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Preface

It is our great pleasure to introduce the proceedings of the 25th International
Conference on Database Systems for Advanced Applications (DASFAA 2020), held
during September 24–27, 2020, in Jeju, Korea. The conference was originally sched-
uled for May 21–24, 2020, but inevitably postponed due to the outbreak of COVID-19
and its continual spreading all over the world. DASFAA provides a leading interna-
tional forum for discussing the latest research on database systems and advanced
applications. The conference’s long history has established the event as the premier
research conference in the database area.

To rigorously review the 487 research paper submissions, we conducted a
double-blind review following the tradition of DASFAA and constructed the large
committee consisting of 16 Senior Program Committee (SPC) members and 212
Program Committee (PC) members. Each valid submission was reviewed by three PC
members and meta-reviewed by one SPC member who also led the discussion with the
PC members. We, the PC co-chairs, considered the recommendations from the SPC
members and looked into each submission as well as its reviews to make the final
decisions. As a result, 119 full papers (acceptance ratio of 24.4%) and 23 short papers
were accepted. The review process was supported by the EasyChair system. During the
three main conference days, these 142 papers were presented in 27 research sessions.
The dominant keywords for the accepted papers included neural network, knowledge
graph, time series, social networks, and attention mechanism. In addition, we included
4 industrial papers, 15 demo papers, and 3 tutorials in the program. Last but not least, to
shed the light on the direction where the database field is headed to, the conference
program included four invited keynote presentations by Amr El Abbadi (University of
California, Santa Barbara, USA), Kian-Lee Tan (National University of Singapore,
Singapore), Wolfgang Lehner (TU Dresden, Germany), and Sang Kyun Cha (Seoul
National University, South Korea).

Five workshops were selected by the workshop co-chairs to be held in conjunction
with DASFAA 2020: the 7th Big Data Management and Service (BDMS 2020); the 6th
International Symposium on Semantic Computing and Personalization (SeCoP 2020);
the 5th Big Data Quality Management (BDQM 2020); the 4th International Workshop
on Graph Data Management and Analysis (GDMA 2020); and the First International
Workshop on Artificial Intelligence for Data Engineering (AIDE 2020). The workshop
papers are included in a separate volume of the proceedings also published by Springer
in its Lecture Notes in Computer Science series.

We would like to thank all SPC members, PC members, and external reviewers for
their hard work to provide us with thoughtful and comprehensive reviews and rec-
ommendations. Many thanks to the authors who submitted their papers to the con-
ference. In addition, we are grateful to all the members of the Organizing Committee,
and many volunteers, for their great support in the conference organization. Also, we
would like to express our sincere thanks to Yang-Sae Moon for compiling all accepted



papers and for working with the Springer team to produce the proceedings. Lastly, we
acknowledge the generous financial support from IITP1, Dankook University SW
Centric University Project Office, DKU RICT, OKESTRO, SUNJESOFT, KISTI,
LG CNS, INZENT, Begas, SK Broadband, MTDATA, WAVUS, SELIMTSG, and
Springer.

We hope that the readers of the proceedings find the content interesting, rewarding,
and beneficial to their research.

September 2020 Bin Cui
Sang-Won Lee
Jeffrey Xu Yu

1 Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. 2020-0-01356, 25th International Conference on Database
Systems for Advanced Applications (DASFAA)).
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Abstract. Early prediction of students at risk (STAR) is an effective
and significant means to provide timely intervention for dropout and sui-
cide. Existing works mostly rely on either online or offline learning behav-
iors which are not comprehensive enough to capture the whole learning
processes and lead to unsatisfying prediction performance. We propose
a novel algorithm (EPARS) that could early predict STAR in a semester
by modeling online and offline learning behaviors. The online behaviors
come from the log of activities when students use the online learning man-
agement system. The offline behaviors derive from the check-in records
of the library. Our main observations are two folds. Significantly different
from good students, STAR barely have regular and clear study routines.
We devised a multi-scale bag-of-regularity method to extract the regu-
larity of learning behaviors that is robust to sparse data. Second, friends
of STAR are more likely to be at risk. We constructed a co-occurrence
network to approximate the underlying social network and encode the
social homophily as features through network embedding. To validate the
proposed algorithm, extensive experiments have been conducted among
an Asian university with 15, 503 undergraduate students. The results
indicate EPARS outperforms baselines by 14.62%–38.22% in predicting
STAR.

Keywords: Learning analytics · At-risk student prediction · Learning
behavior · Regularity patterns · Social homophily

1 Introduction

Predicting students at risk (STAR) plays a crucial and significant role in
education as STAR keep raising public concern of dropout and suicide among
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adolescents [16,22]. STAR refer to students requiring temporary or ongoing inter-
vention to succeed academically [18]. Students may be at risk for several reasons
like family problems and personal issues including poor academic performance.
Those students will gradually fail to sustain their studies and then drop out
which is also a waste of educational resources [1]. Early prediction of STAR offer
educators the opportunity to intervene in a timely manner.

Traditionally, many universities identify STAR by their academic perfor-
mance which sometimes is too late to intervene. Existing works are largely based
on either online behaviors or offline behaviors of students [8,12,14]. For exam-
ple, STAR are predicted in a particular course from in-class feedback such as
the grade of homework, quiz, and mid-term examination [14]. However, due to
the complex nature of STAR [5], either online and offline behaviors only capture
part of the learning processes. For example, some students prefer learning with
printed documents so they become inactive in online learning platforms after
downloading learning materials. This process is difficult to capture through their
online learning behaviors. Therefore, existing work can hardly capture the whole
learning processes in a comprehensive way and thus leads to poor performance
in the early prediction of STAR.

In this work, we aim to predict STAR before the end of a semester using
both online and offline learning behaviors. STAR are defined as students with
an average GPA below 2.0 in a semester. Online behaviors are extracted from
click-stream traces on a learning management system (LMS). These traces reveal
how students use various functionalities of LMS. While the offline behaviors
derive from library check-in records. To achieve the goal, we encounter the fol-
lowing three major challenges: (1) Lable imbalance. The number of STAR is
significantly smaller than that of normal students, which makes it an extreme
label-imbalance classification problem. The classifier will be easily dominated
by the majority class (normal students). (2) Data density imbalance. The
library check-in records are much sparser than click-stream traces on the online
learning platform so that it is challenging to fuse them fairly well for classifying
STAR. (3) Data insufficiency. Students, especially STAR, are usually inactive
at the early stage of a semester. As a result, the behavior traces are far from
enough for accurate early prediction of STAR.

In light of these challenges, we propose a novel algorithm (EPARS) for early
prediction of at-risk students. EPARS captures students’ regularity patterns of
learning processes in a robust manner. Besides, it also models social homophily
among students to perform highly accurate early STAR prediction. The intu-
itions behind EPARS are two-fold. First, good students usually follow their study
routines periodically and show clear regularities of learning patterns [24]. How-
ever, the study routines of STAR are disorganized leading to irregular learning
patterns, which is different from good students. Second, students tend to have
social tie with others who are similar to them according to the theory of social
homophily [15] and existing studies found that at-risk students had more dropout
friends [5].
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Based on both intuitions, we first propose a multi-scale bag-of-regularity
method to extract discriminative features from the regularity patterns of stu-
dents’ learning behaviors. Unlike the traditional approaches using entropy for
measuring the regularities, which cannot work well on sparse data, we ignore the
inactive behavior subsequence and capture the regularity patterns in a multi-
scale manner. Our approach can capture the regularity patterns fairly well even
though the data are very sparse. Therefore, it overcomes the challenge of data
density imbalance and extracts discriminative features from regularity patterns
for classifying STAR. In order to model the social homophily, we construct a
co-occurrence network from the library check-in records to approximate social
relationships among students. Co-occurrence networks have been widely used
in modeling social relationship and achieved great success in many application
scenarios [20,21] After that, we embed the co-occurrence networks and learn
a representation vector for every student with the assumption that students’
representation vectors are close when they have similar social connections. Mod-
eling the social homophily provides extra information to supplement the lack of
behavior trace for STAR at the beginning of a semester, which solves the data
insufficiency problems and makes EPARS capable of early predicting STAR.
Moreover, we oversample the training samples of STAR by random interpo-
lating using SMOTE [2], which overcomes the label imbalance problem while
training the classifiers.

We conducted extensive experiments on a large scale dataset covering all
15, 503 undergraduate students from freshmen to senior students in the whole
university. The experimental results show that the proposed EPARS achieves
0.7237 accuracy in predicting STAR before the end of a semester and 0.6184
prediction accuracy after the first week of the semester, which outperforms the
baseline by 34.14% and 38.22% respectively. Comparative experiments found
that our proposed multi-scale bag-of-regularity method and modeling students’
social homophily by the co-occurrence network improve the performance of
STAR early prediction 26.82% and 14.62% respectively. From the data analysis,
we also found that STAR engaged less than normal students in learning in the
early semester. Besides, the results confirm that the friends of STAR are more
likely to be at risk if they have similar regularity patterns of learning behaviors,
which in line with the conclusion drawn by an existing experimental study [5].

The our contributions are summarized as follows.

– We propose a multi-scale bag-of-regularity approach to extract regularity pat-
terns of learning behaviors, which is robust for sparse data. This approach is
also generic for extracting repeated patterns from any given sequence.

– We model the social homophily among students by embedding a co-occurrence
network constructed from their library check-in records, which reliefs the data
insufficiency issues.

– Extensive experiments on a university-scale dataset show that our proposed
EPARS is effective on STAR early prediction in terms of 14.62%–38.22%
accuracy improvement to the baselines.
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The remainder of this paper is organized as follows. We review the relative
works in the next section and formally formulate the STAR early prediction
problem in Sect. 3. The data description are reported in Sect. 4. In Sect. 5, we
present the proposed EPARS in detail and evaluate its effectiveness in Sect. 6
before we conclude the paper in the last section.

2 Related Works

There are various reasons for students being at-risk, including school factors,
community factors, and family factors. Most of the existing works focus on school
factors due to the convenience of data collection. The classification models used
include Logistic Regression, Decision Trees, and Support Vector Machines. The
main difference of these works relies on the input features, which could be gen-
erally classified into offline and online.

The offline learning behaviors contain check-ins of classes or libraries, quiz
and homework grades, and records of other activities conduct in the offline
environment. These kinds of works are quite straight forward to monitor the
student learning activities for identification. Early researchers design the Per-
sonal Response system and utilize the order of students’ device registration to
help identify STAR [6]. Besides, questionnaires and personal interviews are also
applied to collect student information for identification [3]. These methods show
accurate results in an early stage of a semester. Moreover, Marbouti et al. also
proposed to identify STAR at three time-points (week 2, 4, and 9) in a semester
using in-term performance consists of homework and quiz grades and mid-term
exam scores [14]. These methods rely heavily on domain knowledge, and collect-
ing these offline learning data is very high labor cost and time-consuming, such
that they are not practical for large scale STAR prediction.

With the popularization of online learning, researchers have turned their
attention to analyzing student behavioral data on online learning platforms such
as MOOCs and Open edX. The online learning behaviors are collected from
the trace that students left in the online learning system such as click-stream
logs in functional modules of the systems, forum posts, assignment submission,
etc. Kondo et al. early detect STAR from the system login and assignment
submission logs on the LMS [11], but their results may be partial since most
students are not actively engaged with LMS. Shelton et al. designed a multi-
tasks model to predict outstanding students and STAR [19], which purely uses
the frequency of module access as features. [9] proposed a personalized model
for predicting STAR enrolling in different courses, but it is hardly generalized to
various courses, especially the totally new one. Instead of purely using statistic
features, we further extract students’ regularity patterns and social homophily
for early predicting STAR.
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3 Problem Formulation

This section gives the formal problem definition of STAR early prediction which
is essentially a binary classification problem. We will introduce the exact defini-
tion of STAR, the input data, and the meaning of early prediction.

According to the student handbook of the university, when a student has
a Grade Point Average (GPA) lower than 2.0, he/she will be put on academic
probation in the following semester. If a student is able to pull his/her GPA
up to 2.0 or above at the end of the semester, the status of academic probation
will be lifted. Otherwise, he/she will be dropped out. Therefore, we define STAR
as students whose average GPA is below 2.0 in a semester.

The input data are two folds. One is the records of students’ online activ-
ities in the Blackboard, a learning management system. The Blackboard has
several modules including course participation, communication and collabora-
tion, assessment and assignments. Students could browse and download course-
related materials including lecture keynotes, assignments, quizzes, lab documents
etc. They can also take online quizzes and upload their answers for assessment.
Besides, students could communicate over the different posts and collaborate
on their group assignments. Students’ click operations in the Blackboard will be
recorded (online traces). The other is the check-in records of the library. Students
have to tap their student cards before entering the library (offline records).

Early prediction means the input data are collected before the end of a
semester. Given online traces and offline records accumulated within t (t < tend)
where tend is the end time of a semester, our objective is to identify STAR as
accurate as possible.

4 Data Description

We collect students’ online and offline learning traces and their average GPA in
an Asian University in 2016 to 2017 academic year. The online learning traces
come from how students use the Blackboard, a learning management system, to
learn. There are many functions in the Blackboard but some of them are rare to
be used by students. Thus, we collect the click-stream data with timestamps from
some of the most popular modules in the Blackboard including log-in, log-out,
course materials access, assignment, grade center, discussion board, announce-
ment board, group activity, personal information pages, etc. Offline learning
traces come from students’ library check-in records which indicating when they
go to library. Since students do not need to tap their student cards when they
leave the library, the check-out records will not be marked down and we exclude
it in this study.

All 15, 503 undergraduate students in the whole university involved in this
study. Every student has a unique but encrypted ID for linking their LMS click-
stream data, library check-in records, and GPA. The overview of collected data
are showed in Table 1. There are 225 and 319 STAR in semester one and two
respectively, which are 1.45% and 2.06% of all students. This makes our STAR
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Table 1. Data overview.

Semester 1 Semester 2

STAR Other Std STAR Other Std

Population 391 15,112 225 15,278

# click-stream logs in LMS 2,225,605 95,949,014 1,019,134 70,874,428

Avg. # click-stream logs 5,692.0844 6,349.1936 4,529.4844 4,638.9860

Avg. # click-stream logs in first 2 weeks 301.4041 399.9502 243.0400 284.4368

Avg. # click-stream logs in last 2 weeks 526.6522 545.4346 336.9133 304.7331

# library check-in 14,045 636,353 6,245 517,557

Avg. # library check-in 35.9207 42.1091 27.7556 33.8760

Avg. # library check-in in first 2 weeks 1.7877 2.3303 1.3889 1.8424

Avg. # library check-in in last 2 weeks 2.9834 3.3760 2.3444 2.4547

early prediction as an extremely label imbalance classification problem, which is
our first challenge. In addition, students left over 170 million click-stream logs
but only 1.7 million library check-in records in the whole academic year such that
the data density between online and offline learning trace are also imbalance.
Compared to the last two weeks of the semester, all students are less active in
the first two weeks and STAR are even less active than normal students which
cause data inefficiency problems for early predict STAR at the beginning of the
semester.

5 Methodologies

In this section, we will elaborate on the proposed EPARS including multi-scale
bag-of-regularity, social homophily, and data augmentation.

5.1 Multi-scale Bag-of-Regularity

In order to extract the regularity patterns from students’ learning traces, we
propose multi-scale bag-of-regularity here, which is robust for sparse data.

Based on Hugh Drummond’s definition, behavior regularity is repeatedly
occurring of a certain behavior in descriptions of patterns [4]. Students usually
have their own repeated patterns for using LMS and going to the library. For
instance, some students prefer to go to the library every Monday and Thursday.
It is possible for us to illustrate their repeated patterns on multiple scales such as
they will not go to library after the day they go there; they go to the library two
and three days apart alternately. If we purely extract the regularity patterns on a
single scale, it hardly captures the complete picture and leads to information loss.
This motivates us to extract the regularity patterns in multi-scales. In addition,
traditional approaches, such as entropy, measure the regularities in a global
perspective. When students’ library check-in data are sparse, those approaches
will regard their library check-in as outliers and consider their general regularity
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patterns as never go to the library, which are incorrect. Therefore, we focus
on the every behavior trace students leave during learning for extracting their
learning regularity patterns.

First of all, we construct a binary sequence from students’ behavior traces.
When they have certain behaviors, such as check-in to the library, we mark it
as 1 in the sequence. The time granularity for constructing the binary sequence
depends on the application and the time granularity we used in this study is
a day. Next, We sample subsequences of length � centered on every nonzero
element in the sequence. The length of subsequences � = 2 + (s − 1) × z where
s ∈ {1, 2, · · · , S} is scale and z is the step-size between scales. This sampling
approach guarantees that no all-zeros sequence will be sampled for the following
regularity measurement which gives our method the ability to overcome data
sparsity issues. Every subsequence actually is a behavior pattern that is viewed
on different scales.

After sampling the behavior patterns, we explore the repeated patterns from
them to obtain the regularities. Since the regularity is repeatedly occurring of
behavior patterns, we ignore the subsequences that the times of occurrences are
less than a threshold n. For the subsequence of length � in scale s, it contains
2� − 1 different behavior pattern excluding all-zeros one. We regard them as a
bag and count the number of occurrences of every behavior pattern. Finally, a
(2� −1)×1 vector rs is obtained, which carries the behavior regularities on scale
s. Lastly, we concatenate the regularity vectors rs in every scale as the represen-
tation of regularity on multi-scales. Our bag-of-regularity approach explores the
regularity patterns of behaviors in multi-scales such that it can extract richer
information from the sparse input sequence. The regularity features extracted
from dense LMS data and sparse library check-in records by our multi-scale bag-
of-regularity are on the same scale-space so that we can simply concatenate them
together as the final regularity features for STAR prediction and the performance
is fairly well. In addition, the proposed multi-scale bag-of-regularity is generic
for extracting repeated patterns from any given sequence since it will transform
the input sequence into a binary sequence before extracting regularities.

5.2 Social Homophily

We construct a co-occurrence network to model the social relationship among
students. If students are friends, they are more likely to learn together because
of the social homophily [15]. They have a higher probability to go to the library
together comparing to strangers. Thus, we assume that two students are friends if
they go to library together. If the time difference of the library check-in between
two students is less than a threshold δ, we treat this as the co-occurrence of
two students in the library. In other words, they go to the library together.
Based on this, we construct a co-occurrence network G(V,E,W ) where nodes
V are students and there is an edge e ∈ E linking two nodes if students go
to the library together. Each edge is accompanied by a weight value w ∈ W
showing how many times they co-occurrence in the library. We constrain w ≥ σ
which is a threshold to filter out the “familiar strangers”. We do not construct
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the co-occurrence network from the LMS log-in traces because the LMS log-in
frequency is too high and it will involve too many “familiar strangers” in the
network. This will introduce significant biases for learning the social homophily
later.

Next step is to learn students’ social homophily from the co-occurrence net-
work. Network embedding has been widely applied in encoding the connectivities
among nodes as representation and well preserves the graph properties [13,23].
Here, we embed the co-occurrence network by Node2Vec [7] and learn a represen-
tation vector for every node which preserves the connectivities among students.
In addition, we constrain that the learned representation of nodes should be
close when they have similar connections. Specifically, we first exploring diverse
neighborhoods for every node by a biased random walk. Let us denote ci as the
ith node in the walk. We sample node sequences with transition probability

p(ci = u|ci−1 = v) =
{ αpqwuv

Z if (u, v) ∈ E
0 Otherwise (1)

where Z is a constant for normalization and αpq in Eq. (2) is the sampling bias.

αpq =

⎧⎪⎪⎨
⎪⎪⎩

1/p if duv = 0
1 if duv = 1

1/q if duv = 2
0 Otherwise

(2)

duv denotes the shortest path distance between nodes u and v. Parameters p
and q make the trade-offs between depth-first and breadth-first neighborhood
sampling.

To learning the final representation of every node, we train a Skip-gram model
[17] by maximizing the log-probability of its network neighborhood conditioned
on its feature representation as showed in Eq. (3) where f(·) is a mapping func-
tion from node to feature representations and Ns(u) is u’s neighborhood sam-
pling by the above random walk.

max
f

∑
u∈V

log

⎛
⎝ ∏

vi∈Ns(u)

exp (f(u) · f(vi))∑
v∈V exp (f(u) · f(v))

⎞
⎠ (3)

We adopt the stochastic gradient ascent to optimize the above objective function
over the model parameters and obtain the representation of every node which
carrying its social homophily. Learning students’ social homophily provides extra
information for dealing with the data insufficiency issues such that it makes our
EPARS have the ability to early predict STAR.

5.3 Data Augmentation

To deal with the extremely label imbalance issues, we oversample the STAR by
a synthetic minority over-sampling technique (SMOTE) [2] while constructing
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the training set. For each STAR training sample, denoted as x, we first search
its k-nearest neighbors from all STAR samples in training set by the Euclidean
distance in the feature space, and the k is set to 10 in our experiment. Next, we
randomly select a sample x′ from the k nearest neighbors and synthesize a new
STAR example by Eq. (4) where ω is a random number between 0 and 1.

xnew = x + (x′ − x) × ω (4)

After the data augmentation, STAR have the same amount as the normal
students in the training set; this allows the classifier to avoid being dominated
by the majority of the normal students during training. SMOTE synthesizes
new examples between any of the two existing minority samples by a linear
interpolation approach. Compared with a widely used under-sampling technique
EasyEnsemble, SMOTE introduces random perturbation into the training set
while generating the synthetic examples, which provide the trained classifier
better generalization.

6 Experiments

We conduct experiments to showcase the effectiveness of proposed EPARS.
In particular, we aim to answer the following research questions (RQ) via
experiments:

– RQ1: How effective is the EPARS in predicting STAR?
– RQ2: How early does the EPARS well predict STAR?
– RQ3: How effective is SMOTE for data augmentation in EPARS?
– RQ4: Is the EPARS sensitive to hyper-parameters?

6.1 Experiment Protocol

Experiment Setting. In our dataset, each student has an independent label of
either STAR or the normal student in each semester. Thus, we treat students in
different semesters as a whole in our experiments. When predicting STAR at any
time t before the end of the semester tend, we extract features from their online
and offline learning traces from the beginning of a semester to the current time
t. After feature extraction, we synthesize new STAR examples to augment the
training set. We conduct experiments under the 5-fold cross-validation setting
and repeat 10 times. The average results will be reported in the next subsection.
Several classifiers are tested, including the Logistic Regression, Support Vector
Machine (SVM), Decision Tree, Random Forest, and the Gradient Boosting Deci-
sion Tree (GBDT). GBDT outperforms all other classifiers in our experiments,
so we only report the results of GBDT due to the space limit.
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Parameter Setting. We set the maximum scale of regularity S = 4, the co-
occurrence threshold δ to be 30 s, the linking threshold σ = 2, and the dimension
of embedding to be 64 for EPARS. We select k = 10 neighborhood for SMOTE
to augment the training set. The classifier GBDT is trained with parameters
that the number of estimators is 100, maximum depth of the decision tree is 10,
and the learning rate is 0.1.

Evaluation Metrics. We evaluate the performance of EPARS from two
aspects. Since the STAR prediction is a binary classification problem, we adopt
Area Under the receiver operating characteristics Curve (AUC) to measure the
classification performance. The AUC indicates how capable the model is to dis-
tinguish between STAR and the normal students. Moreover, since our focus is
to find out the STAR as accurate as possible, we measure the accuracy of our
model in predicting STAR by the number of true positive predictions divided by
the total number of STAR in the test set. We denote it as ACC-STAR, which
indicates how many percentages of STAR are correctly predicted.

Baseline Approaches. As mentioned in the introduction, our major contribu-
tion is to achieve better STAR early prediction performance, in terms of higher
AUC and ACC-STAR, with features extracted from students’ learning regu-
larity and social homophily. To verify the effectiveness of EPARS, we set four
baseline models, including SF, DA, DA-Reg, and DA-SoH. SF uses only the sta-
tistically significant behavior features as input to predict STAR without data
augmentation. The process of discovering significant statistical features will be
presented in the next paragraph. DA uses the same features as SF and augments
the training set using SMOTE. Comparing SF and DA, we can verify whether
SMOTE can solve the label imbalance challenge well and results in better classi-
fication performance. DA-Reg and DA-SoH integrate the regularity features and
the social homophily to the DA, respectively. They are to verify the effectiveness
of our proposed multi-scale bag-of-regularity and the social homophily modeling
approach in STAR prediction.

To discover the significant statistical features, we perform an ANOVA (anal-
ysis of variance) test to figure out what behaviors are statistically significant
for distinguishing between STAR and the normal students. We have 13 kinds of
clickstream behaviors on the LMS and 28 kinds of library check-in behaviors at
different times of the day and different periods in the semester. Due to the space
limited, we report the statistically significant features and some of the insignif-
icant features discovered from the ANOVA in Table 2. It is interesting to note
that STAR use the LMS less than the normal students, but they will check the
announcement and lectures’ information more. There is no significant difference
in accessing the course materials and checking assignment results. Besides, STAR
go to the library less than the normal students at the beginning of a semester.
Still, they prefer more to be there after business hours. Lastly, we select the
statistically significant features as the SF baseline to benchmark our proposed
EPARS.
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Table 2. Results of the ANOVA test.

Features P-value F-value Mean STAR Mean others

# LMS Login 0.0020 9.5112 127.4987 144.8043

# LMS Logout 0.0000 34.5301 8.9318 20.1348

# Check announcement 0.0158 5.8311 41.4436 36.8361

# Course access 0.7328 0.1165 4.2677 4.5667

# Grade center access 0.7694 0.0859 10.5486 10.2108

# Discussion board access 0.0020 9.5951 11.7979 19.2444

# Group access 0.0209 5.3385 13.2782 20.1268

# Check personal info 0.0000 16.7953 0.2283 1.6585

# Check lecturer info 0.0000 106.1638 9.7297 5.5440

# Journal page access 0.0199 5.4191 0.2283 1.6585

# Lib check-in 0.0700 3.2829 42.8163 47.3589

# Lib check-in in the morning 0.0001 14.7133 7.0367 9.4206

# Lib check-in in the afternoon 0.0023 9.3196 27.0604 31.9419

# Lib check-in after midnight 0.0000 43.9327 4.0105 1.6927

# Lib check-in before exam months 0.0123 6.2740 33.9265 39.0143

# Lib check-in at the first month 0.0004 12.5447 8.4724 10.6052

Table 3. Results of predicting STAR using the whole semester learning behavior data.

Metric SF DA DA-Reg DA-SoH EPARS

AUC 0.8423 0.8442 0.8611 0.8623 0.8684

ACC-STAR 0.5395 0.6079 0.6842 0.6184 0.7237

6.2 Experimental Results

RQ1: To verify the effectiveness of our proposed EPARS in predicting STAR,
we extract features from the whole semester data to train the GBDT and bench-
mark EPARS with four baselines. This experiment evaluates the performance of
EPARS when students’ all learning behaviors in a whole semester is known. The
results are presented in Table 3.

Comparing the experimental results between SF and DA, it is confirmed
that our data augmentation approach overcomes the data imbalance challenges
to some extent and achieves improvement in both AUC and ACC-STAR. In
addition, the regularity features extracted by our multi-scale bag-of-regularity
method can improve the accuracy of predicting STAR a lot, which indicates
that the regularity of learning is a distinguished feature between STAR and the
normal students, and the multi-scale bag-of-regularity can well extract their reg-
ularity patterns efficiently. Compared with DA-Reg, DA-SoH achieves a higher
AUC score and has better overall classification performance. However, its ACC-
STAR is much lower than DA-Reg’s, suggesting that it cannot identify STAR
as accurate as DA-Reg. In other words, social homophily helps identify the
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normal students a lot rather than recognizing STAR. This shows that our app-
roach is capable of well modeling the social homophily among students. Nev-
ertheless, STAR may have similar linkage patterns with “familiar strangers” in
the co-occurrence network since STAR are very handful. Combining the regu-
larity patterns of learning and social homophily, which is our proposed EPARS,
achieves the best performance in predicting STA in terms of 19.05%, 5.77% and
17.03% ACC-STAR improvement to DA, DA-Reg and DA-SoH, respectively.
This indicates that friends of STAR are more likely to be at-risk if their regu-
larity patterns of learning behaviors are also similar. Therefore, the regularity
features can help eliminate the “familiar strangers” and result in better STAR
prediction performance.

RQ2: To demonstrate the effectiveness of our methods in early predicting
STAR, we conduct experiments in every week’s data of the semester. For each
week, we extract features of students’ learning traces from the beginning of the
semester to the end of that week. We repeat the experiment for 10 times, and the
average ACC-STAR of early predicting STAR is presented in Fig. (1) in which
the solid lines are the average ACC-STAR, and the shadows represent the error
spans.

Fig. 1. Results of STAR early prediction.

Our EPARS outperforms all other baselines from the first week to the end of
the semester. It is worth mention that our EPARS can correctly predict 61.84%
STAR only based on the online and offline learning traces of the students in the
first week, which outperforms SF, DA, DA-Reg, and DA-SoH 38.22%, 17.50%,
14.62%, and 22.38%, respectively. In the first four weeks, the prediction per-
formance of SF keeps on decreasing. One possible reason is that some normal
students are not active in the beginning of the semester, so that they may have
similar behavior patterns with STAR and cause misclassification. Students’ social
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homophily and regularity patterns of learning behaviors are much more discrim-
inable especially in the early stage of a semester. The performance of EPARS
is almost converged in the middle of a semester while other baselines are still
gradually increasing or concussion. It shows that our EPARS can leverage less
information but achieves better performance in early predicting STAR.

RQ3: To verify the effectiveness of using SMOTE for dealing with the label
imbalance issues, we conduct a comparative experiment among random under-
sampling (RU), random oversampling (RO) and SMOTE. RU and RO are widely
adopted in existing work for STAR prediction [8,10]. RU randomly deletes exam-
ples with the majority labels until the labels of training samples are balanced
while RO randomly resamples the minority examples until the numbers of the
minority are the same as the majority one. We regard SF as baseline and launch
above data augmentation approach for predicting STAR before the end of a
semester. We repeat the experiment 10 times and report the average AUC and
ACC-STAR in Table 4.

The first two columns show the number of examples in the training set after
data augmentation in each fold of the experiment. Experimental results show
that RO slightly outperforms the baselines but the performance of RU is worse
than the baselines. In the case of extremely label imbalance, undersampling
technique drops most of negative training samples and constructs a very small
training set, which cannot provide enough information to well train a classifier.
Although RO augments the minority examples by oversampling, most synthesis
examples are the same so that the classifier is very easy to overfit and results
in poor testing accuracy. SMOTE synthesizes the minority examples by linear
interpolation which not only increases the number of minority samples but also
enriches the diversity of the training set. Thus, it achieves the best STAR pre-
diction accuracy in such an extremely label imbalance classification task.

Table 4. Evaluation of data augmentation.

# STAR after DA # Normal Std after DA AUC ACC-STAR

SF 305 11295 0.8342 0.5526

RU 305 305 0.8211 0.5316

RO 11295 11295 0.8458 0.5645

SMOTE 11295 11295 0.8684 0.7237

RQ4: We test how sensitive EPARS is to the hyper-parameters and discuss how
to select hyper-parameters for EPARS. We focus on three hyper-parameters
of EPARS. One is the maximum scale S of multi-scale bag-of-regularity. The
other two are co-occurrence threshold δ and linking threshold σ between pairs
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Fig. 2. Results of testing the maximum scale S of multi-scale bag-of-regularity.

of students when constructing co-occurrence networks for further modeling the
social homophily.

While we are testing the maximum scale S, we fix all other parameters and
vary S from 2 to 7 because the minimum time length of the repeated pattern
is two days, and the course schedule is a 7-day cycle. The prediction results are
shown in Fig. (2). We found that the overall classification performance measured
by AUC is not sensitive to the maximum scale S, but it affects a lot on the
correctness of identifying STAR. EPARS achieves the best performance when
S = 4. The reason may be in two folds. One reason is that the regularity patterns
of the scale 5 to 7 can be synthesized by the scale of 2 to 4. Thus it has already
captured almost all regularity when setting the maximum scale S = 4. The other
reason is that the output feature vector of multi-scale bag-of-regularity is short
and dense when S = 4. It will dramatically become sparse when S ≥ 4 in our
cases, which makes the performance worse.

Table 5. Results of testing co-occurrence threshold δ.

δ Ave #edge per week AUC ACC-STAR

10 s 14263 0.8699 0.5921

30 s 39386 0.8684 0.7237

60 s 77318 0.8576 0.6316

We further test how co-occurrence threshold δ and linking threshold σ affect
the modeling of social homophily and present the results in Table 5 and 6. δ =
30 is the best since smaller δ will make the co-occurrence network unable to
capture enough social relationship for learning the social homophily and larger
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Table 6. Results of testing linking threshold σ.

σ AUC ACC-STAR

2 times 0.8684 0.7237

3 times 0.8615 0.6184

4 times 0.8554 0.5658

5 times 0.8122 0.5395

δ will introduce a large number of “familiar strangers” which also damages the
prediction performance. Similar results are found in the result of testing linking
threshold σ. When increase σ, both AUC and ACC-STAR are dropping. The
reason is that STAR and some ordinary students go to the library less often than
outstanding students so that higher σ may filter out their social interaction and
results in worse prediction performance.

7 Conclusion

In this paper, we propose EPARS, a novel algorithm to extract students’ reg-
ularity patterns of learning and social homophily from online and offline learn-
ing behaviors for early predicting STAR. One of our major contributions is to
devise a multi-scale bag-of-regularity method to extract regularity features from
sequential learning behaviors, which is robust for sparse data. In addition, we
model students’ social relationships by constructing a co-occurrence network
from library check-in records and embed their social homophily as feature vec-
tors. Before training a classifier, we oversample the minority examples to over-
come the label imbalance issues. Extensive experiments are conducted on a large
scale dataset covering all undergraduate students in the whole university. Exper-
imental results indicate that our EPARS improves the accuracy of baselines by
14.62% ∼ 38.22% and 5.77% ∼ 34.14% in predicting STAR in the first week and
the last week of a semester, respectively.
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Abstract. Reviews written by users often contain rich semantic infor-
mation which can reflect users’ preferences for different attributes of
items. For the past few years, many studies in recommender systems
take user reviews into consideration and achieve promising performance.
However, in daily life, most consumers are used to leaving no com-
ments for products purchased and most reviews written by consumers
are short, which leads to the performance degradation of most existing
review-based methods. In order to alleviate the data sparsity problem
of user reviews, in this paper, we propose a novel review-based model
MRMRP, which stands for Multi-source Review-based Model for Rating
Prediction. In this model, to build multi-source user reviews, we collect
supplementary reviews from similar users for each user, where similar
users refer to users who have similar consuming behaviors and histori-
cal rating records. MRMRP is capable of extracting useful features from
supplementary reviews to further improve recommendation performance
by applying a deep learning based method. Moreover, the supplementary
reviews can be incorporated into different neural models to boost rat-
ing prediction accuracy. Experiments are conducted on four real-world
datasets and the results demonstrate that MRMRP achieves better rat-
ing prediction accuracy than the state-of-the-art methods.

Keywords: Recommender systems · Rating prediction · Deep learning

1 Introduction

With an increasing number of choices available online, recommender system
becomes more and more important in our daily life. Recommender systems
help customers by presenting products or services based on their demographic
information and past buying behaviors, which can improve user experience. In
activities including online shopping, reading articles, and watching movies, most
purchasers are used to considering suggestions from recommendation systems.
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Besides, recommender systems are widely used in applications and websites such
as Taobao and Netflix to drive sales.

A large number of approaches employed in recommender systems are based
on Collaborative Filtering (CF) algorithm [4,7,11,18,21,25,26,32], whose core
philosophy is “birds of a feather flock together”. CF obtains user preferences
and item attributes by exploiting historical user consuming records. Despite
its great performance, the CF-based recommender system cannot provide nice
personalized recommendation services for users who have few consuming records.
In this sense, CF methods have the cold start and data sparsity problems. In
many applications, users are allowed to leave reviews to express their views on
their consumed products. The information contained in reviews can be exploited
to uncover the preferences of consumers and the features of items as well, thereby
alleviating the data sparsity problem.

To tackle the sparsity of data, review-based recommender systems consider
not only user-item interactions but also user preferences and item attributes
extracted from user reviews for making recommendations. Many of them such as
CARP [12] and CARL [28] achieve better performance than approaches without
using user reviews. Although the utilization of user reviews can improve the
performance of these recommender systems, their performance is hindered by
the sparsity problem of user reviews. This is because only a few users are willing
to write detailed comments to share their experiences about consumed items.

To address the sparsity problem of user reviews, in this paper, we propose
an algorithm to supplement profiles of users, which appends reviews written by
similar users. Here, similar users refer to the users who give close ratings to the
same item and have the highest similarity score. For instance, Fig. 1 compares
the reviews given by two audiences with the nicknames “SomeDisneyGuy” and
“namob” who give the rating of 9 points and 10 points respectively to the film
named “Frozen II”. For the user SomeDisneyGuy, our algorithm selects namob
as the only similar user on this film. Our goal is to use namob’s review on this
film to supplement SomeDisneyGuy’s review. We believe that some information
which are not fully expressed in SomeDisneyGuy’s review can be contained in
reviews written by its similar users such as namob. From the sentences circled
by green boxes in both reviews, we can see that SomeDisneyGuy and namob
have the common movie experience of expecting more content in this film. On
the other hand, they have different interests presented in their reviews. We can
infer that SomeDisneyGuy is possibly interested in magical things and is likely
to give a high score to magical films from the review written by namob. Besides,
we speculate that namob may be a fan of 80’s Kristoff’s songs according to
SomeDisneyGuy’s review. For each item SomeDisneyGuy has consumed, we col-
lect reviews from its similar users and integrate these reviews to the document
called the user supplementary review document.
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Fig. 1. Examples of reviews written by two audiences for the film “Frozen II” on IMDB.
Two users rate 9 and 10 to Frozen II respectively. Both similar and different interests
are presented by their reviews.

In this paper, we develop a Multi-source Review-based Model for Rating
Prediction called MRMRP to effectively exploit informative features from sup-
plementary reviews and thus improve rating prediction accuracy. The user sup-
plementary review document can be regarded as a supplementary information
source for the user and it is expected that this additional information can improve
recommendation performance. Inspired by [31], MRMRP extracts information
from user review document (aggregation of reviews written by a user), item
review document (aggregation of reviews written for an item) and user supple-
mentary review documents with three parallel neural networks. It then extracts
useful information in supplementary reviews by using the latent representation
of the user review document to filter the latent representation of the user sup-
plementary review document. Finally, the obtained features can be incorporated
into neural network models to improve recommendation performance. In our
model, we use a Multi-Layer Perceptron (MLP) for final rating prediction. The
contributions of our work can be summarized as follows:

– To address the data sparsity problem of review, for each user, we collect
reviews from their similar users and add these reviews to the user’s supple-
mentary review document. Note that, we design a new similarity estimation
method to compute the similarity between different users.

– We develop a deep leaning-based model to extract useful features from the
user supplementary review document and implement a filtering layer to obtain
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informative features from user supplementary reviews. Besides, we consider
mean value of all ratings in training data to alleviate rating variation.

– The experiments conducted on four real-world datasets demonstrate that our
MRMRP model achieves better rating prediction performance than the exist-
ing methods.

The rest of this paper is organized as follows: Sect. 2 states related work;
Sect. 3 formulates our approach; Sect. 4 presents our experiments; Sect. 5 con-
cludes our work.

2 Related Work

CF-based recommender systems which only utilize user-item interaction records
to give recommendations to users are prevalent in the past decades. However, the
performance of most existing CF-based methods is hindered by the data sparsity
and cold-start problems. For example, Probabilistic Matrix Factorization (PMF)
[20], which is a conventional latent model, has a poor performance when the
dataset is very sparse. User preferences and item attributes extracted from user
reviews can overcome the serious data sparsity to some extent, so many works
exploit textual information from review text and integrate them with ratings to
improve rating prediction accuracy. Prior models such as RBLT [23] use topic
modeling techniques to derive latent features from user reviews and achieve
better rating prediction accuracy. These models outperform most interaction-
based models that only use user-item interactions for making recommendations.
Although these approaches have made some progress, they employ the bag-of-
words (BOW) techniques to generate review representations and thus ignore the
word order information, which could impede their performance.

To tackle this limitation, Collaborative Multi-Level Embedding (CMLE) [30]
utilizes a word embedding model with a standard matrix factorization model to
extract semantic context information in the review documents. Recent years have
witnessed the successful use of Deep Neural Networks (DNN) in the field of nat-
ural language processing [5,24]. Inspired by these studies, many neural network
based recommender systems [1,3,8,12,22,27] propose to generate better latent
semantic representations from reviews with neural networks. Deep Cooperative
Neural Networks (DeepCoNN) [31] utilizes two parallel neural networks to learn
latent representations for users and items from the user review document and the
item review document respectively. Then, the two latent representations are cou-
pled by Factorization Machines (FM) [17] for the final rating prediction. Neural
Factorization Machines (NFM) [8] applies MLP to abstract the high-level fea-
tures of both users and items by modeling user-item interactions in a non-linear
way, and then it puts the high-level features into FM. FM is a popular solution
to utilize second-order feature interactions and many extensions of it have been
developed and achieve comparable performance [6,8,9,16,29]. Since FM is inca-
pable of learning complex user-item rating behaviors through high-order feature
interactions, Deep&Crossing [22] and Wide&Deep [2] not only model features
in a linear way but also import MLP to learn high-order feature interactions,
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which is proved to be effective in enhancing the click-through rate prediction
model capability greatly.

However, in the real world, few users are likely to comment on purchased
products and most reviews written by users are short. As a result, the review text
is extremely sparse. PARL [27] extracts extra user features from user auxiliary
reviews from like-minded users to tackle this problem. This model picks auxiliary
review by randomly selecting the review written by another user who gives the
same rating score as the specified user. We think the approach PARL generates
the user auxiliary reviews ignores much information implied in the user historical
ratings and does not consider the different user scoring habits.

In this paper, we introduce a more reasonable algorithm to supplement pro-
files of users, which collects reviews written by similar users. Here, similar users
refer to the users who give close ratings to the same item and have the highest
similarity with the specified user. Besides, we extract useful features from these
supplementary reviews with a neural network architecture. Our proposed model
can alleviate the data sparsity problem of user reviews and thus improve the
recommendation performance of review-based recommendation systems.

3 MRMRP

In this section, we describe the details of the proposed MRMRP model. We first
introduce how our model constructs the user supplementary review document.
Note that, we consider the scoring habits and user historical rating records as
well in our algorithm. After that, we elaborate the process of extracting features
from reviews including supplementary reviews in MRMRP. Then, we describe
how these features are fused and applied to make rating prediction. Finally, we
discuss the optimization objective of our model.

3.1 Construction of User Supplementary Review Document

Our goal is to alleviate the sparsity of user reviews by extracting extra infor-
mation from the user supplementary review document. Given a specified user
u, we show the details of the construction process of the supplementary review
document in Algorithm 1.

The user supplementary review document contains reviews written by other
users with the highest similarity score with the user u and give the close rating
value as user u. These users have consumed at least one same item with user u.
We design a formula to compute the similarity score between users, which is an
extension of the Pearson correlation coefficient. Equation 1 gives the definition
of our similarity formula:

rxy =
√

|Ix ∩ Iy|
∑

i∈Ix∩Iy
(xi − x̄)(yi − ȳ)√∑

i∈Ix
(xi − x̄)2

√∑
i∈Iy

(yi − ȳ)2
(1)

where x and y are two different users, Ix and Iy denote the collection of items that
user x and user y have consumed respectively, and Ix ∩ Iy means the collection
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Algorithm 1: User supplementary review document construction.
Input: identification of user u
Output: supplementary review document of user u
// get user u′s consumption record in training data

1 record = get record(u) ;
2 supplementary doc = None;
3 for item i in record do

// get user u′s rating of item i
4 rate = get rate(u, i) ;

// get identifications of users who score item i between [rate−1, rate+1]
5 user set = seek user(i, rate);

// compute similarity score of users in user set with user u
6 users similarity = compute user similarity(u, user set);

// get the identification of the user who is most similar with user u
7 u selected = max(users similarity);
8 if u selected �= Null then
9 review = reviewu selected,i;

10 else
11 review = None;

12 supplementary doc+ = review;

13 return supplementary doc;

of items that both user x and user y have consumed. xi, yi are the rating scores
of user x, y on item i respectively, x̄, ȳ are the average value of all ratings of
user x, y respectively, and |Ix ∩ Iy| are the number of items that user x and user
y have both consumed. Besides, user rating records are extremely sparse and
it indicates that two users are very likely to have common habits if they have
consumed many same items, so we add the

√|Ix ∩ Iy| to make such two users
get a larger similarity score.

For each item i consumed by user u, we will first select all the instances con-
taining item i in the training data. In reality, some users tend to give high ratings
and some tend to give low ratings. Hence, all instances whose scores on item i
differ from the score given by user u by no more than 1 are selected as instances
of similar users. Then, the similarity score between each candidate user and user
u is calculated according to the consumption records of the corresponding users.
At last, we select the review written by the user who has the highest similarity
score with user u and add it into the supplementary review document.

MRMRP takes rating tendencies and historical purchased records into consid-
erations when deciding supplementary reviews written by similar users. There-
fore, it is not surprising that similar users will present similar comments on
the same item. On the other hand, they will also show different interests in
their reviews which can enrich the profiles of users and therefore improve rec-
ommendation performance. This is because supplementary reviews of user u are
collected from various users who may have many similar interests with this spec-
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Fig. 2. Architecture of the MRMRP model.

ified user. It is expected that we can capture extra interests that may not be
fully expressed in the user review document from supplementary reviews and
thus improve rating prediction accuracy.

3.2 Review Feature Extraction

The task of review-based feature extraction is to learn the latent feature vectors
of three kinds of documents. Since the reviews written by users can reflect their
personal preferences, we collect all the reviews written by the same user to make
the user review document. For the same reason, we take all the reviews that
an item received from all users to form the item review document. In the last
section, we create the user supplementary review document for each user as a
supplementary review source.

As shown in Fig. 2, MRMRP exploits three neural networks to capture useful
features from the user review document, the user supplementary review docu-
ment and the item review document. It aims to model user preferences, user
additional preferences, and item attributes from these three review documents.
Specifically, the convolution operation is used to extract different aspects cov-
ered by the review documents and a dimension reduction operation is employed
to merge information included in different channels. Finally, we obtain latent
representations of these three review documents.
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Word Embedding: Given a review document D = (w1, w2, ..., wl), we first
employ an embedding layer to project each word to its corresponding embedding
vector ei ∈ R

n. Then, we concatenate these embedding vectors according to the
order their corresponding words appear in the review document. Finally, we
obtain a review document matrix D ∈ R

n×l:

D = [e1,e2, ...,el ] (2)

where l is the length of the review document, n is the embedding dimension of
each word and ei represents the word embedding vector of the i − th word in
the review document D.

Convolution Operation: Given a review document matrix D, the convolution
layer is exploited for semantic information extraction. To obtain various features,
we use multiple convolution filters with different convolution weights to capture
the context features for the review document matrix D. To be specific, the j−th
convolution filter on a window of words with size ω is used to extract the local
contextual feature cj . Finally, the feature extracted from the window centered
at position h can be defined as follows:

cj
h = f(W j ∗ Dh:h+ω−1,0:n ) (3)

where ∗ is the convolution operator, f is a nonlinear activation function, and
W j is the convolution weight represents the convolution weight vector for the
j − th convolution filter. Dh:h+ω−1,0:n consists of context words that appear
from h − position within a window of size ω in the review document matrix D.

After the convolution operation, we can represent the feature extracted from
the review document D by concatenating these convolutional results as follows:

C = [c1, c2, ..., cm ]T (4)

where C ∈ R
m×l, m is the number of filters, and ci denotes the contextual

feature extracted by the i − th convolution filter.

Dimension Reduction: The contextual matrix C is first passed to a max-
pooling layer. This operation can better compress the information contained in
different channels. After the max-pooling operation, we get a contextual vector
tm as follows:

tm = [t1, t2, ..., tm] (5)

t = [t1, t2, ..., tk] (6)

After the max-pooling operation, we utilize a fully connected layer to integrate
the semantic features. Finally, we get the latent representation vector t of the
review document D.

3.3 Review Feature Fusion

Filtering Layer: After adopting the above operation steps on the user review
document, the item review document and the user supplementary review doc-
ument, we can get three vectors tu , ti and ts . These extracted vectors are the
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latent representations of their corresponding review documents. The user sup-
plementary review document serves as a supplementary document to the user
review document that contains very sparse review data. Reviews in the user
supplementary documents are extra information which may help in rating pre-
diction. Because supplementary reviews are written by different users, we need
to extract informative features related to the specified user when these addi-
tional reviews are used to make recommendations. We define a filtering layer to
filter out ts as follows:

g = sigmoid(Wg ∗ tu + bg) (7)

tus = g � ts (8)

where Wg is the weight vector, bg is the bias, g is the filtering gate that controls
the flow of information and � denotes the element-wise product operation.

Fusion Layer: After obtaining three vectors tu , ti and tus , we concatenate
them as a0 and feed it into the Multi-Layer Perceptron (MLP) to predict the
rating of user u upon item i as follows:

a0 = [tu , ti , tus ] (9)

al+1 = f(Wl ∗ al + bl) (10)

where a0 is the concatenation vector of tu , ti and tue , and l is the hidden layer
number in MLP. al , Wl and bl are the output, weight vector and bias at l-th
hidden layer. After that, a scalar is generated, which is fed into the addition for
the final rating prediction. MLP is effective in processing low-dimensional dense
embedding vectors. Compared with FM, which achieves great performance in
modelling low-order interactions between features in a linear way, MLP can
learn high-order feature interactions at the bit-wise level.

In particular, rating behaviors contain multiple inherent tendencies, which is
known as bias. According to our analysis for some rating samples, many ratings
are related only to users or items but have nothing to do with the interaction
between user and item. In other words, some users tend to rate a high score
for all items and some items are likely to receive higher ratings from all users.
Incorporating user biases and item biases have been proven to alleviate rating
variations and thus yield better rating prediction performance [19]. We encapsu-
late factors that are irrelevant to user-item interactions into the final prediction
as follows:

r̂u,i = b̂u,i + μ + bu + bi (11)

where μ is the mean value of all ratings in training data, and bu and bi are the
biases for user u and item i.

3.4 Optimization Objective

We take the square loss as the objective function for parameter optimization:

L =
1
M

M∑
i=1

(ru,i − r̂u,i)2 (12)
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Table 1. Statistics of four evaluated datasets.

Datasets #users #items #ratings #w u #w i #w s density

Musical instruments 1429 900 10261 141.32 200.12 182.33 0.798%

Office products 405 2420 53227 197.93 229.52 239.81 0.448%

Tools improvement 16638 10217 134321 162.52 212.48 177.25 0.079%

Beer 7725 21976 66625 34.06 103.20 78.01 0.039%

where M is the number of instances in the training data, r̂u,i denotes the pre-
diction rating value and ru,i is the true rating value.

4 Experiments

In this section, we first introduce experimental settings including datasets and
evaluation metric, baselines and parameter settings. Subsequently, we make com-
parison of different models and validate the effectiveness of our model. Then, we
perform ablation experiments to prove that different components contribute pos-
itively to the overall performance of MRMRP. Finally, we present how different
parameter settings influence the performance of MRMRP.

4.1 Datasets and Evaluation Metric

The experiments are on four publicly accessible datasets that provide user
reviews. The four datasets includes Amazon-5cores datasets1 (Musical Instru-
ments, Office Products and Tools Improvement) and a dataset called Beer col-
lected from the RateBeer website [14]. 5-core means that each user and each
item in the dataset have no less than 5 reviews. Note that, we also conduct 5-
core operation on the Beer dataset. These four datasets consist of users’ explicit
ratings on items ranging from 1 to 5 and contain review texts.

We use similar preprocessing steps mentioned in [10] to preprocess review
documents for all datasets. Initially, we remove stop words and words that have
the document frequency higher than 0.5. Second, we calculate tf-idf score for each
word and select the top 20,000 distinct words as vocabulary. Then, we remove
all words out of the vocabulary from raw documents and amputate (pad) the
long (short) review documents to the same length of 300 words. Finally, we filter
out the rating records which contain empty review after preprocessing.

Table 1 summarizes the statistics of the four datasets after four preprocessing
steps. To save space, we write some phrases in a simplified form as follows: w u
means words per user review document, w i represents words per item review
document, and w s means words per user supplementary document. For each
dataset, we randomly choose 72% of each dataset as the training data, 8% of
each dataset as the validation data and the remaining 20% of each dataset as the

1 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/
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testing data. Moreover, each user and each item have at least one rating in the
training data. The training data is selected such that at least one interaction for
each user-item pair should be contained. Following the work in [1], the reviews in
the validation data and testing data are excluded because they are unavailable
during rating prediction. Similar with prior work [12,27], the performance of our
proposed algorithm is judged by Mean Squared Error (MSE) metric:

MSE =
1
N

N∑
i=1

(ru,i − r̂u,i)2 (13)

where r̂u,i denotes the prediction rating value, ru,i is the true rating value and
N is the number of instances in the testing data.

4.2 Baselines

PMF: Probabilistic Matrix Factorization (PMF) is a classical Matrix Factor-
ization (MF) method that can greatly predict rating while data volume is large
and user data is sparse [20].

RBLT: Rating-Boosted Latent Topics (RBLT) models user preferences and item
attributes in a shared topic space and then feeds them into an MF model for the
final rating prediction [23].

CMLE: Collaborative Multi-Level Embedding (CMLE) combines a word
embedding model with an MF model to extract user preferences and item
attributes from both reviews and user-item interactions [30].

DeepCoNN: Deep Cooperative Neural Networks (DeepCoNN) utilizes two par-
allel neural networks to learn the latent representations of user and item and
subsequently introduce them into FM for the final prediction [31].

TransNets: TransNets is an extension of the DeepCoNN model [1]. It adds an
neural layer to model the target user-item review.

TARMF: TARMF co-learns user preferences and item attributes from both
user reviews and user-item interactions by optimizing the MF algorithm and an
attention-based recurrent neural network [13].

ANR: ANR imports the attention mechanism to perform aspect-based repre-
sentation learning for users and items [3]. Aspect means from which perspective
the user writes reviews or from which perspective the item is introduced, such
as price, performance and service.

PARL: PARL exploits extra user preferences from auxiliary reviews written by
users who give the same scores to address the sparsity problem of user reviews
and produce extra information of users [27].

CARP: CARP learns the informative logic units from the reviews written by
users and infer their corresponding sentiments [12]. It can also discover the inter-
pretable reasons at a fine level of granularity.
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4.3 Parameter Settings

We exploit the grid search to tune the parameters for our model and all baselines
mentioned above. For the purpose of fair comparisons, we train all deep learning
models by employing RMSprop optimization [15] to minimize the MSE loss
(Eq. 13) and tune their learning rate from {0.0015, 0.003, 0.005, 0.01}. The
word embedding matrix is randomly initialized at first and we go through the
dimension of each word embedding in the set {25, 50, 100, 200}. The number
of convolution filters in the convolution layer is optimized from {64, 128, 256,
512}. In addition, we tune the keep probability of dropout from {0.6, 0.7, 0.8}.

Besides, the window size of all convolution layers is set to 5. The batch size
for Musical Instruments is set to 64. For the other three datasets containing
more instances, the batch size is set to 256. Once the result on the training
data becomes worse, we stop training the model. We only save the model which
achieves the best result on the validation data for the final rating prediction on
testing data.

Table 2. Performance comparison of MSE on four real-world datasets. Our results are
highlighted in boldface, and the best results of baselines are highlighted in underline.
�% denotes the relative improvement of MRMRP over the review-based baselines. †
means that the variation in achieving the best result is statistically significant at the
0.05 level.

Datasets Musical instruments Office Products Tools improvement Beer

PMF [20] 1.398† 1.092† 1.566† 1.641†

RBLT [23] 0.815† 0.759† 0.983† 0.576†

CMLE [30] 0.817† 0.759† 1.020† 0.605†

DeepCoNN [31] 0.814† 0.860† 1.061† 0.618†

TransNets [1] 0.798† 0.759† 1.003† 0.581†

TARMF [13] 0.943† 0.789† 1.169† 0.912†

ANR [3] 0.795† 0.742† 0.975† 0.590†

PARL [27] 0.782 0.731 0.955 0.561

CARP [12] 0.773 0.719 0.960 0.556

MRMRP 0.715 0.711 0.941 0.546

�% 7.5–24.2 1.1–17.3 1.5–19.5 1.8–40.0

4.4 Model Comparison

Table 2 compares the performance of our method and baselines on the three
Amazon-5cores datasets and the Beer dataset. The line below the performance
of MRMRP also presents the percentage of improvements achieved by MRMRP
compared with our review-based baselines. The best results are highlighted in
bold and the second best results are underlined.

It is clear that our proposed model MRMRP achieves the best performance
across four benchmark datasets. Our method obtains 7.5% improvement on the
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Table 3. Effect of different components in MRMRP.

Methods Musical instruments Office products Tools improvement Beer

DeepCoNN 0.814 0.860 1.063 0.617

+bias 0.756 0.783 0.995 0.589

+supplementary 0.745 0.729 0.956 0.559

+mean 0.717 0.714 0.948 0.553

FM→MLP 0.715 0.711 0.941 0.546

dataset of Musical Instruments compared with the best baseline on this dataset.
By contrast, the figure for the Beer dataset is 1.8%. Intuitively, this is because
reviews in the Beer dataset is very sparse and the performance of our model is
closely related to data sparsity of dataset. We ascribe the success of our model
to the user supplementary document created by our algorithm and the effective
way we fuse the latent representations of review documents. In the following
experiments, we further analyze how the specific designs of MRMRP boost its
performance.

Besides, we can observe that the review-based method outperforms the
rating-based method. All the models using reviews outperform PMF on all
datasets. This demonstrates that information implied in reviews can boost rec-
ommendation performance. In general, deep learning based methods outperform
shallow methods such as PMF and CMLE. This is because neural modes are
capable of learning powerful representations of data.

4.5 Ablation Study

In this paper, we develop a review-based model for rating prediction. It collects
the user supplementary reviews as a complementary information source. More-
over, it uses an architecture consists of a filtering layer and an MLP to fuse
review features for final rating prediction. Note that, our model considers global
mean value and bias as well. In this section, we conduct ablation experiments
to validate the effect of different components in our proposed MRMRP. These
components are sequentially stacked on top of the DeepCoNN model each time
to explain their effectiveness. The experimental results are shown in Table 3.

DeepCoNN utilizes two parallel neural networks to separately learn latent
representation from user review document and item review document, and then
incorporates them into the FM for final rating prediction. DeepCoNN + bias can
be regarded as DeepCoNN plus the user and item bias values. +supplementary
utilizes three parallel neural networks to obtain latent representation from user
review document, item review document and user supplementary review docu-
ment respectively. +mean additionally considers the mean value of all ratings in
the training data. FM→MLP replaces the FM in DeepCoNN with MLP to fuse
latent representations extracted from three review documents.

From the results in Table 3, we can see the contributions of different compo-
nents in our proposed model. The +bias component is designed for alleviating
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(a) (b)

Fig. 3. Effects of the dimension of latent factors and the number of convolution filters
on the performance of MRMRP.

rating variation and this experiment confirms its effectiveness. The results of the
+supplementary experiment demonstrate that our constructed user supplemen-
tary review document can significantly improve recommendation performance.
Besides, MRMRP introduces the mean value of all ratings in the training data to
alleviate rating variation and the +mean experiment validates the effectiveness
of this design. Finally, FM→MLP demonstrates that MLP is more effective in
modeling high-order feature interactions.

4.6 Parameter Sensitivity Analysis

Finally, we empirically study the impact of the dimension of latent factors and
the number of filters in the convolutional neural layer.

Effect of the Dimension of Latent Factors: Figure 3(a) depicts the perfor-
mance of MRMRP by varying the dimension of latent factors in {25, 50, 100,
200} on the four datasets. Our model achieves the optimal rating prediction
accuracy at the latent factor dimension of 50, after which its performance will
experience a slight decline. We can conclude that the dimension of latent factors
has little effect on experimental performance and high dimension of the latent
factor may cause over-fitting. Therefore, the dimension of the latent factor is set
to 50.

Effect of the Number of Convolution Filters: Figure 3(b) shows the perfor-
mance of MRMRP by varying the number of filters in {64, 128, 256, 512} on the
four datasets. We can see that with the change of the filter number, the perfor-
mance of our model changes variously. Our model reaches the best performance
at the convolution filter number of 128. Besides, it is observed that too many
filters or too few filters can cause the performance degradation of our model.
When we set the number of filters to a large value, it may cause an over-fitting
phenomenon and thus result in poor performance. When we set the number of
filters to a small value, the convolution layer cannot capture the context features
adequately. Hence, the number of filters in the convolutional neural layer is set
to 128.
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5 Conclusion

In this paper, we propose a method called MRMRP to address the data sparsity
problem of user reviews. MRMRP enrichs user profiles by appending reviews
from similar users, which refer to users who have the highest similarity score and
give a close score on the same item. In our proposed model, we utilize an MLP
for final rating prediction and also import user bias, item bias, and global mean
value. From the results in ablation study, we can investigate that the utilization of
supplementary reviews can significantly improve the rating prediction accuracy.
Moreover, the experiments conducted on four real-world datasets demonstrate
that our MRMRP model outperforms all baseline recommendation systems.
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Abstract. Discovering real-time reachable areas of a specified location
is of importance for many location-based applications. The real-time
reachable area of given location changes with different environments.
Existing methods fail to capture real-time traffic conditions instantly.
This paper provides the first attempt to discover real-time reachable
areas with real-time trajectories. To address the data sparsity issue raised
by the limited real-time trajectories, we propose a trajectory connec-
tion technique, which connects sub-trajectories passing the same loca-
tion. Specifically, we propose a framework that combines indexing and
machine learning techniques: 1) we propose a set of indexing and query
processing techniques to efficiently find reachable areas with an arbi-
trary number of trajectory connections; 2) we propose to predict the best
number of connections in any location and at any time based on multi-
ple datasets. Extensive experiments and one case study demonstrate the
effectiveness and efficiency of our methods.

1 Introduction

Real-time reachable area discovery aims to find the reachable area from a speci-
fied location within a given time period in real-time conditions. It is very useful
in many urban applications: 1) Location-based recommendation. As depicted
in Fig. 1(a), a user wants to find the restaurants that can be reached from
her current location within 5 min; and 2) Vehicle dispatching. As illustrated
in Fig. 1(b), a user calls for a taxi to pick her up in 10 min. Taxi companies
would use this function to find the candidate drivers. Traditional methods are
based on the static spatial range query over either Euclidean distance [1] or
road network distance [2,3], which find the same reachable areas without con-
sidering the highly skewed traffic conditions at different time (e.g., late night
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 36–53, 2020.
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(a) POI Recommendation (b) Dispatching System
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Fig. 1. Application scenarios and trajectory connections.

vs. rush hours). Optional methods first estimate the travel time of each road
segment [4–7], then find reachable areas using road network expansion tech-
niques [2,8]. However, these methods ignore the delays of intersections. Besides,
they are designed to model the regular traffic conditions, but can hardly capture
abnormal events, such as accidents. With the availability of massive trajectories,
[9] takes advantage of historical trajectories that passed the query location dur-
ing the request hour to find the reachable area. However, this approach cannot
be applied directly in a real-time scenario, as it does not consider real-time con-
texts, such as weather, traffic conditions, accidents and other events in a city.
An intuitive idea is to use only real-time trajectories (e.g., generated within

the most recent one hour). However, we cannot apply directly the techniques
in [9] to real-time trajectories, due to the data sparsity issue (i.e., the number
of trajectories passing the query location in a short time window is very lim-
ited). To solve this issue, we propose a trajectory connection technique. As
illustrated in Fig. 1(c), if we consider only the trajectories that exactly pass the
query location q, i.e., tr1 and tr3, only B can be reached. Suppose the trajec-
tories can be connected if they share the same locations, e.g., tr1 and tr2, C is
also in the reachable area. Further, if the trajectories can be connected twice, E
can be reached as well by connecting tr5 to tr4, which significantly improves the
coverage of the reachable area. However, the reliability of discovered reachable
areas may be affected by trajectory connections, as the connected trajectories
are generated by different moving objects, where the time cost of connections
(e.g., waiting time in crossroads) is ignored. To study the effects of trajectory
connections on reliability, we compare the estimated travel time of a path using
different numbers of trajectory connections with the real travel time, as shown
in Fig. 1(d). It shows that, with more connections, the accuracy of estimation
becomes lower. But if we limit the number less than five, the estimation variation
is less than 10%, which guarantees a reasonable reachable area. However, a small
trajectory connection number may cause a coverage problem. As a result, the
number of trajectory connections is a trade-off between reliability and coverage.

An appropriate connection number is determined by the real-time trajecto-
ries. If there are fewer real-time trajectories, a bigger connection number should
be assigned to achieve a good coverage. However, it is hard to determine a good
connection number, as the spatio-temporal distribution of trajectories is skewed
severely. For example, downtown areas contain more taxi activities than sub-
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urb areas. Meanwhile, there are usually more taxi activities during rush hours.
Therefore, a dynamic connection number is needed when a query arrives.

There are three main challenges. 1) As each trajectory can be connected at
any location with numerous trajectories, it results in exponential numbers of pos-
sible combinations, which can be prohibitively inefficient. 2) A good connection
number is determined by the real-time trajectories, which is further affected by
multiple complex factors, e.g. weather conditions, road networks, and land usage
around the request location [10]. 3) there is even no ground truth of reachable
areas in our datasets, which leads to lack of the labels of connection numbers for
model learning. The main contributions of this paper are summarized as follows:

(1) We provide the first attempt to discover real-time reachable areas with
dynamic trajectory connections, and design a framework that combines
indexing with machine learning techniques to solve this problem (Sect. 3).

(2) We design a set of indexing and query processing techniques to prune redun-
dant trajectory connections, which can efficiently answer real-time reachable
area discovery requests with arbitrary connection numbers (Sect. 4).

(3) We propose a method to generate the labels of connection numbers using
historical trajectories, and identify spatio-temporal features to predict a good
connection number in any location and at any time (Sect. 5).

(4) Extensive experiments are conducted using multiple real datasets, verifying
the effectiveness and efficiency of our solutions. Readers can experience our
demo system in http://r-area.urban-computing.com/ (Sect. 6).

2 Preliminary

Definition 1 (Road Network). A road network RN is a directed graph
G = (V,E), where V = {v1, v2, ..., vm} is a set of vertices representing the
intersections, and E = {e1, e2, ..., en} is a set of road segments (edges) with
directions. e.vstart and e.vend represent the start vertex and end vertex of edge e
respectively.

Definition 2 (Map-Matched Trajectory). A map-matched trajectory tr =<
(e1, t1) → (e2, t2) → ... → (en, tn) > is generated by mapping raw GPS points
onto the corresponding road segments, where ti is the time when the trajectory
enters edge ei. The time cost to traverse ei is Cost(tr.ei) = ti+1 − ti.

For simplicity, in this paper, we represent a map-matched trajectory without
detailed temporal information, i.e., tr =< e1 → e2 → ... → en >. tr[i...j] denotes
the sub-trajectory of tr that starts from i-th edge to j-th edge in tr.

Definition 3 (Connected Trajectory). A connected trajectory ctr =<
tr1[i1...j1] → tr2[i2...j2] → ... → trn[in...jn] > consists of a sequence of sub-
trajectories, where the last edge of the previous sub-trajectory shares the same
intersection with the first edge of the next sub-trajectory, i.e., trm[jm].vend =
trm+1[im+1].vstart.

http://r-area.urban-computing.com/
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The number of sub-trajectories in a connected trajectory ctr is its degree,
denoted by D(ctr). Specifically, there is D(ctr) − 1 connections in ctr.

Problem Definition. Given a real-time trajectory database T generated in the
most recent time δ, a query location q, a time budget t, and external environ-
mental data around q (e.g. POIs, road networks, and meteorological data), we
first predict a reasonable degree constraint k ≥ 1 of q, and then find a set of road
segments as the reachable area RA(T , q, t, k), such that for any ei ∈ RA, there
exists at least one connected trajectory ctr =< q → ... → ei > that connects ei
from q, satisfying the following two constraints:

(1) Time Constraint. The time cost of ctr is not greater than t:

Cost(ctr) =
∑D(ctr)

m=1
Cost(trm[im, jm]) ≤ t (1)

(2) Degree Constraint. The degree of ctr is not greater than k:

D(ctr) ≤ k (2)

The degree constraint k defines the maximum number of sub-trajectories
in a connected trajectory, which provides a trade-off between the coverage and
reliability of reachable areas. To guarantee a high reliability, we set 1 ≤ k ≤
5 according to Fig. 1(d). Besides, we focus on reachable area discovery in a
very short time ahead, e.g., t ≤ 30 min, as it can satisfy most dispatching or
emergency scenarios. We also have δ × k ≥ t, to make the connection feasible.

3 Framework

Figure 2 gives the framework with two major parts, offline learning and online
processing, which generates three data flows:

Preprocessing Data Flow. This data flow (black solid arrows) takes real-time
GPS updates as input, removes the trajectories with abnormal speed, and maps



40 R. Li et al.

the GPS points onto their corresponding road segments. The map-matched tra-
jectories are then stored in a trajectory database for offline learning, and used for
online index building and degree constraint prediction. We adopt the techniques
in [11–14] to process the trajectory data based on our system JUST [15,16].

