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Abstract. Hierarchical multi-label classification (HMC) is a practically
relevant machine learning task with applications ranging from text cat-
egorization, image annotation and up to functional genomics. State of
the art results for HMC are obtained with ensembles of predictive mod-
els, especially ensembles of predictive clustering trees. Predictive clus-
tering trees (PCTs) generalize decision trees towards HMC and can be
combined into ensembles using techniques such as bagging and random
forests. There are two major issues that influence the performance of
HMC methods: (1) the computational bottleneck imposed by the size of
the label hierarchy that can easily reach tens of thousands of labels, and
(2) the sparsity of annotations in the label/output space. To address
these limitations, we propose an approach that combines graph node
embeddings and a specific property of PCTs (descriptive, clustering and
target attributes can be specified arbitrarily). We adapt Poincaré hyper-
bolic node embeddings to obtain low dimensional label set embeddings,
which are then used to guide PCT construction instead of the original
label space. This greatly reduces the time needed to construct a tree due
to the difference in dimensionality. The input and output space remain
the same: the tests in the tree use original attributes, and in the leaves
the original labels are predicted directly. We empirically evaluate the
proposed approach on 9 datasets. The results show that our approach
dramatically reduces the computational cost of learning and can lead to
improved predictive performance.

Keywords: Hierarchical Multi-label Classification · Hyperbolic
embeddings · Ensemble methods · Predictive Clustering Trees

1 Introduction

In the typical supervised learning setting the goal is to predict the value of a
single target variable. The tasks differ by the type of the target variable: binary
classification deals with predicting a discrete variable with two possible values,
multi-class classification deals with predicting a discrete variable with several
possible values and regression deals with predicting a continuous variable. In
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many real life problems of predictive modelling the target variable is structured.
Examples can be labelled with multiple labels simultaneously and some depen-
dencies (e.g., tree-shaped or directed acyclic graph hierarchy) among labels may
exist. The former task is called multi-label classification (MLC), while the latter
is called hierarchical multi-label classification (HMC). These types of problems
occur in domains such as life sciences (finding the most important genes for a
given disease, predicting toxicity of molecules, etc.), ecology (analysis of remotely
sensed data, habitat modelling), multimedia (annotation and retrieval of images
and videos) and the semantic web (categorization and analysis of text and web
pages). The most prominent area in a need of efficient HMC models with pre-
mium predictive performance is gene function prediction, where the goal is to
predict the functions of a given gene. Gene Ontology [3] organizes 45.000 gene
functions into a directed acyclic graph. Hence, the task of gene function predic-
tion can be naturally viewed as a task of HMC.

A significant amount of research effort has been dedicated to developing
methods for predicting structured outputs. In this sense, the methods for MLC
[5] are the most prominent. The methods that consider hierarchical dependencies
among the labels during model learning are less abundant. In two overviews of
the HMC task [9,13], several methods are analyzed based on the amount of
information they exploit from the hierarchy of labels during the learning of
the models. The main conclusion is that global models (predicting the complete
structure as a whole) generally have better predictive performance than the local
models (predicting components of the output and then combining them). The
success of the HMC methods is limited by two major factors: computational cost
and sparsity of the output space. The number of labels (as well as the number
of examples and features) for many domains presents a major computational
bottleneck for all of the HMC methods and various methods cope differently
with this. The sparsity of the output space pertains to the fact that the number
of labels per example as well as the number of examples per label is very small.

We propose to address the two performance limiting issues by embedding the
large hierarchical label space to a smaller space. Learning embeddings of complex
data such as text, images, graphs and multi-relational data is currently a highly
researched topic in artificial intelligence. Related to HMC are the embeddings
of graph nodes (e.g., Poincaré embeddings [10], latent space embeddings [7],
NODE2VEC [4]), as well as the embeddings for multi-relational data for informa-
tion extraction and completion of knowledge graphs (e.g., RESCAL, TRANSE,
Universal Schema). We exploit the learned embeddings within the learning of
predictive clustering trees (PCTs) – a generalization of decision trees. They sup-
port different heuristic functions that guide the tree construction, and different
prototype functions that make predictions in the leaves. With different choices
of heuristic and prototype functions, they have been used for structured output
predictions tasks [8], including HMC [14]. Additionally, PCTs yield state of the
art predictive performance for the HMC task [2,6,11] and have been extensively
used for gene function prediction [11,12].
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The main contributions of this paper are as follows. First, we learn new
embeddings for HMC by adapting the Poincaré node embeddings to get low
dimensional embeddings of label sets assigned to individual examples. Second,
we extend PCTs so that the heuristic function guiding the tree construction
only looks at the embeddings and ignores the original high dimensional label
space. This significantly reduces the time needed to construct the trees. The
prototype function in the leaves is the same as for standard PCTs when used
for HMC and predicts the original labels directly. A mapping from embeddings
back to labels or decoding of the embeddings is not needed. Third, we
empirically evaluate our approach on 9 datasets for gene function prediction.
The evaluation reveals that it drastically reduces the computational cost
compared to standard PCTs and, given equal time budget, yields models with
superior predictive performance.

