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Abstract. Recent years have seen the rapid development of Location
Based Services (LBSs). Many users of these services are making use of
them to, for example, plan trips, find houses or explore their surround-
ings. In this paper we introduce a novel problem called the diversity and
distribution-aware region search (DARS) problem. In particular, DARS
aims to find regions of size a × b where the number of different cate-
gories is maximized such that objects of different categories are not too
scattered from each other and objects of the same category are within
reasonable distance (which is a tunable parameter to cater for different
users’ needs). We propose several methods to tackle the problem. We first
design a sweepline based method, and then design various techniques to
further improve the efficiency. We have conducted extensive experiments
over real datasets and demonstrate both the usefulness and the efficiency
of our methods.

Keywords: Spatial region search · Spatial databases · Points of
interest

1 Introduction

With the quick growth of Location Based Services (LBSs) in recent years, many
online businesses (e.g., Yelp1, Dianping2) are now incorporating geographic data
such as point of interest (POI) in their services. Apart from geographic locations,
POIs are also often tagged with category information. Those data can be utilized
to help explore a large area more efficiently, such as finding a best location for
facility deployment [4–6,18–20]. Apart from finding a single best location, the
study [7] by Feng et al. aimed to identify a “best region” that contains the
largest number of POI categories. In our work we argue that interrelationship
among the POIs within a region is also important, as illustrated in the following
example.
1 www.yelp.com.
2 www.dianping.com.
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Fig. 1. A motivating example.

Example 1. John Doe plans to buy a new property in Anytown, and he wants
to first find a region that has many kinds of facilities (e.g., POIs such as super
markets, restaurants, metro or bus stops, parking lots etc.). If the locations of
such POIs in a region are not too scattered, then John can make use of them
quite efficiently without having to waste time on commuting. John might also
prefer that there are at least some candidates for each category so he would
have backup options if some POIs of certain category cannot satisfy his needs
(e.g., different operation hours). How can John select such a “diversified” and
“well-distributed” region in Anytown so that he can choose the location of his
new property regarding the region?

Figure 1 shows three possible candidate regions for John. Although r1 con-
tains eight POIs, which is more than that in r2 and r3 , r1 contains POIs of two
categories while r2 and r3 contain three, thus on diversity r1 loses. Furthermore,
POIs of different categories in r1 are much scattered than those in r2 and r3 ,
hence in r2 or r3 John can spend less time and energy traveling to different
POIs. In this case r2 and r3 shall be considered as answers prior to r1 . We can
even say r2 is better than r3 because POIs of different categories are even closer
in r2 . For POIs of one category (e.g., restaurants), it is better to have some POIs
of the same category nearby so John can have more options. Regarding this we
can see that r2 is also better than r3 because POIs of same categories are also
closer in r2 . These distribution of POIs within a region is the interrelationship
of POIs we want to consider. At the same time, there might be other regions
just as good as r2 . Therefore, returning multiple regions helps when there are
multiple relatively good regions. As a result, with less time spent on commuting
between different POIs, John can quickly find public transportations during his
work in the daytime, have dinners of different styles to explore different dining
options and shop at different markets to find the general goods he need in r2 .
Note that it is critical that John offers the size of such a region that is of interest
to him. In fact, other users might also want to search for a region satisfying their
needs the most, but of different size.

From the example we can see that, given the size of a query rectangle, users
wish to find regions that are diversified and the POIs within the regions are
well-distributed, such that the number of different categories is maximized
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Table 1. Table of notations.

Notation Description

O The set of spatial objects

C The set of categories

R The set of regions

T The set of intersections

o, r, t An object, a region, an intersection

a × b Size of a region

Or The set of spatial objects covered by r

Cr The set of categories region r possesses

Orm All POIs of category m in region r

oirm The ith object of category m in r

d
′
(Orm , Orn) Minimum distance between two categories

while POIs of different categories are not too scattered from each other. As for
POIs of the same category, different users might have different requirements for
their distribution. This kind of interrelationship between POIs in a region is
never considered in region search to the best of our knowledge. We refer to the
problem in our paper as diversity and distribution-aware region search (DARS)
problem. Briefly, in a spatial object database O, given a query rectangle of size
a × b, DARS aims to find regions that have the most diversified collection of
POIs, minimize the average distance among POIs of different categories, and
POIs of the same categories hold a distance no greater than a threshold between
each other. In summary, we make the following contributions (Table 1):

– We propose and study the DARS problem for the first time, to capture diver-
sity and distribution of POIs in a region simultaneously. Specifically, we use
distance to capture the interrelationship among POIs in a region to measure
the distribution at a region level (Sect. 2).