Learning Data Flow. In this flow (red broken arrows), we first generate the
labels of degree constraints, then extract features from various datasets. Finally,
these features are leveraged for training models, with which the best degree
constraint in any location and at any time can be predicted.

Query Processing Data Flow. In this data flow (dotted blue arrows), when
a user request arrives, we first extract the spatio-temporal features in the given
location from multiple data sources, then predict the best degree constraint with
the models trained offline. Finally, the real-time reachable area is calculated by
means of the built indexes and predicted degree constraint.

As we will apply the indexing techniques to degree constraint model learning,
we first introduce the index building and query processing techniques in Sect. 4,
and then detail degree constraint model training and prediction in Sect. 5.

4 Index Building and Query Processing

In this section, we assume the degree constraint k is already predicted. If we
apply the traditional network expansion based algorithm [2,8] directly, in each
expansion step, each candidate road segment is associated with a status of two
different dimensions, i.e., time cost tc and degree cost kc, which makes it impos-
sible to select the “best” candidate. Therefore, it is required to build an effective
index and an efficient pruning strategy to discover real-time reachable areas.

4.1 Traj-Index

Data Structure. Traj-index builds links between edges and trajectories.
Figure 3(a) gives an example with two parts: 1) Trajectory-Edge (TE) hash uses
trajectory IDs as hash keys, and each value is a list of edge IDs passed by the
trajectory within the most recent δ minutes; 2) Edge-Trajectory (ET) hash is an
inverted index where the keys are edge IDs, and each value is a list of trajectory
IDs passing the edge ordered by arriving time within the most recent δ minutes.
To efficiently expand the search via sub-trajectories, a pointer is maintained to
link the same trajectory-edge combination between the two hash tables.

Construction. Traj-index is updated in a streaming way, where each update is
processed incrementally. The complexity is O(m × n), where m is the number
of new trajectories, and n is the average size of each trajectory. As a result, it is
efficient to handle large-scale trajectory updates in a real-time manner.

Query Processing. With Traj-index, we propose a query processing method
trajectory expansion based on an intuitive idea: 1) traversing all trajectories
passing q, and finding covered road segments; 2) for each qualified road segment,
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identifying all possible trajectory connections, and updating new qualified road
segments; and 3) repeating the previous step, until the budget t or k is used up.

To realize the discovery of reachable areas with Traj-index, a TE-tree is
created during the search process. For example, given a trajectory database as
Fig. 3(b), we get a TE-tree shown as Fig. 3(c), where the query location q forms
the root. The TE-tree consists of one type of nodes and two types of links: 1)
TE-node. Each node contains five properties: an identifier n, a trajectory tr,
an edge e, a time cost tc, and a degree cost kc. A TE-node indicates the current
search status (i.e., trajectory tr at edge e), where the time cost tc and degree
cost kc are the corresponding costs traveling from the root. 2) Expansion Link.
This link (denoted as the dotted black arrows) is generated by accessing the TE
hash in Traj-index. The nodes, e.g., ni&nj , along a link belong to the same
trajectory, with an increasing time cost tc and the same degree cost kc, i.e.,
nj .tr = ni.tr, nj .tc = ni.tc + Cost(nj .e), nj .kc = ni.kc. 3) Connection Link.
This link (denoted as the blue solid arrows) is generated by the connection of
different two sub-trajectories, which can be built efficiently with road networks
and the ET hash. The nodes, e.g., ni&nj , connected by this type of link have
an increasing time cost tc and an increasing degree cost kc, i.e. nj .tr �= ni.tr,
nj .tc = ni.tc + Cost(nj .e), nj .kc = ni.kc + 1.

Note that TE-tree is constructed during the search process, which cannot
be pre-computed. As we enumerate all possibly connected trajectories for each
candidate edge via the nodes in TE-tree, finding a reachable area of a position
can be reduced to traversing its corresponding TE-tree. An intuitive idea uses
a depth-first approach, until the budget t or k are used up (denoted as TE).
However, there will be many edges being visited redundantly. For example in
Fig. 3(c), n2 and n13 are traversed with the same trajectory tr6 and edge e13.
As shown in Fig. 3(b), there is an illogical path combination: the user first goes
right with tr4 on e8, and then makes a U-turn and goes back to e13. A more
reasonable route should go directly to e13, which is represented as n2 in TE-tree.

To avoid redundant computation, we design a pruning strategy based on
the observation that, illogical routes always start by a TE-node with the same
trajectory and edge of some visited nodes, but with higher time and degree costs
than them, e.g., n13 and n2 in Fig. 3(c). We call this as node domination.
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Algorithm 1: TE+
Input: Traj-index of T , query location q, time constraint t, degree constraint k
Output: Reachable area RA(T , q, t, k).

1 Initialize a queue ConQueue to record the candidate connection node;
2 Initialize a set V isited to record all visited TE-nodes;
3 Form the root of TE-tree with q, and add it to ConQueue;
4 for i = 1 to k do
5 Init a empty priority queue pq;

// Connection Step

6 Pop all nodes in ConQueue, create new nodes based on the road network
adjacency and Edge-Trajectory Hash, and add the new nodes to pq;

// Expansion Step

7 while pq is not empty do
8 Pop a node nmin from pq, and add it to V isited and ConQueue;
9 Create a new node n along the same trajectory in nmin;

10 if n.tc ≥ t and not (∃n′ ∈ V isited that n′ � n) then
11 Add n to pq;

12 return the edges in V isited as RA;

Definition 4 (Node Domination in TE-tree). Given two nodes ni and nj

in TE-tree, if ni.tr = nj .tr, ni.e = nj .e, ni.tc ≤ nj .tc, and ni.kc ≤ nj .kc, then
ni dominates nj, denoted as ni � nj.

Theorem 1. If ni � nj, nj and all the children of nj can be pruned.

Proof. As ni � nj , both nodes have the same trajectory and edge, all possible
connected trajectories from nj (which generate the children nodes of nj in TE-
tree) can also be attached to ni. As a result, all edges covered in nj ’s children are
also covered in ni’s children. Thus, we can safely prune nj and all of its children.

To maximize the pruning ability, it is important to apply a good order to
traverse TE-tree. For example, in Fig. 3(c), n13 and its children can be pruned
only if n2 is visited before n13. As a result, the nodes with smaller tc and kc should
be searched as early as possible. We propose two heuristics: 1) H1: Nodes with
the same trajectory are searched in priority, as it guarantees not to increase the
degree cost; 2) H2: For multiple sub-trajectories connecting to the same node,
we search the trajectory with the lowest time cost first.

The proposed method TE+ (Algorithm 1) with the two heuristics starts from
the root of TE-tree, and performs a k-iteration process, where each iteration has
two steps: 1) Connection, which connects the existing TE-nodes with possible
road segments based on the road network adjacency. Each connection consumes
one degree budget. 2) Expansion, which generates new TE-nodes by expanding
trajectories from the newly added road segments. To ensure H2, we resort to a
priority queue to store all candidate TE-nodes based on their time costs. We also
record all visited TE-nodes with a set. If there exists a visited node dominating
the newly generated node n, we prune n according to Theorem 1.



Discovering Real-Time Reachable Area Using Trajectory Connections 43

2 1
3

2
(a) Trajectory Database

A

B

3

A 2C

B

C

6

(b) Fastest Trajectory

1

tr1

tr2

tr3tr4

e2:1

e3:2,1

e4:2
e5:1

e6:2

e1 e2 e3

e4

e5

1

2

4
6

3

5
2

12
1

4 4

1
(d) SG Index

q
e7:4

e6
2

3e7
4

(c) Trajectory Database

e1:1
e1
e2
e3
e4
e5
e6
e7

e2
e3
e4

e6

e5

(e) Edge Neighbors

Fig. 4. Inspiration for SG-index. (Color figure online)

4.2 Skip Graph Index

Observation. In essence, TE and TE+ enumerate all possible trajectory con-
nections. However, it is not necessary to keep all trajectories and explore every
possible trajectory connection. For example, as shown in Fig. 4(a), we have four
trajectories in different colors and time costs. We do not need to explore any
trajectory connection with tr4, as any trajectory connection containing tr4 can
be replaced by tr3 with a better time cost. Keeping tr4 here only increases the
computation cost. Furthermore, for each pair of origin and destination (OD), we
only need to keep track of the fastest sub-trajectory. Figure 4(b) gives all of the
fastest trajectories extracted from Fig. 4(a) based on different OD pairs.

Theorem 2 For any edge ei in the real-time reachable area, it can be reached
from the query location by connecting no more than k sub-trajectories, where
each sub-trajectory is the fastest one between its origin and destination.

Proof. Each qualified edge is reachable from q via at least one qualified ctr,
which can be segmented into no more than k sub-trajectories. By connecting
the OD of each sub-trajectory with the fastest sub-trajectory between them,
we can create a new connected trajectory ctr′, where Cost(ctr′) ≤ Cost(ctr)
and D(ctr′) ≤ D(ctr). If D(ctr′) < D(ctr), there at least exists two neighbor
sub-trajectories in ctr′ belonging to the same trajectory.

Data Structure. With the insight above, we propose Skip Graph index (SG-
index ), which preserves the fastest sub-trajectories connecting every OD pair.
Indeed, SG-index is a weighted directed graph, in which a node (SG-node) is a
road segment on road networks, an edge (SG-link) connecting two SG-nodes ei
and ej represents there is at least one sub-trajectory traveling from ei.vstart to
ej .vend, and the weight of an SG-link is the minimum time cost on it. Figure 4(d)
is the SG-index of the trajectory database demonstrated in Fig. 4(c).

Construction. SG-index is constructed by scanning trajectories. For each tra-
jectory, all of its sub-trajectories are examined to create SG-links. The weight of
an SG-link is assigned as the time cost of the fastest sub-trajectory traversing
it. The time complexity of SG-index construction is O(m × n2), where m is the
number of trajectories in T , and n is the average length of each trajectory. SG-
index stores the minimum time cost of sub-trajectories in a time period, e.g.,
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the most recent 30 min, so it cannot be updated incrementally with new trajec-
tory updates. Instead, it needs to be rebuilt periodically, e.g., every one minute.
We can also deploy a distributed streaming framework, like Flink of Storm, to
reduce the construction time.

Query Processing. We propose SGE-tree (Skip Graph Expansion tree) to find
all k-hop neighbours of q based on SG-index and road networks, where SG-
index provides the minimum time cost information between two edges, and road
networks give the hints of trajectory connections. Figure 5 is the SGE-tree based
on Fig. 4(c), which is organized into k levels with the query location as root.
SGE-tree consists of two types of nodes and two types of links: 1) Connect
Node. This node (marked in grey) is generated based on the neighbour of road
segments, with four properties: an identifier n, an edge e, a time cost tc, and
a level number l. 2) Expand Node. This node (marked in white) is generated
based on the expansion of SG-index. It contains five properties: an identifier n, an
edge e, a time cost tc, a degree cost kc, and a level number l. 3) Road Network
Connection. RN connection (blue solid arrow) connects an expand node to a
connect node, based on the neighbours of road segments. Along this type of link,
the nodes (ni&nj) have the same time cost nj .tc = ni.tc, but an increasing
level number nj .l = ni.l + 1. 4) SG Expansion. This link (black dotted arrow)
connects a connect node to an expand node, based on the neighbours of SG-nodes
in SG-index. Along this type of link, the nodes (ni&nj) have an increasing time
cost nj .tc = ni.tc + Cost(ni.e → nj .e), and the same level number nj .l = ni.l,
where Cost(ni.e → nj .e) is the weight from ni.e to nj .e in SG-index.

Note that the level number l on an expand node is not equivalent to its degree
cost kc. l means the i-th hop neighbours of the root, but multiple hops in SGE-
tree may belong to the same trajectory. For example in Fig. 5, n9.l = 2, as it is
a two hop neighbour from q. However, both of the hops are the sub-trajectories
of the red dotted trajectory in Fig. 4(c), i.e., trred[e1...e1] → trred[e2...e2], which
makes the degree cost only one. As a result, we know that in SGE-tree, l ≥ kc.

Theorem 3. An SGE-tree with the level number of k covers all qualified edges
ei in reachable area RA(T , q, t, k).
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Proof. Suppose edge e is in the reachable area RA, but does not appear in SGE-
tree with a level of k. As e does not appear in SGE-tree with a level of k, it means
that e cannot be reached from q by connecting any k fastest sub-trajectories. In
other words, to reach e, more than k fastest sub-trajectories should be connected.
Thus, it disqualifies e to be reachable, which is contradictory to our assumption.

Therefore, finding a reachable area with k trajectory connections is equivalent
to finding the k-hop neighbors of q in SG-index. A basic idea is to search the
SGE-tree level by level using a breath-first search, as this order guarantees the
trajectory connections with a smaller degree cost is searched first (denoted as
SGE). However, we can observe that there are still redundant computations. For
example in Fig. 5, n9 should not be searched when n5 exists, as they have the
same time cost and edge. We can avoid this situation based on node domination.

Definition 5 (Node Domination in SGE-tree). Given two expand nodes
ni and nj, if ni.e = nj .e, ni.tc ≤ nj .tc, and ni.l ≤ nj .l, then ni dominates nj,
denoted as ni � nj.

Lemma 1. If an expand node nj in an SGE-tree has nj .l > nj .kc, there must
exist an expand node ni in level nj .kc, with ni.kc = ni.l = nj .kc and ni.tc = nj .tc.

Although l is not equivalent to kc, we can still use the domination relation
to prune the disqualified nodes, when applying the breath-first search.

Theorem 4. If there exist two expand nodes ni and nj such that ni � nj , then
nj and all its children can be pruned, when using the breath-first search.

Proof. Suppose ni � nj , then ni.e = nj .e, ni.tc ≤ nj .tc and ni.l ≤ nj .l. There
are two possible cases between ni.kc and nj .kc: 1) ni.kc ≤ nj .kc, in this case, nj

can be pruned, as all the children of nj can be attached to ni; or 2) ni.kc > nj .kc,
in this case, nj .kc �= nj .l. Otherwise, if nj .kc = nj .l, we will have ni.l ≥ ni.kc >
nj .kc = nj .l, which contradicts to the domination relation ni.l ≤ nj .l. Thus,
nj .kc < nj .l. According to Lemma 1, there must exist a node in level nj .kc that
covers the same trajectory connection. As a result, we can safely remove nj and
all its children from further expansion.

According to Theorem 4, we propose SGE+ (Algorithm 2) to prune all
disqualified expand nodes based on SGE. SGE+ performs a k-iteration process,
where each iteration executes two functions: 1) RNConnection, which creates
connect nodes based on the road network neighbours of expand nodes in the
previous level; and 2) SGExpansion, which identifies qualified expand nodes in
this level based on the links in SG-index and the connect nodes in the previous
step. We discard the disqualified expand node if either it has a time cost more
than t or its edge has been searched before with a smaller time cost.

It is worth noting that we only leverage the time costs tc and the level
numbers l of expand nodes to perform the pruning process. As a result, in imple-
mentation, it is unnecessary to store the degree costs kc in expand nodes.
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Algorithm 2: SGE+
Input: SG-index of T , query location q, time constraint t, degree constraint k.
Output: Reachable area RA(T , q, t, k).

1 Init a key-value store Edge2MinT to track the min time cost of edges from q;
2 Init two sets Exp and Con to store expand nodes and connect nodes in a level;
3 Form the root of SGE-tree with q, and add it to Exp;
4 for i = 1 to k do

// RNConnect Step

5 Pop all expand nodes in Exp, create new connect nodes based on the road
network neighbours, and add them to Con;

// SGExpansion Step

6 while Con is not empty do
7 Pop a node nc from Con;
8 Create a new expand node ne based on nc and SG-index ;
9 if ne.tc ≤ t and Edge2MinT [ne.e] > ne.tc then

10 Add ne to Exp; Edge2MinT [ne.e] = ne.tc;

11 return the edges in Edge2MinT as RA;

5 Model Learning and Prediction

The degree constraint k is intangible for users. We cannot assign a fixed k at all
places and all times, as k is affected by various external factors. To this end, we
propose to dynamically predict the k value in any location and at any time.

5.1 Label Generation

One of the challenges to predict k is that there is no label of reachable areas
in our dataset. As k is a trade-off between coverage and reliability, a bigger k
achieves a higher coverage, but results in a lower reliability. The intuition is to get
a reasonable coverage with the k as small as possible. As a result, we generate the
labels of k using historical trajectories. More specifically, we regard the reachable
area without any trajectory connection based on “future” trajectories as partial
ground truth, and find reachable areas with different k values using “recent”
trajectories. The minimum k that satisfies a coverage threshold is set as the
label. To get labels for a time budget tb using the trajectories in most recent
time δ, three tasks are performed: 1) Trajectory Partition. The historical
trajectories are partitioned by a sliding window of size δ + tb. The trajectories
in a time window are further divided into two sets, T1 and T2, as shown in
Fig. 6(a). 2) Reachable Area Discovery. In each time window, we take each
edge e at the time t as a start location. For each k ∈ {1, 2, ..., 5}, a reachable
area Ek = RA(T1, e, tb, k) with trajectory connections is discovered, using the
techniques introduced in Sect. 4. Besides, we find the reachable area EGT starting
from e without any trajectory connection as the partial ground truth of the real
reachable area, using the technique in [9]. 3) k-Selection. As shown in Fig. 6(b),
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Ek EGT

(b) Degree Constraint Selection 

Ek EGT

tt - δ
(a) Trajectory Partition in a Time Window

t + tb

T1 T2

A Time Window

Fig. 6. Illustration of label generation.

for each k ∈ {1, 2, ..., 5}, we calculate the ratio between |Ek ∩ EGT | and |EGT |,
where |∗| is the cardinality of a set. We then select the minimum k as the label
kl that makes the ratio greater than η, 0 ≤ η ≤ 1, formally defined as Eq. (3).
It means that Ek covers the most edges in EGT , but k is as small as possible.
To achieve a high reliability, we set η = 0.9 in implementation.

kl = min k, s.t. |Ek ∩ Et| / |Et| ≥ η and k ∈ {1, 2, ..., 5} (3)

5.2 Feature Extraction

We identify five types of features from multiple data sources: 1) Traffic Fea-
tures. For each road segment, we extract two traffic features, i.e., traffic flow
and average speed, from the nearby real-time trajectories. 2) Time Features.
The time of day, day of the week, and holidays are extracted, to capture the
periodicity of traffic conditions. 3) Meteorological Features. We extract the
meteorological features of each query location, such as rainfall, temperature and
weather conditions (e.g., cloudy, sunny and rainy). 4) POI Features. We cal-
culate the POI distribution within 1 km of each query location. The POIs are
categorized into food, shopping, company and etc. 5) Road Network Fea-
tures. The structure of road networks affects traffic conditions. For each road
segment, we extract the features from nearby road networks, including intersec-
tion number and the length of each road level (e.g., highway, main road, side
road and so on).

5.3 Model Training

The extracted features are first standardized, and then fed into the-state-of-
art model ST-ResNet [10], as it can capture the spatial dependencies, temporal
dependencies, and external factors of the traffic conditions. Although k is dis-
crete, we regard this problem as a regression instead of a classification, because
the penalties should be different for different predicted k values. For example, if
the label is 2, it is better to predict k as 3 than 5. For each discrete t ∈ [1, 20],
we train a model individually. The model that is closest to the given continuous
time budget is used when predicting.

6 Evaluation

6.1 Datasets and Settings

Datasets. We adopt four real datasets in our experiments: 1) Road Networks.
The road networks of Shanghai, China are extracted from OpenStreetMap with
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Fig. 7. Indexing performance.

333,766 vertices and 440,922 road segments. 2) POIs. We extract the POIs of
Shanghai from OpenStreetMap, which contains 1,111,188 records. 3) Meteorol-
ogy. We collect the meteorological data in Shanghai ranging from Dec. 23rd to
Dec. 30th, 2016. The data is updated every hour. 4) Trajectories. We extract
the taxi trajectories from Dec. 23rd to Dec. 30th, 2016 in Shanghai. It contains
303,673,097 GPS points of 5,669 taxis, whose average sampling rate is 10 sec-
onds. The trajectories generated in most recent δ minutes to the query time is
used to simulate the real-time trajectory updates.

Comparing Methods. We compare our proposed method (i.e. SGE+) with its
variants (i.e., TE, TE+ and SGE) and two advanced methods: 1) SQMB [9],
which finds reachable areas using historical trajectories; and 2) TTE, which
first estimates the travel time of each road segment [4], then discovers reachable
areas based on network expansion method [2]. We also verify the effectiveness of
ST-ResNet for our problem, comparing with multiple models including GBDT,
RF, SVR and XGBoost.

Experimental Settings. We focus on the efficiency of indexing and query
processing (implemented in C#), and the effectiveness of k value prediction
(implemented in Python). We randomly select 100 edges as query locations and
calculate the average query processing time. 70% of trajectory and meteorology
data are used for k value model training, and the left are used for validation.
All experiments are performed on a 64-bit Windows Server 2012 with octa-core
2.2GHz CPU and 56 GB RAM. If not specified, we set the default real-time
window δ = 60 minutes, time budget t = 15 minutes, and degree constraint
k = 3. Besides, we use 100% available real-time taxi trajectory data by default.

6.2 Indexing Performance

Different Real-Time Windows. Figure 7(a) depicts the indexing time of Traj-
index and SG-index with different real-time windows δ. There are two obser-
vations: 1) with a bigger δ, both Traj-index and SG-index need more time to
build, as we need to process more trajectories; 2) compared with Traj-index,
the indexing time of SG-index increases more significantly with a larger δ, as
more sub-trajectories are examined to update SG-index. Figure 7(b) shows the
memory usage of Traj-index and SG-index with the increasing real-time window
δ. It is clear that more spaces are used for both indexes. Moreover, the space
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Fig. 8. Query processing performance.

consumed by SG-index grows exponentially with a larger δ, as longer trajecto-
ries are generated, which creates exponentially more sub-trajectory candidates
to create the links in SG-index.

Different Trajectory Data Sizes. Figure 7(c) presents the construction time
for two indexes, where the dataset contains different numbers of trajectories
randomly sampled from 20% to 100%. It is observed that the indexing time of
both indexes grows linearly with an increasing sample ratio, because for both
indexes, they need to scan the dataset for one time. Moreover, SG-index con-
sumes much more time, as it needs to check all sub-trajectories to create the
links. Figure 7(d) indicates that the memory usage of both indexes increases with
more trajectories. It is interesting to see that the memory growth of SG-index
is slower comparing to different δ, because more trajectories introduce a limited
number of sub-trajectories with distinct OD pairs as the links in SG-index.

We do not compare the indexing performance with SQMB and TTE here,
as SQMB scans all historical trajectories when building indexes (which is time-
consuming), and TTE does not build indexes. Besides, in the next subsection,
we do not compare the query efficiency of TTE, because it is unfair for TTE if
we consider its prediction time, which is costly.

6.3 Query Processing Performance

Different Degree Constraints. Figure 8(a) shows the query processing time
with different k, from 2 to 5 (k = 1 is not tested, as it does not involve any tra-
jectory connection). With an increasing k, the query processing time of all meth-
ods increases. Moreover, TE+ (or SGE+) is more efficient than TE (or SGE), as
redundant computations are avoided. Furthermore, SGE takes more time than
TE+ when k is large. Because with more combinations of sub-trajectories, prun-
ing the disqualified nodes in TE-tree or SGE-tree is more effective. In fact, TE
is not able to compute the results when k ≥ 4. Similarly, SGE also fails when
k ≥ 5. SQMB is not tested here as it does not involve trajectory connections.

Different Time Constraints. As depicted in Fig. 8(b), with the growth of t,
the query processing time of all methods increases. It is clear that with a larger
t, more candidate road segments are tested. We can also notice that TE+ (or
SGE+) is much better than TE (or SGE), and SGE+ is the most efficient. It
is interesting to see that the performance of TE+ exceeds SGE when t is large,



50 R. Li et al.

as each pruned candidate leads to a longer (i.e., with more t) redundant search
process. SQMB is faster than TE, TE+ and SGE when t is larger, which proves
the big challenges with trajectory connections. However, thanks to the effective
indexing and pruning techniques, SGE+ is much faster than SQMB in all cases.

Different Real-Time Windows. Figure 8(c) indicates that with a larger time
window δ, all methods take more time, as more road segments are included in a
trajectory, leading to a larger TE-tree or SGE-tree. Here we do not test SQMB as
it uses all historical trajectories, which is not affected by the real-time window.

Different Trajectory Data Sizes. Figure 8(d) shows that the query processing
time increases with more trajectories, as more trajectory connection candidates
are tested. TE+ is comparable to SGE, because the pruning techniques based
on node domination play a major factor in improving the querying efficiency.

6.4 Effectiveness of k Prediction
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Fig. 9. Effectiveness of k prediction.

Figure 9 shows the average RMSE
(Root Mean Square Error) and MAE
(Mean Absolute Error) of different mod-
els, which indicates that ST-ResNet is
the best model for our problem, in terms
of both RMSE and MAE. Because ST-
ResNet not only captures the tempo-
ral closeness, period, and trend proper-
ties of traffic conditions, but also model
the spatial dependency among different
locations.

6.5 Case Study

Figure 10 shows the reachable areas in the Mercedes-Benz Arena, Shanghai at
the same time on two different days using different methods. Although both
days are Friday, the reachable area in Fig. 10(b) is much smaller than that in
Fig. 10(a), because there is a concert in the arena at 19:30, Dec. 30th, 20161.

(a) 2016/12/23 19:00 (SGE+) (b) 2016/12/30 19:00 (SGE+) (c) 2016/12/30 19:00 (SQMB) (d) 2016/12/30 19:00 (TTE)

Fig. 10. A case of concert (t = 5 min, δ = 30 min). (Color figure online)

1 http://bit.ly/2y6f3BF.

http://bit.ly/2y6f3BF
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More than 10,000 fans gathered here, causing a heavy traffic jam. As a result,
our solutions reflect the traffic jam, where the reachable area only covers the
nearby road segments. Comparing to SGE+, SQMB gives the same reachable
area in all days as shown in Fig. 10(c), and TTE gives a reachable area as shown
in Fig. 10(d), thus they can hardly capture the real-time traffic conditions such
as events. Besides, SQMB could miss some reachable road segments if there is
no trajectory that exactly traverses from the query location to them (i.e., the
orange area). However, the trajectory connection techniques proposed by this
paper can mitigate this situation.

7 Related Works

Reachability Query. The conventional reachability query is one of the fun-
damental graph operations, asking if two nodes are connected in a directed
graph [17–23]. These works can be categorized into two main categories: 1) reach-
ability query on static graphs, e.g., [17] introduces a graph reduction method,
while other works [20,23] propose different labeling methods to reduce the index
size; and 2) reachability query on dynamic graphs, whose edges and vertexes
change over time. For example, [22] proposes different indexes to efficiently han-
dle vertex insertions and deletions. The conventional reachability query problem
is very different from our real-time reachable area discovery task, as their reach-
ability only considers the graph structure. The closest work is [9], which finds
reachable areas based on massive historical trajectories that passed the query
location during the request hour. By analyzing the daily statistics of the qualified
trajectories, the reachable area with a certain probability can be identified. How-
ever, this method cannot capture weather, traffic conditions and events, which
is not suitable for real-time reachable area discovery.

Travel Time Estimation. Travel time estimation calculates the time cost on
a given path. [4–7] leverage the readings of loop detectors or trajectories to infer
the time cost on each road segment. Then, the time cost of a path is estimated
by summing up all costs of the road segments along the given path. These works
ignore the dependencies between road segments. To capture the delays of road
intersections/traffic lights and improve the estimation accuracy, [24–26] estimate
the travel time of a path by considering the trajectories passed the entire path,
and [27] proposes an end-to-end deep learning framework to estimate the travel
time. The techniques of travel time estimation cannot be applied directly to
the discovery of real-time reachable areas, as they require the predefinition of a
path, including the origin and destination locations. In the scenario of reachable
area discovery, the destinations and the paths from the query location are not
predefined. As a consequence, directly applying travel time estimation methods
requires to examine all possible destinations and possible paths to them, which
is inefficient and infeasible in a real-time scenario.
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8 Conclusion

This paper provides the first attempt to discover real-time reachable areas with
dynamic trajectory connections. A framework that combines indexing techniques
with machine learning is proposed. Our proposed indexing and query processing
methods can efficiently find real-time reachable areas with an arbitrary number
of trajectory connections. We also propose to predict the best connection number
that achieves a good coverage while guarantees reliability. Extensive experiments
and one case study on four real datasets confirm the effectiveness and efficiency
of our proposed methods for the real-time scenarios.
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61672399, No. U1609217) and the Science Foundation of Hubei Province (No.
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Abstract. Most existing wearable sensor-based human activity recogni-
tion (HAR) models are trained on substantial labeled data. It is difficult
for HAR to learn new-class activities unseen during training from a few
samples. Very few researches of few-shot learning (FSL) have been done
in HAR to address the above problem, though FSL has been widely
used in computer vision tasks. Besides, it is impractical to annotate sen-
sor data with accurate activity labels in real-life applications. The noisy
labels have great negative effects on FSL due to the limited samples.
The weakly supervised few-shot learning in HAR is challenging, signifi-
cant but rarely researched in existing literature. In this paper, we pro-
pose an end-to-end Weakly supervised Prototypical Networks (WPN)
to learn more latent information from noisy data with multiple instance
learning (MIL). In MIL, the noisy instances (subsequences of segmen-
tation) have different labels from the bag’s (segmentation’s) label. The
prototype is the center of the instances in WPN rather than less dis-
criminative bags, which determines the bag-level classification accuracy.
To get the most representative instance-level prototype, we propose two
strategies to refine the prototype by selecting high-probability instances
same as their bag’s label iteratively based on the distance-metric. The
model is trained by minimizing the instance-level loss function and infers
the final bag-level labels from instance-level labels. In the experiments,
our proposals outperform existing approaches and achieve higher average
ranks.

Keywords: Few-shot learning · Weakly supervised models · Wearable
sensors · Human activity recognition

1 Introduction

Human activity recognition (HAR) based on wearable sensors (accelerometer,
gyroscope, etc.) plays a key role in research areas and real-world applications,
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 54–72, 2020.
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for example, health care [1] and sports monitoring [12]. Most existing supervised
models are usually trained on substantial well-labeled data. However, the noisy
data is ubiquitous in real-world applications because labeling datasets correctly is
a time-consuming task [19]. In addition, the existing HAR models learn new-class
activities from a few training samples by re-training, which leads to overfitting
and imbalance problems.

People can learn new concepts given just a few samples. Thus Artificial Intel-
ligence should have the similar ability to recognize new activities from a few
samples. In addition, the quality of the activity labels has a great impact on the
effectiveness due to the limited samples. For example, in Fig. 1, new activity Run
has a few samples (segmentations from raw data) including noisy activities Walk
(W) which are subsequences in one segmentation. The weakly-labeled segmen-
tation leads to less discriminative features. Our goal is to recognize Run based
on a few samples with noisy labels from the knowledge in the existing models
without retraining.

Fig. 1. An example of weakly supervised Prototypical Networks for HAR

Although few-shot learning (FSL) [7] and multiple instance learning (MIL)
[6] could solve the problems caused by new-class learning on few samples and
weakly-labeled learning respectively, they are studied separately in most exist-
ing researches. On one hand, most significant researches on FSL have achieved
satisfying performance on vision tasks, such as metric learning and meta learn-
ing [13,18]. Among these networks, Prototypical Networks (PN) [23] and semi-
supervised models based on PN [2,22] are effective to avoid overfitting. However,
there are few works concentrating on HAR with wearable sensor data [8,16,20].
On the other hand, these models assume to be trained on well-labeled data
which requires a time-consuming work in real-life applications. MIL has better
performance in weakly supervised HAR with less annotation effort [3,10,24].
One segmentation (bag) of time series data with a bag-level label consists of
several subsequences (instances) with unknown instance-level labels which may
be different from their bag’s label (Run example illustrated in Fig. 1). MIL can
recognize the bag-level label from the noisy data if the bag contains the objective
activity.
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A natural improvement would be to combine the power of both few-shot
learning and weakly supervised learning. In this line, weakly supervised PN
based on attention mechanism has been used in image classification [14] and
natural language processing (NLP) [9]. However, they cannot be used on HAR
task directly for the different kinds of noisy data. Therefore, we aim to build an
end-to-end model to recognize new activities leveraging the advantages of PN
and MIL. To the best of our knowledge, we are the first to leverage the weakly-
labeled information in few-shot learning on time series data in HAR. However,
there is still one great challenge as below:

How to Obtain the Accurate Prototype Feature from Noisy Instances?
PN extracts prototype features for each class and classifies samples based on the
distance metric to each prototype as shown in Fig. 1. The prototype in our model
is calculated on instance-level features rather than less discriminative bag-level
features. However, the noisy instances may result in the bias of the instance-level
prototypes. Hence, refining the prototype by selecting the most representative
instances in each class is the key to guarantee the effectiveness of PN on noisy
data. To address this problem, we modify traditional PN combined with MIL.
Our contributions are summarized as follows:

1) We propose a Weakly supervised Prototypical Networks (WPN) model to
solve the problem of few-shot learning on few samples with noisy labels in
HAR.

2) We propose two strategies to refine instance-level prototype by selecting the
instances with higher probability in each class based on different scenarios,
namely Top-K Prototype Refinement and Cumulative Prototype Refinement.

3) We minimize instance-level loss functions and design a mapping mechanism
from instance label to bag label to improve the accuracy of bag classification.

4) In the experiments, WPN with two refinement strategies outperforms the
existing approaches on three benchmark datasets, which demonstrates the
effectiveness of our model.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 gives the preliminary and problem definition. We propose an end-
to-end weakly supervised model with two refinement strategies in Sect. 4 and
evaluate the performance of our proposals in Sect. 5. Finally, we conclude our
work in Sect. 6.

2 Related Work

Weakly supervised human activity recognition aims to solve the inaccu-
rate label annotation problem. As the development of hardware and software
technologies [21], people have growing interest to HAR. Therefore, the accuracy
of recognition is more important especially on weakly-labeled data. Multiple
instance learning (MIL), one of the weakly supervised methods, is robust to noisy
data and reduce the laborious labeling effort with good performance. In MIL for
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HAR, one bag (segmentation of sequence with fixed window size) with known
label consists of multiple instances (subsequences in the window) without labels.
MIL on wearable sensors is firstly used in research [24] which proposes new anno-
tation strategies to reduce the frequency of annotation. A generative graphical
model for MIL is presented on time series data based on auto-regressive hidden
Markov model which can annotate both bag and instance labels [10]. However,
they can not learn the new-class activities from a few bag-level training samples.

Few-Shot learning (FSL) is a task learning process in which the classifier
generalizes well even on very few samples of new classes not seen in the train-
ing dataset without re-training the model [15]. Metric-based few-shot learning
approaches aim to learn an end-to-end model where the parameters can be trans-
ferred to new-classes classification leveraging nearest neighbor based on the given
distance metric. The nearest neighbor classifier in Matching Networks [25] is
implemented with an attention mechanism over the embedding labeled samples
(the support set) to predict the unlabeled samples (the query set) both dur-
ing training and testing. The embedding features in Siamese Networks [13] are
extracted from pair samples and classified by the pair-wise distance. Prototypical
Networks [23] solve the overfitting problem in metric-based few-shot learning. To
leverage the unlabeled data, semi-supervised FSL models [2,22] are proposed.

Few-shot Learning for HAR. Although FSL is widely used in HAR based
on image and video [17,28], there are few studies on few-shot learning based on
wearable sensor data. Recently, FSHAR (few-shot human activity recognition)
[8] is proposed to recognize new activities by transferring the model parameters
from source domain to target domain. In the literature [16] it only compares
the performance of Siamese Networks, Triplet Networks [11] and Matching Net-
work in wearable sensor-based HAR. The importance of attributes for zero-shot
pose-classification is discussed in [20]. However, all of them are supposed to be
trained on high-quality well-labeled data in supervised models. In real-life appli-
cations, it is common that the labels are inaccurate and ambiguous, which is
also challenging in FSL.

Recently, weakly supervised PN is proposed for noisy few-shot relation clas-
sification (RC) with hybrid-attention in natural language processing (NLP) [9].
The weights of the final prototype are calculated by the distance between the
support set and query set through the linear layer. However, it does not fit for
time series data in HAR because samples in both support set and query set have
weakly-labeled data which leads to the bias of the weights. Considering the char-
acter of time series data and the problem of few-shot learning on weakly-labeled
data, we provide a different view of refining final prototype which is suitable for
noisy data in HAR.

3 Preliminary and Problem Formulation

In this section, we review the notations of multiple instance learning and Proto-
type Networks and give the problem formulation.
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3.1 Multiple Instance Learning

Given a set of N samples D = {(X1, y1),. . . ,(XN , yN )} where Xi =
[xi1, xi2, . . . , xiT ] is the set of time series data points where xit ∈ R

d is d -
dimensional sensor data and yi ∈ [0, 1, 2, . . . , C] is the corresponding label for
each Xi. It means that xit is the t-th time step data point of the i -th sample
and yi = 0 denotes the null class.

For multiple instance learning in HAR, the bag Bi corresponding to the
sample Xi is Bi = [Ii,1, . . . , Ii,(T−l+1)] where Ii,j = [xi,j , . . . , xi,(j+l−1)] denotes
the j -th instance in Bi with the instance sliding window size 1. Usually, the
ground-truth label of bag yi is annotated by human and the label of instance
yi,j is unknown. Some instances’ labels in each bag are the same as the bag’s
label. However, some labels are different from the bag’s label, which are known
as noisy labeled data as illustrated in Fig. 1. To get the bag-level label, one
strategy is to infer the instance-level label and then get the bag-level label.
The other strategy is to learn bag representation without inferring the instance
probabilities of each class.

3.2 Prototype Networks

In Prototype Networks (PN), the model samples mini-batches (episodes) from
support set S and query set Q to mimic the few-shot task in test sets including
new categories. PN first extracts feature from S through an embedding function
fφ to get the prototype representation. Then it classifies the samples in Q by
minimizing the loss. Dc is the subset of D, denoting the set of class c. In each
episode of supervised PN, we select subset C ′ of C classes (C ′-way) and n
samples (n-shot) for each class. Let S = {D1, . . . , DC′} be the support set where
Dc contains |Dc| time series Xi of class c and Q = {D∗

1 , . . . , D
∗
C′} be the query

set where D∗
c contains |D∗

c | time series X∗
i . The prototype of class c is the average

of feaures from embedded samples

pc =
1

|Dc|
∑

(Xi,yi)∈Dc

fφ(Xi) (1)

The classification for query X∗
i is the probability over classes produced based

on softmax with the pre-defined distances function d [23] as follows

P (c | (X∗
i ,pc)) =

exp(−d(fφ(X∗
i ),pc))∑C′

c′=1 exp(−d(fφ(X∗
i ),pc′))

(2)

For all the query samples in Q, the loss function in each training episode is
the average negative log-probability for the objective class:

J = − 1
|Q|

∑
logP (y∗

i | (X∗
i ,pc)) (3)
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3.3 Problem Formulation

We aim to train an end-to-end model to recognize the previously unseen activities
in the circumstance of a few low-quality samples for each new class based on Pro-
totypical Networks. Given the set of few weakly-labeled bags Dc = {Bc

1, . . . , B
c
n}

sampled from known class c in each episode, the model is trained to learn the
function fφ with parameters φ to improve the classification accuracy. Since the
number of labeled bags is not large and the labels are ambiguous, it would result
in heavy bias in prototype on Bi and affect the effectiveness of PN. In weakly
supervised models, each bag has a certain signature in the sequential data [5],
which may be one instance or several instances. It is necessary to get the most
representative instance-level prototype to avoid the negative effect of bag-level
prototype. There are two goals in our model:

1) Efficient strategies to get the most representative instance-level prototype pc

by selecting instances Ii,j with high probabilities from all bags Bi in Dc.
2) Efficient loss function and mapping mechanism in classification to infer the

bag-level label yi from instance-level label yi,j .

4 Weakly Supervised Prototypical Networks for HAR

To address the problem of human new-class activities classification on few
weakly-labeled samples, we propose an end-to-end model, Weakly supervised
Prototypical Networks (WPN). In our model two strategies are used to get the
most representative instance-level prototype. The bag-level label is inferred from
the instance-level label recognized by the model.

4.1 Overview of WPN Model

To solve the problems defined and achieve the goals set in Sect. 3.3, we propose
an end-to-end model Weakly supervised Prototypical Networks (WPN) leverag-
ing PN and MIL. We train and test on instances instead of bags and infer the
bag-level labels from the instance-level labels. To make it easier to understand
the model, we take one-shot learning for example as shown in Fig. 2. It shows the
architecture of the training phase for WPN. In the support set (bag-level) and
query set (bag-level), different classes are shown as different coloured shapes.
There is more than one instance in one bag shown as smaller size shapes. Obvi-
ously, not all the instances’labels correspond with their bag’s label. Even there
is null-class instance in the bag. For example, it is supposed that the bag with
label Class 1 in support bag set has six instances (three Class 1, two Class 2
and one null class). The model selects the embedded instances with high proba-
bilities of Class 1 after refining operation. The selected instances in Class 1 are
used to update the instance-level prototype of Class 1.

Similar refinement could be an optional operation for query set and the model
computes the instance-level loss between selected embedded instances and the
prototype. There are three modules in our model:
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Fig. 2. One-shot learning in WPN HAR model

– Embedding Module
To extract instance-level feature vector, all the instances in the bags with the
same bag label are embedded by embedding function.

– Refinement Module
To refine the instance-level prototype, an important role in PN, this module
selects instances with high probability from all the instances mixed with noisy
labels for each class and two refinement strategies are proposed under different
scenarios.

– Classification Module
To optimize the parameters, the model classifies the instances based on the
distances between the instances in Q and the prototypes for all classes, min-
imizes instance-level loss functions and infers the bag label from its instance
labels.

During testing, we utilize the trained model to annotate bag-level time series
data for new class. Few bag samples or one sample are treated as support set
to refine the prototype by selecting the embedded instances like what it does
during training. After labeling the instances, this module adopts majority vote
to infer the final bag-level label.

4.2 Embedding Module

This module extracts feature from input raw data through an embedding func-
tion fφ with the learnable parameters φ. Our weakly supervised model uses fφ to
embed the instances (Ii,j ∈ R

l×d) for each class. Convolutional neural network
(CNN) provides better representation in times series and spatio-temporal data
[4,26]. The embedding module consists of two steps:

Step One: Feature Extraction. Multiple sets of CNN layers with 2-
dimension kernels and max pooling layers are used to extract temporal and
spacial information for each instance.
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Step Two: Dimension Transformation. The output of the pooling layer
is reshaped as 1-dimension feature space which is adaptive to the Prototype
Networks.

4.3 Refinement Module

In MIL, only the label of bag is annotated and the labels of its instances are not
given exactly. Actually, the labels of some instances are the same as their bag
label and the other instances are treated as noisy data. Therefore, we give two
assumptions considering the number of noisy instances: (i) the instances include
a large quantity of noisy data; (ii) the instances include a small quantity of noisy
data. Based on these two assumptions, we propose two strategies to refine the
instance-level prototype by selecting the instances with high probability for the
same class.

4.3.1 Top-K Prototype Refinement
Actually, it is difficult to know the ground-truth labels of the instances in the
bags. It is supposed that there are large quantity of instances with different
labels from the bag’s label in the first assumption. The intuitional solution is
to select the high-probability instances and abandon low-probability instances.
Therefore, we propose Top-K Prototype Refinement strategy to select the K
nearest instances based on the distance between the instances and the initial
prototype for the same class. The selected instances are used to calculate the
new prototype. There are three steps in this strategy.

Step One: Initializing Prototype. Different from the traditional PN, we focus
on the instance-level prototype in our model. We assume that all the instances
have the same label as their bag’s label, that is yi,j = c if yi = c. Since we do
not consider the noisy instances, the initial instance-level prototype pc is the
average vector of all the embedded instances in the support set labeled class
c. For each class c, there are n bags and m instances in each bag, denoted as
Dc = {Bc

1, . . . , B
c
n} and Bc

i = {Ic
i,j , . . . , I

c
i,m}. We modify Eq. (1) as Eq. (4),

where Ic
i,j ∈ Dc , i ∈ [1, n], j ∈ [1,m] , Dc denotes set of n × m instances in Dc

set and all ωi,j = 1 here indicate that all the instances Ic
i,j are selected during

initialization.

pc =

∑ ∑
ωi,jfφ(Ic

i,j)∑ ∑
ωi,j

(4)

Step Two: Selecting Instances. For all the instances in Dc, the model cal-
culates the distance between them and pc and select the K instances nearest to
the initial prototype denoted as DK

c . It is supposed these instances in DK
c have

high probability corresponding with the bag label. Therefore, the weight ωi,j is
updated by

ωi,j =

{
1, if Ic

i,j ∈ DK
c

0, if Ic
i,j /∈ DK

c

(5)



62 S. Deng et al.

Step Three: Updating Prototype. The model updates pc based on Eq. (4)
after updating all the weights. It aims to get the more representative proto-
type from the noisy labeled instances by iteratively selecting the instances and
updating the average vector. When the number of iterations is more than τ or
the variance of the selected instances to prototype increases which is calculated
in Eq. (6), we would get the final prototype and selected instances. ω′

i,j and p′
c

are updated on the previous iterative step.

Δ =

∑∣∣ωi,jI
c
i,j − pc

∣∣2
∑

ωi,j
−

∑∣∣ω′
i,jI

c
i,j − p′

c

∣∣2
∑

ω′
i,j

(6)

The Algorithm 1 describes the pseudo code of Top-K Prototype Refinement.
According to the length of the instance, it splits the bags into the instances for
each class in line 1. Since the number of selected instances is becoming smaller
in each iteration, K is calculated by the ratio of the size of instances set on each
iterative step. It is not practical to iterate too many times, which results in much
bias when there are very few instances. Lines 5 to 9 describe step two and step
three in detail.

During training, the Algorithm 1 also fits on the query set since the query
set has the noisy labeling problem. The difference is that the DK

c set is the final
output used to calculate the distance between the query set and prototype.

4.3.2 Cumulative Prototype Refinement
Considering the second assumption that there is a small number of noisy
instances in support set, Top-K Prototype Refinement strategy ignores the con-
tributions of the unselected instances. They may have a latent relationship with
the selected instances. In MIL, the label of the instance is uncertain because there
is no ground truth for the label of instance. Although we suppose that the K
instances have the high probabilities corresponding with the bag label, it can not
judge the unselected instances as noisy data definitely. The useful information
is significant, especially in few-shot learning. Hence we utilize the information of
the unselected instances and the prototypes are given with gradually increasing
weights as the number of iterations increases.

The basic idea is that the new prototype in each iteration is the average of
the previous prototype and the current prototype produced by Top-K Prototype
Refinement strategy. It preserves the information of unselected instances in the
current iteration. However, they have low contributions to the new prototype
because the selected instances are the subset of the previous set. The new pro-
totype, the previous prototype and the current prototype in k-th iteration step
with class c are denoted as pk

c , pk−1
c and p′k

c respectively. The pk
c is updated by
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Algorithm 1. Top-K Prototype Refinement
Input:

Dc: The set of bag samples for class c; l: The length of each instance;
τ : The iterative times; γ: Ratio used in Top-K ;

Output:
pc: The prototype vector for class c;

1: Split all the bags in Dc to get the instances set Dc with the parameters l;
2: Initialize ωi,j = 1, k = 1, Δ = −1;
3: Initialize the pc based on Dc with Equation (4);
4: While(Δ < 0 and k ≤ τ);
5: Calculate K with γ and the size of Dc;
6: Select Top-K nearest instances DK

c from Dc;
7: Update ωi,j with Equation (5);
8: Update pc with Equation (4);
9: Compute Δ, k = k + 1, Dc = DK

c ;
10: return pc;

pk
c =

1
2
(pk−1

c + p′k
c )

=
1
2
(
1
2
(pk−2

c + p′k−1
c ) + p′k

c )

=
1
22

pk−2
c +

1
22

p′k−1
c +

1
2
p′k

c

=
1
2k

p0
c +

1
2k

p′1
c +

1
2k−1

p′2
c + · · · +

1
21

p′k
c

(7)

According to the Eq. (7) the final prototype is cumulated by the prototypes
generated in all the iteration steps with different weights. However, they have
gradually decreasing weights to the final prototype which means the initial proto-
types calculated by noisy data have the least influence. The prototypes produced
by selected instances have more contributions to the final prototype. In addi-
tion, the number of iterations has little influence on classification performance in
Cumulative Prototype Refinement strategy because the prototype in current iter-
ation includes all the historic information of the instances with different weights.
It avoids the problem encountered by Top-K Prototype Refinement strategy for
multiple iterations. The Cumulative Prototype Refinement is different from the
existing semi-prototype work [22] in which the weight of the unlabeled sample
is the distance to the original prototype. Top-K Prototype Refinement strategy
is the basic of Cumulative Prototype Refinement strategy, therefore, we mod-
ify step 3 in Algorithm 1 with Initialize p0

c , the step 8 with Compute p′k
c with

Eq. (4), and add Update pk
c with Eq. (7) between step 8 and step 9.

4.4 Classification Module

Although the final classification task is the bag annotation, the individual
instance labels also contribute to the bag labels in the real world. The final
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bag label is determined by the instance labels in the bag. Therefore the objec-
tive is to classify instances individually and then infer the bag label. Different
from the traditional Prototypical Networks, we modify the Eq. (2) to fit in our
model as follows

PI(c | (I∗
i,j ,pc)) =

exp(−ωi,j · d(fφ(I∗
i,j),pc))∑C′

c′=1 exp(−ωi,j · d(fφ(I∗
i,j),pc′))

(8)

where I∗
i,j is the j-th instances in query B∗

i . ωi,j in Q is updated after selecting
instances with high probability during training by using step 7 in Algorithm 1.

For all the selected query instances, Eq. (3) is modified to fit in our model
for each given training episode:

JI = − 1∑
ωi,j

∑
logPI(y∗

i,j | (I∗
i,j ,pc)) (9)

Training in each episode minimizes the average loss for all the selected
instances. Therefore, the gradient descent updating depends on refinement pro-
totypes and selected query instances to improve the accuracy of instance classi-
fication.

During testing, the support set is composed of the few bag-level samples.
We refine the instance-level prototype based on two strategies. The predicted
label of the query instance I∗

i,j during testing is the mostly likely class ˆyi,j =
argmaxcPI(c | (I∗

i,j ,pc)). Considering the witness rate in most situations, we set
a majority vote mapping mechanism in which the label of instance with highest
frequency in one bag is the final label of bag, ŷi = argmaxcCount(c | ( ˆyi,j ,pc)).

5 Evaluation

5.1 Experimental Setup

5.1.1 Datasets
PAMAP21 consists of 12 activities from 9 different subjects following a protocol
with a sampling frequency 100 Hz. We use the sensor data with 36 attributes
generated by accelerations and gyroscope from 3 inertial measurement units. It
is split into 80% for training and 20% for testing. The last 6 activities are selected
as the new classes during testing shown in Table 1 according to the activity ids
order. We just choose one of the split methods. Other split strategies are optional.

Skoda2 describes 10 manipulative gestures performed in a car maintenance
scenario with the original sample rates 98 Hz. There are 20 acceleration sensors
on both arms. Model is trained on 10 sensors from right arms with 80% of the
dataset. We split the classes randomly into train set and test set, shown as
Table 1.

1 https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring.
2 http://har-dataset.org/doku.php?id=wiki:dataset.

https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
http://har-dataset.org/doku.php?id=wiki:dataset
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UCI-HAR3 records 6 activities from 30 subjects using a waist-mounted
smart phone with built-in embedded accelerometer and gyroscope. The sample
rate is 50 Hz and the public data has been sampled in fix-width sliding windows
of 2.56 seconds (128 steps per window). The ground truth is labeled according to
the video-recording manually. 70% of the dataset is selected for training and the
remaining is test data. Some repetitive classes are used during testing in Table
1 because of very few classes.

Table 1. Classes split for datasets

Dataset Train classes Test classes

PAMAP2 Lying, sitting, standing,
walking, running,
cycling

Nordic walking,
ascending stairs,
ironing, rope jumping

Skoda Write on notepad, open
hood close hood, check
gaps (front door) open
left front door

Close left front door,
close both left door
check trunk gaps,open
and close trunk check
steering wheel

UCI-HAR Walk, walk-upstairs,
walk-downstairs, sit

Walk, walk-upstairs,
Walk-downstairs, sit,
stand, lay

5.1.2 Parameters Settings
Two sets of CNN layers and max pooling layers are used to extract features
with all parameters of Prototypical Networks. On Skoda and PAMAP2 the CNN
kernel size is 5*3 with strides 2*1. On UCI-HAR the kernel size is 3*3 with the
strides 1*1. The number of filters is 64 and the max pooling size is 2*2 on all
datasets. Time window is used here [24,27] and the window size of bag for all
datasets is set as 128. The size of the sliding window in Skoda and PAMAP2 is
100 to avoid the overlap of instances in set S and Q. To verify the performance
of MIL with different number of instances in each bag, we set the number of
instances as 4, 5, 6, 7 corresponding to the size of instances 80, 64, 48, 32
(default size) with 50% overlap respectively. We evaluate 1-shot and 5-shot cases
frequently used in FSL following [2,8,22]. We follow the episodes [23,25], effective
training paradigm in meta learning. The number of iterations are set as 1 (default
value), 2, and 3. The ratio in Top-K is 0.8 in S. If the ratio is too small, there
would be very few selected instances resulting in the similar problem of bag-level
classification. The ratio is 1 for refinement in Q to select all the instances in this
setup.

3 https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smart
phones.

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
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5.1.3 Baselines
We compare the accuracy of our model with existing approaches (supervised
models and weakly supervised models) in the experiment.

Supervised FSL Baselines. PN and FSHAR [8] are trained on bag-level data.

Weakly Supervised Baselines. WPN-I and Proto-IATT [9] are trained on
instance-level data. WPN-I is the WPN without prototype refinement. Proto-
IATT [9] is similar to our motivation but it is first proposed in NLP. We only
choose Proto-IATT since there is no problem of feature sparsity in HAR and
modify Proto-IATT to fit in HAR.

Our Weakly Supervised Models. WPN-T and WPN-C are WPN models
with our two refinement strategies, Top-K Prototype Refinement and Cumulative
Prototype Refinement respectively.

5.2 Evaluation Result

5.2.1 Accuracy
Table 2 shows the test accuracy of different models on benchmark datasets.
ACC-I and ACC-B indicate the accuracy of instance and the bag respectively.
In FSHAR, S/H means soft/hard normalization and Cos/SR means cosine sim-
ilarly and sparse reconstruction respectively. As shown in Table 2, the perfor-
mance in 5-shot learning is much better than that in 1-shot learning because
more samples can generate more general feature comparing with one sample.
We mainly describe the performance and analyze the reasons as the following
two aspects.

Table 2. Accuracy of different models on different datasets

Datasets PN WPN-I WPN-T WPN-C Proto-IATT FSHAR

S-Cos S-SR H-Cos H-SR

PAMAP2 Acc-I – 57.11 58.11 60.45 57.99 – – – –

5-shot Acc-B 58.36 61.6 62.38 65.53 63.34 35.74 42.78 40.19 41.29

PAMAP2 Acc-I – 44.68 43.4 46.4 40.1 – – – –

1-shot Acc-B 42.66 47.61 45.87 49.4 42.34 35.37 42.04 37.04 35

UCI-HAR Acc-I – 89.12 89.89 88.72 88.13 – – – - -

5-shot Acc-B 85.59 90.76 91.3 90.13 90.25 83.75 78.33 77.39 79.17

UCI-HAR Acc-I – 78.48 79.71 78.96 77.35 – – – –

1-shot Acc-B 70.77 80.64 81.56 80.83 79.54 76.25 74.08 73.64 65.63

Skoda Acc-I - 73.01 71.66 76.17 72.17 – – – –

5-shot Acc-B 73.59 77.67 75.98 80.17 76.1 67.2 62.4 65.6 62.1

Skoda Acc-I – 59.63 62.88 61.12 59.87 – – – –

1-shot Acc-B 58.75 62.38 65.88 63.78 63.09 56.8 50.8 54.4 56.4
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The Effectiveness of MIL in Few-shot Learning. All the four weakly super-
vised models significantly outperform supervised models. It demonstrates the
effectiveness of the weakly supervised method for few-shot learning. The rea-
son is that the bag with large window size contains more noisy data than the
instances. The feature of the bag may be extracted inaccurately. On the con-
trary, instances have better signatures although their labels are not given exactly.
Besides, the number of instances is much larger than that of bags, which pro-
vides more trainable samples with inaccurate labels. That is why it is necessary
to select more representative prototypes from the instances with high proba-
bility corresponding with ground-truth classes. Our weakly supervised models
learn more hidden information from the noisy-labeling instances to improve the
annotation accuracy dramatically.

The Effectiveness of Refinement Strategies. On the benchmarks, at least
one of WPN-T and WPN-C has better performance than native WPN-I and
Proto-IATT in the default experiment setup, demonstrating that our proposed
refinement strategies have the ability to refine the prototype from the instances
including noisy labels. The different performance of the proposals in three
datasets may be caused by the different distribution of noisy instances. In most
cases, the accuracy of WPN-C is higher than that of WPN-I because WPN-C
preserves the useful information as well as reduces the negative effect of the noisy
data. However, WPN-T abandons some useful information in the selecting phase
which results in lower accuracy comparing with WPN-I in some cases. Proto-
IATT has less ability to refine the prototypes than our models because the noisy
labels exist both in S set and Q set in HAR and the weights in Proto-IATT are
determined by the distance between supports and queries. Our proposals avoid
the negative influence of the noisy instances in the query set. We refine the pro-
totypes only in S set during training. The slight improvement may be caused by
the original annotation techniques for the current benchmark datasets. The cur-
rent datasets usually record repetition activity for a long time which is suitable
for the supervised models. In addition, activities last for the longer time than
the window size and the number of bags with noisy label is reduced. Therefore
the improvement is slight but significant in FSL.
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(a) 1-shot on UCI-HAR (b) 1-shot on Skoda (c) 1-shot on PAMAP2

(d) 5-shot on UCI-HAR (e) 5-shot on Skoda (f) 5-shot on PAMAP2

Fig. 3. The accuracy of the different number of instances

5.2.2 The Influence of the Number of Instances
In this part, we evaluate the performance of all the models above when the
number of instances is different in each bag. The accuracy of all the experiments
of PN displays the same value because there is only bag-level classification. The
accuracy values of FSHAR are not displayed since PN performs better than
FSHAR in default parameters setting except the accuracy of 1-shot learning on
UCI-HAR. Performance of MIL has a relationship with the number of instances,
especially in time-series data. As shown in Fig. 3, the accuracy of most of the
models decreases with the fluctuation when the number of instances decreases on
all datasets. When the window size of the instance is nearly close to the window
size of the bag, it would lead to the same problems as bag classification with
noisy labeled data.

In addition, more instances in one bag will have a positive effect on the bag-
level classification according to the majority vote mapping mechanism in the
classification module. When one bag contains 4 instances WPN-I and WPN-T
have poorer performance in 5-shot learning on Skoda. One reason is that WPN-
T may abandon some information from the few instances and obtain prototype
with bias which leads to the low accuracy of the classification of the instances.
The other reason is that there are not enough instances to vote the most possible
bag label from the noisy instances. On UCI-HAR our models have the poorest
performance of 5 instances in each bag comparing with themselves. The reason
is that the feature of instance is not representative with unsuitable instance
window size and the number of instances is too small as well.
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Fig. 4. The average ranks of different models

The accuracy of our methods in weakly supervised models is higher than that
of the baselines on three datasets in most cases. It also demonstrates the effec-
tiveness of our refinement methods in weakly Prototype Networks. The average
ranks of all the models in all the cases on each dataset are illustrated in Fig. 4.
WPN-C ranks first on both PAMAP2 and Skoda and ranks second in UCI-HAR.
WPN-T ranks first on Skoda with a little gap between WPN-T and WPN-C.
When the bag consists of many instances with noisy labels, the WPN-T is much
better due to the abandonment of the noisy instances. However, the instances in
one bag have some relationships with each other, WPN-C can preserve partial
original information and has perfect generalization on different datasets.

5.2.3 The Influence of the Number of Iterations
Table 3 lists the accuracy of WPN-T and WPN-C with the different number of
iterations. The number of iterations has a great influence on WPN-T and a little
influence on WPN-C. WPN-C outperforms WPN-T as the number of iterations
increases because too many iterations will abandon too much useful information
and lead to the problems similar to one-shot learning. WPN-C reserves all the
information with different weights of the prototype in each iteration. Based on
the experiment, we conclude that 1 is the best choice of iterations in few-shot
learning for weakly supervised HAR.

Table 3. Accuracy on different number of iterations

Datasets Models 5-shot 1-shot

τ = 1 τ = 2 τ =3 τ = 1 τ =2 τ =3

PAMAP2 WPN-T 62.38 59.01 55.82 45.87 45.81 45.69

WPN-C 65.53 63.86 65.05 49.4 46.67 47.56

UCI-HAR WPN-T 91.3 91.26 91.28 81.56 80.41 79.3

WPN-C 90.13 90.54 91.58 80.83 80.18 80.9

Skoda WPN-T 75.98 74.6 72.72 65.88 64.07 65.76

WPN-C 80.17 77.63 77.89 63.78 63.83 66.09
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6 Conclusion and Future Work

In this paper, we propose a novel and efficient weakly supervised HAR model
WPN to solve the problem of new-class activities recognition from a few noisy
train data after reviewing related work. We propose two strategies, Top-K Pro-
totype Refinement and Cumulative Prototype Refinement, both of which refine
the prototype from the embedding instances to improve the accuracy of instance
classification. The model minimizes the instance-level loss functions to optimize
the network parameters and get the bag-level labels during classification. We
compare our proposals with several existing approaches including supervised
models and weakly supervised models on three benchmark datasets. The per-
formance is evaluated in three aspects, which are accuracy, the influence of the
number of instances, and the influence of the number of iterations. It demon-
strates that our proposals perform better than existing models in accuracy. We
further observe that more instances and smaller number of iterations have a
positive influence on the accuracy of the bag-level classification.

The future work will be focused on the bag-level loss function based on the
relationship between the bag and its instances. The bag-level labels are predicted
directly without inferring the instance-level label. A framework will be proposed
to adaptively determine when should use which prototype refinement strategies
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Abstract. Recent years have witnessed a growing trend of utilizing
reviews to improve the performance and interpretability of recommender
systems. Almost all existing methods learn the latent representations
from the user’s and the item’s historical reviews, and then combine these
two representations for rating prediction. The fatal limitation in these
methods is that they are unable to utilize the most predictive review of
the target user for the target item since such a review is not available at
test time.

In this paper, we propose a novel recommendation model, called GTR,
which can generate the unseen target review with adversarial training for
rating prediction. To this end, we develop a unified framework to combine
the rating tailored generative adversarial nets (RTGAN) for synthetic
review generation and the neural latent factor module (NLFM) using
the generated target review along with historical reviews for rating pre-
diction. Extensive experiments on four real-world datasets demonstrate
that our model achieves the state-of-the-art performance in both rating
prediction and review generation tasks.

Keywords: Recommender systems · Review aware recommendation ·
Generative adversarial network

1 Introduction

A user’s rating indicates his/her attitude towards an purchased item. Rat-
ing prediction aims to predict the user’s ratings on unrated items which may
reflect his/her potential interests on these items. Collaborative filtering (CF)
approaches, which mainly depend on historical ratings, have aroused great
research interests and become the dominant method in recommender systems.
As a typical CF technique, matrix factorization (MF) learns the latent features
of users and items by decomposing the user-item rating matrix, and then uses
these two feature vectors to predict the rating that the user would assign to the
item.
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MF is the most widely used technique for rating prediction. However, MF
based methods suffer from the data sparsity problem and the predicted rating
lacks the interpretability on why the user gives high or low scores. To tackle
these issues, textual reviews have become a key complementary data source to
enhance the performance and interpretation of the rating prediction task [1,
8,20,32]. In particular, due to the power of non-linear combination of different
types of information, impressive progress has been made by applying deep neural
networks to this problem [3,4,6,18,26,33].

The pioneering work by Zheng et al. [33] proposed a DeepCoNN model to
represent both users and items in a joint manner using all the reviews of users
and items. As proven in [3], the target review, which is written by the target user
for the target item, provides much of the predictive value for rating prediction.
The performance of the DeepCoNN model [33] drops severely when the target
reviews are omitted. Indeed, the target review usually contains the target user’s
preference on the target item’s attributes or properties and is closely related to
the rating score. However, the target review will not be available at test time in
real-world recommendation settings. The hereafter studies along this line do not
access the target reviews in the validation and test set at any time to simulate
a real world scenario. Clearly, the inherent limitation in these methods is that
they are unable to utilize the most predictive target review.

In light of this, we propose a novel framework, namely GTR, to generate
the target review for rating prediction. Our model has two distinguishing char-
acteristics. Firstly, we generate the target review with rating tailored generative
adversarial nets (RTGAN) which incorporates the rating into its objective func-
tion in addition to the user’s and the item’s historical reviews. Secondly, we
develop a neural latent factor module (NLFM) to accurately predict the rating
score by learning from the generated target review which encodes the user’s spe-
cific preference on the item. In such a way, the target review naturally provides
guidance for the rating prediction task beyond the above mentioned review-aware
deep recommendation approaches [3,4,6,18,26]. Meanwhile, the rating drives the
RTGAN module to produce a target review conveying consistent sentiment with
the rating score.

We are aware of a few existing studies for generating reviews [5,19,28]
or abstractive tips [15]. However, our GTR model is fundamentally different
from the NRT [15], MT [19], and CAML [5] models, in the sense that all
these approaches do not directly utilize the target review for rating prediction.
Although the neural memory (NM) model proposed by Wang and Zhang [28]
also integrates the target review in their prediction step, we distinguish our
model with NM in both the review generation and rating prediction modules. We
present a conditional GAN architecture for review generation, whereas NM [28]
uses the sequence-to-sequence (seq2seq) [24] generative model. More importantly,
we design a novel neural latent factor model to stress the target review to make
good use of its predictive ability, while NM simply feeds the target review as the
input of rating prediction in the last layer.
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We have realized the proposed GTR model in both the rating prediction and
review generation tasks. Empirical evaluation on four real world datasets proves
that our proposed GTR model ahieves the state-of-the-art performance on both
tasks.

2 Related Work

We summarize the research progress in review-aware rating prediction, catego-
rized by the traditional methods and deep learning based methods. We omit the
classic CF based methods which do not use text reviews.

2.1 Traditional Methods

When integrating review texts, the traditional methods can be roughly classified
into three categories. The first one is to extract useful textual information such as
topics or aspects from review texts and learn latent factors from ratings, and then
link the textual information and latent factors together using linear [2,20,25,31]
or Bayesian combination [17,29]. The second one is by extending the latent factor
model [7,11,21,22,32] to encode the textual influence. The third one is to modify
graphic models to include latent factors from ratings [1,8,27].

2.2 Deep Learning Based Methods

The first type of deep learning based methods only uses historical reviews with-
out generating the target review. These approaches differ mainly in how they
combine reviews with ratings. For example, NARRE [4] jointly learns hidden
latent features for users and items using two parallel neural networks with the
attention mechanism [4]. TARMF [18] adopts a neural network for mutual learn-
ing between reviews and ratings, where the features from reviews are optimized
by an attention-based GRU network. A3NCF [6] extracts features from reviews
using topic models and fuses them with the embeddings from ratings, and it then
captures a user’s attention on the item with an attention network. MPCN [26]
presents a pointer-based co-attention mechanism which can extracts multiple
interactions between user and item reviews.

The second type of deep learning based methods generates the target review,
but not all of them exploits the predictive ability of the target review. As we have
illustrated this issue in the introduction section, here we discuss these methods
on how they generate target reviews. NRT [15] is mainly for the purpose of
enhancing explainability by generating tips based on a standard generative model
with the GRU architecture. NM [28] adopts the seq2seq modeling [24] technique
for review generation. Meanwhile, MT [19] uses an adversarial training process
which helps overcome the problem of exposure bias in seq2seq models.

Our proposed GTR model falls into the second type of deep learning based
methods. Similar to MT [19] in this type, our model also employs GAN for review
generation. However, our model incorporates rating as one of the conditions in
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both the generator and discriminator, whereas MT relies purely on reviews.
More importantly, MT adopts a traditional MF method for rating prediction,
which does not take the target review into consideration. In contrast, our GTR
can fully utilize the target review with a carefully designed neural latent factor
model.

3 Problem Definition

This section presents the problem definition and notations. Let U be a user set
and I be an item set, and D be a review set on the items in I written by a set
of users in U . Each review dui written by user u on item i has an accompanying
rating rui indicating u’s overall satisfaction towards i. We refer to all historical
reviews written by the user, i.e., except that on item i, as the user’s historical
review document du. Similarly, the set of historical reviews on item i, except the
one written by u, is referred to as the item’s historical review document di. Each
training instance is denoted as a sextuple (u, i, dui, rui, du, di). The goal is to
predict a rating r̂ui and learn a synthetic target review sui for each item i that
u does not interact with.

For ease of presentation, we summarize the notations in Table 1.