The remainder of this paper is organized as follows. In Sect. 2, we present our
approach and theoretically analyze the reduction in computational cost it offers.
Next, we outline the experimental design used to evaluate the performance of the
obtained predictive models and discuss the obtained results in Sect. 3. Finally,
we conclude and provide directions for further work in Sect. 4.

2 Method Description and Analysis

In this section, we briefly describe the calculation of the HMC embeddings
by using the Poincaré hyperbolic node embeddings. We then describe PCTs
and their extension so they use the label set embeddings to guide the tree
construction.

2.1 Hyperbolic Embedding of Label Sets

A recently proposed approach based on the Poincaré ball model of hyperbolic
space was shown to be very successful at embedding hierarchical data into low
dimensions [10]. The points in the d-dimensional Poincaré ball correspond to the
open d-dimensional unit ball Bd = {x ∈ R

d; ‖x‖ < 1}, and the distance between
them is given as

d(x, y) = arcosh
(

1 + 2
‖x − y‖2

(1 − ‖x‖2)(1 − ‖y‖2)
)
.

This means that points close to the center have a relatively small distance
to all other points in the ball, whereas the distances between points close to
the border (as the denominator approaches 0) is much greater compared to its
Euclidean counterpart). This property makes the space well suited for repre-
senting hierarchical data, as the norm of the embedding vector can naturally
represent the depth of the node in the hierarchy. For example, the root of a tree
hierarchy is an ancestor to all other nodes, and as such can be placed near the
center, where the distance to all other points is relatively small. On the other
hand, leaves of the tree can be placed close to the boundary.
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Fig. 1. An overview of our approach. We first calculate the embedding of label sets and
add this information to our data. The embeddings are used for the clustering space,
which guides the PCT construction, while the input and target space remain the same.

In the HMC task, labels are organized in a hierarchy, which can consist
of thousands of nodes. First, we embed the hierarchy into the Poincaré ball,
following the proposed method for embedding taxonomies [10]. This way we
obtain vectors representing individual labels in the hierarchy. However, each
example in a HMC dataset is associated with a set of labels. To get a vector
representing the set of labels assigned to an example, we aggregate the vectors
representing the individual labels. For the aggregation we have multiple options,
for example calculating the component-wise mean vector or the medoid vector.

2.2 Predictive Clustering Trees

Predictive clustering trees (PCTs) are a generalization of decision trees towards
predicting structured outputs including hierarchies of labels. In this work, we
exploit a unique property of PCTs that allows arbitrary use of the various
attributes. Specifically, for the learning of tree models there are three attribute
types: descriptive, clustering and target (as illustrated in Fig. 1). The descrip-
tive attributes are used to divide the space of examples; these are the variables
encountered in the test nodes. The clustering attributes are used to guide the
heuristic search of the best split at a given node. The target attributes are the
ones we predict in the leaves.

PCTs are induced with a top-down induction of decision trees algorithm.
outlined in Algorithm 1 that takes as input a set of examples and indices of
descriptive, clustering and target attributes (can overlap). It goes through all
descriptive attributes and searches for a test that maximizes the heuristic score.
The heuristic that is used to evaluate the tests is the reduction of impurity
caused by splitting the data according to a test. It is calculated on the clus-
tering attributes. If no acceptable test is found (e.g., no test reduces the vari-
ance significantly, or the number of examples in a node is below a user-specified
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Algorithm 1. Learning a PCT: The inputs are a set of learning examples E,
indices of descriptive attributes D, indices of clustering attributes C and indices
of target attributes T.
1: procedure grow tree(E, D, C, T)
2: test = best test(E, D, C)
3: if acceptable(test) then
4: E1, E2 = split(E, test)
5: left subtree = grow tree(E1, D, C, T)
6: right subtree = grow tree(E2, D, C, T)
7: return Node(test, left subtree, right subtree)
8: else
9: return Leaf(prototype(E, T))

10: procedure best test(E, D, C)
11: best = None
12: for d ∈ D do
13: for test ∈ possible tests(E, d) do
14: if score(test, E, C) > score(best, E, C) then
15: best = test
16: return best

17: procedure score(test, E, C)
18: E1, E2 = split(E, test)
19: return impurity(E, C) - 1

2
impurity(E1, C) - 1

2
impurity(E2, C)

threshold), then the algorithm creates a leaf and computes the prototype of the
target attributes of the instances that were sorted to the leaf. The selection of
the impurity and prototype functions depends on the types of clustering and
target attributes (e.g., variance and mean for regression, entropy and majority
class for classification). The support of multiple target and clustering attributes
allows PCTs to be used for structured target prediction [8].

