
Knowledge-Based Generation of the UML
Dynamic Models from the Enterprise Model
Illustrated by the Ticket Buying Process

Example

Ilona Veitaite1(B) and Audrius Lopata2

1 Institute of Applied Informatics, Kaunas Faculty, Vilnius University, Kaunas, Lithuania
ilona.veitaite@knf.vu.lt

2 Faculty of Informatics, Kaunas University of Technology, Kaunas, Lithuania
Audrius.Lopata@ktu.lt

Abstract. The main scope of this paper is to introduce knowledge-based Enter-
prise model as sufficient data storage for different Unified Modelling Language
(UML) models generation, by using all collected data. UML models can be gen-
erated from the Enterprise Model by using certain transformation algorithms
presented in previous researches. Generation process from the Enterprise model
is illustrated by a particular Ticket Buying example. Generated UML dynamic
Use Case, Sequence, State and Activity models of the Ticket buying process
demonstrate fullness of stored information in the Enterprise model.

Keywords: Knowledge-based · UML · Enterprise model · IS engineering

1 Introduction

Nowadays information system (IS) engineering process is quite challenging as for ana-
lysts, designers and as for any IS design process professionals. Enterprise modelling
has become one of the most important elements in IS design process. Enterprise models
applications are adapted in various ways and diverse types of models are created based
on chosen Enterprise model [1, 2].

UML is a highly recognized and understood platform for IS design. It is a standard
notation among professionals. UML can be used to model not just object-oriented IS
engineering, but application structure, behavior, or/and business processes. UMLmodels
can generate code from the design, apply design patterns, perform impact and complexity
analysis [1, 6, 8].

To ensure all these UML model applications is possible only then, when data used
for UML models design is verified, validated and of enough quality. Enterprise model
completely provides all necessary data and UML models generated from it by using
transformation algorithms fully match this requirement [3, 5, 7, 9, 10].

Particular Enterprise meta-model and Enterprise model structure used as the back-
ground for this research are presented almost two decades ago. All previous researches

© Springer Nature Switzerland AG 2020
A. Lopata et al. (Eds.): ICIST 2020, CCIS 1283, pp. 26–38, 2020.
https://doi.org/10.1007/978-3-030-59506-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59506-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-59506-7_3


Knowledge-Based Generation of the UML Dynamic Models 27

are dedicated to prove that composition of these EMM and EM is enough for generation
of different types of models in IS modelling process [10–12].

2 Knowledge-Based Enterprise Meta-model and Enterprise Model

EMM is formally defined EM structure, which consists of a formalized EM in line
with the general principles of control theory. EM is the main source of the necessary
knowledge of the particular business domain for IS engineering and IS re-engineering
processes (Fig. 1) [3, 4].

Fig. 1. Enterprise meta-model class diagram [3, 4, 10]

EM classmodel has twenty-three classes. Essential classes are Process, Function and
Actor. Class Process, Function, Actor and Objective can have an internal hierarchical
structure. These relationships are presented as aggregation relationships. Class Process
is linked with the class MaterialFlow as aggregation relationship. Class MaterialFlow
is linked with the classes MaterialInputFlow and MaterialOutputFlow as generalization
relationship. Class Process is linked with Classes Function, Actor and Event as associa-
tion relationship. Class Function is linkedwith classes InformationFlow, InformationAc-
tivity, Interpretation, InformationProcessing andRealization as aggregation relationship.
These relationships define the internal composition of the Class Function. Class Infor-
mationFlow is linked with ProcessOutputAtributes, ProcessInputAtributes, IPInputAt-
tributes and IPOutputAttributs as generalization relationship. Class InformationActivity
is linked with Interpretation, InformationProcessing and Realization as generalization
relationship. Class Function linked with classes Actor, Objective and Business Rule as



28 I. Veitaite and A. Lopata

association relationship. Class Business Rule is linked with Interpretation Rule, Real-
ization Rule, InformationProcessing Rule as generalization relationship. Class Actor is
linked with Function Actor and Process Actor as generalization relationship [3–5, 11].

