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Abstract. In a signed social network, users can express emotional tendencies
such as: like/dislike, friend/foe, support/oppose, trust/distrust to others. Sign
prediction, which aims to predict the sign of an edge, is an important task of
signed social networks. In this paper, we attempt to tackle the problem of sign
prediction by proposing a Deep Sign Prediction (DSP) method, which uses deep
learning technology to capture the structure information of the signed social
networks. DSP considers the “triangle” structures each edge involves compre-
hensively, and takes both the “balance” theory and the “status” theory into
account. We conduct experiments and evaluations on five real signed social
networks and compare the proposed DSP method with multiple state-of-the-art
methods. The experimental results show that the proposed DSP method is very
effective and outperforms other methods in terms of four metrics (AUC, binary-
F1, micro-F1, macro-F1).

Keywords: Sign prediction � Balance theory � Status theory � Triangle
structure

1 Introduction

With the emergence of online social networks, individuals show more interests in
participating in social intercourse on the Internet. Numerous studies focus on unsigned
social networks while only a few of them have studied the signed ones. Due to the
existence of negative edges, many effective unsigned social network analysis methods
cannot be applied to signed social networks directly [4–6]. Signed social networks are
usually based on balance theory [1, 2] and status theory [3], both of which are proposed
by observing social phenomena. At the same time, with the rapid development of deep
learning technology, many scholars have begun to adopt the idea of network embed-
ding to solve the problem of sign prediction. Although these methods have achieved
good sign prediction performance, they have some drawbacks. Firstly, most methods
basing on balance theory [9, 11] obtain the node embedding by optimizing single
balance triangle each edge involves during each round of training process. These
methods can have some limitations: 1. The interactions between multiple triangles each
edge involves are ignored. 2. Most methods only consider triangles that satisfy the
balance theory, and ignore those violating the theory, which will lead to the key
information loss. 3. There is no common neighbor between the two endpoints of an
edge, which is called a “bridge” edge in the paper [9]. Thus, how to properly model this

© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 641–649, 2020.
https://doi.org/10.1007/978-3-030-59416-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59416-9_40&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59416-9_40&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59416-9_40&amp;domain=pdf
https://doi.org/10.1007/978-3-030-59416-9_40


type of edges is also an essential aspect. Secondly, for some methods based on skip-
gram models [12, 13], they use shallow models to train node embedding and cannot
capture the non-linear structure information of the network well. Thirdly, a sign pre-
diction method should fuse balance theory and status theory reasonably to obtain
optimal sign prediction performance [9], but there are few methods considering both
theories together. Last but not least, as stated in the paper [7], it is necessary to
specifically design a solution framework for sign prediction problem.

The main contributions of this paper are:

• This paper proposes an end-to-end framework: Deep Sign Prediction
(DSP) method, which uses the deep learning technology and optimizes a loss
function specifically designed for sign prediction.

• This paper extends the balance theory by considering all possible “triangle”
structures each edge involves and solves the drawbacks of former methods which
only model single balanced triangle each edge involves.

• In this paper, a two-layer neural network architecture is designed to combine the
balance theory with status theory reasonably.

• We conduct experiments and evaluations on five real signed social networks and
compare the proposed DSP method with multiple state-of-the-art methods. Exper-
imental results show that our method outperforms other methods in terms of four
metrics (AUC, binary-F1, micro-F1, macro-F1).

2 Related Work

Signed Network Embedding: Signed network embedding methods can be roughly
divided into following four categories. The first category does not consider any soci-
ological theory. In [10], Yuan et al. propose a SNE method, which uses a log-bilinear
model to train the target embedding of nodes along a given path. The second category
makes use of balance theory. For example, SiNE [11] method is based on the extended
structural balance theory. In SIGNet [12], the authors propose a scalable signed net-
work embedding method. In [13], Kim et al. propose the SIDE method, which fully
encodes the direction and sign of the edges in the learned embedding space. The third
category is based on status theory. In SSNE [14], the authors design an energy-based
ranking loss function based on status theory. The last type considers both two theories.
For example, the BESIDE method in [9].

