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Abstract  This chapter focuses on the gluten-induced dietary disorders, conceived 
therapies, and hysteria associated with wheat/gluten consumption. Gluten proteins 
are one of the most widely consumed dietary proteins in the world and also the sole 
source of nutrition to many, especially those dwelling in developing countries. 
Prevalence of these disorders has compounded in the last couple of decades due to 
change in lifestyle, which includes an adaptation of the gluten-laden diet and exces-
sive use of antibiotics in childhood with a suppressive effect on the development of 
the immune system and the improvements in diagnostics. Several therapies have 
been sought, but none of them has proven perfect. The issues associated with gluten-
induced disorders and existing and possible therapies and prospects will be dis-
cussed under the following headings and subheadings.
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1  �Introduction

Wheat is a global staple and the second most-produced crop in the world after corn. 
In terms of calorific and nutritional output, wheat stands even before corn (Langridge 
2017). It is the primary source of plant proteins in the most resource-deprived and 
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populated parts of the world (Langridge 2017). The common wheat is an outcome 
of the human selection of a natural hybrid of domesticated tetraploid wheat (emmer) 
and a wild diploid goat grass relative (Shewry 2019). Hence it is relatively a young 
species (Venske et al. 2019), which is evolving slowly under the intense selection 
pressure for enhanced yield and end-use quality. The intensive breeding as a conse-
quence has narrowed the genetic base of elite wheat germplasm and also reduced 
the possibility to select for specific traits.

Gluten is a complex of seed storage proteins with unique structural and compo-
sitional properties (Rustgi et al. 2019). These proteins consist of repetitive tracts of 
proline and glutamine residues, which confer them unusual resistant to digestion. 
However, this unique composition of gluten proteins is inherently beneficial to the 
plant, as it allows dense packing of nitrogen in grains for use during germination 
and by making the grain less attractive to insect pest due to poor digestibility 
(Shewry 2019).

In the last few decades, a significant increase in the number of cases with gluten-
associated disorders was reported. This increase in the number of cases with gluten-
associated disorders could be attributed to many factors: (i) a dramatic change in the 
eating habits, which could be witnessed by the spread of celiac disease to areas 
where wheat is not grown or consumed historically; (ii) increasing adaptation of the 
plant-based diets and also fast foods enriched in gluten, due to affordability, conve-
nience, durability in transport, etc.; (iii) better diagnostics and increasing public 
awareness; and (iv) however controversial, the underdeveloped immune system due 
to excessive use of antibiotics (Rustgi et al. 2019).

Since the gluten-associated disorders affect about 7–10% of the world popula-
tion, and this number is increasing, a permanent and more affordable solution 
should be sought. Therefore, to promote research in this area, an effort has been 
made to summarize the current knowledge in this field of research.

2  �Wheat Gluten Proteins

Gluten proteins contain two major fractions, the monomeric gliadins (30–80 kDa) 
and the polymeric glutenins (up to 20 MDa) (Delcour et  al. 2012). Gliadins are 
monomeric and have a more or less globular shape (Veraverbeke and Delcour 2002). 
They are soluble in aqueous ethanol and thus classified as prolamins (Osborne 
1907). An important difference between glutenins and gliadins is that the latter have 
no free sulfhydryl (SH) groups (Shewry et al. 1986).

Gliadins can be further subdivided in three groups: α-, γ-, and ω-gliadins (Shewry 
et al. 1986; Balakireva and Zamyatnin 2016; Shewry 2019). Only the first two types 
have intramolecular disulfide (SS) bonds (respectively, 6 and 8 in α- and γ-gliadins). 
The intramolecular SS bonds are found in highly conserved regions, which makes 
them unaccessible for SH/SS exchange reactions at room temperature (e.g., during 
dough mixing) (Muller and Wieser 1995, 1997). However, during heat treatments, 
they can become involved in intermolecular SS bonds (see below). Omega-gliadins 
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have no cysteine amino acid residues and are believed to have a stiff coil structure 
(Shewry et al. 2009). In general, gliadins are rich in glutamine, proline, asparagine, 
and arginine (Muller and Wieser 1997).

Glutenins, due to their large size, are not soluble in mild media. They consist of 
different glutenin subunits (GS), the structures and solubility of which are compa-
rable to those of gliadins, but they do contain free SH groups. With their SH groups, 
the GS form intermolecular SS bonds which are at the basis of the polymeric glute-
nin structure in mature wheat. There are two types of GS: low molecular weight-GS 
(LMW-GS) and high molecular weight-GS (HMW-GS).The LMW-GS show high 
similarities with α- and γ-gliadins (but as stated above, they do have free SH groups) 
and can be further subdivided in different subcategories (Delcour et al. 2012).

HMW-GS also have free SH groups. They are important contributors to the elas-
ticity of gluten networks, even if they only occur in small numbers (Gianibelli et al. 
2001). These subunits are rich in glutamine, proline, and glycine (Shewry et al. 1992).

The huge variation in both the amount and the occurrence of the different types 
of gliadins and of GSs is an important element at the base of the distinction between 
good and poor bread making quality wheat (Veraverbeke and Delcour 2002).