Figure 2 presents the transformation algorithm of UML model generation from EM
process and is described by the following steps [10, 11].

Fig. 2. The top level transformation algorithm of UML models generation from EM process
[10–12]

• Step 1: Particular UML model for generation from the EM process is identified and
selected.

• Step 2: If the particular UML model for generation from EM process is selected then
algorithm process is continued, else the particular UML model for generation from
EM process must be selected.

• Step 3: First element from EM is selected for UML model, identified previously,
generation process.

• Step 4: If the selected EM element is an initial UML model element, then initial
element is generated, else the other EMelementmust be selected (the selected element
must be initial element).

• Step 5: The element related to the initial element is selected from the Enterprisemodel.
• Step 6: The element related to the initial element is generated as UMLmodel element.
• Step 7: The element related to the previous element is selected from the Enterprise
model.

• Step 8: The element related to the previous element is generated as UML model
element.



Knowledge-Based Generation of the UML Dynamic Models 29

• Step 9: If there are more related elements, then they are selected from EM and gen-
erated as UML model elements one by one, else the link element is selected from the
Enterprise model.

• Step 10: The link element is generated as UML model element.
• Step 11: If there are more links, then they are selected from EM and generated as
UML model elements one by one, else the Business Rule element is selected from
the Enterprise model.

• Step 12: The Business Rule element is generated as a UML model element.
• Step 13: If there are more Business Rules, then they are selected from EM and gener-
ated as UML model elements one by one, else the generated UML model is updated
with all elements, links and constraints.

• Step 14: Generation process is finished.

Table 1 presents part of Enterprise model elements and their descriptions in order to
describe elements, which are necessary in this particular research.

Table 1. Description of knowledge stored in Enterprise model

Enterprise Model element Description

Actor In actor element can be stored information related with process or
function executor. Actor element is responsible of information
related with the process or function participant, it can be person,
group of persons, subject such as an IS, subsystem, module and
etc.

Process, Function In process or function elements can be stored all information
related with any user, entity, object, subject and its behavior.
Process or function element is responsible of information related
with any operation, activity, status change, movement which is
implemented by any actor, entity, participant and etc.

Information Flow In Information Flow element can be stored diverse information
flow types, such as Information input and output attributes or/and
process input and output attributes. Information Flow element is
responsible of information related with each element input and
output attributes, details which make impact on other elements,
their state or status

Business Rule In Business Rule element can be stored different rules such as
interpretation, realization or/and information processing. Business
rule element is responsible of information about how different
elements in IS design phase are related; what restrictions and
restraints are applied to these elements



30 I. Veitaite and A. Lopata

3 Development of UML Models for Ticket Buying Process

This section deals with the detailed explanation of the Ticket buying process and how this
process can be designed by using knowledge-based Enterprise model, where all knowl-
edge related with the previously described example is stored. There is also explained,
what knowledge is used for the generation particular UMLmodels through certain trans-
formation algorithms created for each UML model generation process [10, 12]. There
are described UML Use Case, Sequence, State and Activity models generated form the
Enterprise Model.

3.1 Ticket Buying Process Example and Its UML Models

The process of Ticket buyingmay seemvery simple, but if this processwould be analyzed
from different perspectives in information systems design phase; if this process would
be projected and designed for the fulfillment of its all possible functions it would take a
lot of time and efforts of an analyst, designer and etc.

In IS lifecycle design phase all the details must be estimated. These details, this
knowledge is stored in previously described Enterprise model and they are already
verified and validated.

3.2 UML Use Case Model of Ticket Buying Process Example

A UML Use Case model is the primary form of system requirements for a new IS
underdeveloped. Use cases specify the expected behavior – what?, and not the precise
method of making it take place – how?. A key concept of use case modelling is that it
assists to design a system from the end user’s perspective. It is an powerful technique
for communicating system behavior in the user’s conditions by specifying all externally
visible system behavior.

