causes the overfit of the trained model. Secondly, we compare Midiag with the tra-
ditional single GRU-based model. Figure 3 shows the effect of loss threshold on the
accuracy of fault diagnosis. If the threshold is too high, more faults of system call
sequence will be classified as normal (i.e., false negative). If the threshold is too low,
the normal sequence will be incorrectly classified as abnormal (i.e., false positive). The
achievable accuracy of a single GRU-based model is less than 0.80, while Midiag can
achieve precision 0.91 by categorizing sixteen microservices as five clusters and
diagnosing faults in each cluster according to the cluster of system call sequences.

5 Conclusion

The microservice architecture raises great challenges to the operation and maintenance
of applications in cloud computing. Existing operation technologies usually employ a
unified model to analyze applications’ status. However, the behaviors of various
microservices vary greatly, and describing them with a single model is difficult. To
address the above issue, this paper proposes a microservice fault diagnosis framework
Midiag based on mining system call patterns. After collecting system calls with a non-
invasive lightweight tool, we employ k-means to cluster system call sequences as
sequence patterns with LCS. The GRU-based neural network is adopted to model a
sequence pattern to predict the future system call, and thus we can detect faults by
comparing the predicted system call and the actual one in a specific pattern. Experi-
mental results show that Midiag can effectively distinguishes system call sequences and
achieve much higher precision in detecting faults.

Acknowledgment. This work is supported by National Key R&D Program of China
(2018YFB1402900).

References

1. Forrest, S., Hofmeyr, S., Somayaji, A.: The evolution of system call collecting. In: The
Annual Computer Security Applications Conference, Piscataway, NJ, pp. 418–430. IEEE
Computer Society (2008). https://doi.org/10.1109/acsac.2008.54

2. Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call sequence and
argument analysis. IEEE Trans. Dependable Secure Comput. 7(4), 381–395 (2010). https://
doi.org/10.1109/TDSC.2008.69

Midiag: A Sequential Trace-Based Fault Diagnosis Framework 143

https://doi.org/10.1109/acsac.2008.54
https://doi.org/10.1109/TDSC.2008.69
https://doi.org/10.1109/TDSC.2008.69

3. Sekar, R., Bendre, M., Dhurjati, D., Bollineni P.: A fast automaton based method for
detecting anomalous program behaviors. In: Symposium on Security and Privacy,
Piscataway, NJ, pp. 144–155. IEEE Computer Society (2001). https://doi.org/10.1109/
secpri.2001.924295

4. Fenga, L., Guana, X., Guoa, S., Gaoa, Y., Liua, P.: Predicting the intrusion intentions by
observing system call sequences. Comput. Secur. 23(3), 241–252 (2004). https://doi.org/10.
1016/j.cose.2004.01.016

5. Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C.: Deep learning for classification of
malware system call sequences. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol.
9992, pp. 137–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-7_11

6. Provos., N.: Improving host security with system call policies. In: the 12th Conference on
USENIX Security Symposium, Berkeley, pp. 1–18. USENIX (2003). 10.1.1.13.2425

7. Bernaille, L., Teixeira, R., Salamatian, K.: Early application identification. In: ACM
CoNEXT Conference, New York, NY, USA, pp. 1–12. ACM (2006). https://doi.org/10.
1145/1368436.1368445

8. Ermana, J., Mahanti, A., Arlitt, M., Cohen, I., Williamson, C.: Offline/realtime traffic
classification using semi-supervised learning. Perform. Eval. 64(9), 1194–1213 (2007).
https://doi.org/10.1016/j.peva.2007.06.014

9. Zhang, J., Chen, X., Xiang, Y., Zhou, W., Wu, J.: Robust network traffic classification.
IEEE/ACM Trans. Netw. 23(4), 1257–1270 (2015). https://doi.org/10.1109/TNET.2014.
2320577

10. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices: the journey so
far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018). https://doi.org/10.1109/MS.
2018.2141039

11. Magalhes, J.P., Silva, L.M.: SHoWA: a self-healing framework for web-based applications.
ACM Trans. Auton. Adapt. Syst. 10(1), 1–28 (2015). https://doi.org/10.1145/2700325

