
Navigating Autonomous Vehicle at the
Road Intersection Simulator with

Reinforcement Learning

Michael Martinson1, Alexey Skrynnik2, and Aleksandr I. Panov1,2(B)

1 Moscow Institute of Physics and Technology, Moscow, Russia
panov.ai@mipt.ru

2 Artificial Intelligence Research Institute, Federal Research Center “Computer
Science and Control” of the Russian Academy of Sciences, Moscow, Russia

Abstract. In this paper, we consider the problem of controlling an agent
that simulates the behavior of an self-driving car when passing a road
intersection together with other vehicles. We consider the case of using
smart city systems, which allow the agent to get full information about
what is happening at the intersection in the form of video frames from
surveillance cameras. The paper proposes the implementation of a control
system based on a trainable behavior generation module. The agent’s
model is implemented using reinforcement learning (RL) methods. In
our work, we analyze various RL methods (PPO, Rainbow, TD3), and
variants of the computer vision subsystem of the agent. Also, we present
our results of the best implementation of the agent when driving together
with other participants in compliance with traffic rules.

Keywords: Reinforcement learning · Self-driving car · Road
intersection · Computer vision · Policy gradient · Off-policy methods

1 Introduction

Control architectures for mobile robotic systems and self-driving vehicles cur-
rently allow us to solve basic tasks for planning and self-driving in complex urban
environments. Often the applied methods are based on pre-defined scenarios and
rules of behavior, which significantly reduces the degree of autonomy of such sys-
tems. One of the promising areas for the increasing degree of autonomy is the use
of machine learning methods. These methods are using for automatically gen-
erating generalized object recognition procedures, including dynamic ones, in
the external environment. A significant disadvantage of such approaches is the
need for pre-training on pre-generated data, which often requires handcrafted
markup. However, there are currently a large number of data sets and simula-
tors that can be used for pre-training without significant manual configuration
or markup.

In this paper, we consider the task of learning an agent that simulates a
self-driving car that performs the task of passing through the road intersection.
c© Springer Nature Switzerland AG 2020
S. O. Kuznetsov et al. (Eds.): RCAI 2020, LNAI 12412, pp. 71–84, 2020.
https://doi.org/10.1007/978-3-030-59535-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59535-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-59535-7_6


72 M. Martinson et al.

As a basic statement of the problem, we consider a realistic scenario of using
data from the sensors of the agent (images from cameras within the field of view,
lidars, etc.), data coming from video surveillance cameras located in complex
and loaded transport areas, in particular at road intersections. The considering
scenario for agent behavior looks followed. The agent drives up to the intersection
and connects to the surveillance cameras located above the intersection to receive
an online video stream. The agent switches to driving mode for a dangerous area
and uses a pre-trained model that uses data from the agent’s camera and sensors
to follow traffic rules and pass the intersection in the shortest possible time. In
this paper, we describe the simulator which we developed for this case. Also,
we investigate methods based on reinforcement learning approaches to generate
such agent.

We analyzed the effectiveness of using computer vision methods to generate
an agent’s environment description and conducted a series of experiments with
various reinforcement learning methods, including policy gradient (PPO) and
off-policy methods (Rainbow).

We did not link our research to any specific robot or self-driving architecture.
At the same time, we consider that a real robot will have some simple sensors
(speed, coordinate estimation, etc.) and basic control operations (wheel rotation,
acceleration, braking).

Also, we understand that the use of such systems for ordinary crossroads
with people is unlikely to become legally possible soon. Therefore, we propose to
consider the task in the context of a “robotic” intersection without any pedes-
trians. Note that this assumption does not make the problem less relevant since
it is fully applicable to delivery robots.

The presentation is structured as follows. Section 2 provides a brief overview
of reinforcement learning methods, simulators, and approaches for modeling
intersections. Section 3 presents the RL methods used in this paper. In Sect. 4,
we describe the environment and the main parameters of the simulator. Section 5
presents the main results of the experiments.

2 Related Works

The direct launch of learning methods on robotic platforms and self-driving
vehicles in the real world is expensive and very slow. In this regard, various
simulators are widely used, which would reflect the interaction of the agent with
the environment as realistically as possible. Such works include Carla [4] and
simulator Nvidia Drive which used in work [2]. These 3D simulators have a huge
number of settings and can generate data from many different sensors - cameras,
lidars, accelerometers, etc. The disadvantage of this is the large computing power
required only for the operation in these environments.