– We first design a baseline algorithm for scanning and finding regions, and
then propose two optimizations to further improve the efficiency (Sect. 3).

– We conduct extensive experiments over two real-world and one synthetic
datasets to demonstrate the efficiency and effectiveness of our solutions
(Sect. 4).

2 Problem Formulation

In this section we formally introduce the diversity and distribution-aware region
search (DARS) problem, starting from the following two preliminaries to define
the diversity.
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Definition 1 (Average Minimum Distance). The average minimum dis-
tance among all POIs of different categories is:

g(Or) =
1

|C|
∑

1≤m<n≤|C|
d

′
(Orm , Orn).

When considering the diversity of a region, we aim to minimize the average
distance among POIs of different categories. For a region r, we can get the
average minimum distance with g(Or). In g(Or), we use the minimum distance
between POIs of different categories. The reason is that if the average minimum
distance of POIs of different categories in a region is small, not only that POIs
of different categories are quite near to each other, but also that we can avoid
impacts from stray points. As a result users can spend less time in a region
finding POIs that satisfy their different needs. We then need to find a way to
define a “score” for the diversity of a region. We have two intuitions to follow.
First, regions with more categories shall be considered prior to regions with
less categories. Second, when two regions have the same number of categories,
the distribution of POIs will most likely differ. Intuitively, POIs of different
categories should be close to each other so that users can utilize different services
efficiently. At the same time, for POIs of each category there shoule better be
some POIs of the same category nearby for users to have more candidates to
choose from.

Definition 2 (In-Region Diversity). Given a region r, its in-region diversity
of r is defined as

f(r) = e−(
|Cr|×(|Cr|−1)

2 +e−g(Or)).

The definition of in-region diversity is driven by the two intuitions above.
|Cr|×(|Cr|−1)

2 is always monotone to |Cr|, so the difference with different |Cr| is
always greater than one. For example, consider |Cr| = 3, then |Cr|×(|Cr|−1)

2 = 3,
e−g(Or) is a value in range (0, 1], so |Cr|×(|Cr|−1)

2 + e−g(Or) is a value in range
(3, 4]. But when |Cr| = 2, |Cr|×(|Cr|−1)

2 + e−g(Or) is a value in range (1, 2]. These
two ranges never intersect, so regions with more categories is always superior.
From Fig. 1 in Example 1 we can see that r2 and r3 both possess three categories,
and POIs of different categories are closer to each other in r2 than those in r3 ,
then g(Or2) < g(Or3), so f(r2) < f(r3). Furthermore, POIs of same categories
are also closer to each other in r2 . In fact, this is just one possible form of the
function f . Any other forms should also work as long as they consider regions
with more categories prior to other regions, or as long as they consider regions
that have POIs of different categories closer to each other prior to other regions.

To this end, we proceed to present our problem formulation as below.

Definition 3 (Diversity and distribution-aware Region Search
(DARS)). In a spatial object dataset O, given a query rectangle size a × b,
a diversity function f , and a distance threshold δ, DARS finds a region r of
size a × b that minimizes f(r), while the distance between at least one pair
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Fig. 2. Rectangle intersections.

of POIs of the same category should be no greater than a threshold δ: For-
mally, DARS finds a region r i.e., r = arg minr∈R f(r), subject to the constraint
∃i, j d(oirm , ojrm) ≤ δ, 1 ≤ m ≤ |C|.

Note that the constraint requires a distance threshold δ. It means that there
should be at least a pair of POIs of the same category that hold a distance of at
most δ from each other. This is a tunable parameter to cater for needs in different
preferences and circumstances – some users might think that the more the better,
while others might just want a small but enough amount of POIs around. When
δ becomes the diagonal’s length of the query rectangle, there is no constraint for
POIs of the same category. We use as δ − constraint to denote this constraint
set for POIs of the same category in a region. Moreover, the definition can be
generalized so that we can even consider the constraint for POIs of different
categories and try to minimize the minimum average distance among POIs of
the same category. This is how the DARS problem can be generalized. In this
paper we follow the case in Definition 3.