Table 1. Notations used in this paper

Variable Interpretation

U User set

I Item set

R Rating set

D Review set

u ∈ U A user u ∈ U
i ∈ I An item i ∈ I
rui ∈ R User u’s rating on item i

dui ∈ D User u’s review on item i

du ⊂ D User u’s all reviews except dui

di ⊂ D Item i’s all reviews except dui

r̂ui User u’s predicted rating on item i

sui User u’s generated review on item i

4 Our Proposed Model

In this section, we introduce our proposed model. We begin with the overall
architecture and then go to the details of two modules.
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4.1 Model Overview

Our model consists of two modules. One is the rating tailored GAN (RTGAN),
which takes the rating as an important condition in the generator and the dis-
criminator of GAN for review generation. The other is the neural latent factor
module (NLFM) that leverages the generated target review along with the histor-
ical reviews for ration prediction using a neural network. The overall architecture
of our model is shown in Fig. 1.

Fig. 1. The architecture of our GTR model

4.2 Rating Tailored GAN (RTGAN) Module

We have two basic assumptions for generating the synthetic target review sui.
Firstly, sui should reflect the user u’s preferences and the item i’s features. Sec-
ondly, the sentiment expressed in sui should be consistent with the rating score
rui. Following these assumptions, we design our rating tailored GAN (RTGAN)
module conditioned on three types of information: 1) the user’s historical review
document du to capture u’s preferences, 2) the item’s historical review document
di to represent i’s features, and 3) the rating rui of the user u to the item i to
serve as a constraint. During training, we learn a generator G using three types
of condition information to produce a synthetic review, and a discriminator D
to distinguish it with the real one.

4.2.1 Condition Information Encoder
We first introduce the condition information encoder (the left grey part in
Fig. 1). It maps three types of condition information into user’s general prefer-
ence embedding gu, item’s feature embedding gi, and the rating embedding hui.

We take the process of mapping user’s review document du to his/her pref-
erence embedding gu as an example. Each word in du is randomly initialized
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as a d dimensional vector, and each review in du is transformed into a matrix
with the fixed length T (padded with 0 if necessary). Since the text processing
is not the focus of this study, we take the same TextCNN [4] approach to encode
each review in du. Essentially, TextCNN can be summarized as a CNN structure
followed by an attention mechanism. The convolution layer consists of m neu-
rons. Each neuron is associated with a filter K ∈ R

t×d which produces features
by applying convolution operator on word vectors. Let Vul be the embedding
matrix corresponding to the lth review in du, the jth neuron in CNN produces
its feature as:

zj = σ(Vul ∗ Kj + bj), (1)

where ∗ is convolution operator, bj is bias term and σ is a nonlinear RELU
activation function. We then apply a max-pooling operation to obtain the output
feature oj corresponding to this neuron. By concatenating the output from all
m neurons, the convolution layer can produce the embedding oul of the review
dul as:

oul = [o1,o2,o3, ...,om], (2)

After getting the embedding for each review in du, the attention mechanism
is adopted to get the weights for these reviews. The attention aul for review dul
is defined as:

a∗
ul = hT

a ReLU(WOoul + Wiiul + b1) + b2, (3)

where ha ∈ R
t, WO ∈ R

t×k1 , Wi ∈ R
t×k2 , b1 ∈ R

t, b2 ∈ R
1 are model param-

eters, iul ∈ R
K is the embedding of the item which the user write this review

for.
A softmax function is used to normalize the above a∗

ul to get the final atten-
tion aul. The user’s u general preference embedding gu is then calculated as the
attention weighted sum of all reviews dul ∈ du, i.e.,

gu =
∑

l=1,...|du|
auloul (4)

The process of mapping item’s review document di to its feature embedding
gi is all the same. Hence we have:

gi =
∑

l=1,...|di|
ailoil (5)

The mapping from the original rating rui to an one-hot embedding hui is
straight-forward. We simply discretize the rating rui into a m-dimension vector
(m = 5 in our case). If the value falls into an interval, the corresponding dimen-
sion is set to 1 and other dimensions are set to 0. For example, a rating rui = 3.78
will be mapped into a hui as (0, 0, 0, 1, 0)T . Note that the rating rui is known
only in training. During validation or test, we will use a basic rating from NLFM
module instead. The detail will be given later.

4.2.2 RTGAN for Target Review Generation
A good number of generative methods have been proposed for text genera-
tion in recent years, such as seq2seq [24] based models, SeqGAN [30], and
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RankGAN [16]. Since the reviews are usually long (with average length > 40),
we adopt the state-of-the-art LeakGAN [9] model to generate reviews in this
paper, and extend it by incorporating three types of condition information into
both the generator and the discriminator.

Conditional Generator. Starting from the random state, LeakGAN generates
texts via the adversarial generation of synthetic texts against real texts. This
implies that, if simply adopting LeakGAN in our model, the generated reviews
are only ensured to be written in a human-like style. However, we need to gen-
erate the target review that is written by a specific user for a specific item.

In order to provide additional information for guiding the target review gen-
eration, we incorporate LeakGAN with the conditional GAN by taking three
types of information as the condition of the generator in LeakGAN. We call the
combination of these three types of information as a condition vector cui, and
define it as:

cui = gu ⊕gi ⊕ (Wr ∗ hui), (6)

where Wr is a mapping matrix to transform the sparse hui to a dense vector.
Similar to many text generation methods [9,19], we employ a decoder GRU

to iteratively generate a review word by word. Different from these methods,
the decoder layer in our RTGAN module is conditioned on cui, which is the
combination of three types of information. By doing so, our generator produces
a synthetic target review that reflects not only the user u’s preferences but also
the item i’s features. Moreover, the sentiment contained in the synthetic review
is also forced to match the rating score.

To ensure that the condition information is maintained during the generation
process, the condition vector cui is concatenated with the word vector before it
is fed into the decoder GRU at each time step. Suppose xt is the embedding
for the current word being processed at time step t, the concatenated vector
x

′
t = cui ⊕xt is input into the decoder GRU to get the hidden state ht. And

then, the hidden state ht is multiplied by an output projection matrix and passed
through a softmax over all the words in the vocabulary to obtain the probability
of each word in the current context. Finally, the output word yt at time t is
sampled from the multi-nominal distribution through a softmax layer.

The difference between the generator in our RTGAN module and that in
LeakGAN is that, our generator is conditioned on the additional information
as discussed above. For learning, we follow the generator training method in
LeakGAN [9] by adopting a hierarchical architecture to effectively generate long
texts.

Briefly, the hierarchical generator G consists of a high-level MANAGER mod-
ule and a low-level WORKER module. At each step, the MANAGER receives a
leaked feature vector ft (which is the last layer in discriminator D), and uses ft
to form the guiding goal vector gt for the WORKER module. Compared to the
scalar classification probability of D, the leaked feature vector ft is a much more
informative guiding signal for G, since it tells what the position of currently-
generated word is in the extracted feature space.
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The loss for the MANAGER module is defined as:

LGM = −
∑T

t=1
Q(ft,gt) ∗ dcos(ft+c − ft,gt), (7)

where Q(ft,gt) is the expected reward (the classification probability output by
D) under the current policy, and dcos represents the cosine similarity between the
change of leaked feature representation of discriminator after c-step transition
(from ft to ft+c) and the goal vector gt, and T is the maximum sequence length
we set for review. The loss function aims to force the goal vector to match the
transition in the feature space while achieving high reward. Meanwhile, the loss
for the WORKER module is defined as:

LGW = −
∑T

t=1
rIt · p(yt|st−1, cui), (8)

where p(yt|st−1, cui) denotes the conditional generative probability of the next
token yt given a sequence st−1 = [y0, y1, ..., yt−1] and the condition vector cui in
WORKER module. rIt is the intrinsic reward defined as:

rIt =
1

c

∑T

i=1
dcos(ft − ft−i,gt−i) (9)

The objective in G is to minimize LGM
and LGW

in two modules, which are
alternatively trained while fixing the other.

Conditional Discriminator. The discriminator learns to distinguish the ground-
truth review dui from the synthetic one sui. We adopt the same CNN structure
in the generator to process review texts, and we can get the embedding dui

for dui and sui for sui, respectively. Different from the discriminator that only
distinguishes between the real and the synthetic one, our discriminator needs to
determine whether the review is related to the user and the item, and whether
the review is written by the user for this item. Therefore, we take the condi-
tion information cui into account in the discrimination as well. The loss for the
discriminator D is defined as:

LD = −(log(D(dui|cui)) + log(1 − D(sui|cui))), (10)

where D() is the probability function computed by applying a softmax layer to
the concatenation of dui/sui and cui. The objective in D is to maximize the
probability of classifying the ground-truth review as positive, and to minimize
the probability of classifying the synthetic one as authentic.

The training of G and D in RTGAN module is an adversarial process. The
goal of generator is to produce the most indistinguishable synthetic reviews to
fool the discriminator, while the discriminator aims to distinguish synthetic and
ground-truth reviews as much as possible. Hence we iteratively train G and D
to reach an equilibrium.
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4.3 Neural Latent Factor Model (NLFM) Module

Inspired by the neural latent factor models in [4,10], we propose our NLFM
module by extending these neural models in the following ways. Firstly, we rep-
resent general latent factors of user and item merely based on historical reviews
without ratings. Secondly, we extend to exploit the special latent factors which
encode the user’s preference on the item in the target review.

Specifically, the embeddings of user preferences and item features, i.e., gu and
gi, are passed from the RTGAN module, and then we map them with a hidden
layer to get the general latent factors of user and item. To obtain the special
latent factors, we transform the target review dui (sui when testing) through a
CNN structure and a hidden layer as follows:

pu = tanh(Wsu ∗ CNN(dui) + bsu), (11)

pi = tanh(Wsi ∗ CNN(dui) + bsi), (12)

where CNN() is a convolutional neural network that maps the target review dui
into a feature vector, and Wsu, Wsi are the projection matrices and bsu, bsi are
biases.

Combining the general and special latent factors together, we can obtain the
user’s and item’s overall representations:

fu = tanh(Wgu ∗ gu) + tanh(Wpu ∗ pu), (13)

fi = tanh(Wgi ∗ gi) + tanh(Wpi ∗ pi), (14)

where Wgu, Wpu, Wgi, Wpi are weight matrices.
We then pass these two overall representations fu and fi to a prediction layer

to get a real-valued rating r̂ui:

r̂ui = fTu fi + bu + bi + b, (15)

where bu, bi, and b denotes the user bias, item bias and global bias, respectively.
Clearly, our predicted rating r̂ui encodes the general user interests and item
features as well as the user’s specific interest on this item.

Since rating prediction is actually a regression problem, a commonly used
squared loss is adopted as the objective function for our NLFM module:

Lr =
∑

u,i∈U,I
(r̂ui − rui)

2, (16)

where U , I denotes the user and item set respectively, and rui is the ground-truth
rating assigned by u on i.

4.4 Training and Prediction

We iteratively train the RTGAN and NLFM modules. Since these two modules
share the parameters in the historical reviews encoder layer, the parameters will
be iteratively updated.
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At the time of validation and testing, we first get a basic rating using the
user’s and item’s embeddings saved in NLFM after training. We then input
this basic rating as a condition to RTGAN to generate the synthetic target
review. Finally, the generated review is fed into NLFM to get the final rating
score. Note that though we add the RTGAN module in order to generate and
utilize the synthetic review, the rating prediction task in our GTR model can
be performed offline like MF methods.

5 Experiments

5.1 Experimental Setup

Datasets We conduct experiments on two publicly accessible data sources: Ama-
zon product review1 and Yelp 20172. We use three of product categories in Ama-
zon: Patio, Lawn and Garden, Automotive, and Grocery and Gourmet Food. We
take the 5-core version for experiments following the previous studies [4,6,26].
In this version, each user or item has at least 5 interactions. For all datasets, we
extract the textual reviews as well as the numerical ratings to conduct experi-
ments. The basic statistics of the datasets are shown in Table 2.

Table 2. Statistics of the datasets

Datasets Users Items Ratings Sparsity

Garden 1686 962 13272 0.9918

Automotive 2928 1834 20473 0.9962

Grocery 14679 8711 151254 0.9988

Yelp2017 29406 39643 1239518 0.9990

Evaluation Metrics. For rating prediction, we employ MAE [15] and MSE [19,26,
28] as evaluation metrics. For review generation, we report the results in terms
of negative log-likelyhood (NLL) [9,30] and ROUGE-1 [15,28]. All these metrics
are widely used in text generation and recommendation systems.

Compared Methods. We compare our GTR model with the following state-of-
the-art methods.

SentiRec [12] first encodes each review into a fixed-size vector using CNN
and then generates recommendations using vector-encoded reviews.

MPCN [26] exploits review-level co-attention mechanism to determine the
most informative reviews and gets the representations of users and items.

A3NCF [6] designs a new topic model to extract user preferences and item
characteristics from review texts and then feeds them into a neural network for
rating prediction.
1 https://jmcauley.ucsd.edu/data/amazon/html.
2 www.yelp.com/datasetchallenge/.

https://jmcauley.ucsd.edu/data/amazon/html
www.yelp.com/dataset challenge/
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ALFM [7] develops an aspect-aware latent factor model where a new topic
model in integrated to model user preferences and item features from different
aspects.

NARRE [4] processes each review using CNN and adopts attention mech-
anism to build the recommendation model and select useful reviews simultane-
ously.

TARMF [18] adopts attention-based RNN to extract textual features and
maximizes the similarity between latent factors and textual features.

MT [19] jointly learns to perform rating prediction and recommendation
explanation by combining MF for rating prediction and SeqGan [30] for review
generation.

NRT [15] uses MF and generation networks to combine ratings, reviews, and
tips for rating prediction and abstractive tips generation.

NM [28] uses a single neural network to model users and products, and
generates customized product representations using a deep memory network,
from which customized ratings and reviews are constructed jointly.

CAML [5] uses an encoder-selector-decoder architecture to model the cross
knowledge transferred for both the recommendation task and the explanation
task using a multi-task framework.

In addition to the above baselines, we propose two variants for MT and our
GTR models. Specifically, MT-lg replaces SeqGan [30] in the review generation
module of MT [19] with LeakGan [9] in our model to exclude the potential
influence caused by using different generation models. GTR-r removes the rating
condition from the generation module in our GTR model to investigate the effects
of our rating tailored GAN.

We do not compare our model with other methods like DeepCoNN [33] and
TransNet [3] using reviews for rating prediction, neither with the traditional
methods like NMF [14], FM [23], and NeuMF [10] which do not use reviews.
These methods have been shown to be weaker than the baselines [7,18,26] used
in our experiments, thus we only show improvements over the baselines.

Parameter Settings. Each dataset is divided into 80%/10%/10% splits for train-
ing, validation, and testing, respectively. We train the model on the training set
and tune the hyper-parameters on the validation set. The ground-truth reviews
in the training set are used for training the model. Note that those in validation
or testing sets are never accessed. Instead, only the generated target reviews are
used for validation or testing.

The parameters of all baselines are the same as those in the corresponding
original papers. For our GTR model, we set dimensionality to 32 for all embed-
dings of users, items, and word latent factors. In review generation, the maximum
review length T is set to 40 words, and other parameters such as the kernel size
of CNN are the same as those in LeakGAN. We use Adam [13] for optimization.
We set learning rate = 0.002, minibatch size = 64, and dropout ratio = 0.5 for all
the datasets.
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Table 3. Rating prediction performance in terms of MAE and MSE. The best results
are in bold and the second best ones (except those in our GTR-r variant) are underlined.
- and * denote significant difference according to paired t-test between our model and
each baseline for p < 0.05 and p < 0.01, respectively.

Garden Automotive Grocery Yelp

MAE MSE MAE MSE MAE MSE MAE MSE

SentiRec 0.833∗ 1.067∗ 0.637∗ 0.824∗ 0.742∗ 1.014∗ 0.926∗ 1.371∗

MPCN 0.852∗ 1.166∗ 0.576∗ 0.815∗ 0.821∗ 1.904∗ 0.902∗ 1.286∗

A3NCF 0.793∗ 1.035∗ 0.696∗ 0.823∗ 0.777∗ 1.020∗ 0.846∗ 1.137∗

ALFM 0.749∗ 0.984∗ 0.631∗ 0.772∗ 0.746∗ 1.001∗ 0.828∗ 1.096∗

NARRE 0.772∗ 0.990∗ 0.621∗ 0.781∗ 0.743∗ 0.997∗ 0.819∗ 1.105∗

TARMF 0.832∗ 1.103∗ 0.730∗ 0.868∗ 0.775∗ 1.073∗ 0.849∗ 1.196∗

MT 0.848∗ 1.112∗ 0.747∗ 0.879∗ 0.769∗ 1.015∗ 0.852∗ 1.191∗

MT-lg 0.799∗ 1.074∗ 0.701∗ 0.851∗ 0.762∗ 1.005∗ 0.855∗ 1.148∗

NM 0.810− 1.181− 0.602− 0.829− 0.724∗ 1.020∗ 0.819∗ 1.116∗

NRT 0.874∗ 1.109∗ 0.769∗ 0.814∗ 0.868∗ 1.174∗ 0.912∗ 1.127∗

CAML 0.742 1.023∗ 0.625∗ 0.775∗ 0.704 0.979 0.815− 1.089∗

GTR-r 0.750 0.972 0.602 0.767 0.737 0.994 0.821 1.091

GTR 0.743 0.955 0.566 0.754 0.706 0.981 0.808 1.073

5.2 Rating Prediction

The results of all methods for rating prediction are presented in Table 3. (1) The
upper six rows from SentiRec to TARMF are the first type of review-aware rating
prediction methods which do not generate target reviews. (2) The middle five
rows from MT to CAML are the second type which generates target reviews/tips.
(3) The last two rows are our GTR model and its variant. From Table 3, we have
the following important observations.

Firstly, our GTR model statistically significantly outperforms all baselines
in terms of MAE and MSE metrics on three of the four datasets. The baselines’
performances fluctuate among different datasets. MPCN, ALFM, and CAML
once becomes the second best in some cases. This shows that it is hard to get
the consistently better performance for one method due to the characteristics of
the different datasets. In contrast, our model achieves the best performance on
Garden, Automotive, and Yelp datasets. CAML is the best on Grocery. However,
the difference between our model and CAML on this dataset is not significant.
All these results clearly demonstrate the effectiveness of our model.

Secondly, among six methods in the first type, ALFM and NARRE are gen-
erally better than other methods. Both these methods differentiate the impor-
tance of each review or each aspect. This infers that a fine-grained analysis on
the reviews has great impacts on the related rating prediction task. Among five
methods in the second type, CAML benefits a lot from the joint training of
two tasks under the multi-task framework. Moreover, NM performs better than
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MT and NRT which only generate but do not integrate target reviews for rat-
ing prediction. Both these clearly show the predictive ability of target reviews.
Our GTR model’s superior performance over NM can be due to our carefully
designed NLFM module, which makes the best use of the target review. The
other reason is that the quality of our generated reviews is higher than that of
NM with the help of rating tailored adversarial learning.

Thirdly, MT-lg is better than the original MT, suggesting the importance of
generative model. On the other hand, GRT-r performs worse than GTR, showing
that rating condition plays a critical role in generating reviews consistent with
rating scores. However, the enhanced MT-lg is still worse than our simplified
version GRT-r. This indicates that our NLFM module performs much better
the matrix factorization model in MT. NRT is designed for abstractive tips
generation, which results in its inferior performance.

5.3 Review Generation

This section evaluates the performance of our GTR model on review generation
by comparing it with the second-type baselines. The results are presented in
Table 4. NLL measures the negative log likelihood of the test data under the
generated language model, and ROUGE-1 counts the number of overlapping
unigrams between each pair of the generated review and the ground truth one.
For NLL, the smaller the better, whereas the larger the better for ROUGE-1.
The best results are in bold and the second best ones (except those in our GTR-r
variant) are underlined.

Table 4. Review generation performance in terms of NLL and ROUGE-1 (R-1)

Garden Auto. Grocery Yelp

NLL R-1 NLL R-1 NLL R-1 NLL R-1

MT 5.74 3.22 4.01 2.95 4.28 5.20 5.19 5.22

MT-lg 5.61 3.25 3.96 2.94 4.30 5.01 5.14 5.31

NM 5.63 3.33 4.06 2.98 4.81 4.40 5.84 6.25

NRT 6.24 0.52 4.34 1.72 4.57 7.51 5.43 6.21

CAML 5.45 4.96 3.28 3.33 3.51 7.57 4.84 7.38

GTR-r 5.68 3.42 3.99 2.74 4.34 4.54 5.08 5.74

GTR 5.51 3.49 3.86 3.01 3.25 7.73 4.99 6.43

From Table 4, it is clear that our GTR model can generate the best or second
best reviews in terms of NLL and ROUGE-1 metrics on all datasets. Moreover,
GTR-r’s results are not as good as GTR. This, once again, demonstrates that
our strategy of taking rating as the condition in GAN helps generate high-quality
reviews. Among the baselines, CAML can generate good reviews with the help
of supervision from the rating subtask under the multi-task learning framework.
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We also find that both NRT and NM perform relatively poorly. The reason might
be that they only adopt the maximum likelihood estimation to generate reviews
without exploiting the adversarial network. On the other hand, MT-lg is better
than MT, indicating that LeakGAN performs better than SeqGAN.

5.4 Case Study

In order to capture more details, we provide several examples in Table 5 to
analyze the relevance between the generated synthetic reviews/ratings and the
real ones.

Table 5. Examples of the predicted ratings and the generated reviews (Ref. denotes
the ground-truth review and rating)

Rating Review

Ref 5.0 last very long time stainless steel very good quality i not
buy another sure use alot

MT 4.25 good want use like another days earth hubby metal very
activity...

MT-lg 4.47 think nice product use buy but still want again skin cool
cold rarely does like...

NRT 4.17 shaped nice seldom introduced so sneak transplanting still
momentum ...

NM 4.33 activity absolutely very well down won cool quality skin
sheath ...

CAML 4.84 bought happy grill test propane ignition roast mind what
built ...

GTR-r 4.68 good product use still some lot not very operate only so
middle ...

GTR 4.85 worked very well very easy use still from some quality rain
not sure good value few days ...

As can be seen, our GTR model gets the highest rating score, i.e., 4.85, which
is very close to the real score. Furthermore, our generated review is suitable to
express the strong positive sentiment reflected by the full credit, and it is most
similar to the real review. We also need to point out that, the words in the
latter half of our generated review are not very accurate. This also happens to
other generated reviews. The reason is that some unrelated words are padded
into the short reviews when training the model to reach the fixed length. Con-
sequently, the network is unable to generate accurate words for the latter part
of the sentence.
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5.5 Parameter Analysis

In this subsection, we investigate the effects of two parameters, i.e., the number
of latent factors and the max length of reviews. We first examine the effect of
the latent factor size in Fig. 2(a) and 2(b). We can see that, with the increase
number of latent factors, the performance could be enhanced since more latent
factors bring better representation capability. However, too many latent factors
may cause over-fitting and result in the decrease of performance.

(a) (b)

(c) (d)

Fig. 2. Performance of different size of latent factor and max length of review.

We then study the effects of the max length of reviews in Fig. 2(c) and 2(d).
When the review length is small, the part of texts that exceeds the specified
length need to be truncated when preprocessing, which will result in a infor-
mation loss. In this case, the smaller the specified length, the more information
is missing, and thus the performance will decrease. When the review length
increases, the reviews which is shorter than the threshold need to be padded.
The irrelevant words padded would bring noises to the model, which will harm
the performance of the model.

6 Conclusion

In this paper, we presented a novel GTR model to leverage the predictive ability
of target reviews. We developed a unified framework to generate target reviews



88 H. Yu et al.

using a rating tailored GAN and to do rating prediction with a neural latent
factor model which well exploits the generated target review besides historical
reviews. We conducted extensive experiments on four real world datasets. Results
demonstrate our model achieves the state-of-the-art performance in both rating
prediction and review generation tasks.

As for future work, one possible direction is to generate target reviews with
variable length. The second is to enhance the interaction between two modules
under the multi-task framework. The third is to develop new approach instead
of extending LeakGAN for review generation, which might be explored as a
separate problem rather than a component in our rating prediction task.
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Abstract. Text semantics similarity measurement is a crucial prob-
lem in many real world applications, such as text mining, information
retrieval and natural language processing. It is a complicated task due to
the ambiguity and variability of linguistic expression. Previous studies
focus on modeling the representation of a sentence in multiple granu-
larities and then measure the similarity based on the representations.
However, above methods cannot make full use of the diverse importance
of different parts in a sentence. To address this problem, in this paper
we propose a neural architecture with hybrid attention mechanism to
highlight the important signals in different granularities within a text.
We first utilize a Bi-directional Long Short Term Memory (BiLSTM)
network to encode each sentence. Then we apply the hybrid attention
mechanism on top of BiLSTM network. To detect the important parts
of a sentence, we adopt a self-attention component to generate sentence
level representations and then measure their relevance with a neural ten-
sor network. To better utilize the interaction information, we devise an
inter-attention component to further consider the influence of one sen-
tence on another when modeling finer granularity interactions. We eval-
uate our proposed method on the task of paraphrase identification using
two real world datasets. Experimental results demonstrate the superior-
ity of this framework.

Keywords: Sentene modeling · Semantic similarity · Deep neural
network · Attention · Bi-directional long short term memory

1 Introduction

Text semantic similarity modeling is a fundamental problem in the field of nat-
ural language processing. It is widely applied in many real world scenarios, such
as paraphrase identification [7], information retrieval [25], question answering [8]
and textual entailment [23]. For instance, in the problem of paraphrase identi-
fication, given a pair of sentences, the task is to first compute their similarity
in term of a score and then determine whether they are paraphrases or not by
comparing to a threshold [4].
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The problem of measuring text similarity is challenging due to the seman-
tic ambiguity and variability of linguistic expression. Traditional approaches use
hand-crafted features i.e. lexicon [36], syntax parsing [6] and machine transla-
tion [17] to map similar sentences together. However, such methods suffered from
the problems of data sparsity, inherent errors in external NLP tools and limited
amount of annotated training data. Recently deep learning based techniques
have been applied in natural language processing [16,30,34,40]. There are also
many studies in the problem of evaluating text semantic similarity and achieved
some major successes. Compared with traditional ML approaches, deep neural
networks can automatically learn patterns from implicit representations with
low-dimensional vectors. Without generality, in this work we will focus on the
case of sentence pair modeling, which is a typical application scenario of text
semantic similarity evaluation. Existing deep learning based methods mainly fol-
low two paradigms: sentence representation learning and local feature matching.

Table 1. An example of sentences

Label Sentence

X She struck a deal with Warner to publish a new album this week

Y1 She canceled the deal with Warner to publish a new album this week

Y2 She canceled the deal with Warner to publish a new album last week
and postpone the date by one week

The first category of studies directly works on sentence representation.
They first learn the representation of two sentences separately and then com-
pute the similarity score between them based on some distance functions, such
as cosine, Euclidean distance and element-wise difference. Examples include
MPCNN [7],Tree-LSTM [29] and Ma-LSTM [20]. However, due to the lack
of interactions, such approaches cannot capture well enough local information
within a sentence. For example, given a pair of sentences X and Y1 in Table 1,
we can see that the keywords such as canceled the deal, this week are crucial
in deciding the relatedness of two sentences. However, by directly representing
a complicated sentence with a single vector, it is difficult to capture such local
information [1].

Another category of studies focuses on local feature matching between sen-
tences. They build the interaction between sentences at finer granularity, such as
SIN [14], DF-LSTM [15] and PWIM [8]. Compared with the first category, these
methods can achieve better results by taking different granularities of interac-
tions between two sentences into consideration. But they just treat all words in
the two sentences with equal importance. In real scenarios, different words or
phrases could play different roles in deciding the semantics of a sentence. There-
fore, they would fail to recognize the varied contributions different parts make
to the composition of sentence. Let us look at sentence Y2 in Table 1. Obviously,
Y2 should be a paraphrase of X and not one of Y1. In order to distinguish the
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semantic between Y1 and Y2, the parts last week, postpone, one week in Y2 should
be highlighted. However, if we treat every word equally, it is very likely to ignore
such important signals and identify these two sentences as paraphrase since they
have many common words e.g. canceled, deal, Warner, publish etc.

In this paper, we propose a new deep neural network based framework
which employ Bidirectional Long Term Short Memory (BiLSTM) network with
Hybrid Attention (HA-BLSTM) for sentence similarity modeling. The attention
model can be described as mapping a query and a set of key-value pairs to an
output, where the query, keys, values, and output are all vectors [31]. With the
help of it, we can compute a representation of the sentence by assigning different
weights to different positions of it to denote the varied importance. Our frame-
work integrates two attention components upon the sentence representation and
adopts effective similarity measurement techniques to evaluate the semantic
similarity.

Firstly, for a single sentence, we adopt a BiLSTM network to generate its
positional representation so as to capture rich contextual information. Next we
propose a hybrid attention mechanism: on one hand, we incorporate a self-
attention component on top of the positional representation of each sentence
to distinguish the importance of different parts so as to enhance the sentence
level representation. Correspondingly, the representation of a single sentence
would be the output of self-attention component. On the other hand, as we need
to measure the similarity between a pair of sentences, the importance of each
part is decided not only by the sentence itself, but also by its partner. Thus we
also devise an inter-attention component which assign a weight to each part in
a sentence considering the influence from its partner. In this way, we can detect
the key information from the interactions in finer granularity. After applying
both attention mechanisms to model the sentence, we apply different similarity
measurement methods on the representation vectors of sentences and use a vec-
tor as the output for both components. Finally, we combine the output of both
self-attention and inter-attention components into a fully connected layer and
obtain the similarity score between two sentences.

We argue that by taking the output of both self-attention and inter-attention
components, we can capture not only the features from different granularities,
but also detect the important parts within each sentence. To justify it, we con-
duct an extensive set of experiments on two real world datasets. Experimental
results demonstrate the effectiveness of our proposed method.

The rest of this paper is organized as follows. We summarize the related
work in Sect. 2. We introduce our HA-BLSTM framework in Sect. 3. We report
the experimental results in Sect. 4. Finally we conclude in Sect. 5.

2 Related Work

Paraphrase Identification. Paraphrase Identification is a typical task of sen-
tence similarity modeling. There is a large body of studies regarding text similar-
ity in database and information retrieval [32,33,37,41,42] It has also attracted
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much attention from the nature language processing community. Ji et al. [11]
used matrix factorization to obtain the representation of sentences and fed them
into a classifier for similarity predication. Kenter et al. [12] devised a feature
interaction based approach to evaluate the short text similarity. Recently many
deep learning based approaches have been proposed to further improve the per-
formance. Socher et al. [27] proposed recursive auto-encoders to model the rep-
resentation of the sentence, phrase and words in a hierarchical manner. Hu et
al. [10] proposed two kinds of architectures to learn the text relevance in differ-
ent granularity. He et al. [7] and Yin et al. [38] designed two CNN-based models
which can extract and match features in different granularities from sentences.
Yin et al. [39] combined CNN and attention model to capture the informative
contents within a sentence.

Attention Based Models. Attention based models have become an effective
mechanism to obtain superior results in a variety of applications. Mnih et al. [19]
integrated attention into RNN model for image classification. Chorowski et al. [3]
applied attention in speech recognition. Attention has also been applied in many
NLP applications. Hermann et al. [9] utilized attention model in the problem of
question answering which help provide richer signals for the matching process.
Rush et al. [24] focused the problem of text reconstruction with the help of
attention weight. Parikh addressed the problem of natural language inference by
assigning an attention layer for text encoding [21]. Recently Vaswani et al. [31]
adopted attention models in the task of machine translation and achieved a very
significant improvement.

LSTM in Sentence Similarity Modeling. The LSTM model has been widely
applied in sentence modeling as it is very effective to model word sequences and
learn contextual information. Tai et al. [29] and Zhou et al. [43] proposed tree-
based LSTM neural network for sentence modeling. Liu et al. [15] devised a
Sentence Interaction Network on the basis of LSTM and applied it in the task
of question answering. Liu et al. [15] proposed DF-LSTM framework to model
the strong interactions of two texts. Chen et al. [2] encoded parsing information
with LSTM model for sentence modeling. Wang et al. [35] adopted two levels of
BiLSTM layers to learn matching steps from multiple perspectives. Such meth-
ods mainly focused on improving the interaction mechanism between sentences
and ignored detecting the important parts within a sentence. Muller et al. [20]
proposed MaLSTM, a Siamese architecture for sentence pair modeling.

There exists a recent study [23] which integrated the attention model into
LSTM to improve the performance of textual entailment task. As this method
used one LSTM network to jointly learn the premise and hypothesis and assigned
attention weight among them, it might lose the sentence level information as it
does not generate a representation for each sentence.

3 Methodology

In this section, we introduce our proposed HA-BLSTM framework. The overall
architecture is shown in Fig. 1. It consists of three layers: representation layer,
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attention layer and output layer. The representation layer takes the word embed-
dings as input and learns the context-aware representation with a BiLSTM net-
work. The attention layer includes both self-attention and inter-attention com-
ponents to assign weights to words within a sentence from different perspectives.
For each components, it first uses BiLSTM network and attention mechanism
to encode the sentence and then adopts a similarity measurement method (e.g.
Neural Tensor Layer/Element-wise operations) to model the interaction of two
sentences. The output layer combined the representative vectors from both com-
ponents in attention layer into a fully connected layer and output the similarity
score.

Fig. 1. The overall architecture of HA-BLSTM

3.1 Representation Layer

Given two sentences X and Y , we first obtain the embedding matrices of them
with pre-trained word embedding. To reach the goal, we first apply an embedding
layer that transforms the sentence into matrix representation. Specifically, we
transform the sentence X into a matrix representation, denoted as Xe ∈ RL×m

as the input of the network, where L and m are the number of words in a sentence
and dimension of word embedding, respectively. We obtain Xe by concatenating
the embedding of words together. The way to construct Xe is rather straightfor-
ward: suppose the text consists of L words, and xi ∈ Rm is an m-dimensional
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vector of the ith word in the sentence. We can get Xe by simply concatenating
them:

Xe = x1 ⊕ x2 ⊕ ... ⊕ xL (1)

where for the whole dataset, L is decided by the longest sentence. We use zero
padding for other shorter sentences to make the length equal.

Then we utilize the Long Term Short Memory (LSTM) network to learn the
sentence representation for each sentence. It has been proved to be very powerful
to learn on data with long range temporal dependencies. Given an input sequence
V = {v1, v2, ...vL}, LSTM computes an output vector sequence with a series of
hidden states. At each time step t, an LSTM layer takes the input vector vt, the
hidden state vector ht−1 and a memory cell vector ct−1 and produces the next
hidden state ht and memory cell vector ct. At t = 1, the parameters h0 and c0
will be initialized to zero vectors. This process is controlled by a set of gates,
i.e. the input gate it, the forget gate ft and the output gate ot, as the transition
function. With the help of forget gate, the model can decide the portion of
information in old memory cells to be discarded. The details are shown in Eq. 2.

it = σ(Wiht−1 + Vixt + bi)
ft = σ(Wfht−1 + Vfxt + bf )
ot = σ(Woht−1 + Voxt + bo)
gt = φ(Wght−1 + Vgxt + bg)

ct = ft � ct−1 + it � gt

ht = ot � φ(ct)

(2)

where all the Wj , Vj and bj (j ∈ i, f, o, g) are the parameters to be learned
during training. σ and φ denote the sigmoid and tanh function, respectively.
And � is the element-wise multiplication of two vectors.

We adopt Bidirectional LSTM (Bi-LSTM) for sentence modeling in this work.
Compared with the single directional LSTM, Bi-LSTM utilizes both previous
and future context with two LSTM networks that run on parallel in opposite
direction: one forward and another backward. At the time step t, we obtain two
vectors denoted as

−→
ht and

←−
ht , respectively. Since

−→
ht and

←−
ht reflect the meaning

of the whole sentence from two directions, we define the hidden vector at time
step t denoted as vt ∈ R2×r by concatenating them:

vt = [
−→
ht ‖ ←−

ht ] (3)

In our framework, we feed Xe and Ye separately into a parameter shared BiLSTM
network. The outputs of BiLSTM at time step t for Xe and Ye are vX

t and vY
t

respectively.

3.2 Attention Layer

Although the BiLSTM network provides rich contextual information in text
representation, it cannot detect the diverse contributions that different parts
make to the overall composition of the sentence. To address this issue, we adopt
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Fig. 2. The attention layer in HA-BLSTM: self-attention

an attention layer on top of representation layer to enable our model to focus on
certain parts of the sentence. The attention layer consists of two components:
the self-attention component helps find important parts within a sentence; while
the inter-attention component focuses on representing the interactions between
two sentences so as to find the relatedness between them. The input of each
component is the output of BiLSTM network of the two sentences. By combining
these two components, we can learn richer information for sentence interaction.

Self-attention Component. As is shown in Fig. 2, the self-attention mech-
anism is applied on the representation of X and Y separately. As X and Y
share the parameter of attention layer, we just introduce the case of X here.
Let HX ∈ R2L×r be a matrix of hidden vectors [vX

1 , vX
2 , · · · vX

L ] produced by the
BiLSTM network. The self-attention mechanism is implemented with a feed for-
ward neural layer and outputs a hidden representation rX . We obtain a weighted
vector α which represent the importance of each word from a non-linear trans-
formation on the projection of positional representation HX itself.

Details are shown in Eq. 4:

N = tanh(W1HX)
α = softmax(W2N)

rX = HXαT

(4)

where W1 and W2 are projection parameters to be learned. The final sentence
representation of self-attention TX

self ∈ Rr is obtained by a non-linear layer:

TX
self = tanh(W3rX) (5)

where W3 is a parameter to be learned.
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Fig. 3. The attention layer in HA-BLSTM: inter-attention

Inter-Attention Component. Though the effectiveness of self-attention
mechanism, it can only detect the importance of different parts within a sen-
tence. As we need to evaluate the degree of matching between two sentences, the
importance of each part in one sentence should also be influenced by the other
sentence. Inspired by this idea, we propose the inter-attention component. As
is shown in Fig. 3, it assigns attention weights to each part of one sentence by
considering the interaction with the other sentence. Similarly, parameters in the
inter-attention component is shared by X and Y . So we only introduce the case
of X as is shown in Eq. 6.

N̂ = tanh(W4HY )

α̂ = softmax(W5N̂)

r̂X = HX α̂T

(6)

where W4 and W5 are projection parameters to be learned and r̂X is the hidden
representation of inter-attention. Different from self-attention, the weight vector
α̂ here models the interaction of HY on HX . This is done by computing α̂
using HY instead of HX in Eq. 8. The final text representation of inter-attention
TX

inter ∈ Rr is:
TX

inter = tanh(W6r̂X) (7)

where W6 is a parameter to be learned.

3.3 Similarity Measurement Layer

After we obtain the sentence level representation TX
self and TY

self ( TX
inter and

TY
inter) from the self-attention(inter-attention) component, we further measure
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the similarity between them. To this end, we utilize several approaches to com-
pute their similarity.

The simplest way is to use the idea similar to the pooling operation in Convo-
lutional Neural Network. We call it as Simple Aggregate. That is, for each position
in the sentence vector, we use the average or the greater one of them to decide
the value of that position in the output vector. Given the output vectors TX and
TY , we compute their element-wise average value Tavg and element-wise max-
imum value Tmax between two vectors. Then the two vectors are concatenated
as the output of an attention component.

Though the simpleness of linear combination, it cannot capture enough
interaction information. We further develop the method of Linear Combina-
tion for the representation vectors of two sentences. We follow the previous
study [29]: given the output vectors TX and TY , we compute the absolute dif-
ference T+ = |TX −TY | and element-wise product T× = TX �TY between two
vectors. Then we concatenate them as the output of an attention component.

According to previous study [26], Neural Tensor Network shows great supe-
riority in modeling complicated interactions between two vectors compared with
traditional ways, e.g. cosine and Euclidean distance. Therefore, we put a neural
tensor layer on top of the self-attention component to model the matching degree
of two sentences.

The tensor layer takes the vectors x = TX and y = TY as input and outputs
a vector to represent their similarity as shown in Eq. 8:

v(x, y) = f(xT M iy + Wxy[
x
y

] + b) (8)

where M i, i ∈ [1, c] is one slice of tensor parameter. Wxy and b are parameters to
be learned. f is a non-linear function. Here we use ReLU as the function because
it can always speed up convergence.

In this work, we empirically design our models as following. For the self-
attention component, we adopt Neural Tensor Network to measure the similar-
ity. For the inter-attention component, we do not apply the neural tensor layer
to model the interaction. Instead, we just use linear combination of the two fea-
ture vectors. The reason is that TX

inter (TY
inter) has already contains interactive

information from its partner. Therefore the simple element-wise operations are
good enough to capture the interaction information. Details of evaluating the
similarity measurement methods are shown in Sect. 4.4 later.

3.4 Output Layer

Finally, we combine the results of attention layer as a vector S and feed it into
the fully connected layer:

S = [v(TX
self , TY

self ), T+
inter, T

×
inter] (9)

On top of the fully connected layer, we further apply Dropout [28] to avoid
overfitting. As is shown in many previous studies, the sentence pair similarity
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computation can be treated as a classification task. Thus we calculate a proba-
bility distribution with a hidden layer and a softmax layer:

p̂ = softmax(WsReLU(S) + bs) (10)

where Ws and bs are parameters in the softmax layer.

4 Evaluation

4.1 Experiment Setup

To evaluate the proposed methods, we conduct experiments on the task of para-
phrase identification using two datasets: PAN and SICK.

The PAN corpus1 is collected from the PAN 2010 plagiarism detection com-
petition. This dataset consists of text documents from Project Gutenberg with
some cases of plagiarism inserted. Each sentence pair is annotated with a binary
label indicating whether they are paraphrase. We use its original split: the sizes
of training and test sets are 10000 and 3000, respectively. The evaluation metric
used on this dataset is accuracy and F1.

The Sentence Involving Compositional Knowledge (SICK) dataset is from
SemEval 2014 competition [18]. It consists of 9927 sentence pairs with 4500 as
training set, 500 as development set and 4927 as test set. Each sentence pair
is annotated with a relatedness score y ∈ [1, 5]. A higher score means closer
relatedness of the two sentences. Following many previous studies, the evaluation
metrics used for this dataset are Pearson’s r, Spearman’s ρ and Mean Squared
Error (MSE).

In the experiments on both datasets, we use pre-trained word embedding
from GloVe [22]. For out-of-box words, we will randomly initialize its embedding
vector within the range of [−0.01, 0.01]. The hyper-parameters are as following:
The dimension of word embedding is 300. The output dimension of LSTM is 64.
The size of hidden layers is 50. The dropout rate is 0.5.

4.2 Training

Next we talk about the settings of training process. Here θ is the parameters to
be learned. m1 and m2 are the cardinality of two training sets, respectively. And
λ is the regularization parameter.

For experiments on PAN, it can be regarded as a binary classification problem.
Then the objective is to minimize the negative log-likelihood:

J(θ) = − 1
m1

m1∑

i=1

log p
(i)
θ (y(i) | x(i)) +

λ

2
‖ θ ‖22 (11)

where x(i) is a pair of texts and y(i) is the predicted label about whether the
pair of texts are similar.
1 http://bit.ly/mt-para.

http://bit.ly/mt-para
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For the SICK dataset, we use the same techniques as [29] to transform the
score of relatedness into a sparse target distribution. For the learned parameters
θ, the predicted distribution with model weight vector θ would be p̂θ. Then
the objective is to minimize the regularized KL-divergence between p̂θ and the
ground truth p.

J(θ) =
1

m2

m2∑

i=1

KL(pi ‖ p̂θ
i) +

λ

2
‖ θ ‖22 (12)

For both datasets, we perform optimization using Adagrad [5] algorithm
with the learning rate 0.01. All the parameters are initialized from a uniform
distribution.

4.3 Results and Discussion

We first compare our method with several state-of-the-art methods: one feature
based method i.e. OoB, four CNN-based methods i.e. ARC-I, ARC-II, MPCNN,
ABCNN, one Recursive Neural Network method i.e. RAE and two RNN-based
methods i.e. MaLSTM and BiMPM. The results are shown in Table 2. For the
compared methods, we obtain the source code from the authors and run them by
ourselves. We can see that our HA-BLSTM achieved the best results. The OoB
method is designed to measure the similarity between short texts. Although it
works well for short text, it fails to capture the inherited structure within a sen-
tence. The CNN methods encode the sentence by aggregating the neighborhood
information with convolution operations. However, their performances are sub-
optimal compared with HA-BLSTM since we adopt attention based mechanism
to recognize important parts that decide the semantic of sentence. Although
ABCNN [39] also integrated attention mechanism, it did not include enough
contextual and dependency information when generating the representation of
sentences. BiMPM [35] is a up-to-date model that integrates self-attention into
LSTM network. Compared with our method, it fails to consider the sentence

Table 2. Results on PAN dataset: accuracy and F1

Model Accuracy F1

OoB [4] 84.4 82.3

ARC-I [10] 61.4 60.3

ARC-II [10] 64.9 63.5

MPCNN [7] 91.5 91.3

ABCNN [39] 90.3 89.8

RAE [27] 89.2 88.8

MaLSTM [20] 93.6 93.5

BiMPM [35] 94.0 93.9

HA-BLSTM 94.4 94.2
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level representation of each sentence. Therefore, it does not perform as well as
our method.

Table 3 shows the results on SICK dataset. For the results of state-of-the-art
methods, we include the methods with best results reported by [20] and [8]. We
can see that our method outperforms all other deep learning based methods
when measured by Pearson’s r. While other LSTM-based methods in Table 3
rely on the dependency parser, our method directly learns the features from the
sentences. PWIM [8] is another method that does not rely on external tools e.g
POS tagging, dependency parsing. It is superior than previous deep learning
based methods because it takes the word level interaction into consideration.
Our HA-BLSTM beats PWIM on all metrics because we adopted inter-attention
to assign weight to different parts when incorporating interactions. The recent
proposed DRCN [13] does not perform well on this task. The reason might be
due to overfitting. Therefore, HA-BLSTM can better capture the key information
in the interactions.

Table 3. Results on SICK dataset: r, ρ and MSE

Model r ρ MSE

LSTM [29] 0.8477 0.7921 0.2949

BiLSTM [29] 0.8522 0.7952 0.2850

Tree-LSTM [29] 0.8676 0.8083 0.2532

MPCNN [7] 0.8686 0.8047 0.2606

AttTree-LSTM [43] 0.8730 0.8117 0.2426

PWIM [8] 0.8784 0.8199 0.2329

MaLSTM [20] 0.8822 0.8345 0.2286

DRCN [13] 0.8796 0.8251 0.2367

HA-BLSTM 0.8825 0.8304 0.2257

4.4 Effectiveness of Proposed Techniques

In this section, we further conducted more experiments to evaluate the proposed
techniques in this paper.
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Table 4. Ablation test on two datasets

Ablation settings PAN
(Accuracy)

SICK
(Pearson’s r)

Full model 94.4 0.8825

Remove attention layer 91.6 0.8641

Remove inter-attention mechanism 92.3 0.8715

Remove self-attention mechanism 92.9 0.8749

Replace similarity measuring with direct
concatenation

90.8 0.8701

Replace BiLSTM with LSTM 94.2 0.8742

We first evaluate the contribution of each component of HA-BLSTM with the
ablation test on the two datasets. We identify 5 major components of our method
and remove one at a time. The results of accuracy (PAN) and Pearson’s r (SICK)
are reported in Table 4. We can see that there is a large drop in the performance
when removing the attention layer. This demonstrates the importance of our
proposed hybrid attention component. By removing only self-attention or inter-
attention component, there is also degradation in different degrees. We further
investigate the similarity measurements for sentence representations. We did
this by replacing the neural tensor layer in the self-attention component and the
element-wise operations in inter-attention component with direct concatenation
of two vectors. Then on both two datasets, the performance drops obviously. It
shows the necessity of applying proper mechanisms for both components.

We then evaluate the different similarity measurement methods for both
intra-attention and inter-attention component. Here we focus on 3 mechanisms
discussion in Sect. 3.2: LC is the simplest way using element-wise average and
max to construct the output vector; LC is the Linear Concatenation method that
combines the result of absolute difference and element-wise product; NTN is the
Neural Tensor Network model [26]. In this experiment, we apply the combination
of above methods on both self and inter attention components and evaluate the
results of accuracy/mean squared error, respectively. The results are shown in
Table 5. From these results, we have the following observations: Firstly, we can
see that applying NTN can improve the performance of interaction in most
cases. This demonstrates the effectiveness of NTN as is consistence of previous
studies. However, applying NTN will also significantly increase the number of
parameters of the whole model. Thus here we need a trade-off when designing
the model. Secondly, we can observe that generally Bil performs better than LC.
And the performance gain is more obvious for self-attention than that of inter-
attention. This phenomenon is reasonable since the inter-attention mechanism
has enabled interaction between two sentences in a finer granularity. We can
see from the results on both datasets that when we apply NTN on the self-
attention component, applying Bil and NTN on the inter-attention component
will not lead to better performance. Meanwhile, it will increase the complexity of
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model. Therefore, we construct the model by using NTN and LC as the similarity
measurement for self-attention and inter-attention components, respectively.

Table 5. Effect of different interaction methods

(a) (Accuracy)

Self
Inter

92.5 92.6 93.0
93.2 93.2 93.1
94.2 94.4 94.4

(b) (Pearson’s r)

Self
Inter

0.8749 0.8773 0.8802
0.8814 0.8816 0.8816
0.8824 0.8825 0.8824

4.5 Case Study

Next we take a pair of sentence from SICK dataset to visualize the assigned
weights of the attention layer. The results of self-attention and inter-attention
are shown in Fig. 4. We can see that with only self-attention, the words
with top-3 attention in sentence X and Y are {man, cutting, paper} and
{person, not, paper}, respectively. Then it seems that they are not relevant due
to the large attention value on “not”. However, with the help of inter-attention,
the weight of “not” is alleviated and the weight of “tearing” increases. There-
fore, this is a more accurate representation of the sentence. The ground truth
of this pair of sentence is 3.1. With only self-attention mechanism, the result
of prediction is 2.545. But by adding the inter-attention mechanism, the result
of prediction becomes 2.920. This is because inter-attention mechanism success-
fully recognizes that the word “not” itself does not make a large contribution in
deciding the relatedness.
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Fig. 4. Visualization of self-attention and inter-attention mechanisms

5 Conclusion

In this paper, we propose a novel LSTM based framework with hybrid attention
mechanism for sentence similarity modeling. Our method utilizes a self-attention
component to find the key part of a sentence so as to generate better sentence
representation. Moreover, we devise an inter-attention layer to further distin-
guish the importance of different parts in a sentence by leveraging the infor-
mation from its partner. Experimental results on the paraphrase identification
task show that our proposed method outperforms state-of-the-art methods on
two popular datasets. For future work, we will generalize our framework to more
tasks, such as question answering, sentence completion and textual entailment.
We also consider extending our framework to measure the similarity between a
short query and sub-parts from documents in information retrieval related tasks.
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21. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention
model for natural language inference. In: EMNLP, pp. 2249–2255 (2016)

22. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP, pp. 1532–1543 (2014)
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Abstract. Estimating the Region of Interest (ROI) for images is a clas-
sic problem in the field of computer vision. In a broader sense, the object
of ROI estimation can be generalized to the bag containing multiple data
instances, i.e., identify the instances that probably arouse our interest.
Under the circumstance without instance labels, generalized ROI esti-
mation problem can be addressed in the framework of Multi-Instance
Learning (MIL). MIL is a variation of supervised learning where a bag
containing multiple instances is assigned a single class label. Though the
success in bag-level classification, when bags contain a large number of
instances, existing works ignore instance-level interpretation which is the
key to ROI estimation. In this paper we propose an instance explainable
MIL method to solve the problem. We devise a generalized permutation-
invariant operator with the idea of utility and show that the interpre-
tation issues can be addressed by including a family of utility functions
in the space of instance embedding. Following this route, we propose
a novel Permutation-Invariant Operator to improve the instance-level
interpretability of MIL as well as the overall performance. We also point
out that existing approaches can be regarded as a special case of our
framework and qualitatively analyze the superiority of our work. Fur-
thermore we give a criterion to measure the linear separability in the
instance embedding space. We conduct extensive evaluations on both
classic MIL benchmarks and a real-life histopathology dataset. Experi-
mental results show that our method achieves a significant improvement
in the performance of both instance-level ROI estimation and bag-level
classification compared to state-of-the-art methods.
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1 Introduction

Estimating the Region of Interest(ROI) [2,3] for images is a classic problem in
the field of computer vision. In a broader sense, the object of ROI estimation
can be generalized to the bag containing any objects that can be embedded, i.e.,
identify the instances that probably arouse our interest, but not only for images.
For example, tissue images consisting of patches of cells for cancer diagnosis
can be considered as bags to be classified. The annotated malignant cells by
pathologists are essential evidence for the diagnose results. In this case, an ROI
algorithm is expected to show whether each cell, i.e., each instance, is malignant
or not. Another example is online shopping. Given a large scale collection of
commodities, users need an algorithm to preliminary screen out the products
that probably arouse their interest. In order to identify the instances we are
interested in, it’s crucial to find a supportive explanation at the instance level,
which has both legal1 and practical significance.

Concretely given a bag containing multiple data instances, the goal is to
identify the instances we are probably interested in, i.e., each instance will be
given a label indicating whether we are interested in it. Except for the instance-
level label, a bag-level label will also be used to indicate whether any positive
instances(instances we are interested in) belong to the bag. The bag-level classify-
ing task is known as Multi-Instance learning (MIL) [5], a variation of supervised
learning where a single class label is assigned to a bag of instances. It is good at
dealing with weakly annotated data where only the ground-truth for bag is given
while the instance label is not accessible. Since there is no assumption about the
order of instances, the bag classifiers are required to be permutation-invariant
to the instances in MIL.

The main goal of MIL is to learn a model to predict the labels for bags. Tra-
ditional studies addressed the task of bag-level classification with feature based
methods, such as Support Vector Machine [1,8] and similarity estimation [4].
Recently, deep neural networks have shown superior performance in many areas
such as document classification [17,20], information extraction [26], because they
can automatically extract features and support end-to-end training. Deep learn-
ing can also bring improvement to MIL [14]. The neural network-based MIL
framework consists of three components [9,21]: Instance Encoder, Permutation-
Invariant Operator (PIO) and Bag Classifier. Details are shown in Fig. 1.

Apparently, instance-level interpretation is crucial to ROI estimation. How-
ever previous MIL approaches are rather lacking in instance interpretability.
As Recently the Attention-based (ATT) PIO [9] approach steps further towards
instance-level explanation by parameterizing the PIO using neural network and
attention mechanism. Specifically, it constructs the bag representation with
weighted averaging of instance representations learned from attention mech-
anism. Intuitively, the attention weights also provide evidence to explain the
instance-level results. However, ATT ignores explanation at the instance-level.

1 According to the European Union General Data Protection Regulation (since 2018),
a user should have the right to obtain an explanation of the decision reached.
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Fig. 1. Bird-view of MIL and deep neural network, from left to right: (1) Instance
Encoder: It is designed task-specifically and can extract the features of each instance to
generate instance representation. (2) Permutation-Invariant Operator (PIO): It aggre-
gates the instance features (gray circle) to generate the bag representation (black cir-
cle); (3) Bag Classifier: It predicts bag label with bag representation

We observe that ATT generates highly skewed importance scores and only
regards very few instances as positive. The performance deteriorates seriously
when the bag contains a large number of instances. Figure 2(b) displays the
example in a real-world colon cancer image task [16]. We can see that the
attention-based approach ATT [9] misses many positive instances in the ground
truth shown in Fig. 2(a). To get enough instance-level interpretation of MIL, we
face the following three challenges:

– How to quantify the representation of instance-level interpretation?
– How to capture the nonlinear factor int instance embedding space?
– How to analyze the effectiveness of a method in the excavation of instance-

level interpretation?

In this paper, we try to gain more understanding in the instance level of MIL
by applying utility functions. Following this route, we propose the Multi-Utility
(MU) Permutation-Invariant Operator that ensembles multiple utility functions
as a solution for more reliable instance explanation as well as bag classification.
Moreover, the previous approach ATT can be regarded as a special case that
employs single utility function which is linear to instance representations. Com-
pared with previous approaches, our approach is able to capture the implicit
non-linearity of dataset and thus can produce high-quality importance weights
that identify more positive instances.

To answer why previous attention-based methods don’t provide good instance
explanation, we employ an auxiliary linear discriminator on instance embedding
space to give a criterion of linear separability in instance embedding space. We
have shown that the linear separability of positive and negative instances are
closely related to the instance explanation performance of previous attention-
based methods. Based on this point of view, our proposed MU captures the
non-linearity in the instance embedding space and generate high-quality repre-
sentations for bags.

To sum up, our contributions are concluded as follows:

– We enhance MIL with instance interpretability to solve the ROI estimation
problem of various data.
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Fig. 2. Attention-based MIL [9] with correct bag-level prediction cannot offer reliable
instance-level explanation with acceptable recall. (a): the ground truth of the positive
instances. (b): instance-level prediction by attention-based MIL (p = 0.80, r = 0.03,
f = 0.06). (c): instance-level prediction by our multi-utility MIL (p = 0.81, r = 0.84,
f = 0.83)

– We propose a brand new method MU PIO to capture the nonlinear factor in
instance embedding space by multiple utility functions.

– We propose an auxiliary linear discriminator as a criterion of the linear sep-
arability for the instance embedding space.

The remaining of this paper is structured as follows. Section 2 lists the related
works of this paper. Section 3 introduces the preliminary knowledge of the MIL.
Section 4 describes our proposed methodology. Section 5 presents the experiment
results. Section 6 gives analysis based on the experiment results. Section 7 con-
cludes the paper.

2 Related Work

In this section we list related work of two fields. Firstly we introduce some
traditional Permutation-Invariant Operators for MIL. Secondly we discuss the
applications of attention in the field of MIL.

Permutation-Invariant Operators for Multi-instance Learning. Previ-
ous work have always employed the parameter-free mean pooling, max pooling or
log-sum-exp pooling as the permutation-invariant operator [6,21]. While it is
guaranteed that PIOs like mean pooling [24] and max pooling [13] are universally
approximated, they fail to explain the MIL instances sufficiently. [11] introduces
Noisy-AND with two global parameters. Those operators have little flexibility to
adjust to the complexity of data.

Attention and Multi-instance Learning. The attention [18] mechanism is
widely used in different fields for its great interpretability and flexibility. It
has been adapted to PIO in many MIL applications: relation extraction [22],
pixel/fine-grained object labeling [12] and image classification [13]. According
to the scores assigned to each instance, it seems much easier to give some
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instance-level interpretation. However the score distribution generated by atten-
tion always gets into the trouble of skewness, and attention-based PIO does not
always guarantee better performance than traditional PIOs such as MAX pool-
ing [13].

3 Preliminary

In this section we introduce some preliminary knowledge, which is the basis
of the paper. Firstly the formal definition of Multi-Instance (MIL) Learning is
presented as follows.

Definition 1. Let X denotes the instance space and Ω = {0, 1} denotes the
binary label set. Given a dataset

⋃m
i=1{(Xi, Yi)}, where Xi =

⋃ni

j=1{xij} ⊆ X (i =
1, . . . , m) is a set of instances called a bag and Yi ∈ Ω is the bag class label, here
xij ∈ X (j ∈ {1, . . . , ni}) is an instance and ni denotes the number of instances
in Xi, the goal is to learn a function S : NX �→ Ω to predict the label for an
unseen bag, where N

X is the collection of all multiple discrete subsets of X [7].
We call this task Multi-Instance Learning.

As an extension to Definition 1, we present the definition of instance-level
hidden label which could be regarded as instance-level interpretation hidden in
MIL framework.

Definition 2. As defined in Definition 1, xij ∈ X (j ∈ {1, . . . , ni}) denotes an
instance. For every instance xij, we define yij ∈ {0, 1} as the hidden label to
indicate whether it triggers the positive bag label Yi,i.e., the bag label Yi is positive
if and only if there exists at least one positive instance label: Yi = maxj=1,...,ni

yij.

Moreover, MIL assumes that there is no dependency or order among the
instances. Thus the target function S : NX → Ω described in Definition 1 need
to possess the permutation invariant property whose definition is as follows.

Property 1. A function f : N
X �→ Ω acting on sets must be permuta-

tion invariant to the order of objects in the set,i.e., for any permutation
π:f({x1, . . . , xI}) = f({xπ(1), . . . , xπ(I)})

MIL models the bag label Y as a Bernoulli distribution with parameter S(X)
of the bag X. For convenience, in the remaining of the paper, we use i as the
iterator for instances in X. It has been proved in the previous work [24] that
any permutation-invariant function has the following decomposition:

S(X) = g(
∑

i

f(xi)) (1)

for suitable transformations f and g. It is shown in another previous work [13]
that the decomposition in Inequation (2) holds for arbitrary ε > 0 and suitable
transformations f and g.

‖S(X) − g(max
i

f(xi))‖ < ε (2)
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Such conclusions about the universal approximation suggest that any
permutation-invariant function can be constructed with three consecutive com-
ponents: (a) instance-level function f , (b) permutation-invariant operator (PIO),
eg the sum operator in Eq. (1) and the max operator in Inequation (2), (c) bag-
level function g. The neural network-based MIL is designed following this idea [9]
and its three components are detailed as follows:

(a) An instance encoding network f : X �→ R
n to obtain the instance embedding

zi = f(xi).
(b) The PIO T between f and g to link the bag and its instances, which are
differentiable to enable gradient descent. The input of PIO T is a bag of instance
representation {zi, ..., zI}(I is the instance number) and the output is the bag
representation z̄.
(c) A bag classification network: g : R

n �→ {0, 1} to make prediction of bag
label Ŷ .
In this framework, PIO is the only part that provides instance-level explanation.
It connects the bag and instance representations by z̄ = T (z1, ..., zI).

We only focus on the form of PIO, (a) and (c) are not in our scope. We
are interested in the form of weighted average z̄ =

∑I
i αizi where the weights

αi are interpreted as the importance of instances. The key issue here is how to
calculates the importance weights {αi, i = 1, ..., I}. Next we will provide the
details of our interpretable PIO.

4 Methodology

In this section, we describe the ATT as of Single Utility PIO and then introduce
our proposed MU as Multiple Utility PIO. Then we optimize the training pro-
cess by randomly dropout of utility functions. Finally, we introduce the linear
discriminator loss as a useful metric to detect when the single utility PIO fails
to capture the non-linearity in the data.

4.1 Attention-Based PIO as Single-Utility PIO

In this section, we describe the proposed PIOs by introducing a generalized
framework. We argue that previous attention-based MIL approaches [9,12] can
be expressed with a particular utility function. The utility function U is defined
by inner-product in the instance embedding space H:

U(ξi) = wT ξ, (3)

where ξ = φ(zi) ∈ H is the instance embedding and φ is a transform. φ takes
all the non-linear parts from zi to ui = U(φ(zi)) and U parameterized by w is
a linear function defined on H. The vector w provides a preferred “direction”
in the instance space. Specifically, instances in that direction get higher utility
values and are more important when predicting the bag label. For example,
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ATT [9] applied a neural network φ that transforms the instance representation
zi to the instance embedding ξi in Eq. (4).

ξi = φ(zi) = tanh(VT zi) ∈ H. (4)

Given utility ui for the i-th instance, the importance score αi can be calcu-
lated by softmax in Eq. (5):

αi = softmax(ui) = exp(ui)/Z (5)

where Z =
∑I

j=1 exp(uj) is the partition function.
We can see that the importance scores αi by ATT are generated based on one

utility function U , which selects only one preferred direction in H. Therefore, the
attention mechanism ATT can be abstracted as single utility function imposed
on the bag of instances. When applied to MIL, the attention weights could be
further interpreted as the importance scores αi > 0 of corresponding instances
(
∑

i αi = 1). Such an interpretation of MIL requires that the attention weight
for each instance is a scalar. More complicated attention models such as multi-
head attention [18] cannot be directly applied to MIL since their output for
each instance is a vector. What is worse, since the utility function is linear, the
performance of such single-utility approaches will be deteriorated when the data
distribution is nonlinear.

4.2 Multi-utility PIO

To capture the non-linearity in H, we further need to fuse multiple utility func-
tions together. To this end, we step from single-utility PIO (i.e. ATT) to multi-
utility PIO. Given K different utility functions Uk, k ∈ {1, ...,K}, we obtain
K utilities u

(k)
i = Uk(φ(zi)) for i-th instance. Our goal is to properly generate

the importance weights αi from u
(k)
i . Since softmax operation is not applied to

set of vectors, we need to provide a generalized format for the multiple utility
framework.

One straightforward solution to reach this goal is to directly average multi-
head attention weights [18]. In this approach, the importance weights are calcu-
lated by Eq. (6).

αi =
K∑

k=1

β
(k)
i /K (6)

This baseline is named as MHATT.
Another alternative method is named by DATT, which replaces one-layer

representation PIO with two-layer one by the following equation:

αi = softmax(
K∑

k

xkβ
(k)
i ). (7)

DATT employs an additional fully-connected layer along with softmax to merge
re-scaled scores from multiple utility functions.
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Next we introduce our generalized framework MU for this problem. Consider-
ing the multiple utility functions independently, we have independent importance
scores β

(k)
i = softmax(u(k)

i ) given the value of k. We define the importance score
αi based on multiple utility functions as the solution of following linear equation
system:

I∑

i=1

αiui = t, s.t.

I∑

i=1

αi = 1, αi ≥ 0, i = 1, ..., I (8)

where the utility vector ui = [u(1)
i , ..., u

(K)
i ] contains K utilities for i-th instance.

And the target vector t = [
∑

i u
(1)
i β

(1)
i , ...,

∑
i u

(K)
i β

(K)
i ] combines all results of

different utility functions together2. Each dimension of t is the weighted average
of the utility values based on the corresponding importance score β

(k)
i . It is

observed that when K = 1, αi = β
(1)
i , softmax in Eq. (5) is the unique solution

of Eq. (8) for all I ∈ N.
However, when K > 1, there might be no solution when t locates out of

the convex hull of {ui}I
i=1. To relax the problem, we use the inner product of

the target vector and normalized utility vector to approximate the importance
score. Similar idea could be found in dynamic routing mechanism of the capsule
network [15]. Hence, given the utilities of i-th instance ui = [u(1)

i , ..., u
(K)
i ], the

importance scores are calculated by Eq. (9).

αi = softmax

(

〈t, ui

‖ui‖〉
)

. (9)

In the experimental part, we will compare MHATT and DATT with our app-
roach MU in benchmark datasets and a real-life dataset. MHATT and MU are
different because merge calculation mechanism is either average or softmax.

Utility Dropout. To optimize the training process of MU PIO, we enforce
every utility function taking effect by randomly dropout at the utility function
level. We assign K i.i.d Bernoulli random variables {ηk}K

k=1 of probability p (in
our case 0.5) for K different utility functions {Uk}K

k=1 respectively. We define
the utility dropout random matrix as Eq. (10)

D = diag(η1, ..., ηK). (10)

This matrix D takes {ηk}K
k=1 as the diagonal. To apply the dropout, we need

to apply this matrix to target vector t. And the importance scores in the train-
ing process are finally computed by applying softmax on 〈Dt, ui

‖ui‖ 〉. The back-
propagation will only update the utility whose value of ηk is 1, thus force every
utility function taking effect independently.

2 Actually Eq. 6 is a special case when t is an all-one vector.
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Algorithm 1 . Training Process of MIL with
MU PIO
Input: training set D =

⋃m
i {(Xi(I × d), Yi(bool))}

Parameters: V (d × n), T (n × K),v(n × 1)

1: Initialize V, T,v
2: for each e ∈ [1, . . . , E] do

3: Draw Db with size b from D
4: GV , GT , Gw = 0, 0, 0

5: for each (Xi, Yi) ∈ Db do
6: Z = tanh(XiV )

7: U = ZT
8: Bij = exp(Uij)/

∑
p exp(Uip)

9: t = (B � U)T1I

10: Normalize U by row and obtain U ′
11: Generate Bernoulli random variables {ηk}Kk=1
12: D = diag(η1, ..., ηK)
13: a = softmax(U ′Dt)

14: Re-scale a to [0, 1]

15: z̄ = ZT a
16: Ȳi = logistic(vT z̄)

17: L = −Yi log Ȳi − (1 − Yi) log (1 − Ȳi)

18: GV = GV + ∇V L
19: GT = GT + ∇T L
20: Gv = Gv + ∇vL
21: end for
22: Update V, T,v by AdamGrad
23: end for

Output: V, T,v

The training process of
MIL with MU PIO is summa-
rized in Algorithm 1. Given a
training date set, the goal is
to optimize three parameters:
two matrices V (d × n), T (n ×
K) and one vector v(n ×
1). We use Adam Gradient
Descent(AdamGrad) as opti-
mization method. Thus Lines
3–4 describe the sampling
process in each epoch. Lines
6–16 are the forward proce-
dure. In line 6, instance rep-
resentations are mapped to
instance embedding space Rn.
Lines 7–8 generate multi-head
attention weights B(I × K)
by multiple utilities stored in
T . In lines 9–13, we compute
the approximate solution of
Eq. (8) and apply the util-
ity dropout mechanism. The
vector a = {α1, . . . , αI}T

stores the instance important
weights and is the key for

instance interpretability. In lines 14–15, we compute the bag representation z̄
and use the logistic function to estimate the probability that bag Xi contains
positive instances. Lines 16-21 describe the formulation of loss function and the
procedure of AdamGrad.