A representative of a slightly different class of simulators is SUMO [13]. This
simulator permits to simulate large urban road networks with traffic lights and
control individual cars.

The task of managing the self-driving car can be divided into several subtasks,
which are more or less covered and automated in modern works. For example,



Navigating Autonomous Vehicle at the Road Intersection Simulator with RL 73

the paper [9] investigates an agent driving a car in a TORCS [12] environment
based on a racing simulator. The works [1,15,21,22] investigate the ability of an
agent to change lanes, and [21] continue this study in cooperative setup. The
work [16] explores the mechanism of keeping the car on the track. Paper [23]
the authors provide a comparison of various computer vision methods, which
include car detection and methods for evaluating the angles of car rotation. It is
also necessary to mention a large recent work [8], which reviewed many traffic
simulators and agents.

Despite the abundance of existing methods and solutions for sub-tasks of
managing self-driving agents, we believe that the multi-agent formulation of the
problem of moving agents at the intersection is quite popular.

3 Background

The Markov decision process [19] (MDP) is used to formalize our approach for
learning agents. MDP is defined as a tuple 〈S,A,R, T, γ〉, which consists of a set
of states S, a set of actions A, a reward function R(st, at), a transition function
T (st, at, st+1) = P (st+1|st, at) and the discount coefficient γ. In each state of
the environment st ∈ S, the agent performs the action at ∈ A, after which it
receives a reward according to R and moves to the new state st+1, according to T
Agent policy π determines which action the agent will choose for a specific state.
The agent’s task is to find a π that maximizes the expected discounted reward
during interaction with the environment. In our work, we will consider episodic
environments – MDP in which the agent’s interaction with the environment is
limited to a certain number of steps.

There are many algorithms to find the optimal policy π. In this paper, we
consider modern approaches based on the Value function (Value-Based Methods)
and approaches based on the policy gradient (Policy Gradient Methods).

The Q-function Qπ(s, a), for the state-action pair, estimates the expected
discounted reward that will be received in the future if the agent chooses the
action a, in the state s and will continue its interaction with the environment,
according to the policy π. The optimal Q-function Q∗(s, a), can be obtained by
solving the Bellman equation:

Q∗(st, at) = E

[
R(st, at) + γ

∑
s′

P (st+1|st, at)max
at+1

Q∗(st+1, at+1)
]
.

The optimal policy is π(st) = argmaxat∈AQ∗(st+1, at+1). In modern works for
approximating the Q-function Q(st, at) uses Deep Q-network (DQN) [14]. To
evaluate Q(st, at) the neural network receives the input state st and predicts
the utility for each action Qθ(st, at), where θ are the parameters of the neural
network. We consider classic algorithms, such as Rainbow [7], which is applicable
for discrete action space and Twin Delayed Deep Deterministic Policy Gradients
(TD3) [6], which allows to use a continuous set of actions.



74 M. Martinson et al.

Rainbow [7] – is an improvement on the classic DQNalgorithm. The loss
function for the DQN algorithm has the form:

LDQN =
[
Q(st, at) − (Rt + γ · maxa′Qtarget(st+1, a

′))
]2

,

The learning process consists of interacting with the environment and saving all
tuples (st, at, Rt, st+1) in memory of replays. where Rt – reward at time t, Qtarget

– copy of Q(S,A), delayed for episodes. Q-function optimization is performed
using batches that are uniformly sampled from the replay buffer. The authors
of Rainbow consider 6 improvements to the DQN algorithm, a combination of
which significantly accelerate its convergence:

1. Double DQN is designed to solve the problem of overestimation that exists in
DQN due to the maximization step. To solve this problem, two Q networks
are used: Qθ and Qθ̄. When performing the maximization step, the best action
is selected based on the current network, and its value is calculated based on
the other one:

Ldouble =
[
Qθ(st, at) − (Rt + γ · Qθ̄(st+1, arg max

a′
Qθ(st+1, a

′))
]2

.

The network, for which the loss function will be applied at the current update
step is selected by random.