3 Our Solutions

In this section we explain the details of our solutions. We first show that the
DARS problem can be reduced to the rectangle intersection problem. Then we
propose a baseline method called DPOF to solve the rectangle intersection prob-
lem in order to find the answers to the DARS problem. However, DPOF lacks in
efficiency as we will see in experiments, so we present an optimization strategy.
Last, we further optimize the method via a space partitioning to enhance the
efficiency.

3.1 Finding Regions

Before we score a region, we must find one. Suppose a user issues a query request
with a rectangle query range of size a × b, the goal is to find some candidate
regions in the whole search space (e.g., search in a city or a province) as results.
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Algorithm 1: FindMaxIntersects
Input: A set R of rectangles
Output: All maximal intersections T

1 T ← ∅, G ← ∅;
2 while Sweep a vertical line lv from left to right do
3 if lv meets the left of a rectangle r then
4 G ← G ∪ {r};
5 else if lv meets the right of a rectangle r then
6 if A left edge and a right edge has been scanned continuously then
7 Get the maximal intersection t of rectangles in G;
8 if t is not fully covered by any intersection in T then
9 Delete intersections that are covered by t from T ;

10 T ← T ∪ {t};

11 G ← G\{r};

12 return T ;

Algorithm 2: DARS Post-Filter (DPOF)
Input: A set R of rectangles of size a × b
Output: Candidate regions Rc

1 Rc ← ∅;
2 T ← ∅, A ← ∅;
3 while Sweep a horizontal line lh from bottom to top do
4 if lh meets the bottom of a rectangle r then
5 A ← A ∪ {r};
6 else if lh meets the top of a rectangle r then
7 if A bottom edge and a top edge has been scanned continuously then

8 T
′ ←FindMaxIntersects(A);

9 T ← T ∪ T
′
;

10 A ← A\{r};

11 foreach t in T do
12 Ot ← Set of objects at the centers of rectangles that form t;
13 if Ot satisfies the δ − constraint then
14 rc ← a new region of size a × b, centered at a the center of t;

// rc contains all objects in ot
15 Rc ← Rc ∪ {rc};

16 return Rc

Unfortunately, it is prohibitively expensive to search the whole space because
there is an infinite number of rectangles of size a × b.

Reduction of the DARS Problem. We first reduce the step of finding regions
to the problem of max-enclosure in [14]. The goal of max-enclosure is to find the
position of a rectangle that encloses a maximum number of points. This enclosure
problem can be transformed to the rectangle intersection problem according
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to [14]. Hence our first goal becomes finding where the most rectangles intersect
in a given set of rectangles.

Consider the example in Fig. 2. There are four objects, and we draw rect-
angles with the same size a × b centered at each object. The highlighted areas
are possible intersections. r2 and r3 form an intersection t4. r1 and r4 form an
intersection t1, r4 and r3 form an intersection t2. Here, t1 and t2 again inter-
sect and form an intersection t3. We can see that t3 is formed by a set of three
rectangles r1 , r3 and r4 , which is a superset of the rectangles that form t1 and
t2. As a result, for these four rectangles we find two “most important” intersec-
tions t3 and t4. For an intersection we find, we can simply choose an arbitrary
point inside the intersection and draw a rectangle of size a × b centered at the
point. The newly drawn rectangle will cover the centers of all rectangles that
form the intersection. For instance, the dashed-line rectangle can cover o1 , o3
and o4 because it is centered at an point inside t3. Hence we can find all such
intersections and rate the corresponding regions to get the answers to the DARS
problem.

Finding Intersections. From the example in Fig. 2 we know that we only need
to find and check those “most important intersections” because they are formed
by a maximal number of rectangles among all intersections. We refer to these
most important intersections as maximal intersections. In general, we use the
sweep-line method to find the maximal intersections. We summarize the steps
in Algorithm 1. For a set of rectangles, we can scan from left to right (Line 1.2–
1.11) and during the scanning we can check if a possible group of rectangles is a
superset of other groups that have already been found. If they do include some
other groups, we discard those groups and preserve this newly found group (Line
1.8–1.10)

With the help of Algorithm1, we can start scanning all rectangles to find
regions. We summarize the method in Algorithm2. We use a horizontal line to
scan from the bottom to the top. If the line meets the bottom of a rectangle, we
add this rectangle to an Active rectangles set. If the line meets the top of a rect-
angle, we remove this rectangle from the Active rectangles set (Line 2.3–2.10). If
the line meets a bottom edge and a top edge consecutively, it means that we can
find some possible groups of intersecting rectangles from Active rectangles set
now (Line 2.7–2.9). The whole scanning process terminates until the topmost
horizontal edge is met. We can get a series of regions by drawing rectangles
centered at a point in intersections attained from Algorithm1. Finally we can
filter out the regions that does not satisfy the δ − constraint, then we have the
remaining regions as results (Line 2.11–2.15).

