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Abstract. The goal of decision making is to select the most suitable option from
a number of possible alternatives. Which is easy, if all possible alternatives are
known and evaluated. This case is rarely encountered in practice; especially in
product development, decisions often have to bemade under uncertainty.As uncer-
tainty cannot be avoided or eliminated, actions have to be taken to deal with it.
In this paper a tool from the field of artificial intelligence, decision networks,
is used. Decision networks utilize probabilistic reasoning to model uncertainties
with probabilities. If the influence of uncertainty cannot be avoided, a variation
of the product is necessary so that it adjusts optimally to the changed situation. In
contrast, robust products are insensitive to the influence of uncertainties. An appli-
cation example from the engineering design has shown, that a conclusion about
the robustness of a product for possible scenarios can be made by the usage of the
decision network. It turned out that decision networks can support the designer
well in making decisions under uncertainty.

Keywords: Probabilistic reasoning · Decision-making · Engineering design ·
Decision network · Bayesian network

1 Introduction

For the development of robust products, which are insensitive to uncertainties, it is
important to assess possible effects of decisions made in the development process and
to consider the relevant influencing factors of tolerances, environments and use cases
[1]. Handling uncertainties in this context, e.g. by identifying design rules and learning
about sensitivities is a major part in the management of product complexity [2]. Systems
that support the designer in the decision-making process have to reduce the uncertainty
by providing knowledge or help to estimate possible scenarios, so that the products are
robust against possible uncertainties. But almost all computer aids like computer-aided
design require discreet parameters [3]. Knowledge-based engineering systems are often
used in the late phases of the development process, e.g. to derive variants quickly and
check them for validity by tables and rules [4]. Knowledge-based engineering is also
beneficial for the conservation of engineering knowledge which is accessible then for
later design projects so that uncertainty can be tackled with experience [5].
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In this paper, another approach is investigated, targeting at conditional probabilities
that arise in the management of requirements that impact the design. In probabilistic
reasoning, uncertainties can be represented by probabilities. For this purpose, Bayesian
networks and decision networks will be examined in more detail. The structure of this
paper is organized as follows: Sect. 2 describes decision making, uncertainty and proba-
bilistic reasoning in engineering design. In Sect. 3 a decision network for the application
example of a rotary valve is built. Section 4 provides a summary anddescribes approaches
for further research.

2 Related Work

In the development of products, decisions often have to be made under uncertainty. A
tool from the field of artificial intelligence, probabilistic reasoning, offers the possibility
to model uncertainties by using probabilities.

2.1 Decision-Making in Product Development

In general, the goal of decision making is to select the most suitable option from a
number of possible alternatives [6]. Decisions have to bemade by the designer during the
entire product development process which may be divided in task clarification, concept,
embodiment design and detailed design. Since it encompasses an initial requirement
management, task clarification has a major influence on the later stages, especially
on embodiment design where first geometric considerations are made and the shape is
defined [7]. Decisions in the development of a new product must take into account a
selection of different criteria [9], which lead to different scopes of change in the product.
Due to time pressure, decisions are often made at short notice in practice, which can
lead to significant negative consequences, such as delays in deadlines, limitations in
functionality, cost overruns and product quality defects [8]. Therefore, tools that support
the designer in decision making have to quickly assess possible consequences.

2.2 Uncertainty in Engineering Design

Uncertainty cannot be avoided or eliminated within the product development process,
therefore it is necessary to consider and react to uncertainty [10]. Kreye et al. [11]
differentiate four types of manifestation of uncertainty: context uncertainty, data uncer-
tainty, model uncertainty and phenomenological uncertainty. When creating a system,
uncertainties arise from the input (data uncertainty), the used model (model uncertainty)
and the results of the system (phenomenological uncertainty). Context uncertainty, in
contrast, describes the influence of the environment on the system. It can be divided
into endogenous uncertainties, which arise within the system and can be controlled, and
exogenous uncertainties, which lie outside the system and typically arise during use of
the product [12]. Despite their random occurrence, exogenous variables can be seen as a
key to assessing the value of a design, because they reflect the way in which the engineer
handles variables that cannot be controlled by himself [6].
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According to Chalupnik et al. [13], there are different ways to deal with uncertainty.
On the one hand, the uncertainty can be reduced by aiming for an increase in knowledge
about the system. On the other hand, the system can be protected from the influence
of uncertainty. Active protection ensures that the system adapts to uncertain situations.
Where, in contrast, passive protection ensures that the system withstands the influence
of uncertainty and therefore no changes need to be made [13]. Robust products are those
that are insensitive to uncontrollable factors [14].