2. Prioritized Experience Replay improves the standard replay buffer of the
DQN algorithm. Prioritized replay buffer samples more often transitions, with
a larger TD error. The probability of sampling a single transition is defined as:

pt ∝
∣∣∣Rt+1 + γt+1 max

a′
Qθ(st+1, a

′) − Qθ(st, st)
∣∣∣ω ,

where ω is a hyperparameter that defines the distribution form. New data
entering the prioritized buffer gets the maximum sampling probability.

3. Dueling Network Architecture – the approach is to make two calculation
streams, the value stream V and the advantage stream aψ. They use a com-
mon convolutional encoder and are combined by a special aggregator, which
corresponds to the following factorization of the Q-function:

Qθ(s, a) = Vη(fξ(s)) + aψ(fξ(s), a) −
∑

a′ aψ(fξ(s), a′)
Nactions

,

where ξ, η, and ψ are common encoder parameters fξ, vη value function flow,
aψ advantage function flow, and θ = {ξ, η, ψ} their concatenation.

4. N-step return – uses N-step evaluation, which is defined as:

R
(n)
t ≡

n−1∑
k=0

γ
(k)
t Rt+k+1 .

So the new loss function:

LN-step =
[
m(st, at) − (R(p)

t + γ
(p)
t max

a′
Qgoal(sT+N , a′))

]2
.



Navigating Autonomous Vehicle at the Road Intersection Simulator with RL 75

5. Distributional RL – a distribution-based approach – the algorithm does not
predict the Q-function itself, but its distribution. In this case, the C51 algo-
rithm was used.

6. Noisy nets – this approach adds the layer to the neural network that is respon-
sible for exploring the environment. The Noisy Nets approach offers a linear
network layer that combines deterministic input and noise input:

y = (b + Wx) + (bnoisy � εb + (Wnoisy � εw)x),

where εb and εw are sampled from standard normal distribution, and � means
elementwise multiplication. This transformation can be used instead of the
standard linear transformation y = b + Wx. The idea is that over time, the
network learns to ignore the flow of noise, but the adjustment to noise occurs
in different ways for different parts of the state space.

The second method we use is Proximal Policy Optimization (PPO) [17]. This
is an on-policy method that belongs to the Actor-Critic (AC) class. The critic
predicts the Value-function V and the loss function for it is MSE:

Lcritic = [V (s) − Rt − γ · Vtarget(st+1)]
2

The actor loss function for PPO is similar to the improvement of AC - Advan-
tage Actor-Critic (A2C) [20] and uses the advantage function, but with addi-
tional modifications.. As one of the main modifications is a clipping of possible
deviation from the old policy. So if the standard A2C actor loss function has the
form:

Lpolicy = E [π(st, at) · A(st, at)] ,

then for PPO:

Lpolicy = E

[
clip(

π(st, at)
πold(st, at)

, 1 − ε, 1 + ε) · A(st, at)

]
,

where P is the actor’s policy, clip(a, b, c) = min(max(a, b), c). Our implementa-
tion also used some PPO improvements from [5], such as clipping not only the
actor policy but also the Value-function.

The third method, which was applied, is already introduced TD3 [6] - an
off-policy algorithm that makes several stabilizing and convergence-accelerating
improvements to the Deep Deterministic Policy Gradient (DDPG) [11]. Both
methods belong to the Actor-Critic class. And correspondingly for DDPG Critic
train by minimizing the almost standard loss function:

Lcritic = [Q(st, , at) − Rr − γ · Qtarget(st+1, π(st+1))]
2
,

where the only difference is the presence of P (st+1) - prediction by the policy of
the action actor from the state st+1. For the actor itself DDPG use:

Lpolicy = −Q(st, π(st))



76 M. Martinson et al.

from which the gradient for policy parameters is taken.
TD3 introduces 3 more major changes. First is adding white noise to policy

predictions at the stage of Lpolicy calculation. The second is a delayed update
of the actor - namely one policy update for n ∈ N of the critic updates. And
the last one is the usage of two independent estimations for the Q-function and
using the minimum of them in calculations, as the authors of TD3 claim this
helps to reduce the impact of bias overestimation.

