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Abstract. Automated and semi-automated classifications of require-
ments (type and topics) are important for making requirements manage-
ment more efficient. We report how we tailored a random forest approach
in the EU funded project OpenReq, aiming for sufficient quality for prac-
tical use in bid projects. Evaluation with thirty thousand requirements
in English from nine tender documents for rail automation systems in
various countries show that user expectations are hard to meet.
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1 Introduction

Requirements management for large projects is a time-consuming and error-
prone task which can be supported by artificial intelligence [10]. In the Horizon
2020 project OpenReq1, we developed several solution approaches and evaluated
them with data from bid projects in the domain of railway safety systems.

Requests for proposal (RFP) or tenders for large infrastructure systems are
typically issued by national authorities and comprise natural language doc-
uments of several hundred pages with requirements of various kind (domain
specific, physical, non-functional, references to standards and regulations, etc.).
Preparing a proposal (bid) to answer a tender requires (1) to identify the require-
ments in the tender text and (2) to assign experts to assess the company’s com-
pliance to those requirements. The difficult part is the classification of the (real)
requirements w.r.t. predefined topics (which are covered by the experts).

For both tasks, it is important to achieve a very high true positive rate
(recall), because requirements which are not detected or are assigned to the
wrong experts will not be assessed correctly and may lead to high non-compliance
cost. On the other hand, the true negative rate shall also be high, so that unnec-
essary work is reduced.

The contribution of this work is twofold: Firstly, a new way to tailor the
well-known random forest approach [5] by optimizing the model’s configuration

1 http://openreq.eu/.
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to requirements classification in general. Secondly, its evaluation in the domain
of rail automation (30,000 real-world requirements, 50 topics).

The remainder of this paper is structured as follows: In Sect. 2 we list previous
approaches to solve this and similar problems. After presenting our solution in
Sect. 3, we report on the evaluation results in Sect. 4. Section 5 summarizes the
main outcome and its impact on the users.

2 Related Work

Many approaches to automatic text classification are not specific to requirements
management. In the past they tended to be rule-based, but lately (supervised)
machine learning has become increasingly popular [13].

Approaches specific to requirements classification vary in the preprocessing
NLP pipeline and in their choice of used classifiers. For example, a micro-service
for requirements classification developed in the OpenReq project uses Näıve
Bayes classifiers [9]. [18] describes a NLP pipeline for extracting requirements
from prescriptive documents and uses a SVM classifier to classify the require-
ments into disciplines.

[14] is an early paper on automatic topic categorization of requirements writ-
ten in natural language using a bootstrapping approach with machine learning
(Näıve Bayes). [17] uses automatic requirement categorisation in an industrial
setting to support the review of large natural language specifications in the
automotive domain.

Semantic approaches for text classification incorporate not only syntactic but
also semantic information, e.g.., provided by systems for automatic information
and relation extraction [11]. For a survey of such approaches see [3]. [16] discusses
the use of ontologies and semantic technologies in requirements management.

In contrast to new approaches which use pre-trained models, e.g. BERT [8],
this work relies solely on traditional machine learning approaches and a model
which has been in industrial use for two years.

3 Solution

Text categorization labels paragraphs of natural language documents with pre-
defined categories (or classes). It is a typical application of supervised learn-
ing which relies on an initial set of labelled instances used for training [1].
We use binary classification for type classification (whether an instance is a
requirement or not) and multi-label classification for topics (an instance can be
assigned to either zero or one or several topics). For example, an input instance
to classification is the paragraph “The power supply shall consist of the two
sources: one main and one for backup.” and the corresponding output could be
requirement = yes for binary type classification and topics = {Power,Diesel}
for multi-label topic classification. Internally, we implemented multi-label clas-
sification as multiple isolated binary classification problems [21].
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Our solution comprises: (1) a Random Forest approach which is a proven
classifier for text categorization [1], (2) text preprocessing such as tokenization,
n-grams, stop word removal and reduction of word inflections, (3) a feature
engineering stage which includes calculating feature weights and selecting rele-
vant features [2], and (4) various sampling strategies to overcome problems with
imbalanced data [12].

For tailoring this solution, we evaluated various combinations for these steps
and identified the most promising model configuration for application to bid
projects (for more details, see [19]):

– As a sampling strategy, we analyzed random under-sampling (RUS) [12],
SMOTE [6] and no rebalancing. RUS showed superior performance. For train-
ing, we apply RUS ten times with 10 different random seeds, resulting in ten
training sets. One model is trained per training set and all ten models are
finally aggregated using majority vote.