Table 2 presentsUMLUseCasemodel elements generated from theEnterprisemodel
of Ticket buying example. In Enterprise Model all information related with actors, their
functions and relationships between these functions is stored. There are three actors:
Client, Manager and Ticket System. Ticket System as an actor is associated with all
seven functions – use cases: Enquire ticket availability, Fill form, which includes use
case of ticket booking or ticket cancelling, ticket booking includes ticket price payment
and form printing, this includes ticket cancelling and this includes payment refunding.
Client as an actor is associated with all functions except payment refunding, because it
is Ticket system’s function. Manager as an actor is associated only with two functions
– uses cases: form printing and ticket canceling.

Figure 3 presents UML Use Case model of Ticket buying example generated step
by step from the Enterprise Model through UML Use Case transformation algorithm.



Knowledge-Based Generation of the UML Dynamic Models 31

Table 2. UML Use Case model elements generated from the Enterprise model of Ticket buying
example [5, 7, 9]

Enterprise Model
element

UML Use Case
Model element

Ticket Buying
example

Description

Actor Actor Client There are three actors,
each of them is
behavioural classifier
which defines a role played
in particular example

Manager

Ticket system

Process, Function Use Case Enquire ticket
availability

There are three use cases,
each use case is a type of
behavioural classifier that
describes a unit of
functionality performed by
three actors

Fill form

Book ticket

Pay ticket price

Print form

Refund payment

Cancel ticket

Business Rule Include Six include
elements

There are six include
elements, each include is a
directed relationship
between two use cases
which is used to
demonstrate that behaviour
of the included use case is
inserted into the behaviour
of the including use case

3.3 UML Sequence Model of Ticket Buying Process Example

UML Sequence model is an interaction model that detail how operations are imple-
mented. This model captures the interaction between objects in the context of a collab-
oration. UML Sequence model is time focus and it shows the order of the interaction
visually by using the vertical axis of the diagram to deliver time what messages are sent
and when.



32 I. Veitaite and A. Lopata

Fig. 3. UML use case model of ticket buying example

Table 3 presents UML Sequence model elements generated from the Enterprise
model of Ticket buying example. In Enterprise Model all information related with actors
and their collaboration is stored. There are three actors – process participants, which are
calledLifelines inUMLSequencemodel: person –Client, subject –Ticket system, object
– Ticket. Ticket has one execution specification, receives one message with details and
sends one message of created ticket; Ticket system has three execution specifications,
one is assigned for validation, after Client logs in, it returns result; second is assigned
for form creation and third for ticket creation; all these are related with messages from
Client. Client logs in, requests form, submits details, prints ticket – client sends four
messages and receives two: validate login and acknowledgement of all requests of this
particular process.

Figure 4 presents UML Sequence model of Ticket buying example generated step
by step from the Enterprise Model through UML Sequence transformation algorithm
[10].

3.4 UML State Model of Ticket Buying Process Example

UML State Model shows the different states of an entity. State model can also
demonstrate how an entity responds to various events by changing from one state to
another.

Table 4 presents UML State model elements generated from the Enterprise model
of Ticket buying example. In Enterprise Model all information related with processes,
functions and their state is stored. This model is from Client’s perspective. There are



Knowledge-Based Generation of the UML Dynamic Models 33

Table 3. UML Sequence model elements generated from the Enterprise model of Ticket buying
example [5, 7, 9]

Enterprise Model
element

UML Sequence
Model element

Ticket Buying
Example

Description

Actor Lifeline Client There are three actors, in
UML Sequence model
three Lifelines, which are
shown using a symbol that
consists of a rectangle
forming its “head”
followed by a vertical line
and these lines represent
the lifetime of the actor
– participant of the process

Ticket system

Ticket

Process, Function Message Login () There are eleven messages,
related with actors and they
define a communication
between these actors

Validate ()

Return ()

Request form ()

Create form ()

Submit details ()

Create ticket ()

Send details ()

Ticket created

Acknowledge

Take print ()

Business Rules Execution
specification

Ten execution
specifications

Each of ten executions
specification element
represents a period in the
actor’s lifetime

four information flows – composite states of a Client entity: validation, availability
check, ticket booking and printing. All these composite states are conducted by partic-
ular behavioral state machine: Enter login details, Enter bus details, Enter self details,
Booking successful, Logout.

