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Abstract. k−core is one type of cohesive subgraphs such that every
vertex has at least k degree within the graph. It is widely used in
many graph mining tasks, including but not limited to community detec-
tion, graph visualization and clique finding. Frequently decomposing a
dynamic graph to get its k−cores brings expensive cost since k−cores
evolve as the dynamic graph changes. To address this problem, previous
studies proposed several maintenance solutions to update k−cores based
on a single inserted (removed) edge. Unlike previous studies, we main-
tain affected k−cores from the sparsest to the densest, so the cost of our
method is determined by the largest core number of a graph. Experi-
mental results show that our approach can significantly outperform the
previous algorithms up to 3 order of magnitude for real graphs tested.
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1 Introduction

k−core [10] is defined as the maximal subgraph of a simple graph G such that
every vertex in the subgraph has at least k degree. The problem of finding the
core number of all vertices in G is called core decomposition [4], which is widely
used in many real-world applications, including large graph visualization [1],
community detection [5], and network analysis [2].

Most graphs in our life are highly dynamic, whose edges are inserted into
or removed from the graph over time. The core number of vertices should be
updated to reveal the up-to-date structure of the graph. Clearly, it is uneco-
nomical to recalculate the core number of all vertices while a few edges change.
Instead, core maintenance [6,9] is proposed, whose goal is to update the core
number of influenced vertices rather than decompose the entire graph. Unfortu-
nately, existing solutions can only deal with a single edge each time, which leads
to high cost when a graph with numerous inserted (removed) edges.
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To overcome above drawbacks, we provide a novel solution to maintain core
number of vertices with multiple inserted (removed) edges simultaneously. Com-
pared with previous studies, our solution is relevant to the maximum core number
of a graph. We conduct extensive experiments to evaluate the performance of our
method and the existing solution. Experimental results show that our method
can significantly outperform the previous algorithm up to 3 orders of magnitude
for large real graphs tested.

The main contributions of our paper can be summarized as follows:

– With the aid of quasi−k−core, a similar but more loose concept to k−core,
we can estimate the vertices affected by a set of inserted (removed) edges.

– Unlike existing approaches, our maintenance solution can update the core
number of vertices in affected k−cores from the sparsest to the densest.

– Through executing extensive experiments on real graphs, our solution per-
forms better than the existing approach.

The rest of this paper is organized as follows: Sect. 2 provides some prelim-
inaries. The details of our solution are introduced in Sect. 3. Section 4 reports
experimental results and Sect. 5 describes the related work about our paper.
Finally, Sect. 6 concludes the paper.

2 Preliminaries

Usually, G represents a simple graph, which consists of a vertex set V (G) and
an edge set E(G) such that E(G) ⊆ V (G) × V (G). For convenience, |G| =
|V (G)|+ |E(G)| is used to represent the size of |G|, where |V (G)| and |E(G)| are
the size of vertices and edges respectively. Additionally, K0 indicates an empty
graph without vertices or edges.

Given an arbitrary vertex v ∈ V (G), we define N(G, v) = {u : (u, v) ∈ E(G)}
as the set of neighbors of v. Clearly, |N(G, v)| is the degree of v in G, denoted
by d(G, v). For convenience, we also use v ∈ G ((u, v) ∈ G) to replace v ∈
V (G) ((u, v) ∈ E(G)), where u and v are two adjacent vertices of an edge in G.

To clearly illustrate the relation between two graphs G1 and G2, we generalize
four set notations on graphs: G1 ⊆ G2 represents G1 is a subgraph of G2;
G1 ∩ G2 refers to the intersection graph of G1 and G2; G1 ∪ G2 is the union
graph of G1 and G2; G1 \ G2 depicts the difference graph of G1 and G2 such
that E(G1 \ G2) = E(G1) \ E(G2).

k−core [10] is a well-established metric to evaluate the importance of vertices
as well as their connections in the graph. Besides, k−core has two important
properties: uniqueness and nestedness [4,8].