4 Environment Description

Our environment - CarInersect is based on the simulator [18], physical
engine Box2D and the OpenAI gym framework [3]. Technical details and bot
behavior are described in the Sect. 4.1. The environment simulates the behavior
of cars at a road intersection. The agent’s goal is to manage one of these cars
and drive it along the specified track. Although a human can easily complete
such tacks, this is difficult for an artificial agent. In particular, when testing
the environment, we found that a reward system different from a dense line of
check-points with positive reward hardly leads to agent convergence.

4.1 Technical Details

The pybox2d physics engine is used for physical simulation of collisions, accel-
erations, deceleration, and drift of cars. So after a long selection of constants to
control the car, we still could not achieve ordinary behavior, so we used the code
for calculating the forces acting on the car from the OpenAI gym CarRacing.

The environment has the same functionality as the OpenAI gym framework
environments. Every environment settings are passed through the configuration
file. This file consists of three parts: the first part describes the reward func-
tion; the second part describes the behavior of the environment - the number
of bots, their tracks, the agent’s track, the type of observation; and the third
part describing the background image, its markup, and sets of images of bots
and the agent. The tracks description is the usual CVAT XML markup of the
background image.

Bots ride along their tracks. These tracks selected uniformly from the list of
available ones in a moment of bot creating. When moving, the bot goes to the
next checkpoint of its track. To decide, where to steer, it takes into account the
next two checkpoints. When bot leaves the road or collides with other vehicles,
it disappears. If the agent encounters a bot, the agent receives a fine (reward
−1), and the episode ends prematurely. Bots give priority to the car approaching
from the right.

4.2 Actions

Each action is represented by a tuple at = (stt, gt, bt), where:

https://box2d.org/
https://gym.openai.com/envs/CarRacing-v0/


Navigating Autonomous Vehicle at the Road Intersection Simulator with RL 77

– stt ∈ [−1, 1] - steering
– gt ∈ [0, 1] - gas, has impact to acceleration
– bt ∈ [0, 1] - brake, stopping the car (not immediately)

Fig. 1. Types of tracks: small rotation, medium rotation, line, rotation (or full rota-
tion); the control points are marked in red; if reaching them give 0.5 reward each

4.3 State

As a state, the environment returns an image and the agent’s car feature vector.
A feature vector is formed using the computer vision subsystem of the agent [23].
All vector features are concatenated. All coordinates are normalized to [0 − 1];
all angles are set by 3 numbers: their value in radians, sin and cos; the car points
are the center of the hull and the centers of 4 wheels. Possible vector features
(Fig. 1):

– hull position – two numbers, x and y coordinates of the center of the car
– hull angle – the angle of rotation of the car
– car speed – two numbers, speeds on x and y coordinates normalized to 1000
– wheels positions – 8 numbers - 4 pairs of x and y coordinates of the car wheels
– track sensor – 1 if all car points are inside the track polygon, 0 otherwise
– road sensor – 1 if all car points are inside the polygon of the road, 0 otherwise
– finish sensor – 1 if at least one car point is close to the last point of the track
– cross road sensor – 1 if at least one car point is inside the area marked as an

intersection area
– collide sensor – 1 if the car is currently colliding with another car, otherwise 0
– car radar {N = 1, 2, 3} – each of the N radar vectors is 6 numbers describing

a single car:
1. 0 or 1 is there data, if 0, then the other 5 numbers are 0
2. normalized distance to the object
3. sin and cos of the relative angle
4. sin and cos of the angle between the velocity vectors

– time – 3 numbers, sin of time and sin of doubled and tripled time, where time
itself is an integer number of steps since the creation of the car (this time
encoding is done by analogy with the position encoding in Natural Language
Processing [10]).



78 M. Martinson et al.

4.4 Reward Function

The reward system for the environment is defined in the configuration file. We
used the same reward system for all agents: 0.5 for reaching checkpoints, which
are uniformly spaced along the track; 2 for reaching the final point; −1 for leaving
the track and crash. The episode ends when the agent reaches the finish line,
leaves the track, or after 500 steps.

4.5 Environment Performance

To measure performance, the environment was run for 100,000 steps on a com-
puter with an Intel R© CoreTM i5-8250U CPU @ 1.60 GHz 8, 15.6 GB RAM.
Table 1 shows the average number of frames per second for various environment
configurations. A slight slowdown occurs when images are used as the state. A
significant slowdown occurs when bots are added.