4.3 Discriminator over Instance Embedding Space

Finally we make a qualitative analysis of the superiority of our approach. We
argue that the limited linear separability in H leads to inadequate instance expla-
nation in single utility PIO (ATT). To demonstrate this, we provide an approach
to measure the linear separability experimentally for ATT. In the instance embed-
ding space H, positive instances are expected to have higher utilities. For single
utility PIO (ATT), higher utility means that the instance embedding should have
a large projection on some certain direction (see Eq. (3)). To evaluate the linear
separability in the instance embedding space H, we train a logistic discrimi-
nator D with cross-entropy loss which is generally used as the metric between
distributions:

L = −1
I

∑

i

[yi log(D(ξi)) + (1 − yi) log(1 − D(ξi))] . (11)
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Note that the instance label is used only in Eq. (11) and the weights in the
discriminator are different from w in the utility function in Eq. (3). This dis-
criminator quantifies the non-linearity of the data distribution, i.e., how well the
instances could be linearly separated, in instance embedding space H. It is easy
to see that theoretically, the smaller loss would lead to better instance explana-
tion performance. It is shown that when this loss is large, ATT generates poorly
instance explanation and our MU model has significant advantage. To sum up,
our approach works exactly when the data has strong implicit non-linearity and
cannot be well linearly separated.

5 Experiments

In this section, we systematically evaluate the performance in both bag-level
and instance-level. Firstly, we look at bag-level performance. We demonstrate
how MU outperforms other classic and deep MIL methods on five benchmark
datasets: MUSK1, MUSK2, Fox, Tiger, Elephant, which are first used in [1].
Secondly, we investigate what happens when employing more utility functions.
Since the only difference between ATT and MU is the number of utility functions,
we compare ATT with MU at both bag level and instance level on the MNIST-
bags dataset. MNIST-bags is a controllable artificial MIL dataset generated from
MNIST with balanced positive/negative instances [9]. We change the condition of
the MNIST-bags dataset to discuss the effectiveness of multiple utility functions.
Finally, we further show the advantage of MU on Colon Cancer dataset, which
is a human-annotated histopathology dataset [16] in a real-world scenario. We
open the source code on github3.

5.1 Experiment Setup

For all experiments, we follow the original split of training and test sets and
perform 5-fold cross-validation. All reported results are averaged from 5 evalu-
ations. Some standard deviation is not reported due to the limited space and
the bold value indicates the most significant model. The evaluation metrics are
Precision, Recall, Accuracy, AUC and F1 score.

We want to make further clarification about why not report the instance-
level AUC for the following reasons. For the five MIL benchmark datasets, the
state-of-the-art methods do not support reporting AUC. For the MINST-bags
and Colon Cancer datasets, the reasons are explained as following. Note that
the importance weights αi are re-scaled into ᾱi ∈ [0, 1] as follows:

ᾱi =
αi − mink αk

maxk αk − mink αk
(12)

When the bag label is positive, the instance with higher re-scaled importance
score ᾱi should be assigned an instance label yi = 1. In practice, the classification

3 https://github.com/thu-west/MU-MIL.

https://github.com/thu-west/MU-MIL
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Table 1. Accuracy results on classic MIL datasets. ±: a standard error of a mean.
Bold values indicate the best performance, and the underlined values indicate the best
performance over previous approaches

Model MUSK1 MUSK2 Fox Tiger Elephant

mi-SVM 0.874 0.836 0.582 0.784 0.822

MI-SVM 0.779 0.843 0.578 0.840 0.843

MI-Kernel 0.880± 0.031 0.893± 0.015 0.603± 0.028 0.842± 0.010 0.843± 0.016

EM-DD 0.849± 0.044 0.869± 0.048 0.609± 0.730 0.730± 0.043 0.771± 0.016

mi-Graph 0.889± 0.033 0.903 ± 0.039 0.620± 0.044 0.860 ± 0.037 0.869 ± 0.035

miVLAD 0.871± 0.043 0.872± 0.042 0.620± 0.044 0.811± 0.039 0.850± 0.036

miFV 0.909 ± 0.040 0.884± 0.042 0.621± 0.049 0.813± 0.037 0.852± 0.036

mi-Net 0.889± 0.039 0.858± 0.049 0.613± 0.035 0.824± 0.034 0.858± 0.037

MI-Net 0.887± 0.041 0.858± 0.049 0.622± 0.038 0.830± 0.032 0.862± 0.034

MI-Net+DS 0.894± 0.042 0.874± 0.043 0.630 ± 0.037 0.845± 0.039 0.872± 0.032

MI-Net+RC 0.898± 0.043 0.873± 0.044 0.619± 0.047 0.836± 0.037 0.857± 0.040

ATT 0.892± 0.040 0.858± 0.048 0.615± 0.043 0.839± 0.022 0.868± 0.022

GATT 0.900± 0.050 0.863± 0.042 0.603± 0.029 0.845± 0.018 0.857± 0.027

MHATT 0.889± 0.022 0.900± 0.043 0.627± 0.015 0.831± 0.021 0.830± 0.050

DATT 0.926± 0.011 0.883± 0.024 0.627± 0.061 0.834± 0.042 0.775± 0.027

MU w.o. utility dropout 0.889± 0.064 0.844± 0.120 0.559± 0.044 0.847± 0.017 0.813± 0.076

MU 0.941±0.055 0.913±0.065 0.646±0.025 0.867±0.025 0.879±0.036

is based on a tunable threshold thr. If ᾱi > thr, then yi = 1; Otherwise yi = 0.
Since we cannot access the instance label, the threshold in our study is set as
0.5 without prior distribution knowledge of ᾱi. In this case, AUC score has little
practical significance.

Hyper-Parameter Setting. For all experiments, we adopt the Adam opti-
mizer [10] in the training process with parameters β1 = 0.9, β2 = 0.999.
The weight decay is 0.0005. We conduct grid search to select the best hyper-
parameters as following: The learning rate is selected from [0.01,0.001, 0.0001]
and the number of utility functions is selected from [2,5, 10, 15], where the bold
values are the ones that are applied in most experiments. We train each model
for 100 epoches and take the early-stop criteria as the lowest validation error
and loss.

5.2 Results on Classic MIL Benchmarks

The detailed description of the 5 classic MIL benchmarks is as following. Musk1
and Musk2 are traditional drug-activity datasets. A molecule holds the desired
effect iff it contains a targeted conformation bind. As for the MIL, the bag is a
molecule to be classified. Each instance is a conformation bind described by the
pre-computed features. Fox, Tiger, and Elephant are three image classification
datasets. The positive image is labeled iff it contains the targeted animal (fox,
tiger or elephant). For MIL formulation, each bag is an image containing a set of
image segments of animals. Moreover, pre-computed features are extracted for
each instance (image segments). We focus on the accuracy of bag classification
task.
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Table 2. Bag classification and instance explanation performance on MNIST-bags.
Since we focus on the differences of single utility function and multiple utility functions
under varying dataset conditions, we restrict our comparison within ATT and MU.

size # train model dloss Skewness Bag Classification Instance Explanation

AUC P R F1 A P R F1

10 10 ATT 0.461 0.863 0.625 0.582 0.734 0.645 0.595 0.091 0.318 0.141

MU 0.332 0.245 0.701 0.651 0.646 0.642 0.651 0.192 0.850 0.310

50 ATT 0.267 0.831 0.757 0.790 0.773 0.768 0.616 0.617 0.615

MU 0.222 0.845 0.808 0.751 0.777 0.785 0.477 0.878 0.595

100 ATT 0.239 0.917 0.862 0.846 0.853 0.854 0.814 0.700 0.752

MU 0.153 0.937 0.893 0.860 0.875 0.877 0.672 0.914 0.767

50 10 ATT 0.474 0.710 0.699 0.536 0.596 0.645 0.132 0.492 0.207

MU 0.273 0.772 0.710 0.675 0.690 0.694 0.173 0.832 0.286

50 ATT 0.188 0.957 0.890 0.901 0.893 0.894 0.884 0.237 0.373

MU 0.152 0.972 0.962 0.919 0.940 0.941 0.776 0.750 0.759

100 ATT 0.147 0.989 0.984 0.953 0.968 0.969 0.986 0.262 0.413

MU 0.073 0.993 0.997 0.973 0.985 0.985 0.920 0.801 0.850

100 10 ATT 0.494 0.763 0.737 0.549 0.627 0.678 0.119 0.234 0.149

MU 0.244 0.880 0.789 0.815 0.797 0.796 0.226 0.769 0.333

50 ATT 0.182 0.998 0.990 0.983 0.986 0.986 0.990 0.155 0.269

MU 0.089 0.999 0.998 0.995 0.996 0.996 0.934 0.784 0.852

100 ATT 0.180 0.998 0.997 0.985 0.991 0.991 0.995 0.160 0.276

MU 0.082 0.999 0.999 0.998 0.999 0.999 0.979 0.807 0.885

We compared our method with many successful classic MIL methods: mi-
SVM and MI-SVM [1], MI-Kernel [8], EM-DD [25], mi-Graph [27], miVLAD
and miFV [23]. We also include multi-instance neural network models mi-Net,
MI-Net, MI-Net+DS, and MI-Net+RC [21] as well as the latest attention-based
approach ATT and GATT (ATT with gates) [9] as well as another method
MHATT with multi-head attention [18] introduced before. Besides, we include
two straightforward baselines MHATT and ATT introduced before, as well as
MU without utility dropout. We use the default settings of the baseline meth-
ods. Experiment results are displayed in Table 1.

5.3 Results on MNIST-bags Dataset: Single or Multiple Utility
Functions Under Varying Conditions

For the instance-level task, we focus on the reliability of the interpretation with
the threshold 0.5. The number of test samples is 500. For each case, we evaluate
the trained model at both bag level and instance level. For bag-level task, we
focus on the complete performance of the classifier. We report the precision,
recall, F1, accuracy (with threshold 0.5) and ROC-AUC scores. For the baseline
methods, we use the default settings of [9].

We report the AUC, Precision, Recall and F1 scores of the interpreted posi-
tive instances. For each case, we record the discriminator loss in column “dloss”.
In practice, we choose label ‘9’ as a targeted class. The training and test sets are
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Table 3. Bag classification instance explanation for colon cancer. Skewness of a distri-
ubution is |E(x−μ)3|/σ3/2, where μ and σ are the mean and variance. Larger skewness
indicates more skewed distribution.

Method AUC P (bag) R (bag) F1 (bag) Acc (bag) P (ins) R (ins) F1 (ins) Skewness dloss

Max 0.918 0.884 0.753 0.813 0.824 – – – – –

Mean 0.940 0.911 0.804 0.853 0.860 – – – – –

ATT 0.968 0.953 0.855 0.901 0.904 0.663 0.036 0.064 4.039 0.602

GATT 0.968 0.944 0.851 0.893 0.898 0.633 0.124 0.206 2.571 0.570

MHATT 0.959 0.936 0.906 0.920 0.917 0.659 0.120 0.204 2.560 0.615

DATT 0.982 0.989 0.896 0.939 0.938 0.000 0.000 0.000 0.000 0.676

MU 0.979 0.984 0.938 0.960 0.958 0.644 0.225 0.333 0.370 0.557

sampled from the original MNIST training/test split respectively. The sampling
process is parametrized to generate MIL data of varying conditions. First, The
bag size is controlled by a Gaussian random variable with adjustable mean and
variance. In this way, we adjust the complexity of the bag. Secondly, we con-
trol the size of the training set. The number of training samples also affects the
training process of MIL classifiers. Thirdly, the number of test samples is set to
be much larger than the number of training samples to keep a fair evaluation.
Also, we keep the ratio of positive to negative samples to be 1 in both training
and test sets. Table 2 shows the evaluation results on MNIST-bags dataset.

5.4 Results on Colon Cancer Dataset

This dataset contains 100 tissue images stained by hematoxylin and eosin
(H&E) [16]. There are 22,444 nuclei with human-annotated labels, including
epithelial, inflammatory, fibroblast and miscellaneous. Tagging epithelial cells is
an essential biomedical task since the epithelial cells are highly relevant to the
early stage of colon cancer. The MIL bag is an H&E image. It contains the seg-
mentation where coarse-grained recognized cells are centered in a sub-image of
size 27x27 pixels. The bag is labeled positive if it contains at least one epithe-
lial cell instance. Also, the instance is labeled positive if it is epithelial. In this
experiment, we aimed at evaluating different pooling operations, i.e., mean, max,
ATT, GATT, MHATT, and DATT that serve as PIO. Data preprocessing and the
neural network structure of baselines keep the same with [9,16]. Table 3 presents
the results of bag classification and instance explanation.

6 Dicussion

In this section, we give analysis based on the experiment results from four
aspects.In Sect. 6.1 and Sect. 6.2, we compare MU with other methods in the bag
level and instance level respectively. Section 6.3 presents analysis about dloss
and the skewness score. Section 6.4 discusses the reason of DATT’s collapse on
colon cancer dataset.
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6.1 Bag-Level Analysis

From the results in Table 1, we could see that MU significantly outperforms
state-of-the-art methods, including the attention-based ones on all datasets. The
reason is that it can take advantage of incorporating multiple utility functions,
which shows the advantage of our model at bag level. We can also see that
MU obviously beats that of MHATT and DATT. It demonstrates that simply
averaging the multi-head vectors of instances or adding fully connected layer is‘
not as good as our generalized method, even though DATT has more parameters
to fit. Also, utility dropout is necessary for MU to work efficiently.

According to the results in Table 2, it is observed that our multi-utility app-
roach MU performs the best under most settings. In the case of small mean bag
size (10) and small number of training samples (10, 50), we could see that the
recall of MU is worse than single-utility PIO while the precision is better. The
reason is that due to its larger number of parameters, overfitting occurs on the
extremely limited training data for MU. As a consequence, MU remembers some
certain modes and makes more precise prediction on them while ignores other
possibilities. On the contrary, when training data is sufficient, the multi-utility
model(MU) could fit more complex data distribution and perform clearly better,
which is proven by results in Table 3.

As shown in Table 3, MU has best overall performance with the highest F1

score. DATT has better AUC and precision score but significantly worse recall
score. Given more number of parameters to learn in DATT model, we conclude
DATT does not outperform MU, especially for cancer detection where recall is
more important than precision.

6.2 Instance-Level Analysis

From the results in Table 2, we could observe that under all settings MU has
the best results in F1 score. The precision and recall scores of two approaches
behave differently. We conclude such behaviors from three aspects: (1) For ATT
approach, the precision score increases along with both mean size of bag and the
number of training samples. However, given the cardinality of training set, the
recall score decreases with the increasing mean size of bag. Those two contradict-
ing trends make the F1 score improve slowly; (2) For MU approach, all precision,
recall and F1 scores increase along with the mean size of bag and the number of
training samples; (3) When the cardinality of training set is small (e.g., 10), MU
achieves the best precision, recall and F1 scores. As the cardinality increases,
the precision score of MU is slightly lower than ATT while the recall score is
significantly higher. Thus, the overall performance of MU is notably better.

For the Colon Cancer Dataset evaluation, our MU significantly improves the
recall score (about 0.1 ∼ 0.2) and at the cost of no more than 0.02 lower in
precision score compared to the highest one, which is shown in Table 3.
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6.3 dloss and Skewness Analysis

From the results in Table 2, we see that under every dataset condition, MU always
has higher instance recall with lower dloss than ATT. We believe ATT-like single
utility PIO has its intrinsic deficiency of the worse linear-separability
compared to its multi-utility generalization, especially in high-dimension. Here
is our analysis:

We explain the skewness of importance score αi from single-utility (attention-
based) approach by a positive feedback process. The principle is that the impor-
tance score αi acts like a gradient update filter [19] during back-propagation.
Once an instance embedding z

(l)
i is assigned by highest importance score α

(l)
i in

iteration l, its learning rate must be higher than other instances. If the update
in next iteration l + 1 further reduces the loss (this actually happens when one
positive instance is selected correctly in a positive bag), then its importance
score α

(l+1)
i gets even higher. By softmax, small step of ξi towards direction of

w ∈ H (wT (ξ(l+1)
i − ξ

(l)
i ) > 0) will be exponentially amplified in the importance

weights as well as reduce the weight of other instances. Eventually, this process
will further limit the update on other instances. And the model is only trained
on few instances with very high importance scores. Insufficient training of most
instances in single utility function model is responsible for the higher dloss,
which results in the low recall.

Empirical results support this explanation. Firstly, the instance-level recall
largely drops with the increase of mean bag size. This means that the impor-
tance score is highly skewed. Secondly, given dataset condition, the discriminator
loss of MU is much less than ATT. This loss shows that the instance encoder
network is not fully trained on all instances with single-utility PIO. So the data
distribution in the instance embedding space H gets more disordered. On the
contrary, MU mildly filters the back-propagated gradient by the redundancy of
utility functions.

In Table 3, the dloss as well as skewness score reveals the superiority of MU
again. We could see that MU has lowest skewness despite of the collapsed DATT
model. This explains why MU has highest recall score. Also, MU has the lowest
dloss than all other attention based PIOs. Compared to single utility ATT and
GATT PIOs, MU makes the instances more linearly separable with more utility
functions. Compared to other multiple-utility baselines MHATT and DATT, only
our approach reduces dloss. We see MHATT and DATT increased dloss.
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6.4 DATT Collapse Analysis

Fig. 3. The weights of DATT decayed with
training (

∑
k x2

k in Eq. (7))

Interestingly, from the results in
Table 3 we observe that DATT col-
lapses in experiments. We can see that
the instance-level precision, recall and
F1 scores of DATT are all zeros. We
find the norm of weights in the addi-
tional layer converges to zero dur-
ing training (see Fig. 3), thus leading
to the observed almost same impor-
tance scores (like MEAN PIO, which
is totally not interpretable, resulting
in the collapsed results in Table 3).

This is because the training
dynamics of DATT is totally differ-
ent compared to MU. Intuitively, the

additional layer in DATT gives utility functions that recognize more pos/nag
samples more weights and vise versa. In high-dimensional instance embedding
space, finding some certain direction is extremely hard in probability due to the
high complexity of sampling. So at each update step, most of the random initi-
ated utility functions are penalized with fewer weights. In the figure above, we
see the l2-norm of weights with larger number of utility functions decays faster
and earlier.

As a result, simply stacking more layers like DATT does not improve instance
explanation. We argue that our MU approach is a novel and effective attempt
to handle this problem. Though seems similar to a PIO with more “operations”,
MU’s unique advantage can not be achieved by either adding non-parametric
average MHATT or parametric neural network layer DATT.

7 Conclusion

In this paper, we extend the object of Region of Interest estimation to a wider
range of any objects that can be embedded. We regard it as a problem of Multi-
Instance Learning and introduce a new Permutation-Invariant Operator MU for
MIL. With the help of utility functions imposed on instance space, our approach
naturally generalizes the previous attention-based MIL methods. Our approach
is capable of fitting more complex multi-instance data by leveraging multiple
utility functions, which is more effective than simple adding-layer approaches
MHATT and DATT. We provide a discriminator loss to explain why the previous
attention-based approaches generates skewed importance scores and indicates
the superiority of MU. Empirical results on multiple benchmark datasets show
that our method achieves state-of-the-art performance in both bag-level and
instance-level tasks. Notably, our approach also provides obviously more reliable
instance-level interpretation in real-life weakly labeled tasks, which also indicates
some possible directions for automatic labeling.
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Abstract. Anomaly detection of high-dimensional data is an impor-
tant but yet challenging problem in research and application domains.
Unsupervised techniques typically rely on the density distribution of the
data to detect anomalies, where objects with low density are consid-
ered to be abnormal. The state-of-the-art methods solve this problem
by first applying dimension reduction techniques to the data and then
detecting anomalies in the low dimensional space. However, these meth-
ods suffer from inappropriate density estimation modeling and decoupled
models with inconsistent objectives. In this work, we propose an effective
Anomaly Detection model based on Autoregressive Flow (ADAF). The
key idea is to unify the distribution mapping capability of flow-based
models with the neural density estimation power of autoregressive mod-
els. We design an autoregressive flow-based model to infer the latent
variables of input data by minimizing the combination of latent error
and neural density. The neural density of input data can be estimated
naturally by ADAF, along with the latent variable inference, rather
than through an additional stitched density estimation network. Unlike
stitching decoupled models, ADAF optimizes the same network param-
eters simultaneously by balancing latent error and neural density esti-
mation in a unified training fashion to effectively separate the anomalies
out. Experimental results on six public benchmark datasets show that,
ADAF achieves better performance than state-of-the-art anomaly detec-
tion techniques by up to 20% improvement on the standard F1 score.

Keywords: Anomaly detection · Flow-based model · Neural density
estimation · Deep learning

1 Introduction

Anomaly detection is a fundamental and hence well-studied problem in many
areas, such as cyber-security [26], manufacturing [19], system management [16],
and medicine [7]. Anomaly detection, also known as outlier detection, is to iden-
tify the objects that significantly differ from the majority of objects in the data
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space. In general, normal data is large and consistent with certain distribution,
while abnormal data is small and discrete; therefore anomalies are residing in
low density areas.

Although great progress has been made in anomaly detection in the past
few decades, anomaly detection for high-dimensional data is still a huge chal-
lenge. Due to the dimensional disaster, it is increasingly difficult for traditional
density estimation models to implement density estimation in the original data
space. But unfortunately for a real-world problem, the dimensionality of data
could be very large. To address this challenge, a two-step framework is usually
applied into high-dimensional data [5,12]. It first performs dimensionality reduc-
tion on high-dimensional data and then detect anomalies in the low-dimensional
space. In recent years, deep learning has achieved great success in anomaly detec-
tion [6]. Generative adversarial networks (GANs) [13] and autoencoder [30] and
their variants have been widely used for anomaly detection, such as variational
autoencoder (VAE) [1], and adversarial autoencoder (AAE) [21]. The core idea of
these methods is to encode input data into a low dimensional representation, and
then decode the low dimensional representation into the original data space by
minimizing the reconstruction error. In this process, the essential features of the
original data are extracted in latent data space through training autoencoder,
without noise and unnecessary features. Several recent studies have applied this
structure into practical problems. For example, DAGMM [31] combines deep
autoencoder and Gaussian mixture model (GMM) in anomaly detection. How-
ever, the real-world data may not only have high dimensions, but also lack a
clear predefined distribution (e.g., GMM). Manual parameter adjustment is also
required in GMM when modeling the density distribution of input data, which
has a serious impact on detection performance. Additionally, all these methods
based on two steps have two main limitations: (1) the loss of information in origi-
nal data is caused by the irreversible dimensionality reduction. (2) the decoupled
models of dimensionality reduction and density estimation are easily trapped in
local optima during training.

Recently, several flow-based models are proposed to generate data and have
proved to be successful in many fields, such as Parallel WaveNet [20] for speech
synthesis, and Glow [17] and NICE [9] for image generation. Flow-based models
map original data to a latent space so as to make the transformed data conform
to a factorized distribution, i.e., resulting in independent latent variables. This is
a revertible non-dimensional reduction process, meaning that there is no loss of
information. Compared with GANs and VAEs, which have shown great success
in the field of high-dimensional data anomaly detection, flow-based models have
not received much attention. Nevertheless, flow-based models possess the follow-
ing advantages: First, flow-based models perform exact latent variable inference
and log-likelihood evaluation. VAEs can only infer the approximate value of the
latent variable corresponding to the input data point after encoding. GANs have
no encoder at all to infer the latent variable. In reversible generative models like
Glow [17], exact inference of latent variables can be achieved without approxi-
mation, and the exact log-likelihood of the data also can be optimized, instead
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of a lower bound of it. Second, flow-based models are efficient to parallelize for
both inference and synthesis, such as Glow [17] and RealNVP [10]. Third, there
is significant potential for memory savings. Computing gradients in reversible
neural networks requires a certain amount of memory, instead of linear in their
depth. The fourth is natural neural density estimation. Autoregressive models
and normalizing flows are the main members of the family of neural density
estimation. The neural density of input data can be estimated while inferring
latent variable.

In this paper, we propose an effective Anomaly Detection method based
on Autoregressive Flow-based generative model, called ADAF, which is a deep
learning framework that addresses the aforementioned challenges in anomaly
detection from high-dimensional datasets. ADAF is a neural density estimation
model, which unifies the distribution mapping capacity of flow-based model with
the density estimation power of autoregressive model to provide a neural density
estimation of high-dimensional data for effectively identifying anomalies. First,
we design an autoregressive flow-based model to infer the latent variables of
input data by minimizing the combination of latent error and sample neural den-
sity. Second, neural density of input data can be estimated naturally by ADAF,
which is totally different from traditional surrounding point-based density esti-
mation. The neural density of a data point is calculated directly along with the
latent variable inference and log-likelihood evaluation, rather than through an
additional stitched density estimation network. Finally, ADAF is an absolute
end-to-end model that optimizes both latent error and neural density estima-
tion simultaneously for the same network parameters, which avoids getting into
local optima.

We conduct comprehensive experiments on six public benchmark datasets
to valuate the effectiveness of our proposed model. ADAF is significantly better
than state-of-the-art methods by up to 20% improvement in standard F 1 score
for anomaly detection. It is worth noting that ADAF achieves better results with
fewer training samples compared to existing methods based on deep learning.

To summarize, we make the following contributions:

– We propose a deep anomaly detection model based on autoregressive flow for
anomaly detection from high-dimensional datasets.

– We propose to combine the latent error and neural density together to opti-
mize latent variable inference and log-likelihood estimation simultaneously in
autoregressive flow model for effectively identifying anomalies.

– We conduct extensive evaluations on six benchmark datasets. Experimental
results demonstrate that our method significantly outperforms state-of-the-
art methods.

2 Related Work

In recent years, varieties of studies focus on anomaly detection in data mining
and machine learning [11]. Distance-based model [18] detects anomalies through
global density criterion. Density-based methods [4,27] uses local relative density
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as anomaly criterion to detect anomalies. Several studies [15,25] apply KDE
into density-based local outlier detection to improve the detection accuracy.
However, such methods rely on an appropriate distance metric, which are only
feasible for handling low-dimensional data, but not for anomaly detection of high
dimensional data. One-class classification approaches trained by normal data are
widely used for anomaly detection, such as one-class SVMs [8] and SVDD [22].
The core of these methods is to find a decision boundary that separates abnor-
mal data from normal data. Another category of anomaly detection framework is
mainly based on reconstruction errors to determine whether a sample is anoma-
lous, such as conventional Principal Component Analysis (PCA), kernel PAC,
and Robust PCA (RPCA) [5,14].

Recently, varieties of anomaly detection methods based on deep neural net-
works are proposed to detect anomalies [6]. GANs, Autoencoder and their vari-
ants have been widely used in anomaly detection, especially for high-dimensional
data anomaly detection. The variational autoencoder is used directly for anomaly
detection by using reconstruction error in [1]. Inspired by RPCA [5], Zhou et
al. [30] propose a Robust Deep Autoencoder (RDA), and use the reconstruc-
tion error to detect anomalies for high-dimensional data. AnoGAN [3] uses a
Generative Adversarial Network [13] to detect anomalies in the context of med-
ical images by reconstruction error. In a follow-up work, f-AnoGAN [23] intro-
duces Wasserstein GAN [2] to improve AnoGAN to be adaptable to real-time
anomaly detection applications. However, these methods only consider recon-
struction errors as anomaly criterion, thus the performance of these methods is
limited in detecting anomalies.

Deep structured energy based model (DSEBM) [29] directly simulates the
data distribution through the deep architectures to detect data anomalies.
DSEBM integrates Energy-Based Models (EBMs) with various types of datasets,
including spatial data, static data, and sequential data. DSEBM has two
anomaly criteria to identify anomalies: the energy score (DSEBM-e) and the
reconstruction error (DSEBM-r). Deep Autoencoding Gaussian Mixture Model
(DAGMM) [31] consists of a compression network and an estimation network.
The compression network reduces the dimensionality of input samples through
a deep autoencoder, prepares their low-dimensional representations from the
reduced space and reconstruction error features, and provides the representa-
tions to the subsequent estimation network. Estimation networks take feeds and
predict their likelihood/energy in the framework of a Gaussian Mixture Model
(GMM). These models first reduce the dimensionality of the data, and then
detect anomalies in the low-dimensional space through the energy model or
GMM. As GANs are able to model the complex high-dimensional distributions
of real-world data, and Adversarially Learned Anomaly Detection (ALAD) is a
GAN based methods [28], which considers both data distribution and reconstruc-
tion error. ALAD derives adversarially learned features for the anomaly detection
task based on bi-directional GANs, and then uses reconstruction errors based
on these adversarially learned features to separate out anomalies.
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Our proposed method is most related to DAGMM. However, unlike DAGMM,
ADAF uses an autoregressive flow-based model to accurately extract indepen-
dent latent variables. And ADAF directly obtain the neural density estimation of
the original data with latent variable mapping, rather than a predefined GMM
distribution. Most importantly, ADAF can independently estimate the neural
density of a data point without having to rely on other constraints, such as dis-
tance or density from other data points, and show a powerful ability of anomaly
detection with few training samples.

3 Autoregressive Flow-Based Anomaly Detection Model

3.1 Normalizing Flows

Flow refers to the data “flowing” through a series of bijections (revertible map-
ping), and finally maps to a suitable representation space. Normalizing means
that the variable integral of the representation space is 1, which meets the defi-
nition of probability distribution function.

Given an observed data x ∈ X, an explicit invertible non-linear transforma-
tion f : R

d → R
d of a simple tractable distribution pZ(z) (e.g., an isotropic

Gaussian distribution) on a latent variable z ∈ Z, X = f(Z) and Z = f−1(X),
the change of variable formula defines a model distribution on X by:

pX(x) = pZ(f−1(x))|det(
∂f−1(x)

∂x
)|, (1)

where ∂f−1(x)
∂x is the Jacobian of f at x. The transformation f is typically chosen

so that it is invertible and its Jacobian determinant is easy to compute.
Therefore, the probability density function of the model given a data can be

calculated from a log probability:

log(pX(x)) = log(pZ(f−1(x))) + log(|det(
∂f−1(x)

∂x
)|). (2)

3.2 Autoregressive Density Estimation

Autoregressive density estimation uses the chain rule of probability to learn
the joint probability density by decomposing it into the product of one-
dimensional conditional probability density. Given an observation x which con-
tains d attributes, its joint probability density is calculated as follows:

p(x) =
d∏

i=1

p(xi|x1:i−1), (3)

Formally, the generation of the variable xi in the i-th dimension depends
only on the previously generated variable x1:i−1, that is:
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Fig. 1. Specific process of single model. The gray cells are the cells that are currently
being calculated, and the blue cells represent the cells on which they depend. (Color
figure online)

p(xi|x1:i−1) = N (xi|μi, (exp(αi))2), μi = gμi
(x1:i−1), αi = gαi

(x1:i−1), (4)

where gμi
and gαi

are functions that compute the mean and log standard devia-
tion of the i-th attribute given all previous variables. Autoregressive probability
density has two parameters: mean μi and log standard deviation αi.

We use the recursive operation of the above Eq. (3) and Eq. (4) to generate
data:

xi = zi exp(αi) + μi, zi ∼ N (0, 1), (5)

where z = (z1, z2, ..., zd) is the vector of random numbers the model uses inter-
nally to generate data.

3.3 Anomaly Detection Based on Autoregressive Flow (ADAF)

Single Module. From Eq. (5), we can see that the autoregressive model pro-
vides an alternative characterization as a transformation f from the space of
random numbers Z to the space of data X. We express this model as X = f(Z).
Given data point x which contains d dimensions, we can get z by the following
reverse operation:

zi = (xi − μi) exp(−αi), μi = gμi
(x1:i−1), αi = gαi

(x1:i−1), (6)

The specific process of a single module is shown in Fig. 1. The figure on the
left is the generation process f of x. For any distribution xi, it is calculated
from αi, μi and zi, which means that xi depends on all previous variables (i.e.,
x1, . . . , xi−1) and corresponding zi. The figure on the right is the inverse gener-
ation process f−1 of z. For any distribution zi, it is obtained from αi, μi and
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xi, which means that zi also only depends on all previously generated variables
(i.e., x1, . . . , xi−1).

Because of autoregressive structure, the Jacobian of f−1 is triangular by
design. We can calculate its absolute determinant as follows:

|det(
∂f−1(x)

∂x
)| = exp(−

d∑

i=1

αi), αi = gαi
(x1:i−1). (7)

Therefore, the autoregressive model can be equivalently regarded as a nor-
malizing flow, which can calculate density p(x) by substituting Eq. (6) and (7)
into Eq. (2):

log(pX(x)) = log(pZ(f−1(x))) + log(exp(−
d∑

i=1

αi)). (8)

Multiple Modules. We improve the model fit by stacking multiple instances
of the single model into a deeper flow:

x = fK ◦ ... ◦ f2 ◦ f1(z), (9)

z = f−1
1 ◦ ... ◦ f−1

K−1 ◦ f−1
K (x), (10)

where x is the input data for d dimensions, K is the number of single module,
fi represents an autoregressive module, z is the latent variable.

Combining Eq. (7), (8), and Eq. (10), then sample neural density can be
further inferred by:

D(x) = − log(pX(x))

= −[log(pZ(
K∏

k=1

f−1
i (x))) +

K∑

k=1

[log(exp(−
d∑

i=1

αki))]],
(11)

where pZ is a simple tractable distribution (e.g., an isotropic Gaussian
distribution).

Objective Function. Given a dataset of N instances, which contain d
attributes. The objective function guides ADAF training is constructed as fol-
lows:

J (μ, α) =
1
N

N∑

j=1

L(xj , zj) +
λ

N

N∑

j=1

D(xj). (12)

This objective function includes two components.
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– L(xj , zj) is the latent error, which is the error between input data xj and
its latent data zj . Latent data is the key information of the input data, so
we expect the value of latent error is as low as possible. In practice, we use
L2-norm for this purpose, as L(xj , zj) = ‖xj − zj‖22.

– D(xj) is the sample neural density of input data. By minimizing negative
log-likelihood density estimations, we can better fit the observed data to
high-density space. We optimize the combination of neural density and latent
error until the two reach a equilibrium, which makes our objective function
better serve the objective of anomaly detection.

– λ is the coefficient parameter in ADAF, which controls the objective to be
biased towards latent error or neural density.

– J (μ, α), μ and α represent all related parameters μi and αi in the model.

Although our objective function consists of two components, it is totally
different from DAGMM. In our objective function, the latent error and the neural
density together optimize the same network parameters, which is a thorough
end-to-end model. DAGMM is also an end-to-end training model, but the two
parts of its objective function optimize different network parts, respectively.
Therefore, our model is an absolute end-to-end framework that jointly optimizes
latent error and neural density estimation simultaneously. More specifically, we
use stochastic gradient descent to optimize the objective during training. Finally,
the latent error and the sample neural density are used as anomaly criteria to
detect anomalies. That is, a data sample has a higher latent error and sample
neural density value, it is more likely to be an anomaly.

4 Experiments

In this section, we use six public benchmark datasets to evaluate the effective-
ness and robustness of ADAF in anomaly detection. The code of the baseline
methods is available at GitHub1 released by ALAD. The code of our ADAF can
be available at GitHub2.

Table 1. Statistics of the public benchmark datasets

Dataset #Dimensions #Instances Anomaly ratio (ρ)

Thyroid 36 3,772 0.025

KDDCUP 118 494,021 0.2

SpamBase 58 3485 0.2

Arrhythmia 274 432 0.15

KDDCUP-Rev 118 121,597 0.2

Cardiotocography 22 2068 0.2

1 https://github.com/houssamzenati/Adversarially-Learned-Anomaly-Detection.
2 https://github.com/1246170471/ADAF.

https://github.com/houssamzenati/Adversarially-Learned-Anomaly-Detection
https://github.com/1246170471/ADAF
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4.1 Datasets

We conduct experiments on six public datasets in the field of anomaly detection:
KDDCUP, Thyroid, Arrhythmia, KDDCUP-Rev, SpamBase, and Cardiotocog-
raphy. The details of the datasets are shown in Table 1.

– Thyroid: Thyroid is from UCI Machine Learning Repository3 thyroid disease
classification dataset, which contains samples of 36 dimensions. There are 3
classes in original dataset. As hyperfunction is a minority class, we treat
hyperfunction as anomaly class in our experiment.

– KDDCUP: The KDDCUP 10% dataset from UCI Machine Learning Repos-
itory is a network intrusion dataset, which originally contains 41 dimensions.
34 of them are continuous data, and another 7 represent categories. We
use one-hot representation to encoder them, and eventually obtain a 118-
dimensional dataset. As 20% of them are marked as “normal” and meanwhile
others are marked as “attack”, and “normal” samples constitute a small por-
tion, therefore, we treat “normal” samples as anomalies in our experiment.

– SpamBase: SpamBase is from UCI Machine Learning Repository, which
collects spam emails filed by postmaster and individuals and non-spam emails
from filed work and personal emails. We treat the spam emails as outliers,
and the anomaly ratio is 0.2.

– Arrhythmia: Arrhythmia dataset is also obtained from the UCI Machine
Learning Repository. This dataset contains 274 attributes, 206 of them are
linear valued and the rest are nominal. The smallest classes, including 3, 4,
5, 7, 8, 9, 14 and 15, are combined to form the anomaly class, and the rest of
the classes are combined to form the normal class.

– KDDCUP-Rev: This dataset is an abbreviated version extracted from
KDDCUP. We retain all “normal” data in this dataset, and randomly draw
“attack” samples to keep the anomaly ratio as 0.2. As “attack” data is in
minority part, we treat “attack” data as anomalies.

– Cardiotocography: Cardiotocography is also from UCI Machine Learn-
ing Repository which related to heart diseases. This dataset contains 22
attributes, and the instances in the dataset are classified by three expert
obstetricians into 3 classes: normal, suspect, or pathological. Normal instances
are treated as inliers and the remaining as outliers.

4.2 Baseline Methods

We compare our method with the following traditional and state-of-the-art deep
learning methods:

– OC-SVM [8]: One Class Support Vector Machines (OC-SVM) is a classic
kernel method for novelty detection that only use normal data to learn a
decision boundary. We adopt the widely used radial basis function (RBF)
kernel. In our experiments, we assume that the abnormal proportion is known.

3 https://archive.ics.uci.edu/ml/.

https://archive.ics.uci.edu/ml/
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We set the parameter ν to the anomaly proportion, and set γ to 1/m, where
m is the number of input features.

– DSEBM [29]: Deep Structured Energy Based Models(DSEBM) is a deep
learning method for anomaly detection. They tackle the anomaly detection
problem by directly modeling the data distribution with deep architectures.
DSEBM contains two decision criteria for performing anomaly detection: the
energy score (DSEBM-e) and the reconstruction error (DSEBM-r).

– DAGMM [31]: Deep Autoencoding Gaussian Mixture Model (DAGMM)
is a state-of-the-art method for anomaly detection, which consists of two
major components: a compression network and an estimation network. The
compression network performs dimensionality reduction for input samples by
a deep autoencoder, and feeds the low-dimensional representations with the
reconstruction error to the subsequent estimation network. The estimation
network takes the feed, and predicts their likelihood/energy in the framework
of GMM.

– AnoGAN [24]: AnoGAN is a GAN-based method for anomaly detection.
AnoGAN is trained with normal data, and using it to recover a latent
representation for each input test data. AnoGAN uses both reconstruction
error and discrimination components as the anomaly criterion. Reconstruc-
tion error ensures how well the GAN is able to reconstruct the data via the
generator, while the discrimination component considers a score based on the
discriminator. There are two approaches for the anomaly score in the original
paper and we choose the best variant in our tasks.

– ALAD [28]: Adversarially Learned Anomaly Detection (ALAD) is also a
state-of-the-art method based on bi-directional GANs, which derives adver-
sarially learned features for the anomaly detection task. ALAD uses recon-
struction error based on these adversarially learned features to determine if
a data sample is anomalous.

4.3 Experiment Configuration

The configurations of baselines used in experiments follows their original config-
urations. We follow the setting in [29,31] with completely clean training data:
in each run, we take τ% of data by randomly sampling for training with the
rest (1−τ%) reserved for testing, and only data samples from the normal data
are used for training models. Specifically, for our ADAF and all baselines, we
set τ = 50 in KDDCUP and KDDCUP-Rev, τ = 80 in other datasets. Without
special statement, we set λ to 1 by default.

We set different K values (i.e., the number of distribution mappings) on
different datasets in our network structure. K is set to 4 in KDDCUP and
KDDCUP-Rev, K = 8 in Cardiotocography, K = 16 in Arrhythmia, K = 16
in SpamBase, and K=10 in Thyroid. See our code for more detailed network
structure settings.
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4.4 Evaluation Metrics

We consider average precision, recall, and F1 score to quantify the results. We
choose a threshold based on the anomaly ratio in the test set. For example, if
the anomaly ratio in the test set is ρ, the top ρ data of the objective function
value is marked as anomalies.

The precision and recall are defined as follows: Precision = |G|∩|R|
|R| and

Recall = |G|∩|R|
|G| , where G denotes the set of ground truth anomalies in the

dataset, and R denotes the set of anomalies reported by the methods. F1 score
is defined as follows: F1 = 2∗Precision∗Recall

Precision+Recall .

Table 2. Average precision, recall, and F1 from ADAF and all baselines. For each
metric, the best result is shown in bold.

Method KDDCUP Thyroid

Precision Recall F1 Precision Recall F1

OC-SVM 0.7457 0.8523 0.7954 0.3639 0.4239 0.3887

DSEBM-r 0.8744 0.8414 0.8575 0.0400 0.0403 0.0403

DSEBM-e 0.2151 0.2180 0.2170 0.1319 0.1319 0.1319

DAGMM 0.9297 0.9442 0.9369 0.4766 0.4834 0.4782

AnoGAN 0.8786 0.8297 0.8865 0.0412 0.0430 0.0421

ALAD 0.9427 0.9577 0.9501 0.3196 0.3333 0.3263

ADAF 0.9877 0.9926 0.9901 0.5102 0.5321 0.5209

Method Arrhythmia KDDCUP-Rev

Precision Recall F1 Precision Recall F1

OC-SVM 0.5397 0.4082 0.4581 0.7148 0.9940 0.8316

DSEBM-r 0.4286 0.5000 0.4615 0.2036 0.2036 0.2036

DSEBM-e 0.4643 0.4645 0.4643 0.2212 0.2213 0.2213

DAGMM 0.4909 0.5078 0.4983 0.9370 0.9390 0.9380

AnoGAN 0.4118 0.4375 0.4242 0.8422 0.8305 0.8363

ALAD 0.5000 0.5313 0.5152 0.9547 0.9678 0.9612

ADAF 0.7172 0.7171 0.7171 0.9895 0.9941 0.9918

Method SpamBase Cardiotocography

Precision Recall F1 Precision Recall F1

OC-SVM 0.7440 0.7972 0.7694 0.7366 0.6848 0.7051

DSEBM-r 0.4296 0.3085 0.3574 0.5584 0.5467 0.5365

DSEBM-e 0.4356 0.3185 0.3679 0.5564 0.5367 0.5515

DAGMM 0.9435 0.7233 0.7970 0.5024 0.4905 0.4964

AnoGAN 0.4963 0.5313 0.5132 0.4446 0.4360 0.4412

ALAD 0.5344 0.5206 0.5274 0.5983 0.5841 0.5911

ADAF 0.8381 0.8393 0.8387 0.7435 0.7432 0.7433
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4.5 Effectiveness Evaluation

First, we valuate the overall effectiveness of our proposed model compared with
all baseline methods on six benchmark datasets. We repeat 20 runs for all meth-
ods on each dataset and the average precision, recall, and F1 score are shown in
Table 2.

From Table 2, we can see that ADAF is significantly better than all baselines
in terms of average precision, recall, and F1 score on six datasets. On the KDD-
CUP and KDDCUP-Rev, ADAF achieves 4% and 2.4% improvement in standard
F1 score compared to state-of-the-art ALAD, reaching over 98% in all terms of
precision, recall and F1 score. On Thyroid and Arrhythmia, ADAF significantly
performs better than state-of-the-art DAGMM and ALAD by over 4.2% and
20.1% improvement in standard F1 score. On SpamBase and Cardiotocography,
ADAF is 4.1% and 3.7% better than DAGMM and OC-SVM methods, respec-
tively. The reasons why ADAF is better than DAGMM may be attributed as: (1)
ADAF obtains latent variables based on a reversible flow model. There is no loss
of dimensional information in the reversible process, and exact latent variables
can be obtained. DAGMM uses an autoencoder to obtain the latent variables,
which is an irreversible dimensionality reduction operation and will inevitably
lose the information of the original input data; (2) ADAF uses a neural density
estimator for density estimation instead of Gaussian mixture model. Deep neu-
ral density estimation is superior to Gaussian mixture model, because GMM is
a parameter estimation that refers to the process of using sample data to esti-
mate the parameters of the selected distribution, while neural density estimator
compute the probability density jointly combining with the generation of latent
variables. Additionally, GMM also needs to manually select the number of mixed
Gaussian models, which is very tricky in the absence of domain knowledge.

For AnoGAN, it adopts adversarial autoencoder to recover a latent represen-
tation for each input data, and uses both reconstruction error and discrimination
components as the anomaly criterion, but AnoGAN does not make full use of the
low-dimensional representation. Although ALAD can simulate the distribution
of data well when the experimental data is large enough, it also ignores the con-
sideration of latent representation. Another potential reason why our method is
better than all baselines is that we use an autoregressive flow model to obtain
the latent variables and neural density of input data at the same time without
dimensionality reduction, avoiding the loss of information.

4.6 Performance w.r.t. Training Set

Second, we investigate the impact of different training data on ADAF and all
baselines. We use τ% of the normal dataset as the training set for all methods.
We repeat the experiments on Arrhythmia and KDDCUP datasets 20 times and
report the average results in Table 3 and Table 4.

As we can see, only when the training data is 30%, our results are slightly
lower than DSEBM-e on Arrhythmia. In all other cases, our ADAF significantly
outperforms than all baselines in terms of precision, recall and F1 score on both
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Table 3. Performance comparison w.r.t. training ratio on Arrhythmia

Ratio ADAF ALAD DAGMM

τ% Precision Recall F1 Precision Recall F1 Precision Recall F1

30% 0.4607 0.4747 0.4676 0.4641 0.5250 0.4926 0.3750 0.4500 0.4091

40% 0.5024 0.5252 0.5135 0.4634 0.5278 0.4935 0.3902 0.4444 0.4156

50% 0.5539 0.5707 0.5621 0.5000 0.5312 0.5152 0.3824 0.4062 0.3939

60% 0.5808 0.5808 0.5808 0.4643 0.4643 0.4643 0.4643 0.4643 0.4643

70% 0.6286 0.6363 0.6315 0.3810 0.4000 0.3902 0.4286 0.4500 0.4390

80% 0.7172 0.7171 0.7171 0.3571 0.4167 0.3846 0.3571 0.4167 0.3846

Ratio DSEBM-e DSEBM-r AnoGAN

τ% Precision Recall F1 Precision Recall F1 Precision Recall F1

30% 0.4583 0.5500 0.5000 0.3542 0.4250 0.3864 0.2917 0.3500 0.3182

40% 0.4634 0.5278 0.4935 0.3902 0.4444 0.4156 0.3415 0.3889 0.3636

50% 0.5000 0.5312 0.5152 0.4118 0.4375 0.4242 0.3529 0.3750 0.3636

60% 0.4643 0.4643 0.4643 0.4286 0.4286 0.4286 0.4286 0.4286 0.4286

70% 0.4286 0.4500 0.4390 0.3810 0.4000 0.3902 0.4286 0.4500 0.4390

80% 0.4286 0.5000 0.4615 0.4286 0.5000 0.4615 0.3571 0.4167 0.3846

Table 4. Performance comparison w.r.t. training ratio on KDDCUP

Ratio ADAF ALAD DAGMM

τ% Precision Recall F1 Precision Recall F1 Precision Recall F1

10% 0.9873 0.9938 0.9906 0.9576 0.9727 0.9651 0.9234 0.9382 0.9308

20% 0.9896 0.9942 0.9919 0.9554 0.9691 0.9622 0.9041 0.9171 0.9106

30% 0.9863 0.9889 0.9876 0.9513 0.9513 0.9513 0.9290 0.9437 0.9363

40% 0.9888 0.9895 0.9892 0.9466 0.9625 0.9545 0.9469 0.9628 0.9548

50% 0.9833 0.9941 0.9887 0.9513 0.9664 0.9588 0.9315 0.9464 0.9389

60% 0.9890 0.9959 0.9925 0.9502 0.9624 0.9563 0.9448 0.9570 0.9509

Ratio DSEBM-e DSEBM-r AnoGAN

τ% Precision Recall F1 Precision Recall F1 Precision Recall F1

10% 0.1121 0.1142 0.1131 0.8535 0.8233 0.8381 0.9166 0.8362 0.8667

20% 0.1322 0.1333 0.1332 0.8472 0.8166 0.8316 0.8590 0.8590 0.8590

30% 0.0830 0.0840 0.0830 0.8732 0.8403 0.8564 0.8344 0.8476 0.8409

40% 0.1311 0.1332 0.1321 0.8745 0.8422 0.8576 0.8343 0.8344 0.8344

50% 0.2151 0.2180 0.2170 0.8744 0.8414 0.8575 0.9472 0.8163 0.8630

60% 0.0401 0.0411 0.0410 0.8756 0.8399 0.8573 0.8496 0.8605 0.8550

Arrhythmia and KDDCUP. As the ratio of training data increases, the perfor-
mance of our model is getting better and better on both datasets, especially
on Arrhythmia ADAF achieves a significant improvement. The performance of
ALAD and AnoGAN on KDDCUP dataset is relatively stable, and has some
fluctuations on Arrhythmia. From Table 4, DSEBM-e that uses energy score as
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detection criterion is not suitable for KDDCUP. This is because the data dis-
tribution of KDDCUP is more complicated than that of the energy model. The
experimental results of ALAD, DSEBM-r and AnoGAN are similar because they
all use the reconstruction error as the criterion for anomaly detection. Although
the results of DAGMM also increases with the increase of training data, our
ADAF is far superior to DAGMM, even using less training data.

In summary, this experiment confirms that our ADAF can achieve better
results with fewer training samples compared to state-of-the-art baselines.

(a) Precision (b) Recall (c) F1 score

Fig. 2. Anomaly detection results on contaminated training data on KDDCUP

4.7 Robustness Evaluation

Finally, we evaluate the robustness of our ADAF compared to the baselines on
KDDCUP. We only use 10% of the normal data as the training set for our ADAF,
and meanwhile we mix c% of samples from the anomalous data into the training
set. In term of ALAD, DSEBM and DAGMM, we select 50% of the normal data
as the training set, while mixing c% of samples from anomaly data into their
training set.

Figure 2 shows the average precision, recall, and F1 score results of ADAF,
DSEBM-e, DAGMM and ALAD with different contaminated training data.
When the contamination ratio c increases from 1% to 5%, the average preci-
sion, recall, and F1 score of all methods decrease. However, we also observe that
our model is only affected slightly and maintains an extremely robust perfor-
mance. As c% increases, the performance of DAGMM declines sharply, but the
impact on DSEBM-r and ALAD is not very significant. This may be because
the GMM model in DAGMM is more sensitive to noise compared to the recon-
struction error used in DSEBM-r and ALAD. Nevertheless, our ADAF is still
significantly better than all baseline methods.

5 Conclusion

In this paper, we propose an Anomaly Detection model based on Autoregressive
Flow (ADAF) for detecting anomalies in high-dimensional data. ADAF uses an
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autoregressive flow to obtain the latent variable, which holds the key informa-
tion of the original input data. Because of the reversibility of flow model, the
latent variables completely inherit the essential information of the original input
data. Unlike the traditional two-step methods, ADAF is an absolute end-to-end
framework that jointly optimizes the latent error and probability density esti-
mation simultaneously. Finally, both latent error and neural density are used
as decision criteria in anomaly detection. Our experimental results on public
benchmark datasets show that ADAF is significantly better than state-of-the-
art methods by up to 20% improvement on the standard F1 score.
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Abstract. This paper works on fine-grained entity typing without using
external knowledge for Knowledge Graphs (KGs). Aiming at identifying
the semantic type of an entity, this task has been studied predominantly
in KGs. Provided with dense enough relations among entities, the exist-
ing mainstream KG embedding based approaches could achieve great
performance on the task. However, many entities are sparse in their rela-
tions with other entities in KGs, which fails the existing KG embedding
models in fine-grained entity typing. In this paper, we propose a novel KG
embedding model for relation-sparsity entities in KGs. In our model, we
map all attributes and types into the same vector sapce, where attributes
could be granted with different weights according to an employed atten-
tion mechanism, while attribute values could be trained as bias vectors
from attribute vectors pointing to type vectors. Based on this KG embed-
ding model, we perform entity typing from coarse-grained level to more
fine-grained level hierarchically. Besides, we also propose ways to uti-
lize zero-shot attribute values that never appear in the training set. Our
experiments performed on real-world KGs show that our approach is
superior to the most advanced models in most cases.

Keywords: Fine-grained entity typing · Knowledge graph
embedding · Knowledge graph

1 Introduction

Type information of entities is very important in Knowledge Graphs (KGs).
Unfortunately, many entities’ type information is usually missing for many enti-
ties even in some well-known KGs such as Yago [20] and DBPedia [1]. To com-
plete the missing type information in KGs, the task of entity typing [15] is
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 141–157, 2020.
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Fig. 1. An example of fine-grained entity typing in KG

proposed, aiming at identifying the semantic type (e.g., Artist) of an entity
(e.g., Leonardo da Vinci) in KGs.

While traditional entity typing approaches only focus on assigning entities
with a small set of coarse-grained types including Person, Organization, Location
and Others [19], fine-grained entity typing assigns more specific types to
entities, which could form a type-path in the type hierarchy in KGs [18]. As the
example shown in Fig. 1, “Leonardo da Vinci” is associated with a type-path
“thing/person/artist/painter”. Apparently, fine-grained types (e.g., Painter and
Artist) make more sense in data mining than coarse-grained types (e.g., Person)
since they provide us with more specific semantic information [22]. Therefore, the
more fine-grained the types are, the more instrumental they would be in many of
the KG-based tasks, such as knowledge base completion [5], entity linking [12],
relation extraction [13], and question answering [25].

Plenty of work has been done on fine-grained entity typing. While traditional
information extraction based approaches focus on extracting type information
for entities from external text resource [3,14,26], in recent years, more and more
work tend to infer missing entity types for entities based on KGs’ internal infor-
mation. The existing work on KG-based fine-grained entity typing mainly relies
on KG embedding for entity typing, i.e., the entities are first embedded based on
information in KGs including relations, continuous attribute values and descrip-
tions etc., and then classified into different semantic types according to their
embedded results. However, although the TransE [2] and its variants [10,11,21]
are widely applied to many KG-relevant applications, they are helpless to those
entities having sparse relations with other entities. Some work also infers miss-
ing types for entities according to the embedding results of entities based on
their text descriptions [16]. But text descriptions are not always in high-quality.
Recent work inputs the relations of entities and continuous attributes into a
multi-layer perceptron to train the representation of entities for entity typ-
ing and achieves state-of-the-art results [8]. However, without dense enough
relations among entities for embedding learning, they are difficult to achieve
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Table 1. Percentage of Entities having Sparse Relations (1, 2, or 3) with Other Entities,
and the Average Number of Triples with them on DBpedia, CN-DBpedia and Yago3

0 Relation 1 Relation 2 Relation 3 Relation

DBpedia 5% 3.5 2% 3.9 7% 5.1 12% 6.3

CN-DBpedia 11% 4.3 6% 4.7 5% 5.3 9% 6.1

Yogo3 7% 3.8 3% 4.4 6% 5.6 10% 6.4

desirable results. In practice, there are a large proportion of entities having very
sparse relations with other entities in KGs. As listed in Table 1, there are more
than 20% entities having no more than 3 relational triples with other entities on
DBpedia, CN-DBpedia, and Yogo3. On the other hand, the average number of
triples for such entities are not that small, which can also be observed in Table 1.
While some of these triples are just attribute triples describing an attribute and
corresponding attribute value of an entity, other triples are “unlinked” relational
triples, which have their tail entity mentions unlinked to their corresponding KG
entities.

To address fine-grained entity typing for relation-sparsity entities in KGs, this
paper proposes a novel KG embedding model based on attributes and attribute
values of entities. Particularly, this KG embedding model maps all the attributes
and types into the same vector space in a TransE-like way, where “unlinked”
relational triples are also taken as attribute triples. In this model, attributes are
granted with different weights according to a selective attention mechanism [7],
while attribute values could be trained as bias vectors from attribute vectors
to type vectors. Based on this KG embedding model, we perform entity typing
from coarse-grained level to more fine-grained level hierarchically. Besides, it is
common to meet zero-shot attribute values that never appear in the training
set in the entity typing process. To handle these special cases, we also design
a similarity measurement to find a set of closest attribute values to denote the
zero-shot one, such that the robustness of our model could be further improved.

We summarize our contributions as follows:

– We propose a new KG embedding model based on attributes and attribute
values, which is particularly designed for fine-grained entity typing to relation-
sparsity entities in KGs.

– Based on this embedding model, we then propose to perform entity typing
from coarse-grained level to more fine-grained level hierarchically.

– We design an algorithm to handle the entities with untrained (zero-shot)
triple tails to ensure the robustness of our model.

We use two datasets from real-world KGs for experimental study. Our exper-
iments performed on these two KGs show that our approach is superior to the
most advanced models in most cases.

Roadmap. The rest of the paper is organized as follows: We cover the related
work in Sect. 2, and then formulate the problem in Sect. 3. After present our
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approach in Sect. 4, we report our empirical study in Sect. 5. We finally conclude
in Sect. 6.

2 Related Work

Entity typing is a long-standing problem in the Knowledge Graph (KG) construc-
tion research field. In this section, we first introduce the traditional solutions
using external textual semantic information, and then cover the mainstream
methods on entity typing within KGs.

2.1 Entity Typing with Texts

The goal of entity typing is to give entities more specific types after they have
been recognized from text. As the number of types and the complexity of the
problem increases, researchers try many ways to organize hierarchical infor-
mation of types [26]. In recent work, Choi et al. [3] constructs an ultra-fine-
grained dataset with 10,201 types at the most fine granularity. Based on the
same dataset, Federico et al. [14] map all types onto a sphere space and train a
transpose matrix to obtain the types of entities. This work achieve the state-of-
art results in entity typing with texts. However, the information used for entity
typing is usually about the sentences themselves, so the performance of entity
typing in fine granularity is still unsatisfactory.

2.2 Entity Typing in KGs

The classification of entities KG becomes a classical problem that refers to KG
completion. In KG completion, KG embedding is often used to solve such prob-
lems. For example, TransE [2], which is the basic of all KG embedding methods,
trains vector expressions of entities and relationships based on relations between
entities. In TransE, relations are trained as transitions from head entities to tail
entities, which can be expressed as h + r = t. Since then, various KG embed-
ding methods focus on how to obtain a better representation of KG based on
the relations between entities, such as TransR [11], PTrans [10], TransH [21] and
so on.

Another kind of methods is to obtain the low-dimensional vector represen-
tations of entities semantics and then use the vectors to classify the entities.
These methods are based on various kinds information in KGs rather than just
relational triples. For example, Neelakantan and Chang [16] generate feature
vectors from the description of entities in KG. Xu et al. [22] adopt a multi-
labelled hierarchical classification method to assign Chinese entities of DBpedia
types according to attributes and category information. In recent work, Jin et
al. [8] comprehensively consider the relationship between entities and continuous
attribute values, and combine them with a multi-layer perceptron to obtain the
semantic vectors of entities.
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The above methods consider entity typing in a complete KG. Nevertheless,
there are many relation-sparsity entities in KGs during the actual construction
process. These relation-sparsity entities tend to have many triples with unsplit
and unlinked tails, so that the above methods may fail to address such triples.
Our approach is designed to solve the problem of entity typing in this case. We
take full use of discontinuous attribute values which mostly come from unsplit
and unlinked tails to ensure that the relation information in such tails is not
lost.

3 Problem Formulation

A typical KG consists of a number of facts, usually in the form of triples denoted
by (head, predicate, tail), where head is the subject entity and tail is either the
object entity or an attribute value of the subject entity. We call a triple as a
relational triple if the object of the triple is an entity and the predicate denotes
the relation between the two entities. And we call a triple as an attribute triple
if the predicate denotes an attribute of the entity [6].

Given a KG with a hierachical type tree such as the one shown in Fig. 1, the
task of fine-grained entity typing aims at finding fine-grained semantic types for
entities with missing type information in the KG, w.r.t. the given hierachical type
tree. The hierachical type tree reflects the hypernym-hyponym relations between
types, for example, “person” is the hypernym of “artist”. More formally, we give
the relevant definitions with fine-grained entity typing task as follows.

Definition 1 (Knowledge Graph). Knowledge graph KG = {E,RT,AT} is
defined as a set of entities E, their relation triples RT and their attribute triples
AT .

Definition 2 (Hierarchical Type Tree). Hierarchical type tree organizes
types in the form of a tree which provides hypernym-hyponym relations between
types. Formally, Hierarchical type tree Ttr = {TS, TR} contains the set of types
TS and the relations between types TR.

Definition 3 (Fine-grained Entity Typing). Given a knowledge graph
KG = {E,RT,AT} and a hierarchical type tree Ttr = {TS, TR}, Fine-grained
Entity Typing aims to find a path {t1, t2...tn} in Ttr for each entity in E, where
ti is the hypernym of ti−1.

Example 1. As shown in Fig. 1, hierarchical type tree is a tree which reflects
hypernym-hyponym relations between types, while knowledge graph is a col-
lection which contains entities like “Leonardo da Vinci” and their attributes and
relations between each other. The task of fine-grained entity typing is to find
a type path in hierarchical type tree for each entity in knowledge graph,
such as “thing/person/artist/painter” for “Leonardo da Vinci”.
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Fig. 2. Architecture of our approach

4 Our Approach

The architecture of our approach is given in Fig. 2. Our model mainly consists
of two modules: embedding layer and replacing layer. We obtain vector repre-
sentations of triples at the embedding layer which needs labeled entities and a
hierarchical type tree Ttr as input. The role of the replacing layer is to classify
the unlabeled entities based on the embedded results and handle the entities
with untrained (zero-shot) triple tails. In the following, we briefly introduce how
to build a proper hierarchical type tree and then present the embedding layer
and replacing layer respectively.

– Hierarchical Type Tree: Types are naturally hierarchical, we start with the
coarse-grained typing of entities, and then we gradually get more fine-grained
types. To this end, we construct a tree that can reflect the hypernym-hyponym
relationship of types at the semantic level which can be used to carry out hier-
archical classification.
Given a set of types denoted as TS, for each pair of type combination
<t1, t2> in TS, we calculate the possibility that t1, t2 have hypernym-
hyponym relationship according to the entity set of types t1 and t2:

Phyp(t1, t2) =

√
|ES(t1) ∩ ES(t2)|

|ES(t1)| × (1 − |ES(t1) ∩ ES(t2)|
|ES(t2)| ) (1)

where ES(t) is the set of entities of type t. This formula is proposed by Lenci
et al. [9], which calculates confidence based on the coincidence between the
sets of entities. If Phyp(t1, t2) > θ, we consider that t1 is the hypernym of
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t2, where θ is threshold value. The set of hypernym-hyponym relationships
between types is denoted as TR which is formulated as follows:

TR = {< t1, t2 > |t1, t2 ∈ Ts & Phyp(t1, t2) > θ} (2)

To ensure the accuracy of TR, we perform a manual filtering where each
hypernym-hyponym relationship in TR is checked by three people and
only those confirmed correct by at least two people would be kept. After
that, we also need to remove some redundant relationships to ensure that
the children of each node are at the same layer of the tree. For exam-
ple, if <“person”,“artist”>, <“artist”,“painter”> and <“person”,“painter”>
∈ TR, we remove <“person”,“painter”> from TR so that the children of node
“person” in Ttr are at the same layer, which means they are of the similar
granularity.

– Embedding Layer: The main task of the embedding layer is to construct
classifiers and train the vector representation of elements in triples and types.
To obtain the type path of the entity, we build several classifiers to identify
types of different granularities. Also, we propose to fully use discontinuous
attribute values, which are trained as bias vector in this layer. We give more
details in Sect. 4.1.

– Replacing Layer: The replacing layer will be triggered when unlabeled enti-
ties are classified by embedding results. This is because we often encounter
entities with untrained (zero-shot) triples which have no corresponding vector
representation. So we use replacing layer to handle such entities to ensure the
robustness of our model. More details could be found in Sect. 4.2.

4.1 Embedding Layer

The architecture of the embedded layer is shown in Fig. 3. There are two main
inputs to the embedded layer, one is the set of labeled entities (ESlabeled), and the
other is the hierarchical type tree Ttr. In Ttr, the coarser the type granularity is,
the closer it is to the root node. There are three coarse-grained types: “person”
(“Per”), “organization” (“Org”), and “location” (“Loc”). We start by training
a classifier to classify these three types, and we denote it as classifier1. Then
three classifiers are trained to classify the sub-types of “Per”, “Org” and “Loc”
respectively. For example, if “Per” has five sub-types including artist, officials...,
we train a classifier to classify entities which has been classified by classifier1
as “Per” into five more fine-grained types.

In each classifier, we first learn the low-dimensional vector representation of
each triple’s predicate and tail in embedding layer. After that, the representation
of each entity is calculated by the representation of its triples and should be
as close to the representation of entity’s type as possible. The validity of the
method of obtaining types by triples’ information has been proved by multiple
experiments [8]. But all of these approaches only consider predicate information
in triples, and they can only work when the tails of triples are entities which
have been linked. However, relation-sparsity entities have a small number of such
triple tails.
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Fig. 3. Architecture of embedding layer

As shown in Table 1, most relation-sparsity entities also have rich triples that
contain many undiscovered relations. These relations are mainly derived from the
tails of unsplit and unlinked triples, or from phrase tails that have not yet been
refined, and they will be treated as discontinuous attribute values. For example,
(“Leonardo da Vinci”, “born”, “14/15 April 1452.Republic of Florence”) can
be spilt into an attribute triple (“Leonardo da Vinci”, “birthday”, “14/15 April
1452”) and a relation triple (“Leonardo da Vinci”, “birthplace”, “Republic of
Florence”). The goal of our model is to make full use of discontinuous attribute
values in fine-grained entity typing.

1) Embedding with Predicates in Triples. In triples, predicates are usually
relation names or attribute names. These predicates themselves can reflect the
type information of the corresponding head entity. For example, “Leonardo da
Vinci” has an attribute: “bron”, which obviously tends to be the attribute of
entities whose type is “Per”. In previous work, SDType [17] proposed a method
to calculate the type probability distribution of entities based on their triples’
predicates, which indicates that the predicates of entities can indeed reflect the
type information of entities. In our approach, we map entities’ attribute/relation
name and type into the same vector space. Vector representations of entities
can be obtained by weighted summation of their attribute/relation vectors and
should be as close as possible to the entity’s type vector. For an entity in training
set, the embedded target can be represented as follows when considering only
the average weights:

|PS|∑
i=0

−→pi
|PS| =

−−→
type (3)
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Fig. 4. Example of bias vector Fig. 5. Training target

where PS means the set of predicates in entity’s triples and pi ∈ PS, type
means entity’s type. In the vector space that satisfies the above formula, the
more a predicate P is monopolized by a type T , the closer the

−→
P is to the

−→
T .

A predicate P being monopolized by a type T means if an entity’s triples have
predicate P , the entity’s type is mostly likely to T . As shown in Fig. 6, predicate
“born” exists in triples of entities whose type is “Per” in most cases, so

−−→
born is

close to
−−→
Per but far from

−−→
Loc and

−−→
Org.

2) Embedding with Triple Tails. If we just use predicates of triples to train
the entity representation, it does work well at coarse granularity. However, as the
granularity increases, it becomes difficult to identify the more accurate type of an
entity due to insufficient information. For example, “Leonardo da Vinci” has a
predicate “work”, which can help us know he is a “Per”. However, both entities
of type “musician” and entities of type “painter” have predicate “work”. We
could hardly know whether “Leonardo da Vinci” is a “painter” or a “musician”
simply by the predicate “work”, while the object of predicate “work” can help
us identify him as a “painter”.

So we consider training the tails of triples as bias vectors pointing to more
specific types, as shown in Fig. 4, the vector of predicate “work” is close both to
the vector of type “musician” and the vector of type “painter”. Apparently, when
the object of “work” is a painting like “Mona Lisa,” the entity is more likely to
be a “painter”, and when the object of “work” is a music like “Symphony No.
5 (Beethoven)” the entity is more likely to be a “musician”. So we train the
tails like “Mona Lisa” and “Symphony No. 5 (Beethoven)” to be bias vectors
pointing to more specific types. When considering the tails of triples, we can
obtain the type vector of each entity from its predicate vector plus the vector of
the corresponding triple tail. The training target and the example are shown in
Fig. 5 and Fig. 4 respectively. The formal expression is as follows:
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Fig. 6. “born” Fig. 7. “alias”

|PS|∑
i=0

(−→pi +
−→
ti )

|PS| = type (4)

where ti is the corresponding triple tail of predicate pi. For continuous attribute
values, we train them after discretizing them by clustering.
3) Getting Weights for Predicates. Each predicate is supposed to have
a different weight when judging the type. For example, “born” is a common
predicate that “Per”, “Org”, and “Loc” can have, whereas “alias” is usually only
reserved for “Per”. This is reflected in low-dimensional vector space where

−−→
born

is very close to
−−→
Per and

−−−→
alias is not particularly close to the vector of any type.

Figure 6 and Fig. 7 illustrate this phenomenon. Clearly “born” is more significant
and should have a higher weight. Based on this idea, we use a selective attention
mechanism to obtain the weight of the predicate, and the training objective is
defined as follows:

|PS|∑
i=0

eWeight(pi)(−→pi +
−→
ti )

|PS|∑
i=0

eWeight(pi)

=
−−→
type (5)

The weights of predicates, denoted by Weight(pi, TS), defines the variance of
the distances between −→pi and the vectors of each class.

