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Abstract. We analyse reinforcement learning algorithms for self bal-
ancing robot problem. This is the inverted pendulum principle of bal-
ancing robots. Various algorithms and their training methods are briefly
described and a virtual robot is created in the simulation environment.
The simulation-generated robot seeks to maintain the balance using a
variety of incentive training methods that use non-model-based algo-
rithms. The goal is for the robot to learn the balancing strategies itself
and successfully maintain its balance in a controlled position. We dis-
cuss how different algorithms learn to balance the robot, how the results
depend on the learning strategy and the number of steps. We conclude
that different algorithms result in different performance and different
strategies of keeping the robot balanced. The results also depend on the
model training policy. Some of the balancing methods can be difficult to
implement in real world.

Keywords: Self-balancing robot · Reinforcement learning · Neural
networks

1 Introduction

We analyse two-wheeled robot balancing problem. The movement of such a robot
is modelled using an inverted pendulum model as the robot’s centre of mass is
above the pivot point. This model is inherently unstable, and must be actively
balanced in order to remain upright. Various sensors and state measurements
can be used, but the most common are wheel encoders and IMU sensors, using a
combination of accelerometers and gyroscopes. Sensors directly measure robot’s
velocity, angular velocity of wheels as well as robot’s angle.

These measurements are then used by the controller to provide commands
to actuators in order to achieve the desired behaviour of a robot. The controller
creates low power signals, which are passed through the amplifier and then sent
to the actuators, which create robot forces and torques. The movement and
forces of a robot are measured using sensors, which feed the measurements back
to the controller. Because of such feedback, the process is called closed loop
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control. Power disturbances and sensor errors are often included in the model
control cycle.

Majority of such algorithms are human coded and do not pay attention to
real world factors such as slipping, load, wear-and-tear and so on. The analy-
sis is often simplified making an assumption that amplifiers and actuators are
perfect at generating control forces and angular moments which are required by
the controller. It is also assumed that the sensors measure the performance of
the robot perfectly. The model is also simplified by ignoring the fact that the
controller is typically implemented at a finite frequency. Instead, it is assumed
that control rules operate in continuous time. Then the control scheme of the
robot can be simplified into a control loop of a controller feeding required forces
to the actuators. They change the state of a robot which is measured by the
sensors and then used again by the controller to make the next step.

Traditionally control loop mechanisms such as proportional–integral–
derivative controller (PID), linear–quadratic regulator (LQR) or fuzzy logic con-
trollers or their variations were widely used in robotics control systems. PID and
its variants are some of the most common controllers in balance control [4,5].
Even though smaller balancing errors can be achieved using LQR instead of
PID controller [1], the mathematical model is needed in order to achieve better
results. Also, settling times using LQR can be longer than using PID controller
[4]. Fuzzy logic controllers are also used to solve the balance problem. Although
both PID and fuzzy logic controller can achieve extremely small steady state
errors [6], fuzzy logic controller can be more stable than conventional PID con-
troller [6,7]. In addition to this, fuzzy logic controllers are also combined with
neural networks, which results in improved stability and adaptability of the robot
[15,17].

In addition to controllers mentioned above, neural networks are also proven
to provide good control mechanisms. Either using simple neural networks alone
[4], or using recurrent neural networks [8,12,19], improved adaptability to the
changes in terrain or mass can be achieved. Even though various solutions pro-
vide good results in solving the balancing problem, it is often very difficult to
compare different controllers, especially the ones using various neural networks
algorithms due to different models of the robot that is used for testing, different
experimental conditions and varying parameters of the system. All these possible
changes complicate the analysis of different algorithms for balance control. The
analysis and comparison of different reinforcement learning algorithms for the
balancing problem will result in comparable results for any future work. Several
different algorithms will be analysed using a controlled and fully reproducible
environment, which allows for direct comparison between different reinforcement
learning algorithms which are either mentioned here or created later.
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2 Control Algorithms Without Reinforcement Learning

2.1 Proportional–Integral–Derivative Controller (PID)

The usual closed-loop controller in robotics is the PID (proportion-integral-
derivative) controller. The three separate controllers (P, I and D) are connected
to generate a control signal. The PID controller tries to maintain the output such
that there is zero error between the process variable and the desired behavior.