A wide range of proteins with similarities to gluten proteins at sequence or struc-
ture levels were identified. These proteins are collectively grouped under the 
“prolamin-superfamily”. These proteins generally show homology to gluten pro-
teins in the non-repetitive cysteine-rich N- and C-terminal domains and perform 
diverse metabolic or structural roles in grains or other plant parts. Small but some 
effect of these proteins on the processing quality was also reported (Shewry 2019). 
Among these proteins, amylase trypsin inhibitors (ATIs) and lipid transfer proteins 
(LTPs) were shown to be involved in gluten-associated disorders (Juhász et al. 2018).

3  �Gluten-Associated Disorders

A large number of epitopes belonging to all families of gluten proteins have been 
shown to elicit various reactions in different individuals, which correspond with 
their genetic constitutions. In other words, different celiac patients are sensitive to 
different gluten proteins (Koning 2012). Despite extensive efforts, the repertoire of 
epitopes is still incomplete. So far, 356 genes with known epitopes and an additional 
472 potential allergen genes were assigned to the wheat genome. Of these 356 
genes, 226 belong to the prolamin gene superfamily (Juhász et al. 2018). Of all the 
epitopes with a known immune response (determined based on the IFNγ-ELISpot 
assay), 25 mapped to the HMW glutenin subunits, and only 1 of these 25 epitopes 
was shown to trigger a medium immune response (SFU value between 10 and 20). 
The rest of the epitopes were reported to have weak immune reactions (SFU values 
of less than ten) (Juhász et al. 2018).

Similarly, all epitopes that mapped to sequences of the LMW glutenin subunits 
were known to have a weak immune response. It suggests that all families of glia-
dins (α-, γ-, and ω-gliadins) are highly immunoreactive and especially the one 
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mapping to D- and A-subgenomes of wheat and related species. The epitopes that 
map to the repetitive domain in the gliadin sequences were more immunoreactive 
than the one mapping to the C-terminal non-repetitive domain. The epitopes rarely 
mapped to the N-terminal non-repetitive domain of prolamin sequences (Tye-Din 
et al. 2010; Juhász et al. 2018).

As mentioned earlier, gluten intake in sensitive individuals could manifest 
diverse symptoms – cutaneous, gastrointestinal, or neurological – and these reac-
tions could be from mild to fatal (Brouns et al. 2019). The symptoms can be widely 
classified into celiac disease, wheat allergy, and wheat sensitivity (Sapone et  al. 
2012) (Fig. 1). The manifestation of celiac disease in an individual depends primar-
ily on the three factors: (i) the environmental trigger, which is exposure to gluten 
and related proteins of the prolamin superfamily (Rustgi et al. 2019; Shewry 2019); 
(ii) gut abnormalities, i.e., leaky intestine (Fasano 2009); and iii) genetic predisposi-
tion, i.e., the presence of susceptibility alleles (Fig. 2) (Brouns et al. 2019).

The adaptive immune system mediates celiac disease (gluten intolerance). If left 
untreated, it induces the production of antibodies against the indigestible gluten 
peptides and also against a housekeeping enzyme, tissue transglutaminase 2 (tTG2) 
(Brouns et  al. 2019). The tTG2 is also responsible for chemical modification of 
gluten peptides, which facilitates their recognition as foreign entities by the immune 
system. But the faulty immune system in genetically predisposed individuals recog-
nizes tTG2 as an enemy and triggers an autoimmune response (Osorio et al. 2012).

Given the parallelism between the gluten peptides and living (bacteria) or non-
living (prions and viruses) pathogens, Dr. Chaitan Khosla of Stanford University, a 
pioneer in the oral enzyme therapy for celiac disease considered gluten peptides as 
the non-replicating pathogens. Since the gluten peptides like pathogens evade 

Fig. 1  Gluten-associated dietary disorders and the present US population affected by these disor-
ders. (Modified from Sapone et al. 2012)
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“host” defenses by escaping digestion through gastrointestinal enzymes, invade 
intestinal epithelium, take a more aggressive form after chemical modification by 
tTG2, and trigger the cascade of reaction leading to the intestinal and extraintestinal 
symptoms (Bethune and Khosla 2008). As stated above, the first reaction initiated 
by gluten peptides gets amplified to take a more aggressive form of an autoimmune 
disorder upon recognition of tTG2 by the immune system as antigen to develop 
autoantibodies against it, which cause damage to the intestine and other tissues. The 
second kind of reaction is a wheat allergy, which involves both innate and adaptive 
immune systems. It is a quick reaction against the external allergen within a couple 
of minutes to hours after ingestion, which results in various symptoms including 
dermatitis, anaphylaxis, and various other symptoms (Tatham and Shewry 2008). 
The third kind of reaction known as gluten sensitivity is very complex and least 
understood. It involves the innate immune system, and the symptoms associated 
with this reaction are quite diverse, ranging from fatigue, distress, depression, 
migraines to gastrointestinal symptoms (Sapone et al. 2012). The trigger to the latter 
reaction is yet unknown and has been recently suggested to be fermentable oligo-, 
di-, monosaccharides, and polyols (FODMAPs) that coexist with gluten in wheat 
grains (Skodje et al. 2018; Verbeke 2018; Brouns et al. 2019).

