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Abstract. Multi-task learning (MTL) aims to solve multiple related
learning tasks simultaneously so that the useful information in one spe-
cific task can be utilized by other tasks in order to improve the learn-
ing performance of all tasks. Many representative MTL methods have
been proposed to characterize the relationship between different learn-
ing tasks. However, the existing methods have not explicitly quantified
the distance or similarity of different tasks, which is actually of great
importance in modeling the task relation for MTL. In this paper, we pro-
pose a novel method called Metric-guided MTL (M2TL), which explicitly
measures the task distance using a metric learning strategy. Specifically,
we measure the distance between different tasks using their projection
parameters and learn a distance metric accordingly, so that the similar
tasks are close to each other while the uncorrelated tasks are faraway
from each other, in terms of the learned distance metric. With a metric-
guided regularizer incorporated in the proposed objective function, we
open a new way to explore the related information among tasks. The pro-
posed method can be efficiently solved via an alternative method. Experi-
ments on both synthetic and real-world benchmark datasets demonstrate
the superiority of the proposed method over existing MTL methods in
terms of prediction accuracy.

Keywords: Multi-task learning · Task relation · Metric learning ·
Metric-guided multi-task learning

1 Introduction

Multi-task learning (MTL), inspired by human learning behavior and patterns
of applying the knowledge and experience learned from some tasks to help learn
others, solves multiple learning tasks simultaneously and improves the learn-
ing performance of all tasks by exploring the task similarities or commonali-
ties [3,20]. MTL has attracted extensive research interest and has been widely
applied to various real-world problems such as human facial recognition and
pose estimation [4], traffic flow forecasting [5], climate prediction [6], and dis-
ease modeling [14].

One of the key issues in MTL is to characterize the relationship between
different learning tasks. Some representative methods have been proposed to
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address this challenging issue. They can be categorized into two main cate-
gories [20]: feature-based MTL and parameter-based MTL. Feature-based MTL
characterizes the relationships among different tasks by introducing constraints
on the feature representations of given tasks to model the task similarity. Accord-
ing to the property of weight matrix, feature-based MTL can be further cat-
egorized into multi-task feature extraction [1,22] and multi-task feature selec-
tion [13]. Parameter-based MTL models the relationships among tasks by manip-
ulating the parameters in each task. It can be further divided into four sub-
categories: low-rank methods that model the task-relation by constraining the
rank of a parameter matrix [18]; task clustering methods that group similar tasks
into subsets and share parameters within the cluster [8]; task-relation learning
methods that describe the relationships among tasks using a specific criterion
such as covariance or correlation [21]; and decomposition methods that char-
acterize task relationships by decomposing the parameter matrix to a set of
component matrices and introducing constraints on them [7].

Although the aforementioned methods have explored the task relationship
from different aspects, they have not explicitly quantified the distance or sim-
ilarity of different tasks, which is, of course, very important in modeling the
intrinsic correlation of multiple learning tasks. To address this problem, in this
paper, we introduce a new MTL method called Metric-guided MTL (M2TL),
aiming at explicitly measuring the task distance via a metric learning strategy.
Specifically, we represent the distance between different learning tasks using their
projection parameters. Accordingly, we propose to learn a distance metric, under
which the similar learning tasks are close to each other while the uncorrelated
ones are apart from each other. With the formulated distance metric, we intro-
duce a metric-guided regularizer into the objective function of M2TL. By jointly
optimizing the loss function and the metric-guided regularizer, the learned task
relationship is expected to well reflect the explicitly quantified similarity between
different tasks.

The rest of the paper is organized as follows. Section 2 briefly reviews the
related work on feature-based MTL. Section 3 introduces the proposed M2TL,
including the formulation of task distance, the objective function of M2TL, the
optimization procedure, and the computational complexity analysis. Section 4
validates the effectiveness of M2TL on both synthetic and real-world benchmark
datasets, demonstrating the superiority of the proposed method over existing
MTL methods in terms of prediction accuracy. Section 5 draws the conclusion of
the paper.