2.3 Modeling Uncertainty with Probabilistic Reasoning

Reasoningwith uncertainty given limited resources is part ofmany technical applications
in artificial intelligence [15]. Graph-basedmodels have proven to be an important tool for
dealing with uncertainty and complexity, as they build a complex system by combining
simpler parts [16].

Bayesian Networks. Probabilities are very suitable for the modelling of reasoning with
uncertainty [15]. Bayesian networks use the so-called Bayesian rule (1), because evi-
dence is often perceived as an effect of an unknown cause and the goal is to determine
the cause [17].

P(cause | effect) =
P(effect | cause) P(cause)

P(effect)
(1)

The Bayesian rule is explained using a simplified application example for the dosing of
powder for the preparation of hot drinks. To support the understanding, the system is
reduced to one effect-cause pair. In practice, many effects have very different causes;
the multi-causal relationships are discussed in more detail in Sect. 3.2.

In this example the following problem was noticed: the hot drink tastes watery. A
possible cause was identified by an insufficient dosage of the powder. For the further
solution of the problem itwould be helpful to knowwithwhich probability the lowdosage
is the cause for the problem or effect. Based on a statistical analysis, the probability of the
effect is P(watery)= 0.2. Since the dosing is carried out automatically, a sensormeasures
the required powder quantity, which is below its reference value with a probability of
P(low) = 0.1. The probability that the hot drink tastes watery if too little powder is
dosed is P(watery | low)= 0.8, because the taste is subjective. Based on the information
obtained, the Bayesian rule can be used to determine the probability that the low dose of
powder is the cause of the watery taste P(low | watery)= 0.4. This leads to the following
conclusion that the insufficient dosage of the powder is with a probability of 40% the
cause for the watery taste of the hot drink.

According to Russel and Norvig [17], the structure of a Bayesian network can be
described by a directed acyclic graph (DAG) inwhich each node is annotated quantitative
probability information. Figure 1 shows a Bayesian network with four nodes, which
represents the probabilities for a watery hot drink in case of an incorrect mixing ratio
of a machine for preparing hot drinks due to a blocked powder supply or defective flow
sensor for liquids. The probabilities of the nodes blocked powder supply and defective
flow sensor reflect the probability of their occurrence. The incorrect mixing ratio node
has the nodes blocked powder supply and defective flow sensor as parent nodes, so
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the probability is described in a conditional probability table (CPT) depending on the
probability of the parent nodes. The watery hot drink node describes the probability of
a watery taste of a hot drink depending on the probability of an incorrect mixing ratio.

P(P)
0.01

P(S)
0.001

incorrect 
mixing ratio

P(D|M)
0.8
0.2

M
T
F

P(M|P,S)
0.99
0.9
0.8
0.1

P S
T T
T F
F T
F F

blocked 
powder 
supply

defective 
flow sensor

watery
hot drink

Fig. 1. Simple example for a Bayesian network for a watery hot drink

In a Bayesian network, the direct influences can be displayed by arcs without having
to specify each probability manually [17]. The arcs in the DAG specify causal relations
between the nodes [18], therefore the Bayesian rule can be applied. The main usage of
Bayesian networks is inference, which involves updating the probability distribution of
unobserved variables as new evidence or observed variables become available [19].

Decision Networks. Adirected acyclic graph (DAG)model that combines chancenodes
from a Bayesian network with additional node types for actions and utilities is called a
decision network [17]. In general, decision networks can be used for optimal decision
making, even if only partial observations of the world are given [20]. According to Zhu
[18], a decision network represents the knowledge about an uncertain problem domain,
as well as the available actions and desirability of each state. The following three node
types, chance nodes, decision nodes and utility nodes form the basic structure of a
decision network [17]:

• Chance Nodes: random variables as they are used in a Bayesian network, where each
node is connected to a conditional distribution indexed by the state of the parent node

• Decision Nodes: points where the engineer has a choice of actions to make a decision
• Utility Nodes: points with a utility function that describes the preferred outcomes.

Actions are selected based on the evaluation of the decision network for each possible
setting of the decision node [17]. Once a decision node is set, the probabilities of the
parent nodes of the utility node are calculated by using a standard probabilistic inference
algorithm [17]. As a result, the action that has the most added value based on the utility
function is selected.
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3 Application of Probabilistic Reasoning in Engineering Design

As an application for probabilistic reasoning, an example from engineering design is
used to demonstrate a possible handling of uncertainty for the development of robust
products.