To sum up, wheat and derived products elicit many diet-induced health issues in 
more than 7.5–10% of the population in some countries (Rosella et al. 2014; Aziz 
et al. 2015; Golley et al. 2015). In particular, the celiac disease alone affects more 
than 71 million individuals around the globe (i.e., ~1% of the world population), 
which makes it one of the most devastating disorders of the gastrointestinal tract 
(Bai et al. 2013). There is no known therapy for these disorders other than the strict 
lifelong adherence to wheat (gluten)-exclusion diet, which has associated side 
effects (Rustgi et al. 2019). Given the high prevalence of gluten-induced disorders 
in all studied populations throughout the globe, a large number of studies have been 
dedicated to finding more effective therapies for these disorders.

Fig. 2  A trio of factors responsible for celiac disease. (Modified from Fasano 2009)
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4  �Gluten Threshold

A gluten-free diet does not necessarily signify “zero gluten” as low levels of gluten 
are generally tolerated by gluten intolerant and sensitive individuals. Establishing a 
threshold for gluten intake is of high interest to regulatory bodies of different coun-
tries around the globe and also to develop methods of precise quantification of glu-
ten from various commodities. After a large number of studies conducted globally 
and the meta-analysis of the credible studies, a daily intake of less 50 mg gluten for 
an extended period was found to be generally tolerated by celiac patients. Therefore, 
a threshold of 20 ppm (20 mg in a kg), which restricts the daily intake of gluten from 
“gluten-free” food far below 50  mg, was considered safe. This decision on the 
threshold depended not only on the maximum tolerable dose of gluten in food but 
also on the amount of “gluten-free” product(s) consumed daily in different parts of 
the world. In this respect, the current limit of 20 ppm allows a safety margin for 
variation in the gluten sensitivities and dietary habits of different patients. Therefore, 
now, most of the countries around the world have adopted the ≤20 ppm limit recom-
mended by the Codex Alimentarius Commission (Brouns et al. 2019).

5  �Gluten Detection Methods

Over the years, several gluten detection and quantification methods have been 
developed and tested using the gluten-containing and/or spiked samples. These 
methods can be grossly partitioned into immunological and non-immunological 
methods. The non-immunological methods rely on the physical and biochemical 
properties of the gluten proteins and involve several different methods including the 
Kjeldahl and the Dumas combustion method, which are very restrictive and can 
only be applied to test the wheat starches used in the preparation of the gluten-free 
products. These methods rely on the determination of nitrogen content, which 
should stay below 0.05% on the dry matter basis. Other assays include the poly-
merase chain reaction (PCR), which relies on the determination of specific DNA 
and is more sensitive by several orders of magnitude in comparison with protein 
assays. Some research groups suggested that PCR shows 10–30 times more sensi-
tivity than ELISA (Koppel et al. 1998; Henterich et al. 2003). Albeit PCR-based 
assays are a highly sensitive tool for gluten analysis in comparison with ELISA and/
or Western blotting, these cannot be applied to the hydrolyzed products such as 
beer, syrup, and malt extracts for determination of their gluten content.

The relatively more direct and precise method for gluten detection and quantifi-
cation is matrix-assisted laser desorption/ionization time-of-flight mass spectrome-
try (MALDI-TOF MS), which can simultaneously measure protein and protein 
hydrolysate ranging in size from 1000 to 100,000 Daltons without a need of chro-
matographic purification. In addition, this technique allows reliable determination 
of protein levels as low as 0.01 mg/ml in the food samples (Camafeita et al. 1997, 
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1998; Iametti et al. 2005, 2006). Although MALDI-TOF MS is a highly sensitive 
non-immunological approach for detection and quantification of gluten contamina-
tion in food samples, its routine application is constrained by the considerable sam-
ple processing cost and the requirement of the specialized equipment.

Another approach that has extensively been used for characterization, separation, 
and quantification of the cereal protein fractions is column chromatography. Among 
chromatographic methods, gel permeation (GP) chromatography, which separates 
proteins based on their molecular weights, and reversed-phase (RP) chromatogra-
phy that separates proteins according to their hydrophobicities have been used 
often. These procedures have advantages in terms of speed (usually 30 min) and 
detection capacity, which is as low as 1–2 μg for gluten (Weiser and Seilmeier 
2003). Although this method can be used to determine gluten contamination reli-
ably, it has the disadvantage of being unable to differentiate between gluten and 
non-gluten proteins in the analysis of complex food products.