With Algorithm 1 and Algorithm 2, we now have a basic workflow of solving
the DARS problem. In the following sections we will focus on the optimization
of this workflow.

3.2 Checking the δ − Constraint During Sweeping

Algorithm 1 finds all maximal intersections. When the size of O grows or the
query rectangle size grows, it is time-consuming to find all maximal intersections.
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Algorithm 3: Stripe Pre-Filter (SPRF)
Input: A set R of rectangles of size a × b, threshold δ
Output: Candidate regions Rc

1 T ← ∅;
2 Cut the wholse space in horizontal direction into a set of stripes S;
3 foreach s in S do

4 R
′ ← Rectangles in R that intersect with s;

5 R
′
c ← DARS Pre-Filter(R

′
, δ);

6 Rc ← Rc ∪ R
′
c;

7 return Rc;

Is it possible that we can reduce some computations so we do not need to rate
every possible region?

The answer is positive. In Algorithm 1, if we find one maximal intersection, we
need to check if it is already covered by other intersections or if it covers other
intersections, and this is time-consuming. Therefore by first filtering with the
δ−constraint we can reduce a lot of computation. We implement this filter idea
as follows. In Algorithm 1, when sweeping (Line 1.2–1.11), we can first use the
δ − constraint to filter out some groups of rectangles. This is because if a group
of rectangles intersect, and their centers do not satisfy the δ−constraint, we can
simply ignore this group of rectangles. We can simply add a checking process
before Line 1.8. If centers of rectangles in G does not satisfy the δ − constraint,
then we can terminate the current loop and start the next loop. In the end we
will get some groups of rectangles and their corresponding maximal intersections,
and the objects that each group contains will satisfy the δ − constraint. With
these groups that satisfy the δ − constraint found, we then do not need to check
δ − constraint when processing each maximal intersections (Line 2.11–2.15).
Therefore we can remove the if check at Line 2.13.

With these modifications done to Algorithm1 and Algorithm 2, we then have
an optimized workflow of solving the DARS problem. We name this modified
algorithm DPRF (DARS Pre-Filter).

3.3 Further Optimization with Stripes

As a matter of fact, for every possible group of intersecting rectangles, if we want
to know if one such group satisfies δ − constraint, we need to scan this group,
so we cannot just ignore it like BRS [7] does. Thus, our further optimization
strategy needs to focus on optimizing the execution of the algorithms.

By dividing the space range in one dimension into a series of intervals, we can
further reduce the computations needed to be done. Here we cut the space with
vertical lines, so in the horizontal direction there will be a series of intervals.
These intervals and the splitting vertical lines will form a series of rectangle
spaces. We will denote as “stripes” these rectangle spaces. If there is a group of
intersecting rectangles, the furthest distance between the leftmost vertical edge
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and the rightmost vertical edge will always be less than 2×a, otherwise they will
not be intersecting each other, so we will set the width of each stripe to 2 × a.
We illustrate this in Fig. 3. By doing so, a group of rectangles will only intersect
with at most two stripes. Therefore, we can issue a new instance of DPRF for
each stripe. Although the total number of loops will increase, things done in each
loop will be reduced drastically compared to the increase in number of loops.
We will see this effect in experiment section.

A stripe

2a

Fig. 3. Cutting space into stripes

We summarize the process in Algorithm 3. We issue a new DPRF instance
for each stripe (Line 3.2–3.6, input to DPRF will be the rectangles that intersect
with the stripe and the distance constraint δ, and these rectangles can be found
by using the interval tree), then combine the results from each stripe and we
will get the final results in the whole space. We call Algorithm 3 SPRF (Stripe
Pre-Filter).

Table 2. Summary of datasets.