3.1 Rotary Valve as Application Example

A rotary valve is to be used for the dosing of bulk food for hot drinks. Rotary valves
or metering feeders are generally used for metering and conveying free-flowing bulk
materials [21]. Figure 2 shows a rotary valve with its components. In this case, the
rotary valve is driven via the shaft and receives and transports bulk food through the
rotary valve pocket per rotation. To avoid bulk food being drawn in or jammed between
the rotary valve and the housing, the gap between the rotary valve and the housing is
kept as small as possible.

bulk food

housing

rotor pocket

shaft

rotor

Fig. 2. Rotary valve for the dosing of bulk food

The rotary valve has many advantages in application, as it is easy to handle and pro-
vides reproducible results. On the other hand, the dimensioning or design of the rotary
valve requires adaptation to the bulk material properties [21]. Especially for discontinu-
ous and quantitative dosing, the rotor pocket size is decisive, which should also be filled
as completely as possible during dosing.

The rotary valve in this application example is integrated in a machine for the prepa-
ration of various hot drinks. Each hot drink requires a different amount of bulk food
to be dosed. In addition, the machine is to be placed at different locations, such as in
the home kitchen, the office or a café. These boundary conditions result in uncertainties
that cannot be influenced by the engineer. The aim for the engineer is to cover as many
possible and probable scenarios with one size of the rotor pocket.

3.2 Modelling of a Decision Network for the Application Example

To support the design engineer in the decisionmakingprocess for the optimal rotor pocket
size, a decision network was established which also represents the given uncertainties
due to the boundary conditions.
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The decision network (Fig. 3) of the application example consists of a Bayesian
network with six chance nodes. The nodes bulk food and place of use form the initial
nodes. The nodes weight and density depend on the selected bulk food. Depending on
the place of use, a different quantity of liquid is required for the hot drinks, because the
number of hot drinks needed is different. The dosing volume depends on the weight and
density of the bulk food, and on the required quantity of liquid. The additional chance
node filling level represents the uncertainty when filling the rotor pocket size with bulk
food. The decision node rotor pocket size represents the different pocket sizes which are
available as possible actions. The utility node utility function represents the preferred
outcomes, where design conditions are also included.

bulk 
food

place
of use

rotor 
pocket size

utility
function

legend:

chance node

decision node

utility node

quantity 
of liquid

density

weight

dosing 
volume

filling
level

Fig. 3. Decision Network for rotary pocket size

The decision network for the application example was built within Matlab using an
open-source package for directed graphical models called Bayes Net Toolbox (BNT).
A great strength of BNT is the variety of implemented inference algorithms [20]. In
addition, Matlab is very suitable for rapid prototyping, because the Matlab code is high
level and easy to read [20].

In the first step, the Bayesian network was represented by six chance nodes (Fig. 4).
For the chance nodes bulk food and location the occurrence probabilitieswere stored. For
the chance nodesweight, density and quantity of liquid the probabilities were stored with
conditional probability tables (CPT). CPTs were used, because the application example
contains only discrete variables and thus the inference was simplified. The probability
values are taken from a similar project and were determined empirically.

For the selection of the possible rotor pocket size, in addition to the possible dosing
volumes, the filling level of the rotor pocket size has to be considered. For this purpose,
the following assumptions are made that the rotor pocket size has a filling level of 0.9
at 80% and that filling levels 1.0 and 0.8 occur with a probability of 10%. To determine
the possible rotor pocket sizes, all divisors with one decimal place of the possible dosing
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bulk food P(F)

bulk food 1 0.63

bulk food 2 0.34

bulk food 3 0.03
density [g/ml] P(D | F=1) P(D | F=2) P(D | F=3)

density 1 150 0 0 1

density 2 250 0.6 0.2 0

density 3 350 0.4 0.4 0

density 4 450 0 0.4 0

location P(L)

location 1 0.74

location 2 0.2

location 3 0.06

Dosing 
volume for 
hot drink

weight [g] P(W | F=1) P(W | F=2) P(W | F=3)

weight 1 11 0 0.5 1

weight 2 12 0.7 0.5 0

weight 3 13 0.1 0 0

weight 4 14 0.2 0 0

Quantity
of liquid [ml] P(Q | L=1) P(Q | L=2) P(Q | L=3)

quantity 1 200 0.9 0.1 0

quantity 2 500 0.05 0.4 0

quantity 3 1000 0.05 0.5 1

Fig. 4. Bayesian network for dosage in the preparation of hot drinks

volumes were determined. This ensures that all rotor pocket sizes are considered for the
required dosing volume.

The general utility function describes the sumof the utilities of all possible outcomes,
weighted according to their probability of occurrence [6]. As this general utility func-
tion also contains results that lead to an unsuitable layout of the design, the following
conditions are also represented in the utility function:

• High Variability: One rotor pocket size should be able to cover many different dosing
volumes

• Fast Dosing: The time for dosing should not take longer than the heating time of the
liquid for the hot drink

• Exact Dosage: the rotor pocket size should dose exactly the required dosage volume.