144 L. Meng et al.

https://doi.org/10.1109/secpri.2001.924295
https://doi.org/10.1109/secpri.2001.924295
https://doi.org/10.1016/j.cose.2004.01.016
https://doi.org/10.1016/j.cose.2004.01.016
https://doi.org/10.1007/978-3-319-50127-7_11
https://doi.org/10.1145/1368436.1368445
https://doi.org/10.1145/1368436.1368445
https://doi.org/10.1016/j.peva.2007.06.014
https://doi.org/10.1109/TNET.2014.2320577
https://doi.org/10.1109/TNET.2014.2320577
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1145/2700325

An Empirical Study of Web API Quality
Formulation

Esi Adeborna1 and Kenneth K. Fletcher2(B)

1 University of Massachusetts Lowell, Lowell, MA 01854, USA
esi adeborna@student.uml.edu

2 University of Massachusetts Boston, Boston, MA 02125, USA
kenneth.fletcher@umb.edu

Abstract. This paper presents an empirical study on one of the most
popular web API repositories, www.programmableweb.com. The study is
to ascertain the impact of the structure and formulation of external web
API quality factors on the overall web API quality. The study is based
on the hypothesis that, in such a multi-factor quality measurement, the
structure and formulation of the quality factors can make a substantial
difference in its quantification. Specifically, we employ statistical tools
such as exploratory factor analysis, to determine the latent factors that
contributes to web API quality. We subsequently determine the loading
of each latent factors to propose a new quality model for web API quality
computation.

Keywords: Web API · Web API quality · Web API quality factors ·
Factor analysis · Mashup development

1 Introduction

Web Application Programming Interfaces (APIs) have become increasingly
prevalent in recent past as they provide a platform that allows other applica-
tions to interact and request for data or use their functionality. With this many
web APIs, typically with similar functionality, it becomes challenging to select
or recommend web APIs to meet users’ needs. Therefore, in order to provide a
distinction among functionally similar web APIs, quality factors are used [1,2].

Web APIs, unlike web services, hide their internal complexities and internal
details. Therefore they depend on external factors to drive their suitability for
integration into other applications [1,3,4]. According to the standard ISO/IEC
9126-1, external quality is based on a black box model and is related to the behav-
ior of the software product in a given running environment [5]. Consequently,
several API quality models, that depend on their external quality factors have
been proposed [1,4,6]. In one of such quality models, proposed by Fletcher [1]
which was an extension of Cappiello et al. [4], the quality of a web API depends
on three quality dimensions, namely, Functionality, Reliability and Usability.
This model was purely based on theoretical foundation and the behavior of web
c© Springer Nature Switzerland AG 2020
Q. Wang et al. (Eds.): SCC 2020, LNCS 12409, pp. 145–153, 2020.
https://doi.org/10.1007/978-3-030-59592-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59592-0_10&domain=pdf
http://orcid.org/0000-0001-8850-8594
www.programmableweb.com
https://doi.org/10.1007/978-3-030-59592-0_10

146 E. Adeborna and K. K. Fletcher

APIs and as such has a couple limitations: (1) Their model assumes that all
three quality dimensions contribute equally to the overall web API quality. This
assumption equates the salience of each quality dimension in the web API Qual-
ity computation and therefore balances the Quality values of web APIs even if
one dimension has increased salience than the others. (2) The formulation of the
web API quality model does not take into consideration the correlation of the
quality factors that make up the dimensions.

These limitations can lead to varied implications such as (1) inaccurate com-
putation of low quality APIs as high quality, where low-quality web APIs could
result in difficulty to integrate with other APIs and (2) cause developers to miss
out on potentially quality web APIs because of inaccurate web API Quality val-
ues [1]. In this work, we propose a method to address the above limitations, by
first performing an extensive empirical analysis of web API dataset using statis-
tical parameters and exploratory factor analysis. We subsequently formulate a
model for web API quality, based on results from our analysis.