Weight(pi, TS) =

|TS|∑
j=0

(∥∥∥−→pi − −−−→
typej

∥∥∥
2

− Avgdis(pi, TS)
)2

|TS| (6)

where TS means the set of types that the current classifier needs to distinguish
and typej ∈ TS. Avgdis(pi, TS) is the average distance between −→pi and the
vector of each type in TS:
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Avgdis(pi, TS) =

|TS|∑
j=0

∥∥∥−→pi − −−−→
typej

∥∥∥
2

|TS| (7)

During the process of training, negative samples are obtained by replacing
the types of positive samples. For example, the negative sample of (“Leonardo da
Vinci”,“painter”) can be (“Leonardo da Vinci”,“musician”). The loss function
for each positive sample is defined as follows:

l(e,type) =

∥∥∥∥∥∥∥∥∥

|PS|∑
i=0

eWeight(pi,TS)(−→pi +
−→
ti )

|PS|∑
i=0

eWeight(pi,TS)

− −−→
type

∥∥∥∥∥∥∥∥∥
2

(8)

For each positive sample (e, type) and the corresponding negative sample
(e, type′), where type′ is the error label after replacing. We use hinge loss to get
the loss of each sample. The hinge loss is defined as:

lhinge = max(0, l(e, type) − l(e, type′) + ξ) (9)

where ξ is the fixed margin. Finally, our loss function is defined as:

L =
∑
e∈ES

max(0, l(e, type) − l(e, type′) + ξ) (10)

where ES is the entity set in training.

4.2 Replacing Layer

In the real world, there are an infinite number of possible objects corresponding
to predicates in triples, and even the triple tails with the same semantic meaning
may have different but similar expressions. The training set cannot contain all
possible triple tails. In fact, we often encounter untrained tails during testing, so
we design a replacing layer to replace such tails with the closest trained tails. We
mainly adopt three kinds of similarity: gensim1 (Bag of Words), longest common
sub-sequence (LCS) and BERT-wwm [4]. The gensim similarity is defined as
follows:

Simgensim(s1, s2) =
|Bow(s1) ∩ Bow(s2)|2
|Bow(s1)| × |Bow(s2)| (11)

where Bow(s) means the “Bag of Words” of s. s1, s2 are two phrases used to
judge similarity. And the longest common sub-sequence (LCS) similarity is as
follows:

SimLCS(s1, s2) =
len(LCS(s1, s2))2

len(s1) × len(s2)
(12)

1 https://pypi.org/project/gensim/.

https://pypi.org/project/gensim/
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Table 2. Statistics of the datasets

Entities Types Predicates Rel.triples Attr.triples

Continuous Discontinuous

CN-DBpedia 198,546 175 2185 178,554 515,862 1,270,694

DBpeadia 300,000 214 1426 5,243,230 849,387 0

where LCS(s1, s2) means the longest common sub-sequence of s1 and s2 and
len(. . . ) means the number of characters in the phrase.

Here we use BERT-wwm [4] to get the vector presentations of phrases and
then calculate the similarity by cosine function.

Based on the above three similarities, we define the final similarity as follows:

Sim = Simgensim + λ1 · SimLCS + λ2 · SimBERT−wwm (13)

λ1 and λ2 are weight parameters. The above formula expresses the semantic
similarity between phrases, triple tails with similar semantics should have similar
representation in the vector space in our model. So we use formula 13 to replace
untrained triple tails with tails that are already trained.

5 Experiments and Analysis

In this section, we first introduce our datasets and the metrics we use for evalua-
tion in Sect. 5.1 and then explain methods we compare with in Sect. 5.2. Finally,
we present the experimental results and analysis in Sect. 5.3.

5.1 Datasets and Experimental Setup

Datasets: We collect our data from CN-DBpedia2 and DBpedia3. The data in
CN-DBpedia is mainly collected from the inforbox if BaiduBaike which contains
many unsplit and unlinked relation triples. So, a large number of relation-sparsity
entities exist in this dataset, which is specifically used to test the performance
of our method on relation-sparsity entities. The DBpedia dataset is proposed
by Jin et al. [8], which is extracted from DBpedia. In this dataset, each entity
has rich relationships and continuous attribute values. As we can see in Table 2,
both datasets have about 200 fine-grained types, and the second dataset has a
much larger proportion of relational triples than the first one.

Metris: As for the evaluation metrics, we use Micro-averaged F1 (Mi-F1) and
Macro-averaged F1 (Ma-F1), which have been used in many fine-grained typing
systems [18,23,24].

2 http://kw.fudan.edu.cn/cndbpedia/intro/.
3 https://wiki.dbpedia.org.

http://kw.fudan.edu.cn/cndbpedia/intro/
https://wiki.dbpedia.org
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Parameter Settings: In our experiments, all predicate vectors are normalized:
‖−→pi‖2 = 1, and the length of bias vector is positioned to 1/6 of the length

of predicate vector:
∥∥∥−→

ti

∥∥∥
2

= 1/6. A batch of 500 samples is used to update
the model parameter per step with learning rate set as 0.002, training time is
limited to at most 200 epochs over the training set. And we set fixed margin in
loss function ξ = 1. In replacing layer, both λ1 and λ2 are chosen among{0.2,
0.4, 0.6, 0.8}, we found λ1 = 0.4 and λ2 = 0.8 achieve best performance.

5.2 Approaches for Comparison

In this section, we briefly introduce five comparative methods including
TransE [2], SDType [17] APE [8], our proposed Baseline Model and Final Model.

– The TransE method aims to learn representations of all entities and relations
in KGs. In TransE, the relation r in each relation triple: (h,r,t) can be con-
sidered as a translating from the head entity to the tail entity. By constantly
adjusting the vector representation of h, r and t, we wish (h+r) is equal to t as
much as possible, that is, h + r = t. This method is mainly used for prediction
of tail entities, but vector representation of entities can also be used for entity
typing. So, we input the entity representation obtained by TransE into a lin-
ear classifier for entity typing. For CN-DBpedia, due to the lack of relations,
we link some tail entities to ensure that TransE could train normally.

– The SDType method is a heuristic model which counts on the distribution of
head entities’ types and tail entities’ types for each predicate, respectively.
For unlabeled entity, SDType calculates the probability that it is of each type
based on these distribution.

– The APE method inputs the one-hot encoding of the entity’s owned pred-
icates and the vector of the continuous attribute values into a multi-layer
perceptron. After that it uses a softmax layer to get the entity’s type at the
last layer of the network.

– The Baseline1 considers only the predicates themself without the triple tails
information, and each predicate has an average weight when the weighted
sum is taken.

– The Baseline2 does not replace untrained (zero-shot) triple tails by the replac-
ing layer. It assigns vectors of untrained tails to the average of vectors of
trained tails which are owned by untrained tails corresponding predicates.

– The Final Model (TransCate) adds the triple tails information to the loss
function and uses the selective attention mechanism to obtain the predicates’
weight. Besides, replacing layer is introduced to handle the untrained triple
tails.



154 L. Niu et al.

Table 3. The overall of the comparsion results

Approaches CN-DBpedia DBpeadia

Mi-F1 Ma-F1 Mi-F1 Ma-F1

TransE 0.375 0.261 0.519 0.512

SDType 0.558 0.447 0.577 0.569

APE 0.732 0.597 0.657 0.649

Baseline1 0.638 0.493 0.628 0.621

Baseline2 0.723 0.517 0.654 0.646

TransCate 0.761 0.563 0.662 0.651

5.3 Experimental Results

1) Overall Comparsion Results. We assign 40% of the entities in each dataset
to test the performance of the entity typing. Each dataset is subjected to multiple
experiments to get the average result except SDType as it relies on probability
distribution and the effect of multiple experiments remained unchanged. As can
be seen from Table 3, our method has obtained the desired performance, with
a 3% improvement over the best methods of the past in CN-DBpedia since
CN-DBpedia contains a large number of relation-sparsity entities. For DBpedia,
our method only has tiny improvement. It is worth mentioning that TransE’s
performance is poor on both datasets. We notice that its performance is close to
SDType, but much lower than other methods in most cases. The main reason
for this is that TransE is designed for tail entity prediction rather than entity
typing.

Analysis: In CN-DBpedia, the performance of TransE is much lower than that
of other methods due to the sparse relations, and the performance of the base-
line1 is lower than that of APE because it only uses predicate information of
triples, while APE also use the information of continuous attribute values in
triples. When our method uses triple tails information, the results are the best
among all the comparison methods. In DBpedia, as the relations become denser,
the performance of other methods approaches that of ours. The use of the replac-
ing layer improves performance in CN-DBpedia more than it does in DBpedia
because the test set of CN-DBpedia has more untrained triple tails.
2) The Effectiveness of Tails and Attention. We also evaluate the results
for different granularity types when our approach use predicates information in
triples, tails information and attention mechanisms. Table 4 shows the experi-
mental results on CN-DBpedia. We observe that even simple typing with pred-
icates can achieve good results when judging only three types: person, orga-
nization and location. However, the improvement brought by triple tails and
attention mechanism becomes larger and larger as the granularity increases.
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Table 4. The effectiveness of tails and attention

3 types 23 types 149 types

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

Predicates 0.982 0.961 0.829 0.737 0.638 0.493

P+Tails 0.986 0.970 0.887 0.804 0.744 0.545

P+T+Attentions 0.991 0.983 0.904 0.826 0.761 0.563

6 Conclusions and Future Work

In this paper, we propose a new KG embedding model based on attributes and
attribute values, which is particularly designed for fine-grained entity typing
to relation-sparsity entities in KGs. Based on this KG embedding model, we
perform entity typing from coarse-grained level to more fine-grained level hier-
archically. We also design an algorithm to handle the entities with untrained
(zero-shot) triple tails to ensure the robustness of our model. Our experiments
performed on two real-world KGs show that our approach is superior to the most
advanced models in most cases.

Future work looks forward to finding a better replacing algorithm for the
untrained triple tails. In addition, we would like to consider the description text
of the entity as an important information for better entity typing performance
to triple-sparsity entities.
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Abstract. The size of textual data continues to grow along with the
need for timely and cost-effective analysis, while the growth of compu-
tation power cannot keep up with the growth of data. The delays when
processing huge textual data can negatively impact user activity and
insight. This calls for a paradigm shift from blocking fashion to progres-
sive processing. In this paper, we propose a sample-based progressive
processing model that focuses on term frequency calculation on text.
The model is based on an incremental execution engine and will calcu-
late a series of approximate results for a single query in a progressive
way to provide a smooth trade-off between accuracy and latency. As a
part, we proposed a new variant of the bootstrap technique to quantify
result error progressively. We implemented this method in our system
called Parrot on top of Apache Spark and used real-world data to test
its performance. Experiments demonstrate that our method is 2.4x–19.7x
faster to get a result within 1% error while the confidence interval always
covers the accurate results very well.

1 Introduction

A huge amount of textual data is increasingly produced on the Internet. In
twitter, for example, more than 500 million tweets were published per day in
20171. These data are of great analytic values across many fields including hot
topic analysis, social public sentiment, etc. Compared to structured data, tex-
tual data contains more semantic information such as term frequency and tf-idf
whereas existing SQL aggregation functions focused mainly on numerical values,
and, thus, are not suitable. And due to the non-correlated relationship between
documents, people have much less priori about the distribution of words, espe-
cially on a subset. Analyzing textual data through a collection of fixed workload
becomes unrealistic. Therefore, the way of interactive exploration becomes popu-
lar. The interactive exploration tool gives the user opportunities to continuously

1 http://www.internetlivestats.com/twitter-statistics/.

c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 158–174, 2020.
https://doi.org/10.1007/978-3-030-59416-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59416-9_10&domain=pdf
http://www.internetlivestats.com/twitter-statistics/
https://doi.org/10.1007/978-3-030-59416-9_10


Progressive Term Frequency Analysis on Large Text Collections 159

approach the final goal by iteratively executing queries using varying predicates
[6]. A key requirement of these tools is the ability to provide query results at
“human speed”. Previous literature [20] has demonstrated that a great delay
can negatively impact user activity and insight discovery. However, the term
frequency calculation on a 100 GB text collection costs more than 10 min in our
experiment.

For analyzing structured data, lots of previous works attempt to speed up
query execution through Data Cube or AQP (Approximate Query Processing)
techniques. For data cube [8] and its successors, e.g., imMens [13] and NanoCubes
[12], they either suffer from the curse of dimensionality or restrict the number
of attributes that can be filtered at the same time. When limited by response
time and computing resources, AQP systems (e.g., AQUA [2], IDEA [7], Ver-
dictDB [14]) only return a single approximate result regardless of how long the
user waits. However, there is an increasing need for interactive human-driven
exploratory analysis, whose desired accuracy or the time-criticality cannot be
known a priori and change dynamically based on unquantifiable human factors
[18]. Besides, due to the difference in data structure, these technologies cannot
be migrated to apply to text data easily. For semi-structured and unstructured
data, state-of-the-art solutions are based on the content management system or
cube structures, such as ElasticSearch [1] and Text Cube [11]. ElasticSearch sup-
ports simple queries with key-value based filtering as well as full-text searching
for fuzzy matching over the entire dataset. However, it doesn’t have good support
for ad-hoc queries on subset and cannot return an accurate total term frequency
through the termvectors API. Text Cube uses techniques to pre-aggregate data
and gives the user the possibility to make a semantic navigation in data dimen-
sions [4]. Text Cube can significantly reduce query latency, but it requires exten-
sive preprocessing and suffer from the curse of dimensionality.

The universality and the demand for performance motivate us to utilize sam-
pling techniques to return approximate answers to shorten response latency.
However, approximate answers are most useful when accompanied by accuracy
guarantees. Most commonly, the accuracy is guaranteed by error estimation,
which comes in the form of the confidence interval (a.k.a., “error bound”) [10].
The error estimation can be reported directly to users, who can factor the uncer-
tainty of the query results in their analysis and decisions. Many methods have
been proposed for producing reliable error bounds - the earliest is closed-form
estimates based on either the central limit theorem (CLT) [15] or large deviation
inequalities such as Hoeffding bounds [9]. Unfortunately, these techniques either
compute an error bound much wider than the real which lost guidance to users
or require data to follow the normal distribution while the distribution of terms
frequency often obeys the Zipf law [5]. This has motivated the use of resampling
methods like bootstrap [19], which requires no such normal distribution and can
be applied to arbitrary queries. However, traditional bootstrap and its variant,
variational subsampling technique proposed by VerdictDB [14] remain high com-
plexity in our progressive execution model due to lots of duplicate computation.
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In this paper, we first present a new query formulation by extending SQL
grammar with UDF (user-defined function) for term frequency analysis on text
data. Then, we propose a sample-based progressive process model to continu-
ously refine the approximate result in the user-think period. Longer the waiting
time becomes, the more accurate the result will be. As a part of our progressive
execution model, we present a new error estimation method, progressive boot-
strap. Moreover, to achieve a good performance over rare words, we present a
new low-overhead sampling method, Tail Sampling. In summary, this paper
claims to make the following contributions:

– We propose a new query formulation that extends SQL grammar with UDF
to support term frequency calculation on text data.

– We apply AQP techniques to get the approximate result to shorten the
response latency on large text datasets.

– We present a sample-based progressive execution model and a progressive
bootstrap method to continuously refine the approximate result.

– We integrate these methods into the system called Parrot. Experiments show
that Parrot can provide smooth trade-off between accuracy and latency while
the quantified error bound covers the accurate result well.

Paper Outline: Sect. 2 introduces an overview of Parrot. Section 3 describes
Parrot’s sample-based progressive processing. Section 4 explains how our pro-
gressive error estimation works. Section 5 presents our experiments. Finally, we
review the related work in Sect. 6 and conclude this paper in Sect. 7.

2 Overview

2.1 System Architecture

Parrot is placed between the user and an off-the-shelf database. The user sub-
mits queries through any application that issues SQL queries to Parrot and
obtains the result directly from Parrot without interacting with the underlying
database. Parrot communicates with the underlying text collection for accessing
and processing data when sampling. Figure 1 shows the workflow and internal
components of Parrot, which contains two stages, online and offline. In the offline
phase, the sample preparation module first normalizes data into a unified format
which is JSON-based with a “text” attribute to store text, a “desc” object to
store other attributes, and a “words” array to store words that appeared in the
text. In Parrot, we use Stanford NLP2 and Jieba3 to do word segmentation.
Then samplers build different types of sample set which is a logical concept and
composed of multiple sample blocks. Each diagonal filled box in Fig. 1 repre-
sents a sample block that stores a part of the original data. The data stored
in each block of one sample set are distinct. At runtime, the query parser and

2 https://stanfordnlp.github.io/CoreNLP/.
3 https://github.com/fxsjy/jieba.

https://stanfordnlp.github.io/CoreNLP/
https://github.com/fxsjy/jieba
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analyzer analyze the issued SQL and generate a progressive execution plan. The
execution plan contains two parts - a reference to the best sample set which is
chosen according to our sample planner and an error estimation instance. Then
the execution engine fetches blocks from the best sample set and calculates the
result in the progressive mode which means that the user will receive an approx-
imate result within a short time and the approximate result will be continuously
refined until the whole sample set has been processed or Parrot is stopped by
manual. Meanwhile, Parrot uses progressive bootstrap to estimate the error by
the confidence interval according to a given confidence level. Generally, the width
of the confidence interval can reflect the accuracy of the current result.

In the remainder of this paper, we use T to represent the underlying text
collection, Ts to represent a sample set, |T | to represent the cardinality of T and
bi to represent the i-th block. Actually, a sample set Ts is built by a sampler
with a group of specified parameters applied on the underlying text data T .

Fig. 1. System overview of Parrot

2.2 Query Formulation

We extend the standard SQL grammar with UDF (user-defined function) to sup-
port analysis for text collections. Here is an example of inquiring the frequency
of word bank in the date range between Jan. 1, 2018 and Jan. 31, 2018:

SELECT FREQ(‘bank’)
FROM news
WHERE date BETWEEN ‘2018-01-01’ AND ‘2018-01-31’

Note that, FREQ function is similar to a standard count aggregation after
group-by. We support selecting multiple terms frequencies or using other select
clauses in a mixture of FREQ in one single SQL. In addition to the FREQ func-
tion, we also support the TF IDF which is a numerical statistic widely used in
information retrieval and TOP K to find the k most frequent words. Since the
core of these functions is about term frequency, we will focus on FREQ function
in the following sections.
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2.3 Quantifying Result Error

Our error estimation is in the form of confidence interval with a given confidence
level associated with the continuously updated result. For example, the confi-
dence interval [3.5, 5.5] with the confidence level 95% means that we have 95%
confidence to ensure that the accurate result will fall into the interval [3.5, 5.5].
As discussed before, the Zipf law of natural languages motivates us to use boot-
strap techniques. However, traditional bootstrap and variational subsampling
bootstrap proposed by VerdictDB, need to generate many resamples (usually
a large number, e.g., 100 or 1000) of the entire proceeded data when proceed-
ing a new sample block, which will lead to lots of duplicate computations in
our progressive execution model. Inspired by Verdict, we propose the progres-
sive bootstrap which has a lower time complexity by maintaining subsamples
throughout the execution process to avoid redundant re-generating subsamples.
Actually, the time complexity is only related to the size of the new block. At
the expense of that, the progressive bootstrap requires an additional memory
overhead to store subsamples. Since the overhead is proportional to the square
root of data size, it’s a limited value. The progressive bootstrap algorithm will
be described in detail in Sect. 4.

3 Sample-Based Progressive Processing

In this section, we first show how we prepare samples by three samplers offline.
Then we will introduce our online sample planner about how to pick the best
sample set for execution. Finally, we explain the workflow of our execution
engine, which utilizes delta computation to minimize re-computation.

3.1 Offline Sample Preparation

Uniform Sampler. Given the text dataset T and the number of blocks B,
uniform sampler generates a random integer i in [1, B] for each document which
represents the block number to output. Then the sampler clusters documents by
i and output into the i-th block. Both every single block and any combinations
of these blocks could be seen as an independent uniform sample.

Stratified Sampler. Stratified sampler optimizes queries over rare subpopu-
lations by applying a biased sampling on different groups [3]. Given a column
set C and a number k, stratified sampling ensures that at least k documents
pass through for every distinct value of the columns in C4. To satisfy smooth
convergence of results, the stratified sampler needs to ensure that each sample
block has almost the same and enough number of documents. Therefore, for gen-
erating a stratified sample block each time, we need to dynamically adjust k to
an appropriate value. Suppose there are m groups and the requested cardinality
of each block is |b|. We first collect the cardinality of each group (|ci| for the
i-th group) on C. Then we minimize the value of diff in Formula 1 by binary
4 Precisely, at least min(k, number of documents for that distinct value).
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searching an appropriate value k = k̂ in the range of [1, |b|]. Since we get the k̂,
we apply a stratified sampling and output the chosen documents to a new block.
Then remove them from the dataset and update the left cardinalities for each
group. The above process will be repeated until there is no left document.

diff = |
m∑

i=1

min(|ci|, k) − |b|| (1)

Besides, to maximize the number of documents selected by the query within
the same time, the stratified sampler records the disappearance block (abbr. d-
block) for each group. The d-block of a group refers to the block number that after
outputting to that block, the remaining cardinality of this group reduces to 0.
Thus the cardinality of a group Ω in the i-th block (i.e., bi) is no more than that
in the j-th block (i.e., bj) if (1) i ≤ j, and (2) j < d − blockΩ . In the execution
phase, for a specified group Ω and its d−blockΩ , traversing from d−blockΩ down
to 1 (in reversed order) will maximum the query selecting ratio. For queries over
multiple groups, we first retrieve the maximum d-block (d-blockmax) among all
groups in the query and then read blocks from d-blockmax down to 1.

Tail Sampler. Queries over rare words occur frequently in the interactive data
exploration but often lead to large errors due to its much small selectivity. Tail
sampler, a low-overhead partial sampler, collects these rare words and docu-
ments. Tail sampler firstly determines whether a given document is rare and
then constructs the sample set on the subset of all rare documents. It works as
Algorithm 1 shown. The input contains text collection T and two parameters -
tail threshold τ and sample overhead λ. We define γword as the ratio of appear-
ance times of the word to |T | and γdoc as the minimum γword of words appeared
in the document. Tail threshold τ refers to the maximum γword allowed to be
included in the tail sample. Sample overhead λ refers to the maximum ratio of
the size of the tail sample set to the original dataset. With these inputs, tail
sampler firstly builds the inverted index for each word in T . Then for each word,
we calculate γword (line 3–5). Next, we scan words in the ascending order of γ.
For each word, if γ ≤ τ , and the size ratio not exceeds λ, then add the word
into the set of rare words and add documents in which the word appears into
the sample document set, Ds, without duplicates (line 7–12). Finally, the tail
sampler builds the tail sample set Ts based on the Ds by the uniform sampler.

3.2 Online Sample Planning

A sample plan is composed of a reference to a sample set with some extra infor-
mation (e.g., traversal order of the chosen sample set). Parrot’s sample planner
aims to find the best sample set for the query, i.e., the sample plan that results
in the lowest approximation errors within the same latency. Our strategy is
based on the selectivity which is defined as the ratio (i) the number of docu-
ments selected by the query, to (ii) the number of documents read by the query.
At runtime, the response time increases with more number of documents being
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Algorithm 1: Tail Sampling
Input: text collection T , tail threshold τ , sample overhead λ
Output: tail sample set Ts, rare words set W

1 initialize Ts = {}, W = {} Ds = {};
2 build inverted index for each word in T ;
3 foreach word ∈ inverted index do
4 n = number of documents which this word appears in;
5 γword = n/|T | ;

6 sort words by γ in ascending order;
7 foreach word in ascending order of γ do
8 if γword <= τ then
9 Dw = documents which this word appears in;

10 if |Ds union Dw|/|T| ≤ λ then
11 Ds = Ds + Dw;
12 W = W + word;

13 build Ts based on Ds by uniform sampler;
14 return Ts and W

read and the error decreases with more number of documents WHERE/GROUP

BY clause selects. For this, Parrot generates many possible sample plans (called
candidate plans) and selects the best.

Candidate Plans. Candidate plans contain all sample sets that can be used to
answer the issued query. For a uniform sample, it’s always a candidate plan. For
a stratified sample, if SCS ⊇ QCS, then it’s a candidate plan. The SCS (sample
column set) is the column set that stratified sampler builds on. The QCS (query
column set) is the set of all columns that appears in the WHERE/GROUP BY
clauses. For a tail sample set, if the issued word of the query belongs to the rare
words, then it is a candidate plan.

Selecting a Plan. We first take the sampling strategy into account. Tail sample
is the best as it only includes documents that have rare words and can reduce
the total size of the sample set. Stratified sampler gives different groups different
traversal orders (from d − blockΩ down to 1). For a rare subpopulation, it has a
small d− blockrare value (only appear in the first few blocks) to reduce the total
sample size. For a popular subpopulation, the reversed traversal order makes a
higher selectivity. Therefore, the stratified sample can provide a higher selectivity
than the uniform. Then among all stratified samples, we choose the sample set
with the lowest d − block for the query. For tail samples, we choose the sample
set of the lowest overhead λ as it has the highest selectivity.

3.3 Query Execution Model

Our execution engine computes an approximate result θ̂T
word on a sample to

estimate the accurate result θT
word. Here the word refers to the issued word in
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the FREQ function. Then, by maximum likelihood estimation (MLE)[16], we can
get an approximation θ̂MLE

word = θS
word/|S| of the accurate result θword, where the S

refers to the sample, |S| refers to the cardinality of S, and θS
word refers to the result

on S. Intuitively, this approximation θ̂MLE
word represents the estimated frequency

of the word in each document of the dataset. Multiplying a frequency estimate
θ̂MLE
word by the total number |T | of documents will (i.e., θ̂T

word = θ̂MLE
word ·|T |)therefore

yield an approximate frequency of the word.
Our execution engine works in the progressive fashion. The process contains

many rounds, where each round means a new block data is being proceeded and
a refined result will be returned after proceeding. The guiding design principle
behind Parrot is to take full advantage of delta computation to minimize re-
computation. In other words, before the i-th round, suppose we have finished
processing data Si−1 (i.e., Si−1 = b1 ∪ b2 ∪ ... ∪ bi−1) and get result θ

Si−1
word. Then,

instead of computing query on Si directly, we compute θbi
word and merge it into

previous result θ
Si−1
word since Si = Si−1 + bi and θSi

word can be calculated from the
previous result θ

Si−1
word by a delta query θbi

word (shown as Formula 2).

θ̂T
word = (

θ
Si−1
word + θbi

word

|Si−1| + |bi| ) · |T | (2)

4 Error Estimation

In this section, we describe our new bootstrap method for progressive query
execution. We will start with traditional bootstrap and variational subsampling
bootstrap (Sect. 4.1). Then we introduce our method, progressive bootstrap in
detail (Sect. 4.2).

4.1 Traditional Bootstrap and Variational Subsampling Bootstrap

Bootstrap is the state-of-the-art error estimation mechanism used by previous
AQP engines. Let θ be the accurate result of an aggregate function on N real
values and θ̂ be an estimator of θ on a random sample with size n. To measure
the quality of the estimate, bootstrap recomputes the aggregate on many resam-
ples of the sample. In traditional bootstrap, each resample is constructed with
replacement and has the same size ns as the sample itself (i.e., ns = n) while in
variational subsampling bootstrap it’s without replacement and of size ns where
ns � n (a.k.a. subsample). Bootstrap will construct m such resamples. Let θ̂j be
the value of the estimator computed on the j-th resample. Then bootstrap uses
θ̂1, ..., θ̂m to construct an empirical distribution of the original sample. Let θ̂0 be
the estimator’s value on the sample itself, and tα be the α-quantile of θ̂0 − θ̂j .
Then, the 1 − α confidence interval can be computed as:

[θ̂0 − t1−α/2 ·
√

ns/n, θ̂0 − tα/2 ·
√

ns/n] (3)
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4.2 Progressive Bootstrap

Both two bootstrap methods introduced before, they need to perform bootstrap
over the entire proceeded data and lead to lots of duplicate computations. Sup-
pose the cardinality of the sample set is n, the number of resamples is m, and
there are p rounds in total, traditional bootstrap and variational subsampling
bootstrap have unaffordable time complexity O(n · m · p) and O(n · p) respec-
tively. Inspired by Verdict, we propose the progressive bootstrap by maintaining
all needed sub-samples through the progressive process to avoid duplicate resam-
pling from past blocks. VerdictDB has proved that the bootstrap has the lowest
error when the cardinality of each subsample equals to

√
n. Thus, in the best

case, the subsampling ratio is r = m · √
n/n = m/

√
n. As n grows (more and

more data has proceeded), the ratio will drop. Therefore, if we have preserved
all subsamples s (composed of s1, s2, ..., sm) and when new block bi is being
proceeded, we can directly update subsamples based on s with bi instead of
re-subsampling overall past data. For documents in bi, we apply a Bernoulli
sampling with ratio ri = m/

√
n. For maintained subsamples, let Ei refers to the

event of a document being picked into subsamples at i-th round and we can also
apply a Bernoulli sampling with ratio Δr calculated by conditional probability
as shown in Formular 4.

Δr = P (Ei|Ei−1) =
P (Ei ∩ Ei−1)

P (Ei−1)
=

ri

ri−1
(4)

Algorithm 2 gives a detailed illustration. The input includes the issued word
set words in FREQ functions, the cardinality of underlying dataset N , proceeded
data Si−1 (i.e., b1 ∪ b2 ∪ ... ∪ bi−1), new block bi, past sub-samples s (composed
of s1, s2, ..., sm), past counters c (c[word] for word and composed of c[word]1,
c[word]2, ..., c[word]m), confidence level α (e.g., 0.95), and the approximate
result θ̂. Our algorithm first filters out documents which should be excluded
from the past subsamples (line 3–7) and update counters of each word for each
subsample (line 8–10). Then it picks out documents which should be included
into sub-samples from the new block (line 11–15) and update counters (line 16–
18). Then for each word, we sort m counters in ascending order and collect the
error bound σword according to the subsamples distribution (line 19–21). Finally,
return the updated subsamples, counters and error bound (line 22). Progressive
bootstrap has a lower time complexity O(

√
n · m · p).

5 Experiment

5.1 Experiment Setup

We implemented the methods in our system - Parrot, and the baseline - blocking,
on top of Spark 2.4.3. The baseline implements the same SQL parser and UDF as
Parrot but reads documents from the underlying collection directly and processes
in a blocking fashion. All the following experiments are performed on a 10-node
cluster (each with Intel Xeon E5-2620, 64 GB RAM, and 1.77 TB HDD) under
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Algorithm 2: Progressive Bootstrap
Input: issued word set words, dataset cardinality N , proceeded data Si−1, new

block bi, past subsamples s, past counters c, confidence level α,
approximate result θ̂

Output: updated subsamples s′, updated counters c′, error bound σ
1 n′ = |Si−1| + |bi|;
2 n′

s =
√

n′;
3 foreach document doc ∈ s do
4 suppose the document is in the ε-th subsample sε;
5 r = a random number in [0, n′);
6 if r < |bi| then
7 sε = sε - doc;
8 foreach word ∈ words do
9 f = word frequency in doc;

10 c[word]ε = c[word]ε - f ;

11 foreach document doc ∈ bi do
12 r = a random number in [0, n′);
13 ε = r/n′

s + 1;
14 if ε < m then
15 sε = sε + doc;
16 foreach word ∈ words do
17 f = word frequency in doc;
18 c[word]ε = c[word]ε + f ;

19 foreach word ∈ words do
20 sort c[word] in ascending order;

21 σword = [θ̂ − c[word]α/2 · √
n′

s/n′ · N/n′
s, θ̂ − c[word]1−α/2 · √

n′
s/n′ · N/n′

s];

22 return updated subsamples s′ = s, updated counters c′ = c and error bound σ;

Apache Spark 2.4.3 and Ubuntu Linux 14.04 LTS. Our data is stored in Hadoop
distributed file system and organized in JSON format.

Performance Metrics: Two metrics are used: (1) the relative error of the
approximate result in each round; (2) the response latency for the first acceptable
result. The relative error (RE ) is calculated by RE = |θ̂ − θ|/θ where θ is the
accurate result and θ̂ is the approximate result based on the sample. The relative
confidence interval (RCI ) is calculated by RCI = (|σx−σy|/2)/θ̂, where the [σx,
σy] represents the error bound. When the RCI of an approximate result is less
than the given (1% as default in our experiment), we say it is an acceptable
result. The confidence level is set to 95% as default.

Synthetic Dataset: We use the mix of Reuters news dataset5 and Webhose
English articles6 as our dataset. After data cleaning and word segmentation,
5 https://trec.nist.gov/data/reuters/reuters.html.
6 https://webhose.io/free-datasets/english-news-articles/.

https://trec.nist.gov/data/reuters/reuters.html
https://webhose.io/free-datasets/english-news-articles/
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this dataset is about 10.9 GB and contains about 3 million documents. Then
we scale up the data to 100 GB in proportion to ensure that the distribution
and skewness are similar to the original. We built a uniform sample, a stratified
sample on the date column, and a tail sample with τ = 0.01 and λ = 0.5. We fix
the block size of samples to 128 MB. To evaluate the performance, we use the
following 6 queries:

Q1: SELECT FREQ(‘bank’) FROM news;
Q2: SELECT FREQ(‘bank’) FROM news WHERE location=
‘LONDON’;
Q3: SELECT FREQ(‘government’) FROM news
WHERE date BETWEEN ‘2015-10-01’ AND ‘2015-10-31’;
Q4: SELECT FREQ(‘president’) FROM news
WHERE date BETWEEN ‘2008-01-01’ AND ‘2008-01-31’;
Q5: SELECT FREQ(‘top-asia’) FROM news;
Q6: SELECT FREQ(‘chronology-bird’) FROM news
WHERE location <> ‘PARIS’;

Among them, Q1, Q2 run on the uniform sample, Q3, Q4 run on the stratified
sample as their where clauses are on date column and Q5, Q6 run on the tail
sample as words “top-asia” and “chronology-bird” are very rare words. Selec-
tivity of Q1–Q6 is shown in Table 1. The lower the selectivity, the larger the
error and oscillation of the approximate result may occur. As Q2–Q6 are on very
rare sub-populations, these queries can test the performance of all three kinds
of samples comprehensively.

Real-World Dataset: The second dataset is a real-world Chinese dataset,
which comprises about 60 million articles from the Sina website with size 64
GB. We built a uniform sample, a stratified sample on the channel column and
a tail sample with τ = 0.01 and λ = 0.5. We fix the block size of samples to 128
MB. Then we use three queries, Q7–Q9

7, to evaluate the performance. Selectiv-
ity of Q7–Q9 is shown in Table 1. In this experiment, Q7, Q8, Q9 run on the
uniform sample, stratified sample and tail sample respectively.

Q7: SELECT FREQ(‘Netizen’) FROM article WHERE LEN(text) <
1000;
Q8: SELECT FREQ(‘Female’) FROM article WHERE channel=
‘Health’;
Q9: SELECT FREQ(‘Guangxu’) FROM article;

5.2 Experiment Results

Performance on Synthetic Dataset. In this experiment, we compare the per-
formance between Parrot and baseline on the 100 GB synthetic dataset by Q1–
Q6. As shown in Fig. 2(a), the time cost to get the first acceptable result of Parrot
7 For convenience, we use English words with the same meaning in the paper.
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Table 1. Selectivity of Q1–Q9.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Selectivity 17.5% 0.42% 0.98% 0.48% 0.16% 0.038% 6.58% 2.95% 0.53%

is much shorter than the baseline since Parrot uses a sample-based progressive
execution model. Taking Q1 as an example, Parrot costs about 23 s whereas
blocking takes more than 450 s. However, Parrot brings different improvements
for different queries. As we can see, Q1, Q3, Q4 have more improvement than
the other three. It’s mainly due to two reasons: (1) for queries running on the
same sample set, queries with higher selectivity may faster converge to 1% RCI
as more documents can be selected within the same time; and (2) for queries of
very low selectivity, RCI by bootstrap is much harder to converge to 1% as too
few documents may cause unstable distribution of subsamples. Low selectivity
may also cause fluctuations of RCI through the progressive process. Figure 3 (a) -
(f) show how RE and RCI converge during the execution process. The horizontal
dotted line marks the 1% RCI. We can see that the RE and the RCI converge
smoothly and fast except for some fluctuations when executing queries of very
low selectivity (e.g. Q6). Besides, Parrot can return the first result in about 15
seconds for all of the six queries. The length of this period mainly depends on
block size and we will evaluate it in later experiments.

In summary, on the synthetic dataset, the first acceptable result of Parrot
is 2.4x–19.7x faster compared with the blocking fashion. Besides, Parrot can
provide a smooth trade-off between accuracy and latency. Only queries with
very small selectivity may lead to some fluctuations.

(a) on the synthetic dataset (b) on the real-world dataset

Fig. 2. Time to get the first acceptable result.

Performance on Real-World Dataset. In this experiment, we compare the
performance between Parrot and baseline on the 64 GB real-word dataset by
Q7–Q9. As shown in Fig. 2(b), Parrot can achieve 1% RCI at a very fast speed
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(a) Q1 (b) Q2 (c) Q3

(d) Q4 (e) Q5 (f) Q6

(g) Q7 (h) Q8 (i) Q9

Fig. 3. The convergence of RE and RCI for Q1–Q9.

compared to the blocking fashion. For different queries, Parrot brings different
improvement due to the same reasons as before. Figure 3 (g)–(i) show how RE
and RCI smoothly and fast converge. For all of the three queries, Parrot can
return the first result in about 20 s. The latency is different from that of the first
six queries because the two datasets have different deserialization costs. Through
the execution process, the relative error falls into the confidence interval almost
all the time.

In summary, on the real-world dataset, the first acceptable result of Parrot
is 5.7x–9.7x faster, compared with the blocking fashion. Besides, Parrot can
provide a smooth trade-off between accuracy and latency.

Performance of Bootstrap. In this experiment, we compare the performance
of three different bootstrap methods - traditional bootstrap, variational subsam-
pling bootstrap, and progressive bootstrap. We run Q1 on the 100 GB synthetic
dataset and record the time cost of the error estimation phase in each round from
the beginning until the first acceptable result returned. The average time cost
is shown in Fig. 4. We can see that traditional bootstrap costs more than 128 s
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Fig. 4. Performance of bootstrap
methods.

Fig. 5. Performance on different data
sizes.

on average while it’s unacceptable in our interactive exploration scenario. The
variational subsampling bootstrap costs from 0.307 to 4.14 s with an average of
2.0066 s. It’s fast in the first few rounds and then becomes slower and slower
with more and more data being processed as its time complexity is proportional
to the amount of data that has been proceeded. Our progressive bootstrap gets
the best performance with an average cost of 0.2957 s and can perform bootstrap
within almost a fixed time cost. The cost mainly depends on the block size.

Effect of Data Size. In this experiment, we evaluate the effect of text data
size. We use three text collections scaled from the synthetic dataset with size 50
GB, 100 GB, and 150 GB. We generate samples of these three collections with
the same parameters and the fixed block size (i.e., 128 MB). Then we run Q1

- Q6, both through Parrot and baseline. As shown in Fig. 5, the time cost for
baseline increases with the data size increases (e.g., 100 GB 452s vs. 150 GB
766s for Q1) since it needs to calculate on the entire dataset. We also find that
the data size has a limited effect on the time cost of the first acceptable result
by Parrot (e.g., 100 GB 23s vs. 150 GB 26s for Q1), because Parrot mainly relies
on a sufficient number of documents in the sample to be processed. Therefore,
Parrot can provide a good and stable performance on large text collections.

Effect of Block Size. In this experiment, we evaluate the effect of different
block sizes on the 100 GB synthetic dataset. We construct three groups of sam-
ples under the same parameters except for the block size - 64 MB, 128 MB,
and 256 MB, respectively. We run Q1 by Parrot on the three groups of sam-
ples and record the time cost of the first estimate result, the average updating
interval of result, and the processed data within 100 seconds. We use b64, b128,
b256 to represent the block sizes with 64 MB, 128 MB, and 256 MB respectively.
Figure 6 (a) shows that smaller the block size, the shorter the latency of the first
estimate result will be (e.g., b64 11.7s vs. b128 15.4s). Figure 6 (b) shows that the
increment of block size cause longer result updating interval (e.g., b64 0.558s vs.
b128 0.759s). That’s because smaller block size has less I/O and CPU cost for
processing each single block. Figure 6 (c) shows that smaller block size results
in less data being processed within the same time (e.g., b64 9.3 GB vs. b128 13.1
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GB) since smaller block size leads to more shuffle overhead. Therefore, it is a
trade-off between first-result latency, updating interval and query accuracy.

(a) First-Result Latency (b) Avg. Updating Interval (c) Processed Data

Fig. 6. Performance on different block sizes.

6 Related Work

Interactive Exploration on Text. For structured data, lots of previous works
attempt to speed up query execution through AQP (Approximate Query Pro-
cessing) technique (e.g., AQUA [2], IDEA [7], VerdictDB [14]), which aims to
find an approximate answer by samples [17] as close as to the exact answer
efficiently. While limited by response time and computing resources, the before-
mentioned AQP systems only return a single approximate result. However, there
is an increasing need for interactive human-driven exploratory analysis, whose
desired accuracy cannot be known a priori and change dynamically based on
unquantifiable factors [18]. For semi-structured and unstructured data, the state-
of-the-art solutions are base on the content management system or the cube
structure, such as ElasticSearch [1] and Text Cube [11]. ElasticSearch supports
simple queries with key-value based filtering as well as full-text searching for
fuzzy matching over the entire dataset. But it doesn’t have good support for
ad-hoc queries of term frequency on a subset. Text Cube uses techniques to pre-
aggregate data and gives the user the possibility to make semantic navigation
in the data dimension but requires extensive preprocessing and suffers from the
curse of dimensionality.

Error Estimation. To make approximate answers useful, lots of error estima-
tion techniques have been proposed - the earliest being closed-form estimates
based on either the central limit theorem (CLT) [15] or large deviation inequal-
ities such as Hoeffding bounds [9]. These techniques either compute an error
bound much wider than the real which lost guidance to users or require data
to follow the normal distribution while it’s not suitable for natural languages.
Another estimation technique, bootstrap [14,19], can be applied to arbitrary
queries. However, before bootstrap techniques have poor performance to apply
in our progressive execution model due to lots of duplicate computation.
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7 Conclusion

In this paper, we propose a new query formulation by extending SQL grammar
with UDF for term frequency calculation on text data. We apply AQP techniques
to return an approximate result within a short time. We present a sample-based
progressive processing model and progressive bootstrap to continuously refine the
approximate result. We implement these methods in the system called Parrot.
Experiment results show that Parrot is about 2.4x–19.7x faster than the blocking
fashion for the first acceptable result and can provide a smooth trade-off between
accuracy and latency. Meanwhile, the quantified error bound covers the accurate
result well.
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Abstract. Deep learning techniques have shown remarkable success in
classification tasks. However, the prerequisite for high accuracy is that
data is easily accessible, which is unrealistic since most features come at
a cost. Under a medical scenario, each feature is associated with a med-
ical test that costs a certain amount of money. And doctors would ask
patients to do consecutive tests until they are confident enough to make
a final diagnosis, whereas the overall cost incurred during the process is
often ignored. In this paper, we propose to learn a cost-effective strategy
which at the same time hastens the decision process. As is often the case
where both medical records and initial feature values of a new patient
are incomplete, we design a framework consisting of two components,
the oracle classifier and the feature selector, to tackle the challenges.
The classifier incorporates a sequence encoder that can handle any set
of feature values in various sizes. And the selector efficiently learns the
cost-effective strategy based on the state-of-art reinforcement learning
techniques. Experimental results have shown that under the same clas-
sification accuracy, our strategy is superior to other related approaches
in terms of the overall cost.

Keywords: Medical data · Feature acquisition · Cost-effective
strategy · Reinforcement learning

1 Introduction

Classification tasks have been equipped with mature machine learning techniques
in recent years. Given sufficient features about a disease, a well-trained classifier
can rival many medical practitioners in the accuracy of detecting the disease.
The underlying assumption is that comprehensive feature values for both the
new instance and training data are readily available. Yet in real scenarios, such
an assumption does not hold since most features are acquired at a cost. Consider
the process of medical inquiry. A doctor, starting the diagnosis with few symp-
toms initially stated by a patient, would require her to conduct some medical
tests which cost a certain amount of money to measure some feature values.

c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 175–191, 2020.
https://doi.org/10.1007/978-3-030-59416-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59416-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-59416-9_11


176 M. Zhu and H. Zhu

Gesta onal weeks Biparietal 
diameter 

Le  pulmonary 
artery

Right ventricular 
diameter … Tetralogy of 

Fallot (TOF)

21 - 1.1 8.0 … 1

22 56 - 7.8 … 0

…

…

…

…
…

Fig. 1. Illustrated example of the TOF. The training data on top has missing terms in
these two instances. The process below shows that we sequentially acquire the feature
values of each new patient until the final classification.

Furthermore, since the examination results can either increase or decrease the
confidence of the doctor’s conjecture about potential diseases, the patient is
instructed to do consecutive tests until the doctor’s preliminary diagnosis takes
shape. According to personalized experience of doctors, their choices of tests
depend primarily on how quickly they can gain enough confidence in the final
judgment instead of the overall cost incurred during the process. Therefore, it is
significant to learn a strategy that quickly forms a diagnosis and minimizes the
cost at the same time.

We illustrate two main challenges by the example of Tetralogy of Fallot
(TOF), which is a type of heart defect present at birth. Pregnant women are
often required to do medical tests with different amounts of money, such as
the blood test and ultrasound examination, to measure some feature values as
shown in the top part of Fig. 1. For one thing, some feature values in the train-
ing data are missing. That may be because some patients do not conduct some
tests due to a limited budget, or the doctors are incapable of measuring some
values for the abnormal locations of the fetus. For another, we need to learn a
cost-effective strategy personalized to each new patient; after seeing one feature
value, we should test the next feature based on the trade-off between lowering
the overall cost and converging to the final judgment as soon as possible.

Previous work partially considers the above issues [4,8,17]. First, they assume
that training data is complete, which is unrealistic in our medical case. Second,
they often make the trade-off by using a linear combination of the classification
accuracy and the overall cost balanced by a hyperparameter λ. However, it is
often hard to find a real sense of λ and set an appropriate value in practice.

In this paper, we first formulate the real setting as a constrained optimization
problem, which captures both the confidence and the feature cost in the sequen-
tial process, and propose a framework to solve it. In particular, we first view
the sequential process as a Markov Decision Process (MDP), where we simulate
the environment exactly as the interactions between doctors and patients, then
design two components: the oracle classifier and the feature selector. The former
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one is mainly made up of a sequence encoder, which addresses the first issue
where the training data is incomplete. The idea is based on the techniques of
document classification in natural language processing, which record the infor-
mation of each feature value in the sequence. And the feature selector tackles
the second issue by adopting the state-of-art reinforcement learning techniques
with the elaborate design of the behavioral policy.

Our contributions in this work are listed below:

– We identify the problem of learning a cost-effective strategy that accurately
characterizes the real scenario of medical inquiry.

– We design a general framework consisting of the feature selector and the
oracle classifier to tackle the problem.

– We verify the effectiveness of the proposed solution through extensive exper-
iments on real medical data.

2 Problem Statement

Let (x, y) be a sample drawn from the data distribution D on X × Y. Vector
x ∈ X ⊆ Rn is described by a set of n features F = {f1, . . . , fn}, where xi is
the value of feature fi, and y ∈ {0, 1} is the class. Each feature f is associated
with a cost cf when it is acquired. Let gI(x) = {xi|∀fi ∈ I} be the set of feature
values for any I ⊆ F .

Suppose there is an oracle classifier hϑ (parameterized by ϑ) which bears a
similar ability of diagnosis as the doctor. Given any set of feature values gI(x),
the oracle classifier outputs the probability of class 1, i.e., hϑ(gI(x)) = P (y =
1|gI(x)).

We now state the process of feature acquisition. At time step t = 0, we start
with an empty acquired feature set I0 = ∅. At each time step t, we could select
one feature f ∈ F\It−1 to obtain its value with a cost cf . With acquired feature
values gIt

(x), we could ask the oracle classifier about the probability of class
1, i.e., hϑ(gIt

(x)). And we would use the log-odds function δ(p) = | log p
1−p | to

represent the confidence of the classification. If we are confident enough, where
the confidence is higher than a threshold α:

δ(hϑ(gIt
(x))) = | log

hϑ(gIt
(x))

1 − hϑ(gIt
(x))

| ≥ α, (1)

we would stop the feature acquisition. The problem is to find a strategy πθ

(parameterized by θ) to select an appropriate feature at each step so as to min-
imize the overall cost.

Note that the threshold α can be easily set by an experienced doctor. The
threshold α corresponds to some probability p; that is, δ(x) ≥ α is equivalent to
x ≥ p or x ≤ 1 − p for some p ∈ (0, 1).

We also assume that the threshold α is set so that Eq. (1) can be met when all
the feature values are acquired (i.e., gF (x)). This accords with the real scenario
where the doctor can finally make a decisive diagnosis for each patient, sometimes
even a false judgment. Those uncertain cases are beyond the scope of the paper,
since they only take up a tiny fraction, which is demonstrated in Fig. 2.
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Fig. 2. The failure rate w.r.t. α on the TOF data. The failure rate represents the per-
centage of the instances whose confidence cannot meet the threshold. As the confidence
level increases, there are still few uncertain instances.

3 Methodology

3.1 Overview

The problem is first formulated as the Markov decision process (MDP) and
the proposed model is based on the framework of reinforcement learning (RL).
It consists of two components: the feature selector πθ and the oracle classifier
hϑ, as showed in Fig. 3. The feature selector is realized by a Q-network which
would select one remaining feature according to the current state in the MDP.
Learning the network requires that an agent repeatedly explores the environment
to receive rewards to update the parameters. The oracle classifier, which is a part
of the environment, would output the confidence and decide if it satisfies Eq. 1. If
the new state is a terminal state, the agent cannot make a transition and would
be reset. For the oracle classifier, it can be realized by any mature solutions
from the literature of binary classification. However, each state represents a set
of feature values, which requires to be encoded so that it can fit into the Q-
network. Therefore, we adopt the Gate Recurrent Units (GRU) [3], and design
a bidirectional GRU-based sequence encoder shared by both the feature selector
and the oracle classifier. We further use the attention mechanism, as the name
suggests, to identify the significance of individual features. The encoder would
be trained during learning the classifier and the feature selector.

3.2 MDP Construction

MDP includes a set of states S, a set of actions A per state, and the envi-
ronment which an agent interacts with. In state st ∈ S, the agent selects an
action at according to its policy πθ(a|s). The environment returns the agent a
reward rt and let the agent enter a new state st+1. The goal is to maximize the
accumulative rewards till the terminal state.



Learning a Cost-Effective Strategy on Incomplete Medical Data 179

State. The state st = (gIt
(x), It) consists of the current set of acquired features

It ⊆ F and the corresponding values gIt
(x). As the states are actually set

variables, we use a sequence encoder (detailed below) to transform them into
vectors of fixed length so that they can be fed into the model.

Action. The set of actions per state depends on the set of remaining features
F\It. We assume that the agent can only select one feature at each state for
clarity. The approach can be easily extended to the case of multiple features at
a time. Note that some actions would be invalid if the corresponding features
can not be acquired for the personal reasons or limits of medical conditions.

Rewards. It is straightforward to define each step’s reward as the negative
feature cost cf if the agent selects the feature f , since minimizing the overall
cost is equivalent to maximizing the overall reward.

Environment. Given an action at, the state transition in the environment
is deterministic from (gIt

(x), It) to (gIt+1(x), It+1). But if the oracle classifier
claims that its confidence holds the Eq. (1), the agent would be in the terminal
state, and the final judgment is also given by the model.

Fig. 3. The overall framework. The sequence encoder shared by both two components
handles various sizes of sets of feature values. The oracle classifier produces the confi-
dence given any set of feature values. The feature selector interacts with the classifier
to find a currently appropriate feature.
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3.3 Oracle Classifier

The oracle classifier is composed of two parts: a sequence encoder for feature
encoding and fully-connected layers for classification. The encoder adopts the
bidirectional GRU-based architecture (which is a kind of recurrent neural net-
work) with the attention mechanism [1]. The reason why we use a sequence
encoder is that the contextual information is useful in selecting the next action,
since we will use the same encoder in the feature selector. For example, the doc-
tor would ask you to do another medical test according to the previous results
of the test. The current set of feature values would guide the next action.

GRU. The GRU [3] tracks the states of sequences based on a gating system.
Two kinds of gates, including the reset gate dt and the update gate zt, are used
to control how the information is updated. The new state is computed as

ht = (1 − zt) � ht−1 + zt � ˜ht, (2)

where � is the element-wise multiplication. The update gate zt allow each unit
to maintain its previous information and we update it by

zt = σ(Wzet + Uzht−1 + bz). (3)

And ˜ht is the newly updated state, computed as

˜ht = tanh(Whet + dt � (Uhht−1) + bh). (4)

The reset gate dt controls how much and what information is reset and is updated
as

dt = σ(Wret + Urht−1 + br), (5)

And et is the sequence vector (xi, embed(i)) where we concatenate the feature
value xi at time t and the embedding of the position i. Note that embed(i) can
be the one-hot vector or randomly initialized and learned in the training phase.

Sequence Encoder. Suppose the sequence is made up of individual feature
values and their positions (xi1 , i1), (xi2 , i2), . . . , (xit , it), . . . , (xiT , iT ). We use a
bidirectional GRU to summarize the contextual information. The forward GRU−−−→
GRU reads the feature values from i1 to it, with a backward one

←−−−
GRU from it to

i1. With the position further embedded into the vector et, we obtain the hidden
vector by concatenating both two directions, i.e., ht = [

−−−→
GRU(et),

←−−−
GRU(et)].

Note that not all feature values are informative in the representation of the
sequence. We adopt the attention mechanism [1] to distinguish the feature values
that are important to the meaning of the sequence. Specifically, the hidden vector
ht is first fed into a one-layer MLP to get ut as a hidden representation of ht:

ut = tanh(Wwht + bw). (6)
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The importance of the feature values is then measured by a context vector Wu

and normalized by the softmax function:

βt =
exp(u�

t Wu)
∑

t exp(u�
t Wu)

. (7)

Note that the context vector Wu is randomly initialized and jointly learned
during the process of training. The final representation of the sequence is

v =
∑

t

βtht. (8)

Classifier. The representation v would then be fed into two fully connected
layers to make the classification. Because of the biased data where few samples
are abnormal, we use the weighted cross-entropy loss as the objective function:

L = −β
∑

gIt (x)∈D+

log hϑ(gIt
(x)) − (1 − β)

∑

gIt (x)∈D−
log(1 − hϑ(gIt

(x))), (9)

where β = |D−|/(|D+| + |D−|), and D+/D− represents the positive/negative
sample set.

Before learning the feature selector, the oracle classifier has been pre-trained
and would output the confidence to decide if the condition (Eq. 1) holds.

3.4 Feature Selector

The feature selector uses the value-based techniques in RL which learn a score
function for state-action pairs and adopts the strategy which selects the action
with the highest score. We realize the score function by the state-of-art dueling
network [20] and follow a traditional Q-learning way [12]. However, as the explo-
ration of the environment during the training can be more efficient, we do not
stick to the greedy policy in Q-learning but design a new policy. In the following,
we will first introduce the background of deep Q-learning that we used and then
present the details of our model.

Deep Q-Learning. Q-learning mainly learns the state-action function Q∗(s, a),
representing the expected future reward when the agent on state s selects action
a. Such function is modeled by a neural network (called Q-network and param-
eterized by θ) with inputs corresponding to states and outputs to Q-function
values of different actions a. Using the Bellman equation, the Q-function can be
calculated by

Q∗(s, a) = r(s, a) + γ max
a′

Q∗(s′, a′), (10)

where r(s, a) is the reward by taking action a and γ ≤ 1 is a discount factor.
Since both sides of Eq. (10) has the Q∗(s, a), it is impossible to converge if

we use the same network to realize them. We usually regard the left side as
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a target which would be fixed for a period of time, and optimize the network
of the right side to approach the target [12]. Besides, we adopt the technique
of double Q-learning [6] to alleviate the overestimate of action values. That is,
the action is selected based on the right network, and its value is taken from
the target network. The left one has the parameters θ− which follow the right
one θ with a delay. It is then optimized by minimize the mean squared error
empirically experienced by an agent following a greedy policy that selects the
action with the currently highest Q-value. Formally, if the agent travels through
the trajectory τ , we minimize the loss w.r.t. θ

Lθ(τ) =
1
|τ |

∑

(st,at)∈τ

(rt + γQθ−
(st+1,max

a
Qθ(st+1, a)) − Qθ(st, at))2. (11)

Note that we do not have to use such a greedy policy to get the trajectory, since
the action may be locally optimal w.r.t. the current Q-function.

Network Architecture. As the input of the Q-network requires the vector
representation of the state, we would use the sequence encoder to transform it.
As the states in the trajectory naturally form a sequence, we encode the states
in the same way in the oracle classifier; that is, each new state (xi, embed(i))
is incorporated by the bidirectional GRU with the attention mechanism. The
output of the sequence encoder is then fed into the Q-network, which is basically
an MLP by convention.

We adopt the technique in [20] to decompose the Q∗(s, a) into two functions:
the expected future rewards at state s V (s) and the advantage of taking action
a versus all other possible actions A(s, a). The output network is accordingly
divided into such two estimates, which are then aggregated to the final output

Qθ(s, a) = V θ(s) + Aθ(s, a) − 1
|A|

∑

a′
Aθ(s, a′). (12)

This technique is proved useful in accelerating and stabilizing the training.

Behavioral Policy. As stated above, the agent would follow a behavioral policy
to experience the environment. The traditional ways, such as the ε-greedy policy,
all tend to select a better action according to the current Q-function values.
However, when the training starts, since they do not converge to their true
expected values, the Q-function is inaccurate and may guide us in the wrong
way. Therefore, we design a new behavioral policy to ameliorate such a cold
start problem in training.

We still use the framework of ε-greedy, where we select a random feature
with some small probability ε and the feature which achieves the most “bang for
the buck” with probability 1 − ε.

arg max
f∈F\It

δ(hϑ(gIt∪{f}(x))) − δ(hϑ(gIt
(x)))

cf
. (13)



Learning a Cost-Effective Strategy on Incomplete Medical Data 183

Algorithm 1: Training Procedure
1 Initialize the parameters ϑ for oracle classifier and θ for feature selector

randomly
2 Pretrain the classifier which incorporates the sequence encoder by using the

cross-entropy loss
3 Initialize a target network with parameters θ− = θ
4 t = 0
5 for l = 1, 2 . . . do
6 //Run N agents in parallel
7 Initialize an experienced buffer B
8 Get state st = (gIt(x), It)
9 for i = 1, 2 . . . do

10 Take action at according to the behavioral policy
11 Receive reward rt = −cat

12 Update state st+1 = (gIt+1(x), It+1)
13 if δ(hϑ(gIt+1(x))) ≥ α then
14 Reset st+1 with a new sample from the environment

15 Add trajectory (st, at, rt, st+1) into buffer B
16 t = t + 1

17 for (si, ai, ri, si+1) ∈ B do
18 Compute target qi according to Eq. 10

19 Compute the loss w.r.t. θ according to Eq. 11
20 Update θ with gradient descent
21 if t mod freqclf is equal to 0 then
22 Compute the loss w.r.t. ϑ according to Eq. 9
23 Update ϑ with gradient descent

24 if t mod freqtarget is equal to 0 then
25 θ− = θ

That is, such a feature would bring about the most increase in confidence over
the cost. Such a choice has been proved a good approximation of the optimal
solution when the objective function is submodular.

Besides, as the number of remaining features is lower than some small number
N , we could easily try all the N ! permutations and obtain the optimal policy
which satisfies Eq. (1) and achieves the smallest cost. The last few steps will be
directly recorded into the trajectory and used in optimization.

3.5 Model Training

The whole training process is described in Algorithm1. We first train the oracle
classifier on incomplete medical records before learning the feature selector. To
enlarge the training samples, we randomly discard some features values for each
instance to make new instances, as used in [17]. Note that the classifier could
still be improved when we train the feature selector.
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To optimize the Q-network, we run multiple agents in parallel and each agent
would interact with the environment for a fixed number of steps to produce the
trajectories, which are then recorded in an experienced buffer. At each step, a
valid action is selected by the behavioral policy based on the current state. The
corresponding reward is presented for this action and the state is accordingly
updated. Then the new state is fed into the classifier to estimate the confidence.
If it is greater than the threshold α, the state is reset with a new sample from
the environment.

We next compute the target Q-value for each trajectory, The network param-
eters θ are updated by the gradient descent method to minimize the empirical
loss in Eq. 11. Since we delay the update of the target Q-network, the param-
eters are only updated for every freqtarget steps. Besides, we also update the
parameters of the classifier for every freqclf steps to improve its capability on
incomplete data. Note that the sequence encoder can be further learned both by
the Q-network and the oracle classifier.

Table 1. Details of real datasets.

Datasets #Instances #Features #Class 0: #Class 1

TOF 11115 45 27.4:1

PAA 10896 45 62.3:1

TR 12181 45 7.4:1

4 Experiments

4.1 Experiment Setup

Datasets. To evaluate our strategy, we use three medical datasets from a major
hospital in Beijing. They all include medical records of pregnant women and
fetuses, such as the gestational weeks, the diameters of ventricles, and the sta-
tus of arteries and veins. These tests are used for diagnosing whether fetuses
have congenital heart diseases, such as the Tetralogy of Tallot (TOF). The first
dataset is to diagnose whether fetuses suffer from the TOF, the second one is
for Pulmonary Artery Atresia (PAA), and the third one is for Tricuspid Regur-
gitation (TR). The costs of features are first shared equally within each medical
test and then normalized into [0, 1]. For all datasets, we split the data randomly
into the training/validation/test sets by the 0.6/0.2/0.2 ratio. Details about the
datasets are listed in Table 1.

Compared Strategies. We compare two state-of-art strategies with our cost-
effective feature selector (CFS). Note that they all directly minimize a loss func-
tion on training data which is essentially a linear combination between the clas-
sification accuracy and the feature cost, balanced by the hyperparameter λ. To
minimize the function, they all adopt the reinforcement learning techniques.



Learning a Cost-Effective Strategy on Incomplete Medical Data 185

(1) JLAFA [17] uses an LSTM model to encode the state. Its reward for each
step involves both the classification loss and the negative feature cost.

(2) RLCwCF [8] uses all the feature values as each state. If some values have
not been acquired, it simply assigns them 0. And the classifier is SVM.

We set the λ as 0.01, 0.001, 0.0001, respectively, which refers to their papers.
Then three versions of strategies for each one are obtained.

Parameter Setting. For the parameters of the oracle classifier, we set the
dimension of the hidden vector of each direction in sequence encoder as 16, and
the learning rate as 0.01. The freqclf is set to 50, indicating that the oracle
classifier is updated for every 50 iterations.

For the parameters of feature selector, we set the number of agents as 128
and the number of steps as 4, meaning that 128 agents run in parallel for 4 steps
per iteration. The feature selector consists of the MLP with two hidden layers
of each 32 units. For the behavioral policy, ε linearly decreases from 1 to 0.1
with the speed 0.02 for each iteration. Besides, the discount factor γ is set to 1,
the learning rate is set to 0.001 and the target network is updated for every 100
iterations. We set the batch size as 128 and apply the Adam optimizer.

Metrics and Implementation. The goal of our strategy is to find a strategy
to minimize the overall cost while satisfying the confidence threshold. So we
choose the average cost and the failure rate as the metrics to evaluate the overall
performance for different confidence thresholds α. The failure rate represents the
ratio of the instances that do not satisfy α.

Note that we only consider the instances that satisfy α with all feature values
given, as stated in the problem statement. However, since the compared strate-
gies with inappropriate λ may choose only a small number of features and be
unable to fulfill the confidence threshold. To ensure fairness, we remove those
instances for which the compared strategies cannot satisfy the threshold.

We directly use their public source codes of the compared algorithms. All
algorithms are implemented by Python 3.6.6 and PyTorch. All tests are repeated
over 5 times and we report the average values.

4.2 Experimental Results

Overall Performance. To test the performance of our strategy, we compare
6 different versions of related strategies. Note that the costs of these strategies
are tested under the problem setting which adopts the same oracle classifier.

We vary the confidence threshold α from 2.5 to 4.5 while fixing the other
parameters to their default values. The results of the average cost and the failure
rate on two datasets are presented in Fig. 4.

On the TOF dataset, due to a high failure rate when the parameter λ of
RLCwCF is set to 0.01 and 0.001, we just report the result of the RLCwCF-
0.0001 version. For the average cost, it can be seen that most strategies incur
a higher cost as we increase the confidence threshold. However, the costs of
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Fig. 4. Effectiveness on TOF, PAA, and TR

JLAFA-0.0001 and RLCwCF-0.0001 decrease when α is 4 and 4.5, which may
be because too many instances cannot meet the threshold (which coincides with
Fig. 4d) and the successful ones are easy to be classified with few features. Among
all the strategies, our CFS always achieves the smallest cost. For the failure rate,
all the compared strategies tend to increase with larger thresholds, since they
would stop the process of feature selection when the instances can be classified
and hence do not acquire more features to enhance the confidence. But CFS
is trained to meet the predetermined threshold. It can be observed that CFS
always achieves a high success rate.

On the PAA and TR datasets, the results are similar to that on TOF dataset.
It can be seen that the average cost of CFS is lower than all compared strategies
across different confidence thresholds, and the failure rate of CFS is almost zero
for different thresholds. In conclusion, CFS performs the best on three datasets
among all the strategies and is effective.

Classification Accuracy. Apart from the average cost and failure rate, the
accuracy of the diagnoses is also important. Due to the imbalance of the data,
we use the area under the receiving operating curve (AUC score) as the metric
to measure the classification accuracy. In this experiment, we directly use all the
compared strategies to choose the features and calculate the predicted proba-
bilities. For the compared strategies, we would view CFS trained with different
thresholds as different versions of our strategy. And for the RLCwCF-0.01 and
RLCwCF-0.001, since they often fail to select features on the TOF and PAA
datasets (which is because larger λ indicates a very small total feature cost) and
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Fig. 5. AUC scores of different costs on TOF, PAA and TR

directly make the prediction, we just show the results of the RLCwCF-0.0001
version on TOF and PAA dataset. The results are reported in Fig. 5.

From the results on three datasets, we can observe that the AUC scores
of these strategies increase as the cost is larger, which is consistent with the
fact that the prediction would be more accurate with more features acquired.
It can be seen that the points of our CFS method concentrate on the top left
part of the figures, which implies that we only take a small cost to obtain a
high classification accuracy. Besides, under the same cost, the AUC score of our
strategy is larger than that of JLAFA and RLCwCF. Superiority can also be
seen when we fix the AUC score. Therefore, we can conclude that our strategy
performs better than JLAFA and RLCwCF.

Fig. 6. Average rewards during training

Convergence Analysis. We analyze the convergence of our strategy by con-
sidering the average rewards during training. Take the TOF as an example, we
investigate different versions of our strategy w.r.t. the confidence threshold α.
The results are reported in Fig. 6.

It can be observed that the performance of all versions has a similar trend.
The average rewards of all versions fluctuate at first, then tend to be stable in the
later phase. However, another fact is that there are differences in the convergence
speeds of different versions. The version with α = 3 converges fastest and is the
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most stable one, while the version with α = 4 converges slowly. The reason is
that larger α increases the complexity of feature selection, thus slows down the
rate of convergence. In all, we can draw a conclusion that all versions of our
strategy can converge to a better solution in finite training steps.

Case Studies. Apart from the quantitative analysis, we also show some case
studies from the results.

Table 2. Case studies on TOF.

Instance 1 Instance 2

Features selected Gestational weeks Gestational weeks

Annulus diameter of
pulmonary valve

Diameter of the aortic
ends of ductus arteriosus

Width of descending aorta Annulus diameter of
pulmonary valve

Diameter of left ventricle –

Label 1 0

(1) For the TOF, we select two instances with different labels, and the fea-
tures selected of CFS are showed in Table 2. For Instance 1, CFS selects four
features and makes a correct judgment. And for Instance 2, only three features
are acquired. By analyzing them, we verify that they are related to the TOF.

(2) For the TR, we select two instances with label 1, and the features selected
of CFS are presented in Table 3. Similar to the cases in TOF, only a few features
are selected for diagnosis. Note that for these two instances, CFS selects different
features, which are coincident with the personalized instances.

Table 3. Case studies on TR.

Instance 1 Instance 2

Features selected Gestational weeks Gestational weeks

Diameter of right ventricle Diastolic peak of the
aortic arch

Systolic peak of
pulmonary venous flow

Peak A of the tricuspid
valve

– Peak E of the tricuspid
valve

Label 1 1
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5 Related Work

The studied problem of learning a cost-effective strategy on incomplete medical
data is related to the traditional problem of active feature acquisition. However,
ours is unique in that we capture the core characteristics of the medical inquiry
where consecutive tests are conducted until the doctors gain enough confidence.
So the related approaches may not be easily applied to our problem. We just
review them below.

Some existing work deals with the problem in a Bayesian setting [5,9,10,
18]. They assume that the probability distribution of the data is given and can
be estimated from the data. Their approaches minimize the feature acquisition
cost by inferring the feature dependencies. Note that their approaches are only
applicable in low-dimensional data so that the probability models can be reliably
learned.