2 Related Work

The proposed M2TL aims to learn the common feature transformation among
different tasks. This section, therefore, briefly reviews some related work in
feature-based MTL. Generally, the feature-based MTL approaches, including
both feature extraction and feature selection methods, can be formulated under
the following regularization framework:
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arg min
W

Loss(W) + μR(W), (1)

where W ∈ R
d×T denotes the weight matrix, which is column stacked by each

task’s weight vector wi (i = 1, · · · , T ). Here d and T denote the dimension of
features and the number of tasks, respectively. Moreover, Loss(W) denotes the
total loss on T learning tasks that we want to minimize, R(W) denotes the
regularizer that characterize the relationship among different tasks, and μ ≥ 0
denotes the balancing parameter that adjusts the importance of Loss(W) and
that of R(W).

Different feature-based MTL approaches adopt their own ways to formulate
the loss function Loss(W) and the regularizer R(W), so that the relationship
between different tasks can be modeled and the learning performance of all
tasks can be optimized simultaneously. In [1], Argyriou et al. aimed to learn
a square transformation matrix for features, which lies in the assumption that
transformed feature space is more powerful than the original. They further pro-
posed a convex formulation [2] to solve the optimization problem. In [11,13], the
L2,1-norm was used as the regularizer to select common features shared across
different tasks. A more general form, the Lp,q-norm, can also be utilized to select
the common or shared features as it owns the property of sparsity as well [19].
However, the Lp,q-norm may perform even worse when the value of shared fea-
tures are highly uneven [9]. To address this issue, Jalali et al. proposed a method
called dirty MTL in which the weight matrix is decomposed into two compo-
nents, one to ensure block-structured row-sparsity and the other for element-wise
sparsity with different regularizers imposed [9].

The regularizers adopted in the above methods have explored the relationship
between different tasks from various perspectives. However, none of them has
explicitly quantified the distance/similarity between different tasks, which is of
vital importance in modeling the task correlation in MTL. This observation
motivates us to propose a new MTL method, which can measure the distance
between different tasks in an explicit way. Metric learning [16], which aims to
learn a distance metric to reflect the intrinsic similarity/correlation between
data samples, becomes a natural choice to model the task distance in our case.
In recent years, metric learning has been widely used in various applications,
such as healthcare [12], person re-identification [17], and instance segmentation
[10]. Different from existing metric learning methods that work on data samples,
the nature of MTL problem requires us to define the distance metric over tasks,
so that the correlation between different tasks can be explicitly measured and
integrated into the learning objectives.

3 Proposed Method

In this section, we introduce the proposed M2TL. First, we define the formula-
tion of task distance metric. Based on that, we propose the objective function
of M2TL and describe the optimization procedure. Finally, we analyze the com-
putational complexity of the proposed method.
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3.1 Task Distance Metric

For each task, the weight vector is a meaningful index to represent the informa-
tion learned from the corresponding task. Therefore, we define a task distance
metric based on weight vectors of different tasks:

D(ti, tj) = (wi − wj)TM(wi − wj), i, j = 1, · · · , T, (2)

where ti and tj denote the i-th task and the j-th task, respectively; wi and
wj denote the weight vector learned for the i-th task and that for the j-th
task, respectively; and D(ti, tj) denotes the distance between task i and task j.
Similar to the typical distance metric learning, we use the Mahalanobis matrix
M to flexibly adjust the importance of different dimensions. Note that if M
equals to the identity matrix, then the defined distance metric will reduce to the
Euclidean distance.

3.2 Objective Function of M2TL

With the above definition on task distance metric, we can formulate the objective
function of the proposed M2TL. Given T regression tasks and the corresponding
datasets {(X1,y1), (X2,y2), · · · , (XT ,yT )}, where Xi ∈ R

ni×d and yi ∈ R
ni

(i = 1, · · · , T ) denote the training samples and the corresponding labels in the
i-th task respectively, and ni denotes the number of samples in the i-th task.
In this paper, we use regression tasks as an example to show the formulation of
the proposed M2TL. In fact, the idea of the proposed method can be extended
to other supervised/unsupervised learning tasks, such as classification tasks and
clustering tasks, in a straightforward way. The proposed M2TL specifies the
general formulation in Eq. (1) as follows:

arg min
W,M

Loss(W) +
μ

T 2

T∑

i=1

T∑

j=1

D(ti, tj) + ‖M − Q‖2F . (3)

The first term in Eq. (3) represents the total loss of T tasks as mentioned pre-
viously. Without loss of generality, we utilize the least squares formulation as
the loss function in our model: Loss(W) =