The proportional, or P-controller, produces an output that is proportional to
the current error. As long as there is an error (process variable at a non-desired
point), Controller I will continuously increase or decrease the controller output
value, thus reducing the error. If the error is high, integral mode will increase
or decrease the controller output quickly. D controller’s output depends on the
error rate variation over time multiplied by the derivative constant which allows
the system react faster when needed. By combining P, I and D controllers, a
PID controller is obtained which is able to control the system so that the robot
remains in a balanced position. To control not only the balance but also the
displacement of the robot, i.e. to move in a plane, two PID controllers are used
one for speed and one for tilt.

2.2 Linear–Quadratic Regulator (LQR)

Linear Quadratic Regulator (LQR) – is an algorithm which is concerned with
operating a dynamic system at minimum cost. It can be considered as an auto-
matic way of finding an appropriate state-feedback controller and is a controller
that can be optimal in two aspects- balancing and lost cost. Having the system
model expressed as ẋ = Ax+Bu, the feedback control rule minimizing the price
value is u = −Kx, where K is found by K = R−1BT P (t) and P is found by
solving Riccatti’s differential equation.

Then u is selected as an input to achieve the system control objective and
obtain a closed loop system dynamics rule ẋ = Ax + Bu.

3 Reinforcement Learning Algorithms

3.1 LTSM and MLP Policies in Reinforcement Learning Algorithms

The policy defines robot’s way of behaving at a given time. Algorithm must
find such policy with maximum expected return. In this work two policies were
studied with several reinforcement learning algorithms: multilayer perceptron
(MLP) and long short-term memory (LSTM). MLP policy is often used in control
applications where linear function is not sufficient. Neural network inputs are
angles between individual parts of the robot or robot and the environment, and
the speed at which those angles change. LSTM policy adds complexity to the
robot’s behaviour as it uses information learned at previous steps in order to
make a decision on a certain action. Information is processed using write, read
and keep gates as well as an information cell. The results not only return the
output value, but also update the internal state. This way knowledge gained in
previous states influence future decisions.
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3.2 DeepQ Learning

DeepQ learning algorithm is based on the idea of Q-learning [16], which is a
model-free reinforcement learning algorithm for solving Markov decision process.
Q-learning finds the policy which maximises the expected value of total reward
by iteratively computing the values for the action-value function. Q-learning
was later combined with deep learning by DeepMind [10] into DeepQ learning
algorithm as a way to approximate Q-values. Instead of updating individual Q-
values, using DeepQ learning the updates are performed to the parameters of
the network.

DeepQ learning also uses the experience replay which allows for greater data
efficiency, behaviour distribution is averaged over many previous states, and
randomizing batches breaks correlations between samples. Also, DeepQ learning
derives Q-values in one forward pass where Q-values for are predicted for each
action for a given state as opposed to Q-learning, where state and action are
needed to be given as inputs resulting in Q-value for that particular state and
action. In the robotics environment, DeepQ learning produces better results for
robot balance compared to usual controllers such as LQR or PID, although PID
could sometimes lead to more stable results [11].

3.3 Trust Region Policy Optimisation (TRPO)

TRPO is an on-policy algorithm, which updates policies not by keeping old and
new policies close in parameter space, but by taking the largest possible step to
improve performance within the bound of constraint [14]. This determines how
close the new and old policies are allowed to be. As a result, TRPO avoids situa-
tions where small differences in parameter space could have very large differences
in performance improving the balance quickly and monotonically.

TRPO uses single path procedues in order to collect state-action pairs,
together with Monte Carlo estimates for Q-values. It then creates the predicted
goals and constraints by averaging samples. Finally, the strategy parameter vec-
tor is updated using conjugate gradient algorithm, followed by line search.