Table 1. Simulator performance – mean number of frames per second (FPS) for state
as vector, image and combined (vector and image).

Bots Vector FPS Image FPS Combined FPS

No 1065 798 747

Yes 302 268 268

5 Experiments

The experiments were performed using 3 algorithms: PPO, TD3, and Rainbow.
PPO and TD3 operate in a continuous action space, which is preferable for
transferring an agent to the real world. Rainbow works in discrete action space,
as shown in the Table 2. The source code for the environment and algorithms is
available via the following link1.

5.1 Results for Tracks Without Bots and States Represented as
Vector

The results of experiments for tracks without bots and vectors as state-space are
shown in Fig. 2. The following set of vector features was used for the experiment:
hull position, hull angle car speed, checkpoint sensor, finish sensor.

As can be seen from the charts on all types of track, agents based on the PPO
method show a stable but slow convergence. We suppose that such happens due
to the lack of replay memory. Because there are control points that are difficult to

1 Source code: github.com/MartinsonMichael/CarRacing agents.

https://github.com/MartinsonMichael/CarRacing_agents


Navigating Autonomous Vehicle at the Road Intersection Simulator with RL 79

Table 2. Action discretization for Rainbow

Action Steer st Gas g Break b Description

A1 0.0 0.0 0.0 Noop action

A2 −0.6 0.0 0.0 Left steer

A3 0.6 0.0 0.0 Right steer

A4 0.0 0.9 0.0 Gas

A5 0.0 0.0 1.0 Break

Small rotation

1M 2M 3M 4M

step
0

0.2

0.4

0.6

0.8

1

co
m
pl
et
e

Medium rotation

1M 2M 3M 4M

steps
0

0.2

0.4

0.6

0.8

1

co
m
pl
et
e

Line

1M 2M 3M 4M

step
0

0.2

0.4

0.6

0.8

1

co
m
pl
et
e

Full rotation

1M 2M 3M 4M

step
0

0.2

0.4

0.6

0.8

1

co
m
pl
et
e

Fig. 2. The results of the experiments on the tracks without bots and vector observa-
tions. The bold line shows the average for 10 runs of each algorithm, with a smoothing
of 0.6. The transparent line shows the standard deviation. For each of the algorithms,
a preliminary search was performed for the best hyperparameters.

reach, such as around a bend. And in one update, PPO uses too little examples
with positive point-reaching, so it takes longer to converge.

For tracks Line and Full Rotation, Rainbow also learns significantly faster
than the other methods, most likely due to the design of the tracks themselves.
Since they contain long straight sections for which many groups of state-space
points have the same optimal policy.



80 M. Martinson et al.

5.2 Results for Tracks Without Bots and States Represented as
Image

The next series of experiments was conducted using the image as the main fea-
ture. The architecture proposed in this paper [14] was used for image processing.
The image is resized to 84 × 84 pixels, as the compression method used bilinear
interpolation. The results shown in Fig. 3

Fig. 3. The results of the experiments on the tracks without bots and image observa-
tions. The bold line shows the average for 10 runs of each algorithm, with a smoothing
of 0.6. The transparent line shows the standard deviation.

As it can be observed from charts, it is more difficult for all methods to control
the car using a pure image rather than a vector. We also faced the difficulty of
configuring TD3 hyperparameters, as you can see in the first and last charts,
this method gets stuck in suboptimal policies, namely, it starts to stand still or
rotate on start point.

5.3 Influence of Different Sets of Vectors Features on the
Convergence of the Algorithms

At this point, we investigated the effect of a set of vector features on the con-
vergence of the algorithm. The key feature sets are shown in the Table 3.



Navigating Autonomous Vehicle at the Road Intersection Simulator with RL 81

As can be seen from the table, the results of the algorithms can differ
greatly for the same sets of features. If on a Full rotation track PPO using only
hull position and wheels position can only reach 20%, then Rainbow on
both features reaches 60%, which corresponds to the end of the straight section
before the turn itself. Adding an angle to both coordinate features – hull angle
greatly increases the performance (+17% for PPO and +30% for Rainbow). The
combination of both coordinate attributes with an angle gives the best results
for Rainbow and PPO.