Another type of method constructs the decision trees on the training data to
guide the feature selection [2,11,13–15,21]. The tree is learned by minimizing the
elaborate empirical loss, which combines the cost of used features and classifica-
tion accuracy. The construction follows some purity metrics such as the entropy.
Note that they still focus on the training data and use some hyperparameters
which balance the two goals but are hard to set in practice.

Other heuristics include using a crowdsourcing-based approach to generate
high-quality rules to largely reduce the cost while preserving quality [22], solving
an lp to select the model with the best accuracy and the lowest cost from those
pre-trained candidates which utilize different sets of features [19], or adopting
imitation learning to follow the reference policy provided by an oracle of feature
selection [7]. However, their approaches are not specific to the problem of medical
inquiry and fail to capture the real characteristics of that.

Recently, reinforcement learning (RL) has shown remarkable success in vari-
ous domains. Some works formulate the feature acquisition problem as a Markov
Decision Process (MDP) or a partial observable MDP (POMDP) and adopt the
mature solutions in RL to learn the best feature acquisition strategy that gives
maximum returns [4,8,16,17]. As stated in the introduction, the main problem
is that it is hard to find the real sense of the hyperparameter which balances the
loss of classification and the feature cost and overlooks the real characteristics
of the medical inquiry.

6 Conclusion

The problem of learning a cost-effective strategy on incomplete medical data
generalizes the traditional problem of sequential feature acquisition but uniquely
characterizes the process of medical inquiry. The proposed formulation, based
on the success of modern classification techniques, captures the practical issues
of quickly converging into a diagnosis but incurring a smaller cost. The pro-
posed framework of of learning the strategy follows the traditional reinforce-
ment learning where each element in the MDP is defined and the environment
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is accordingly modeled by an oracle classifier. To tackle the challenge of coding
the variable sets, we adopt the bidirectional GRU-based architecture with the
attention mechanism as the encoder. Sharing this encoder with the classifier can
further improve its accuracy of classification. Extensive experiments demonstrate
that the simulation indeed coincides with our expectation of the real process of
medical inquiry and our strategy outperforms the other state-of-the-art baseline
strategies in many respects.
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Abstract. Reorganizing bus frequency to cater for the actual travel
demand can save the cost of the public transport system significantly.
Many, if not all, existing studies formulate this as a bus frequency opti-
mization problem which tries to minimize passengers’ average waiting
time. However, many investigations have confirmed that the user sat-
isfaction drops faster as the waiting time increases. Consequently, this
paper studies the bus frequency optimization problem considering the
user satisfaction. Specifically, for the first time to our best knowledge, we
study how to schedule the buses such that the total number of passengers
who could receive their bus services within the waiting time threshold
is maximized. We prove that this problem is NP-hard, and present an
index-based algorithm with (1−1/e) approximation ratio. By exploiting
the locality property of routes in a bus network, we propose a partition-
based greedy method which achieves a (1 − ρ)(1 − 1/e) approximation
ratio. Then we propose a progressive partition-based greedy method to
further improve the efficiency while achieving a (1 − ρ)(1 − 1/e − ε)
approximation ratio. Experiments on a real city-wide bus dataset in Sin-
gapore verify the efficiency, effectiveness, and scalability of our methods.

Keywords: Bus frequency scheduling optimization · User waiting time
minimization · Approximate algorithm

1 Introduction

Public transport and the services delivered by buses are essential to our daily
life. Bus services provide us with the capability to move around, which shapes
where we can work and live, where we shop and how we spend our leisure time.
In this paper, we focus on bus frequency design which plays a very important role
in urban public transport systems, as reorganizing bus frequencies to meet the
actual travel demands is expected to achieve significant savings in cost. Taking
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New York City as an example, the cost of each bus is around $550,000 and the
operating cost of transit agencies reaches $215 per hour1. If we re-organize the
bus frequencies based on real travel demands and save 10% bus departures, we
can save $20 operating costs per hour and $55,000 per vehicle.

In the literature, there are many studies focusing on the problem of bus
frequency optimization. Most of them share a common objective, which is to
minimize the average travel cost (in terms of waiting time) of passengers [3,5,9,
10,13]. Moreover, their solutions are usually heuristic rather than approximate
(with theoretical guarantees). However, most, if not all, existing works ignore
an important aspect, the user satisfaction. Many studies have confirmed that
the user satisfaction drops faster as the waiting time increases [1,8]. Motivated
by this finding, we aim to schedule the buses in a way to serve more passengers
within a given waiting time threshold θ but not to minimize the average waiting
time. In addition, our algorithms are adaptive to cater for different settings of θ.

We call this novel problem as SatisFAction-BooST Bus Scheduling (FAST).
Given a bus database B, a bus route database R, a passenger database P, and
a vector N 〈n1, n2, · · · , ni, · · · , n|R|〉 that specifies the expected number of bus
departures for each bus route, it chooses ni buses for each route ri ∈ R such
that the whole bus system is able to satisfy the most passengers. The analysis
shows that the objective function of FAST is submodular and FAST is NP-hard.

To resolve the FAST problem, we develop a range of approximate algorithms
with non-trivial theoretical guarantees. First, we propose an index-based greedy
method (Greedy), which can provide (1 − 1/e) approximation factor for FAST
as the baseline, and two enhanced versions, namely PartGreedy and ProPart-
Greedy. PartGreedy is inspired from [18] and by the fact that a bus network
is designed to cover different parts of the city and it tries to avoid unnecessary
overlapping among routes [4,16]. It adopts a partitioning algorithm to divide the
bus network into several disjoint partitions. Accordingly, it invokes local greedy
search within each partition, which effectively reduces the computation cost of
the original greedy algorithm. On the other hand, ProPartGreedy adopts a dif-
ferent strategy to address the efficiency issue. Instead of finding one bus that
contributes the most to the objective function in each iteration of the local greedy
search, it fetches multiple buses in each iteration of the local greedy search to
cut down the total number of iterations required. Meanwhile, ProPartGreedy
has a tunable parameter that could determine roughly how many buses could
be fetched in each iteration and hence provide a trade-off between efficiency and
effectiveness.

In summary, we make the following contributions.

– We propose and study the FAST problem. To the best of our knowledge, this is
the first study on bus frequency optimization that considers user satisfaction.
We prove that the objective function of FAST is monotone and submodular,
and FAST is NP-hard.

– We propose an index-based greedy method (Greedy), a partition-based greedy
method (PartGreedy) and a progressive partition-based greedy method

1 https://www.liveabout.com/bus-cost-to-purchase-and-operate-2798845.

https://www.liveabout.com/bus-cost-to-purchase-and-operate-2798845
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(ProPartGreedy) to solve the FAST problem efficiently. They can achieve
an approximation ratio of (1 − 1

e ), (1 − ρ)(1 − 1
e ), and (1 − ρ)(1 − 1

e − ε)
respectively, where ρ and ε are the user-defined parameters.

– We conduct extensive experiments on real-world bus route and bus touch-
on/touch-off records in Singapore (396 routes, 28 million trip records of one
week) to demonstrate the effectiveness, efficiency and scalability of our meth-
ods.

2 Related Work

In this section, we will review existing related work and report the difference
between this work and existing ones.

We divide the literature into two categories based on the overall optimiza-
tion objective. One is called the travel time driven bus frequency optimization
problem (Travel-BFO), which aims to minimize the average/total travel time of
passengers for either one bus route or a bus route network, based on passen-
ger demands. It treats each ride as a new trip. Another is called the transfer
time driven bus frequency optimization problem (Transfer-BFO), which aims to
minimize the total transfer time of the transfer passengers.

Travel-BFO. Here, the passenger demands are usually abstracted as origin-
destination (OD) pairs. The model proposed in [13] treats the travel time of
passengers as an aggregation of the walking time, the waiting time, and the on-
board travel time. The problem is usually formulated as a nonconvex objective
function with linear or convex constraints. In [3], it is modeled as a nonlinear
bilevel problem: the upper level represents the planner who wants to ensure
minimal total travel time under fleet size constraints; the lower level represents
the users who act by minimizing the travel time. In [5], a multi-objective model
is proposed, seeking to minimize the overall travel time of the users and the
operational cost of the operators (assumed to be linearly proportional to the fre-
quencies). Mart́ınez et al. [10] study the transit frequency optimization problem
to determine the time interval between subsequent buses for a set of bus lines.
They propose a mixed-integer linear programming (MILP) formulation for an
existing bilevel model [3], and present a metaheuristic method. A new model
considering user behavior is proposed in [9]. It assigns a user’s trip to three
stages (pre-trip, on-board and end-trip) and aims to minimize users’ total travel
costs of the objective bus line.

Differences. Although different bus frequency optimization models have been
proposed, they share a very similar optimization objective, i.e., minimizing the
average/total travel cost of passengers. Different from the above literature, we
aim to improve the overall passenger satisfaction by scheduling the buses such
that they can serve more passengers within the given waiting time threshold.
Our work is mainly motivated by the following two findings. First, waiting time
has a direct impact on the user satisfaction, as evident by many studies [1,8].
Second, the waiting time threshold is tunable, hence the bus company can adjust
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thresholds to cater to various concerns on budget, government needs, passengers’
tolerance of waiting, etc.

Transfer-BFO. Transfer time driven bus frequency optimization problem is
an extension of single bus route timetabling. It determines the departure time
of each trip of all lines in the bus network with the consideration of passenger
transfer activities at transfer stations [6].

This problem is modeled by mixed integer programming models to max-
imize the number of synchronized bus arrivals at transfer nodes [2]. Ibarra-
Rojas et al. [7] extend the work of Ceder et al. [2] to address a flexible Transfer-
BFO problem with almost evenly spaced departures and preventing bus bunch-
ing. The model proposed in [14] tries to minimize the total transfer time expe-
rienced by passengers. Parbo et al. [12] studied a bi-level bus timetabling prob-
lem to minimize the weighted transfer waiting time of passengers, and a Tabu
Search algorithm was applied to solve the bilevel model. Recently a nonlinear
mixed integer-programming model is proposed to maximize the number of total
transferring passengers with small excess transfer time [17].

Differences. The above studies on the Transfer-BFO problem mainly focus on
minimizing the total transfer cost for passengers on transfer, which can only
improve the satisfaction of the transfer passengers. In contrast, our problem
aims to improve overall passenger satisfaction by serving them within a given
time threshold.

For all the above work in both categories, despite the difference, all existing
approaches only propose heuristic methods without theoretical guarantees, while
we propose algorithms with non-trivial theoretical guarantees.

3 Problem Formulation

In a bus route database R, a route r is a sequence of bus stations (s1, s2, · · · ,
si, · · · , sm), where si is a bus station represented by (latitude, longitude). In a
passenger database P, a passenger p ∈ P is in form of a tuple {sb, se, t}, where
sb denotes the boarding station, se denotes the alighting station, and t denotes
the time when p reaches sb. A bus bij is in form of a tuple {ri, dtj}, where ri and
dtj denote the bus service route and the departure time from ri.s1 respectively.

Definition 1. We define that a bus bij can serve a passenger p, if ri contains
p.sb and p.se in order, and 0 ≤ dtj + T (ri.s1, p.sb) − t ≤ θ, where T (ri.s1, p.sb)
denotes the travel time required by bus bij from ri.s1 to p.sb via the bus route ri,
and θ is a given waiting time threshold.

There are multiple ways available to approximate T (ri.s1, p.sb). In this paper,
we utilize the historical average travel time from ri.s1 to p.sb via the route ri

to compute T (s1, sb). Based on Definition 1, we formally introduce S(bij , pk) to
denote the service of bij to pk, as presented in Eq. (1).

S(bij , pk) =
{

1 if bij can serve pk

0 otherwise (1)
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Next, we introduce the concept of bus service frequency in Definition 2. Let
the bus service frequency F for R be a set, with each element fi ∈ F corre-
sponding to a bus route ri ∈ R, i.e., F = {∪∀ri∈Rfi}. Then, the service of F to
a passenger pk can be computed by Eq. (2). Note S(F , pk) = 1 as long as any
bij ∈ F can serve pk; otherwise, S(F , pk) = 0.

S(F , pk) = 1 −
∏

bij∈F (1 − S(bij , pk)) (2)

Definition 2. A bus service frequency (fi) for ri refers to a set of buses (bi1,
bi2, · · · , bini

) that serve the route ri, where ni (ni ≥ 1) denotes the total number
of bus departures corresponding to the route ri within a day.

Next, we formulate our problem in Definition 3 and show its NP-hardness.
Note that we ignore the passenger capacity of the bus in our problem definition.

Definition 3 (SatisFAction-BooST Bus Scheduling (FAST)). Given a
bus route database R, a passenger database P, a waiting time threshold θ, and a
vector N〈n1, n2, · · · ,ni, · · · , n|R|〉 where ni (≥ 1) denotes the total number of
bus departures of bus route ri ∈ R, we output a bus service frequency F which
can maximize G(F) =

∑
pk∈P S(F , pk), where G(F) denotes the total number of

passengers served by F .

Theorem 1. The objective function G of FAST is monotone and submodular.

Proof. We skip the proof of the monotonicity of G as it is straightforward. In
the following, we prove that G is submodular. Let V ⊆ T ⊂ B, where B denotes
the universe of buses, and b refers to a bus in B\T . According to [11], G(V ) is
submodular if it satisfies: G(V ∪ b) − G(V ) ≥ G(T ∪ b) − G(T ). To facilitate the
proof, we define Vb = V ∪ b and Gb(V ) = G(V ∪ b) − G(V ). Then, we have:

Gb(V ) − Gb(T ) = (
∑

pk∈P S(Vb, pk) −
∑

pk∈P S(V, pk))

−(
∑

pk∈P S(Tb, pk) −
∑

pk∈P S(T, pk))

=
∑

pk∈P(S(Vb, pk) − S(V, pk) − S(Tb, pk) + S(T, pk)).

(3)

To show the submodularity of G, we first prove Inequality (4).

S(Vb, pk) − S(V, pk) − S(Tb, pk) + S(T, pk) ≥ 0 (4)

According to whether pk can be served by buses in V or buses in T\V or bus
b, there are in total four cases corresponding to Inequality (4). Case 1: pk can
be served by a bus b0 ∈ V . Then we have S(V, pk) = S(Vb, pk) = S(T, pk) =
S(Tb, pk) = 1, because V ⊂ Vb and V ⊆ T ⊂ Tb. Thus, S(Vb, pk) − S(V, pk) −
S(Tb, pk) + S(T, pk) = 0. Case 2: pk cannot be served by any bus b0 ∈ V but it
can be served by a bus b1 ∈ T\V . Then we have S(V, pk) = 0, S(Vb, pk) ≥ 0 and
S(T, pk) = S(Tb, pk) = 1. Thus, S(Vb, pk) − S(V, pk) − S(Tb, pk) + S(T, pk) ≥ 0.
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Algorithm 1: Greedy (B,R,P,N )
1.1 Input: a bus database B, a bus route database R, a passenger database P,

and a vector N 〈n1, n2, · · · , n|R|〉
1.2 Output: a bus service frequency F
1.3 Initialize F ← φ, n ← ∑|N|

i=1 ni

1.4 Initialize a |N |-dimension vector 〈k1, k2, · · · , k|N|〉 with zero
1.5 for i ← 1 to n do
1.6 Select a bus bjl ← arg maxb∈B\F (G(F ∪ b) − G(F))

1.7 kj + +
1.8 if kj ≤ nj then
1.9 F ← F ∪ bjl

1.10 if kj ≥ nj then
1.11 remove all the buses serving the route j from B
1.12 return F

Case 3: pk cannot be served by any bus b0 ∈ T and can be served by the bus
b. Then we have S(V, pk) = S(T, pk) = 0 and S(Vb, pk) = S(Tb, pk) = 1. Thus,
S(Vb, pk) − S(V, pk) − S(Tb, pk) + S(T, pk) = 0. Case 4: pk cannot be served
by any bus b0 ∈ T or the bus b. Then we have S(V, pk)=S(Vb, pk)=S(T, pk) =
S(Tb, pk) = 0. Thus, S(Vb, pk) − S(V, pk) − S(Tb, pk) + S(T, pk) = 0. The above
shows the correctness of Inequality (4). Based on Eq. (3) and Inequality (4), we
have Gb(V ) − Gb(T ) ≥ 0 and hence G is a submodular function. �
Theorem 2. The FAST problem is NP-hard.

Proof. It is worth noting that the minimum unit of time is second in daily life.
Therefore, B is a finite set. Based on this, we prove it by reducing the Set Cover
problem to the FAST problem. In the Set Cover problem, given a collection of
subsets S1, · · · , Si, · · · , Sj of a universe of elements U , we wish to know whether
there exist k of the subsets whose union is equal to U . We map each element in
U in the Set Cover problem to each passenger in P, and map each subset Si to
the set of passengers server by a bus b ∈ B. Consequently, if all passengers in U
are served by S, the total number of passengers served by S is |U |. Subsequently,
n =

∑|R|
i=1 ni is set to k (selecting k buses). The Set Cover problem is equivalent

to deciding if there is a k-bus set with the maximum served passenger number
U in FAST. As the Set Cover problem is NP-complete, the decision problem of
FAST is NP-complete, and the optimization problem is NP-hard. �

4 Basic Greedy Method

To address FAST, we first present a baseline which extends the basic greedy
method for the problem of submodular function maximization. To accelerate
the marginal gain computation, we propose a mapping structure to index the
bus and passenger database. The basic greedy method is guaranteed to achieve
(1 - 1/e)-approximation, as proved by Nemhauser et al. [11].
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Bus List NToBeServed LP

b1 3 p1, p3, p|P|
b2 2 p1, p2

b3 1 p3

· · · · · · · · ·
b|B| 1 p2

Fig. 1. Forward list

Passenger List IsServed Optional Buses
p1 false b1, b2
p2 false b2, b|B|
p3 false b1, b3
· · · · · · · · ·
p|P| false b1

Fig. 2. Inverted list

4.1 A Basic Greedy Method

The pseudo-code of the greedy method is listed in Algorithm1. In each iteration,
it selects a bus bjl ∈ B\F with the largest marginal gain, such that bjl =
arg maxb∈B\F (G(F ∪ b) − G(F)), and inserts it to the current service frequency
F . In lines 1.8-1.11, it checks whether the number of bus departures of route j,
which bjl serves, has reached the total number of bus departures required by this
route. If so, it removes all buses serving the route j from B. Such an iteration is
repeated n times, with n being the total number of bus departures required by
all the bus routes. Finally, it returns F as the solution.

Time Complexity. In each iteration, Algorithm1 needs to scan all the buses
in B\F and computes their marginal gain to the chosen set. Each marginal gain
computation needs to traverse P once in the worst case. Thus, adding one bus
into F takes O(|P| · |B|) time, and the total complexity is O(n · |P| · |B|).

4.2 Index for Efficient Marginal Gain Computation

To accelerate the marginal gain computation, which is the main bottleneck of
Algorithm 1, we propose two mapping indexes, forward list and inverted list as
shown in Fig. 1 and Fig. 2 respectively. The former is for buses bi ∈ B, maintain-
ing a list of passengers LP that could be served by bus bi. Note that a passenger
could be served by multiple buses. To avoid counting the same passenger multi-
ple times when we calculate the marginal gain, we maintain another parameter
NToBeServed to capture the number of passengers in LP that are still waiting for
services. The initial value of NToBeServed is set to be the cardinality of LP , and
its value will be reduced every time when a passenger in LP is served by another
bus. The latter is for passengers p ∈ P, maintaining a list of buses that could
serve the passenger p. The boolean IsServed is to indicate whether any of the
optional buses has been scheduled with an initial value being false. For example,
if bus b1 is selected, it could serve three passengers based on NToBeServed’s value
associated with b1 in forward list. Meanwhile, IsServed’s value of passengers in
LP of b1 (i.e., p1, p3, p|P|) will be changed to true, all the buses that could serve
p1 or p3 or p|P| have to update NToBeServed’s value to reflect the fact that some
of their potential passengers have already been served.
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(a) Bus Route 67 (b) Bus Route 147 (c) Bus Route 161

Fig. 3. Visualization of three popular bus routes in Singapore

5 Partition-Based Greedy Method

In practice, a bus network is designed to cover different parts of a city to meet
residents’ various travel demands. By design, it tries to avoid unnecessary over-
lapping among routes [4,16]. For example, Fig. 3 plots three popular bus routes
in Singapore. A passenger whose travel demand could be served by route 67
will not consider route 161 or route 147 as these routes have zero overlap. This
observation suggests that it might be unnecessary to scan the entire bus net-
work when calculating the marginal gains of certain buses. This motivates us
to design a partition-based greedy method. In the following, we first introduce
a novel concept namely service overlap ratio to guide the partitioning process,
and then present the algorithm.

Our main idea is to partition the bus routes (and buses) into disjoint clusters,
and then use a divide-and-conquer strategy to find local optimal frequencies for
routes in each partition. This approach is expected to reduce the time complex-
ity of the basic greedy by a factor of m2 with m being the number of partitions.
The speedup is contributed by the fact that it invokes the greedy algorithm for
each cluster and hence it only needs to scan the buses and passengers corre-
sponding to the routes in a cluster during the greedy search. Meanwhile, in term
of accuracy, we introduce a novel concept called service overlap ratio to achieve
an approximation ratio with non-trivial theoretical guarantee, as shown later.

Definition 4 (Partition). A partition of a set S is denoted as a cluster set
C={C1, C2, · · · , Cm}, where m denotes the total number of clusters, such that
S = ∪m

i=1Ci, ∀Ci ∈ C, Ci �= φ, and ∀Ci, Cj ∈ C with i �= j, Ci ∩ Cj = φ.

To better illustrate the service overlap ratio, we define a function Serve(P ,R)
that takes a passenger set P and a route set R as inputs and returns the passen-
gers in P that could be served by any route in R without considering the temporal
factor. To be more specific, a passenger p will be returned by Serve(P ,R) if there
is a route ri ∈ R such that ri contains p.sb and p.se in order, which is different
from the “bus serves passengers” defined in Definition 1. We name the set of
passengers returned by Serve(P ,R) as the passenger pool w.r.t. bus routes R.

As stated in Definition 5, the service overlap ratio ρi of a bus route cluster CR
i

tries to measure the number of passengers in the passenger pool w.r.t. CR
i that

actually also belong to the passenger pools w.r.t. other clusters. Let |A| denote
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Algorithm 2: PartGreedy (B,R,P,N , ρ)
2.1 Input: a bus database B, a bus route database R, a passenger database P,

and a vector N 〈n1, n2, · · · , n|R|〉, a controlling threshold ρ
2.2 Output: a bus service frequency F
2.3 initialize CR ← φ, CB ← φ, SP ← φ, nmin ← Min1≤i≤|R|ni, F ← φ

2.4 (CB , CR) ← BusRoutePartitioning(B, R, nmin, ρ)

2.5 for each cluster CR
i ∈ CR do

2.6 SP ← Serve(P, ClusterR
i ), F ← F ∪ Greedy(CB

i , CR
i , SP, N )

2.7 return F

the cardinality of the set A, and F i denote a bus service frequency returned by
Greedy(CB

i , CR
i , CP

i ,Nmin). CB
i , CR

i , and CP
i refer to a cluster of buses, a cluster

of routes and a cluster of passengers respectively, and Nmin refers to a |CR
i |-

dimensional vector in the form of 〈nmin, nmin, · · · , nmin〉. The parameter nmin

is set to the minimum number of buses required by any route. Although there
are different ways to quantify the overlaps between bus routes, we define ρi in
such a way that a partition-based greedy guided by ρi can achieve a theoretical
bound, as to be detailed next.

Definition 5 (Service overlap ratio). Given a partition CR of the original
bus route database R, for a cluster CR

i , the ratio ρi of the service overlap between

CR
i and the rest clusters is

∣
∣
∣
∣

⋃

CR
j

∈CR\CR
i

Serve(P,CR
i )∩Serve(P,CR

j )

∣
∣
∣
∣

G(Fi)
.

Partitioning of Bus Routes and Buses. Algorithm 3 lists the pseudo-code of
a bus route partitioning method guided by service overlap ratio. It first partitions
the routes using the finest granularity by forming a cluster for each bus route.
Thereafter, it checks the service overlap ratio ρi for each cluster CR

i and picks
the one with the largest ρi, denoted as CR

k , for expansion (Line 3.9). It selects the
cluster CR

j that shares the largest common passenger pool with CR
k (Line 3.11) and

merges CR
j with CR

k (Lines 3.12 - 3.14). Note that when cluster CR
k is expanded,

let Fk denote the new frequency returned by Greedy(CB
k , CR

k ,P, Nmin). G(Fk)
is actually required when calculating ρk for this expanded cluster, by Defini-
tion 5. However, to reduce the computation cost and the complexity, we use
L = max{G(Fk) + G(F j) − |Sk ∩ Sj |,G(Fk),G(F j)} as an approximation of
G(Fk). According to our merger rules, L is a lower bound of G(Fk) and it does
not affect the accuracy of our partition algorithm. This merge-and-expansion
process continues until the ρis associated with all the clusters CR

i fall below the
input threshold ρ.

When the bus routes and buses are partitioned, it invokes the basic greedy
method (Sect. 4) to find the frequency for each cluster, and merges the local
frequencies for |CR| clusters as the final answer. We name this approach as
PartGreedy. Its pseudo-code is shown in Algorithm 2 and its approximation ratio
is analyzed in Lemma 1.
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Algorithm 3: BusRoutePartitioning (B,R, nmin, ρ)
3.1 Input: a bus database B, a bus route database R, an integer nmin, and a

controlling threshold ρ
3.2 Output: a partition CB of B and a partition CR of R
3.3 for each bus route ri ∈ Route do
3.4 initialize CR

i ← {ri}, CB
i ← {bab ∈ B|a = i}, Si ← Serve(P, ClusterR

i )

3.5 F i ← Greedy(CB
i , CR

i , P, Nmin)

3.6 initialize CR ← ∪ri∈RCR
i

3.7 for CR
i ∈ CR do

3.8 ρi ←
∣
∣
∣
⋃

CR
j ∈CR\CR

i
Si ∩ Sj

∣
∣
∣/G(F i)

3.9 k ← argmaxCR
k

∈CR ρk, Max ← ρk

3.10 while Max > ρ do
3.11 j ← argmaxCR

j ∈CR\CR
k

|(Sj ∩ Sk)|
3.12 CR

k ← CR
k ∪ CR

j , CR ← CR − CR
j , CB

k ← CB
k ∪ CB

j , CB ← CB − CB
j

3.13 G(Fk) ← max{G(Fk) + G(Fj) − |Sk ∩ Sj |, G(Fk), G(Fj)}, Sk ← Sk ∪ Sj

3.14 ρk ←
∣
∣
∣
∣

⋃

CR
l

∈CR\CR
k

Sl∩Sk

∣
∣
∣
∣

G(Fk)

3.15 k ← argmaxCR
k

∈CR ρk, Max ← ρk

3.16 return CB, CR

Lemma 1. Given a partition CR={CR
1 , CR

2 , · · · , CR
i , · · · , CR

m} of the bus route
database R and the maximum service overlap ratio ρ, PartGreedy achieves a
(1 − ρ)(1 − 1/e) approximation ratio to solve the FAST problem.

Proof. Let Fi denote the solution obtained by Greedy for cluster CR
i , F∗ denote

the solution obtained by PartGreedy, Oi denote the optimal solution for cluster
CR

i , and O denote the global optimal solution. In Algorithm3, it uses the lower
bound of the G(Fk) to compute the upper bound of ρk and terminates when
the upper bound of ρi for every cluster CR

i ∈ CR is no greater than the given
threshold ρ. Then we have ρ ≥ ρi for any CR

i ∈ CR. Recall Sect. 3, the basic
greedy method is proved to achieve (1−1/e)-approximation. Therefore, we have
G(Fi) ≥ (1 − 1/e)G(Oi). Because of the submodularity and monotonicity of G,
we have

∑m
i=1 G(Oi) ≥ G(O) and G(Fi) ≥ G(F i). Then, by Definition 5 we have:

∣∣∣∣
⋃

CR
j ∈CR\CR

i

Serve(P, CR
i ) ∩ Serve(P, CR

j )
∣∣∣∣ = ρiG(F i) ≤ ρG(Fi). (5)

In addition, Inequality (6) holds according to Definition 3.
∣∣∣∣
⋃

CR
j ∈CR\CR

i

Serve(P, CR
i ) ∩ Serve(P, CR

j )
∣∣∣∣ ≥ G(Fi) − (G(F∗) − G(F∗\Fi)) (6)

Based on Inequality (5) and Inequality (6), we have G(F∗) − G(F∗\Fi) ≥ (1 −
ρ)G(Fi). Using the principle of inclusion-exclusion, we have G(F∗) = G(F1 ∪
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Function 1: ProGreedy (B,R,N , ε)
1.1 Input: a bus database B, a bus route database R, a vector N , and a

parameter ε
1.2 Output: a bus service frequency F
1.3 Initialize F ← φ, n ← ∑|N|

i=1 ni

1.4 Initialize a |N |-dimension vector 〈k1, k2, · · · , k|N|〉 with zero
1.5 Sort b ∈ B based on descending order of G(b)
1.6 Initialize h ← maxb∈B(G(b))
1.7 while |F| ≤ n do
1.8 for each bjl ∈ B do
1.9 if |F| ≤ n then

1.10 Gbjl(F) ← G(F ∪ bjl) − G(F)

1.11 if Gbjl(F) ≥ h then
1.12 F ← F ∪ bjl, B ← B\bjl

1.13 kj + +
1.14 if kj ≥ nj then
1.15 remove all bus serve the route rj from B
1.16 if G(bjl) < h then
1.17 break

1.18 else
1.19 break

1.20 h ← h
1+ε

1.21 return F

F2 ∪ ... ∪ Fm) ≥ ∑m
i=1(G(F∗) − G(F∗\Fi)) ≥ (1 − ρ)

∑m
i=1 G(Fi) ≥ (1 − ρ)(1 −

1/e)
∑m

i=1 G(Oi) ≥ (1 − ρ)(1 − 1/e)G(O).
Thus, this lemma is proved. �

6 Progressive Partition-Based Greedy Method

Although PartGreedy improves the efficiency of basic greedy by conducting the
search within each partition (though not the original route/bus database), it still
suffers from a high computational cost. To be more specific, in each iteration of
the greedy search (either a global search or a local search by Greedy), in order
to find the one with the maximum gain, it has to recalculate the marginal gain
G(F ∪ b) − G(F) for all the buses not yet scheduled.

Motivated by this observation, we propose a progressive partition-based
greedy method (ProPartGreedy). It selects multiple, but not only one, buses
in each local greedy search iteration to cut down the total number of iterations
required and hence the computation cost. The pseudo-code of ProPartGreedy is
the same as Algorithm 2 except that the call of Greedy is replaced with Func-
tion 1 (ProGreedy) in line 2.6 of Algorithm2. Meanwhile, we will prove that it
can achieve an approximation ratio of (1 − ρ)(1 − 1/e − ε), where ρ and ε are
tunable parameters that provide a trade-off between efficiency and accuracy.
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As presented in Function 1, ProGreedy first sorts b ∈ B by G(b) and initializes
the threshold h to the value of maxb∈B(G(b)). Then, it iteratively fetches all the
buses with their marginal gains not smaller than h into F and meanwhile lowers
the threshold h by a factor of (1 + ε) for next iteration (Lines 1.8–1.20). The
iteration continues until there are n buses in F . Unlike the basic greedy method
that has to check all the potential buses in B or a cluster of B in each iteration, it
is not necessary for ProGreedy as it implements an early termination (Lines 1.16–
1.17). Since buses are sorted by G(b) values, if G(bjl) of the current bus is smaller
than h, all the buses b pending for evaluation will have their G(b) values smaller
than h and hence could be skipped from evaluation. In the following, we first
analyze the approximation ratio of Function 1 by Lemma2. Based on Lemma 2,
we show the approximation ratio of ProPartGreedy by Lemma3.

Lemma 2. ProGreedy achieves a (1 − 1/e − ε) approximation ratio.

Proof. Let bi be the bus selected at a given threshold h and O denote the optimal
local solution to the problem of selecting n buses that can maximize G. Because
of the submodularity of G, we have:

Gb(F) =
{≥ h

≤ h · (1 + ε)
if b = bi

if b ∈ O\(F ∪ bi),
(7)

where F is the current partial solution. Equation (7) implies that
Gbi

(F) ≥ Gb(F)/(1 + ε) for any b ∈ O\F . Thus, we have Gbi
(F) ≥

1
(1+ε)|O\F|

∑
b∈O\F Gb(F) ≥ 1

(1+ε)n

∑
b∈O\F Gb(F). Let Fi denote the partial

solution that bi has been included and bi+1 be the bus selected at the (i + 1)th
step. Then we have G(Fi+1) − G(Fi) = Gbi+1(Fi) ≥ 1

(1+ε)n

∑
b∈O\Fi

Gb(Fi) ≥
1

(1+ε)n (G(O ∪ Fi) − G(Fi)) ≥ 1
(1+ε)n (G(O) − G(Fi)).

The solution F∗ obtained by Function 1 with |F∗| = n. Using the

geometric series formula, we have G(F∗) ≥
(
1 −

(
1 − 1

(1+ε)n

)n)
G (O) ≥(

1 − e
−n

(1+ε)n

)
G (O) =

(
1 − e

−1
(1+ε)

)
G (O) ≥ ((1 − 1/e − ε)) G (O).

Hence, the lemma is proved. �

Lemma 3. Given a partition CR={CR
1 , CR

2 , · · · , CR
i , · · · , CR

m} of the bus route
database R and the maximum service overlap ratio ρ, ProPartGreedy achieves a
(1 − ρ)(1 − 1/e − ε) approximation ratio to solve the FAST problem.

Proof. Based on Lemma 2, this proof is similar to the proof of Lemma1, so we
omit it due to space limit. �
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Table 1. Statistics of datasets

Database Amount AvgDistance AvgTravelTime

B 451k N.A N.A.

R 396 19.91 km 5159 s

P 28m 4.2 km 1342 s

7 Experiment

In this section, we first explain the experimental setup; we then conduct sensi-
tivity tests to tune the parameters to their reasonable settings, as our algorithms
have several tunable parameters; we finally report the performance, in terms of
effectiveness, efficiency, and scalability, of all the algorithms.

Datasets. We crawl the real bus routes (R) from transitlink2 in Singapore.
Each route is represented by the sequence of bus stop IDs it passes sequentially,
together with the distance between two consecutive bus stops. The travel time
from a stop to another stop via a route ri is estimated by the ratio of the distance
between those two stops along the route to the average bus speed of the route.
We use bus touch-on record data (shown later) to find the average travel speed of
a particular bus line. For the passenger database (P), due to the exhibit regular
travel patterns of passengers [15], we use the real bus touch-on record data in a
week of April 2016 in Singapore, which is obtained from the authors of [15] and
contains 28 million trip records. Each trip record includes the IDs/timestamps
of the boarding and alighting bus stops, the bus route, and the trip distance. We
assume passengers spend x minutes waiting for their buses, with x following a
random distribution between 1 and 5 min. Then, we generate the bus candidate
set (B) based on the route and service time range. For each route, we use buses
that depart every minute between 5am and 12am as the superset of candidate
buses. The statistics of those datasets are shown in Table 1.

Parameters. Table 2 lists the parameter settings, with values in bold being
default. In all experiments, we vary one parameter and set the rest to their
defaults. We assume all bus routes require the same number of bus departures
in our study. Notation 〈20〉 represents the vector 〈20, · · · , 20〉 for brevity.

Algorithm. To the best of our knowledge, this is the first work to study the
FAST problem, and thus no previous work is available for direct comparison. In
particular, we compare the following five methods. FixInterval that fixes the time
interval between two bus departures as (service time range) / (bus number)� for
each line and chooses the bus that departures at 5am as the first bus; Top-k that
picks top-k buses, which could serve the most number of passengers (k = ni);
Greedy, PartGreedy, and ProPartGreedy, i.e., Algorithm 1, Algorithm 2, and the
progressive partition-based method proposed in this paper.

2 https://www.transitlink.com.sg/eservice/eguide/service idx.php.

https://www.transitlink.com.sg/eservice/eguide/service_idx.php
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Table 2. Parameter settings

Parameter Values

Number of bus departures N = 〈n1, n2, · · · 〉 〈10〉, 〈20〉, 〈30〉, 〈40〉, 〈50〉
Total passenger number |P| 100k, 200k, 300k, 400k, 500k

Waiting time threshold θ 1 min, 2 min, 3min, 4min, 5 min

Tunable parameter used byProPartGreedy ε 10−4, 10−3, 10−2, 10−1

Controlling threshold used by PartGreedy ρ 0.1, 0.2, 0.3, 0.4

Performance Measurement. We adopt the total running time of each algo-
rithm and the total served passenger number (SPN) of the scheduled buses as
the main performance metrics. We randomly choose 5 million passengers from
a week of data and pre-process the passenger dataset to build the index, which
takes 5, 690 s and occupies 585 MB disk space. Each experiment is repeated ten
times, and the average result is reported.

Setup. All codes are implemented in C++. Experiments are conducted on a
server with 24 Intel X5690 CPU and 140 GB memory running CentOS release
6.10. We will release the code publicly once the paper is published.

Parameter Sensitivity Test - θ. The impact of waiting time threshold θ on the
running time and SPN are reported in Fig. 4(a) and (d), respectively. Parameter
θ has an almost-zero impact on the running time. On the other hand, it affects
SPN. As θ increases, all the algorithms are able to serve more passengers, which
is consistent with our expectations. We set θ = 3, the mean value.

Parameter Sensitivity Test - ρ. The impact of parameter ρ on the running
time and SPN are reported in Fig. 4(b) and (e), respectively. It has a positive
impact on the running time performance but a negative impact on SPN. As ρ
increases its value, PartGreedy and ProPartGreedy both incur shorter running
time but serve less number of passengers. We choose ρ = 0.2 as the default
setting.

Parameter Sensitivity Test - ε. Parameter ε only affects ProPartGreedy. It
controls the trade-off between efficiency and accuracy. As ε increases its value,
ProPartGreedy incurs shorter running time and serves less number of passengers,
as reported in Fig. 4(b) and (f), respectively. We choose ε = 0.01 as the default
setting.

Effectiveness Study. We report the effectiveness of different algorithms in
Fig. 5. We observe that (1) FixInterval is most ineffective; (2) the three
algorithms proposed in this work perform much better than the other two, e.g.,
ProPartGreedy doubles (or even triples in some cases) the SPN of FixInterval;
and (3) Greedy performs the best while PartGreedy and ProPartGreedy achieve
comparable performance (only up to 9.4% below that of Greedy).

Efficiency Study. Figure 6 shows the running time of each method w.r.t. vary-
ing N and |P|. We have two main observations. (1) The time gap among Greedy,



206 S. Mo et al.
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Fig. 4. Effect of parameters
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Fig. 5. Effectiveness study: SPN vs. N or |P|

PartGreedy and ProPartGreedy becomes more significant with the increase of
N . This could be the increase of N causes an increase in the number of clus-
ters and nmin. On the other hand, PartGreedy and ProPartGreedy only need to
scan one cluster when selecting buses. (2) The improvement of PartGreedy and
ProPartGreedy over Greedy decreases with the increase of |P|. This is because
the overlap between clusters increases with the increase of |P|, which leads to a
reduction in the number of clusters and an increase in partition time.

Scalability Study. To evaluate the scalability of our methods, we vary N from
〈100〉 to 〈500〉, and |P| from 1 million to 5 million. From Fig. 7(a), we find that
the efficiency of Greedy is more sensitive to N , as compared to PartGreedy
and ProPartGreedy. It’s worth noting that the results are omitted for Greedy
when it cannot terminate within 104 s. As shown in Fig. 7(b), PartGreedy and
ProPartGreedy are about ten times faster than Greedy when |P| is varying.
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Fig. 6. Efficiency study: Total running time vs. N or |P|
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Fig. 7. Scalability study

8 Conclusion

In this paper we studied the bus frequency optimization problem considering user
satisfaction for the first time. Our target is to schedule the buses in such a way
that the total number of passengers who could receive their bus services within
the waiting time threshold is maximized. We showed that this problem is NP-
hard, and proposed three approximation algorithms with non-trivial theoretical
guarantees. Lastly, we conducted experiments on real-world datasets to verify
the efficiency, effectiveness, and scalability of our methods.
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Abstract. In the natural language processing (NLP) field, it is fairly
common that an entity is nested in another entity. Most existing named
entity recognition (NER) models focus on flat entities but ignore nested
entities. In this paper, we propose a neural model for nested named
entity recognition. Our model employs a multi-label boundary detec-
tion module to detect entity boundaries, avoiding boundary detection
conflict existing in the boundary-aware model. Besides, our model with
a boundary detection module and a category detection module detects
entity boundaries and entity categories simultaneously, avoiding the error
propagation problem existing in current pipeline models. Furthermore,
we introduce multitask learning to train the boundary detection module
and the category detection module to capture the underlying association
between entity boundary information and entity category information.
In this way, our model achieves better performance of entity extraction.
In evaluations on two nested NER datasets and a flat NER dataset, we
show that our model outperforms previous state-of-the-art models on
nested and flat NER.

Keywords: Natural language processing · Nested named entity
recognition · Multitask learning

1 Introduction

Named entity recognition is a task of identifying named entities in texts and
classifying them into pre-defined categories such as person, location, DNA and
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so on. NER is generally treated as a sequential labeling task, where each word
is tagged with one label. The label is composed of an entity boundary label and
a category label. One example is showed in Fig. 1. Considering the entity “ter-
minally differentiated cells”, the word “terminally” is tagged with a boundary
label “B” and a category label “Cell-Line”, where “B” indicates the boundary of
an entity and “Cell-Line” indicates the corresponding entity category. In natural
language, many entities are included in other entities. They are known as nested
entities [6]. A word included in several entities may have multiple boundary
labels and category labels. As shown in Fig. 1, an entity of Cell-Type (“DC”) is
included in an entity of Cell-Line (“monocyte - derived DC”). In this case, word
“DC” should be tagged with two category labels (“Cell-Line” and “Cell-Type”)
instead of one. However, most of the existing works [12,15,20] for NER focus on
non-nested entities (flat entities) but ignore nested entities.

the monocyte - derived DC were

O B I I S
E O

O O O O Cell-Type O

O Cell-Line Cell-Line Cell-Line Cell-Line O

words:

boundary:

category 1:

category 2:

not terminally differentiated

O B I

O O O

O Cell-Line Cell-Line

cells

E

O

Cell-Line

Fig. 1. An example of flat entity and nested entities from the GENIA dataset [9]: “DC”
is an single-token entity of Cell-Type and “monocyte - derived DC” is an entity of Cell-
Line, the former entity is included in the latter. “terminally differentiated cells” is a
flat entity of Cell-Line. “B”, “I” and “E” denote the beginning, inside and end of an
entity. They indicate the boundary labels of entities. “S” denotes the boundary label of
single-token entity. “O” denotes outside of any entities. Cell-Type and Cell-Line denote
categories of entities.

To identify the nested entities, several models [3,5,18,23,25] are proposed
based on feature-engineering. These models heavily rely on hand-crafted features
which are time-consuming to construct. Recently, neural networks are proved to
be efficient in NER without relying on hand-crafted features. Therefore, several
models [6,19,24] based on neural networks for nested NER have been proposed.
Most of them handle nested NER in a pipelined manner, such as the layered
model [6] and the boundary-aware model [24]. They divide the nested NER task
into two phases. The error caused by the first phase will affect the performance of
the second phase, which leads to the error propagation problem. What’s more,
the boundary-aware model achieves better performance by explicitly utilizing
boundary information. However, when a word in nested entities is simultaneously
the beginning of an entity and the end of another entity, the boundary-aware
model only tags it with one kind of boundary label, which leads to boundary
detection conflict. According to our statistics, there are 8.1% of such nested
entities in GENIA dataset. Considering the example in Fig. 1, word “DC” is
both the beginning of the entity “DC” and the end of the entity “monocyte -
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derived DC”. If the boundary-aware model tags “DC” with the boundary label
“E”, the single-token entity “DC” will be ignored and vice versa. We call this
problem as boundary detection conflict.

In order to overcome the problem of error propagation and boundary detec-
tion conflict, we propose a neural model in this paper. Our model is composed
of a multi-label boundary detection module and a multi-label category detec-
tion module. On the one hand, to tackle the boundary detection conflict prob-
lem, we propose a multi-label boundary detection module which tags each word
with multiple kinds of boundary labels. Considering the example in Fig. 1, the
word “DC” is tagged with two kinds of boundary labels (“S” and “E”) by our
multi-label boundary detection module, where “S” denotes the boundary label of
single-token entity. With the multi-label boundary detection module, our model
does not suffer from boundary detection conflict. On the other hand, to avoid
error propagation problem, we propose our model with the boundary detection
module and the category detection module. These two modules detect entity
boundaries and entity categories simultaneously. In this way, the entity cate-
gory detection does not depend on the boundary detection, which avoids error
propagation.

Furthermore, we train our model in a multitask learning way to capture
the underlying association between the entity boundary information and the
entity category information. They are complementary to each other. On the
one hand, the boundary information is beneficial to detect entity categories.
Considering an example in GENIA dataset, “cat reporter gene” is an entity
of DNA but “the cat reporter gene” is not an entity. The boundary detection
module focuses on detecting entity boundaries. It is more likely to identify that
“cat” and “gene” are entity boundaries and “the” is not. And this information
can be shared by the category detection module through multitask learning.
With the information that “the” is not entity boundary, the category detection
model tends to identify that the category of “the” is non-entity. On the other
hand, the category information is also beneficial to detect entity boundaries. The
word “gene” in GENIA dataset is often the inside word of entities of protein
and the end word of entities of DNA. The category detection module focuses
on detecting entity categories. It is more likely to identify that “gene” in the
example mentioned above is a part of the entity of DNA (“cat reporter gene”).
And this information can be shared by the boundary detection module through
multitask learning. With the information that “gene” is a part of an entity of
DNA, the boundary detection module tends to identify that “gene” is the end
word of the entity “cat reporter gene”.

The main contributions of this paper are summarized as follows:

1. We propose a multi-label boundary detection module to overcome the bound-
ary detection conflict existing in the boundary-aware model [24].

2. We propose our model with the boundary detection module and the category
detection model to overcome the error propagation problem which exists in
current pipeline models.
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3. We introduce multitask learning to capture the underlying association
between the entity boundary information and the entity category information.
Entity boundary information and entity category information are complemen-
tary to each other. By capturing their underlying association, we improve the
performance of our model.

4. Experiments are conducted on three datasets to illustrate that our model
outperforms previous state-of-the-art models.

2 Related Work

NER is a foundational task in natural language processing field and has been
studied for decades. The development of NER can boost many downstream tasks,
such as question answering [8,21], entity linking [22], relation extraction [13] and
so on. Many methods [11,12,15,20] have been proposed for flat NER, but few
of them address nested NER.

Early works for nested NER mainly rely on hand-crafted features. Some
methods [18,23,25] employ a Hidden Markov Model to extract inner entities
and then detect outer entities through rule-based methods. Gu [5] identifies
inner entities and outmost entities separately based on SVM. Finkel and Man-
ning [3] propose a constituency parser based on conditional random filed (CRF)
for nested named entities such that each named entity is a constituent in the
parse tree. However, their method is not scalable to larger corpus with a cubic
time complexity. Later on, Lu and Roth [14] propose a hypergraph-based model
for nested NER. One issue of their model is the spurious structure of hyper-
graphs. Mius and Lu [16] incorporate mention separators to overcome the spu-
rious structure and achieve better performance. These methods all depend on
hand-crafted features which are time-consuming to construct.

In recent years, neural networks are proved to be efficient in many NLP tasks
because of their powerful ability of auto-feature extraction. Therefore, neural
network-based models are not only proposed for flat NER but also proposed for
nested NER. Ma and Hovy [15] and Lample et al. [12] propose their neural mod-
els based on bidirectional long short-term memory network (LSTM) for flat NER
and significantly improve the performance. Ju et al. [6], Sohrab and Miwa [19]
and Zheng et al. [24] apply LSTM on nested NER and also achieve performance
improvement. Ju et al. [6] identify nested entities by dynamically stacking flat
NER layer. Each flat NER layer is composed of a Bi-LSTM layer and a cascaded
CRF layer. However, their model suffers from error propagation from layer to
layer. An inner entity can not be identified when an outer entity is identified
first. Sohrab and Miwa [19] enumerate all possible regions in a sentence as can-
didate entities and classify them into pre-defined entity categories. Their model
ignores explicit boundary information of the entity. Non-entity regions may be
classifies into entities incorrectly. Zheng et al. [24] combine the methods of Ju et
al. [6] and Sohrab and Miwa [19], and propose a boundary-aware model which
explicitly utilizes boundary information to predict entity categories. However,
their model has two issues. One issue of their model is the boundary detection
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conflict. In nested NER, words included in several entities may have multiple
kinds of boundary labels but their single-label sequence labeling model can only
tag each word with one kind of boundary label. In our method, we propose a
multi-label sequence labeling module to detect entity boundaries, avoiding the
boundary detection conflict. Another issue is that their model also suffers from
error propagation caused by its pipeline structure. In our method, we identify
entity boundaries and entity categories simultaneously, avoiding the error prop-
agation problem.

3 Method

Our proposed model for extracting nested entities is composed of a boundary
detection module and a category detection module. The architecture of our
model is shown in Fig. 2.

There are three layers in our model. The first layer is the word representation
layer which converts words in input sentences to their word representation. The
second layer is the feature extraction layer. We employ a multi-layer bidirectional
LSTM as the shared feature extractor to extract the shared context feature for
modules in the next layer. The third layer includes two modules: the boundary
detection module and the category detection module. These two modules are
used to predict entity boundaries and entity categories, respectively.

We train the boundary detection module and category detection module
by multitask learning to capture the underlying association between the entity
boundary information and the entity category information. These two informa-
tion are complementary to each other. In this way, we can improve the perfor-
mance of our model.

S
EIIB O Cell-Type

Cell-LineCell-LineCell-LineCell-Line O

Word Representation Layer

Feature Extraction Layer

Cell-Line Cell-Type

monocyte - derived DC wereInput

Category Detection ModuleBoundary Detection Module

Fig. 2. Architecture of our model. Our model employs a boundary detection mod-
ule and a category detection module to detect entity boundaries and entity categories
simultaneously. Then we can obtain the entities according to the detected entity bound-
aries and entity categories.
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3.1 Word Representation Layer

Following the success of Ma and Hovy [15] and Lample et al. [12] that represent
each word by concatenating its word embedding and its character-level repre-
sentation for the flat NER task, we represent each word in the same way. For
the word embedding, pre-trained word embedding is used to initialize it. For the
character-level representation, a character-level bidirectional LSTM is applied to
character sequence of the word to capture the orthographic and morphological
features and obtain the character-level representation.

For a given sentence consisting of n words {w1, w2, ..., wn}, the word embed-
ding of i-th word wi is represented as: ew(wi), where ew denotes the word embed-
ding lookup table which is initialized by pre-trained word embedding.

For the character sequence {c1, c2, ..., cm} of the i-th word wi, each character
ck is represented as ec(ck), where ec denotes the character embedding lookup
table which is initialized randomly.

Then a bidirectional LSTM is applied to sequence {ec(c1), ec(c2), ..., ec(cm)}
to obtain a left-to-right sequence of hidden states {−→hc

1,
−→
hc
2, ...,

−→
hc
m} and a right-to-

left sequence of hidden states {←−hc
1,

←−
hc
2, ...,

←−
hc
m} for the characters {c1, c2, ..., cm},

respectively. The final character-level representation of word wi is:

xc
i = [

−→
hc
m,

←−
hc
1] (1)

where [, ] denotes concatenation.
The final word representation is the concatenation of ew(wi) and xc

i :

xw
i = [ew(wi),xc

i ] (2)

3.2 Feature Extraction Layer

We employ a multi-layer bidirectional LSTM as a feature extractor, for its
strength in capturing long-range dependencies between words, a useful prop-
erty for information extraction tasks [7]. The multi-layer bidirectional LSTM
also severs as a hard parameter sharing component for multitask learning. Hard
parameter sharing mechanism is beneficial to avoid overfitting [1] and helps our
model to capture the underlying association between the entity boundary infor-
mation and the entity category information.

By employing the multi-layer bidirectional LSTM, we gather the context
feature of word wi as follow:

−→
hi =

−−−−→
LSTM(xw

i ,
−→
h i−1) (3)

←−
hi =

←−−−−
LSTM(xw

i ,
←−
h i+1) (4)

hi = [
−→
hi,

←−
hi] (5)

where hi denotes the context feature representation of word wi,
−→
hi and

←−
hi denote

the hidden states in the forward direction and backward direction, respectively.
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3.3 Boundary Detection and Category Detection

In the flat NER (non-nested NER) task, each word has only one kind of boundary
label and one kind of category label. However, in nested NER, an individual
word included in several nested entities has multiple kinds of boundary labels
and category labels. Thus, we employ two multi-label modules to tag words. In
our model, words included in several nested entities are tagged with multiple
kinds of boundary labels and category labels.

There are two modules in our model: the boundary detection module and
the category detection module. The first module is designed for detecting entity
boundaries and the second is designed for detecting entity categories. We will
describe these two modules in detail.

Boundary Detection Module. We use E(p, q) to denote an entity, whose
region starts from position p and ends at position q of the sentence. Given an
input sentence S = {w1, w2, ..., wn} and two nested entities in this sentence:
entity E(i, j) of DNA and entity E(i, k) of protein, where j < k. Specially, wi is
the common beginning word of two entities, so our model tags this word with
the boundary label “B”. wj is the inside word of entity E(i, k) and the end word
of entity E(i, j), so this word is tagged with two kinds of boundary labels (“I”
and “E”). wk is the end word of entity E(i, k), so our model tags this word with
“E”. Words inside entities that are neither beginning words nor end words are
tagged with “I”. Words that are outside of any entities are tagged with “O”.

In the boundary detection module, for each word wi in the sentence, we feed
its feature representation hi obtained from the shared feature extractor to a
fully connected layer. Finally, the output of the fully connected layer is fed to a
sigmoid activation function to predict the boundary labels:

ob
i = Whi + b (6)

ebi = sigmoid(ob
i ) (7)

where W and b are trainable parameters and ebi is the output of the sigmoid
function. As described above, words included in nested entities may have multiple
boundary labels, so we use binary cross entropy loss function to optimize this
module:

Lb =
u∑

t=1

yb
i,t · log(ebi,t) + (1 − yb

i,t) · log(1 − ebi,t) (8)

where u denotes the number of all kinds of boundary labels, yb
i,t denotes the

true label of t-th boundary label and ebi,t denotes the corresponding probability
predicted by the boundary detection module.

Category Detection Module. Considering the example mentioned above,
input sentence S = {w1, w2, ..., wn} contains two entities: entity E(i, j) of DNA
and entity E(i, k) of protein, where j < k. Words {wi, wi+1, ..., wj} are included
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in two different kinds of categories of entities, so they are tagged with two kinds of
category labels (“DNA” and “protein”) by the category detection module. Words
{wj+1, ..., wk} are only included in entity of protein, so the category detection
module tags them with category label “protein”. Words that are outside of any
entities are tagged with “O”.

For each word wi in the input sentence, the category detection module pre-
dicts its category labels by feeding its feature representation hi to a fully con-
nected layer and a sigmoid activation function:

oc
i = Ŵhi + b̂ (9)

eci = sigmoid(oc
i ) (10)

where Ŵ and b̂ are trainable parameters and eci is the output of sigmoid func-
tion. Just like the boundary labels, words included in several nested entities may
also have multiple kinds of category labels. We also use binary cross entropy loss
function to optimize this module:

Lc =
v∑

t=1

yc
i,t · log(eci,t) + (1 − yc

i,t) · log(1 − eci,t) (11)

where v denotes the number of all kinds of category labels, yc
i,t denotes the

true label of t-th category label and eci,t denotes the corresponding probability
predicted by the category detection module.

3.4 Entity Output

We obtain entities according to the detected entity boundaries and the detected
entity categories. For nested entities, we obtain the outer entities first and then
obtain the inner entities. Considering the example in Fig. 2, there is an inner
entity “DC” nested in an outer entity “monocyte - derived DC”. We first obtain
the outer entity “monocyte - derived DC” whose region determined by con-
tinuous boundary labels “B I I E” exactly matches the region determined by
continuous category labels “Cell-Line Cell-Line Cell-Line Cell-Line”. Then we
obtain the inner entity “DC” whose region determined by boundary label “S”
exactly matches the region determined by category label “Cell-Type”. In this
way, we can obtain these two nested entities (“DC” and “monocyte - derived
DC”).

3.5 Multitask Learning

In our method, the nested NER task can be regarded as a combination of two sub-
tasks: detecting entity boundaries and detecting entity categories. We employ
a boundary detection module and a category detection module to detect entity
boundaries and entity categories, respectively. Considering the entity bound-
ary information and the entity category information are complementary to each
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other, we train the boundary detection module and the category detection mod-
ule by multitask learning to capture the underlying association between the
boundary information and the category information.

The final objective function of our model is the sum of the boundary detection
loss and category detection loss as follows:

L = Lb + Lc (12)

where Lb and Lc denote the boundary detection loss and category detection loss.

4 Evaluation Settings

4.1 Dataset and Evaluation Metrics

To demonstrate the effectiveness of our model on detecting nested and flat enti-
ties, we evaluate our model on three datasets: GENIA [9], JNLPBA [10] and
GermEval 2014 [2].

GENIA dataset is constructed on the GENIA v3.0.2 corpus. We follow the
dataset settings of Zheng et al. [24]. The dataset is split into 8.1:0.9:1 for training,
development and testing. Table 1 shows the statistics of GENIA dataset.

JNLPBA dataset is originally from GENIA corpus. It is a flat NER dataset
which only contains flat and topmost entities. Following the settings of GENIA
dataset, the subcategories are collapsed into 5 categories.

GermEval 2014 dataset is a German NER dataset from KONVENS 2014
shared task. It contains German nested named entities. The dataset consists of
a total of 31, 300 sentences corresponding respectively 591, 006 tokens.

We use a strict evaluation metrics similar to Zheng et al. [24]. The extracted
entities are considered correct if both the entity boundary labels and the entity
category labels are exactly correct. We employ precision (P), recall (R) and
F-score (F) to evaluate the performance.

Table 1. Statistics of GENIA dataset.

Dataset DNA RNA Protein Cell-Line Cell-Type Overall

Train 7650 692 28728 3027 5832 45929

Development 1026 132 2303 325 551 4337

Test 1257 109 3066 438 604 5474

Overall 9933 933 34097 3790 6987 55740

Nested 1744 407 1902 347 389 4789
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4.2 Baselines and Previous Models

We compare our model with several previous state-of-the-art models. These mod-
els can be summarized into three types as follows:

(1) The CRF-based constituency parser model in [3] which is denoted as CRF-
constituency.

(2) Graph-based models: Mention hypergraph model (MH) [14], Multigraph
model (MG) [16].

(3) Neural network models: Layered sequence labeling model (LSLM) [6],
Exhaustive region classification model (ERCM) [19], Boundary-aware model
(BM) [24].

4.3 Parameters Settings and Tagging Schemes

We use Adam optimizer for training our model. We use the same 200-dimension
pre-trained word embedding [6,24] to initialize our word embedding. The char-
acter embedding is initialized randomly and set to 50-dimension. We regularize
our model using dropout, with the dropout rate set to 0.5. The hidden state size
of LSTM is set to 200. Our model is implemented using the PyTorch framework
and all of our experiments are conducted on the NVIDIA RTX2080Ti GPU.

We use the BIOES tagging schemes for tagging entity boundary labels. The
meaning of BIOES is: B (the beginning of an entity), I (the inside of an entity),
O (outside of any entities), E (the end of an entity), S (the single-token entity).

5 Results and Analysis

5.1 Nested NER and Flat NER

Table 2 presents the comparison of our model with several previous state-of-
the-art models on GENIA dataset for nested NER. The results show our model
outperforms the state-of-the-art models in terms of precision, recall, and F-score.
Besides, we observe that BM [24] and our model achieve 73.6% and 74.6% respec-
tively in terms of recall, which is much better than other models. We analysis
that both of BM and our model explicitly utilize entity boundary information
to extract entities while other models does not. Comparing with BM, our model
does not suffer from boundary detection conflict and error propagation, which
helps our model achieve better performance. Furthermore, we introduce multi-
task learning to train our boundary detection module and category detection
module to capture the underlying association between entity boundary informa-
tion and entity category information. In this way, our model can locate entities
more precisely and achieves the best performance on GENIA dataset compared
to other models. We conduct an experiment in the next subsection to further
illustrate that our model can locate entities more precisely by capturing the
underlying association between entity boundary information and category infor-
mation.
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Table 2. Performance comparison of our model with other state-of-the-art models on
GENIA test set.

Model P(%) R(%) F(%)

CRF-constituency [3]a 75.4 65.9 70.3

MH [14]a 72.5 65.2 68.7

MG [16]a 75.4 66.8 70.8

ERCM [19]a 73.3 68.3 70.7

LSLM [6]a 76.1 66.8 71.1

BM [24]a 75.9 73.6 74.7

Our model 76.4 74.6 75.5
aThe results are taken from [24].

Table 3. Statistics of five entity categories on GENIA test set and our results compared
to ERCM [19], LSLM [6] and BM [24].

Category Statistics P(%) R(%) F(%) ERCM.F(%)a LSLM.F(%)a BM.F(%)a

DNA 1257 72.3 69.8 71.0 67.8 70.1 70.6

RNA 109 80.1 77.9 79.0 75.9 80.8 81.5

Protein 3066 77.8 78.2 78.0 72.9 72.7 76.4

Cell-Line 438 79.8 65.2 71.8 63.6 66.9 71.3

Cell-Type 604 74.2 72.0 73.1 69.8 71.3 72.5

Overall 5474 76.4 74.6 75.5 70.7 71.1 74.7
aThe results are taken from [24].

Table 3 shows the comparison of our model with three previous state-of-the-
art models on five entity categories on GENIA test set. Without error propa-
gation and boundary detection conflict, our model outperforms LSLM [6] and
BM [24] on almost all entity categories. By capturing underlying association
between entity boundary information and category information, our model can
locate entities more precisely and outperforms ERCM [19] on all entity cate-
gories.

Table 4. Performance comparison on GermEval 2014 test set.

Model P(%) R(%) F(%)

ECRM [19]b 75.0 60.8 67.2

LSLM [6]b 72.9 61.5 66.7

BM [24]b 74.5 69.1 71.7

Our model 78.5 67.6 72.7
bThe results are taken from [24].
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Table 4 shows the comparison of our model with three previous state-of-the-
art models on GermEval 2014 dataset. Previous works on this dataset either
ignore nested entities or extract inner entities and outer entities through two
independent models [24]. Different from them, our model can extract both flat
entities and nested entities in a unified model. Compared to LSLM [6] and BM
[24], our model does not suffer from error propagation and boundary detection
conflict and achieves better performance. Moreover, by capturing the underly-
ing association between entity boundary information and category information,
our model outperforms all three models. Besides, we observe that our model
outperforms other models especially in terms of precision. This is likely because
we introduce multitask learning to train our model to capture the underlying
association between entity boundary information and category information. In
this way, our model tends to extract entities more likely to be true entities.

To illustrate that our model can handle not only nested NER but also flat
NER, we evaluate our model on JNLPBA dataset. JNLPBA dataset is a flat
NER dataset. Our model achieves 74.6% in terms of F-score, outperforming BM
[24] which is also designed for nested NER and achieves 73.6% in terms of F-
score. Besides, our model is competitive to the state-of-the-art model [4] which
is especially designed for flat NER.

Table 5. Performance comparison of Boundary Detection on GENIA test set and
GermEval 2014 test set.

Model GENIA GermEval 2014

P(%) R(%) F(%) P(%) R(%) F(%)

ECRM [19] 76.6 69.2 72.7 83.5 66.0 73.8

LSLM [6] 79.9 67.08 73.4 83.2 65.1 73.0

BM [24] 79.7 76.9 78.3 81.4 75.1 78.1

Our model 78.4 80.0 79.2 82.9 79.9 81.4

5.2 Performance of Boundary Detection

To illustrate that our model can identify entity boundaries more precisely by
capturing the underlying association between entity boundary information and
category information, we conduct several experiments.

Table 51 shows the comparison of our model with three previous state-of-
the-art models on boundary detection. The performance of boundary detection
evaluates the model’s ability of identifying entity regions. Compared with other
models, our model achieves best performance in terms of F-score. Compared with
BM [24] which only utilizes entity boundary information, we introduce multitask

1 The results on GENIA test set are taken from [24], and the results on GermEval
2014 test set are obtained by running the codes shared by [24].
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Table 6. Performance comparison of Boundary Label Prediction on GENIA test set.

Boundary label P(%) R(%) F(%)

O(non-entity) 97.6 96.0 96.8

B(beginning) 83.6 87.2 85.3

I(inner-entity) 85.7 93.0 89.2

E(end) 84.7 90.1 87.3

S(single) 79.4 71.6 75.3

Table 7. Performance comparison of non-multitask learning model and multitask
learning model on GENIA dataset and GermEval 2014 dataset.

Model GENIA GermEval 2014

P(%) R(%) F(%) P(%) R(%) F(%)

Non-multitask learning 76.7 73.1 74.9 79.1 66.2 72.1

Multitask learning 76.4 74.6 75.5 78.5 67.6 72.7

learning to capture the underlying association between entity boundary infor-
mation and category information and achieve better performance on boundary
detection. It illustrates that our model can locate entities more precisely by
capturing the underlying association between entity boundary information and
category information.

Table 6 shows the performance of boundary label prediction of our model.
The performance of boundary label prediction evaluates the model’s ability of
predicting the boundary label of each word in sentences. With the help of multi-
task learning, our model can capture the underlying association between entity
boundary information and category information. It helps our model achieve rel-
atively high performance on boundary label prediction. This gives a reason why
our model can achieve good performance on boundary detection. The perfor-
mance of our model to predict the boundary label “S” is not so good as other
boundary labels. This is likely because the amount of the boundary label “S” is
much less than other labels.

5.3 Performance of Multitask Learning

To prove that we can improve the performance of our model through multitask
learning, we conduct experiments on the GENIA and GermEval 2014 datasets.
Table 7 shows that our multitask learning model outperforms our non-multitask
learning model. The architecture of our non-multitask learning model is shown
is Fig. 3. In non-multitask learning model, we train two individual multi-label
sequence labeling modules for entity boundary prediction and entity category
prediction without sharing any components. Therefore, entity boundary predic-
tion and entity category prediction are separate and do not share any infor-
mation. In multitask learning model, we jointly train two modules through a
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S
EIIB O Cell-Type

Cell-LineCell-LineCell-LineCell-Line O

Cell-Line Cell-Type

Word Representation Layer

Feature Extraction Layer

monocyte - derived DC wereInput monocyte - derived DC were

Boundary Detection Module Category Detection Module

Fig. 3. Architecture of our non-multitask learning model. The model is composed by
two individual multi-label sequence labeling modules without sharing any components.

shared multi-layer Bi-LSTM which serves as the shared component. In this way,
the boundary detection module and category detection module can share infor-
mation with each other through the shared component. Multitask learning helps
our model focus attention on features that actually matter [17]. With multi-
task learning, our model can capture the underlying association between entity
boundary information and category information. It means that our model can
capture features that not only matter to entity boundary detection but also mat-
ter to entity category detection. Therefore, our model can locate entities more
precisely. The results in Table 7 illustrate that multitask learning improves the
performance of our model.

Table 8. Results of Ablation Tests on GENIA test set and GermEval 2014 test set
(“w/o” means “without”).

Setting GENIA GermEval 2014

P(%) R(%) F(%) P(%) R(%) F(%)

Our model 76.4 74.6 75.5 78.5 67.6 72.7

w/o Dropout 74.2 71.1 72.6 70.9 63.7 67.1

w/o Character representation 76.0 73.0 74.5 74.7 58.4 65.6

w/o Pre-trained Word Embedding 73.7 73.9 73.8 76.3 66.7 71.2

5.4 Ablation Tests

Our model has several components that we could tweak to understand their
impact on the overall performance. We explore the impact that the dropout
layer, the character-level LSTM and the pre-trained word embedding have on
our model. Table 8 shows the results of the ablation experiments on GENIA test
set and GermEval 2014 test set. From the results, we observe that all components
contribute to the overall performance to varying degrees.
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6 Case Study

To specifically illustrate that our model does not suffer from boundary detection
conflict which BM [24] suffers from, we show case 1 in Table 9. There are three
entities in this case, including “mAb”, “NFATc” and “T cell NFATc”. The word
“NFATc” is simultaneously the beginning of entity “NFATc” and the end of
entity “T cell NFATc”. In this case, BM [24] only identifies the entity “NFATc”
but ignores the entity “T cell NFATc” because it only tags each word with one
kind of boundary label, which leads to boundary detection conflict. Different
from BM, our model tags each word with multiple kinds of boundary labels,
thus our model does not suffer from boundary detection conflict and successfully
identifies both “NFATc” and “T cell NFATc”.

Table 9. Two cases of predicted results in GENIA test dataset.