Although TRPO performs well for certain applications, it is computationally
expensive, as it calculates H matrix for each iteration of the algorithm. It is
unable to scale to big networks and also suffers from sample inefficiency.

3.4 Advantage Actor-Critic (A2C)

Advantage Actor-Critic method [9] is a variant of more general actor-critic algo-
rithms which combine value-based methods and policy based methods. In actor-
critic methods both value function and policy function are learned. Q-value is
learned by parametrising Q-function using neural network. Critic updates the
parameters of value function, which could be action value or state value, depend-
ing on the algorithm. Actor then updates policy parameters in the direction
suggested by the critic.
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In A2C algorithm Q-values can be expressed by combining the state value
function V(s) and the advantage value A(st, at) = rt+1 + γVv(st+1) − Vv(st),
which is used to determine how better one action is compared to the other
action at a given state, as opposed to the value function, which captures only
how rewarding the current state is. Then the update equation becomes:

∇θJ(θ) ∼
T−1∑

t=0

∇θlogπθ(at, st)(rt+1 + γVv(st+1) − Vv(st)) (1)

Then instead of the critic learning the Q-values, it learns the advantage val-
ues, which is possible using only one neural network for the state-value function
V(s). In this way the action is evaluated not only on the basis of how good it is,
but also how much it can be improved. The advantage function in A2C makes
the model more stable and reduces the high variance of the policy network.

3.5 Sample Efficient Actor-Critic with Experience Replay (ACER)

ACER uses a combination of ideas used in several other algorithms, some of
which are discussed above. ACER uses multiple worker threads like A2C, a
replication buffer, RETRACE algorithm and trust region optimisation. On the
other hand ACER introduces several new approaches, such as truncated impor-
tance sampling with bias correction, stochastic dueling network architectures,
and a new trust region policy optimization method [18].

Policy network is used to estimate the probabilities of actions. During a
learning phase data sample is taken from categorical action distribution, related
to these probabilities. During a testing phase the actions related to the highest
probabilities are used.

During every policy update these steps are performed: the state values are
found, then Q-retrace is calculated, followed by collecting gradients and calculat-
ing policy gradients, also the trust region is updated, which is used to minimise
the difference between the updated policy and mean policy to ensure the stability
of the algorithm [18].

3.6 Proximal Policy Optimization (PPO)

Instead of trying to limit or optimise the size of the strategy update step as in
TRPO or ACER algorithms, which lead to difficult implementation or issues in
practical use for algorithms which have shared parameters for policy and value
functions, PPO uses clipped probability rations. It creates a pessimistic policy
evaluation (the lower threshold). In order to optimise the policy, data selection
and sample creation using policy are constantly changed through multi-epoch
optimisation of data samples.

PPO [13] uses fixed-length trajectory segments. During each iteration, each
of the N actors acting in parallel runs the policy in the environment for a fixed
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number of steps T and collects data from those steps. Then the advantage esti-
mates are computed. After this has been done for every actor, the surrogate loss
function is constructed and optimised, and the network parameters are updated.

In the neural network architecture, where strategy and value function share
common parameters, the loss function uses a policy substitute and a value func-
tion error element. Also, the objective function is supplemented by adding an
entropy element to ensure sufficient exploration.

4 Robot Model and Environment

The model of the robot was created in OpenAI Gym environment [2]. The model
consists of one rectangular parallelepiped of size 20 cm × 5 cm × 40 cm, imitating
the body of the robot. The mass of the body is 0.8 kg, and the center of mass
is at the center of the body. Two cylindrical wheels were attached to the body,
with a diameter of 10 cm and width of 2 cm. Each wheel weighs 0.1 kg. The robot
starts each simulation from a slight angle in order to start balancing (Fig. 1).