Sign Prediction: There are many methods solving sign prediction from different
perspectives, apart from signed network embedding methods mentioned above. For
example, in [8], Leskovec et al. manually extract degree features of the nodes and triad
features of edges to train a logistic regression classifier for sign prediction. In [15],
Javari et al. design a probability prediction model based on the local and global
structure of networks in order to deal with the sparsity problem of signed social
networks.
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3 Preliminary

Signed Social Network: A signed social network can be modeled as a directed signed
graph G ¼ V ;E;Eþ ;E�; Sð Þ, where V ;E;Eþ ;E� represent the sets of all nodes,
signed edges, positive edges, and negative edges in the network; S is a signed adja-
cency matrix, and each entry Sij of S represents the relationship from node i to j
(Specifically, Sij ¼ 1;�1; 0 indicates positive, negative, no relationship in the current
network).

Sign Prediction: Given a signed social network G, sign prediction aims to predict the
sign of edges that are not observed in current network.

4 The Proposed Method

4.1 Model “Triangle” Structures Each Edge Involves

In a signed social network, there are multiple situations for the interaction between any
directed edge eij and any node k. Nodes i; j; and k can form a triangle, which may not
necessarily conform to balance theory, or they cannot even form a triangle. And, eij
may be involved in multiple “triangles” at the same time. As shown in Fig. 1, without
considering the edge sign, edge eij and node k can form four possible “triangle”
structures (dashed line indicates that edge may not exist). Each “triangle” type corre-
sponds to interactions between the neighbor structure of node i and that of the node j in
directed edge eij. For example, the first type of “triangle” corresponds to the interaction
between the out-neighbor structure of node i and the in-neighbor structure of node j.

According to Fig. 1, we generate a “balance” neighbor structure vector for two
endpoints of the directed edge eij:

b sti ¼ Souti ; Souti ; Sini ; S
in
i

� �
; b enj ¼ Sinj ; S

out
j ; Sinj ; S

out
j

h i
ð1Þ

in formula (1): b sti, b enj 2 R1�4 Vj j; Souti 2 R1� Vj j is the i th row of the matrix S, and
Sini 2 R1� Vj j is the i th column of the matrix S.

Fig. 1. Four possible “triangle” structures each edge involves.
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By constructing b sti and b enj for each edge eij, and training b sti and b enj
simultaneously, our method can consider the four “triangle” types in Fig. 1. This
solution extends the balance theory and considers all possible “triangle” structures each
edge involves comprehensively. Next we want to find a function f , which takes b sti or
b enj as input, and output the “balance” embedding b emi or b emj. Namely,

b emi ¼ f b stið Þ; b emj ¼ f b enj
� � ð2Þ

in formula (2): b emi 2 R1�d and d is the dimension of “balance” embedding.

4.2 Modeling Directed Edges by Status Theory

For a user in signed social networks, her status is determined by two parts: her
“subjective” status/self-evaluation, and her “objective” status, which is evaluated by
others. The “subjective”/“objective” status can be reflected by the user’s out-
neighbor/in-neighbor structure. Then for a node i, we want to find a function g �; �ð Þ
which inputs the Souti and Sini and outputs a “status” neighbor structure vector: s nei.

s nei ¼ g Souti ; Sini
� � ð3Þ

we use the vector addition to define the function g. In formula (3): s nei 2 R1� Vj j.
After obtaining the “status” neighbor vectors of node i, j, we will learn two

functions: st h and en h to obtain the “status” embedding: s emi, s emj respectively.

s emi ¼ st h s neið Þ; s emj ¼ en h s nej
� � ð4Þ

in formula (4): s emi; s emj 2 R1�d , d is the dimension of the “status” embedding.
Based on status theory, we define a status loss function Lst, as:

Lstij ¼ max 0; d� Statusi � Statusj
� � � �Sij

� �� � ð5Þ

in formula (5): Statusi 2 �1; 1ð Þ is the status value of node i, which is generated by
the non-linear mapping function sta h;

Statusi ¼ sta h s emið Þ ð6Þ

Sij is the sign of eij; d is the threshold of the difference between the two status
values, and we set it to 0.5 according to the previous experimental research.