Case 1 However, supershift assays using the
available mAb recognizing the T cell NFATc

Ground truth protein:{mAb; NFATc; T cell NFATc}
BM [24] protein: {NFATc}
Our multitask model protein: {mAb; NFATc; T cell NFATc}
Case 2 human FKBP cDNA were detected

Ground truth protein: {FKBP}
DNA: {human FKBP cDNA}

LSLM [6] DNA: {human FKBP cDNA}
ERCM [19] protein: {human FKBP}

DNA: {human FKBP cDNA}
BM [24] DNA: {human FKBP cDNA}
Our non-multitask model DNA: {human FKBP cDNA}
Our multitask model protein: {FKBP}

DNA: {human FKBP cDNA}

To specifically illustrate that the performance of our multitask model out-
performs previous models and our non-multitask model, we show case 2 in
Table 9. There are two entities in this case, including “FKBP” and “human
FKBP cDNA”. LSLM [6] only extracts the outer entity “human FKBP cDNA”
but ignores the inner entity “FKBP” because it suffers from error propagation
caused by its pipeline structure. The exhaustive model incorrectly extracts the
non-entity “human FKBP” because it does not explicitly utilize boundary infor-
mation. BM [24] explicitly utilizes the boundary information so that it does not
extract the non-entity, but it ignores some entities, as same as our non-multitask
model. As for our multitask model, it successfully identifies all entities. This is
likely because our multitask model captures the underlying association between
entity boundary information and entity category information through multitask
learning, thus it locates entities more precisely and achieves better performance.
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7 Conclusion

This paper presents a neural model with a multi-label boundary detection mod-
ule and a multi-label category detection module to extract nested entities. Our
model detects entity boundaries and entity categories simultaneously, which
avoids boundary detection conflict and error propagation problem. Furthermore,
our model captures the underlying association between the boundary informa-
tion and the category information through multitask learning. In this way, our
model extracts entities more precisely and achieves better performance. Experi-
ments conducted on two nested NER dataset and a flat NER dataset show that
our model outperforms existing models both on nested NER and flat NER.

In future work, it would be interesting to model the explicit association
between the boundary and category information. It may help to better detect
entity boundaries and entity categories.
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Abstract. Topic models demonstrate outstanding ability in discovering
latent topics in text corpora. A coherent topic consists of words or entities
related to similar concepts, i.e., abstract ideas of categories of things. To
generate more coherent topics, term weighting schemes have been pro-
posed for topic models by assigning weights to terms in text, such as
promoting the informative entities. However, in current term weighting
schemes, entities are not discriminated by their concepts, which may
cause incoherent topics containing entities from unrelated concepts. To
solve the problem, in this paper we propose two term weighting schemes
for topic models, CEP scheme and DCEP scheme, to improve the topic
coherence by incorporating the concept information of the entities. More
specifically, the CEP term weighting scheme gives more weights to enti-
ties from the concepts that reveals the topics of the document. The
DCEP scheme further reduces the co-occurrence of the entities from
unrelated concepts and separates them into different duplicates of a doc-
ument. We develop CEP-LDA and DCEP-LDA term weighting topic
models by applying the two proposed term weighting schemes to LDA.
Experimental results on two public datasets show that CEP-LDA and
DCEP-LDA topic models can produce more coherent topics.
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Table 1. An example about tennis and the recognized entities in it. Entities are in the
left white rectangles and one of the concepts is shown in the right shaded ellipse for
each entity.

Document
Although Tommy Robredo was defeated, Spain re-
versed the situation in the game when Carlos Moya de-
feated Andy Roddick eventually.

Entities &
Concepts

1 Introduction

With the rise of the Internet, massive amounts of data are generated every day.
Topic models, as exemplified by Latent Dirichlet Allocation (LDA) [3], play
a critical role in the field of text mining to analyze the data. Topic models
assume that each document has a distribution over topics, and each topic has
a distribution over words. They aim to discover implicit topics and offer people
a quick understanding of a text corpus. Other than mining topics, topic models
also make a significant contribution to many natural language processing (NLP)
tasks [1,5,17,27].

The major criterion of a good topic model is that it produces useful and coher-
ent topics. If words or entities in a topic are interpretable and associate with a
single semantic concept, the topic is coherent [16]. However, general but highly
frequent words, such as “good” and “think”, tend to dominate and scatter across
most topics produced by current topic models [8]. These general words lead to
considerable incoherent topics without any specific meaning. Term weighting
schemes are explored for topic models to alleviate the influences of these general
terms (i.e., words) by giving them lower weights and promoting the informa-
tive terms [8,9,13,25]. Notably, Krasnashchok et al. [9] regard entities in text
as important terms which represent distinct objects in the world and play an
essential role in describing events and facts, and they propose Document Inde-
pendent Named Entity Promoting (NEP) term weighting scheme [9] for topic
models to generate more coherent topics by promoting the entities.

A concept is an abstract idea of categories of entities or things [15]. In a
document, there usually exist some concepts that cover more entities than other
concepts. These concepts correlate more with the main topics of the document,
and thus the entities under these concepts carry greater importance and should
be given more weights. For example, in the document in Table 1, most entities
(e.g., “Carlos Moya”) belong to the concept “tennis player”, which reveals that
the primary topic of the document is related to tennis. While the three tennis-
related entities should have higher weights, entity “Spain” should have a lower
weight because its concept “country” is not related to main tennis topic of doc-
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ument. However, current term weighting schemes such as the NEP scheme do
not consider the relationship between the concepts of entities and the topics of
the documents. Rather, it gives all the entities the same weights by increasing
the same frequency to each entity. It should be noted that topic models tend
to assign highly frequent and co-occurred words (or entities) to the same topic
[6,23]. Therefore, for topic models with the NEP scheme, entities (e.g., “Spain”)
are highly likely to be assigned to the topics (e.g., tennis) that are unrelated to
their concepts, hence the topics become incoherent.

To alleviate the problem of the current term weighting schemes which bring
entities from unrelated concepts into the same topics and lead to incoherence, we
propose two term weighting schemes for topic models, namely, Concept Based
Entity Promoting (CEP) scheme and Duplicated Concept Based Entity Promot-
ing (DCEP) scheme. In the CEP scheme, if an entity shares concepts with more
entities, it is regarded to relate more to the main topics of the document and is
given more weight by increasing more frequency. The entities that are irrelevant
to the main topics have lower frequencies, so that the influence (i.e., probabil-
ity) of these entities on the unrelated topics is diminished in topic models and
the topic coherence is improved. However, the CEP scheme still mix up entities
from different unrelated concepts into the same topic in a document, leading to
topic incoherence. Since topic models discover topics based on the co-occurrence
of words or entities [6,23], the avoidance of the co-occurrence of the entities
from unrelated concepts in a document can help to improve the topic coherence.
We therefore propose DCEP term weighting scheme to separate entities from
different concepts into different duplicates of a document, and to promote enti-
ties from one concept in each duplicate document. Consequently, topic models
with the DCEP scheme can produce more coherent topics as the entities from
unrelated concepts have higher probability to be assigned to different topics. We
develop CEP-LDA and DCEP-LDA term weighting topic models by applying
the CEP and DCEP term weighting schemes to LDA. The contributions of this
paper can be summarized as follows:

– To address the problem that topic models with term weighting schemes pro-
duce incoherent topics, we propose the CEP term weighting scheme which
gives more weights to entities whose concepts associate more with the top-
ics of the document. To the best of our knowledge, this is the first study to
integrate concept information into term weighting scheme for topic models.

– To alleviate the problem that CEP scheme mixes up entities from irrelevant
concepts and leads to topic incoherence, we further extend the CEP scheme
to DCEP term weighting scheme so as to reduce the co-occurrence of these
unrelated entities and separate them into different duplicates of a document.

– We develop two term weighting topic models, CEP-LDA and DCEP-LDA,
by applying the two proposed schemes to LDA. Experiments on two public
datasets demonstrate that CEP-LDA and DCEP-LDA models are capable of
discovering more coherent topics than NEP-LDA.

The remaining part of the paper is organized as follows. Section 2 briefly
describes the related work. Section 3 presents the proposed CEP and DCEP
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term weighting schemes, and two topic models CEP-LDA and DCEP-LDA. The
detailed experiments and analysis are shown in Sect. 4, followed by the conclusion
in Sect. 5.

2 Related Work

Term weighting schemes assign weights to terms which represent their contribu-
tion in a specific task. Term weighting schemes are traditionally studied in infor-
mation retrieval [20]. The most famous term weighting scheme is term frequency–
inverted document frequency (TFIDF) [18] which explores term frequency and
document frequency simultaneously. Thereafter, term weighting schemes are suc-
cessfully applied to various NLP tasks, such as text categorization [10].

Topic models such as LDA are criticized for producing incoherent topics
which are filled with general and highly frequent words. Wilson et al. [25] firstly
prove that term weighting schemes can also benefit topic models to produce more
coherent topics by assigning weights to words. They propose two term weighting
topic models log-LDA and PMI-LDA which combines term weighting schemes
and LDA. Log-WLDA utilizes log function and gives lower weights to highly
frequent words and PMI-WLDA adopts pointwise mutual information (PMI) to
calculate the relevance between words and documents as the weights.

Lee et al. [12] propose Weighted Topic Model (WTM) and Balance Weighted
Topic Model (BWTM) that utilize IDF method to measure representativeness
of words in a topic. Truica et al. [21] verify the effectiveness of different term
weighting schemes on the LDA, including term frequency (TF), TFIDF, and the
Okapi BM25. Bekoulis et al. [2] transform a document in a graph-of-words rep-
resentation, attempting to capture the relationships between words in a context
window and treat the number of co-occurrence words as the term weights of
words.

It is ulteriorly observed that some topics generated by LDA contain irrel-
evant words scattering across these topics. These words are named as topic-
indiscriminate words. TWLDA model [8] applies supervised Balanced Distri-
butional Concentration (BDC) weighting scheme [22] to find these words, and
assigns lower weights to them in a two-step training process. Extending from
TWLDA model, an iterative term weighting framework ITWF [28] is further
proposed which can be applied to the variants of LDA.

It is pointed out that the previous works [8,25] mainly focus on assigning
lower weights to the general words, but words with higher weights are not nec-
essarily informative. An entropy-based term weighting scheme is designed to
measure the informativeness of words, and combined with log and BDC weight-
ing schemes [13].

However, the previous term weighting topic models modify the generative
process of LDA and increase the complexity of computation. NEP-LDA [9] offers
new insights into the way to combining term weighting schemes and topic mod-
els. In NEP-LDA, entities are recognized as the informative words and directly
promoted by increasing their frequencies in documents. Then standard training
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algorithms for LDA is reused on those modified documents. Inspired by NEP
scheme, we further incorporate concept information into the term weighting
schemes for topic models.

3 Model

In order to generate more coherent topics, we propose two term weighting
schemes, CEP scheme and DCEP scheme, for topic models which utilize concept
information of entities. The CEP term weighting scheme gives more weights to
entities from the concepts that reflect the topics of the documents. The DCEP
scheme further reduces the co-occurrence of the entities from unrelated con-
cepts for more coherent topics. We develop two term weighting topic models,
CEP-LDA and DCEP-LDA topic model, by applying the proposed schemes to
LDA.

3.1 Latent Dirichlet Allocation

LDA is the most widely studied topic model. In LDA, documents are character-
ized as mixtures over topics, and topics are mixtures over all the words in the
vocabulary of a corpus. LDA assumes the generative process of the entire corpus
as follows:

1. For each topic k = 1 to K:
(a) Draw word distribution φk ∼ Dirichlet(β)

2. For each document m in corpus D:
(a) Draw topic distribution θm ∼ Dirichlet(α)
(b) For each word with index i = 1 to Nm in document m:

i. Draw a topic zm,i ∼ Multinomial(θm)
ii. Draw a word wm,i ∼ Multinomial(φzm,i

)

where Dirichlet prior α and β and the topic number K are hyperparameters
in LDA. Nm represents the number of words in document m. Figure 1 demon-
strates the graphical representation of LDA model which expresses the condi-
tional dependence between the random variables. The training goal of LDA is
to reverse the generation process, outputting the topic distribution θm for each
document m and the word distribution φk for each topic k.

3.2 CEP Term Weighting Scheme and CEP-LDA Model

If a concept covers more entities, it expresses more about the main topics of
the document and is more substantial. Equivalently, if an entity shares semantic
concepts with more entities in a document, this entity should be given more
weights and thus be increased more frequency in the CEP scheme. Oppositely,
if an entity shares concepts with fewer entities, it will be promoted less. In a
document, if an entity diverges more in concepts from other entities, it may con-
vey less important information and should have relatively lower frequency than
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Fig. 1. Graphical representation of LDA model.

other entities. With lower frequency, an entity will have lower probability in a
topic. Therefore, even if such an entity is incorrectly assigned to an irrelevant
topic, the impact on the coherence is lessened due to its low probability. More-
over, it increases the chances that entities from the same concepts fall into the
same topic because their frequencies are increased more. Consequently, the CEP
scheme can facilitate topic models to find more coherent topics.

More specifically, in each document m in a corpus D, the CEP term weighting
scheme is applied to the frequency of each type of word (i.e., term) w as below:

N
′
m,w =

{
Nm,w + Cm,w · max

v
Nm,v if w ∈ T̃m

Nm,w if w ∈ Tm

(1)

where N
′
m,w and Nm,w represent the promoted and original frequency of word w

in document m. A word is either an ordinary word or an entity. Tm denotes the
set of ordinary words and T̃m denotes the set of entities occurring in document m.
Cm,w represents the number of different types of entities (including entity w) in
document m which at least share one concept with entity w. Besides, max

v
Nm,v

is the maximum term frequency in document m. The CEP scheme does not
change the frequencies of the ordinary words by reason of their comparatively
secondary status when describing facts or events in texts as in [9].

Figure 2 demonstrates the original and promoted frequencies of some words
in the document of Table 1 after applying different term weighting schemes. NEP
scheme increases the frequencies of the entities by the maximum term frequency
in the document which equals to two. The CEP scheme promotes the entities of
the three tennis players by six because each shares the same concept with two
more entities. The frequency of entity “Spain” is only increased by two. Because
the frequency of “Spain” is less than the frequencies of the tennis players, it
will have lower influence if it is assigned to the tennis-related or other unrelated
topics. At the same time, there are higher opportunities that the same topic is
chosen for the three tennis players.

CEP-LDA model is the combination of the CEP term weighting scheme and
LDA. The CEP term weighting scheme does not change the generative process
of topic models. In CEP-LDA model, after the CEP scheme is applied to the
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Fig. 2. Frequencies of words in the document in Table 1 under different term weighting
schemes.

corpus, the training algorithm of LDA such as Gibbs sampling or variational
inference can be directly reused on the modified corpus. We present the training
process of CEP-LDA using collapsed Gibbs sampling algorithm in Algorithm1.
The CEP scheme is firstly applied to each document in the corpus (Line 1–5). The
detailed process of the CEP scheme is presented in Algorithm 2. Then collapsed
Gibbs sampling algorithm of LDA is adopted on the corpus. The topic of each
word is iteratively sampled (Line 6–14) according to the following conditional
distribution:

p(zm,i|z¬(m,i),w, α, β) ∝ (nk
m,¬(m,i) + α) ·

nw
k,¬(m,i) + β∑V

v (nv
k,¬(m,i) + β)

(2)

where α and β are hyperparameters, and zm,i is the topic assignment for the ith

word wm,i in document m. Notations z and w represent all the topic assignments
and words in the corpus, nk

m is the number of words assigned to topic k in
document m and nw

k is the number of times that word w is assigned to topic k.
Subscript ¬(m, i) means the exclusion of the word wm,i. V is the vocabulary of
the corpus. Finally, the posterior probability of topic k in document m (Line 15)
is computed as:

θm,k =
nk
m + α∑K

u (nu
m + α)

(3)

where K represents the pre-defined topic number. The posterior probability of
word w in topic k (Line 16) is computed as:

φk,w =
nw
k + β∑V

v (nv
k + β)

(4)
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Algorithm 1. Gibbs Sampling Training Process of CEP-LDA.
INPUT: The corpus D, hyperparameters α, β and K
OUTPUT: The topic distribution θm and word distribution φk

1: Create an empty corpus D̃
2: for each document m in corpus D do
3: m̃ = CEP(m) // See Alg. 2
4: Add document m̃ to corpus D̃
5: end for
6: Initialize topic assignments randomly for words in corpus D̃
7: for iterition = 1 to Niter do
8: for each document m in corpus D̃ do
9: for each word with index i = 1 to Nd do

10: Draw a topic zm,i ∼ p(zm,i|z¬m,i,w, α, β) // See Eq. 2
11: Update nk

m and nw
k

12: end for
13: end for
14: end for
15: Compute topic distribution θm // See Eq. 3
16: Compute word distribution φk // See Eq. 4

3.3 DCEP Term Weighting Scheme and DCEP-LDA Model

Although the CEP scheme attempts to reduce the probability of an entity in
an unrelated topic, it still mix up entities from unrelated concepts in a docu-
ment to some extend and may produce incoherent topics. For example, in the
document of Table 2, entities “China” and “United States” share the same con-
cept “country”. Entities “Xiaomi” and “Google” are the instances of concept
“technology company” which is unrelated to concept “country”. After applying
the CEP scheme to the document, frequencies of the four entities are increased
the same. Because of the high and equal frequencies, the four entities from the
two unrelated concepts are still likely to be assigned to the same topic while all
having high probability in the topic. Under such a circumstance, topic models
fail to yield coherent topics by applying the CEP scheme.

We design the DCEP term weighting scheme to alleviate the problem by
reducing the co-occurrence of the entities from different concepts. Based on the
number of concepts of entities in a document, the DCEP scheme duplicates a
document several times and create a list of new documents. Then it increases
the frequencies of entities from different concepts in different duplicates of this
document. The entities that differ about concepts are promoted separately in
different duplicates. In each duplicate document, entities from one promoted
concept have higher frequencies than other entities and higher probability to fall
in the same topic. If there are two semantically similar concepts, the entities
that belong to both concepts can act as bridges to gather other entities from
either concept into the same topic. Oppositely, entities from different concepts
that diverges much are less likely to end in the same topic.
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Algorithm 2. CEP term weighting scheme
INPUT: Document m
OUTPUT: Document m after applying the CEP term weighting scheme

1: Compute max term frequency of document m: Mm = max
v

Nm,v

2: Recognize entities in document m and form entity set ˜Tm

3: for each entity t ∈ ˜Tm do
4: Query concepts concept(t) for entity t
5: end for
6: for each entity t ∈ ˜Tm do
7: for each entity t

′ ∈ ˜Tm do
8: if exists intersection between concept(t) and concept(t

′
) then

9: Add Mm entities of type t to document m
10: end if
11: end for
12: end for
13: return document m

Table 2. An example about companies and the recognized entities in it. Entities are
in the left white rectangles and one of the concepts is shown in the right shaded ellipse
for each entity.

Document China’s Xiaomi will launch a TV gadget into United
States market in cooperation with Google.

Entities &
Concepts

More formally, the DCEP term weighting scheme is described as below. The
DCEP scheme firstly counts the entities under each concept. In document m,
if there exist nm,i ≥ nc entities that share the same concept hm,i, the concept
will be added to the concept set Hm and these entities will constitute the entity
set T

′
m,i. Hyperparameter nc denotes the least number of entities belonging to a

concept so that they can be promoted in a new duplicate document. The entities
in document m that are not in the set T

′
m,i will end up in the set T

′′
m,i. The

DCEP scheme duplicates document m for |Hm| times, constructing a new list
of documents m

′
= {m

′
1, ...,m

′
|Hm|} to replace the original document m. Then,

in each duplicate document m
′
i ∈ m

′
, the frequency of each word is promoted as

follows:

N̂m,i,w =

⎧⎪⎪⎨
⎪⎪⎩

Nm,i,w + nm,i · max
v

Nm,v if w ∈ T
′
m,i

Nm,i,w + max
v

Nm,v if w ∈ T
′′
m,i

Nm,i,w if w ∈ Tm,i

(5)
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Algorithm 3. DCEP term weighting scheme
INPUT: Document m, hyperparameter nc

OUTPUT: Document list m
′

1: Compute max term frequency of document m: Mm = max
v

Nm,v

2: Recognize entities in document m and form entity set ˜Tm

3: for each entity t ∈ ˜Tm do
4: Query concepts concept(t) for entity t
5: Add concepts concept(t) to concept set Gm

6: end for
7: for each concept gm,i ∈ Gm do
8: if nm,i ≥ nc entities in ˜Tm belong to concept gm,i then
9: Add concept gm,i to concept set Hm

10: end if
11: end for
12: Create empty document list m

′

13: if |Hm| ≤ 1 then
14: m̃ = CEP(m) // See Alg. 2

15: Add document m̃ to document list m
′

16: else
17: for each concept hm,i ∈ Hm do

18: Make a duplicate document m
′
i of document m

19: for each entity t ∈ ˜Tm do
20: if concept hm,i in concept(t) then

21: Add nm,i · Mm entities of type t to document m
′
i

22: else
23: Add Mm entities of type t to document m

′
i

24: end if
25: end for
26: Add document m

′
i to document list m

′

27: end for
28: end if
29: return Document list m

′

where N̂m,i,w and Nm,i,w denote the promoted and original frequency of word w

in the duplicate document m
′
i. Tm,i is the set of ordinary words. If |Hm| ≤ 1 in

document m, it indicates that only one or no concept takes on a dominating role
in the document. Under such a circumstance, the CEP scheme is still applied to
document m.

Let us consider the document in Table 2 as an example. If nc ≥ 3, the docu-
ment will simply apply the CEP scheme because there are not adequate entities
under any concepts, and thus no duplicates of the document. If nc = 2, there will
be two concepts in Hm, “country” and “technology company”, and therefore the
document is duplicated twice. In the first duplicate document, entities “China”
and “United States” are added more frequency because of the concept “coun-
try”. Entities “Xiaomi” and “Google” from concept “technology company” are
favored and promoted in the second duplicate. Compared to the CEP scheme
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which adds the same frequency to all the entities and tend to mix them together
in the same topic with high probability, the DCEP scheme can deal with entities
from different concepts in turn to form different coherent topics.

Algorithm 3 shows the detailed algorithm of applying the DCEP term weight-
ing scheme to a document. DCEP-LDA model combines the DCEP term weight-
ing scheme and LDA. The training algorithm of DCEP-LDA can be simply
obtained by replacing the CEP scheme (Line 3–4) in Algorithm1 with the DCEP
scheme.

4 Experiment

We conduct experiments to evaluate the performance of our proposed CEP-LDA
and DCEP-LDA models. NEP-LDA model [9] is the first term weighting topic
model which treats entities as the informative terms and gives weights to entities
by increasing frequencies without modifying the generative process of LDA. It is
also a classical model that only seeks to generate coherent topics by giving more
weights to the informative words without considering their concept information.
Therefore, we choose NEP-LDA and standard LDA as baseline models.

4.1 Dataset and Concept Information

We perform experiments on two text datasets: 20 Newsgroups1 with 18846 news-
groups documents and Reuters corpus2 with 10788 news documents. They are
widely employed in natural language processing and data mining tasks. To rec-
ognize the entities in documents, we adopt a named entity recognition tool,
NeuroNER [4], on each document and utilize all types of the output entities.
Further preprocessing procedures include tokenization, removal of stop words
and terms with document frequency less than 3, removal of documents with less
than 3 words, and lemmatization. Entity recognition is not performed on the
datasets for standard LDA.

We employ the Microsoft Concept Graph [26] to query concept information of
entities in the experiments. It is mined from billions of web pages and provides
millions of concepts for considerable entities. Each entity recognized by Neu-
roNER is queried in Microsoft Concept Graph. For an entity, Microsoft Concept
Graph returns a list of concepts sorted by the basic-level categorization (BLC)
[24]. BLC simulates human preference when selecting appropriate concepts of an
entity. The higher a BLC score of a concept is, the more people will have it in
mind first. In the hope of discovering topics conforming to human cognition, we
use the top 20 concepts of each entity sorted by BLC in the Microsoft Concept
Graph. The concepts are not too specific that semantically similar entities for
humans do not share the same concept, nor too abstract that the same con-
cept exists between unrelated entities. We assume that two entities share the
same concept if there is an intersection between their concept sets in Microsoft
Concept Graph.
1 http://qwone.com/∼jason/20Newsgroups.
2 http://www.nltk.org/book/ch02.html.

http://qwone.com/~jason/20Newsgroups
http://www.nltk.org/book/ch02.html
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4.2 Experimental Setting

The performance of the topic models is usually measured by topic coherence.
Prevailing coherence metrics include PMI [16], log conditional probability [14],
normalized pointwise mutual information (NPMI) [11], Cv [19], etc. Empirically,
Cv is verified to correlate the most with human judgment in interpretability
and coherence of topics. Therefore, we use Cv as the coherence metric in the
experiments. English Wikipedia from 2019/03/01 is served as the external corpus
of Cv metric. Except when used to evaluate the results of the standard LDA,
entity recognition is also performed on each article in Wikipedia.

For standard LDA, we use the implementation in Gensim3 which is based on
the online variational Bayes inference [7]. We implement term weighting topic
model NEP-LDA by combining NEP scheme and LDA. Topic number K ranges
from 20 to 100 with the interval of 20 in the experiments. Hyperparameters
α and β are both set to 1/K as default in Gensim. For our proposed DCEP-
LDA model, nc varies from 2 to 6. The number of iterations through the corpus
during training is 100. The topic coherence is evaluated on the top 10 words per
topic, and the performance of a model is quantified by the average coherence
of all the topics. For each model with different settings of topic number, we
conduct experiments for 5 times under random initializations and then average
the results.

4.3 Result

Quantitative Analysis. Table 3 and Table 4 depict the Cv coherence results
of the baseline models and proposed CEP-LDA and DCEP-LDA models on 20
Newsgroups and Reuters corpus. From the results, we can observe that overall
CEP-LDA and DCEP-LDA outperform LDA and NEP-LDA on topic coherence
on both datasets. Averaging the results under all the topic numbers, the improve-
ment of CEP-LDA over NEP-LDA is about 0.058 on 20 Newsgroups and 0.048
on Reuters corpus. In most settings, DCEP-LDA performs better than CEP-
LDA. Considering the best performance of DCEP-LDA, DCEP-LDA achieves
an average 0.038 and 0.081 higher score in Cv coherence than CEP-LDA on 20
Newsgroups and Reuters corpus. It confirms that by alleviating the influences of
entities in unrelated topics, CEP-LDA can produce more coherent topics. Com-
pared to CEP-LDA, DCEP-LDA further separates entities by their concepts to
avoid entities from irrelevant concepts falling into the same topics, and improves
the topic coherence.

On 20 Newsgroups dataset, NEP-LDA performs better than LDA when topic
number is small but becomes worse when topic number is larger than 60, which is
also demonstrated in the previous work [9]. It shows that attempting to increase
the frequencies of entities without considering the concepts is not enough to
improve the coherence. More scientifically, we design NEP-LDA* model in which
each entity is promoted by twice the maximum term frequency of each docu-
ment, and LDA** and NEP-LDA** in which each document is duplicated once
3 https://radimrehurek.com/gensim/index.html.

https://radimrehurek.com/gensim/index.html
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Table 3. Mean and standard deviation of Cv coherence results on 20 Newsgroups with
different topic number K. Except when topic number is 20, improvements of DCEP-
LDA over LDA and NEP-LDA are statistically highly significant (p < 0.01) based on
Student t-Test.

Model K = 20 K = 40 K = 60 K = 80 K = 100

LDA 0.511 ± 0.011 0.495 ± 0.014 0.504 ± 0.007 0.491 ± 0.008 0.465 ± 0.011

LDA** 0.528 ± 0.014 0.521 ± 0.010 0.507 ± 0.008 0.498 ± 0.008 0.489 ± 0.007

NEP-LDA 0.574 ± 0.022 0.509 ± 0.019 0.467 ± 0.017 0.441 ± 0.007 0.459 ± 0.013

NEP-LDA* 0.558 ± 0.034 0.509 ± 0.010 0.488 ± 0.012 0.458 ± 0.010 0.443 ± 0.013

NEP-LDA** 0.588 ± 0.027 0.523 ± 0.013 0.497 ± 0.012 0.468 ± 0.008 0.461 ± 0.013

CEP-LDA 0.613 ± 0.015 0.559 ± 0.027 0.542 ± 0.016 0.509 ± 0.013 0.517 ± 0.013

DCEP-LDA (nc = 2) 0.594 ± 0.019 0.594 ± 0.005 0.587 ± 0.019 0.548 ± 0.005 0.542 ± 0.003

DCEP-LDA (nc = 3) 0.575 ± 0.027 0.603 ± 0.014 0.589 ± 0.013 0.559 ± 0.010 0.546 ± 0.012

DCEP-LDA (nc = 4) 0.608 ± 0.022 0.607 ± 0.009 0.575 ± 0.006 0.555 ± 0.010 0.534 ± 0.006

DCEP-LDA (nc = 5) 0.605 ± 0.029 0.619 ± 0.016 0.576 ± 0.018 0.544 ± 0.009 0.534 ± 0.005

DCEP-LDA (nc = 6) 0.619 ± 0.043 0.606 ± 0.020 0.573 ± 0.011 0.542 ± 0.010 0.521 ± 0.012

based on the original document and the document after applying NEP scheme.
According to Table 3 and Table 4, LDA**, NEP-LDA* and NEP-LDA** still
behave worse than CEP-LDA and DCEP-LDA in most cases. It proves that our
proposed models can effectively facilitate a topic to contain entities from similar
concepts and gain more coherence.

Moreover, the results exhibit that with large topic numbers, DCEP-LDA
reaches the optimal performance when nc = 3 on 20 Newsgroups and when
nc = 2 on Reuters corpus. As the topic number becomes smaller, nc needs to
be larger to obtain higher coherence. The reason may be that when nc varies,
the different concepts used by DCEP-LDA influence the coherence of the output
topics. More specifically, a topic model with a smaller topic number is supposed
to produce broader topics like war, while a higher topic number corresponds to
more specific topics such as World War I and World War II. Each entity also
has broad and specific concepts. A broad concept embraces more entities and
a specific concept includes less entities. nc controls the least number of entities
from the same concept to be promoted in a new duplicate document. When nc

is small, concepts involving a small number of entities, i.e., specific concepts,
may be widely used in DCEP-LDA model. Therefore, if topic number is high,
entities belonging to those concepts tend to be assigned to the same specific
topics, resulting in better coherence. Oppositely, when nc is higher, the adopted
broader concepts benefit generating broader topics if topic number is small.

However, a lower nc implies more duplicate documents used to train the
DCEP-LDA model and consumes more time. Table 5 shows the number of docu-
ments under different term weighting schemes on 20 Newsgroups dataset and the
average training time of topic models. It shows that when nc is small, the DCEP
term weighting scheme does not significantly increase the number of documents
and the training time but helps LDA to achieve outstanding performance. How-
ever, when nc = 2, the number of documents is nearly doubled and the training
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Table 4. Mean and standard deviation of Cv coherence results on Reuters corpus with
different topic number K. Except when nc = 5 and nc = 6, improvements of DCEP-
LDA over LDA and NEP-LDA are statistically highly significant (p < 0.01) based on
Student t-Test.

Model K = 20 K = 40 K = 60 K = 80 K = 100

LDA 0.423 ± 0.012 0.420 ± 0.005 0.417 ± 0.003 0.409 ± 0.008 0.409 ± 0.009

LDA** 0.436 ± 0.013 0.425 ± 0.008 0.427 ± 0.007 0.423 ± 0.003 0.412 ± 0.008

NEP-LDA 0.412 ± 0.024 0.420 ± 0.012 0.391 ± 0.003 0.373 ± 0.007 0.371 ± 0.010

NEP-LDA* 0.419 ± 0.030 0.411 ± 0.014 0.373 ± 0.010 0.362 ± 0.010 0.349 ± 0.013

NEP-LDA** 0.426 ± 0.013 0.419 ± 0.004 0.401 ± 0.008 0.381 ± 0.014 0.376 ± 0.010

CEP-LDA 0.482 ± 0.013 0.466 ± 0.009 0.428 ± 0.007 0.415 ± 0.014 0.414 ± 0.008

DCEP-LDA (nc = 2) 0.536 ± 0.025 0.531 ± 0.003 0.516 ± 0.005 0.510 ± 0.011 0.507 ± 0.008

DCEP-LDA (nc = 3) 0.546 ± 0.012 0.517 ± 0.014 0.492 ± 0.010 0.483 ± 0.015 0.462 ± 0.014

DCEP-LDA (nc = 4) 0.510 ± 0.017 0.497 ± 0.014 0.450 ± 0.010 0.447 ± 0.009 0.427 ± 0.007

DCEP-LDA (nc = 5) 0.504 ± 0.029 0.480 ± 0.014 0.437 ± 0.010 0.426 ± 0.018 0.413 ± 0.010

DCEP-LDA (nc = 6) 0.499 ± 0.017 0.475 ± 0.018 0.439 ± 0.008 0.422 ± 0.014 0.425 ± 0.005

Table 5. Number of documents and the average run time under different models on
20 Newsgroups dataset with 60 topics.

Model # Documents Time

LDA 18182 294.0 s

NEP-LDA 18163 276.6 s

CEP-LDA 18163 274.8 s

DCEP-LDA (nc = 2) 34045 1012.2 s

DCEP-LDA (nc = 3) 20139 348.0 s

DCEP-LDA (nc = 4) 18932 287.2 s

DCEP-LDA (nc = 5) 18574 287.0 s

DCEP-LDA (nc = 6) 18432 280.2 s

time is more than three times that of LDA. Hence there is a trade-off between
time and topic coherence when choosing an appropriate hyperparameter nc to
train the DCEP-LDA model.

Qualitative Analysis. Table 6 demonstrates 10 words with the highest prob-
abilities in five topics learned by DCEP-LDA, CEP-LDA and NEP-LDA model
respectively on 20 Newsgroups with the topic number K = 60. Each column
shows the most semantically related topics from the three topic models. The
five topics can be summarized by baseball teams, baseball players, ice hockey
players, comics and display format. In the first topic, what NEP-LDA finds at
best is the mixture of teams such as “Dodgers”, cities such as “Houston” and
irrelevant word “Edu”. DCEP-LDA discovers entities all about baseball teams,
so the topic is more coherent. In the topic, half of the entities share the concept
“Major League Baseball team” in Microsoft Concept Graph, and other shared
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Table 6. Five topics learned from 20 Newsgroups by DCEP-LDA, CEP-LDA and
NEP-LDA.

Model DCEP-LDA (nc = 3)
Top
words

Cincinnati Reds
Chicago White Sox
Seattle Mariners
Colorado Rockies
St. Louis Cardinals
Milwaukee Brewers
Atlanta Braves
New York Mets
Toronto Blue Jays
Detroit Tigers

Eddie Murray
Ozzie Smith
Robin Yount
Dave Winfield
Dale Murphy
Kirby Puckett
Yount
Jack Morris
Wade Boggs
Darrell Evans

Paul Coffey
Al Macinnis
Adam Oates
Dave Andreychuk
Pat Lafontaine
Cam Neely
Brett Hull
Dale Hawerchuk
Doug Gilmour
Phil Housley

Moon Knight
Wolverine
New Mutants
Silver Sable
Sabretooth
Alpha Flight
New Warriors
Jim Lee
Rob Liefeld
Deathlok

BMP
GIF
TIFF
GIFs
PCX
JPEG
VESA
image
TGA
TARGA

Cv 0.958 0.829 0.846 0.805 0.763
Model CEP-LDA
Top
words

New York Mets
Los Angeles Dodgers
Atlanta Braves
Milwaukee Brewers
Toronto Blue Jays
California Angels
Colorado Rockies
Detroit Tigers
Kansas City Royals
Minnesota Twins

Dave Winfield
Ron Santo
Eddie Murray
Seaver
Ryne Sandberg
Darryl Strawberry
Roy Campanella
Toronto
Ozzie Smith
Dick Allen

Brett Hull
Ron Francis
Dave Andreychuk
Chris Chelios
Curtis Joseph
Brendan Shanahan
Doug Gilmour
Paul Coffey
Al Macinnis
Adam Oates

Moon Knight
New Warriors
Silver Sable
Captain America
Sabretooth
Erik Larsen
Infinity Gauntlet
Wolverine
New Mutants
Alpha Flight

BMP
JPEG
GIF
TIFF
GIFs
Atari ST
Amiga
UUCP
TGA
Windows

Cv 0.957 0.425 0.868 0.793 0.595
Model NEP-LDA
Top
words

Edu
Dodgers
Houston
St. Louis
Bonds
Angels
Cleveland
hit
Reds
Cincinnati

Era
Morris
Roger
Red Sox
Utah
Clemens
Alomar
Jays
Larson
Prof

Owen
Jun
Chicago Tribune
Cal
True
Doug Gilmour
Ron Francis
Bos
Scott
Joe Mullen

Wolverine
Liefeld
New Mutants
Sabretooth
Bagged
Avengers
Star Trek
Miller
Omega Men
Alpha Flight

JPEG
GIF
TIFF
UUCP
BMP
TARGA
Simtel20
image
JFIF
GIFs

Cv 0.569 0.303 0.149 0.408 0.554

concepts include “league team”, “professional sport franchise”, etc. CEP-LDA
find the coherent topic of baseball teams as well. In the second topic, entities
from DCEP-LDA are all about baseball players. However, in CEP-LDA, city
“Toronto” invades the baseball-related topic. NEP-LDA still outputs the com-
bination of entities about baseball and cities which form the most incoherent
topic. In the third topic, DCEP-LDA and CEP-LDA present entities all about
ice hockey players, but there are irrelevant entities such as the daily newspaper
“Chicago Tribune” in the topic from NEP-LDA. DCEP-LDA shows entities all
about Marvel comics and display formats in the fourth and last topics. However,
noisy entities such as computer system “Atari ST” appear in last topic from
CEP-LDA and irrelevant entities such as “Bagged” and “Simtel20” appear in
the last two topics from NEP-LDA. On the whole, DCEP-LDA captures more
coherent topics than CEP-LDA and NEP-LDA which performs the worst.



242 H. Zhang et al.

5 Conclusion

Term weighting schemes are important to topic models in discovering latent top-
ics in text corpus. To help topic models to generate more coherent topics, in this
paper we propose CEP as a term weighting scheme which gives more weights
to entities from concepts that reveal the topics of a document. We further pro-
pose DCEP term weighting scheme to reduce the co-occurrence of entities from
irrelevant concepts and separate them into different topics. We develop CEP-
LDA and DCEP-LDA topic models, and experimental results on 20 Newsgroups
and Reuters corpus show that they both can produce more coherent topics. For
future work, we plan to apply our proposed term weighting schemes to more
topic models to explore their flexibility.
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Abstract. The controllable text generation (CTG) task is crucial for
text-related applications, such as goal-oriented dialogue systems and text
style-transfer applications, etc. However, existing CTG methods com-
monly ignore the co-occurrence dependencies between multiple controlled
attributes, which are implicit in domain knowledge. As a result, rarely co-
occurring controlled values are highly likely to be given by users, which
finally leads to non-committal generated texts that are out of control. To
address this problem, we initially propose the Dependency-aware Con-
trollable Text Generation (DCTG) model that reduces trivial generations
by automatically learning the co-occurrence dependencies and adjusting
rarely co-occurring controlled values. Our DCTG highlights in (1) mod-
eling the co-occurrence dependencies between controlled attributes with
neural networks, (2) integrating dependency losses to guide each compo-
nent of our model to collaboratively work for generating reasonable texts
based on the learned dependencies, and (3) proposing a novel Reason-
ableness metric measuring to which degree generations comply with real
co-occurrence dependencies. Experiments prove that DCTG outperforms
state-of-the-art baselines on three datasets in multiple aspects.

Keywords: Controllable text generation · Co-occurrence
dependency · Reasonableness

1 Introduction

The task of controllable text generation (CTG) [6] enables machines to automat-
ically generate texts under the condition that specific attributes can be manually
controlled. It builds the foundation of multiple advanced applications, including
goal-oriented dialogue systems [13] and text style transfer [3], etc. Currently, the
CTG has attracted much attention from both academia and industry.

There already have been pioneering works [6,12] for CTG, which are mainly
contributed by generative neural models. They are generally based on the
sequence-to-sequence framework, where they first encode required contextual
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information into real-valued vectors (denoted as hidden representations) and
then decode them into texts. Particularly, for purposes of control, the hidden
representations are made disentangled. It means certain attributes would be
explicitly associated with specific dimensions (sets of dimensions) of hidden
representations. In this way, manually modifying the values of corresponding
dimensions would perturb generated texts in terms of related attributes in an
interpretable way.

Despite significant advances, they’re still far from being practically applica-
ble. Existing works usually take discrete value forms for controlled attributes,
which contradicts the fact that text-related attributes are more of continue
values and change with varying degree. Besides, multiple controlled attributes
are assumed to be independent. Namely, the attribute representations are sup-
posed to independently learn respective attribute values, without considering
the co-occurrence dependencies between them. For instance, intuitively
attribute value sentiment= positive appears more frequently together with loca-
tion=park, but rarely co-occurs with location= cemetery. Unfortunately, ignor-
ing such co-occurrence dependencies is problematic. When giving such rarely
co-occurred attribute values, the CTG process is highly likely to fail, generating
non-committal texts that are out of control, as Fig. 1 shows.

Fig. 1. Exemplar samples to demonstrate how co-occurrence dependencies effect gen-
erated texts. Commonly/rarely co-occurred attribute combination values are highly
likely to generate under-control/out-of-control cases that hold specific controlled infor-
mation/trivial information.

To further understand it, potential explanations of the problem indicated in
Fig. 1 are as follows. Since controlled attribute values are independently consid-
ered, there could be generating representations of both commonly co-occurred
(reasonable) values (e.g., sentiment= positive and location=park) and rarely co-
occurred (unreasonable) value combinations (e.g., sentiment= positive and loca-
tion= cemetery). When decoding with reasonable representations, it will natu-
rally generate the text I really enjoy playing with friends in the park, which is
of high positiveness and high relevance with park at the same time. However,
it is hard to find plausible sentences that carry two unmatched attribute values
at the same time. Thus, when decoding with unreasonable representations, it
will struggle to balance between them, as is argued in [4], and finally generate
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a sentence that is ambiguous on both attributes, leading to trivial generation I
have no idea.

Based on the above analysis, we address the challenges above. We are inspired
to particularly consider co-occurrence dependencies when constructing disentan-
gled representations, such that models have the ability to adjust unreasonable
representations and will further reduce generating trivial/out-of-control texts.
Note that adjustment by co-occurrence dependencies is supposed to be slight
without causing drastic changes and damaging controllability. Thus discrete rep-
resentations used in previous methods [6,10] are not suitable any more. Moti-
vated by the work [1] that operates in a continuous real-valued space, unlike
previous works that give controlled attribute signals using designated discrete
one-hot vectors, here we use sentences that holds controlled attribute signals
to replace the discrete ones. Then our model is able to extract the continuous
real-valued disentangled representations carrying given controlled signals from
the sentences, with co-occurrence dependencies considered as the same time.
Figure 2 illustrates how we extract two controlled signals in a continuous manner
from given sentences while considering the co-occurrence dependencies between
them. Note that vsentiment and vlocation would be eventually adjusted based on
the co-occurrence dependency between the two attributes.

Fig. 2. Illustrative cases for how the proposed method works. Input sentences 1
and 2 specify controlled attribute values (i.e., vsentiment and vlocation represent sen-
timent= positive and location=park). Sentence 3 is encoded as z for content preserva-
tion. The concatenated vector vsentiment||vlocation||z forms disentangled representations
and are for generating controlled texts.

The co-occurrence dependencies between the attributes of a real-life dataset
are usually more complicated than the above examples for illustration. On the
one hand, the number of combinations of attribute values could be quite large;
on the other hand, many dependencies are implicit in domain knowledge. It
is difficult for ordinary users to identify co-occurrence dependencies for text
generation and thus our work is necessary.

In this paper, we initially propose the Dependency-aware Controllable Text
Generation model (DCTG). To the best of our knowledge, this is the first
work to identify the problem of ignoring co-occurrence dependencies between
attribute values in CTG. It is based on the generative variational auto-encoder
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framework and combines discriminative networks. DCTG highlights in follow-
ing aspects. First, DCTG considers co-occurrence dependencies between con-
trolled attributes by introducing a dependency-aware attribute network. Sec-
ond, to collaboratively consider attribute values and reasonably extract/adjust
their representations, a mutual dependency loss is integrated to guide the train-
ing of attribute network. Third, to quantitatively evaluate the compliance with
real co-occurrence dependencies, we further propose the metric, reasonableness.
Fourth, for effective optimization of DCTG, we present a staged algorithm
extended from wake-sleep by augmenting it from two phrases into multiple ones.
Experiments prove that our method significantly outperforms state-of-the-arts
in multiple aspects under various practical scenarios.

2 Related Work

The controllable generation task has achieved promising progress in computer
vision. For instance, the DC-IGN [8] generates new images of the same object
with variations in pose and lighting. The InfoGAN [2] extends the generative
adversarial net(GAN) by maximizing mutual information between latent vari-
ables and observations, where it achieves controlling styles/shapes when gener-
ating digit images and controlling hairstyles/sunglasses when generating human
face images. The β-VAE [5] augments VAEs with an adjustable hyper-parameter
that balances latent channel capacity and independence constraints, and suc-
ceeds manipulating attributes of 3D images. They achieve controlling the gener-
ation of images by learning disentangled representations with different strategies.

However, there exist essential differences between image data and text data,
where the attributes of discrete texts are usually related with semantics and are
subjective, leading to increased difficulties. As a result, the controllable gener-
ation of texts is still in its infancy. There are several initial works, and most of
them are based on the Seq2Seq framework and simply incorporate controlling
information to generate specific texts. For instance, [14] generates preferred prod-
uct reviews by adding metadata, such as user, product and rating. [12] directly
joins topic information into Seq2Seq to generate informative and interesting
responses. However, the deterministic nature of Seq2Seq-based methods limits
their performance. To overcome it, several probabilistic models are also proposed.
The SentiGAN [11] extends GAN to have multiple generators, each focusing on
generating texts with specific sentiment. Unluckily, GAN-based methods learn
probabilistic features in an implicit way, and appear to be unstable. The major-
ity are based on VAEs that explicitly learn probabilistic features, e.g., [6] achieve
controlling the sentiment of generated texts by combining the VAE and discrim-
inative networks that effectively impose sentiment semantics.

While these works are impressive, they are still far from being practically
applicable. First, they only consider single controlled attribute. Second, they
make strong assumptions that all controlled attributes are independent, which
ignores natural co-occurrence dependencies between attributes of texts. It would
ultimately leads to non-committal generated texts that are out of control. Our
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work exactly focuses on this problem, and keeps controllability of multiple
attributes by emphasizing co-occurrence dependencies between them.

3 Dependency-Aware Controllable Text Generation

3.1 Problem Formalization

We first introduce notations and formally define our problem. This work
mainly focus on cases with two controlled attributes. Given some dataset
D = {(xi, la,i, lb,i)}N

i=1, consisting of N i.i.d instances where each contains one
sentence xi and two attribute labels la,i and lb,i, the goal of CTG is to
build a probabilistic model to describe the generative process of texts, such
that one could use it to generate new texts with the same attributes as are
given/controlled.

Fig. 3. Our PGM. Solid lines are generative models parameterized by θ. Dashed lines
are inference models parameterized by φ. Blue circles are observed variables and white
are unobserved ones. (Color figure online)

Our CTG problem can be represented with three variables: controlled
attribute-set variable c carrying control signals, a latent variable z that cap-
tures other latent information than attributes, and observed sentence variable
x. Note that the controlled attribute-set variable could represent more than one
attributes, e.g., in this case there are two attributes (denoted as a and b), c is of
pair value c= (a, b). The whole process can be represented by the probabilistic
graphical model (PGM) in Fig. 3. Specifically, the process is as follows.
1. Manually provide the pair value ci, where it carries two attribute values that

we expect xi to carry.
2. Sample a latent representation zi from prior p(z).
3. Generate a sentence xi through p(x|z = zi, c = ci).

It defines the joint generative model p(z, x, c) = p(z)p(c)p(x|z, c). We would
like to use deep neural networks to model the probability distribution items. We
refer to p(x|z, c) as the decoder network, where it generates texts conditioned
on inputs. We denote p(c) as the dependency-aware attribute network, where
it extracts attribute representations from given sentences that carry controlled
signals. To model the distribution of z, we introduce an stochastic encoder net-
work with adversary representing the approximated posterior distribution q(z|x).
Details will be introduced next. Note that for brevity, we omit subscript i that
indicate number of instances.
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3.2 Overview Architecture

Preliminary: Variational Encoder-Decoder. We propose Dependency-
aware Controllable Text Generation (DCTG) model. DCTG is based on the
variational encoder-decoder (VED) [1,9]. It consists of a stochastic encoder and
a decoder.

Stochastic Encoder. It uses a recurrent network (e.g., GRU). Given an input
sentence x = {w1...wT }, it encodes it into a list of hidden states hi, as follows.

ht = fGRU1(ht−1, e(wt)) (1)

where e(wt) is word embedding of wt, and ht is the tth hidden states. The
last encoder hidden states hT is usually considered the summary of the whole
sentence. It is used to infer the parameters of latent distribution (e.g., mean μ
and variance σ2 of a Gaussian). Thus, latent variable z can be sampled from it.
fμ and fσ are two-layer perceptrons with relu activations.

μ = fμ(hT ), log σ2 = fσ(hT ), z ∼ N(μ, σ2) (2)

Decoder. The decoder uses another GRU. During training, it generates words
by sampling from generative probability p(x̂t|x<t, z) which is as follows.

st = fGRU2(st−1, e(wt), z), x̂t ∼ p(x̂t|x<t, z) = softmax(ft(st)) (3)

where fGRU2 is recurrent unit for decoder, st is decoder hidden states at the t
step, ft is a fully connected layer and softmax is soft-max operation. During
inferring, the new sequence is generated by sampling from p(x̂t| ˆx<t, z), as follows.

st = fGRU2(st−1, z), x̂t ∼ p(x̂t| ˆx<t, z) = softmax(ft(st))

Loss. The network is optimized by minimizing a lower bound on log-likelihood.

Lelbo = Eq(z|x)[log p(x̂|z)] + KL(q(z|x)||p(z)) ≤ log p(x) (4)

Overview Architecture of DCTG. Figure 4 shows its architecture. DCTG is
based on the VED and particularly adopts a stochastic encoder with adversary
and a dependency-aware attribute network. It highlights in several aspects.

1. For controllability, DCTG follows the idea of individually learning attribute
representations and concatenate them all, to form disentangled latent repre-
sentations (In Fig. 4, the convolutional modules learns attribute representa-
tions respectively. z||va||vb is the final disentangled representations).

2. For disentanglement, the encoder adopts the adversarial strategy [3] to
exclude controlled attribute information from z (The facilitated adversarial
module removes attribute-related information from z).

3. To consider co-occurrence dependencies between attributes and make it agree
with real situations, DCTG adds the dependency modules along with convo-
lutional modules to add constraints.
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4. To ensure controlled attribute signals being flexibly represented and adjusted,
we propose to provide sentences carrying related attribute values instead of
discrete one-hot vectors. Controlled attribute signals are extracted from sen-
tences (va and vb).

Fig. 4. DCTG overall architecture. It has an stochastic encoder with adversary, a
decoder and a dependency-aware attribute network. The attribute network particularly
introduces dependency modules to capture the co-occurrence dependencies between two
attributes.

3.3 Stochastic Encoder with Adversary

Comparing with classic stochastic encoder in general VED, this stochastic
encoder with adversary holds different goals. The former aims to encode all
information from inputs, while the latter aims to selectively encode information,
with designated attribute information removed.

While most parts are the same as is illustrated in Subsect. 3.2, this com-
ponent additionally introduce a adversarial module. After obtaining the latent
representation z according to Eq. 1 and Eq. 2, it further feeds z into adversarial
modules (a two-layer perceptron) to predict controlled attribute labels. And it
aims to minimize the predict loss, namely to make it hard to predict attribute
labels. In this way, z is not able to predict attribute labels, and thus is forced to
rarely learned attribute-related information.

3.4 Dependency-Aware Attribute Network

The dependency-aware attribute network aims to extract attribute signals in the
form of real-valued continuous vectors from given sentences that carry controlling
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information. In the case of two controlled attributes, there are two input sen-
tences, each related to one controlled attribute, respectively xai

= {wai,1 ...wai,T
}

for attribute a and xbi
={wbi,1 ...xwi,T

} for b. It then outputs the extracted
attribute representations, which is (vai

, vbi
). Unlike previous work where both

representations are independent, vai
and vbi

from dependency-aware attribute
network match each other.

As Fig. 4 shows, each attribute basically associates with a group of modules,
each group having a convolutional module, a discriminator module and a depen-
dency module. Figure 5 illustrates detailed structure of one group (take the group
for attribute a as an example). The convolutional module extracts attribute rep-
resentation va from given sentence xa. The va is then fed into discriminator to
predicts its real attribute label, constraining va to be more representative with
attribute a. va is also fed into the dependency module to predict the real label
of another attribute, guiding va to be matched with the other attribute values.
The other group for attribute b is in the same way.

Fig. 5. Dependency-aware attribute network. For each attribute, it requires a convolu-
tional, a discriminator and a dependency module. The convolutional module extracts
real-valued attribute representation va from the given sentence xa that carry controlled
attribute signals. The va is then fed into discriminator to predicts its real attribute
label. va is also fed into the dependency module to predict the real label of another
attribute.

Convolutional Modules. They are fed with controlling sentences (xa and xb) and
extract corresponding attribute representations (va and vb). The process is as
follows, where fcnn1 and fcnn2 are convolutional units.

va = fcnn1(xa), vb = fcnn2(xb)

Discriminator Modules. They use attribute representations (va and vb) to dis-
criminate respective attribute as given labels (la and lb). They are as follows,
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where fs1 and fs2 are soft-max operations, ft1 is fully connected layers with relu
activations and ft2 is fully connected layer with soft-max function.

p(a) = fs1(ft1(va)), p(b) = fs2(ft2(vb))

Dependency Modules. Considering that co-occurrence dependencies are implicit
and subtle, and cannot be expressed with descriptive rules, the most intuitive
approach is to modeling them from a probabilistic perspective, i.e., modeling
conditional probabilities between controlled attributes. Take attribute a as an
example, the module is input with representations va and predicts the distribu-
tion over the co-occurred attribute b, where it learns p(b|va). The dependency
module for attribute b is formulated in similar way, p(a|vb).

p(b|va) = fs3(ft3(va)), p(a|vb) = fs4(ft4(vb))

where fs3 and fs4 are fully connections with soft-max operations, ft3 and ft4 are
full layer connections with relu activations. Special cases are that when attributes
are independent, dependency modules will learn nothing from data, thus the
model degenerates into those with independence assumptions [5,6].

Reasonableness. To measure to which degree the controlled attribute-values of
sentence agree with the co-occurrence dependencies behind dataset, we propose
a new metric reasonableness (R for short), where it is R(x) = p(a,b)(x) defined in
a continuous space. It is specifically the joint probability over extracted attribute
values and can be directly learned by our dependency-aware attribute networks
by multiplying both values p(a, b) = p(a)p(b|a), as is indicated by Fig. 5.

3.5 Staged Optimization Procedure

DCTG requires special optimization strategy since it consists of modules that
collaboratively work with different goals. Inspired by the wake-sleep algorithm [7]
which trains multi-layer networks with stochastic neurons in an unsupervised
way, we propose a staged optimization algorithm extended from it.

Encoder. The encoder network has two parameter sets θenc for recurrent encod-
ing module and θadv for adversarial modules. The recurrent encoding module
maximizes Lenc(θenc) in Eq. 5, where it has two terms respectively the Lelbo

same as Eq. 4 and Ladv. λ is a balancing hyper-parameter ranging from 0 to
1, and α is a KL weight variable to prevent KL vanishing [1]. The facilitated
adversarial module minimizes Ladv(θadv).

Lenc = Lelbo + λ ∗ Ladv

Ladv = −(E[log p(la|z)] + E[log p(lb|z)])
Lelbo = Eqφ(z|x)[log pθ(x|c, z)] − αKL[qφ(z|x)||pθ(z)]

(5)
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Dependency-aware Attribute Network. Three parameter sets are θcon for convo-
lutional modules, θdis for discriminator modules and θdep for dependency mod-
ules. The dependency modules maximize Ldep(θdep) as Eq. 6. The discriminators
maximize Ldis(θdis) in Eq. 7. The convolutional module maximizes Lcon(θcon) in
Eq. 8, where β is a balancing hyper-parameter in [0, 1].

Ldepa
(θdepa

) = E[log p(lb|a)],Ldepb
(θdepb

) = E[log p(la|b)] (6)

Ldisa
(θdisa

) = E[log p(la|a)],Ldisb
(θdisb

) = E[log p(lb|b)] (7)

Lcona
(θcona

) = Ldisa
+ β ∗ Ldepa

,Lconb
(θconb

) = Ldisb
+ β ∗ Ldepb

(8)

Decoder. The decoder is optimized by maximizing Lelbo(θdec).
For training, it follows a similar strategy as the wake-sleep algorithm, but is
extended from previous two stages into multiple stages, where each stage opti-
mizes one module using corresponding loss mentioned above. Empirically, mod-
ules require different training time to reach optima, where generative parts
(encoder and decoder) trains slower while attribute networks train faster. How-
ever, we expect all modules to be fully trained approximately at the same time.
Motivated by work [6], we pre-train generative parts until near convergence and
then start collaboratively train all components until they converge.

4 Experiments

4.1 Experimental Setup

Datasets. This work deals with a more complicated scenario (two controlled
attributes), thus datasets in previous works that handle single attribute are
no longer suitable. We collect three datasets using widely-accepted datasets in
text classification. All the datasets consists of real-life texts with more than one
human-annotated attributes. Their statistics are shown in Table 1.

MOV. It is collected from Large Movie Review Dataset1. Each review has a
sentiment label (positive or negative, 2 classes) and movie score label (0–7, 8
classes). The two attributes conform to the fact that positive reviews are more
likely to be related to higher rating scores and vice versa.

YELP. We collect a dataset from YELP website2 by randomly selecting
restaurant reviews with rating scores (0–4, 5 classes) and quality levels
(high/medium/low,3 classes). Empirical co-occurrence dependencies are that
reviews indicating better quality usually associate with higher restaurant rat-
ing scores.

SYN. A synthetic dataset is built by partially combining YELP and IMDB3.
All classes are ensured to be balanced. Thus, each data has a textual review and
1 http://ai.stanford.edu/∼amaas/data/sentiment/.
2 https://www.yelp.com/dataset.
3 https://www.imdb.com/interfaces/.

http://ai.stanford.edu/~amaas/data/sentiment/
https://www.yelp.com/dataset
https://www.imdb.com/interfaces/
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two distinct attributes, the subject of review (movie or restaurant, 2 classes) and
the rating score (5 classes). The dependencies are that, according to results in
psychology, people tend to be more harsh rating movies than rating restaurants.

Table 1. Statistics of experimental datasets.

dataset # train # valid # test # vocab

MOV 25.0K 10.0K 15.0K 42.0K

YELP 8.1K 1.0K 3.5K 24.0K

SYN 36.0K 5.0K 5.0K 36.0K

Baselines. We collect the following state-of-the-arts as baselines for comparison.
They are based on VAE framework and allow controlling multiple attributes, thus
are comparable with our DCTG. (1) Controlled text generation (HuCTG for
short) [6]: It combines VED and discriminative networks. But, it independently
considers controlled attributes. (2) Conditional VAE (CVAE) [10]: It is based on
variational neural models and incorporate attributes as conditions.

Implementation Details. For fair comparison, we implement DCTG and
baselines using Tensorflow 1.4.0 in a Linux server with three GTX 1080Ti GPUs.
We use a valid set to tune parameters and finally measure the performance on
the test set. To avoid randomness, each experiment is performed 6 times and
the average results are reported. For pre-processing, we follow [6] to transform
all letters to lowercase and map all out-of-vocabulary words to a special token
<unk>. Models are optimized using Adam with a learning rate of 0.001. We
employ single-layer unidirectional GRUs for both encoder and decoder, respec-
tively with 128 and 256 units. The embedding dimension is 128. The dimension
of latent variable z and attribute variables are all set 16. The CNN has 128 filters
with filter size to be 3,4,5. For DCTG, it has attribute networks with 128/64
dimensions for two-layer MLPs. The batch size is fixed to be 128. The maximum
lengths are set to be 15/30/24 for MOV/YELP/SYN, which are average lengths
of datasets. All texts are padded or truncated to maximum lengths. To cope with
KL vanishing, the KL annealing technique [1] is used by increasing the weight
of KL term from 0 to 1 from 6000th step. During training, gradients clipping is
used with maximum gradient norm 5. During inferring, beam search decoding
is used with beam size to be 5.

4.2 Metric-Based Evaluation

Automatic Metrics. We first perform automatic evaluation from two aspects,
respectively generative performance and control performance.
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Generative performance means evaluating the quality of generated texts, in other
words, whether generated contents are relevant and grammatical. We adopt
widely-accepted metrics: per-word perplexity (PPL) and word error rate (WER).

1. PPL measures how well generative probabilistic models predict target
texts. Given a predicted text {w1...wN} and a well-trained model p, it is
defined as the exponentiation of word entropy, which is PPL = 2H[p(w)] =
2− 1

N

∑N
n=1 log p(wn|w<n). Smaller PPL means better generative performance.

2. WER is also widely-accepted for generative performance. Given predicted
text and target text, by comparing them word-by-word, there are three types
of errors, including substitutions (S), deletions (D) and insertions (I). The
WER calculates the total ratio of the three types of defined errors, which is
WER = S+D+I

N . Lower values are better.

Control performance evaluates whether the given attribute signals are precisely
reflected in generated texts. We follow [6] to use attribute accuracy (ACC).
It measures agreements between given attribute labels and predicted attribute
values of generations. We additionally train ideal attribute classifiers (which
adopts the same network architecture as the discriminator modules) using the
same data together with labels. Given a predicted text, we obtain its attribute
value using classifiers, then compare it with ground-truth attribute label and
compute accuracies. Larger ACC indicates more effective control.

Table 2. Automatic evaluation results on the three datasets in generative performance
(PPL&WER) and control effect (ACC).

(a) Generative performance results. Lower values are better.

YELP MOV SYN

Model PPL WER PPL WER PPL WER

CVAE 49.9 0.83 58.1 0.86 43.2 0.91

HuCTG 52.7 0.86 59.2 0.87 40.1 0.88

DCTG 45.1 0.72 40.4 0.69 29.3 0.83

(b) Results of control effects. Larger ACC is better. Each dataset has two
attributes. YELP: quality(3) and rating score(5). MOV: sentiment (2) and movie
score(8). SYN: subject (2) and rating score(5).

Model YELP MOV SYN

#Attr. quality(3) rating(5) sentiment(2) movie(8) subject (2) rating(5)

CVAE 0.40 0.25 0.54 0.14 0.64 0.20

HuCTG 0.42 0.28 0.56 0.18 0.69 0.26

DCTG 0.45 0.35 0.62 0.21 0.72 0.31
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Results and Analysis. Table 2 shows results of metric-based evaluation. We
have several observations. DCTG outperforms both baselines in all aspects sig-
nificantly. DCTG outperforms baselines by more than 7 nats and 5% respectively
in PPL and WER, implying better generation quality. DCTG shows better con-
trol effects by at least 3% improvements in ACC, which implies better effects in
controlling attributes. The results are analyzed as follows.

1. Since co-occurrence dependencies are considered, DCTG is capable of
reducing possibilities of incorrectly extracting latent representations that
hold unreasonable controlled attribute values. Therefore, provided with
matched/reasonable attribute representations, the decoder are less likely to
generate non-committal texts, showing better quality and better inheriting
controlled signals.

2. Another possible reason lies in the difference that DCTG adopts facilitated
adversarial network to remove controlled information from unrelated parts
of disentangled representations, to ensure the uniqueness of controlled signal
sources, while baselines do not. Thus texts can be generated as requested and
are more in line with given standards.

4.3 Human Evaluation

Metrics and Settings. In addition to objective metric-based evaluation, we
also carried out subjective human evaluation. In particular, we randomly select
5 cases from each dataset respectively. For each case, we use DCTG as well as
baselines to generate texts. Thus, we obtained 45 generated samples in total
(5 cases × 3 models × 3 datasets = 45). We compare our DCTG with each
baseline, forming 30 tuples (5 case × 3 datasets × 2 comparisons = 30). Each
tuple contains (text1, text2, label1, label2), where text1 and text2 respectively
come from DCTG and one of the baselines, label1 and label2 respectively are
their ground-truth attribute values. We let 30 volunteers who are not related to
this work to annotate these samples by the following rules. (1) Volunteers are
prevent from knowing from which models the texts generate. (2) Each volunteer
is asked to independently score all comparison tuples, among win and loss (win:
text1 is better; loss: text2 is better) (3) Before scoring, each volunteer is trained
with a few cases to make sure they have comprehensively understand the key
factors to be considered, including being grammatical, being appropriate and
being under-control. (4) For all the evaluation results, we adopt the strategy of
majority voting to judge which one is better within each comparison.

Results. Table 3 is human evaluation results. From the results, we can see that,
DCTG outperforms baselines in human evaluation. The performance advan-
tages of DCTG over baselines are stable, however, are not dominant. Comparing
with automatic evaluation results, human evaluation shows smaller advantages.
The reasons are as follows. When performing automatic evaluation, we use the
whole test sets which cover a certain percentage reasonable/unreasonable inputs.
The robustness to different inputs is the main advantage of DCTG, which just
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demonstrates the improved gap between DCTG and baselines. When performing
human evaluation, we just use several randomly-chosen samples, which are less
representative. However, even with random examples, DCTG also shows certain
improvements. This indirectly prove its effectiveness.

Table 3. Results of human evaluation

Comparison Win Loss

DCTG vs CVAE 51.8% 48.2%

DCTG vs HuCTG 53.3% 46.7%

4.4 Investigation on Reasonableness

Evaluating Reasonableness. We evaluate compliance with co-occurrence
dependencies using our proposed reasonableness (R). As is discussed, the depen-
dency module of DCTG learns co-occurrence dependencies from large training
corpus. We respectively input generated texts from models into DCTG and out-
put R values, to measure them under the same measurement. The reasonable-
ness of generated texts could reflect the reasonableness of latent representations.
Table 4 shows the results. We can see generated texts from DCTG have signifi-
cantly larger R values than those from baselines, proving the effectiveness of the
introduction of co-occurrence dependencies.

Table 4. Reasonableness results. The larger, the better.

Model YELP MOV SYN

CVAE 0.023 0.011 0.012

HuCTG 0.004 0.013 0.019

DCTG 0.062 0.026 0.036

Visualizing Controlled Attribute-Pair Representations. To show effec-
tiveness of adjustments by co-occurrence dependencies, we visualize the con-
trolled attribute-pair representations respectively from DCTG and DCTG(w/o),
whose dependency modules and dependency loss are removed. The controlled
attribute-pair representation is defined as va||vb, the concatenation of each
attribute representation. We feed the same conflicted data into both well-trained
models to obtain their respective va||vb, and generate new sentences. The va||vb

are reduced into 2-dimensional vectors using T-SNE and are visualized. And
they are labeled by whether attribute values are reasonable/match or not, where
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labels are determined by classifying generated new sentences with ideal classi-
fiers (mentioned in Sect. 4.2). Here MOV dataset is taken for illustration. MOV
has two attributes: sentiment (2 classes) and rating score (8 classes), where nat-
ural dependencies are that positive reviews should correspond to higher rating
scores while negative reviews associate with lower ones. Attribute-pair represen-
tations from MOV are recognized as reasonable if two attribute values match
(e.g. positive-4/5/6/7 or negative-0/1/2/3) and vice versa. Figure 6 shows the
results.

From Fig. 6, we can see: comparing DCTG and DCTG (w/o), the ratio of
dark blue points, representing matched/reasonable generated texts that con-
form to underlying dependencies, are obviously increased. This proves adjust-
ment effects brought by dependency modules and dependency losses. By consid-
ering co-occurrence dependencies, unmatched/unreasonable attribute pairs are
reduced.

(a) Results of DCTG (w/o) (b) Results of DCTG

Fig. 6. Visualization of attribute-pair representations using t-sne for DCTG(w/o) and
DCTG on MOV. Dark/light blue points are matched/mismatched cases. (Color figure
online)

4.5 Further Analysis with Case Study

Text-to-Text Synthesis. Text-to-text synthesis is one of the applicable scenar-
ios for CTG. Its goal is to synthesize new texts conditioned on the given inputs.
Take SYN dataset as an example, we input different sentences into encoder (e.g.,
x1) and attribute network (e.g., x2 and x3). DCTG can synthesize new sentences
that display the same review subject as x2 and rating score as x3 while keep other
information similar to x1. Table 5 displays several samples.

We have the following observations. (1) DCTG can synthesize well-
formulated sentences with attributes respectively controlled by different source
inputs. (2) R values truly reflect the compliance with real dependencies
within dataset. Factual experiences are that people tend to be harsher when
rating movies than restaurants and statistics of the dataset also verify it.
Therefore, when subject= “rest” and score= 5, R has a higher value, since
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p(subject= “rest”, score= 5 ) is empirical of high probability, as the third exam-
ple shows. When subject= “mov” and score= 5, R value is relatively lower, since
p(subject= “mov”, score= 5 ) is empirical of lower probability, as the second
example shows.

Table 5. Text-to-text synthesis examples.