You can also see that for PPO and Rainbow, the track sensor – track sensor
greatly increases the track % and the finish %. We believe that the sensor allows
the agent to determine the closeness to the border of the route in advance. In
contrast to the case when the agent distinguishes traveling outside the bound-
aries only by reward.

5.4 Results for Tracks with Bots

In this section, the environment state was represented as a combination of vector
and image. Image processing was performed in a same way as in Sect. 5.2. To
join image and vector we concatenate them along the channel dimension (copy
of duplicated vector was used h×w times). So from image with shape h×w × c,
and vector with shape v, we make observation matrix with shape h×w × (c+v)
shape.

The experimental results for the state of the environment consisting of the
image and hull position, hull angle presented in Fig. 4. The best result was
shown by the Rainbow algorithm, which learned to pass the intersection com-
pletely and without collisions. The PPO algorithm also converges, but much
more slowly.

Fig. 4. Results of experiments on tracks with bots and vectors as the state of the envi-
ronment. The percentage of the completed track, and the average number of collisions.

The experimental results for the state of the environment consisting of
the image and hull position, hull angle, car radar 2, collide sensor pre-
sented in Fig. 5. In this case, TD3 and PPO algorithms learned to pass only a
small part of the road.



82 M. Martinson et al.

Table 3. Key feature sets in increasing order by % track. Notation: T - time - time, V -
car speed, Cs - checkpoint sensor, XYw - wheels position, Ts - track sensor, Fs -
finish sensor, xyh - hull position, α - hull angle; % track - the average percentage
of the track passed by the agent by the end of training; % finish - the average number
of episodes ended at finish point.

Cs Ts Fs V Img T α XYw XYh % track % finish

PPO on line track

+ + + 0.074 0.000

+ 0.166 0.000

+ 0.228 0.000

+ + + + + 0.675 0.578

+ + + 0.949 0.900

+ + + 0.957 0.750

PPO on full rotation track

+ 0.122 0.000

+ 0.188 0.000

+ + 0.375 0.000

+ + + + + 0.497 0.000

+ + + 0.524 0.000

+ + 0.567 0.000

+ + + 0.663 0.000

+ + + 0.672 0.000

Rainbow on line track

+ + + 0.916 0.950

+ 0.921 0.639

+ + + 0.942 0.750

Rainbow on full rotation track

+ 0.600 0.000

+ 0.616 0.000

+ + + 0.712 0.000

+ + + + + 0.770 0.115

+ + 0.936 0.250

+ + + 0.936 0.550

+ + + 0.941 0.800

+ + 0.947 0.300

TD3 on line track

+ 0.117 0.000

+ + + + + 0.217 0.083

+ + + 0.939 0.950

TD3 on full rotation track

+ + + + + 0.063 0.000

+ 0.098 0.000

Cs Ts Fs V Img T α XYw XYh % track % finish



Navigating Autonomous Vehicle at the Road Intersection Simulator with RL 83

Fig. 5. Results of experiments on trajectories with bots and images as the state of the
environment.

6 Conclusion

In this paper, we have described a developed environment, which allows to sim-
ulate driving through an intersection with realistic dynamics and the ability to
train various reinforcement learning algorithms.

We have developed and described an effective learning method based on off-
policy method Rainbow. We presented the results of a large series of experiments
comparing our approach with other implementations that use a different combi-
nation of basic features used in describing the state.

Future plans of our research include improvements to the environment for
simulating more complex intersections (prioritized roads, traffic lights, etc.). We
also plan to integrate computer vision and reinforcement learning methods more
closely to simulate the real environment in a more complete way.

Acknowledgements. The reported study was supported by RFBR, research Project
No. 17-29-07079.