4.3 Deep Sign Prediction Model

Our network architecture is divided into two parts: the first part is used to extend
balance theory, and the second part is used to consider the status theory. The input of
DSP is an edge. The detailed network architecture of the DSP method is shown in
Fig. 2.
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First, we use a two-layer fully connected neural network to define function f .

b emi ¼ tanh tanh b stiW
0 þ b0

� �
W1 þ b1

� � ð7Þ

in formula (7): tanh is a non-linear activation function; W0 2 R4 Vj j�2d and W1 2
R2d�d are the weight parameters; b0 2 R1�2d and b1 2 R1�d are the bias parameters.

For the functions st h and en h, they are defined by using a layer of fully con-
nected neural network, respectively.

s emi ¼ tanh s neiW
2 þ b2

� �
; s emj ¼ tanh s nejW

3 þ b3
� � ð8Þ

in formula (8): W2, W3 2 R Vj j�d ; b2, b3 2 R1�d .
We also use a layer of fully connected neural network to define the function sta h.

Statusi ¼ tanh s emiW
4 þ b4

� � ð9Þ

in formula (9): W4 2 Rd�1; b4 2 R1�1.
Then, we concatenate “balance” embedding and “status” embedding of two end-

points of each edge as the final feature representation.

finalij ¼ b emi; b emj; s emi; s emj
� � ð10Þ

in formula (10): finalij 2 R1�4d is the final embedding vector.
For the prediction layer, we use a three-layer fully connected neural network to

generate the edge’s prediction value.

Fig. 2. Network architecture of the DSP method
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pij ¼ softmax ReLU ReLU finalijW
5 þ b5

� �
W6 þ b6

� �
W7 þ b7

� � ð11Þ

in the formula (11): ReLU and softmax are two non-linear activation functions;
W5 2 R4d�d , W6 2 Rd�d

2, and W7 2 R
d
2�2; b5 2 R1�d , b6 2 R1�d

2, and b7 2 R1�2.
We use the cross-entropy loss to define the loss of sign prediction.

Lsignij ¼ �
X

m
yijm log pijm ð12Þ

in the formula (12): m 2 0; 1f g is the subscript. y denotes the one-hot encoding
vector of the edge sign (negative and positive); p defines the predicted probability for each
type of sign (negative and positive). For the DSP method, the overall loss function is:

L ¼ 1
Ej j

X
eij2E Lsignij þ Lstij

� � ð13Þ

The input scale of the DSP method is O Ej jð Þ. We use the Adam [17] algorithm to
optimize the DSP model. The learning rate is 0.0001, and the batch size is 128.

5 Experiments

5.1 Datasets

We conduct experiments and evaluations on five real online signed social networks.
The specific statistical information of five datasets is shown in Table 1.

5.2 Baseline Methods

We compare the proposed DSP method with several state-of-the-art sign prediction
methods: two feature engineering methods (All23 [8] and FxG [16]), two unsigned
network embedding methods (DW [4] and N2V [6]), three signed network embedding
methods (SIGNet [12], SIDE [13], and BESIDE [9]), and the part of extends balance
theory in DSP model (DSP_B). For the above methods, we use the same parameters
setting recommended by the original papers. For the unsigned network embedding
methods, we ignore edge sign during training process. For the node embedding

Table 1. The statistical information of five datasets

Dataset Node Edge Positive (%) Negative (%)

Alpha 3783 24186 93.65% 6.35%
OTC 5881 35592 89.99% 10.01%
RfA 7118 107080 78.41% 21.59%
Slashdot 82140 549202 77.40% 22.60%
Epinions 131828 641372 85.30% 14.70%
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methods, we concatenate the node embedding to obtain the edge embedding, and then
train a logistic regression model for sign prediction. Our method uses the DSP
framework for sign prediction and sets the dimension of the embedding vector d ¼ 40.