– To remove word inflection, lemmatization (StanfordNLP [15]) [20] and stem-
ming (Porter Stemmer) [20] were compared. Although evaluation revealed
that using the lemmatizer increases performance, we decided on the stemmer
because of its less restrictive software licence.

– We evaluated usage of tokens based on n-grams, n ∈ {1}, n ∈ {1, 2}, ..,
n ∈ {1, 2, 3, 4, 5}. This parameter has no significant influence on performance
– therefore uni-grams are used to keep feature space small.

– Different feature weights were compared: set of words [21], term frequency
(TF) [20], TF-IDF [20] and (R)TF-IGM [7]. As this parameter did not show
significant influence on performance, we selected TF because of its algorithmic
simplicity.

– Using a stop-word list [20] from the Natural Language Toolkit2 increased
performance.

– The following common feature selection methods were evaluated: information
gain (IG), χ2 and term frequency (TF) [21]. TF showed good results and a
fast runtime. The algorithm is configured to keep 1,300 features.

Additionally to the described configurations above, a user can set a threshold
for positive classification before starting the predictor. Only if the built model’s
probability for a requirement is greater than or equal to the given threshold,
the requirement is classified as positive instance. By that, the priority of true
positives versus true negatives can be decided [23].

4 Evaluation

After having tailored the random forest approach including text preprocessing,
we evaluated it using previous bid projects provided by the bid group. In addi-
tion to a quantitative evaluation, we did a small field study with three experts
(unstructured interviews, application to a new, yet unlabelled bid project).

2 http://www.nltk.org/, accessed 09.01.2020.

http://www.nltk.org/
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4.1 Data Set

The data set used for evaluation comprises the text paragraphs of nine tender
documents. All of them were written in English (most of them translated from a
native language). Each entry was labelled by experts as a requirement (or non-
requirement) and assigned to relevant topics (mostly between one and three, out
of 52 potential topics). Thereafter, we randomly chose six documents as training
data, resulting in a 47% test data split. Table 1 lists the numbers of requirements,
non-requirements, and assigned topics for training data as a whole and for test
data separately for each project3 and in total.

Concerning type classification, 14,714 out of 17,556 potential requirements
are labeled as requirement, leading to a prevalence of 84%.

From 52 potential topics, 50 occur in the training data, and 34 occur in the
test data. Depending on prevalence in the training data, we selected three groups
of 5 topics each: A (5/6) comprises all topics which occur more than 1,000 times
in the training data (and at least once in the test data). For B (5/17), we chose
– from all topics which occur more than 200 times in the training data – those
which occur at least 500 times in the test data or in all three test projects. For

Table 1. Test data – numbers of types and topics

Training data Test data Project 1 Project 2 Project 3

Total 17,556 8,256 978 6,465 813

Req 14,714 6,923 867 5,336 720

Non-Req 2,842 1,333 111 1,129 93

52 topics 20,288 10,479 867 8,892 720

PM A 4,710 1,663 683 432 548

IXL 2,073 338 0 338 0

MMI 1,590 1,287 0 1,287 0

Power 1,448 405 47 299 59

BidManager 1,141 56 0 56 0

LED B 507 361 116 132 113

SCADA 476 1,317 0 1,317 0

Diagnosis 422 820 0 820 0

SystemMgmt 400 548 0 548 0

Engineering 203 1,328 0 1,328 0

GSMR C 172 181 13 168 0

Commissioning 39 70 0 70 0

PIS 27 223 0 223 0

Diesel 8 135 0 135 0

EHS 8 195 0 195 0

3 Project names are confidential – therefore we use numbers 1 to 3.
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C (5/27), we selected – from all topics which occur less than 200 times in the
training data – those which occur most often in the test data.

4.2 Metrics

We use (standard) metrics which help to directly judge user benefit: recall (sen-
sitivity, true positive rate, TPR), specificity (true negative rate, TNR) [22],
receiver operating characteristics (ROC) curve analysis [4] and custom metrics
for estimating time savings. For bid projects, a high recall is very important in
order to reduce risk of high non-compliance cost due to ignorance of information.
Specificity, on the other hand, is important to avoid unnecessary work due to
wrongly assigned topics. All metrics are micro-averaged, i.e., summing all quan-
tities and then calculating the metrics on the sum. This leads to a combined
metric for all test data and a combined metric for multi-labels per topic.