In existing uses of PCTs, clustering attributes include target attributes, i.e.,
the splits minimize the impurity of the target attributes. In this work, we take
the attribute differentiation a step further and decouple the clustering and target
attributes completely. We propose to use the learned embeddings as clustering
attributes to guide the model learning and keep the original label vectors as the
target attributes. This reduces the dimensionality and sparsity of the clustering
space, which makes split evaluation and therefore tree construction faster. Addi-
tionally, we do not need to convert the embeddings to the original label space,
since the predictions are already calculated in the label space.

We calculate the prototype in each leaf node as the mean of the label vec-
tors (target variables) of the examples belonging to that leaf [14]. The prototype
vectors present label probabilities in the corresponding leaves. The variance func-
tion is the same as for learning PCTs for multi-target regression (embeddings are
continuous vectors), i.e., the weighted mean of variances of clustering attributes.

Like standard decision trees, the predictive performance of PCTs is typi-
cally much improved when used in an ensemble setting. Bagging is an ensemble
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Table 1. Properties of the datasets used for the evaluation. The columns show the
name of the dataset, the number of examples, the number of attributes describing the
examples, and the number of labels in the target hierarchy.

dataset N D L

cellcycle 3751 77 4125

eisen 2418 79 3573

expr 3773 551 4131

gasch1 3758 173 4125

gasch2 3773 52 4131

dataset N D L

hom 3837 47034 4126

seq 3900 478 4133

spo 3697 80 4119

struc 3824 19628 4132

method that constructs base classifiers by making bootstrap replicates of the
training set and using each of these replicates to construct a predictive model.
Bagging can give substantial gains in predictive performance when applied to
an unstable learner, such as tree learners [1]. It reduces the variance component
of the generalization error linearly with the number of ensemble members. This
means that there is a limit to how much ensembles can improve the performance
(the bias component of the error). At a point the ensemble is saturated, and
adding additional trees no longer makes a notable difference [8].

The computational cost of learning a PCT is O(DN log2 N) +
O(CDN logN), where N is the number of examples, D is the number of descrip-
tive attributes and C is the number of clustering attributes [8]. For standard
PCTs, C is the number of labels in the hierarchy (L), which in hierarchical clas-
sification is typically much greater than logN , making the second term the main
contributor.

In our approach, C is instead the dimensionality of the embeddings (E),
which can be only a fraction of the number of labels. We must also take into
account the time needed to calculate the embeddings. They are optimized with
stochastic gradient descent with time complexity O(EL) [10].

Therefore, we have reduced the time complexity from O(LDN logN) using
the standard approach, to O(EDN logN) + O(EL) using our approach. For
larger datasets with thousands of examples and/or labels in the hierarchy, using
our approach with low dimensional embeddings will offer significant speed gains.

3 Evaluation and Discussion

3.1 Experimental Design

For the evaluation of our approach we use 9 benchmark HMC datasets [14], in
which examples are yeast genes. In different datasets, different features are used
to describe the genes. The goal is to predict gene functions as represented by
gene ontology terms. Basic properties of the datasets can be found in Table 1.

We optimize the embeddings using a variant of stochastic gradient descent
as recommended in [10]. The only difference is that we do not use the burn-in
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Fig. 2. Performance achieved using different aggregations of label embeddings. For
brevity, only three datasets are shown; the results on the other datasets are very similar.

period, as it did not affect our results. We ran the optimization for 100 epochs
with batch size 100, which took approximately 10–20 s per dataset using a single
Nvidia Titan V graphics card.

In our first set of experiments, we aim to determine the best hyperparameters
of our approach: the dimensionality of the embedding vectors and the aggrega-
tion function used to combine the embedding vectors of all the labels of an
example. Embedding into higher dimensional space makes it easier for the opti-
mization algorithm to find good embeddings, but increases the time required to
learn them and learn PCTs on them. We consider dimensionalities from the set
{2, 5, 10, 25, 50, 100}. We also consider three aggregation functions. The simplest
one is to calculate the component-wise mean. The other approach is to select
the medoid, i.e. the label embedding that is closest to all other label embed-
dings. Here, we examine both the Euclidean distance and the Poincaré distance
as distance between the vectors. Note that the distances discussed here are only
used to calculate the medoid of label embeddings. The embeddings themselves
are always calculated and optimized in the hyperbolic space. We compare the
performance of our approach to two methods: 1) the standard bagging of PCTs
and 2) bagging of random PCTs, where at each step a random test to split the
data is selected. Bagging of standard PCTs offer state of the art predictive per-
formance for HMC tasks: It is what we would like to achieve or even exceed with
our approach, but to learn the trees much faster. For this set of experiments,
all ensembles consisted of 50 trees. We used 7 datasets, all but the largest two
(hom and struc).

