q

Check for
updates

STRATEGY: A Flexible Job-Shop
Scheduling System for Large-Scale
Complex Products

Zhiyu Liang, Hongzhi Wang®, and Jijia Yang

Harbin Institute of Technology, Harbin, China
{zyliang,wangzh, jijiayang}@hit.edu.cn

Abstract. Production scheduling plays an important role in manu-
facturing. With the rapid growth in product quantity and diversity,
scheduling manually becomes increasingly difficult and inefficient. This
attracts many researchers to develop systems and algorithms for auto-
matic scheduling. However, existing solutions focus on standard flexible
job-shop scheduling problem (FJSP) which requires the operations of
each job to be totally ordered, while in reality they are usually par-
tially sequential, resulting in a more general and complicated problem.
To tackle this problem, we develop STRATEGY, a light-weight schedul-
ing system with strong generality. In this paper, we describe the main
features and key techniques of our system, and present the scenarios to
be demonstrated.

Keywords: Scheduling system - Big data - Genetic algorithm

1 Introduction

Production scheduling is one of the most important tasks in manufacturing. Its
target is to assign a series of manufacturing jobs to limited resources, such as
equipments and workers, so that to minimize the makespan. Traditionally, the
task is performed by experienced engineers. However, production is gradually
evolving from traditional batch mode to large-scale customized manufacturing
where every product is unique in processing, which will cause an explosion of the
job and resource data in quantity and diversity. Thus, it becomes increasingly
difficult to make a good scheduling plan manually, motivating people in both
research and industry to tackle the large-scale scheduling problem automatically
by developing algorithms and systems [3].

Generally, the production scheduling task can be formalized as a flexible job-
shop scheduling problem (FJSP) [2], which has been proved to be NP-hard [3].
Over the last few decades, many optimization techniques have been proposed to
solve FJSP and several tools are developed for scheduling, such as LEKIN [1]
system and TORSCHE toolbox [5]. However, existing algorithms and tools can
only handle FJSP when the operations of each jobs are totally sequential, which
© Springer Nature Switzerland AG 2020

Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12114, pp. 766-770, 2020.
https://doi.org/10.1007/978-3-030-59419-0_53


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59419-0_53&domain=pdf
https://doi.org/10.1007/978-3-030-59419-0_53

STRATEGY: A Flexible Job-Shop Scheduling System 767

is called standard FJSP, while in reality these operations are usually partially
ordered. Since the partially ordered operations are mainly required by complex
products such as assembly parts, we name the scheduling problem with this
kind of operations as FJSP-CP (flexible job-shop scheduling problem for complex
products). Apparently, FJSP-CP is an extension of standard FJSP which is more
general and complicated.

To meet the requirement of large-scale customized production planning in
reality, we develop STRATEGY, a light-weight flexible job-shop scheduling sys-
tem for complex products. To the best of our knowledge, our system is the first
one focusing on FJSP-CP. Compared with existing scheduling tools, our system
has the following advantages.

— Strong Generality. STRATEGY is designed to deal with FJSP-CP, which is a
superset of FJSP. It means that our system can also apply to any scheduling
problem within the collections of FJSP, including single machine scheduling,
parallel machines scheduling, flow-shop scheduling, flexible flow-shop schedul-
ing, job-shop scheduling, and standard flexible job-shop scheduling.

— Friendly Ul Existing scheduling tools require the user to input all data of
the scheduling task manually, which is inconvenient. Instead, utilizing our
system, the user only needs to upload a structural task description file and
input the hyper-parameters of the optimization algorithm, then the system
will instantiate the scheduling problem automatically. The description file
can be easily generated from the order planning and resource management
system. The scheduling solution is depicted in Gantt Chart for visualization.

— Light Weight. Unlike existing systems that require deploying locally, our sys-
tem is developed based on B/S architecture. Users can easily access the appli-
cation only via a browser.

2 System Architecture and Implementation

The general structure of STRATEGY is shown in Fig.1. The Problem Solv-
ing module receives the task description file and the hyper-parameters of the
optimization algorithm input by the user, generates an instance of FJSP-CP
from the file, and calls the algorithm from the library to solve the instantiated
problem. The solution is delivered to the Visualization module and depicted in
Gantt Chart. The system organizes all the data of a scheduling task, including
the problem instance, the hyper-parameters and the solution as a scheduling
project. The user can easily view and edit projects through the Project Man-
agement module, such as saving the current project, loading projects from the
database and listing them through the Visualization module, searching for a
project, viewing a project in detail via Gantt Chart, and deleting a project, etc.

STRATEGY is mainly implemented in Java and HTML based on B/S struc-
ture, following MVC pattern. We choose the well-known Apache Tomcat as Web
server and adopt MongoDB to manage the project data.



768 Z. Liang et al.

3 Scheduling Algorithm

We adopt the widely used [3] genetic algorithm [4] to solve FJSP-CP because
its powerful global searching, intrinsic parallelism and strong robustness can
guarantee the effectiveness and efficiency.