The more versatile and commonly accepted assays are immunological assays in 
particular ELISA. Owing to the sensitivity and speed of detection, the Codex 
Committee on Methods of Analysis and Sampling has endorsed these methods. 
Several variations of these methods have been developed over the years (extensively 
reviewed in Scherf and Poms 2016). A number of antibodies (monoclonal and poly-
clonal) and a variety of commercial kits are available in the market to perform these 
assays. The commonly used ELISA systems can be grossly divided into two catego-
ries: the sandwich ELISA and the competitive ELISA. The sandwich ELISA is only 
suitable for large antigens because the antigen should have at least two spatially 
separated epitopes to bind both of the antibodies. Thus, this ELISA system is not an 
appropriate choice when working with partially hydrolyzed gluten samples like in 
the sourdough products, malt, and beer, whereas the competitive ELISA is suitable 
for the detection of small-sized antigens with a single epitope. The major problem 
associated with both of the ELISA systems is the determination of gluten contami-
nation in heat-processed food samples, which cause conformational changes to the 
antigen masking or modifying the antibody recognition site(s). It has been docu-
mented that the α/β- and γ-gliadins by the heat treatment lose 49–67% of the origi-
nal reactivity, while the ω-gliadins remain mostly unaffected, i.e., they only lose 
reactivity by 7% (Ellis et al. 1994; Rumbo et al. 2001). A detailed list of commer-
cially available prolamin detection kits and specifications can be found in Scherf 
and Poms (2016) and Osorio et al. (2019a).

Recently, aptamers have emerged as an alternative to antibodies because these 
molecules can overcome the limitations of using antibodies for the detection, iden-
tification, and quantification of specific targets (Song et al. 2012). The aptamers are 
“single-stranded oligonucleotides that can bind proteins, small-molecules, and liv-
ing cells with high affinity and specificity” (Berezovski et  al. 2006). In the later 
years, aptamers against the immunodominant 33-mer peptide of α2-gliadin have 
been developed and successfully used in a variety of assays for gluten quantifica-
tion. Specifically, the 33-mer peptide-specific aptamers dubbed “Gli4” showed a 
gluten detection limit of 0.5 ppm, but it failed to detect gluten in heat-treated and 
hydrolyzed food samples, whereas “Gli1” worked better on such samples, but 
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exhibited a detection limit of 5 ppm (Amaya-Gonzalez et al. 2014, 2015; Pinto et al. 
2014; López-López et al. 2017; Malvano et al. 2017).

6  �Approaches to Reduce Gluten-Exposure 
in Sensitive Individuals

So far, the only approved prescription for the gluten-associated disorders is adher-
ence to a gluten-free diet. However, following a gluten-free lifestyle is challenging. 
And as mentioned earlier, it is not without penalties. For instance, (i) strict adher-
ence to a diet devoid of gluten-containing grains deteriorates gut health by its nega-
tive influence on the gut microbiota, and (ii) long-term adherence to carbohydrate-rich 
gluten-free diet results in multiple deficiencies and change in the patient’s body 
mass index (BMI). Therefore, a significant effort has been put in developing thera-
pies for these disorders. The treatments in development for gluten-associated disor-
ders can be grossly divided into dietary and non-dietary approaches, which are 
discussed below.

�Dietary Procedures

The approaches which are preventive or prophylactic are grouped under this cate-
gory. These approaches include the use of reduced-gluten wheat genotypes or glu-
ten detoxification methods. And each of these approaches is elaborated in the 
following headings.

�Screening of Wheat Germplasm

A body of research has suggested that any gluten peptide larger than nine amino 
acids can elicit an immune reaction in the susceptible individuals (Osorio et  al. 
2012). Therefore, no wheat genotype either new or old wheat varieties, landraces, or 
diploid/tetraploid wheat progenitors could be considered safe for celiac patients 
(Mitea et al. 2010; Goryunova et al. 2012; Brouns et al. 2013; Shewry 2018). The 
wide genetic screens performed on wheat and related species using immunological 
and non-immunological methods to study allergenicity and antigenicity of these 
genotypes supported this conclusion. The immunological methods used were 
ELISA and the T-cell assays, whereas the non-immunological methods used were 
based on sequence analysis, gene/transcript sequencing, and gluten profiling (cf. 
Rosella et al. 2014; Gilissen et al. 2014).

These studies conclusively revealed that gliadins are ubiquitously present in all 
wheat lines and related wild species. Also, seeds of certain ancient tetraploid wheat 

S. Rustgi et al.



23

types like Graziella Ra, Khorasan, or Kamut have shown to have even higher 
amounts of total gliadin than modern accessions (Colomba and Gregorini 2012; 
Brouns et al. 2013), therefore deemed unsuitable for celiac patients (Gregorini et al. 
2009; Shewry 2018). However, based on limited data, Pizzuti et al. (2006) proposed 
that the diploid Einkorn wheat (Triticum monococcum) is non-toxic for celiac 
patients, but later studies revealed its unsuitability for consumption by celiac 
patients (Kasarda 2007; Vaccino et al. 2009; Gianfrani et al. 2012). Similarly, none 
of the tetraploid durum wheat (van den Broeck et al. 2010a; Salentijn et al. 2013) 
and hexaploid wheat genotypes (Molberg et al. 2005; van Herpen et al. 2006; van 
den Broeck et al. 2010b; Gilissen et al. 2014) were found suitable for general use by 
celiac patients. To sum up, after careful scrutiny of the facts, it would be safe to say 
that all wheat and related species such as barley, rye, triticale, tritordeum, and their 
hybrids are immunogenic and should be avoided by celiac patients (Rustgi 
et al. 2019).

