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�Introduction

The most common way of analysing the intracranial pressure 
(ICP) signal in clinical practice is by visually inspecting the 
presence of macro patterns and waveform abnormalities. 
However, this approach relies on the experience of the 
observer, and hence the outcome might not be consistent. 
Automated and standardized methods of detecting wave pat-
terns are thus desired to enable better detection of ICP devia-
tions for diagnostic and therapeutic purposes. However, ICP 
signals are often contaminated by artefacts and the presence 
of segments of missing values. Some of these artefacts can 
be observed as very high and short spikes with a physiologi-
cally impossible high slope and value. These spikes can be 
generated by different sources, e.g. connection errors and 
movement of the monitoring system during data collection 
[1]. The presence of these spikes reduces the accuracy of pat-
tern recognition techniques because they mask the character-
istic appearance of ICP patterns.

Several methods have been used to identify the pres-
ence of spikes in ICP signals, from signal thresholding [2] 
to wavelet analysis. Signal thresholding fails to work if the 
signal-to-noise ratio (SNR) is low or if the ICP rises in an 
unphysiologically short time. Techniques using low-pass 
filtering are not appropriate in the case of the ICP signal 

since they are non-stationary (i.e. statistical properties 
change over time), as shown in the top graph of Fig.  1, 
where trends varying in time can be observed [3]. 
Alternative non-linear methods are based on wavelet trans-
formation, whose output performance is highly influenced 
by the choice of a basis function [4]. These basis functions 
are fixed, hindering their match with the nature of the input 
signal at a given time. To overcome this drawback, more 
recent papers decompose the signal using the empirical 
mode decomposition (EMD) method, where the mother 
functions are derived from the signal, making the decom-
position adaptive [4, 5].

Therefore, in this paper we propose a modified EMD 
method for automatic spike removal in raw ICP signals. The 
method is adaptive in non-linear and non-stationary signals 
because it involves breaking down signals into different fre-
quency modes without leaving the time domain. It relies on 
the principle that some of these modes, also referred to as 
intrinsic mode functions (IMFs), capture the noise in signals 
so no a priori information on the data is required. This is 
important because there is no a priori knowledge of noise, so 
no procedures can be fixed beforehand to decrease the con-
tribution of noise in signals.

�Methods

�EMD Algorithm

Huang et al. [6] presented EMD as a sifting method for adap-
tively decomposing non-stationary signals into a finite num-
ber of IMFs. An IMF is described as a function with two 
requirements: first, the number of extrema must be equal to 
zero-crossing or differ mostly by one and, second, the mean 
value of its lower and upper envelopes is zero. The EMD 
algorithm used for IMF extraction is briefly described for a 
given input ICP signal s(t) as follows:
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	1.	 Find signal x(t) extrema to which splines are fitted to gen-
erate both lower and upper envelopes. In the first itera-
tion, x(t) = s(t).

	2.	 Calculate the arithmetic average of the two envelopes, 
m(t).

	3.	 Generate a candidate IMF h(t) by subtracting the average 
envelope from the signal: h(t) = x(t) − m(t).

	4.	 If h(t) is not an IMF according to the preceding require-
ments, then x(t) must be replaced with h(t) and steps 1–3 
repeated. However, if h(t) is treated as an IMF and the 
stopping criteria are not reached, the residue r(t) = x(t) – 
h(t) is assigned to x(t) and steps 1–3 are repeated. The 
stopping condition is usually a very small value to which 
the mean squared difference between the last two 
extracted successive IMFs is compared.

At the end of this iterative process, the original signal s(t) 
can be expressed as the sum of all extracted IMFs plus the 
final residue. Note that the later an IMF is extracted, the 
lower will be its frequency content.

�Proposed EMD-Based Algorithm

Spikes have a band-limited waveform, which implies that the 
frequency content is limited only to certain consecutive 

IMFs. Band-limited means that the frequency domain of the 
signal is zero beyond a certain finite frequency. The summa-
tion of the successive IMFs that contain part of a spike’s 
dominant frequency would then help to temporally localize 
the spike event.

For localization and later removal of spikes from the ICP 
signal, we propose the following method:

	1.	 Break down ICP signal into sixteen IMFs via EMD, as 
described above. Based on the physiological properties of 
the ICP signal as well as previous experiences by Feng 
et al. [7], breaking down the signal into 16 IMFs was con-
sidered the best trade-off between the signal length and 
computational time [8].