Fig. 1. Visualisation of robot in OpenAI environment

The simulation environment for the robot was created using OpenAI Gym [2]
toolkit together with PyBullet physics engine [3]. A plane was created through
x and z axis, and standard acceleration of free fall set as 10 m/s2. In order to
learn, the robot was able to choose from 9 different discrete actions which allow
the robot to increase or decrease current angular velocity of wheels by 0, 0.1, 0.2,
0.5 or 1 rad/s. This allowed the robot to fine tune small oscillations in order to
maintain the balanced position as well as sharply increase the angular velocity
or even change the direction of movement if needed.

The state of the environment consists of the tilt angle of the robot, the
angular velocity of the robot and the angular velocity of the wheels. Angular
velocity of each wheel is not used in order to avoid cheating. This would allow
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the robot to learn undesirable balancing strategies, such as using angular velocity
of the same amplitude but different direction for each wheel, which would result
in the robot maintaining the balance by spinning around its axis.

The reward of for each state at time t is calculated using the formula:

rt = 1 − |α| · 0.1 − |vc − vd| · 0.01 (2)

where α - tilt angle of the robot (rad), vc - current angular velocity of wheels
(rad/s), vd - desired velocity of wheels (rad/s). In order to achieve a balanced
position with no movement back and forth (as opposed to moving in one direction
in a stable position) desired velocity vd = 0 is used. Such reward was chosen
in order to keep the cumulative reward in a relatively low order and to deduct
points for deviating from desired angle of 0 rad more heavily than deviating from
desired velocity. This means that the primary goal of the robot should become
maintaining a tilt close to 0 rad. As long as the robot maintains a reasonably
upright position, it should have little concern about the velocity used.

5 Results

The robot was trained using five different reinforcement learning algorithms:
DeepQ learning, TRPO, A2C, ACER and PPO. The simulation was stopped
and started again when the robot was falling i.e. position of center of the robot’s
body was below 15 cm (approximately 1.4 rad tilt) or relatively stable position
was maintained for 1500 steps. Simulation data was read at the rate of 100 steps
per second in the simulation environment. Figure 2 shows the results of balancing
the robot using different reinforcement learning algorithms and MLP policy.
A2C, ACER, PPO and TRPO algorithms did not learn to balance the robot
during given time frame of 30,000 total steps. While testing these algorithms and
running the simulation with models learned, the robot lost its balance and fell
within the first 2 s. DeepQ algorithm achieved good results within the given time
frame and was successful in balancing the robot within 0.5 rad angle range. Other
algorithms were not successful. However, increasing the learning limit to 50000
total steps PPO algorithm (Fig. 2, PPO 2) was successful in learning to maintain
the balance. However increasing the time for learning not necessarily results in
successfully maintaining the balance. The same experiment of increasing learning
time to 50000 steps was tried with ACER algorithm, which did not produce good
results compared with PPO algorithm, and the robot still fell during the first
few seconds.

The two algorithms that were successful in maintaining the balance after
learning using MLP policy resulted in different strategies to accomplish the task.
DeepQ algorithm balanced the robot using within much smaller angle range than
PPO algorithm (DeepQ - about 0.179 rad, PPO - 1.6376 rad). Also, PPO algo-
rithm used much greater angular velocity of the wheels than DeepQ algorithm,
which was in general more stable (Fig. 3). While PPO algorithm used greater
angular velocity constantly, DeepQ algorithm generally used quite small veloci-
ties, except for periodical angle adjustments using greater velocities than usual,
but still usually smaller than biggest velocities using PPO algorithm.
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Fig. 2. Changes in tilt angle after learning with MLP policy

Fig. 3. Changes in angular velocity of wheels after learning with MLP policy

LSTM policy was tried with three algorithms: A2C, ACER and DeepQ, all
of which learned to successfully balance the robot within the given time frame of
30000 steps. As it can be seen in Fig. 4, A2C algorithm was visibly worse than
ACER and DeepQ algorithms in maintaining a steady balanced position. A2C
balanced the robot within 0.5023 rad range, while ACER - 0.1336, and DeepQ
- 0.1828 rad range. Besides balancing the robot in the smallest angle range,
ACER algorithm also required the smallest range of angular velocity of wheels
to maintain the balance (about 5.57 rad/s amplitude). While DeepQ algorithm
used almost twice as big velocity range as ACER (10.29 rad/s velocity range),
the full range was never used within short time intervals. As shown in Fig. 5,
the velocity that was used followed the angle of robot’s tilt closely, and changed
from peak to peak during intervals of about 2.5 s, while A2C oscillated between
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Fig. 4. Changes in tilt angle after learning with LSTM policy

Fig. 5. Changes in angular velocity of wheels after learning with LSTM policy

highest velocities in one direction and highest velocities in different one about
every 0.5 s. This makes A2C performance less stable compared with the other
two algorithms used.