2 Background on Web API Quality

Obtaining values of quality of service (QoS) parameters, such as availability,
response time, etc. for web APIs is a challenging task because, web APIs typ-
ically hide their internal complexity and therefore external factors drive the
evaluation of its quality computation [1,4]. For this reason, we adopt the quality
model proposed by Fletcher [1] and Cappiello et al. [4], to define our black-box
quality model for web APIs. This black-box quality model are organize along
three main web API dimensions: (1) Functionality: considers the web API’s
interoperability, compliance, and security level [1]; (2) Reliability: measures
the maturity of the web API by considering the available statistics of usage of
the component together with the frequency of its changes and updates; and (3)
Usability: A web API’s usability is evaluated in terms of understandability by
considering the available web API documentation by means of examples, API
groups, blogs, sample source codes etc. [1].

3 Research Approach

This section first gives an overview of our approach and thereafter describes the
main modules that drives our model. Our research study focuses on a series of
statistical analysis to determine the content and distribution of the variables of
interest to accurately compute the quality of a web API. We develop the concep-
tual and mathematical underpinnings of the proposed quality model and finally
propose a web API quality model based on results of our statistical analysis.

3.1 Dataset Description

Our empirical study focuses on studying one of the popular online web APIs
repository, www.programmableweb.com. This is by far the largest online web

www.programmableweb.com

An Empirical Study of Web API Quality Formulation 147

Table 1. Top 5 Web API categories from programmableweb.com

Category Number of Web APIs

Tools 787

Financial 583

Enterprise 486

eCommerce 434

Social 402

API repository that contains approximately 23,000 web APIs, with various func-
tionalities [3,7]. We study a version of this data, API dataset [1], which was
crawled from www.programmableweb.com in March 2018. This dataset contains
12,879 web API records with 383 categories. Table 1 shows a list of the top 5
categories in the dataset. Each web API in our dataset is described by 19 fields
such as name, description, authentication model, request and response formats,
etc.

3.2 Empirical Study

To explore the content and the distribution of our dataset, we performed a series
of statistical analysis. In our analysis, we focus on the external variables that
define the quality of a web API. Table 2 presents central tendency of web API
dataset variables of interest and dispersion within the variables’ distribution.
Due to the great numeric range in the dataset on these different variables, we
normalize the values for the variables of interest.

Noteworthy findings are that, most of the web APIs have almost no SDKs
as revealed in its average and median for 0.15 and 0 respectively. In addition,
the SDKs are highly skewed to the right of the distribution around the mean.
How-tos and Sample API Codes have a similar and largely skewed distribution
as SDK, with mean values almost zero. There is a relatively better distribution
for API Versions than the previous variables with a mean and median almost

Table 2. Descriptive statistics for the external quality variables (N = 12,879)

Mean SD Median Range Skew

SDKs 0.15 0.36 0.00 1.00 1.97

How-tos 0.01 0.09 0.00 1.00 11.45

Sample Codes 0.10 0.30 0.00 1.00 2.70

API Versions 0.70 0.14 0.74 0.88 −2.60

API Languages 0.42 0.06 0.42 0.50 0.82

Data Formats 0.80 0.40 1.00 1.00 −1.47

Security 0.36 0.20 0.40 0.80 1.29

https://www.programmableweb.com
www.programmableweb.com

148 E. Adeborna and K. K. Fletcher

Fig. 1. Boxplots of the web API external variables

Table 3. Pearson correlation between web API external variables (N = 12,879)

(1) (2) (3) (4) (5) (6) (7)

(1) SDKs –

(2) How-tos 0.12 –

(3) Sample codes 0.49 0.09 –

(4) Reliability 0.02 0.02 0.05 –

(5) Interoperability 0.23 0.06 0.19 0.02 –

(6) Compliance 0.01 0.01 0.03 0.64 0.11 –

(7) Security −0.12 0.01 −0.02 0.10 −0.45 0.03 –

identical, and a standard deviation of 0.14. The highly skewed API Versions
imply that most of the web APIs are updated regularly. This is an indication
of good reliability, which measures the maturity of the web API by consid-
ering the frequency of its changes and updates. The number of different API
languages show a distribution that is moderately skewed to the right, skew =
0.82. Typically, a web API is compliant if it supports at least one standard
web API language. The Data formats external variable is negatively skewed
with a standard deviation of 0.4, showing a wide dispersion around the mean.
Data formats together with API Languages measures the interoperability of a
web API. Security is positively skewed and has a smaller dispersion around the
mean with a SD of 0.20. This indicates most of the web APIs have some kind

An Empirical Study of Web API Quality Formulation 149

of authentication system. Figure 1 shows the boxplots of the web API quality
variables based on the API dataset.