	2.	 Spike detection from estimated IMFs.
	3.	 Spike imputation in the original signal.

It must be noted that missing values are also randomly 
present in the ICP signal and they must be temporarily 
replaced with zeroes before EMD. In our monitored ICP sig-
nals, missing values are most likely due to sensor detachment 
during several minutes. Thus, temporal replacement by zeros 
during only the decomposition would not have any effect on 
higher frequency IMFs, which are the ones we are interested 
on for denoising. Instead, it will affect the low-frequency 
part, i.e. the local trend. Given the simplicity and lower com-
putational time of this shortcoming and its ability to achieve 
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Fig. 1  Examples of peaks in ICP signals and IMF1–4
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an effective technical solution, it is preferred over the inter-
polation of values.

After decomposition, as visually demonstrated in Fig. 1, 
high amplitude oscillations in the first IMF align with the 
location of spikes in the ICP signal. Because the spikes have 
band-limited waveforms, dominant oscillations are found in 
various consecutive IMFs. Thus, a more effective event dura-
tion estimation is obtained when various successive IMFs are 
taken into account. In our case, only the location of peaks in 
IMF1–4 aligns with the location of peaks in the ICP signal, so 
summing these four IMFs enhances spike episodes: 

IMF IMF1 4
1

4

�
�

� � ��
k

k t  . It is assumed then that the oscillations 

that build a spike are present in these four successive IMFs at 
the same temporal location as the signal artefact.

To identify the peaks in the summed IMFs, an adaptive 
thresholding approach is proposed (Fig. 2). ICP samples out-
side the bounded region in [−Pth, Pth] will be identified as 
spikes. The threshold is determined based on the noise level 
in the summed IMFs: P Lth � �� 2 log  , where σ is the 
standard deviation of the signal and L the number of samples 
in the summed IMF [1]. Because σ is always unknown given 
the presence of artefacts in the signal, it must be estimated 

using e.g. the median absolute deviation: ˆ
.

� �
MAD

0 6745
, where 

MAD = Me ∣ IMF1 − 4 − Me(IMF1 − 4)∣ [9]. If two identified 
spikes lie within a window of 0.4 s, the ICP samples between 

them are also treated as spike events. ICP spikes identified 
can either be removed or imputed with a moving average 
calculated over a sliding window of 10 s. An example of the 
results can be seen in Fig. 3.

�Results

To both prove the non-stationarity of the signals and test the 
ability of the proposed method to detect spikes, real ICP 
signals are used. A total of 26 h are investigated from five 
different monitoring sequences. The Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) test for stationarity is applied to 
selected artefact-free segments of increasing size [10]. With 
a 1-s window size, ICP signals are non-stationary with 
p-values around 0.03 for a significance level (critical alpha) 
equal to 0.05. Increasing window sizes reject the null 
hypothesis for the stationarity of the time series with even 
lower p-values (i.e. values close to 0.01).

To investigate the performance of the proposed algorithm, 
ICP segments containing unwanted dominant spikes are 
examined. Segments are visually inspected by an expert 
using a spike template. This template is established just for 
visual inspection purposes and is based on the determination 
of two spike characteristics: a duration shorter than 0.5 s and 
an abrupt ICP value increase. The artefact events visually 
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Fig. 2  ICP signals with lower and upper thresholds marked in red
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identified with the presence of the template are used as 
ground truth, and the ability of the method to identify them 
is then examined. The performance of the proposed method 
is quantified based on how well it estimates the location of 
the spikes using precision and recall metrics:

	
precision

TP

TP FP
recall

TP

TP FN
�

�
�

� 	

where TP is the number of correctly identified spikes, FP is 
the number of spikes identified that were not spikes, and FN 
is the number of unidentified spikes. The goal is to get both 
values as close to 100% as possible. The proposed algorithm 
can detect spikes achieving an 84% precision and a 77% 
recall, given that TP = 114, FP = 21 and FN = 34.

�Discussion

Results show that there are some artefact-free signal seg-
ments that are incorrectly classified as artefacts, given that 
the precision achieved is not 100%. The recall is lower, 
which shows that some artefact events are not identified. 

This is likely to be due to the magnitude of the episodes 
being smaller than the adaptive threshold Pth calculated. This 
limitation could be addressed by performing an additional 
spike identification iteration based on the slopes of the 
summed IMF peaks.

The algorithm also presents the drawback of not estab-
lishing a method to deal with the identified artefacts. We will 
further investigate this in our ongoing research, for which 
autoregressive moving average (ARMA) models [5] will be 
considered.

�Conclusion

In this paper, a new methodology based on EMD is proposed 
for the removal of unphysiological spikes in clinical ICP sig-
nals, which is essential for correct patient evaluation and 
diagnosis in clinical practice.
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