5.3 Sign Prediction

As in previous studies [9], we use AUC, binary-F1, micro-F1, and macro-F1 to
evaluate the performance of sign prediction. We randomly divide the datasets into a test
set and a training set with a ratio of 2–8. The experimental results are shown in Table 2.

From Table 2, we can see that the DSP method has obtained the best experimental
results in most cases. It is better than All23 and FxG, which shows the powerful
learning ability of deep model. The performance of two unsigned network embedding
methods is relatively poor, which means the unsigned network embedding methods
cannot adapt to sign prediction. By comparing DSP with SIGNet and SIDE, we find
that using deep models and considering both balance theory and status theory together
can achieve better sign prediction performance. DSP is superior to BESIDE, indicating
that comprehensive consideration of all possible “triangle” structures each edge
involves can capture the latent features related to sign prediction well. The results also
indicate that solution framework specifically designed for sign prediction problem is
crucial to achieve better sign prediction performance by comparing DSP with other
methods of signed network embedding. In most cases, the DSP method is better than
DSP_B, which shows that combining balance theory with status theory reasonably can
achieve the best sign prediction performance.

Table 2. The result of sign prediction

Dataset Metric All23 FxG DW N2V SIGNet SIDE BESIDE DSP_B DSP

Alpha AUC 0.8878 0.8793 0.8460 0.8451 0.8678 0.8787 0.8833 0.9143 0.9200
binary-F1 0.9718 0.9452 0.9681 0.9689 0.9651 0.9682 0.9695 0.9741 0.9742
micro-F1 0.9464 0.8988 0.9388 0.9403 0.9342 0.9397 0.9422 0.9511 0.9513
macro-F1 0.7151 0.6411 0.6051 0.6256 0.6963 0.6945 0.7186 0.7808 0.7837

OTC AUC 0.9109 0.8919 0.8649 0.8664 0.8793 0.8854 0.9069 0.9320 0.9350
binary-F1 0.9644 0.9308 0.9591 0.9588 0.9550 0.9569 0.9628 0.9714 0.9714
micro-F1 0.9344 0.8769 0.9240 0.9235 0.9180 0.9210 0.9322 0.9481 0.9481
macro-F1 0.7734 0.6877 0.7117 0.7112 0.7461 0.7444 0.7912 0.8447 0.8450

RfA AUC 0.8718 0.8925 0.8080 0.8091 0.9038 0.8369 0.9072 0.9198 0.9210
binary-F1 0.9047 0.9082 0.8935 0.8894 0.9162 0.8955 0.9193 0.9238 0.9242
micro-F1 0.8442 0.8495 0.8205 0.8133 0.8657 0.8257 0.8701 0.8778 0.8787
macro-F1 0.7388 0.7450 0.6614 0.6452 0.7889 0.6851 0.7940 0.8111 0.8125

Slashdot AUC 0.8873 0.8141 0.8049 0.8045 0.8852 0.8466 0.8903 0.9258 0.9271
binary-F1 0.9063 0.8617 0.8780 0.8776 0.9030 0.8919 0.9131 0.9266 0.9262
micro-F1 0.8462 0.7803 0.7965 0.7959 0.8472 0.8265 0.8617 0.8847 0.8843

macro-F1 0.7394 0.6641 0.6325 0.6320 0.7718 0.7264 0.7878 0.8289 0.8289
Epinion AUC 0.9433 0.9240 0.8673 0.8682 0.9214 0.9197 0.9391 0.9643 0.9664

binary-F1 0.9555 0.9441 0.9400 0.9399 0.9556 0.9579 0.9660 0.9712 0.9712
micro-F1 0.9213 0.9032 0.8927 0.8926 0.9231 0.9262 0.9411 0.9501 0.9501
macro-F1 0.8060 0.7906 0.7177 0.7183 0.8337 0.8300 0.8734 0.8925 0.8924
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We compare the prediction performance of each algorithm on a test set that con-
tains only “bridge” edges. The experimental results on “bridge” edges are shown in
Table 3. From Table 3, we can see that BESIDE achieves the best performance on all
baseline methods, which means that BESIDE method with status theory is quite useful
for modeling “bridge” edges. The proposed DSP and DSP_B methods are both superior
to BESIDE, showing that considering the neighbor structures of two endpoints of each
edge comprehensively, the “bridge” edges can be trained and predicted well.