Definition 1. A k−core is the largest subgraph of a graph G, denoted by
C(G, k), such that d(C(G, k), v) ≥ k for an arbitrary vertex v ∈ C(G, k).

Generally, we require k ≥ 1. When k = 0, 0−core is the graph itself. If not
specified, we assume isolated vertices have been removed from G. Besides, we
use C(G, k) = K0 to represent an empty k−core.
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Similar to existing studies [4], we define the core number of vertices in G. If
a vertex v is located in k−core but not contained in (k + 1)−core, then its core
number is k, denoted by φ(G, v) = k. Additionally, the maximum core number
of vertices in G is denoted as φ(G).

3 Solution

Existing methods obey the core update theorem [6,9], while an edge is inserted
into (removed from) a graph, the vertices affected by this edge will change their
core number at most 1. When numerous edges change, existing methods repeat-
edly identify influenced vertices for each edge and some of them may change their
core number many times. If the number of edges is very large, the maintenance
cost will become expensive.

To address the above issues, we propose a novel solution, which updates
core number of influenced vertices from the sparsest k−core to the densest. To
this end, we first propose the quasi−k−core to estimate the candidate vertices
for each influenced k−core. Secondly, we identify the partial−k−core of each
affected k−core and update their core number. Lastly, we increase k until all
affected k−cores are updated.

For convenience, we use Gc to represent the current graph and Gp to indi-
cate the previous graph before changing. Correspondingly, we define Si =
Gc \ Gp (Sr = Gp \ Gc) as the insertion (removal) graph.

3.1 Quasi−k−core

Consider that most graphs are sparse, not all k−cores will be affected by inserted
(removed) edges. To find influenced k−cores, an intuitive idea is to decompose
Si (Sr). Since some vertices of Si (Sr) lack adjacent edge information in Gc (Gp),
we decompose Si (Sr) to a set of quasi−k−cores with the aid of Gc (Gp).

Consider that the steps of quasi core decomposition on Si and Sr are similar,
we use S (e.g. Si or Sr) and G (e.g. Gc or Gp) to represent two arbitrary graphs
for ease of presentation. To supplement extra edge information of vertices in S,
we define the neighborhood graph S on G, which consists of vertices in S and
their adjacent neighbors within one step in G. Similar to k−core, quasi−k−core
is also unique and nested. Otherwise, it contradicts to the maximal property of
quasi−k−core.

Definition 2. S(G) = (V (S(G)), E(S(G))) is the neighborhood graph of S on
G such that V (S(G)) = V (S) ∪ {v : v ∈ N(G, u) ∧ u ∈ V (S)} and E(S(G)) =
E(S) ∪ {(u, v) : u ∈ S ∧ v ∈ N(G, u)}. Specially, if S ∩ G = K0, then S(G) = S.

Definition 3. The quasi−k−core Ĉ(S,G, k) is the largest subgraph of S on G
such that d(Ĉ(G), v) ≥ k for an arbitrary v ∈ Ĉ(S,G, k), where Ĉ(G) is the
neighborhood graph of Ĉ(S,G, k) on G.
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To get a set of quasi−k−cores, we can revise the decomposition method of
k−cores. Through recursively removing unsatisfied vertices from S for each k,
we can get a set of quasi−k−cores. Besides, we can also define quasi core number
for each vertex, which is similar to core number.

3.2 Insertion Case

Our insertion algorithm has four steps: firstly, we decompose Si to a set of
quasi−k−cores with the aid of Gc; secondly, we expand each quasi−k−core to a
candidate graph; thirdly, we get the partial−k−core from the candidate graph;
lastly, we update the core number of vertices in the partial−k−core and continue
the next loop until all affected k−cores are updated.

Note that inserted edges may increase the core number of adjacent vertices
of the quasi−k−core, but they are not contained in the quasi−k−core. To find
all affected vertices, we expand the quasi−k−core to a candidate graph, which
contains all possible affected vertices. Additionally, we terminate the search path
when edges are contained in the previous k−core since they must belong to the
current k−core.