Property BrightKite Yelp Synthetic

# of objects 772,966 157,776 60,000

Width 40,075 km 3,933 km 84 km

Height 20,015 km 2,012 km 152 km

Time Complexity Analysis. Suppose there are n rectangles, and denote the
average size of active rectangles (A used in DPOF (Algorithm2) and DPRF) as
|A|, the average number of POIs in a region as |r|. It takes O(|A||r|) time to
check for maximal intersections, so the total complexity of DPOF is O(n|A||r|).
For DPRF, in the worst case it has the same complexity as DPOF (every possible
group satisfies δ − constraint). As for SPRF, we construct an interval tree in
O(nlogn) time to get rectangles (Denoted as R

′
in Algorithm 3) that intersect

with a stripe. It takes O(logn+ |R′ |) to find them with the interval tree (|R′ | �
n). There are at most n

2 stripe, and each DPRF instance has a complexity of
O(|R′ ||r|2). Thus, the toal complexity of SPRF is O(nlogn + n

2 (logn + |R′ | +
|R′ ||r|2)) = O(nlogn + n|R′ ||r|2).
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4 Experiments

We first explain our setups for the experiments. Then we evaluate our methods
on both quality and efficiency. Last, we run the scalability test.

4.1 Experiment Setup

Datasets. We use two real-life datasets BrightKite3 and Yelp4 to evaluate our
methods. We will also use synthetic datasets for evaluation and scalability test.
Summary of different datasets is in Table 2. POIs in BrightKite dataset are scat-
tered over the whole globe. POIs in Yelp dataset are mainly in North America.
POIs in synthetic dataset are generated in the scope of a normal city.

Query Rectangle Size. Different datasets come with different cardinality, and
this will have impact on efficiency of the algorithms. Thus, we set different unit
query rectangle size for different datasets. Given a dataset with cardinality |O|,
we can get its minimum bounding rectangle of size w × h, and the size of a
unit query rectangle is a × b, where a = w

|O| and b = h
|O| . We can also apply a

multiplier k to a and b so the query rectangle size becomes ka × kb. Sometimes
a or b might actually become a very small value (e.g., 2m × 1m) and this is
irrational. Under such circumstances we will expand a or b until they become
rational values, and we will use a and b after the expansion as the query unit
size q = a × b. We will indicate this expansion with different k in the figures.
Different dataset has different k, hence leading to different sizes kq. In Fig. 4 we
demonstrate how we choose a k value for Yelp dataset. For following experiments
we choose k = 8 for Yelp dataset so that the region size is about 200m × 100m
which is proper. For other datasets, we omit reporting the figures due to space
limit (k = 4 for BrightKite dataset and k = 100 for Synthetic dataset).

Performance Measures. We mainly focus on these measures: (a) Efficiency,
which is the runtime of each algorithm. For SPRF, we set the width of each stripe
to 2×a as discussed in Sect. 3.3. (b) The quality of returned regions that satisfy
the δ−constraint. Quality is the value calculated according to f in Definition 1.
Since DPOF, DPRF and SPRF achieve the same quality, we will use a united
name DARS to compare with BRS. For BRS, we use f from Definition 1 for
its pruning strategy. For evaluations involving no number of categories, we use
|C| = 3. For evaluations involving no changing of δ − constraint, we use δ = a

10
by default. Note that according to Definition 2 and 3, the smaller the quality is,
the better the corresponding region is.

Since BRS [7] ignores a lot of possible groups of intersecting rectangles, it
cannot guarantee that the result it finds satisfies δ − constraint (the result it
finds might not be an answer to the DARS problem), so when compared with
other methods, runtime is the main factor. But for the completeness we also
compare BRS with other methods on quality.
3 http://snap.stanford.edu/data/index.html.
4 https://www.yelp.com.sg/dataset/.

http://snap.stanford.edu/data/index.html
https://www.yelp.com.sg/dataset/
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Implementation. All algorithms are implemented in Java with JDK 11. We run
all experiments on a PC with Intel i7-8700K 3.70 GHz CPU and 32 GB RAM.

4.2 Evaluation Results

For all the runtime evaluations we did not show the breakdown when reporting
all efficiency results because the time taken for scoring a region was only 1%–2%
compared to finding regions. Each experiment is repeated ten times, and the
average result is reported.

Runtime (Different Datasets). First we evaluate the runtime of different
algorithms on different datasets with proper k values. From Fig. 5 we can see
that as |O| grows, the runtime of DPOF increases fairly fast. It always scans
and checks intersections without filtering with δ − constraint. But it is also
slightly faster than BRS and DPRF when the size of data is small (60,000 POIs
in synthetic dataset), because DPOF does nothing but simply scanning and
finding intersections, while BRS needs to first estimate an upper bound for each
vertical interval, and DPRF needs to check δ − constraint whenever it runs into
a possible group of rectangles. When the size of data is small, such as 60,000
POIs in synthetic dataset, these extra efforts in BRS and DPRF make them only
a bit slower. But when the size of data grows, the advantages of BRS and DPRF
stand out because they do not need to check intersections as often as DPOF
does. The improved SPRF algorithm runs one magnitude faster than others on
average.