�Screening of the Genetic Stocks of Wheat and Related Cereals

Wheat cultivar ‘Chinese Spring’-derived nulli-tetrasomic and deletion lines lacking 
a specific chromosome or chromosome segment were screened for their immuno-
genic potential. As expected, these genotypes showed low toxicity with gliadin-
specific antibodies and under the T-cell-based assays, due to the lack of particular 
gliadin loci (Ciclitira et al. 1980a, b; Frisoni et al. 1995; van den Broeck et al. 2009, 
2011). However, concerning the technological properties of these lines, mixed 
results were obtained. The results showed that deleting the α-gliadin locus from the 
short arm of chromosome 6 of the D genome leads to substantial loss in dough mix-
ing and rheological properties. However, deleting the ω-gliadin, γ-gliadin, and 
LMW glutenin subunit loci from the short arm of chromosome 1D showed little to 
no effect on the technological properties (van den Broeck et al. 2009).

A large number of wheat genotypes in both winter and spring backgrounds and 
different market classes (hard, soft, red, and white) were bred to carry a reciprocal 
chromosome translocation involving wheat chromosome arm 1BS [with loci for 
ω- and γ-gliadins (Gli1) and LMW glutenin subunits (Glu3)] and rye chromosome 
arm 1RS (Lukaszewski 2015). The rye chromosome arm carries genes for resis-
tance to three major rust diseases of wheat, grain yield, and the Sec1 locus that 
encodes ω-secalins. This translocation was primarily bred in wheat for the agro-
nomical advantage, but it was later realized to damage the technological properties 
(Lukaszewski 2015). Specifically, the dough made from some 1BL/1RS hard wheat 
lines was found unacceptable for breadmaking purposes because of excessive stick-
iness and mixing intolerance (Schwarzlaff et al. 2001). The inheritance of secalin 
proteins from rye and absence of glutenin subunits in these genotypes was sug-
gested as a possible explanation for the sticky dough phenotype (Barbeau et  al. 
2003). However, higher amounts and/or differences in the composition of cell wall 
polysaccharides, β-glucans, and pentosans and/or the presence of a ferulic acid ester 
were later suggested as other possible explanations (Barbeau et al. 2003). Besides 
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the sticky dough phenotype in hard wheat lines, the 1BL/1RS translocation has been 
shown to reduce cookie diameter in soft wheat lines.

Upon 2D-PAGE gel analysis of 1BL/1RS translocation lines, eight protein spots 
were explicitly found in these genotypes; at the same time, 16 other spots were 
found missing. And another 12 protein spots, which were present in both regular 
wheat and the translocation lines showed either up- or downregulation. Out of these 
12 spots, a highly overexpressed spot in translocated genotypes was identified as a 
γ-gliadin. It suggested that overexpression of a γ-gliadin compensates for the lack 
of LMW subunits in translocation lines. Also, a spot that was absent from the trans-
location line was identified as an α-amylase inhibitor, which was also proposed as a 
candidate for the sticky dough phenotype observed in the translocation lines (Gobaa 
et al. 2007).

Recent studies have revealed that all ω-secalins are enriched in tetrapeptide, 
PQQP, commonly present in celiac disease-associated epitopes. It suggested that 
ω-secalins can potential have celiac toxicity. A more recent study suggested that 
besides immunodominant and toxic epitopes, ω-secalin encodes a decapeptide 
QQPQRPQQPF that prevents K562(S) cell agglutination and celiac mucosa immune 
activation induced by toxic gliadins (De Vita et al. 2012). Therefore, identification 
of this immunomodulatory gliadin sequence, naturally occurring in wheat cultivars 
toxic for celiac patients, might offer new therapeutic strategies for celiac disease.

Wheat mutants lacking α/β-, γ-, and/or ω-gliadins and/or showing reduced accu-
mulation to complete elimination of specific gliadins and/or LMW glutenin sub-
units were identified (Rustgi et al. 2019). Among these genotypes, the ω-gliadins-free 
genotype “3xN” (Gli-B1, Gli-A1, and Gli-D1 null) developed by intercrossing of 
mutant lines lacking particular ω-gliadin groups and a genotype lacking almost all 
gliadins “TeM1” (Gli-B1, Gli-D1, Gli-A2, and Gli-D2 null) deserve specific men-
tion. These genotypes are not glute-free, albeit when 3xN was tested with the sera 
derived from the patents with wheat allergy showed a significant reduction in aller-
genicity (Waga and Skoczowski 2014; Skoczowski et  al. 2017). Similarly, when 
peptic-tryptic digest of prolamins from TeM1 was tested for toxicity in celiac dis-
ease via monitoring the agglutinating activity against human myelogenous leuke-
mia K562(s) cells, 3.5-fold more (572.5 mg/L) prolamin digest in comparison to the 
single mutants (161.5 mg/L) was tolerated (Pogna et al. 1998). Albeit the observed 
reductions in allergenicity and antigenicity of these genotypes are remarkable, these 
genotypes are still unsafe for consumption by celiac patients (Rustgi et al. 2019).