Definition 4. F (k) is a candidate graph whose vertex v ∈ C(Gc, k−1) satisfying
d(C(Gc, k − 1), v) ≥ k is reachable from u ∈ Ĉ(Si, Gc, k) via a path and satisfies
(u′, v′) /∈ C(Gp, k) for an arbitrary edge (u′, v′) ∈ F (k).

We can observe that F (k) contains all vertices that may be contained in
C(Gc, k) \ C(Gp, k). So, C(Gc, k) ⊆ F (k) ∪ C(Gp, k) holds. Since F (k) contains
some redundant vertices, we identify the partial−k−core from F (k), denoted
by P (k) = C(Gc, k) \ C(Gp, k), which is the difference graph of C(Gc, k) and
C(Gp, k). Since Ĉ(P (k), C(Gp, k), k) is a subgraph of P (k) and for any v ∈ P (k),
d(P (C(Gp, k)), v) ≥ k holds, we have Ĉ(P (k), C(Gp, k), k) = P (k).

To get P (k) from F (k), we observe that P (k) = Ĉ(P (k), C(Gp, k), k). Since
P (k) ⊆ F (k), we have P (k) ⊆ Ĉ(F (k), C(Gp, k), k). On the contrary, if a vertex
v ∈ Ĉ(F (k), C(Gp, k), k) \ P (k), there must be a vertex u ∈ C(Gp, k) which can
be reachable from v such that d(F (C(Gp, k)), u) < k via a path. Again, this is a
contradiction. Consider another case (u, v) ∈ Ĉ(F (k), C(Gp, k), k) \ P (k), since
u, v ∈ P (k), P (k) ⊆ P (k) ∪ (u, v). When C(Gp, k) = K0, we can directly get
C(Gc, k) from F (k) since C(Gc, k) ⊆ F (k).

Based on above discussions, we implement Algorithm 1 to maintain k−cores
for the insertion case. In detail, it first decomposes Si to a map of quasi core
numbers and corresponding vertex sets. Then the algorithm updates the core
number of influenced vertices from k = 2 to φ̂(Si, Gc) (the maximal quasi core
number of Si on Gc) according to two cases mentioned above.

Clearly, the time complexity of Algorithm 1 is O(|Si| +
∑φ̂(Si,Gc)

k=1 2|F (k)|),
where O(2|F (k)|) is the cost to get F (k) and the partial−k−core. Note that
φ̂(Si, Gc) is much less than |V (Gc)|, where |V (Gc)| is the number of vertices in
Gc. As for the space complexity, it only costs O(|Gc|) to store the entire graph.
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Algorithm 1: Insertion Case (IC)
Input: Si: the insertion graph, Gc: the current graph, φ: a map of vertices

and their core number.
Output: φ: a map of vertices and their core number.

1 decompose Si to a set of quasi−k−cores;
2 φ(v) ← 1 for v ∈ Si;
3 k ← 2;

4 while k ≤ φ̂(Si, Gc) do
5 expand the quasi−k−core to a candiadte graph;
6 if k ≤ φ(Gp) then

7 get Ĉ(F (k), C(Gp, k), k) from F (k);

8 φ(v) ← k for v ∈ Ĉ(F (k), C(Gp, k), k);
9 k ← k + 1;

10 else
11 execute core decomposition on F (k);
12 for v ∈ F (k) do
13 φ(v) ← φ(F (k), v) if φ(F (k), v) ≥ k;
14 break;

15 return φ;

3.3 Removal Case

Our removal algorithm contains three steps: firstly, we decompose Sr to a set
of quasi−k−cores with the aid of Gp; secondly, we delete the common edges in
Ĉ(Sr, Gp, k) ∩ C(Gp, k) and recursively remove influenced vertices that cannot
be located in C(Gp, k); thirdly, we continue the loop until all affected k−cores
are updated.