Runtime (Different Query Rectangle Sizes). Figure 6 illustrates the run-
time for different algorithms on different datasets with different query rectangle
sizes. We find as the size of query rectangle grows, the runtime of each algorithm
also grows because more intersections among rectangles are likely to appear. The
runtime of DPOF grows still quite fast, while the runtime of BRS and DPRF
grows slower. On the synthetic dataset with a relatively small size, DPOF still
runs only a little faster because it does nothing during the scanning process
except for finding the maximal intersections. SPRF is still the fastest here (1–2
magnitude faster).

Fig. 4. a and b with different k. Fig. 5. Runtime on different dataset
with proper k.



DARS: Diversity and Distribution-Aware Region Search 215

(a) BrightKite (k = 1) (b) Yelp (k = 2) (c) Synthetic (k = 100)

Fig. 6. Runtime with different query rectangle sizes.

(a) BrightKite (k = 4) (b) Yelp (k = 8) (c) Synthetic (k = 100)

Fig. 7. Runtime with different number of categories.

Runtime (Different Number of Categories). We set different number of
categories to evaluate its impact on the runtime of different algorithms in Fig. 7.
As the number of categories grows, the runtime of DPOF stays almost the same
and it is the slowest. As for the remaining algorithms, the runtime of each algo-
rithm grows because more calculation needs to be done in f(r). The growth on
the runtime of DPRF and SPRF is the slowest because when there are more cat-
egories, there are fewer POIs of the same category needed to be checked against
δ − constraint. Again SPRF outperforms the rest (1–2 magnitude faster).

Runtime (Different Constraints for DARS). In Fig. 8 we set different δ −
constraints to evaluate the runtime of DPRF and SPRF. Since DPOF does not
use δ − constraint during the process of scanning, the impact of different δ is
tested only on DPRF and SPRF here. We set the constraint based on the width
of a query rectangle by dividing the width with different values. We can see that
as δ becomes smaller, the runtime of both algorithms decreases because when δ
is small, fewer regions would satisfy the δ − constraint, so that fewer operations
would be required to check new intersections and delete old intersections in
Algorithm 1. SPRF is still faster than DPRF (3–10 times faster).

Quality (Different Query Rectangle Sizes). Because DPOF always finds
the same answers as DPRF and SPRF do, we will use a united name DARS
to compare with BRS. As DARS finds multiple top regions, we use the best
one in order to compare with BRS because BRS always finds a single region as
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(a) DPRF (b) SPRF

Fig. 8. DARS runtime with different δ − constraint.

(a) BrightKite (k = 1) (b) Yelp (k = 2) (c) Synthetic (k = 100)

Fig. 9. Quality with different query rectangle sizes.

result. One thing about BRS is that it always finds the region that minimizes
f(r) without considering δ − constraint. So for f(r), if BRS gets a value v1 and
DARS gets a value v2, v1 ≤ v2 always holds. Now we set different query rectangle
size for quality evaluations in Fig. 9. The difference between some values seems
huge, but in fact the quality values differ at around 6–7 digits after the decimal
point. For example, in Fig. 9a at 4kq the quality value from BRS is 0.018315693
while DARS returns a quality value of 0.018315712, and the quality value at 1kq
is 0.018315724. This is the same for difference of quality values in Fig. 9b and
Fig. 9c.

Quality (Different Number of Categories). In Fig. 10 we check the quality
with different number of categories. As we can see difference brought by different
|C| is very obvious (due to how f(Or) works). When |C| = 7, quality returned
from synthetic dataset does not reach a value as big as that from BrightKite and
Yelp. Because in a relatively small dataset we might find regions with less than
|C| categories of POIs.

Quality (Different Constraints for DARS). We check the impact of differ-
ent δ on the quality of a returned region with |C| = 3 by default. From Fig. 11
we can see that when the size of data is fairly small, the change in quality is
obvious (the polyline of Synthetic dataset with stroke markers). When the size
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(a) BrightKite (k = 1) (b) Yelp (k = 2) (c) Synthetic (k = 100)

Fig. 10. Quality with different number of categories.