Detailed results are shown in Table 1. ACER and DeepQ algorithms learned
to balance the robot within a smaller tilt range than A2C and PPO algorithms.
ACER and DeepQ algorithms also needed a smaller range of angular velocity
than A2C or PPO to keep the balance. ACER together with LSTM policy learned
the most stable way to keep the balance using smallest tilt and angular velocity
range, while both DeepQ MLP and DeepQ LSTM were comparably close. A2C,
ACER, TRPO and PPO algorithms combined with MLP policy was unsuccessful
in learning the task, although results can be improved in some cases either by
changing to LSTM policy, or by increasing the learning steps allowed although
this does not guarantee successful balance of the robot.
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Table 1. Summary of training results.

Algorithm Policy Steps during
learning

Tilt range,
rad

Angular velocity
of wheels, rad/s

A2C MLP 30000 – –

LSTM 30000 0.5023 17.98

ACER MLP 30000 – –

MLP 50000 – –

LSTM 30000 0.1336 5.57

DeepQ MLP 30000 0.179 8.76

LSTM 30000 0.1828 10.29

TRPO MLP 30000 –

PPO MLP 30000 – –

MLP 50000 0.565 18.54

6 Discussion

Different reinforcement learning algorithms require different number of steps
to learn to maintain a balanced position. Algorithms that were successful in
balancing the robot do so in different ways - trying to keep the tilt angle as low as
possible, allowing the tilt angle to fluctuate within a certain radian range, using
very sharp changes in wheel rotation to balance, or maintaining the changes in
wheels’ motion as small as possible, only occasionally adjusting the position with
sharp movements to bring the robot back into the upright position.

In most cases, MLP policies produced poor results in comparison to LSTM
policies. MLP policies resulted in less sustainable balance of the robot, or at all
failed to keep the robot upright. This could be explained by LSTM monitoring
the state and evaluating results in the context of past actions, whereas MLP
policy only evaluates the current situation, or a buffer of previous situations
consisting of single-case observations. This facilitates the LSTM policy in the
balancing task by analysing what lead to the current state, paying more attention
to the connection between past actions and the current state. It appears that
monitoring historical actions are beneficial in robot’s stability.

The results were obtained by performing experiments in a simulation, and
were not tested with the real life robot. To obtain similar results using a real
robot, many unsuccessful attempts to balance would be carried out. In the sim-
ulation environment up to 271 falls were necessary for an algorithm to learn to
balance the robot. This could result in hardware damage or measurement errors
during the impact or introduce measurement noise for subsequent tries. How-
ever, even with a maximum protection of robot’s hardware the learned ways of
keeping the robot in a balanced position would not be feasible. No constraints
were enforced on the change of direction of wheels’ rotation. The agent could
have chosen to go as far as rotating the wheels at any speed to one direction,
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then in 10 ms reduce the speed by 1 rad/s. This could also result in the con-
stant change in the direction of wheels’ rotation every 10 ms, which is hardly
sustainable for typical motors used in the models of two-wheeled robots. As a
result, not all of the trained models that were obtained in simulation could be
implemented using the real robot.

For future research we plan two directions. One: to make our learning meth-
ods more sophisticated and penalize for excessive energy consumption, excessive
swinging and other undesirable behavior, to train the robot to use different loads,
go uphill/downhill and ride uneven terrain. The other direction is to apply these
models on real world two-wheeled robots and continue to train from real life
data.
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