Similar reduced-gluten (hordein) mutants were also identified in barley. However, 
these mutants were initially selected for their high lysine content, which is an impor-
tant trait in feed barley (Rustgi et al. 2019). One such low hordein barley mutant is 
Risø 1508; it is also known as sex3c (shrunken endosperm xenia) due to its shrunken 
endosperm and altered carbohydrate profile (Munck 1992). The mutant Risø 1508 
completely lacks class C hordeins and accumulates considerably reduced amount of 
class B hordeins (200 ppm hordein, 100-fold less than control). When this mutant 
was fed to gluten-sensitive rhesus macaques (Macaca mulatta), remission of the 
anti-gliadin antibody serum responses and improvement of clinical diarrhea were 
observed. However, the subjects never showed complete recovery. Hence the authors 
of the study concluded that “the reduced gluten barley diet might be used for the 
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partial improvement of gluten-induced disease, but its therapeutic value still requires 
upgrading” (Sestak et al. 2015). Recently, Tanner and co-workers developed ultra-
low gluten (ULG) barley genotype using this mutant in a cross-breeding approach 
with another reduced-gluten barley mutant (Tanner et al. 2016) and achieved almost 
zero gluten status. However, given the large number and complexity of the gliadin 
genes in wheat and their inheritance in blocks, the possibility of pyramiding all low 
toxicity gliadin genes in a single wheat variety seems remote (Koning 2012).

�Other Cereals and Non-cereals as an Alternative

Other than wheat, some individuals show sensitivity to oat gluten proteins (avenins) 
and, in rare cases, to even maize gluten proteins dubbed zeins (Comino et al. 2013; 
Rosella et al. 2014; Ortiz-Sánchez et al. 2013). However, all oat varieties are not 
immunogenic. So far, two cereals, which are unequivocally accepted for celiac 
patients’  consumption, are rice and sorghum (Rosella et  al. 2014; Pontieri et  al. 
2013). But, the rice kernels have low protein and fiber content and are highly 
enriched in easily digestible carbohydrates that may contribute to the high glycemic 
index. The rice kernels also tend to sequester large quantities of arsenic (Rosella 
et al. 2014; Da Sacco et al. 2013; Munera-Picazo et al. 2014), and its grain storage 
proteins (other than prolamins and glutelins) are reported to trigger a variety of 
allergic reactions (asthma, atopic dermatitis, diarrhea, and anaphylaxis) in different 
individuals (Matsuda et al. 2006; Nambu 2006; Trcka et al. 2012; Gilissen et al. 
2014). Therefore, rice is not the best choice for consumption by celiac patients. 
Sorghum is primarily used as animal feed in the Western countries, albeit in many 
parts of Africa and Asia, it is used for human food. Therefore, the main issue ham-
pering its acceptance in the West is the lack of research into the end-uses of sor-
ghum. There are some alternatives available for celiac patients, in particular, the 
minor cereals like fonio, tef, millet, teosinte, and Job’s tears. However, these cereals 
are less common and have been cultivated regionally; for instance, tef is a crop in 
Ethiopia. All tef varieties examined so far are free of stimulatory epitopes (Hopman 
et al. 2008; Spaenij-Dekking et al. 2005), but the primary concern about its use is 
the possible cross-contamination with other gluten-containing grains like wheat 
(Saturni et al. 2010). There are other crops that are processed similarly to cereals 
and hence called pseudocereals. The most popular of these is the nutritionally dense 
quinoa, which unfortunately is controversial due to the immunotoxicity of some 
varieties (Zevallos et  al. 2012, 2014). Similarly, for buckwheat, there have been 
reports of allergies (Panda et al. 2010; Stember 2006).

�Engineered Celiac-Safe Wheat Genotypes

In the wake of the difficulties associated with breeding “celiac-safe” genotypes, 
many research groups adapted to the genetic engineering procedures. Two kinds of 
wheat genotypes were developed, one where gluten proteins were eliminated, and 
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the other where the gluten-detoxification enzymes were expressed. Following the 
former lead, Becker and co-workers produced a series of transgenic lines where 
α-gliadin genes were downregulated using RNA interference (RNAi). In these lines, 
α-gliadins were reduced by over 60% compared to the control cultivar (Becker et al. 
2006, 2012; Becker and Folck 2006; Wieser et al. 2006). Using a similar approach 
silencing of the ω5-gliadins (Altenbach and Allen 2011; Altenbach et al. 2014) and 
ω1,2-gliadins was achieved by Altenbach and co-workers (Altenbach et al. 2019). 
However, in the attempt to silence the ω1,2-gliadins, the authors identified a trans-
genic line almost completely lacking gliadins and LMW glutenin subunits. When 
tested, the flour proteins from this genotype showed a stark decline in reactivity 
with serum IgG and IgA antibodies from a cohort of celiac disease patients 
(Altenbach et al. 2019). But the line suffered from the diminished mixing properties 
(Altenbach et al. 2019). Similarly, downregulation of γ-gliadins was also achieved 
using RNAi, and genotypes showing 65–97% reduction in the target proteins were 
identified (Gil-Humanes et al. 2008; Piston et al. 2011). More recently, following 
this lead, Smulders and co-workers developed CRISPR-Cas9-based constructs to 
specifically induce mutations in the genes encoding α- and γ-gliadin genes (Jouanin 
et al. 2018, 2019) and Barro and co-workers in the α2-gliadin genes (Sánchez-León 
et al. 2018).