6 Conclusion and Future Work

This paper presents a DSP method specifically for solving sign prediction task. DSP
makes use of the powerful learning ability of deep learning to capture the complex
structure of signed social networks. At the same time, the DSP method extends the
balance theory, comprehensively considers all possible “triangle” structures each edge
involves. Finally, the DSP method reasonably combines balance theory with status
theory. We perform two types of comparative experiments on the five real signed social
network datasets. The experimental results on four commonly used evaluation metrics
show the superiority of our proposed methods.

Although DSP achieves excellent sign prediction performance, there are still some
directions that can be further explored. For example, in the future, we will explore more
ways of combining balance theory with status theory. Moreover, we will explore the
attribute information of nodes in the next research work.

Table 3. The performance of sign prediction on the “bridge” edges.

Dataset Metric All23 FxG DW N2V SIGNet SIDE BESIDE DSP_B DSP

Alpha AUC 0.8321 0.8093 0.7769 0.7840 0.8021 0.8313 0.8208 0.8696 0.8742
binary-F1 0.9804 0.9014 0.9796 0.9809 0.9642 0.9716 0.9798 0.9817 0.9810

micro-F1 0.9618 0.8237 0.9602 0.9628 0.9323 0.9454 0.9608 0.9648 0.9634
macro-F1 0.6313 0.5356 0.5915 0.5942 0.6583 0.6370 0.7160 0.7535 0.7435

OTC AUC 0.8442 0.8065 0.7948 0.8003 0.8121 0.8120 0.8584 0.8755 0.8814
binary-F1 0.9645 0.8820 0.9667 0.9681 0.9540 0.9580 0.9683 0.9708 0.9708
micro-F1 0.9324 0.7956 0.9363 0.9390 0.9147 0.9213 0.9407 0.9457 0.9455

macro-F1 0.6283 0.5585 0.6208 0.6299 0.6802 0.6635 0.7651 0.7977 0.7958
RfA AUC 0.8064 0.8867 0.7899 0.7696 0.8527 0.8027 0.8590 0.8853 0.8860

binary-F1 0.8184 0.8536 0.8174 0.8035 0.8426 0.8136 0.8595 0.8749 0.8750
micro-F1 0.7238 0.8057 0.7390 0.7129 0.7885 0.7401 0.8057 0.8277 0.8279
macro-F1 0.6210 0.7823 0.6801 0.6355 0.7600 0.6920 0.7722 0.7994 0.8001

Slashdot AUC 0.8615 0.7951 0.7844 0.7846 0.8674 0.8277 0.8724 0.9085 0.9094
binary-F1 0.8930 0.8492 0.8783 0.8734 0.8939 0.8837 0.9086 0.9178 0.9172
micro-F1 0.8218 0.7654 0.7890 0.7881 0.8337 0.8146 0.8547 0.8709 0.8705

macro-F1 0.6805 0.6610 0.6153 0.6122 0.7550 0.7138 0.7778 0.8098 0.8100
Epinion AUC 0.8575 0.8573 0.7918 0.7948 0.8409 0.8709 0.8609 0.9039 0.9066

binary-F1 0.8962 0.8694 0.8832 0.8837 0.9036 0.9142 0.9306 0.9395 0.9389
micro-F1 0.8211 0.8064 0.8090 0.8090 0.8463 0.8639 0.8873 0.9025 0.9017
macro-F1 0.6244 0.7476 0.6800 0.6752 0.7622 0.7931 0.8159 0.8443 0.8440
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