∑T
i=1

1
2ni

‖Xiwi − yi‖22. Note that
Loss(W) in Eq. (3) can be any loss function according to different learning
requirements. The second term in Eq. (3) is the task distance formulated in
the previous subsection. By minimizing the summation of all task distances, we
expect that the commonality/similarity among different tasks, which is generally
hidden in the original feature space, can be extracted to the maximum extent.
In addition to the loss function and the regularizer, we further introduce the
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last term in Eq. (3) to avoid the trivial solution on M by constraining it using a
task correlation/covariance matrix Q. Here Q can be any correlation/covariance
matrix that captures the relationship between different tasks. In our paper, we
use the Pearson correlation coefficient matrix calculated by the initialization of
W because of its universality.

3.3 Optimization Procedure

To the best of our knowledge, there is no closed-form solution for the optimiza-
tion problem in Eq. (3). Therefore, we use an alternating method to find the
optimal M and W iteratively, which guarantees the optimality in each iteration
as well as the local optimum of the solution. The detailed optimization procedure
is described as follows:

Fix W and update M: With the fixed W, the objective function in Eq. (3)
can be rewritten as follows:

arg min
W,M

Loss(W) +
μ

T 2

T∑

i=1

T∑

j=1

D(ti, tj) + ‖M − Q‖2F

= arg min
M

μ

T 2

T∑

i=1

T∑

j=1

(wi − wj)TM(wi − wj) + ‖M − Q‖2F

= arg min
M

μ

T 2
tr(M

T∑

i,j

(wi − wj)(wi − wj)T ) + ‖M − Q‖2F

= arg min
M

2μ

T 2
tr(M(T

T∑

i=1

wiwT
i −

T∑

i,j

wiwT
j )) + ‖M − Q‖2F

= arg min
M

2μ

T 2
tr(MWLWT ) + ‖M − Q‖2F ,

(4)

where L is a T ×T Lagrange matrix defined as: L = T IT −1T1T
T , with IT and 1T

being the T -dimensional identity matrix and all one column vector, respectively.
Taking the derivative of the objective function in Eq. (4) with respect to M and
set it to zero, i.e.,

∂
[
2µ
T 2 tr(MWLWT ) + ‖M − Q‖2F

]

∂M
= 0, (5)

then we can obtain the update of M:

M = Q − μ

T 2
WLWT . (6)
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Algorithm 1: Metric-guided Multi-Task Learning (M2TL)

1 Input: Training set for T learning tasks: {Xi ∈ R
ni×d,yi ∈ R

ni}T
i=1

2 Output: Weight matrix W = [w1, · · · ,wT ] ∈ R
d×T

1: for i ← 1 : T do
2: Initialize wi: wi ← XT

i yi;
3: end for
4: while not convergence do
5: Update M using Eq. (6);
6: for i ← 1 : T do
7: Update wi using Eq. (9);
8: end for
9: end while

Fix M and update W: With the fixed M, the objective function in Eq. (3)
can be rewritten as follows:

arg min
W,M

Loss(W) +
μ

T 2

T∑

i=1

T∑

j=1

D(ti, tj) + ‖M − Q‖2F

= arg min
W

Loss(W) +
μ

T 2

T∑

i=1

T∑

j=1

(wi − wj)TM(wi − wj)

= arg min
W

T∑

i=1

1
2ni

‖Xiwi − yi‖22 +
μ

T 2

T∑

i=1

T∑

j=1

(wi − wj)TM(wi − wj)

= arg min
W

T∑

i=1

(
1

2ni
‖Xiwi − yi‖22 +

μ

T 2

T∑

j=1

(wi − wj)TM(wi − wj)).

(7)

Note that in the above formulation, each task can be updated individually.
Therefore, for the i-th task, we fix the 1, ..., i − 1, i + 1, ...T -th tasks, take the
derivative with respect to wi, and set it to zero, then we have:

1
ni

XT
i (Xiwi − yi) +

4μ

T 2

T∑

j=1
j �=i

M(wi − wj) = 0. (8)

From Eq. (8), we can obtain the updating rule of wi:

wi = (
1
ni

XT
i Xi +

4μ(T − 1)
T

M)−1(
1
ni

XT
i yi +

4μ

T
M

T∑

j=1
j �=i

wj). (9)

The details of the proposed M2TL are described in Algorithm 1.