3.3 Associations Between Web API External Variables

We employ Pearson Correlation (PC) matrix, to describe linear associations
between the web API external variables. PC attempts to determine the amount
of linear dependence between variables by describing their association as a
straight line. Table 3 provides the results for the correlation between the vari-
ables. The values show a non-zero direct correlation between the variables with
p-values less than 0.001. Our analysis of the correlation coefficients suggest the
variables are weak to moderately correlated, mostly positive but negative for
Reliability on SDKs, Sample Code and Security.

3.4 Exploratory Factor Analysis (EFA)

Exploratory Factor Analysis (EFA) is a statistical technique that is used to
identify the latent relational structure among a set of variables [8]. Essentially,
we use EFA to uncover the underlying structure of the relationship between
the web API quality variables. First, we conduct parallel analysis scree plot to
determine the acceptable number of factors. Figure 2 shows the scree plot of
our parallel analysis. We locate the point of inflection (the point where the gap
between simulated data and actual data tends to be minimum) to determine the
minimum number of factors. In this case, it is 3.

Next we determined the factors to be extracted. We employ the oblique
rotation based on the correlation between the variables. We used the “Ordinary
Least Squared/Minres” factoring as it is known to provide results similar to
“Maximum Likelihood” without assuming multivariate normal distribution and
derives solutions through iterative eigen decomposition like principal axis [9,10].

Fig. 2. EFA Parallel analysis scree plot

150 E. Adeborna and K. K. Fletcher

Using loadings of not less than absolute value of 0.3 [10], and not loading on
more than one factor, Table 4 shows the results of our factor loading. With a
factor of 3, our result produces a single-loading, also known as Simple Structure.

To validate the EFA for acceptable fit [9], we consider our Root Mean Square
of Residuals (RMSR) from the result, which is 0. This is acceptable as the RMSR
value for an acceptable fit should be closer to 0. Next we check the RMSEA (Root
Mean Square Error of Approximation) index. Its value, 0.007 shows good model
fit as it should be below 0.05. Finally, our Tucker-Lewis Index (TLI) is 0.99 - an
acceptable value considering it’s over 0.9. After establishing the adequacy of the
factors, the EFA result was used as the basis for the proposed model, see Fig. 3.

Fig. 3. Results of Factor Analysis of Web API variables

3.5 Web API Quality Formulation

Based on results from our analysis the following mathematical models have been
proposed to define the web API quality dimensions. For each web API w ∈ W ,
there is a quality property Q(w), that indicates the quality of the web API w
given as:

Q(w) = 0.4 ∗ QF (w) + 0.33 ∗ QR(w) + 0.27 ∗ QB(w) (1)

where QF , QR and QB are the quality dimensions for Functionality (F), Reliasec
(R), and Usability (B) respectively. 0.4, 0.33 and 0.27 are the weight each quality
dimension, Functionality (F), Reliasec (R), and Usability (B) respectively, con-
tribute to the calculation of the quality of a web API. A new dimension, Reliasec,

Table 4. Factor loading for web API external variables (N = 12,879)

Functionality Reliasec Usability

SDKs – – 0.609

How-tos – – 0.440

Sample codes – – 0.553

Reliability 0.816 – –

Interoperability – 0.837 –

Compliance 0.789 – –

Security – −0.572 –

An Empirical Study of Web API Quality Formulation 151

has been introduced and explained in Eq. (3). The formalized descriptions of the
proposed web API Quality dimensions are as follows:

QF =
1
2
[(1 +

|lang|
k

+
|dformat|

l
) + 3comp] (2)

where lang and dformat are the languages and data formats supported by the
web API, and comp is the compliance levels of the web API respectively.