Figure 5 presents UML State model of Ticket buying example generated step by step
from the Enterprise Model through UML State transformation algorithm [10].



34 I. Veitaite and A. Lopata

Fig. 4. UML sequence model of Ticket buying example

Table 4. UML State model elements generated from the Enterprise model of Ticket buying
example [5, 7, 9]

Enterprise Model
element

UML State Model
element

Ticket Buying
Example

Description

Process, Function Behavioural state
machine

Enter login details Five states are used to
specify discrete behaviour
of a part of designed
system through finite state
transitions

Enter bus details

Enter self details

Booking
successful

Logout

Information Flow Composite state Validation Four states of an entity are
defined as state that has
substates

Availability check

Booking Ticket

Printing

3.5 UML Activity Model of Ticket Buying Process Example

UMLActivity model describes how activities are coordinated to provide a service which
can be at different levels of abstraction. Typically, an event needs to be gained by some
operations, particularly where the operation is intended to gain a number of different



Knowledge-Based Generation of the UML Dynamic Models 35

Fig. 5. UML state model of Ticket buying example

things that require coordination, or how the events in a single use case relate to one
another, especially, use cases where activities may overlap and require coordination.

Table 5 presents UMLActivity model elements generated from the Enterprise model
of Ticket buying example. In Enterprise Model all information related with actors, their
activities and relationships between these functions is stored. There is one business rule
– control node, related with the process beginning, initial node. In this case, there is only
one actor – one partition – Client. There are two Client activities before decision node:
bus searching and checking tickets availability. In case, there is no available tickets,
process finishes unsuccessful with one of final activity nodes. In other case, if there are
available tickets, Client books tickets, fills details, submits details, makes payment and
prints ticket. This process finishes as successful with second final activity node.

Figure 6 presents UML Activity model of Ticket buying example generated step by
step from the Enterprise Model through UML Activity transformation algorithm [10].



36 I. Veitaite and A. Lopata

Table 5. UML Activity model elements generated from the Enterprise model of Ticket buying
example [5, 7, 9]

Enterprise Model
element

UML Activity Model
element

Ticket buying example Description

Actor Partition Client There is one partition
and all activities are
directly related with
that actor

Function, Process Activity Search bus There are eight
activities directly
related with one
partition – Client.
They represent a
parameterized
behaviour as
coordinated flow of
actions

Check tickets
availability

Book tickets

Fill details

Submit details

Make payment

Print ticket

Logout

Business Rules Control nodes Initial node, two
activity final nodes,
decision node – are
there available tickets

There are four
control nodes: one
node – Initial node in
the beginning; one
decision node,
regarding which
process finishes in
success or otherwise;
two activity final
nodes one, in case of
successful process,
another, in case of
unsuccessful process.
Basically, control
nodes are used to
coordinate the flows
between other nodes

All four UML dynamic models: Use case, Sequence, State and Activity of one
Tickets buying process example are generated form Enterprise model, where sufficient,
verified and validated data was stored. These four UML models define same example,
but in diverse perspectives by showing different actors activities, states and use cases.
Knowledge-based Enterprise model is sufficient storage of data, which is necessary for
UML models generation by certain transformation algorithms of each UML model.



Knowledge-Based Generation of the UML Dynamic Models 37

Fig. 6. UML activity model of Ticket buying example

4 Conclusions

The first part of the paper deals with the presentation of the knowledge-based Enter-
prise model, UML models generation form Enterprise model top level transformation
algorithm, which is described step by step and also represents the idea of each UML
model transformation algorithm. This part either presents some part of Enterprise model
elements and describes their possible content necessary for further research.

The second part presents particular example, which data is stored in knowledge-
based Enterprise model and it is used in generation process. There are presented four
types of UML dynamic models for this particular example. Eachmentioned UMLmodel
is generated through certain transformation algorithms.