In the second set of experiments, we compare our approach to standard
PCTs in a time budgeted manner. We add trees to an ensemble and record the
performance and time needed after every couple of trees added. The ensemble is
built for one hour or until 250 trees are built (at that point the performance gains
are negligible). This evaluation compares our approach to ensembles of standard
PCTs given equal time budget. We use the hyperparameters that worked well in
the first set of experiments. For all experiments, we use area under the average
precision-recall curve (AUPRC) [14] to measure the predictive performance.
Higher values indicate better performance. To estimate AUPRC we use 10-fold
cross validation and report mean and standard deviation over folds. The entire
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Fig. 3. The comparison of learning time (seconds) and performance of ensembles of
standard PCTs, ensembles of random PCTs, and ensembles of PCTs learned on the
embeddings. Vertical lines show standard deviation over folds.

experimental pipeline required to reproduce our experiments is available online
at http://kt.ijs.si/dragikocev/ISMIS2020/ISMIS2020code.zip.

3.2 Results and Discussion

Figure 2 compares the results using different aggregation functions in the
first set of experiments. Both Euclidean and Poincaré distances seem to work
equally well for calculating the medoid embedding, in terms of the predictive
performance achieved. However, mean aggregation typically offered better per-
formance. Given that mean is also faster to calculate than medoid, especially
when examples have many labels, we decided to proceed using mean aggrega-
tion.

Figure 3 shows the results obtained with mean aggregation and different
embedding dimensionalities. Additionally, it shows the performance of ensembles
of standard PCTs and ensembles of random PCTs. First thing to note is that our
approach noticeably outperformed ensembles of random PCTs on all datasets.

http://kt.ijs.si/dragikocev/ISMIS2020/ISMIS2020code.zip
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Fig. 4. The relationship between the performance and time (seconds) needed to build
the ensemble. With the same time budget, our approach significantly outperforms
ensembles of standard PCTs.

This means that the label set embeddings contain useful information about the
label hierarchy. We can also see that with enough dimensions, our approach
achieves performance that is on par with or exceeds the performance of standard
PCTs. Increasing the dimensionality of the embeddings usually improves the
performance of the ensemble, but increases the time needed to learn the trees.
However, the performance seems to saturate rather quickly, and using more
than 25 dimensions rarely results in significant improvement. Most importantly,
our approach achieves the performance similar to that of ensembles of standard
PCTs in barely a fraction of the time needed to construct them.

Considering the results in Fig. 3, we decided to use the 25-dimensional embed-
dings for the time-budgeted experiments. The performance improvements with
higher dimensions were usually small, whereas the time complexity scales lin-
early. Figure 4 shows the results of the second set of experiments. On the struc
dataset, our approach learned 250 trees well before the hour expired, and on the
hom dataset, it learned 225 trees. With the standard approach, we managed
to learn only 50 and 20 trees on these datasets, respectively. As discussed in
Sect. 2.2, given a high enough time budget, the difference in the number of trees
would not make much difference as both ensembles would be saturated. However,
the results clearly show that our approach achieves significantly better results
much faster. This is especially important when working with large datasets.

4 Conclusions

In this paper, we propose a new approach for solving the HMC task that com-
bines Poincaré hyperbolic node embeddings and PCTs. We aggregate the embed-
dings of all the labels assigned to an example to obtain low dimensional label
set embeddings. We then exploit the property of PCTs that allows us to use the
label set embeddings to guide the tree construction, but still predict the original
labels directly. Due to the difference in dimensionality between the embeddings
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and standard vector representations of label sets, our approach constructs PCTs
much faster. Because we still predict the original labels directly, we do not need
a mapping from the embeddings back to the labels.

We empirically evaluate our approach on 9 benchmark datasets for gene func-
tion prediction. First, we compare the aggregation functions used to combine the
label-wise embeddings and show that aggregation with mean works better
than the medoid aggregation. Second, we show that the models learned with
our approach are much more efficient: the learning time is 5 or more folds
faster than learning in the original space. In some cases they even achieve better
predictive performance. Third, in time budgeted experiments we show that our
approach achieves premium predictive performance much sooner than stan-
dard ensembles of PCTs. In applications with limited computational resources,
it is clear that the models learned on the embeddings should be preferred.

We plan to extend the work along several dimensions. First, we will look into
other node embeddings to compare them to the Poincaré variant. Next, we plan
to investigate the effect of different optimization criteria on the performance.
For example, we could try optimizing embeddings so that the distance between
them is similar to the distance between the labels in the graph. Finally, we will
investigate the influence of the embeddings on a wider set of domains.
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