‘ Description File ‘ ‘ Gantt Chart ‘
‘ Hyper-Parameters ‘ ‘ Project List ‘
ave & Remove
Problem — Visualizati Project
‘ Stoking Visualization }(::">‘ e e
L N
_II 5
Algorithm
Library Database

Fig. 1. System architecture

The most important procedure of genetic algorithm is the representation of
the chromosome. Most existing methods are limited to jobs with totally ordered
operations, which cannot apply to FJSP-CP. Thus, we propose a novel coding
method that represents the order of operations in a DAG where the nodes are the
operations and the edges reflect their sequence. Each directed edge is taken as a
gene and the set of all genes forms a chromosome. The decoding is performed by
mapping the edge set to a DAG and conducting topological sorting on it. The
resulting operation series represents a scheduling solution.

Based on this coding strategy, we design a novel genetic algorithm for FJSP-
CP. The key techniques of our algorithm is as follows.

Initial Population. Firstly, a basic individual is generated based on our coding
method. Then, the algorithm conducts as many times random mutations as
the population size on the basic individual to form the initial population. The
mutation method is described below.

Fitness Function. The fitness score determines the probability an individual
will be selected for reproduction. Because the goal of FJSP-CP is to minimum
the makespan, i.e. the total working time of all the jobs, we define the fitness
function as the reciprocal of the makespan.

Selection. After the experiment, we adopt the commonly used proportional
selector in our algorithm for its contribution to efficient convergence.

Crossover. Basically, crossover is to exchange parts of genes between two
selected individuals. However, in our case, if directed edges from two DAGs
are exchanged, the intrinsic constrains on operation sequence could be broken,
and it is computationally expensive to correct the children DAGs when they



STRATEGY: A Flexible Job-Shop Scheduling System 769

are in large scale. Thus we design an alternative reproduction method. For each
pair of parents, the intersection of their edge sets are passed on to their offspring
directly, and their own unique edges are inherited after being mutated. The order
constrains are guaranteed by the mutation operator.

Mutation. We propose an edge mutation strategy to introduce gene diversity
under the order constrains. For an edge e, ; from operation a to b, the algorithm
selects an extra operation c and creates two new edges, e, . and e, respectively,
meeting that vertex v, is not the predecessor of v, or the successor of v,. Then,
the original e, is substituted by one of the two generated edges in probability
if it doesn’t exist in the chromosome.

Termination. The algorithm terminates after certain times of iterations, which
is set as a hyper-parameter.

4 Demonstration Scenarios

New Project
]
==
S . ) " ]
]
o
]
=m
]
=1

(a) Task Input (b) Scheduling Solution (c) Project Management

Fig. 2. System demonstration

We plan to demonstrate our STRATEGY in the following 3 parts.

— Task Input. Only task description file and hyper-parameters of the genetic
algorithm are required to setup a new scheduling project. As shown in Fig. 2a

— Problem Solving and Solution Visualization. Once receiving the input,
STRATEGY automatically creats an instance of FJSP-CP based on the
description file and conducts the genetic algorithm on the optimization prob-
lem. The solution is visualized in Gantt Chart, as depicted in Fig. 2b

— Project Management. Our system provides friendly UI for users to manage
their scheduling projects, such as listing, searching, viewing, saving and delet-
ing, as Fig. 2c presents.

Acknowledgements. This paper was partially supported by NSFC grant U1866602,
61602129, 61772157, CCF-Huawei Database System Innovation Research Plan
DBIR2019005B and Microsoft Research Asia.



770 Z. Liang et al.

References

1. Lekin-flexible job-shop scheduling system, October 2010. http://web-static.stern.
nyu.edu/om/software/lekin/

2. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Comput-
ing 45(4), 369-375 (1990)

3. Chaudhry, I.A., Khan, A.: A research survey: review of flexible job shop scheduling
techniques. Int. Trans. Oper. Res. (2015). https://doi.org/10.1111/itor.12199

4. Davis, L.: Handbook of Genetic Algorithms (1991)

5. Sucha, P., Kutil, M., Sojka, M., Hanzdlek, Z.: TORSCHE scheduling toolbox for
matlab. In: 2006 IEEE Conference on Computer Aided Control System Design, 2006
IEEE International Conference on Control Applications, 2006 IEEE International
Symposium on Intelligent Control, pp. 1181-1186. IEEE (2006)


http://web-static.stern.nyu.edu/om/software/lekin/
http://web-static.stern.nyu.edu/om/software/lekin/
https://doi.org/10.1111/itor.12199

	STRATEGY: A Flexible Job-Shop Scheduling System for Large-Scale Complex Products
	1 Introduction
	2 System Architecture and Implementation
	3 Scheduling Algorithm
	4 Demonstration Scenarios
	References