Each subsection presents different UML dynamic model. All these UML models
are generated from the Enterprise model. All information necessary for this generation
process is stored in knowledge-based Enterprise model and all UML models elements
of the analyzed example also described by their dependency to a certain elements stored
in Enterprise model.

The presented example demonstrates that all knowledge stored in Enterprise model
is enough for generation process; that Enterprise model elements are sufficient to convey
all UMLmodels element in different UMLmodels perspectives. Every element of UML
dynamic models can be generated from the Enterprise model and this can implement
entire knowledge-based IS development cycle design phase.



38 I. Veitaite and A. Lopata

References

1. Dunkel, J., Bruns, R.: Model-driven architecture for mobile applications. In: Abramowicz,
W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 464–477. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72035-5_36

2. Eichelberger, H., Eldogan, Y., Schmid, K.A.: Comprehensive Analysis of UML Tools, their
Capabilities andCompliance. Software SystemsEngineering.UniversitätHildesheim, version
2.0 (2011)

3. Gudas, S.: Architecture of knowledge-based enterprise management systems: a control view.
In: Proceedings of the 13thWorldMulticonference onSystemics, Cybernetics and Informatics
(WMSCI2009), 10–13 July, Orlando, Florida, USA, vol. III, pp. 161–266 (2009). ISBN - 10:
1-9934272-61-2 (Volume III). ISBN - 13: 978-1-9934272-61-9

4. Gudas, S.: Informacijos sistemų inžinerijos teorijos pagrindai/Fundamentals of information
systems engineering theory (Lithuanian). Vilnius University (2012). ISBN 978-609-459-075-
7

5. Jacobson, I., Rumbaugh, J., Booch, G.: Unified Modeling Language User Guide, 2nd edn.
Addison-Wesley Professional, Boston (2005). ISBN: 0321267974

6. Jenney, J.:Modernmethods of systems engineering: with an introduction to pattern andmodel
based methods (2010). ISBN-13:978-1463777357

7. OMG UML: Unified Modeling Language version 2.5.1. Unified Modelling (2019). https://
www.omg.org/spec/UML/About-UML/

8. Sajja, P.S.,Akerkar,R.:Knowledge-Based systems for development.Adv.Knowl. Syst.Model
Appl. Res. 1, 1–11 (2010)

9. UML diagrams characteristic (2012). www.uml-diagrams.org
10. Veitaite, I., Lopata, A.: Transformation algorithms of knowledge basedUMLdynamicmodels

generation. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 303, pp. 59–68. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69023-0_6

11. Veitaite, I., Lopata, A.: Problem domain knowledge driven generation of uml models. In:
Damaševičius, R., Vasiljevienė, G. (eds.) ICIST 2018. CCIS, vol. 920, pp. 178–186. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99972-2_14

12. Veitaite, I., Lopata, A.: Knowledge-based transformation algorithms ofUMLdynamicmodels
generation from enterprise model. In: Dzemyda, G., Bernatavičienė, J., Kacprzyk, J. (eds.)
Data Science: New Issues, Challenges and Applications. SCI, vol. 869, pp. 43–59. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-39250-5_3

https://doi.org/10.1007/978-3-540-72035-5_36
https://www.omg.org/spec/UML/About-UML/
http://www.uml-diagrams.org
https://doi.org/10.1007/978-3-319-69023-0_6
https://doi.org/10.1007/978-3-319-99972-2_14
https://doi.org/10.1007/978-3-030-39250-5_3

	Knowledge-Based Generation of the UML Dynamic Models from the Enterprise Model Illustrated by the Ticket Buying Process Example
	1 Introduction
	2 Knowledge-Based Enterprise Meta-model and Enterprise Model
	3 Development of UML Models for Ticket Buying Process
	3.1 Ticket Buying Process Example and Its UML Models
	3.2 UML Use Case Model of Ticket Buying Process Example
	3.3 UML Sequence Model of Ticket Buying Process Example
	3.4 UML State Model of Ticket Buying Process Example
	3.5 UML Activity Model of Ticket Buying Process Example

	4 Conclusions
	References