The implementation of Algorithm 2 is relatively simple. Firstly, it decomposes
Sr to a map of vertices and their quasi core number (line 1). Secondly, for
each influenced k−core, it deletes common edges in Ĉ(Sr, Gp, k) ∩ C(Gp, k),
recursively removes influenced vertices and updates the core number of affected
vertices. The time complexity of Algorithm 2 is O(|Sr| +

∑φ̂(Sr,Gp)
k=1 |C(Gp, k)|).

Since it at most traverses the entire affected k−core for each k, and the space
complexity is O(|Gp|).

4 Experiments

Our real graphs are downloaded from Koblenz Network Collection1, including
10 real graphs (seen Table 1), where Stanford is a direct graph and Youtube is a
temporal graph. For the directed graph, we ignore the edge direction and regard
it as a simple graph. Then for the temporal graph, we sort their edges by the
timestamp. While for the remainder graphs, we keep the initial order of edges
as the corresponding graph files.
1 http://konect.uni-koblenz.de/.

http://konect.uni-koblenz.de/
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Algorithm 2: Removal Case (RC)
Input: Sr: the removal graph, Gp: the previous graph, φ: a map of vertices

and their core number.
Output: φ: a map of vertices and their core number.

1 decompose Sr to a set of quasi−k−cores;

2 φ̂(Sr, Gp) ← φ(Gp) if φ̂(Sr, Gp) > φ(Gp);
3 k ← 1;

4 while k ≤ φ̂(Sr, Gp) do
5 let Q be an empty queue;

6 for (u, v) ∈ Ĉ(Sr, Gp, k) ∩ C(Gp, k) do
7 remove (u, v) from C(Gp, k);
8 push u (v) into Q if d(C(Gp, k), u) < k (d(C(Gp, k), v) < k);

9 adjust C(Gp, k) by removing vertices in Q;
10 update core number of affected vertices in φ;
11 k ← k + 1;

12 return φ;

All algorithms are implemented in C++ and compiled with GCC 7.4.0 at
-O2 optimization level. All experiments are executed sequentially on the Linux
operating system Ubuntu 18.04, which is running on a machine with two Xeon
E5-2683v4@2.1 GHz CPUs and 128 GB RAM.

Table 1. The detail of graphs

G Amazon Douban Flixster Gowalla Hyves Livemocha Skitter Stanford Wordnet Youtube

|V (G)| 334, 863 154, 908 2, 523, 386 196, 591 1, 402, 673 104, 103 1, 696, 415 281, 903 146, 005 3, 223, 585

|E(G)| 925, 872 327, 162 7, 918, 801 950, 327 2, 777, 419 2, 193, 083 11, 095, 298 1, 992, 636 656, 999 9, 375, 374

|φ(G)| 6 15 68 51 39 92 111 71 31 88

Similar to the most of existing studies, we adopt the execution time is as the
metric of our experiments. In our experiments, we select the traversal approach
[9] as the baseline, which contains Trav-I for the insertion case and Trav-R
for the removal case. To support numerous edges, we recursively execute the
traversal approach multiple times. Before experiments, we set some necessary
parameters. We set the 2-hops for Trav-I and 1-hop for Trav-R in experiments,
the details of these algorithms can be seen in [9].

For the insertion case, the last m edges are used to construct the insertion
graph Si and the remainder are used to construct Gp. As for the removal case,
the first m edges are used to construct removal graph Sr and all edges are used
to construct Gp. Generally, we vary m from 100, 000 to 200, 000 for tracing the
evolution of the performance of two approaches.