The studies mentioned in the paragraph above were focused on the elimination 
of the specific gluten proteins using an RNA interference approach or genome edit-
ing. On the other hand, the studies mentioned below have either utilized a chimeric 
hairpin construct to target all gliadin (α/β-, γ-, and ω-) genes together (Gil-Humanes 
et al. 2010, 2011, 2012a, b, 2014a, b) or used RNAi to silence the master regulator 
(DEMETER) of the prolamin transcription (Wen et al. 2012; Rustgi et al. 2014). The 
lines showing 60–88% reductions in the gliadin content were identified using the 
chimeric hairpin construct. Tests of these genotypes with the intestinal T-cell clones 
derived from the biopsy samples of celiac patients showed almost complete sup-
pression of disease-related T-cell epitopes (Gil-Humanes et al. 2010). When tested, 
these lines also showed reasonable baking characteristics and organoleptic proper-
ties as well as exhibited increased lysine content (Gil-Humanes et  al. 2012a, b, 
2014a, b). Two kinds of transgenic lines were produced to achieve DME suppres-
sion, one with DME-specific hairpin RNA and the other with DME-specific artifi-
cial micro RNA (amiRNA). The lines expressing DME-specific hairpin construct 
showed 45–76% reductions in the content of immunogenic prolamins (Wen et al. 
2012; Rustgi et al. 2014) (Fig. 3). And the lines expressing one of the three amiR-
NAs exhibited 54–88% reductions in their respective prolamin contents (Rustgi 
et al. 2014).

Following the latter (gluten detoxification) approach, the Rustgi and co-workers 
expressed “glutenases” in wheat endosperm. Based on the parameters like target 
specificity, substrate length, optimum pH, and site of action, two prolyl endopepti-
dases one from Flavobacterium meningosepticum and the other from a thermophilic 
bacterium, Pyrococcus furiosus, and a glutamine-specific endoprotease from barley 
(EP-B2) were selected for expression in wheat endosperm (Osorio et  al. 2012, 
2019b). Wheat transformants expressing a FmPEP-EPB2 combination with up to 

S. Rustgi et al.



27

58% reduction and a PfuPEP-EP-B2 combination with up to 68% reduction in the 
content of the immunogenic gluten peptides were obtained (Osorio et al. 2019b) 
(Fig. 4).

This latter approach has specific advantages: (1) Some celiac patients show sen-
sitivity to the HMW-GSs peptides (Dewar et al. 2006). Therefore, the formerly dis-
cussed transformants, which lack specific gliadins and/or LMW-GSs, are unsuitable 
for such patients. (2) The combination of enzymes used in this approach prevents 
degradation of gluten proteins within grains; therefore avoid the distraction of the 
end-use quality. The glutamine-specific endoprotease used in this study is encoded 
as a proenzyme, where the propeptide serves as both inhibitor and chaperone to 
respectively facilitate spatiotemporal regulation of the proteolytic activity and 
proper folding of the proteases (Bethune et al. 2006; Cappetta et al. 2002; Schilling 
et al. 2009; Cambra et al. 2012). These properties are of immense importance, as it 
avoids degradation of the prolamins in the protein bodies within grains and also in 
flour during the dough-making process. In addition, the prolyl endopeptidase due to 
its strict preference for substrates with ≤33 amino acids in size can only degrade 
peptides generated by the endoprotease (Gass and Khosla 2007), therefore permit-
ting both of these enzymes to accumulate within the protein bodies containing the 
gluten proteins without degrading them and affecting the baking properties of the 
flour. (3) Intake of foods prepared from wheat engineered to express glutenases in 
grains does not require consumers to intake dietary supplements (none of these 
supplements are yet available in the market) before or with each meal. (4) The pro-
posed therapy is expected to reach the general public without specific efforts and/or 
adding to the daily expenses of the consumers, as the remedy to wheat allergy and 
gluten intolerance is packed in the grain. (5) Contamination of regular wheat in the 
glutenases expressing wheat, at any level from farm to shelf, is less likely to make 
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it unsuitable for celiac patients, as the glutenases expressing in the  grains will 
degrade the contaminating gluten protein.

�Management Practices and Processing Procedures

Other than using genetic alterations, the reduced-immunogenicity wheat can be 
achieved by modulating growth conditions of wild-type wheat genotypes or by 
changing the processing parameters of the whole grains or the wheat flour. In fact, 
a correspondence was observed between nitrogen and sulfur dose and the amount as 
well as the composition of proteins accumulated in wheat grains (Godfrey et  al. 
2010; Shewry 2011) (see Table  1 for examples). An  increase in nitrogen supply 
results in a significant increase in the content of gliadins and glutenins, but not of 
albumins and globulins (Johansson et al. 2001). Specifically, the effect on gliadins 
was more pronounced than on glutenins. High levels of nitrogen increased the pro-
portions of hydrophilic proteins (ω-gliadins and HMW subunits), and those of 
hydrophobic proteins (γ-gliadins and LMW subunits) were decreased (Wieser and 
Seilmeier 1998). In a separate study, the majority of HMW subunits and ω-gliadins 
and some α-gliadins showed increased accumulation, while two LMW subunits and 
a minor γ-gliadin exhibited decreased accumulation in response to fertilizer or high 
temperature, whereas fertilizer did not influence gluten protein accumulation under 
high-temperature conditions (Hurkman et al. 2013). More recently, two commercial 
spelt wheat varieties evaluated through seven nitrogen fertilization modalities did 
not influence the epitope expression of the first variety, whereas it had a slight effect 
on the epitope expression of the second variety (Dubois et al. 2018). Similar effects 
of nitrogen fertilizer on hordein, specifically C-hordein biosynthesis during early 
stages of grain development, were reported in barley (Giese and Hopp 1984; Müller 
and Knudsen 1993).