3.4 Computational Complexity Analysis

In Algorithm 1, the most time-consuming steps are steps 4–9. The time com-
plexity of step 5, i.e., updating M, is O(dT 2). The time complexity of step 7,
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i.e., updating wi, is O(d3). Assume that t is the number of iterations in the
outside while loop for convergence, then the total computational complexity of
the proposed M2TL is O(t(dT 2 + d3T )).

4 Experimental Results

In this section, we validate the performance of the proposed method on both
synthetic and real-world datasets. We use two standard criteria in MTL for
performance evaluation: the root mean squared error (RMSE) [23] and the nor-
malized mean squared error (NMSE), which are defined as follows:

RMSE =
∑m

i=1 ‖XT
i wi − yi‖2 × ni∑m

i=1 ni
, NMSE =

∑m
i=1 MSEi/var(yi) × ni∑m

i=1 ni
,

(10)
where ni is the number of samples in i-th task, and MSE = 1

n

∑n
i=1(yi −xiwi)2

denotes the mean square error. We select the following baselines for performance
comparison:

– STL [15]: the classical single-task learning method, which learns each task
independently without modeling the task relationship. Here we employ Lasso
as the STL model.

– L21 [13]: a typical multi-task feature selection method, which uses L2,1-norm
to achieve the row sparsity of weight matrix.

– DirtyMTL [9]: a representative dirty multi-task learning method, which
decomposes the weight matrix into two components and regularizes these
two components separately to overcome the shortage of Lq,p-norm.

– MTFSSR [19]: a state-of-the-art multi-task feature selection method with
sparse regularization, which extends the L1,2-norm regularization to the
multi-task setting for capturing common features and extracting task-specific
features simultaneously.

4.1 Experiments on Synthetic Dataset

In this subsection, we examine the convergence and the prediction accuracy
of the proposed method on a synthetic dataset. We generate the data of T
regression tasks. Each task includes N data samples. The data of the i-th task
are generated from the normal distribution N (i/10, 1). The ground truth of the
weight matrix, W(truth), is generated from N (1, 1). The labels are then generated
by: yi = Xiw

(truth)
i +ε accordingly, where ε is the Gaussian noise generated from

N (0, 0.1). In the experiments, we assume that W(truth) is unknown and aim to
learn it from the training sets {Xi,yi} (i = 1, · · · , T ). We set T = 10, d = 10,
and N = 30 in our experiments.
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Fig. 1. Convergence speed of the proposed method on the synthetic dataset. The hor-
izontal axis represents the number of iterations while the vertical axis represents the
objective value of ‖Wt − Wt−1‖F . The red curve in the figure shows that M2TL can
converge to a stable solution quickly. (Color figur online)

We first examine the convergence speed of the proposed method. We deter-
mine the stopping point by evaluating the difference between Wt and Wt−1.
Specifically, we consider the algorithm as convergent and stop the iteration once
the following inequality is satisfied: ‖Wt −Wt−1‖F ≤ ε. In this experiment, we
set ε = 0.001. Figure 1 shows the objective value of ‖Wt − Wt−1‖F versus the
number of iterations. The objective value decreases dramatically and satisfies
the stopping criterion within only 7 iterations, demonstrating that the proposed
method can converge to a stable solution quickly.

Table 1. The performance (in terms of RMSE) of STL [15], L21 [13], DirtyMTL [9],
MTFSSR [19], and the proposed M2TL on the synthetic dataset, with three different
training ratios. The best performances are highlighted in bold.

Training No. Methods

STL L21 DirtyMTL MTFSSR M2TL

2 60.49± 12.45 31.07± 9.24 29.56± 4.64 38.90± 8.95 25.40± 12.26

4 53.36± 12.02 25.22± 3.23 25.69± 5.60 25.55± 7.24 24.93± 13.75

6 46.63± 19.95 18.70± 2.15 20.33± 5.53 18.56± 4.64 18.44± 8.39

In the second experiment, we compare the performance of the proposed
method with that of four aforementioned baselines. We select 2, 4, and 6 sam-
ples from the 30 samples for training and use the rest for testing. We repeat the
experiment for 10 times on randomly selected training samples and report the
average RMSE as well as the standard deviation of each method. Table 1 lists
the results of all methods. Obviously, with the exploration on the relationship
between different tasks, the MTL methods (including L21, DirtyMTL, MTF-
SSR, and the proposed M2TL) achieve the lower RMSE than the STL method.
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By further modeling the task distance in an explicit way, the proposed method
outperforms other three MTL methods in all scenarios.