QR =
1
2
[
3
5
sec + max

(
1 − cdate − ludate

cdate−crdate
|ver|

, 0

)
] (3)

where cdate, ludate, and crdate are the current date, last use date and creation
date of the web API respectively, and ver is the set of version available for
that web API. sec is the security level of the web API. Based on our correlation
matrix Sect. 3.3, Security and Compliance are highly correlated 0.64 than any of
the other variables, which suggests they are similar measures for Functionality.
Also, the factor analysis suggests the grouping of Security and Reliability into one
factor, see Fig. 3. The mathematical Eq. (3), considers Reliability and Security
in one dimension, namely Reliasec.

QB =
1
3
(sdks + how to + sample codes) (4)

where sdks, how tos, and sample codes are number of SDKs, How-to Documen-
tations and Sample Codes that are available for web API users.

We use Cronbach’s alpha to validate the internal consistency of our proposed
quality model in comparison to the existing model. Cronbach’s alpha is a measure
of internal consistency that indicates how closely related a set of items are as a
group. The alpha values for the revised dimensions in the proposed models are
0.78 and 0.63 for functionality and reliasec respectively. These values are higher
than the existing model of 0.51 and 0.46 for functionality and reliability.

4 Related Work

Web API quality research is minimal and the articles that focus on API quality
have no emphasis on the effect of splitting web API attributes by weight in the
multi-attribute measurement of web API quality. Bermbarch and Wittern [6]
proposed an approach and a toolkit for benchmarking the quality of web APIs
considering geo-mobility of clients. Their quality model comprises of two inter-
connected attributes namely, availability and performance. Volatile latency and
temporary unavailability were considered quality problems without quantifica-
tion of the role that each attribute plays in the quality of the web API.

Picozzi et al. [11] also proposed a quality model for mashup services. The
Mashup quality computation, proposed in their work, considers the different
roles mashup components play (i.e. master, slave and filter) that affect the per-
ception of the quality of the final integration [11]. These roles, however, are not

152 E. Adeborna and K. K. Fletcher

relevant to web APIs. Similarly, Fletcher [1] proposed a method that employs
the black-box approach to analyze the quality of web APIs that match a mashup
developer’s requirement. Though his work recognized the need for web API qual-
ity computation based on its attributes, he computed web API quality as the
normalized sum of its dimensions. This work intends to capitalize on this con-
tribution but goes further to evaluate the multi-attribute measurement of web
API quality.

In another research by Cappiello et al. [12], they address quality of mashups
in the light of the activities that characterize their development process. They
proposed evaluation techniques taking into account the constituent components
of mashups. Their work supports our hypothesis but does not illustrate or vali-
date the computation of the weights.

5 Conclusion

In this work, we proposed a reconfiguration of API quality computation model
to promote increased accuracy in web API Quality calculations. This study uses
Correlation to prove that, Security and Compliance are highly correlated, which
suggests they are similar measures for Functionality. Exploratory Factor Analy-
sis (EFA) suggests the grouping of Security and Reliability into one factor, in the
Simple Structure. We have shown that our proposed model considers Reliability
and Security in one dimension, which we name Reliasec. Also, this study uses
EFA to examine how much weight each API quality dimensions contribute to
API Quality. For future research, we would run more experiments to ascertain
the performance of our model to increase accuracy in quality web API recom-
mendations compared with other baseline methods.

References

1. Fletcher, K.K.: A quality-based web API selection for mashup development using
affinity propagation. In: Ferreira, J.E., Spanoudakis, G., Ma, Y., Zhang, L.-J. (eds.)
SCC 2018. LNCS, vol. 10969, pp. 153–165. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94376-3 10

2. Fletcher, K.K., Liu, X.F.: A collaborative filtering method for personalized
preference-based service recommendation. In: 2015 IEEE International Conference
on Web Services, pp. 400–407, June 2015

3. Fletcher, K.K.: A quality-aware web API recommender system for mashup devel-
opment. In: Ferreira, J.E., Musaev, A., Zhang, L.-J. (eds.) SCC 2019. LNCS,
vol. 11515, pp. 1–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
23554-3 1

4. Cappiello, C., Daniel, F., Matera, M.: A quality model for mashup components. In:
Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp.
236–250. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02818-
2 19