Much like nitrogen fertilizers, sulfur fertilization showed influence on the amount 
of total gluten as well as the crude protein content of flour. In the case of sulfur 
deficiency, the amount of S-free ω-gliadins increased drastically and that of S-poor 
HMW subunits increased moderately. In contrast, the amounts of S-rich γ-gliadins 
and LMW subunits decreased significantly, whereas the amount of α-gliadins was 
reduced only slightly. Sulfur deficiency results in a remarkable shift in protein pro-
portions, such that the gliadin to glutenin ratio increases distinctly, and among glia-
dins, the ω-gliadins become significant components and γ-gliadins minor elements 
(Wieser et al. 2004).

Other than nutrient status, temperature regime during grain development was 
reported to have a significant influence on the amount and type of proteins accumu-
lation. For instance, the low-temperature conditions during grain development were 
shown to decrease the level of protein fractions primarily associated with celiac 
disease but increase the content of protein families related to WDEIA or barker’s 
asthma, such as LTPs, hydrolases, peroxidases, and ATIs. On the other hand, under 
the high temperature conditions, the changes in seed storage protein accumulation 
were shown to result in slightly increased accumulation of ω-gliadins (3–26%) and 
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α-gliadins (25–33%), more specifically in the content of 33-mer containing 
α-gliadins (Juhász et al. 2018). Collectively, these studies suggest that it is possible 
to alter the amount and type of proteins accumulated in wheat grains by modulating 
with the growing condition of wheat plants.

Besides, it is possible to obtain reduced-immunogenicity flour from regular 
wheat genotypes by applying specific processing procedures such as milling tech-
niques or twin-screw extrusion techniques. More recently, the use of the micro-
waves to remove antigenic properties of the wheat gluten proteins was proposed 
(Landriscina et  al. 2017). Additionally, the use of wheat, barley, and rye sprouts 
(germinated grains) as a safe food for celiac patients or to be used as an ingredient 
for other products was proposed. Although cereal endopeptidases synthesized dur-
ing sprouting can efficiently hydrolyze gluten (Hartmann et al. 2006), other research 
showed that using peptidases from sprouted wheat to digest gliadin did not result in 
food safe for celiac patients (Stenman et al. 2009). Another proposed method was 
the use of sourdough fermentation to produce bakery products suitable for celiac 
patients (Zannini et al. 2012). However, no conclusive data exist on the use of any 
of the methods mentioned above [for details the readers are recommended to con-
sult Rustgi et al. (2019) and references cited therein].

�Non-dietary Procedures

In parallel to the efforts to develop dietary therapies for the celiac disease, extensive 
research was performed to developing non-dietary therapies. These therapies can be 
largely classified into (1) luminal therapies which are based on the detoxification of 
gluten proteins and can be further classified into enzyme therapy, probiotic therapy, 
flour/dough pretreatment, and gluten inactivation by polymeric binding; (2) intesti-
nal barrier enhancing therapies, which focus on reducing the permeability of intes-
tinal epithelial barrier; and (3) immune-targeted therapies, which target either celiac 
disease-specific pathways or inflammatory mediators common in gastrointestinal 
inflammation. These non-dietary therapies to treat the celiac disease has been exten-
sively reviewed in the past by Schuppan et al. (2009), Sollid and Khosla (2011), 
Osorio et  al. (2012), Rashtak and Murray (2012), McCarville et  al. (2015), and 
Ribeiro et al. (2018) and, therefore, have not been discussed here.

7  �Conclusion

Outstanding genetic resources, such as conventionally produced reduced-gluten 
mutations in each one of the gliadin and glutenin loci and the cytogenetically, as 
well as genetically engineered reduced-gluten lines, are available to researchers to 
breed wheat genotypes for celiac patients. Specifically, a vast collection of well-
characterized chromosome substitution and alien introgression lines developed in 
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the background of elite hexaploid and tetraploid wheat genotypes exist today, which 
could be screened for their gluten composition, antigenicity, and allergenicity as 
well as technological properties. These lines carry alien introgression spanning 
almost all parts of the wheat genome, exist in the elite background, and carry many 
desirable exotic attributes such as insect pest, fungal, or abiotic stress tolerance. 
Besides, remarkable genomic resources and approaches such as genomic selection 
are available, which could facilitate the selection process of desirable lines from the 
interbreeding program. These new genomic prediction methods also reduce the 
dependence on the expensive phenotyping for technological properties, allergenic-
ity, and antigenicity tests. Therefore, we believe that desired resources are available 
to the breeders today to make sturdy progress in the direction of developing “celiac-
safe” wheat genotypes.
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