Table 2 shows the execution time on all graphs for the insertion case. Com-
pared with Trav-I, IC achieves the best performance on all graphs. Table 3
shows the execution time on all graphs for the removal case. Since both two
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Table 2. The execution time for the insertion case (unit: second)

m 100, 000 120, 000 150, 000 180, 000 200, 000

Methods IC Trav-I IC Trav-I IC Trav-I IC Trav-I IC Trav-I

Amazon 6.02 254.66 6.79 296.50 7.52 344.93 8.34 377.53 8.92 392.49

Douban 3.36 30.22 3.75 33.77 4.79 49.18 5.41 67.17 5.89 90.68

Gowalla 4.72 11.21 5.87 13.00 7.23 14.65 8.75 16.65 10.39 18.22

Stanford 59.79 154.22 62.36 177.53 66.70 220.50 70.94 257.38 72.09 275.71

Wordnet 6.76 14.96 7.68 18.45 8.95 24.78 10.24 29.22 10.97 33.29

Flixster 48.62 1222.00 56.03 1474.87 64.67 1674.03 73.05 2365.18 78.25 2657.49

Hyves 7.43 1715.22 8.42 2070.69 9.32 2616.87 10.41 3164.22 10.93 3419.63

Livemocha 66.84 73.95 73.09 88.01 81.30 104.80 89.32 144.65 94.50 176.27

Skitter 4.27 10.88 5.02 11.53 6.70 12.81 8.69 14.48 10.36 15.57

Youtube 284.04 336.86 297.46 394.72 312.28 488.06 326.43 596.92 334.13 731.56

Table 3. The execution time for the removal case (unit: second)

m 100, 000 120, 000 150, 000 180, 000 200, 000

Methods RC Trav-R RC Trav-R RC Trav-R RC Trav-R RC Trav-R

Amazon 2.51 2.96 3.02 3.54 3.75 4.39 4.58 5.25 5.13 5.79

Douban 3.25 6.08 3.93 7.54 4.55 8.93 5.32 10.29 5.84 10.80

Gowalla 7.88 10.33 9.67 12.38 12.14 16.38 15.05 19.92 16.53 22.79

Stanford 8.37 10.33 10.21 12.34 12.54 14.64 14.93 16.81 16.65 18.87

Wordnet 4.26 5.56 5.18 6.64 6.41 7.90 7.50 8.79 8.30 9.80

Flixster 12.93 27.29 15.71 33.67 19.14 41.27 22.14 49.07 24.35 52.11

Hyves 5.85 12.80 6.59 14.11 7.72 16.12 9.41 19.13 10.35 20.68

Livemocha 20.32 30.18 24.71 38.63 31.25 48.22 37.37 58.04 40.66 63.12

Skitter 8.77 9.94 10.15 11.91 12.74 15.51 15.30 19.21 16.95 21.50

Youtube 9.82 14.18 12.09 17.84 14.24 20.34 16.74 22.53 17.84 24.44

algorithms do not search candidate vertices in the removal case, the execution
time is obviously less than that of the insertion case. Even so, the performance
of RC is still better than Trav-R on all graphs.

5 Related Work

k−core decomposition, which assigns each vertex v with a core number to reveal
the connected state of v and its neighbors, is strongly related to graph degen-
eracy [10]. Numerous k−core decomposition algorithms are proposed to handle
different cases. To handle (k, h)−core of a temporal graph, which is an exten-
sion of k−core, Wu et al. [11] proposed two distributed algorithms to deal with
massive temporal graphs. Besides, the probabilistic core decomposition was also
studied recently in [3], where (k, η)−cores were proposed.

k−core and its extensions have been extensively used in numerous applica-
tions. To solve the maximal clique problem, Lu et al. [7] devised a randomized
algorithm by utilizing k−core and k−truss. With the aid of k−core, variants of



Efficient Core Maintenance of Dynamic Graphs 665

community detection problems are addressed such as local communities detec-
tion [5]. Alvarezhamelin et al. [2] used k−core as a tool to analyze large scale
graphs such as social network and Internet graph.

6 Conclusions

In this paper, we propose a novel solution to tackle k−core maintenance of
dynamic graphs, which provides an effective solution to maintain the core num-
ber of vertices affected by multiple inserted (removed) edges simultaneously. We
confirm our approaches by conducting extensive experiments on 10 real graphs.
The results show that our solution can outperform the existing algorithm up to
3 order of magnitude for real graphs tested.
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