5. ISO/IEC: ISO/IEC 25010: 2011 systems and software engineering-systems and
software quality requirements and evaluation (square)-system and software quality
models (2011)

https://doi.org/10.1007/978-3-319-94376-3_10
https://doi.org/10.1007/978-3-319-94376-3_10
https://doi.org/10.1007/978-3-030-23554-3_1
https://doi.org/10.1007/978-3-030-23554-3_1
https://doi.org/10.1007/978-3-642-02818-2_19
https://doi.org/10.1007/978-3-642-02818-2_19

An Empirical Study of Web API Quality Formulation 153

6. Bermbach, D., Wittern, E.: Benchmarking web API quality. In: Bozzon, A., Cudre-
Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 188–206.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8 11

7. Xia, B., Fan, Y., Tan, W., Huang, K., Zhang, J., Wu, C.: Category-aware API
clustering and distributed recommendation for automatic mashup creation. IEEE
Trans. Serv. Comput. 8(5), 674–687 (2015)

8. Child, D.: The Essentials of Factor Analysis. Cassell Educational, London (1990)
9. Hooper, D., Coughlan, J., Mullen, M.R.: Structural equation modelling: guidelines

for determining model fit. Electron. J. Bus. Res. Methods 6(1), 53–60 (2008)
10. Kline, R.B.: Principles and Practice of Structural Equation Modeling, vol. 2. Guil-

ford Press, New York City (2004)
11. Picozzi, M., Rodolfi, M., Cappiello, C., Matera, M.: Quality-based recommenda-

tions for mashup composition. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS,
vol. 6385, pp. 360–371. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16985-4 32

12. Cappiello, C., Matera, M., Picozzi, M., Daniel, F., Fernandez, A.: Quality-aware
mashup composition: issues, techniques and tools. In: 2012 Eighth International
Conference on the Quality of Information and Communications Technology, pp.
10–19. IEEE (2012)

https://doi.org/10.1007/978-3-319-38791-8_11
https://doi.org/10.1007/978-3-642-16985-4_32
https://doi.org/10.1007/978-3-642-16985-4_32

Author Index

Adeborna, Esi 145
Anarfi, Richard 35
Astudillo, Hernán 85

Bahrami, Mehdi 103
Bessghaier, Narjes 67

Chen, Wei-Peng 103

Fan, Shi-Liang 20
Fletcher, Kenneth K. 35, 50, 145

Gaona-Cuevas, Carlos Mauricio 85

Kwapong, Benjamin A. 35

Meng, Lun 137
Meng, Tianhui 120
Mkaouer, Mohamed Wiem 67

Ouni, Ali 67

Puerto-Cuadros, Eduard G. 85

Shen, Ze-Han 20
Sun, Yao 137
Syu, Yang 3

Vera-Rivera, Fredy H. 85

Wang, Chien-Min 3
Wang, Rui 120

Xu, Cheng-Zhong 120

Yang, Yu-Bin 20
Ye, Kejiang 120

Zhang, Shudong 137
Zuo, Fang-Yuan 20

	Preface
	Organization
	Conference Sponsor – Services Society
	About the Services Conference Federation (SCF)
	Contents
	Research Track
	QoS Time Series Modeling and Forecasting for Web Services: A Comprehensive Survey of Subsequent Applications and Experimental Configurations
	Abstract
	1 Introduction
	2 Subsequent Application
	3 Experimental Configurations
	3.1 Problem-Based Experimental Configuration Setting
	3.2 Approach-Specific Experimental Configuration Settings
	3.3 Application-Related Experimental Configuration Setting

	4 Conclusion
	Acknowledgement
	References

	Web Service Composition by Optimizing Composition-Segment Candidates
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 MILP Formalization of Web Service Composition
	3.1 Notations and Variables
	3.2 Criteria
	3.3 Constraints
	3.4 Practical Techniques for MILP Model

	4 Composition-Segment Candidate Optimization
	4.1 Generating Composition-Segment Candidates
	4.2 Optimizing Composition-Segment Candidates
	4.3 Greedy Selection

	5 Experimental Results
	5.1 Datasets
	5.2 Performance Analysis

	6 Conclusions
	References

	Collaborative Learning Using LSTM-RNN for Personalized Recommendation
	1 Introduction
	2 Related Works
	2.1 Sequence-to-Sequence (seq2seq) Recommender Systems
	2.2 Collaborative Filtering-Based Recommendations Using RNN
	2.3 Personalized Recommendation Using RNN