Fig. 11. DARS quality with different
δ − constraint.

Fig. 12. Scalability test.

of data grows big, there is almost no change in quality because we are always
likely to find all |C| categories of POIs when there are more POIs no matter
what the constraint value is.

Scalability Test. Now we generate synthetic datasets of different size to test the
scalability of DPRF and SPRF because DPOF finds the same results and does
not perform well on big dataset. We also test BRS here. We generate synthetic
datasets in the same scope as in BrightKite dataset. The runtime is illustrated
in Fig. 12. Neither DPRF nor BRS scales that well. SPRF scales a bit better,
although when there are more than 3 million objects it still takes more than 10 s
to terminate, it can already handle real-life scenarios where there are not that
many objects.

5 Related Work

The DARS problem is closely related to the region search problem. There are
also other related studies such as the maximizing range sum problem [3]. Table 3
summarizes existing methods.
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The Region Search Problem. Region search has been studied in the past
few years. Feng et al. [7] studied the problem of best region search (BRS). Given
a set O of all spatial objects, a rectangle r of a given size and a submodular
and monotone function which extracts a property for a region (e.g., Number
of categories in a region), BRS aims to identify a single “best region” that can
maximize this function, and proposed algorithms and pruning techniques around
the function. Another problem called subjected-oriented top-k hot region query
(STR) was studied by Liu et al. [12]. They aim to find the top-k non-overlapping
square regions that have the highest scores computed by the number of feature
objects (e.g., objects of cultural features include museums, libraries, exhibition
halls, etc.) and their weights.

Our DARS problem differs from these studies as follows. (1) We not only con-
sider the number of categories, but also use the distance between POIs of different
categories to consider an interrelationship, while in BRS only the number of cat-
egories was considered, and in STR this interrelationship was also omitted. (2)
The interrelationship between POIs is unknown before the corresponding POIs
are actually processed, and it remains a challenge to prune some POIs without
affecting the correctness of the answers. Therefore, techniques in [7,12] cannot
be directly applied to our DARS problem. (3) In STR the regions returned are
non-overlapping, while in DARS the regions could overlap.

The Maximizing Range Sum Problem. The Maximizing Range Sum
(MaxRS) problem [3] is also quite relevant to our work. First in the theoretical per-
spective for MaxRS Imai et al. [10] and Nandy et al. [14] aimed to find a rectangle
to enclose the maximum number of points based on a classical distribution-sweep
paradigm [9]. Given a set O of weighted points and a rectangle r of a given size,
MaxRS aimed to find a rectangle range of the same size that maximizes the sum
of weights of all the points covered by the rectangle (e.g., sum of influence of all
points). A naive solution is to issue an infinite number of range aggregate (RA)
operations [1,11,15–17] but this is prohibitively expensive. Choi et al. [3] solved
the MaxRS problem with a scalable method in spatial databases.

Our DARS problem differs from MaxRS in these aspects: (1) we take into
account the interrelationship between points in a region; (2) our objective func-
tion completely differs from a simple aggregate function in MaxRS (e.g., SUM,
COUNT). As a result, DARS does not consider a weight for each POI while
MaxRS does.

There are also other studies less relevant to this work. To name a few, some
studies tried to capture the features of regions and find similar regions to a
given query region [8,13]. Region-wise deployment of a set of facilities or adver-
tisements are studied in [21,22], aiming to maximize the number of users influ-
enced. Choi et al. [2] proposed nearest neighbourhood search to find circular
nearest regions that contains some number of POIs through pure geometric
computations.



DARS: Diversity and Distribution-Aware Region Search 219

Table 3. Summary of methods

Methods Diversity Interrelationship Objective function

BRS #Category None Submodular and monotone

MaxRS #Category None Aggregate

DARS #Category Distance between POIs Not submodular, not aggregate

6 Conclusions

In this paper we introduced a novel problem called the diversity and distribution-
aware region search (DARS). The goal of DARS is to find regions that are diver-
sified (contain many categories of POIs) and the POIs within these regions are
well-distributed so that users can enjoy several kinds of services they want with-
out spending much time on commuting. We proposed several methods including
the baseline method DPOF, an improved method DPRF and a further opti-
mized method SPRF. SPRF can handle many kinds of scenarios quite efficiently
in extensive experiments over real-world datasets. In the future we would like
to discuss how to solve the DARS problem in a road network environment, or
assigning different weights to different categories.
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