4.2 Experiments on Real-World Multi-task Datasets

In this subsection, we conduct experiments on two real-world multi-task
datasets: the School dataset (https://github.com/jiayuzhou/MALSAR/tree/
master/data) and the Sarcos dataset (http://www.gaussianprocess.org/gpml/
data/). The School dataset is commonly used in many MTL literature. It is
provided by the Inner London Education Authority and contains 15, 362 data
samples from 139 schools where each data sample has 27 attributes. We treat
each school as a task and the learning target is to predict the exam score. The
Sarcos dataset is about the inverse dynamic problem. The learning target is to
predict the 7 joint torques given the 7 joint positions, 7 joint velocities and 7
joint accelerations. Here we treat prediction of one joint torque as a task so we
have 7 tasks in total. For all 7 tasks, the 21 features (7 joint positions, 7 joint
velocities and 7 joint accelerations) are used as the input, so the training data
for different tasks are the same. We select 200 samples from each task to conduct
our experiment. For both School and Sarcos datasets, we 20%, 30%, 40% of data
for training and use the rest for testing. Similar to the synthetic experiments,
we repeat the experiment for 10 times on randomly selected training samples.
We report the average NMSE as well as the standard deviation of each method.

Tables 2 and 3 report the performance of all five methods on the School
dataset and the Sarcos dataset, respectively. With the increase of training ratio,
the NMSE of all methods decreases (except the L21 method from 20% to 30%),
which is consistent with the common observation that providing more training
data is generally beneficial to the learning task. Moreover, similar to the obser-
vations in the synthetic experiments, the MTL methods perform better than the
STL method while our method again achieves the lowest prediction error among
all five methods, demonstrating the necessity of exploring the task relationship
in MTL and the effectiveness of the proposed formulation.

Table 2. The performance (in terms of NMSE) of STL [15], L21 [13], DirtyMTL [9],
MTFSSR [19], and the proposed M2TL on the School dataset, with three different
training ratios. The best performances are highlighted in bold.

Training ratio Methods

STL L21 DirtyMTL MTFSSR M2TL

20% 2.118± 0.104 0.963± 0.005 0.924± 0.001 0.929± 0.000 0.931± 0.001

30% 2.052± 0.008 1.061± 0.007 0.858± 0.001 0.862± 0.000 0.855± 0.007

40% 2.013± 0.001 1.016± 0.001 0.821± 0.003 0.820± 0.000 0.809± 0.003

https://github.com/jiayuzhou/MALSAR/tree/master/data
https://github.com/jiayuzhou/MALSAR/tree/master/data
http://www.gaussianprocess.org/gpml/data/
http://www.gaussianprocess.org/gpml/data/
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Table 3. The performance (in terms of NMSE) of STL [15], L21 [13], DirtyMTL [9],
MTFSSR [19], and the proposed M2TL on the Sarcos dataset, with three different
training ratios. The best performances are highlighted in bold.

Training ratio Methods

STL L21 DirtyMTF MTFSSR M2TL

20% 2.180± 0.037 0.309± 0.113 0.294± 0.001 0.300± 0.004 0.291± 0.004

30% 2.052± 0.026 0.216± 0.001 0.226± 0.001 0.216± 0.002 0.211± 0.002

40% 2.000± 0.091 0.208± 0.001 0.202± 0.000 0.194± 0.000 0.189± 0.001

5 Conclusions

In this paper, we proposed a novel multi-task learning method called Metric-
guided Multi-Task Learning (M2TL), which learns a task distance metric to
explicitly measure the distance between different tasks and uses the learned
metric as a regularizer to model the multi-task correlation. In the future, we
plan to extend our experimental evaluation on large-scale datasets with dis-
tributed strategy in order to overcome the issues of quadratic time compelxity
with respect to the task number and cubic time complexity with respect to
the feature dimension. Moreover, we will investigate more sophisticated ways to
model and learn the task distance metric.
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