	3 LSTM-RNN Based Collaborative Learning Model
	3.1 Problem Definition
	3.2 Personalized Encoder-Decoder LSTM-RNN

	4 Experiments and Evaluation
	4.1 Dataset Description
	4.2 Baselines
	4.3 Metrics
	4.4 Results and Discussions

	5 Conclusions and Future Work
	References

	An Attention Model for Mashup Tag Recommendation
	1 Introduction
	2 Background
	2.1 Empirical Study
	2.2 Word Embedding
	2.3 Attention Mechanism

	3 Attention Model for Mashup Tag Recommendation
	3.1 GloVe Word Embeddings
	3.2 Word-Level Attention
	3.3 Sentence-Level Attention

	4 Experiments
	4.1 Dataset Description
	4.2 Evaluation Metrics
	4.3 Baselines
	4.4 Results and Discussions

	5 Related Work
	6 Conclusion and Future Work
	References

	Application Track
	On the Diffusion and Impact of Code Smells in Web Applications
	1 Introduction
	2 Related Work
	2.1 Diffuseness and Evolution of Code Smells
	2.2 Relationship Between Code Smells and Development Activities

	3 Empirical Study Design
	3.1 Research Questions
	3.2 Analysis Method

	4 Study Results and Analysis
	4.1 RQ1: Code Smells Diffuseness
	4.2 RQ2: The Impact of Code Smells on the Change-Proneness
	4.3 RQ3: The Impact of Code Smells Types on the Change-Proneness

	5 Threats to Validity
	6 Conclusion
	References

	Microservices Backlog - A Model of Granularity Specification and Microservice Identification
	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	4 Our Approach
	4.1 Formal Specification of the Granularity Model
	4.2 Genetic Algorithm for Microservices Decomposition

	5 Results
	5.1 Evaluation in an Academic Case Study – Cargo Tracking Application
	5.2 Quasi-Experimental Evaluation

	6 Conclusions
	References

	Automated Web Service Specification Generation Through a Transformation-Based Learning
	1 Introduction
	1.1 Motivation
	1.2 Related Works

	2 Proposed Approach
	2.1 Parallel Web Crawler
	2.2 API Corpus
	2.3 REST API Filter
	2.4 Tasks
	2.5 API Language Model
	2.6 Learning Diverse Extraction
	2.7 Metadata Extraction
	2.8 Table Extraction
	2.9 Plain Text Extraction
	2.10 API Attribute Extraction

	3 Experiment
	3.1 API Corpus Construction
	3.2 API Language Model
	3.3 Information Extraction

	4 Conclusion
	References

	Performance Evaluation on Blockchain Systems: A Case Study on Ethereum, Fabric, Sawtooth and Fisco-Bcos
	Abstract
	1 Introduction
	2 Background: Blockchain Architecture
	2.1 Ethereum
	2.2 Hyperledger Fabric
	2.3 Hyperledger Sawtooth
	2.4 Fisco-Bcos

	3 Motivation
	4 Experimental Methodology
	5 Experimental Results
	5.1 Ethereum’s Performance
	5.2 Hyperledger Fabric’s Performance
	5.3 Hyperledger Sawtooth’s Performance
	5.4 Fisco-Bcos’s Performance
	5.5 Comparison Analysis

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgment
	References

	Short Paper Track
	Midiag: A Sequential Trace-Based Fault Diagnosis Framework for Microservices
	Abstract
	1 Introduction
	2 Related Work
	3 Midiag Design
	3.1 Trace Collector
	3.2 Trace Pattern Miner
	3.3 Microservice Modeler
	3.4 Fault Diagnostor

	4 Evaluation
	5 Conclusion
	Acknowledgment
	References

	An Empirical Study of Web API Quality Formulation
	1 Introduction
	2 Background on Web API Quality
	3 Research Approach
	3.1 Dataset Description
	3.2 Empirical Study
	3.3 Associations Between Web API External Variables
	3.4 Exploratory Factor Analysis (EFA)
	3.5 Web API Quality Formulation

	4 Related Work
	5 Conclusion
	References

	Author Index