For estimating the time savings, we compare our solution to the decisions by
a requirements manager, using the metrics defined by Eqs. 1 and 2, which are
based on the time to comprehend a requirement (tanalyze), the time to change
a label (tchange) and standard evaluation quantities: true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). Assuming that an
expert does not make any mistakes, he or she needs to analyze each requirement
and set only the positive labels. In the automated approach, true positives need
not be analyzed nor set, but additional work is necessary: For type classification
(tdtype), true and false negatives are still analyzed by the requirements manager
and false negatives are set to positive in order to get TPR high – this has no
effect in Eq. 1. False positives must be changed to negative by topic experts. For
topic classification (tdtopic), false positives and negatives are corrected by the
topic experts during assessment. If the values for tanalyze and tchange are known
(e.g., as seconds per requirement on average) then the difference in hours can be
calculated.

tdtype = (FP − TP ) × tchange − (TP + FP ) × tanalyze (1)

tdtopic = FP × tanalyze + (FP − TP ) × tchange (2)

4.3 Type Classification

We used various thresholds (20%, 30%, ..., 80%) to get a feeling of the balance
of TPR and TNR – see the ROC curve in Fig. 1a. Projects 1 and 3 perform very
well, probably because they have similar properties as projects in the training
set (same author, different stations on the same railway line).

In our interviews, the requirements managers turned out to be very risk-
averse. Therefore, they prefer a very high TPR (e.g., 99%, as achieved with
threshold 20%) and accept the relatively low TNR of 72% compared to threshold
50% (with fairly balanced TPR of 91% and TNR of 87%) – see Table 2. Assuming
tanalyse = 30 s and tchange = 5 s, the time savings are more than 60 working hours
for the three test projects. This equates to savings of approximately one working
day for each thousand requirements which was confirmed in a field study with a
new bid project.
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Table 2. Evaluation results – TPR, TNR and estimated time savings

Threshold 50% Threshold 20%

Micro-avg P1 P2 P3 Micro-avg P1 P2 P3

TPR (%) 91 99 89 98 99 100 99 100

TNR (%) 87 98 85 98 72 97 68 94

tdtype (h) −62 −8 −47 −7 −69 −8 −54 −7
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Fig. 1. ROC curves

4.4 Topic Classification

Prevalence of topics is very low – the average in the training data was lower than
2% and even for the 5 most common topics only around 6%. The ROC curve in
Fig. 1b shows that prediction quality on average (for the upper half of topics) is
not as good as for type classification. The groups B and C from Table 1 perform
much worse than group A (with comparably higher prevalence).

In our interviews, the requirements managers preferred a threshold of 50% -
see Table 3. However, they judged the achieved TPR of 73% (micro-average of
all topics occurring in at least one test project) as too low for practical use. Even
the TPR of 77% (and TNR 81%) for the upper half of topics was not sufficient,
as nearly 2,100 topic assignments are missing and more than 16,300 assignments
are wrong. Again, projects 1 and 3 perform much better than the more typical
project 2. The new project from the field study performed similar to the latter.

Although the requirements managers do not need to spend any time for
topic assignment, the metric tdtopic estimates an additional effort of 127 h for
the necessary manual adjustments by topic experts. Only for project 3 or with
a high threshold can time savings be achieved.
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Table 3. Evaluation results – TPR and TNR at threshold 50%

TPR TNR

Micro-avg P1 P2 P3 Micro-avg P1 P2 P3

34 topics in test 73 98 69 100 81 92 81 98

Upper half 77 99 73 100 81 97 80 98

5 topics A 93 100 89 100 77 96 75 97

5 topics B 63 99 61 100 80 99 78 99

5 topics C 30 38 30 87 76 87

5 Conclusion

We chose the random forest approach for requirements classification because it
is easier to maintain and deploy than advanced deep learning solutions. Training
is less expensive and can be done on local servers.

The results were fairly good for type classification and topics with a preva-
lence > 5% (better than, e.g.., an alternative approach based on Näıve Bayes).
Application in a field study showed a high potential for reducing efforts for
requirements managers (e.g.., 80% of the time for type classification). However,
improvements – especially for topics with a low prevalence < 3% – are necessary
to fulfil the users’ demand for high TPR and TNR, i.e., both >> 95%.
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