The listed conditions lead to conflicts which have to be resolved by the algorithm.
For example, high variability leads to the smallest possible rotor pocket size, whereas
fast dosing requires the largest possible rotor pocket size. In the following Sect. 3.3 the
results of the algorithm for the application example are presented and discussed.

3.3 Results of the Decision Network

The aim of the application example is to support the engineer with a decision network
in the selection of the optimum rotor pocket size. Table 1 shows the results of the deci-
sion network in Matlab at different information levels. The column known information
represents the different levels of evidence or observation for the decision network. The
column rotor pocket size shows the optimal rotor pocket size for the given evidence,
which is the best choice for dosing the most likely dosing volumes. The column utility
probability describes the added probabilities of the dosing volumes, which can be dosed
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with the rotor pocket size depending on the filling level. For the situation where no
further information is available, the optimum rotor pocket size is 10.7 ml with a utility
probability of 15.26%. It can also be noticed that a higher information level does not
necessarily lead to a higher utility probability, as this depends on the uncertainty or
diversity of the probabilities of the chance nodes. This can also be shown by comparing
the utility probabilities of no known information with 15.26% and bulk food 2 with
15.16%.

Table 1. Results for the optimal rotary pocket size with utility probabilities

Known information Rotor pocket size [ml] Utility probability [%]

No known information 10.7 15.26

Bulk food 1 10.7 23.38

Bulk food 2 1.0 15.16

Bulk food 3 16.3 70.64

Place 1 10.7 19.75

Place 2 1.0 16.84

Place 3 53.3 21.80

Bulk food 1 & Place 1 10.7 30.38

Bulk food 1 & Place 2 1.0 20.84

Bulk food 1 & Place 3 53.3 33.60

Bulk food 2 & Place 1 1.0 17.30

Bulk food 2 & Place 2 0.8 24.00

Bulk food 2 & Place 3 0.8 34.00

Bulk food 3 & Place 1 16.3 76.00

Bulk food 3 & Place 2 16.3 48.00

Bulk food 3 & Place 3 81.5 80.00

In addition, the decision network can support the engineer in making decisions under
uncertainty by allowing the utility probability to make a prediction about the robustness
of a product:

• High utility probability: If a value has a high utility probability, it can be assumed that
this value is a suitable solution for as many scenarios as possible and therefore no fur-
ther changes are necessary. Furthermore, it can be concluded that the described uncer-
tainty within the decision network has little influence on the outcome and therefore it
represents a robust product.

• Low utility probability: With a low utility probability, only a part of the possible
scenarios can be covered with one value. This indicates a high diversity within the
decision network, which may be due to a higher influence of uncertainty. For this
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reason, the product have to be adaptable to different conditions, i.e. it should have a
high variability or modifiability.

The aim of the decision network is to minimize or even avoid the need for design
changes at a late stage of product development or in the use phase. If the utility probability
is high, the most robust variant is chosen as the solution, because it is insensitive to the
assumed uncertainties. If the utility probability is low, a variant cannot cover the whole
spectrum of possible results. In this case, a portfolio of variants can be compiled to
cover as many scenarios as possible. This portfolio enables a fast reaction to changing
conditions.

4 Conclusion and Future Research

Decisions in the product development process often have to be made under uncertainty.
Uncertainties can occur during product development or arise from the environment when
the product is used. There are two possibilities for dealing with uncertainty. On the one
hand, the uncertainty can be reduced by increasing knowledge, on the other hand, the
product can be protected from the influence of the uncertainty. To be able to react to the
influence of uncertainty, the requirements have to be compared with the behavior of the
product during production and use. Especially with a large number of requirements and
broad requirement corridors, this requires a great effort from the engineers.

The method presented in this paper supports the engineer in decision-making by
representing the uncertainties in a decision network using probabilities. With sensitivi-
ties, i.e. the minimum and maximum of a requirement corridor, possible use cases are
determined with their probability of occurrence. Based on these, statements about the
robustness of the product can bemade. Furthermore, they enable a feedbackwith product
management to improve product variety, as possible application scenarios and market
segments of the product are already checked.

For future research, it is necessary to investigate how suitable the method with
the decision network is for selecting appropriate variants. In addition, the volume of
a rotor pocket size was exclusively used as the basis for the application example. For
the variation of the rotor, the number of pockets on the circumference or a combination
of two pocket sizes could also be interesting. For the illustration of different variants
with given uncertainty a coupling between a decision network and a knowledge-based
system (KBS) would also be conceivable. Here the requirements with their probabilities
of occurrence could be represented in a decision network and the most probable result
is transferred to the knowledge-based system for the configuration of the product.
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