References

1. An, H., Jung, J.I.: Decision-making system for lane change using deep reinforce-
ment learning in connected and automated driving. Electronics 8, 543 (2019)

2. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016)

3. Brockman, G., et al.: Openai gym (2016). http://arxiv.org/abs/1606.01540, cite
arxiv:1606.01540

4. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1–16 (2017)

5. Engstrom, L., et al.: Implementation matters in deep RL: A case study on PPO
and TRPO. In: International Conference on Learning Representations (2019)

6. Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods. In: Proceedings of Machine Learning Research, vol. 80, pp.
1587–1596 (2018)

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540


84 M. Martinson et al.

7. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learn-
ing. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

8. Kiran, B.R., et al.: Deep reinforcement learning for autonomous driving: a survey.
arXiv preprint arXiv:2002.00444 (2020)

9. Li, D., Zhao, D., Zhang, Q., Chen, Y.: Reinforcement learning and deep learning
based lateral control for autonomous driving [application notes]. IEEE Comput.
Intell. Mag. 14(2), 83–98 (2019)

10. Li, H., Wang, A.Y., Liu, Y., Tang, D., Lei, Z., Li, W.: An augmented transformer
architecture for natural language generation tasks. arXiv preprint arXiv:1910.13634
(2019)

11. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. CoRR
abs/1509.02971 (2015)

12. Loiacono, D., Cardamone, L., Lanzi, P.L.: Simulated car racing championship:
Competition software manual. CoRR abs/1304.1672 (2013). http://arxiv.org/abs/
1304.1672

13. Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE (2018).
https://elib.dlr.de/124092/

14. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

15. Mukadam, M., Cosgun, A., Nakhaei, A., Fujimura, K.: Tactical decision making
for lane changing with deep reinforcement learning, December 2017

16. Oh, S.Y., Lee, J.H., Doo Hyun, C.: A new reinforcement learning vehicle control
architecture for vision-based road following. IEEE Trans. Veh. Technol. 49, 997–
1005 (2000)

17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal pol-
icy optimization algorithms. CoRR abs/1707.06347 (2017). http://arxiv.org/abs/
1707.06347

18. Shikunov, M., Panov, A.I.: Hierarchical reinforcement learning approach for the
road intersection task. In: Samsonovich, A.V. (ed.) BICA 2019. AISC, vol. 948, pp.
495–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25719-4 64

19. Sutton, R.S., Barto, A.G., et al.: Introduction to Reinforcement Learning, vol. 135.
MIT press Cambridge, Cambridge (1998)

20. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. In: Solla, S.A., Leen, T.K.,
Müller, K. (eds.) Advances in Neural Information Processing Systems, vol. 12, pp.
1057–1063. MIT Press (2000). http://papers.nips.cc/paper/1713-policy-gradient-
methods-for-reinforcement-learning-with-function-approximation.pdf

21. Wang, G., Hu, J., Li, Z., Li, L.: Cooperative lane changing via deep reinforcement
learning. arXiv preprint arXiv:1906.08662 (2019)

22. Wang, P., Chan, C., de La Fortelle, A.: A reinforcement learning based approach
for automated lane change maneuvers. CoRR abs/1804.07871 (2018). http://arxiv.
org/abs/1804.07871

23. Yudin, D.A., Skrynnik, A., Krishtopik, A., Belkin, I., Panov, A.I.: Object detection
with deep neural networks for reinforcement learning in the task of autonomous
vehicles Path Planning at the Intersection. Opt. Memory Neural Netw. 28(4),
283–295 (2019). https://doi.org/10.3103/S1060992X19040118

http://arxiv.org/abs/2002.00444
http://arxiv.org/abs/1910.13634
http://arxiv.org/abs/1304.1672
http://arxiv.org/abs/1304.1672
https://elib.dlr.de/124092/
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/978-3-030-25719-4_64
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
http://arxiv.org/abs/1906.08662
http://arxiv.org/abs/1804.07871
http://arxiv.org/abs/1804.07871
https://doi.org/10.3103/S1060992X19040118

	Navigating Autonomous Vehicle at the Road Intersection Simulator with Reinforcement Learning
	1 Introduction
	2 Related Works
	3 Background
	4 Environment Description
	4.1 Technical Details
	4.2 Actions
	4.3 State
	4.4 Reward Function
	4.5 Environment Performance

	5 Experiments
	5.1 Results for Tracks Without Bots and States Represented as Vector
	5.2 Results for Tracks Without Bots and States Represented as Image
	5.3 Influence of Different Sets of Vectors Features on the Convergence of the Algorithms
	5.4 Results for Tracks with Bots

	6 Conclusion
	References