Input x1: it is closed already

Input x2: the food is terrible (“subject = restaurant”)

Input x3: the film is good (“rating score” = 4)

Output: this place is good one for eating (R= 0.024)

Input x1: how do you like it

Input x2: the film is awful (“subject = movie”)

Input x3: i love this place (“rating score” = 5)

Output: the film is fantastic i recommend (R= 0.015)

Input x1: i will go there

Input x2: it has the worst customer service (“subject = restaurant”)

Input x3: i like the film and the acting is great (“rating score”= 5)

Output: i love this place it is good (R= 0.026)

Trivial Generation Problem. To investigate the trivial generation issue, with
MOV, we intentionally input two sentences (x2 and x3) with conflicted attribute
values (e.g., negative-4/5/6/7 or positive-0/1/2/3) into the dependency-aware
attribute network and another sentence (x1) with neutral sentiment into encoder,
and decode the generated sentences. Cases are generated respectively from
DCTG and HuCTG, and we manually count the proportion of trivial gener-
ations in each model. Statistical results are that trivial generations account for
79% in HuCTG while 53% in DCTG. Table 6 shows some examples.

First, we can conclude the ratio of trivial generations for DCTG is signifi-
cantly reduced. DCTG generates more specific texts when assigning unreason-
able attribute values, while larger proportion of cases from HuCTG are non-
committal. This indicates that, considering co-occurrence dependencies makes
model more robust towards rare/uncommon cases that are not in line with
mainstream dependencies. Second, when the two attribute values are highly
conflicted, generated texts from DCTG are generally controlled by one of the
attributes. We speculate that, after being slightly adjusted, influence of both
attributes are different and there would be a dominant one leading the genera-
tion, e.g., “sentiment” leads in the first and “rating score” leads in the second.
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Table 6. Cases with unmatched values to investigate trivial generation problem.

Input x1: i will go to see the movie

Input x2: the acting is terrible (“sentiment = negative”)

Input x3: the film is good (“movie rating”= 4)

HuCTG Out: ok, that is alright

DCTG Out: i really do not like the story

Input x1: it is a book

Input x2: i like the movie very much(“sentiment = positive”)

Input x3: the film is so terrible (“movie rating” = 0)

HuCTG Out: i have no idea

DCTG Out: it is terrible and i do not like it

5 Conclusion and Discussion

This is the first work to emphasize the problem of ignoring co-occurrence depen-
dencies between controlled attributes in CTG. We propose DCTG that addresses
it by collaboratively processing two controlled attributes under the guidance
of co-occurrence dependencies. Thus, when extracting attribute representations
from input controlled signals, signals can be accurately identified with less pos-
sibilities of being mistaken; meanwhile, the model is capable of automatically
performing slight adjustment when unreasonable signals are given. Experiments
prove that, comparing with state-of-the-arts, DCTG can generate texts that are
grammatical and content-relevant, better inherit controlled signals and better
comply with real co-occurrence dependencies.
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Abstract. Customer retention is a crucial problem for game companies
since the revenue is heavily influenced by the size of their user bases.
Previous studies have reached a consensus that the cost of attracting a
new player can be six times than retaining the players, which indicates an
accurate churn prediction model is essential and critical for the strategy
making of customer retention. Existing works more focus on studying
login information (e.g. login activity traits of users) ignoring the rich
in-game behaviors (e.g. upgrading, trading supplies) which could implic-
itly reflect user’s preference from their inter-dependencies. In this paper,
we propose a novel end-to-end neural network, named ChurnPred, for
churn prediction problem. In particular, we not only consider the login
behaviors but also in-game behaviors to model user behavior patterns
more comprehensively. For time series of login activities, we leverage a
LSTM-based structure to learn intrinsic temporal dependencies so as
to capture the evolution of activity sequences. For in-game behaviors,
we develop a time-aware filtering component to better distinguish the
behavior patterns occurring in a specific period and a multi-view mecha-
nism to automatically extract the multiple combinations of these behav-
iors from various perspectives. Comprehensive experiments conducted
on real-world data demonstrate the effectiveness of the proposed model
compared with state-of-the-art methods.

Keywords: Churn prediction · Online games · Neural network ·
In-game behaviors · Login activities

1 Introduction

The huge revenue generated by online games including massively multiplayer
online role-playing games (MMORPGs) has attracted many game companies,
which results in increasingly intense competition in the game market. Customer
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retention is becoming a major concern, since: 1) the cost of attracting a new
player can be six times than retaining the players [23]; 2) long-term players
usually generate higher profits than the new ones. As an important part of the
user retention, it is crucial to know early on whether players will choose to stay
or leave the game in the early stage, which is also called as churn prediction
problem.

An accurate churn prediction model is essential and critical for the strategy
making of the customer retention. Once the churners are identified by the pre-
diction model, game managers can take some measures to prevent those from
leaving the game such as providing some reward tasks to stimulate the user’s
interest or pushing notifications with fresh play strategies that the user interests.
Moreover, the prediction results of the churn prediction model can provide the
game platform with a reference to understand the overall preferences of the game
players and accordingly make appropriate strategies. An increasing number of
churners may become a strong signal for game operators to adjust game strategy
in advance.

Previous research for the churn prediction problem in online games (e.g.
MMORPGs) focuse on mining salient features to indicate whether a user is
about to leave the game. They prefer to exploit handcraft features after a com-
prehensive analysis on multiple characteristics and complete the churn predic-
tion task by using traditional machine-learning-based methods [3,4,7,8,10]. The
limitations of previous investigations are mainly two-fold: 1) Heavily depending
on domain-specific knowledge and artificial features, which is not widespread
to different application scenarios. For example, some features are not universal
or difficult to collect for online games such as “click count” and “rests used”
in [10], “sum of inter-session length per week” in [3], “social activity” and “item
upgrade” in [8], “rate of group interactions” in [2]. 2) Mainly utilizing features
derived from the statistics of login information, while ignoring users’ behavior
information in the game. These information is important for the churn predic-
tion since it could further indicate the users’ preference for the game. Players
put many efforts into perfecting their roles, such as constantly performing tasks
to upgrade or trading supplies to enhance their equipment, which demonstrates
a kind of preference for their characters of the game. Tao et al. have proven the
importance of users’ in-game behavioral information in bot detection [16].

There exist several challenges of churn prediction in online games. As men-
tioned above, users’ behaviors in online games are mainly classified in two
aspects: login information (e.g. session statistic, login frequency) and in-game
behavioral information (e.g. a series of in-game behaviors such as upgrading,
trading supplies). First, these data are in different types since the former is
often expressed as real-value vectors, while each element of the latter data is a
discrete value representing a specific action. It is challenging to model these data
together to capture user-game interactions and inherent behavior patterns. Sec-
ond, since each player has her/his own lifetime, short- and long-term modeling is
required for capturing the evolution of users’ preferences and temporal patterns
better. Third, users’ behaviors are closely related to their daily life (details will
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be given in Sect. 3). For example, the length of users’ engagement with the games
on weekdays is different from that on weekends, or some events such as trading
specific items or fighting battles can only take place on some special days (e.g.,
festivals). Therefore, it is essential to additionally consider the influence of these
information when modeling.

To alleviate the above mentioned challenges, in this paper, we propose a novel
end-to-end neural network approach, named ChurnPred, for churn prediction in
online games. We consider login information and in-game information together
to model user behaviors more comprehensively, from which potential behavior
patterns are automatically learned without manually extracting features. Con-
sidering the impact of lifetime of users on login behaviors, we leverage LSTM
models to learn the short- and long-term users’ preferences. As we find in Sect. 3
that some behaviors are closely related to the day of occurrence, we propose a
time-aware filtering component to better distinguish these characteristic behav-
iors based on the period of events. Besides, we propose a multi-view mechanism
to automatically extract the multiple combinations of in-game behaviors from
various perspectives which would lead to the departure of users.

To summarize, main contributions of this paper are listed as follows:

– We develop a novel end-to-end neural network approach, named ChurnPred,
via considering login behaviors and in-game behaviors for churn prediction
in online games. Additionally, we propose time-aware filtering mechanism to
better distinguish the behavior patterns occurring in that period and a multi-
view mechanism to extract the multiple combinations of in-game behaviors
from various perspectives which would imply the departure of users.

– We conduct comprehensive experiments on a real-world dataset of three dif-
ferent periods to verify the effectiveness of the proposed model. Experimen-
tal results shows the superiority of our model for churn prediction in online
games.

2 Related Work

Customer churn behaviors have been consistently analyzed across a wide range
of industries, since most companies are convinced the number and stickiness
of users play an importance role on their competitiveness and vitality in the
market. Most of these works [10,14,23] focus more on extracting outstanding
features and exploring the classification performance among the traditional clas-
sifiers such as logistic regression [11], random forests [21]. They model churn
prediction as a binary classification problem and tend to summarize the differ-
ence of the samples by using statistical techniques for better identification. These
studies depend much on domain-specific knowledge and artificial features, which
is not universal to different application scenarios. Recently, some studies have
suggested more advanced models on the churn prediction. Some works [13,18]
propose survival analysis model by modeling the playtime of players. Since deep
learning has achieve great success in various domain such as detection [19] and
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recommender [5,20], some researches [1,9,17] focus on leveraging the deep neu-
ral network for churn prediction problems, which motivates us to employ deep
neural network models.

Only a few papers are directly related to the online games including MMO-
PRGs. Borbora et al. design a lifecycle-based approach for modeling churn
behavior and propose three dimensions to construct derived features for a
distance-based schema wClusterDist for better classification [3]. However, the
lifecycle-based approach ignores the time of users’ registration and time con-
sumption on the game. Those loyal customers who have been playing for a long
time tend to be less active in observation and thus may be easily mistaken as
churners. Runge et al. focus on predicting churn for high-value players of casual
social games since they find that the top 7% of paying players contribute around
50% of the total revenue and acquire a series of features for classification [14].
Castro et al. propose a frequency analysis approach for feature representation
from login records. The approach converts the login records into a fixed-length
arrays as the inputs and use probabilistic classifiers with the k-nearest neighbors
algorithm for classification [4]. The above investigations mainly focus on login
information (i.e. login frequency), but do not consider users’ in-game behavioral
information of online games (e.g.MMORPGs). In-game behaviors are crucial
for user behavioral modeling, since it contains rich information about the user
including the players’ specific events in the game and the chronological order
of these events. These data will contribute a lot to fully reflect or accurately
capture the tendency of players to leave the game.

3 Dataset Description

In this section, we give some detailed information of the real-world dataset from
a MMOPRG released by the NetEase Games1. This dataset is collected from a
server including user logs from 22 June, 2018 to 20 September, 2018 and over
880,000 users with hundreds of millions of behavioral sequences. In this dataset,
485 regular events are defined based on the game content and user logs has been
automatically established for each player to record the events as well as the times
when the player trigger them.

In this dataset, we define two classes of users: churners and non-churners.
Usually, churners represent the users who leave the game permanently. To be
less ambiguous, we define churners as those who are consistently inactive for
over 7 days [12,23]. Let leave day denote the day that user leave the game. To
compare two types of users at the same stage, we mainly focus on the users who
have left the game during a specific period and those who haven’t. We define the
period as a churn window which is denoted as [observed day1, observed day2].
The users whose leave day fall in this window will be considered as “churners”,

1 NetEase Games is the one of China’s largest MMORPG developer companies, which
has published dozens of popular games including Ghost II, Tianxia 3 and Fantasy
Westward Journey Online.
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and those whose leave day are after the observed day2 are defined as “non-
churners”. In the following section, we adopt this setting for both “churners”
and “non-churners”.

In order to find out how long the user has been playing the game before they
leave, we examine the distribution of the lifetime of all users in this dataset shown
in Fig. 1. We observe that the number of churners fluctuates periodically. This
indicates that users will leave the game with relatively high probability after
they have played for a certain number of days (15/16/32/33). The predictive
model needs to capture this characteristic by considering users’ lifetime when
predicting the probability of the user departure.

Fig. 1. The distribution of the lifetime of users in a real-world dataset.

Fig. 2. The login rate of churners and
non-churners

Fig. 3. The average number of daily
events of churners and non-churners

To better understand what motivates users continue to play the game, we
examine the difference of login information and in-game behavioral information
between churners and non-churners. We observe several striking features.

Figure 2 shows the percentage of login days to the whole lifetime between
churners and non-churners. We can see that the non-churners are concentrated
in the range of 0.2 to 0.5 while churners have high distribution at both ends.
Some churners have a low login rate due to various reasons such as lack of interest
in the game. But interestingly, the figure also reveals that users with high login
rates have a higher probability of leaving. This phenomenon that users log into
the game frequently before they leave is helpful for game operators to take some
churn preventive measures, such as pushing notification. In Fig. 3, the average
daily events of churners is relatively small and the distribution of non-churners
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performs stable. Intuitively, the number of events reflects the duration of playing.
Churners always have a fewer events per days because they have fewer times to
stay engaging with the game due to low motivation while non-churners are more
willing to spend their time to play the game and thus have more events.

Fig. 4. The occurrence frequency of each event of churners and non-churners

Fig. 5. The behavioral sequences of churners and non-churners. Each color block rep-
resents the user’s behavior in the game. (Color figure online)

We then investigate the in-game behaviors of users. The frequency of each
events for churners and non-churners is plotted in the Fig. 4. We can see that
there are some differences on the event frequency between these two types of
users. Some events occur more often in certain types of users or with a relatively
high frequency. For example, e150 has a higher frequency for non-churners and
e310 occurs commonly in non-churners but rarely in churners. For the sequence
of events, we randomly sample 5 churners and 5 non-churners in churn windows,
and extract the sequences of their last 200 events prior to the leave day and the
oberseved day1, respectively. The result is shown in Fig. 5. During this period,
the behaviors of non-churners are usually diverse and each is of short duration
while the behavior of churners is monotonous and each last for a long time. It
can be clearly seen that there are significant differences in the behaviors between



Keep You from Leaving: Churn Prediction in Online Games 269

churners and non-churners, which further indicates that short-term behaviors
reflect whether the user stays in the game or not. Some studies focus on long-
term behavior modeling, which not only faces lengthy behavior information, but
also increases the complexity of the model and training time.

4 Model Architecture

In this section, we present the details of the proposed model. The architecture is
illustrated in Fig. 6. The model can be divided into three main components: 1)
an in-game behavior encoder that models the in-game behavioral information of
each user as a context embedding vector. 2) a login behavior encoder that models
the login information of each user in online game as a context embedding vector.
3) the fusion and prediction layer that aggregates above two kinds of embedding
vectors and outputs the final possibility of whether the user leaves the game.
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Fig. 6. The architecture of ChurnPred.

4.1 In-Game Behavior Encoder

Inputs. In terms of in-game information, we collect the daily events e
(d)
ut ∈

E for user u and arrange them in chronological order which denoted as in-
game behavioral sequences S

(d)
u = {e

(d)
u1 , ..., e

(d)
ut , ..., e

(d)
uB} where E is the set of

events, d represents the day of events, B denotes the length of S
(d)
u . As we

discussed above, users’ total historical behaviors are lengthy and massive which
may greatly increase the complexity of the model and training time. In this
paper, we use the data of T1 days before the day observed day1 as our input
which is denoted as Su = {S

(1)
u , S

(2)
u , .., S

(T1)
u }.
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Embedding Layer. Given S
(d)
u = {e

(d)
u1 , ..., e

(d)
ut , ..., e

(d)
uB}, events are embedded

into content vectors in a latent space through an embedding layer. In the dis-
cretization process, each event identity e

(d)
ut ∈ E are encoded into an one-hot

vector o
(d)
ut with |E|-dimension. As the inputs are high-dimensional binary vec-

tors, we use the embedding layer to transform them into dense representations.
The event embedding vector x

(d)
ut can be obtained as follows:

x
(d)
ut = WT

e o
(d)
ut , t ∈ {1, 2, ..., B} (1)

where We ∈ R
|E|×L denotes the latent factor matrix (embedding matrix) and L

is the predefined value used to set the dimension of latent vectors.

Time-Aware Filtering Mechanism. In the analysis above, we find that user’s
behavior is closely related to the day it occurs. Hence, we propose a time-aware
gating mechanism to capture these characteristic behaviors based on the time
period. Dauphin et al. in [6] propose the gated linear unit (GLU) where they
use this gating mechanism for language modeling to allow the model selects
related words or features for the next word. Inspired by their work, we make
some changes based on this structure where we additionally consider the effect
of period on the inputs. We introduce a time matrix W (d) for each day in order
to select what features will be propagated to the downstream layers. The formula
is shown as follows:

D(d)
u = X(d)

u � σ(X(d)
u ∗ W (d) + b(d)), d ∈ {1, 2, ..., T1} (2)

where X
(d)
u = {x

(1)
ut , x

(2)
ut , .., x

(B)
ut } ∈ R

B×L, σ is a sigmoid function, � is
Hadamard (element-wise) product and W (d), b(d) are parameters to be learned.

Multi-view Mechanism. With the success of convolution filters of Convolu-
tional Neural Networks (CNN) in capturing local features for image recognition,
we adopt CNN units for multi-view generation where we regard V

(d)
u as an

“image” of behavioral information and the sequential patterns as local features
of this “image”. Convolutional filters represented as kh × kw matrices, which
they slide over the “images” and then summary the multiple combinations of
behaviors in various views. We use B filters to encode the in-game behaviors of
each day respectively. Each filters F (d) ∈ R

kh×kw slide over D
(d)
u as follows:

vlk(d)
u = D

(d)
u,{l:l+kh−1,k:k+kw−1} ⊕ F (d) (3)

V (d)
u = {vlk(d)

u |1 ≤ l ≤ B − kh + 1, 1 ≤ k ≤ L − kw + 1} (4)

where ⊕ is the sum of element-wise product, Du,{l:l+kh−1,k:k+kw−1} denotes the
convolutional area of D

(d)
u with rows from l to (l + th− 1) and the columns from

k to (k + tw − 1).
Note that the obtained views from the above formulas do not contribute

equally to the final results. We introduce an attention mechanism [24] to address
this problem. Traditional attention mechanism is used to learn the attentive
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weights for multiple vectors. In this paper, we modify the formulas in order to
learn the weights from multiple matrices (i.e. views). The representation of final
view Vu is formed by a weighted sum of these generated views which is calculated
as follows:

H
(d)
u = tanh(V (d)

u ) (5)

α
(d)
u = exp(H(d)

u ⊕Wa)
∑T1

i=1 exp(H
(i)
u ⊕Wa)

(6)

Vu =
T1∑

i=1

α(d)V
(d)
u , (7)

where V
(d)
u ,H

(d)
u ,Wa, Vu ∈ R

(B−kh+1)×(L−kw+1), α
(d)
u is the attentive weight of

the view V
(d)
u and Wa, ba are training parameters. To make the final view into a

latent vector, We use max-pooling to summarize the characteristics of the final
view. The formula is as follows:

cinu = max − pooling(Vu) (8)

where c1u ∈ R
B−kh+1 is the context representation for in-game behavioral infor-

mation.

4.2 Login Behavior Encoder

Inputs. login behaviors in online games can be expressed as login frequency, play
time etc. In this paper, we use daily play time for each user to describe the login
information. We define a time window with the size of T1 days and consider T2

consecutive time windows before the observed day1. The input can be expressed
as a sequence Mu = {m1,m2, ..,mT2} where mt is a |T1|-dimensional vector
representing the duration of each day in the t-th windows.

Recurrent Neural Network (RNN) Layer. We apply a multi-layer LSTM
(Long Short-Term Memory) for long- and short-term modeling since it takes var-
ious periods of daily data as time series and has strong ability in learning intrinsic
temporal dependencies so as to capture the variation of activity sequences. Each
layer of LSTM computes as follows:

it = σ(Wi ∗ ht−1 + Wi ∗ mt + bi) (9)
ft = σ(Wf ∗ ht−1 + Wi ∗ mt + bf ) (10)
c̃t = tanh(Wc ∗ ht−1Wi ∗ mt + bc) (11)
ct = ft � ct−1 + it � c̃t (12)
gt = σ(Wg ∗ ht−1 + Wg ∗ mt + bg) (13)
ht = gt � tanh(ct) (14)

where it, ft, gt and ct are an input gate, a forget gate, an output gate and memory
state at time t, respectively. ht represents the hidden state vector and we set
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h0 = 0 by default. Wi,Wf ,Wc,Wg, bi, bf , bc, bg are training parameters. The
output of the last LSTM will be considered as the context representation of
login information c2u = hT2 .

4.3 Fusion and Prediction Layer

After obtaining two kinds of context embedding vectors, i.e. cinu and coutu , we
concatenate these vectors into a unified vector cu which will be considered as
high-level representation of behavioral features. We feed it into a fully connected
feed forward neural network and output the final probability for churn prediction.
The unified embedding via fusion can be denoted as:

cu = [c1u, c2u] (15)
yu = σ(Wp ∗ cu + bp)) (16)

where [.] is a concatenate operation, Wp, bp are parameters in this layer (Fig. 7).

4.4 Loss Function and Optimization

At last, we adopt cross-entropy as our loss function for model optimization. To
prevent over-fitting, we adopt l2 regularization on the parameters in our loss
function. The objective function is defined as follows:

L = −
∑

[yi log ŷi + (1 − yi) log(1 − ŷi)] + λ‖Θ‖2 (17)

where ŷi is the probability of becoming churners for user ui and yi is the cor-
responding truth score. If user u is a churner, then we have yi = 1; otherwise,
yi = 0. Θ represents all of model parameters that will be learned in the training
phase and λ is the regularization weight. We use Adam optimizer to learn the
model.

5 Experiment

In this section, we aim to answer the following research questions:

– RQ1: How does ChurnPred perform as compared with widely used methods
and the state-of-the-art ones in churn prediction?

– RQ2: What are the effects of the in-game behavior encoder and login behavior
encoder in our proposed method?

– RQ3: How do different hyper-parameter settings (e.g. dimension of embed-
ding vectors) affect the performance of ChurnPred?
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user log
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testing phase

user log

Observation period Prediction period

churn windownchurn windown

churn windownchurn windown

Fig. 7. Label generation process. We use different churn windows in the training and
testing phase where the churn window of the testing set is behind the training set.

5.1 Dataset and Experimental Setup

We conduct the experiments on a real-world dataset described in Sect. 3. In par-
ticular, we extract the daily events of the users in the game and arrange them
in chronological order serve as the features of in-game behavioral information
(i.e. behavior sequences). The length of each daily behavior sequence will be
considered as the features of login information (i.e. the daily play time) prepro-
cessed by normalization. When constructing the training and testing samples,
inspired by the paper [9], we adopt a similar splitting process to eliminate the
problem of data leakage. Besides, a down-sampling approach is applied to avoid
a skewed distribution [3,10], i.e. the ratio of churners to non-churners is 1:2. In
order to better evaluate the performance of our model, we divide the dataset into
three subsets where the churn windows in the testing phase are three consecutive
weeks. The description of these datasets are illustrated in Table 1.

Table 1. Detailed statistics of the three periodic dataset. We use three subset of the
raw dataset with different churn windows for testing.

Dataset Phase Churn window Churners Non-churners Total users

MMORPG 1 Train 2018-07-20–2018-07-26 40907 81814 122721

Test 2018-07-27–2018-08-02 103395 206790 310185

MMORPG 2 Train 2018-07-27–2018-08-02 103395 206790 310185

Test 2018-08-03–2018-08-09 28157 56314 84471

MMORPG 3 Train 2018-08-03–2018-08-09 28157 56314 84471

Test 2018-08-10–2018-08-16 50550 101100 151650

5.2 Evaluation Metrics and Baselines

Three widely used evaluation metrics, i.e. Precision, F1-Score and Accuracy,
are adopted as metrics and performance is recorded when achieves the best F1-
Score. Each experiment is run 5 times to take the best F1-Score as the final
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performance. To verify the effectiveness of the proposed ChurnPred model, we
compare it with the following baselines:

– Logistic Regression (LR) [10,14]: This is a popular linear classification
algorithm with login information. It analyzes the relationship between one or
more existing independent variables.

– Random Forest (RF) [10]: This is a traditional classifier based on ensem-
ble learning containing a multitude of decision trees and make the decisions
together for classification. The inputs are as same as LR.

– Multi-layer Perceptron (MLP) [14]: Multi-layer perceptron is an artificial
neural network which maps a set of input vectors into a low-dimensional
space. We implement MLP with 2 fully-connected layers with the inputs of
login information.

– wClusterDist [3]: wClusterDist is a distance-based classification schema
conducted on login information as well as the derived features in three seman-
tic dimensions of engagement, enthusiasm and persistence.

– LSTM+Attention (ATT-LSTM) [15]: This is an attention-based LSTM
model for classifying early churn users whose input is the user behavior event
sequence binned at constant intervals. The inputs are sequences of user in-
game behaviors after registration.

– PLSTM+ [22]: This is a two-step framework involving interpretable clus-
tering and churn prediction. The prediction model is based on LSTM by
leveraging the correlations among users’ multidimensional activities and the
underlying user type is derived from the interpretable clustering. Similar to
its original inputs, we take the daily occurrences of the 10 most frequent
in-game behaviors as inputs for prediction.

5.3 Parameter Settings

Neural network-based models are all implemented in Pytorch2 including Churn-
Pred, ATT-LSTM, PLSTM+ and MLP. These models are optimized with the
Adam optimizer, and the batch size is set as 512 by default. In terms of hyper-
parameters, we apply a grid search for hyperparameters on neural networks: the
learning rate is tuned among {0.0001, 0.001, 0.01}, the size of hidden layer and
the embedding matrix is in {8, 16, 32, 64} and the threshold is in {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. For ChurnPred, the convolution is done by convolu-
tion kernels with the width of 3 and the height equals to the size of embedding
matrix. For PLSTM+, we set the λ in the loss function as 1 and use 2 hidden
layers in each LSTM. For wClusterDist, we set the number of clusters as 5. For
ATT-LSTM, we use 2-layer LSTMs and set the dropout as 0.5.

5.4 Performance Comparison (RQ1)

Table 2 shows the performance comparison of the proposed model and the state-
of-the-art ones. Key observations from the experimental results are listed as
follows:
2 https://pytorch.org/.

https://pytorch.org/
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Table 2. The overall performance on MMOPRG 1, MMORPG 2 and MMOPRG 3.

Method MMORPG 1 MMORPG 2 MMORPG 3

Precision F1-Score Accuracy Precision F1-Score Accuracy Precision F1-Score Accuracy

wClusterDist 0.3395 0.5068 0.3515 0.3458 0.5139 0.3696 0.3424 0.5101 0.3599

ATT-LSTM 0.3334 0.4999 0.3340 0.3333 0.4997 0.3338 0.3334 0.5000 0.3339

PLSTM+ 0.3959 0.3503 0.6116 0.4275 0.4651 0.6090 0.3225 0.1450 0.6324

RF 0.6024 0.2456 0.6841 0.4306 0.5098 0.5995 0.4270 0.3515 0.6326

LR 0.5027 0.5589 0.6690 0.4072 0.5426 0.5432 0.4109 0.3803 0.6155

MLP 0.5923 0.6140 0.7329 0.3826 0.5142 0.5062 0.4032 0.5363 0.5386

ChurnPred 0.6043 0.7022 0.7631 0.4577 0.5459 0.6250 0.4807 0.5720 0.6478

– Among the conventional methods LR, RF and MLP, RF has the best average
Precision while MLP has the best average F1-score on three datasets, which
shows that RF is relatively correct on predicted churners but fails to find out
more true samples since RF mistakes the churners as non-churners in most
cases. MLP have a higher F1-score among these methods. The possible reason
is that the model predicts non-churners as churners as much as possible, which
recalls more and more true samples and thus increases the F1-score with the
decline in precision.

– In the comparison models, both of PLSTM+ and ATT-LSTM use the in-game
behavioral information of users as inputs but show different performance.
PLSTM+ performs poorly, showing that the frequency of users’ behavioral
events is unable to fully describe the recent behavioral information of users.
Instead, ATT-LSTM uses behavioral sequences as inputs and achieves bet-
ter performance which implies the potential behavior patterns in the user’s
behavior sequences have ability of indicating whether users leave the game.

– RF, LR, MLP and wClusterDist all use login information as inputs. In these
models, MLP performs the best on average F1-score metrics followed by
wClusterDist. The result shows that MLP can capture these dynamic changes
in login sequences while RF and LR lack the ability to encode this information.
wClusterDist benefits from the derived features in three semantic dimensions
of engagement, enthusiasm and persistence which describes changes in the
users’ login status, resulting in better performance.

– ChurnPred generally outperforms all baselines. This is largely due to consid-
erations on login information and in-game behavioral information in online
games. For in-game behaviors, it leverages the multi-view mechanism to learn
the potential behavioral patterns. For login information, it is sensitive to the
changes on daily play time which indicates the model capture the dynamic
characteristics in login information. By integrating the two kinds of informa-
tion, the model has been greatly improved.

5.5 Component Analysis (RQ2)

In order to evaluate the performance between login behavior encoder and in-game
behavior encoder in our proposed method, we design three different models:
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ChurnPred-α retains login behavior encoder, ChurnPred-β uses only in-game
behavior encoder and ChurnPred adopts the above two kinds of components.
These three models are conducted on MMORPG 1 dataset and keep the same
model parameters when training. The results are shown in Fig. 8. We can see
that ChurnPred achieves the best performance, ChurnPred-β is the second and
ChurnPred-α is the third. It shows that in-game behavioral sequences implies
the potential behavior pattern, which contains more information about the user’s
intention of leaving when compared with login information in online games.
Further, the results demonstrate the effectiveness of our proposed ChurnPred
in encoding the intrinsic sequential patterns and login patterns, both of which
contributes a lot in the decision-making process.

5.6 Parameter Sensitivity (RQ3)

To investigate the robustness of the ChurnPred model, we study how the dif-
ferent choices of parameters affect the performance. Except for the parameter
being tested, we set other parameters to default values. The experiments are
conducted on MMORPG 1 dataset.

Fig. 8. Effect of in-game behavior and login information encoders.

Fig. 9. Effect of the hyper-parameters.

Effect of Embedding Size. Figure 9(a) shows the performance in different
dimension size of embedding matrix. We can observe that model performance
generally declines with the increase of dimensions, which shows that the pro-
posed model is sensitive to the dimension of the embedding matrix. choosing
a reasonable dimension length gives the model superior performance and vice
versa.
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Effect of Hidden State Dimension. We keep the same hyper-parameters and
vary the dimension of hidden state hidden dim in LSTM component in the range
of {8, 16, 32, 64, 128} to investigate whether ChurnPred can benefit from the
dimension size. The experimental results are illustrated in Fig. 9(b). As we can
see, the model have the best performance when hidden dim = 2 and perform
poorly in most cases, which means that the dimension size of the hidden state
needs to be selected appropriately and otherwise it will get worse.

Effect of Layer Numbers. Figure 9(c) shows the performance in various num-
ber of hidden layers n layer in LSTM component. The best performance is
obtained when n layer = 2. After that, as the number of layers increases, the
performance begin to descend slowly and become stable. This suggests that two
layers are enough for the model to achieve significant performance and more
layers will not contribute to better performance.

6 Conclusion and Future Work

In this paper, we investigate the problem of churn prediction in online games.
We first explore and analyze user behaviors of a real-world MMORPG including
engagement, days of lifetimes, in-game behaviors etc. According to the analysis
insights, we develop a churn prediction model named ChurnPred by leveraging
in-game behaviors and login behaviors of online games. We propose a time-
aware filtering mechanism and a multi-view mechanism for behavior modeling.
Comprehensive experiments conducted on a real-world dataset demonstrate the
effectiveness of the proposed model by comparing with state-of-the-art methods.
As future work, we will consider the social influence on the in-game behaviors.
We argue that richer information could help the model make better decisions
on the churn prediction. Further, the scalability problem of the proposed model
will be considered in the future.
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Abstract. Semantic trajectories have become unprecedentedly avail-
able because of the rapidly growing popularities of location-sharing ser-
vices. People’s lifestyles and Point-of-Interest demands are hidden in such
data. Extracting people’s POI needs for different regions from semantic
trajectories plays an important role in site selection, which can be widely
used in city planning, facility location and other applications. However,
most of existing works either use traditional trajectories which need to
infer semantic with external information and lead to inaccuracy, or just
focus on specific category. Semantic trajectory mining provides us a new
way to address the challenges. Based on above motivation, we study
the regional POI demand discovery problem using semantic trajectories.
In this paper, we carefully analyze the features of semantic trajectory
data and people’ mobility patterns. Then, we propose an effective POI
demand modeling method. Furthermore, we propose two efficient algo-
rithms to identify the regional POI demands. The proposed algorithms
extract regional patterns and compute the regional POIs demand accord-
ing to POI demand model. Finally, the ranked POIs demands for regions
are obtained. We evaluate the proposed modeling method and algorithms
in terms of efficiency and effectiveness on two real data sets. The results
show that our proposed methods outperform the competitor for both
efficiency and effectiveness.

Keywords: POI discovery · Semantic trajectory · Mobility pattern
mining

1 Introduction

With the rapid urbanization process, modern cities have developed urban regions
with diverse functionality which naturally have a variety of demands for differ-
ent Point-of-Interests (POIs) [28,29]. Discovery of regional POI demand, which
can help governments allocate resources efficiently and provide suggestions for
business investors, is becoming more and more important. Considering a cafe
franchise want to open a new store in an urban region, with the help of regional
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POI demand, the investor can identify the potential demand for cafe in this
region which is important for his investment decision.

Nowadays, POI demand analysis is still largely dependent on manual survey
which is time-consuming. Besides, the markets and land resources are easy to
change, if the analysis is conducted on the outdated data, the result inevitably
leads to failure. Recently, with the advance of location positioning technique and
high prevalence of location-sharing applications such as Foursquare, an increas-
ing volume of semantic trajectories is extracted by combining traditional tra-
jectory with semantic data [1], where each point in a semantic trajectory not
only contains a particular address and a corresponding timestamp when person
visited this site but also is enriched with a semantic category, such as cafe, gym
or office. The appearance of semantic trajectories provides a new way for effi-
cient and effective POI demand analysis which reflects the detailed underlying
dynamics of residents in the city.

There are several approaches to recommend proper site location using human
mobility data such as traditional or semantic trajectories using angle, velocity
and other attributes. Unfortunately, most of existing works are proposed for
specific demand [11,14,15,19,32], for instants, cultural planning or gas station.
Specific focus leads to the ignorance of other significant categories and loss of
generality of common demand discovery. Meanwhile another part of existing
works focuses on traditional trajectory data [15], which means that they do not
consider the semantic information and are not able to completely infer the POI
category information.

In order to address these challenges, we study general POI demand discovery
problem with an important economic logic Foot Voting [25]. Charles Tiebout
points out that people have the ability to choose what they want by traveling.
In other words, if people from one region frequently travel to other regions for
specific category such as coffee shop, it is much likely that people need fresh or
better coffee shop in their origin region. Therefore we can conclude that coffee
shop is one of the POI demands of people’s origin region. Based on the above
observation and the help of people’s frequent mobility patterns, the regional
POI demands can be identified. Furthermore, governments and companies can
understand POI demand better for future planning.

In this paper, we first propose a regional POI demand modeling which takes
several relevant features into consideration and come up with a well designed
regional POI demand modeling method. Then we develop efficient algorithms
for regional POI demand discovery which consist of pre-processing of the raw
semantic trajectories, cross-regional pattern mining and POI demand mining.
Furthermore, we introduce optimization techniques which are based on some
interesting observations to enrich the mining results. Finally, we evaluate our
proposed method on two real datasets and show two illustrating cases in London
and New York respectively. The experimental results show the effectiveness and
efficiency of our proposed methods.

We conclude the main contributions of this paper as follows:

– We propose a POI demand modeling method based on the observation of
Foot Voting.
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– We design two efficient algorithms to compute the regional POI demand using
semantic trajectories.

– We evaluate our proposed model and algorithms using real data sets and
provide detailed analysis.

– Two case studies are introduced to show the effectiveness of the proposed
methods.

The rest of this paper is organized as follows. We briefly review the related
work in Sect. 2. In Sect. 3, we first define a few terms, then introduce our POI
demand modeling and the formal problem definition. Our proposed mining algo-
rithms are presented in Sect. 4 with some interesting observations. The experi-
mental evaluation and illustrating case study are provided in Sect. 5. Finally, we
conclude this paper in Sect. 6.

2 Related Work

2.1 Human Mobility Analysis

Understanding human mobility is crucial to location-based services and many
related researches with mobility data, such as mobile phone data and trans-
portation data [2,16,23]. [24] explores the urban Region-of-Interest to study
agglomeration economies using online map search queries. [26] recommends a
region with reliable POIs to a user with deep metric learning.

As we all know, each region has different specific needs. A good location has
an effective impact on business and city planning. So correct POI demand anal-
ysis is key to site selection. With the help of mobility data, people can improve
the accuracy and efficiency of site selection with comparison to traditional man-
ual surveys or analysis models based on census [21,22]. Researchers mainly
study specific POI category demand [11,13,14,19], for example, [32] designs
a method to properly allocate cultural resources in urban area. However, [15]
develops a systematic framework integrating POI and demographic data to iden-
tify various demands for developed and underdeveloped regions using traditional
trajectories.

Human lifestyle [8] is another research field improved by the popularity of
mobility data [20]. Some studies try to find the relation between multiple types of
human lifestyles [31] and [10] uses shopping records to extract shopping patterns
for divergent urban regions incorporating mobility patterns.

Existing POI demand identification works mainly focus on traditional human
mobility pattern which may lead to mis-inference. And researches on assisting
decision making with semantic data is few. Different from the above works, we
design a more general framework for revealing people’s lifestyles in cross-regional
behaviors extracted from semantic trajectories to identify their life demands
of each region. And recommend POI category from both region and semantic
category perspectives in the framework.
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2.2 Trajectory Pattern Mining

Trajectory pattern mining is a hot topic in spatial-temporal data mining. [18]
explores propagation patterns and influential patterns in traffic and weather data
with LSTM. According to the Foot Voting principle [25], people’s movement can
reflect POI demands to some extent. Therefore, frequent pattern mining using
semantic trajectories [3,6] can be adopted to discover the POI demand. [9] pro-
poses spatio-temporal containment pattern which requires similar transition time
on visiting same sequences of places. [30] utilizes collaborative group of similar
POIs rather than independent POIs to mine fine-grained frequent patterns. [12]
proposes a probabilistic model to capture movement between semantic regions
with coherent topic. They all focus on extracting globally frequent patterns
in the entire data space. [7] proposes a new density scheme to quantify fre-
quency of locally significant sequential patterns based on clustering. [4,5] study
co-movement patterns problem which is closely related to frequent pattern
mining.

However, there still exist challenges on mining POI demands due to the spar-
sity of trajectory data, especially for the regional POI demands discovery prob-
lem. People’s different destinations usually distribute in various regions and they
often start from diverse origins. This problem becomes even more challenging if
we consider the semantic information for each visits in people’s trajectories.

3 Preliminaries

In this section, we first define some important terms. Then we introduce the
POI demand modeling using semantic trajectories. Finally we formally define
the POI demand discovery problem.

3.1 Semantic Trajectories

Let C = {c1, c2, · · · , cn} is a set of semantic categories. Let P = {p1, p2, · · · ,
pm} be a set of places where each p ∈ P is defined as a tuple (p.lon, p.lat, p.cat)
where p.lon and p.lat denote p’s latitude and longitude respectively and p.cat ∈
C is p’s category. Following the existing definitions [7,30], we define semantic
trajectory as follows:

Definition 1 (Semantic Trajectory). A semantic trajectory T is defined as a
sequence of pairs of place and a corresponding timestamp 〈(p1, t1), (p2, t2), · · · ,
(pl, tl)〉, where ti < tj if i < j and l is the length of the trajectory.

3.2 Region Partition

There are several methods to partition the urban area into regions, such as grid-
based [17], road network-based and neighborhood-based [15] method. For the
ease of presentation, we adopt grid-based method for region partition. Please
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note our proposed method can be used for other partition methods directly, as
mapping POIs to regions does not rely on the partition methods.

Given a urban map, we divide the urban area into a set of g × g grid cells.
Then we get a set of regions R = {r1, r2, · · · , r|R|}, where |R| equals to g × g.
According to POIs’ location in semantic trajectory T, we can assign each of
them into a region grid, as shown in Fig. 1.

Fig. 1. An example of semantic trajectories (in different colors), T1, T2, T3 and Regional
Pattern, where p1, p2, · · · , p9 are places of interest (POIs), r1, r2, · · · , r9 are spatial
regions and o, g, b are categories of POIs denoting office, gym and bar respectively.

After mapping the POIs into grid regions, we can generate regional patterns
from a semantic trajectories according to the following definition.

Definition 2 (Regional Pattern). Given a semantic trajectory T , a regional
Pattern O of T is a sequence of tuples O = 〈(c1, ri), (c2, rj), · · · , (cm, rm)〉,
where each ci ∈ C and ri, rj and rm ∈ R.

A regional pattern O may contain several intra-region movements, e.g. move-
ment from p3 to p7 in trajectory T3 in Fig. 1. Such movement does not provide
the POI demand information as the user’s POI needs can be satisfied in the
given region, say r4 in the example. Therefore we cannot infer any POI demand
for this region by considering the intra-region movements. In order to mine the
region POI demand, we define the cross-region pattern as follows:

Definition 3 (Cross-Regional Pattern). For any adjacent category-region pairs
〈cn, ri〉 and 〈cm, rj〉 in a given regional pattern, if i �= j, we call such category-
region pair as cross-regional pattern.

A toy example to clarify the above definitions is as following.

Example 1. As shown in Fig. 1, given 3 semantic categories T1, T2 and T3, there
are 4 cross-regional pattern 〈(o, r8), (g, r6)〉, 〈(g, r6), (b, r3)〉, 〈(b, r8), (g, r6)〉
and 〈(g, r6), (o, r4)〉.
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Next we define the regional category number to reflect the POIs appearance
in a given region as follows.
Definition 4 (Regional Category Number). Given a region ri, we use regional
category number ni,j to denote the count of POI with category cj in region ri.

We maintain a list Fri = 〈(c1, ni,1), (c2, ni,2), · · · , (cm, ni,m)〉 to count
how many POIs of each kind of category ci in this region ri, where m is the
number of categories in this region. Besides gathering regional category number
for each kind of category in each region, we also count the global sum of category
cm and the total number of POIs in region rj .

Due to the unbalanced development of urban regions, only counting the POI
numbers may not reflect the real POI demand accurately. For example, the
number of POIs in rural area is usually much smaller than that in city centers.
Besides, if there already exists a lot of POIs of same category, we shouldn’t
suggest the same type of POI for this region because it will lead unbalanced
region development and intensify competition which may lead vendor’s failure.
So it is important to formulate the regional category density.

Next, we define two types of semantic category density, namely, global cate-
gory density and local category density which are calculated in the following two
equations respectively.

d − globalj,m =
nj,m

|cm| , (1)

where nj,m is the number of category m in region j and |cm| is total number of
category m in the dataset.

d − localj,m =
nj,m

|POIj | , (2)

where |POIj | is total number of POI in region j.
Based on the density defined above, we propose regional category density to

reveal the category distribution information for a given region as follows.
Definition 5 (Regional Category Density). A density list of given region rj,
Drj = 〈(c1, dj,1), (c2, dj,2), · · · , (cm, dj,m)〉, where m is the total number of
semantic categories in this region rj. A regional category density dj,m = d −
globalj,m × d − localj,m.

The key idea of calculating regional category density is that only using local-
level density cannot reflect the actual development of region. Assuming this
region has very few vendors, any categories in this region can have a high local-
level density value, however people need more various vendors. We will omit
their demands if we only focus regions with lower local-level density. And high
global-level density doesn’t mean that they can fulfill each person’s need because
it may be a very flourishing area which need more shops than other regions.

3.3 Regional POI Demand Modeling

Before introducing the regional POI demand modeling, we first introduce need
number which quantifies people’s demand for a specific category in the region.
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Given a cross-regional pattern E, any length-2 sub-pattern 〈(origin.category,
origin.region), (destination.category, destination.region)〉 in E, we update ori-
gin region need number of destination’s category 〈origin.region, destination.
category〉 by adding 1

d , where d is regional category density of destination’s
category in origin’s region. The formal definition of need number is given as
follow.

Definition 6. (Need Number) needj,i is the need number representing demand
of ci in rj. Every time the demand of ci in rj emerges in cross-regional pattern
E, needj,i adds 1

dj,i
.

The need number reflects the demand of category in the given region. We
use 1

d as the need number increase step. According to our analysis in Sect. 3.2,
the regional category density d reflects the influence of local density and global
density of the category in a given region which is important when considering the
unbalance development in urban area. A toy example to show how to compute
the need number is provided as follow.

Example 2. As shown in Fig. 1, T1 is a cross-regional pattern, and there
exists 2 length-2 sub-pattern 〈(o, r8), (g, r6)〉 and 〈(g, r6), (b, r3)〉. And
T3 contains a length-3 cross-regional pattern, which includes 2 length-2 sub-
pattern 〈(b, r8), (g, r6)〉 and 〈(g, r6), (o, r4)〉. We take bar in region r6 as
example. Bar in region r6’s local density is 2

4 and its global density is 2
5 , so final

regional category density of Bar in r6 is 0.2, and r6’s need number of bar is
1
0.2 = 5.

The need number needi,j quantifies the demand of category cj in the region
ri. And larger needi,j means a stronger demand for the category. Now we are
ready to formalize the problem studied in this paper.

Problem Statement: Given places set P, categories set C and grid parameter
g which partition the space into g × g regions, the aim of our problem is that,
for each region, to compute the need number of categories which are demanded
in this region and return the rank of categories according to their need numbers.

4 Regional POI Demand Discovery

In this section, we first introduce the framework of our proposed method for
regional demand mining. Then we present our algorithms that efficiently com-
pute the need numbers and return ranked regional demands in detail.

4.1 Framework Overview

Figure 2 shows the framework of proposed regional POI demand discovery
method. We take check-ins data, map data and POIs data as the input and
each of these data goes through an offline preprocessing step. Specifically, the
check-ins data are used to construct semantic trajectories. Then the semantic
trajectories are separated into sub-trajectories according to the max time gap.
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Fig. 2. An overview of framework

The map data are partitioned into regions by the grid size parameter g. And
the POIs data together with the region information are used to extract regional
POIs information as the region features.

The time difference between two adjacent check-ins is called time gap. In
our daily life, the reason for people’s movement is the demand for a variety of
purposes or just semantic categories, if they need a kind of POI category strongly,
they will go to this site as soon as possible. According to actual experience,
a strong demand driven movement often happens in a short time period, for
example period is from several hours up to a few days. So we introduce a max
time gap threshold Δt, and split semantic trajectories into sub-trajectories to
make sure that each time gap in one sub-trajectories is smaller than Δt. Another
task in offline phase is to convert the semantic trajectories to regional patterns
as we defined in Definition 2.

In the online phase, we conduct our proposed mining algorithm to extract
cross-regional pattern, compute the need numbers and return ranked regional
demands accordingly. Next, we will introduce our proposed algorithms in details.

4.2 Cross-Regional Pattern Extraction

In order to compute the need numbers, we first extract cross-regional patterns
from regional patterns set O which are generated in the offline phase. We filter
out pattern which length is less than 2 because it will not produce cross-regional
pattern. As shown in Algorithm patternMine(), we first scan remaining patterns
to check two adjacent category-regional pairs of a pattern whether located in the
same region or not without considering category, in order to find a cross-region
pattern. We add such category-region pair into the result set and try to extend
this length-2 cross-regional pattern by repeatedly checking location information
demonstrated as line 7. we finish the extension of this pattern until the next
check-in is in the same region and start to find another cross-regional pattern
from the remaining patterns.
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Algorithm 1: patternMine (O)

1 Input: the set of regional patterns O
2 Output: cross-regional sub-pattern set E
3 for each regional pattern o ∈ O with length ≥ 2 do
4 i = 2;
5 while i <= o.length do
6 if o[i − 1].r! = o[i].r then
7 generate a cross-regional pattern e ;
8 for idx ∈ [i + 1, o.length + 1) do
9 if o[idx − 1].r! = o[idx].r then

10 add o[idx] to e ;
11 else
12 i = idx+1;
13 E = E ∪ e;
14 break;
15 end
16 end
17 else
18 i = i+1;
19 end
20 end
21 end
22 return E ;

Example 3. T3 as demonstrated in Fig. 1 can be translated into regional pattern
〈(b, r8), (g, r6), (o, r4), (b, r4)〉. We scan first two adjacent (category, region)
pairs (b, r8) and (g, r6), and find these check-ins distributed in two regions r8
and r6 so we get a length-2 cross-regional pattern. Move to next pair (o, r4) which
is placed at r4 so the cross-regional pattern is extended to length-3. However,
(b, r4) is also in region r4, hence T3 only includes a length-3 cross-regional
pattern.

4.3 Computing Need Numbers for Regional Demand Mining

Next step is mining people’s need from cross-regional pattern set E obtained by
patternmine(). Algorithm DMiner shows how to compute the need numbers.
According to daily experience, person can travel from one region to another
region for a specific demand no matter the category of his(her) current starting
point and the destination region of trip. Same category need starting from same
region may ended in different regions. So in our algorithm, the idea to simplify
the POIs scatter problem is that we only put focus on origin’s starting region
and destination’s semantic category.

DMiner scans cross-regional pattern e in E from the first beginning and
captures any two adjacent items in e to generate new category-region pairs.
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Algorithm 2: DMiner (E)

1 Input:cross-regional pattern set E
2 Output:set of regional demand candidates M
3 for each e in E do
4 for i = 1 to e.length-1 do
5 origin = e[i] //e[i] is the i-th check-in in e;
6 destination = e[i + 1] ;
7 generate a new need pair

m := ((destination.category, origin.region), 1/dx,y) //x is
origin.region, y is destination.category

8 M = M ∪ m ;
9 needx,y+ = 1/dx,y

10 end
11 end
12 return M;

And the need number is continually updated according to the definitions (Line
9). After proceeding all the cross-regional patterns in E , the regional demand
candidates set M is obtained.

4.4 Optimization

By far, we only split cross-regional pattern e into a set of length-2 sub-patterns
in DMiner. For example, if there exists a cross-regional pattern 〈a, b, c〉 (a, b, c
all include category and region information), in DMiner we only pay attention
to the pattern 〈a, b〉, 〈b, c〉. However, in real applications, people may not move
from one region to another region for a specific category directly, they may stop-
by somewhere first and then move to the destination. Trajectories split by max
time gap ensure that stationary point in pattern doesn’t cost too much time
for visiting. So we can take 〈a, c〉 into consideration as well. In the optimized
algorithm, we add another moving arrow for potential cross-regional category-
region pair which may be farther in cross-regional pattern. And we define a
new weighting factor σ to reflect the importance of such kind of extended cross-
regional patterns.

σ =
1

j − i
(3)

where i and j stands for origin’s and destination’s place index in cross-regional
pattern e, where 1 ≤ i < j ≤ e.length. So σ of need acquired from two adja-
cent cross-regional pair is 1 as same as the weight in DMiner. In the optimized
algorithm, the need number is updated by multiplying weight factor σ for the
categories which have extended cross-regional pattern.

We call the optimized algorithm DMiner2 which connects two category-
region pairs if they are in different regions. Because cross-regional pattern may
contain some behaviors happened in same region, for example cross-regional
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pattern 〈(bar, r8), (gym, r2), (office, r8)〉 , bar and office both locate in r8.
DMiner2 should examine category distribution again.

4.5 Complexity Analysis

Our proposed framework consists of two online phases, namely cross-regional
pattern extraction and need number computation. In the cross-regional pattern
extraction phase, patternMine scans each regional pattern in regional pattern
set O and records the adjacent movement pairs which are in different regions.
Therefore the complexity of patternMine is O(N) where N is the total length
of the trajectory data set. In the need number computation phase, DMiner and
DMiner2 checks the cross-regional patterns generated in patternMine and
generates regional demand candidates. Regional category density can be eas-
ily calculated by pre-stored regional category density list. The time complexity
of DMiner and DMiner2 is also O(N), as in the worst case, DMiner and
DMiner2 have to check all movement pairs in the trajectory data set. There-
fore, the overall time complexity of our framework is O(N) which is linear to
the size of data set. The experimental result also confirms the efficiency of our
method.

Having the need numbers of the needed categories in a given region, we
can return the ranked categories according their need numbers as regional POI
demand.

5 Experiment

In this section, we evaluate performance of our proposed algorithms in real data
sets. All algorithms are implemented in JAVA conducted on a computer run-
ning Linux (CentOS 7.3.1611) with 40 Intel Xeon CPU E5-2630 v4 2.2 GHz and
128 GB memory.

5.1 Dataset

In the experiments, we use two real-world data sets which are selected from the
world-wide Foursquare check-ins data sets issued by Yang et al. [27]. Specifically,
BR, US is the part of these numerous data sets where POIs and check-ins located
at United Kingdom and United States respectively. The details of these datasets
are listed in Table 1.

5.2 Competitors

We compare our proposed methods with state-of-the-art semantic trajectory
mining algorithm RegMiner [7].

Since RegMiner is not designed for regional demand mining, we made the
following modifications: First, we adopt the idea of GridMiner in [7] to fit
RegMiner for our grid partition. Second, for the frequent threshold, we set
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Table 1. The statistics of data sets

Dataset BR US

Number of POIs 54,278 168,625
Number of trajectories 4,893 13,489
Number of categories 414 427

1.5 as default which is much smaller than the value used in [7]. In our grid
based partition, large frequent threshold will reduce number of the frequent
patterns significantly and results in insufficient need demand, therefore we set the
frequent threshold a reasonable small number which can archive balance between
efficiency and effectiveness. We call the modified RegMiner as RegMiner-
Grid in the rest of this paper.

5.3 Parameter Setting

We examine the impact of parameter for algorithms on BR dataset. Default
parameters are set as follows: max time gap is 24 h and grid number is 100.

a. Varying grid number
The whole region is split into g × g size of small grids. Figure 3(a) shows grid
number has a large impact on regional demand number. Different region dis-
tributions create various cross-regional patterns and result in diverse regional
demands and large need number difference. On the other hand, smaller g such
as 30 forms larger region area which lets trajectories hard to pass through. In
the rest of the experiments, we set g as 100 and the length of each cell is round
6km and 8 km for BR and US which is reasonable for a neighborhood area in
real cities.

b. Varying max time gap
We split raw trajectories into small trajectories which time between each two
adjacent check-ins is no more than max time gap to filter out not very strong
demand meeting. We conduct the experiments with max time gap varying from
12 h to 48 h. In Fig. 3(b), Δt represents max time gap. It shows that larger max
time gap can produce large number of demands which confirms our analysis. In
the rest of the experiments, we set Δt as 24 h.

5.4 Efficiency Study

In this section, we study the efficiency of the algorithms on BR with regard to
two parameters, grid number and max time gap.

As shown in Fig. 4(a), the running time of all algorithms increases as the
grid number increases. This is because the large grid numbers will produce more
cross-regional patterns as the region is small. Therefore, it takes more time to
compute the numbers for our algorithms and compute the frequent patterns for
RegMiner-Grid. And our algorithms are always better than RegMiner-Grid,
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(a) results w.r.t g (b) results w.r.t Δ t

Fig. 3. Regional demand number

(a) Running time w.r.t g (a) Running time w.r.t Δt

Fig. 4. Running time on BR

as RegMiner-Grid takes more time when mining the frequent patterns with
complicated computation of the support.

Similar trend can be observed in Fig. 4(b). The reason is that setting large
max time gap will produce longer regional patterns and increase the computation
for all the algorithms.

5.5 Effectiveness Study

In order to evaluate the effectiveness of the algorithms, we select New York
city from US and Greater London from BR as represented. We divide the data
sets into training and testing set as follows. We choose the first 80% check-ins to
construct the regional patterns for training, and the remaining 20% check-ins are
used for testing. First, Given a region, we rank the demands for POI categories
and give a top-k ranking list. We use Hit@k as metric. For a region, if top-k
predicted demands meet any actual open POI, hit number pluses 1. And hit@k
is hit number divided by total number of regions. Figure 5 shows final result.
Our algorithms outperforms the competitor in almost all cases.

5.6 Illustrating Cases

In order to better illustrate the ranking results for regions, we pick up several
example regions with the top 5 identified demands in New York as shown in
Table 2. As shown in the table, our method can effectively discovery the most
needed categories and newly opened POIs in the ground-truth confirms that the
proposed method is effective.
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(a) In New York (b) in Greater London

Fig. 5. Hit@k

Table 2. Identified POI demands for regions in New York

Region Identified demands p@5 Groundtruth

84266 House; Gas Station;
Drugstore; Fast Food
Restaurant; American
Restaurant

Residential Building; House; Gas
Station Fast Food Restaurant;
Convenience Store

84669 Community; Department
Store; Furniture Store;
Road; Drugstore

Department Store; Furniture
Store; Road; Hotel; Bank

85461 Miscellaneous Shop; Bank;
Doctor’sOffice; Bakery;
Automotive Shop

Doctor’s Office; Chinese
Restaurant; Italian Restaurant;
Bakery; Automotive Shop

Besides, We choose two hot tourism destinations, e.g. region 5116 in London
and region 5367 in New York and list 10 representative regional demand in these
regions. In reality, region 5116 is in London, which includes Kensington Palace,
Battersea park and other famous spots. And Region 5367 is a part of Manhat-
tan. There exists a lot check-ins scattered in theses regions, so our approaches
are more easier to mine their regional category needs as shown in Fig. 6. Need
Number is too large so these number are divided by 105 and 107 respectively in
London and New York to show clearly.

(a) Region 5116 in London (b) Region 5367 in New York

Fig. 6. Regional demand in real area
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6 Conclusion

In this paper, we focus on inferring diverse POI demands of urban area using
semantic trajectories. We carefully analyze the features of semantic trajectory
data and people’ mobility patterns. Then we propose a general data-driven
framework DMiner for regional POI demand mining. The framework uses
enriched traditional category sequence with region information and pattern-
Mine to identify cross-regional pattern efficiently. We also introduce some inter-
esting observations to enrich the results and further propose a improved method
DMiner2. We apply our framework on real data sets to show the effectiveness
and efficiency with comparison to state-of-the-art locally frequent pattern min-
ing method. Furthermore, we also present several example mining results for
readers’ better understanding.
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Abstract. Prediction tasks about students have practical real-world sig-
nificance at both student level and university level. For example, pre-
dicting if a student will fail to graduate can alert the university student
affairs office to take predictive measures to help the student improve
academic performance. In this paper, we focus on making multiple pre-
dictions together, since leaning the model for a specific task may have
the data-sparsity problem. With the rapid development of smart cam-
pus, the university is accumulating a large amount of heterogeneous
data of student behaviors, such as entering libraries behavior, entering
dormitory behavior. In this paper, we propose to learn from heteroge-
neous student behaviors for making multiple predictions about students.
However, leveraging heterogeneous behaviors have two main challenges.
First, student profiles have a large impact on their behaviors and have
not been well modeled in previous studies. Second, behaviors of different
days will have different degrees of impact and should be treated unequally.
To address these challenges, we propose a novel variant of LSTM and a
novel attention mechanism. The proposed LSTM is able to learn student
profile-aware representation from the heterogeneous behavior sequences.
The proposed attention mechanism can dynamically learn the different
importance degrees of different days for every student. With multi-task
learning, we can deal with multiple perdition tasks at the same time to
alleviate the data-sparsity problem. Qualitative and quantitative experi-
ments on a real-world dataset collected at Shanghai Jiao Tong University
(SJTU) have demonstrated the effectiveness of our model.

Keywords: LSTM · Attention mechanism · Heterogeneous student
behaviors · Multi-task learning

1 Introduction

Recently, more and more people are concerned about educational field. By utiliz-
ing data mining techniques in this field, there arise various significant prediction
tasks for better understanding students and the settings which students learn
in, such as academic performance prediction [30,31], library circulation predica-
tion [26,28], graduation failure prediction [23]. With the help of these tasks, edu-
cators could know future grades of students, future library circulation or whether
c© Springer Nature Switzerland AG 2020
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students pass/fail for a specific given course. Then educators could facilitate per-
sonalized education, do library strategic plan or design in-time intervention.

Previous works about these prediction tasks mostly focus on the factors
including values of historical situations (such as historical grades [8,30], historical
library circulation [26,28]) and student demographic information (i.e., student
profiles) [17,21]. These factors are relatively stable over the long run and are
difficult to change via educational management. Besides, in online learning envi-
ronments (e.g., massive open online courses), students’ digital records collected
by online learning platforms such as logs about video-watching behavior, time
spent on specific questions, test/quiz grades have been leveraged [2,3,14,16,19].
The digital records can directly reflect students’ efforts and are key predictors.
But these records are rarely digitized in traditional education.

Thanks to the development of information technology in college, there is a
clear trend to augment physical facilities with sensing, computing and commu-
nication capabilities [33]. These facilities unobtrusively record students’ digital
footprints such as logs of entering libraries and logs of entering dormitory. The
digital footprints of students encode heterogeneous behaviors which are helpful
for many prediction tasks. For example, academic efforts can be learned from
entering libraries records and entering dormitory records. Academic efforts are
key predictors for predicting academic performance, the number of borrowed
books or the number of failed courses. In other words, students’ hard study (i.e.,
entering libraries frequently, early; going back to dormitory late) can be paid
back and may result in borrowing many books from libraries. Once the digital
footprints are available, they can be used to improve prediction performances. In
this paper, we collect digital footprints of 10k students spanning one academic
year from campus smart card usage for entering libraries and dormitory. One
footprint record mainly contains student identity number and the timestamp of
the record.

Based on the above thoughts, we want to leverage heterogeneous student
behaviors to deal with multiple prediction tasks. Here we take Predicting Aca-
demic Performance (PAP), Predicting the Number of Borrowed Books (PNBB),
and Predicting the Number of Failed Courses (PNFC) as three motivating exam-
ples of prediction tasks which can be implemented using our proposed model.
However, leveraging heterogeneous behaviors confronts two main challenges. The
first challenge is that student profiles have a large impact on their behaviors and
have not been well modeled in previous studies. Similar behaviors of different
kinds of students may mean differently. For example, there are two students:
student 1 and student 2. Their records of entering libraries are similar. But stu-
dent 1 is a freshman; student 2 is a senior. Student 2 would have less homework
to do than student 1. In return, it means student 2 works harder than student 1.
Thus academic performance of student 2 should be better than student 1. The
second challenge is that behaviors of different days to the task will have different
degrees of impact and should be treated unequally. For example, behaviors of dif-
ferent days have different degrees of impact for indicating students’ efforts. The
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academic efforts of students on different days will change due to many reasons
such as holidays, moods, study habits.

To address the above challenges, we propose an Attentional Profile-Aware
Multi-Task model (APAMT). More specifically, for heterogeneous behaviors,
each kind of daily behavior sequence is modeled by a variant of LSTM named
Profile-Aware LSTM. By adding student profiles in the gates of LSTM, LSTM
can consider student profiles when modeling daily behavior sequence, so as to
improve the performances of prediction tasks. Besides, a novel attention mech-
anism is designed over Profile-Aware LSTM to dynamically learn the different
importance degrees of different days for every student for improving the predic-
tion results. Moreover, existing methods to deal with prediction tasks in edu-
cational field focus on each individual task, which is sub-optimal as valuable
student information is not shared across different tasks and there exists a data-
sparsity problem. In our dataset, only about 10% of students failed courses in
one semester. As a consequence, it is necessary to leverage multi-task learning.

In summary, the main contributions of this paper are as follows:

– We propose an Attentional Profile-Aware Multi-Task model (i.e., APAMT).
APAMT can learn personalized and general student representations from stu-
dent profiles and student heterogeneous behaviors to deal with multiple pre-
diction tasks in educational field.

– We design a variant of LSTM called Profile-Aware LSTM to capture student
profiles when modeling heterogeneous daily behaviors. We design a novel
attention mechanism for dynamically finding out informative days. We adopt
multi-task learning for enabling the deep neural network to learn general and
reliable student representations and alleviating the data-sparsity problem.

– We evaluate our proposed model on a large-scale real-world dataset. The
experimental results demonstrate that our method outperforms the compet-
ing baselines and every component of our model is well-designed, benefiting
the prediction.

The rest of this paper is organized as follows. We first introduce the related
work of our research in Sect. 2. Next, we introduce related notations followed
by the problem statement in Sect. 3. Following that, we propose our model in
Sect. 4. Then, Sect. 5 presents qualitative and quantitative results of different
methods. Finally, we conclude the paper in Sect. 6.

2 Related Work

Predicting Academic Performance. PAP task is the most frequently studied
among prediction tasks in educational field. In this paper, we choose Weighted
Average Grade (WAG) which is on a 100-point scale to quantitatively describe
the academic performance of a student in one semester. WAG can be seen as the
Cumulative Grade Point Average (CGPA). Most methods used for academic per-
formance prediction are based on traditional classification/regression techniques
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such as linear regression [9]. Besides traditional methods, some researchers seek
novel solutions. For example, matrix factorization techniques are utilized in some
researches [24]. Feed forward neural networks are adopted in some works [29].
LSTMs are also leveraged [8]. Ensemble approaches are also studied [30]. As for
employing students’ behaviors to predict student performance, Wang et al. [27]
found correlations between students’ GPAs and automatic sensing behavioral
data obtained from smartphones and chose a linear regression model. However,
the passive sensing behavioral data they used is only collected from a small
number of student and the collecting way is not universal enough. Yao et al. [31]
studied the effect of social influence on predicting academic performance based
on students’ multiple behaviors. The effect of students’ behaviors is very indi-
rect. These studies ignore the influence of student profiles on modeling student
daily behaviors and treat all days equally.

Predicting the Number of Borrowed Books. Most studies about library
circulation prediction focus on modeling historical time series. Methods used
include support vector regression [26], feed forward neural networks [28] and so
on. Students’ information hasn’t been used in library circulation prediction.

Predicting the Number of Failed Courses. Existing studies about failure
prediction mainly focus on classifying students into two categories: either pass
or fail for a specific given course. Some studies do not distinguish this task with
academic performance prediction task [32]. But we distinguish these two tasks
and we aim to predict the number of failed courses. Methods used in failure
prediction include k-nearest neighbour method [25], ensemble method [32], feed
forward neural networks [23] and so on.

Multi-task Learning. Multi-task learning (MTL) was first analyzed by Caru-
ana detaily [4]. Multi-task learning could improve learning efficiency and pre-
diction accuracy for each task when compared to training a separate model for
each task. One important reason is that multi-task learning allows sharing of sta-
tistical strength and transferring of knowledge between related tasks. Thus the
shared representations can capture more underlying factors and become more
general. Multi-task learning has been used successfully in many fields, such as
computer vision [7,18], natural language processing [6].

To the best of our knowledge, our work is the first study that uses deep
multi-task learning to deal with multiple prediction tasks in educational field.

3 Preliminaries

In this section, we first fix some notations and introduce the problem statement.

Entering Libraries Records. When students enter libraries, they need to
swipe their campus cards. Thus records are generated. One entering libraries
record can be represented as rLib = (s, tLib), where s denotes student s and tLib

denotes the timestamp of the record.
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Entering Dormitory Records. Similar to entering libraries records, one enter-
ing dormitory record is represented as rDorm = (s, tDorm), where s denotes
student s and tDorm denotes the timestamp.

Student Profile Records. One record of this sub-dataset can be represented as
(s,ds), where ds is an attribute set about demographic information of student s.
In this paper, according to the dataset, the attributes include province, nation-
ality, gender, grade, school, and department. If other demographic information
like age was available, it could also be added.

Student Final Course Grade Records. Given course cθ, one record can be
represented as rGrade = (s, t, cθ, credit(cθ), grades(cθ)), where t is the index of
the whole semesters that student s involves in; credit(cθ) is the credit of course
cθ and grades(cθ) is the final grade student s achieves in course cθ.

Problem Statement. In this paper, we have three tasks to deal with.
PAP task: Given digital footprints (i.e., {rLib} and {rDorm}) generated in

the first half (to give the prediction results ahead of time) of the semester T ,
profiles ds and final course grade records rGrade generated in all previous T − 1
semesters of student s, our goal is to predict academic performance (i.e., WGA)
of student s at the end of semester T .

PNBB task: Given digital footprints (i.e., {rLib} and {rDorm}) generated in
the first half (to give the prediction results ahead of time) of the semester T ,
profiles ds and the number of borrowed books in each previous semester (the
number of all previous semesters is T −1) of student s, our goal is to predict the
number of borrowed books of student s at the end of semester T .

PNFC task: Given digital footprints (i.e., {rLib} and {rDorm}) generated in
the first half (to give the prediction results ahead of time) of the semester T ,
profiles ds and final course grade records rGrade generated in all previous T − 1
semesters of student s, our goal is to predict the number of failed courses of
student s at the end of this semester T .

4 Proposed APAMT Model

The main structure of our proposed Attentional Profile-Aware Multi-Task model
(APAMT) is illustrated in Fig. 1. Detailed structures of task-specific modules are
shown in Fig. 2. The rest of this section is organized as follows. First, we will
introduce how to model heterogeneous student behaviors with Profile-Aware
LSTM and attention-based pooling. After generating personalized student rep-
resentation, we will leverage task-specific information and design task-specific
feed forward neural networks to deal with multiple prediction tasks together.

4.1 Inputs and Dense Embedding

Student profiles ds are represented in the form of one high-dimensional vector
including many one-hot encoded vectors. To reduce the dimension and get a
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Fig. 1. The main structure of APAMT.

better representation, we use a dense embedding layer. The transformation is
formalized as:

d̄s = Wdd
s, (1)

where Wd is mapping matrix.
Thinking that the combination of entering libraries behavior and going back

to dormitory behavior can reveal students’ academic efforts, we extract behavior
sequence of entering libraries and behavior sequence of going back to dormitory
from {rLib} and {rDorm}.

More specifically, we divide one day into 24 time slots by hour (i.e., [00 :
00, 01 : 00), [01 : 00, 02 : 00), ..., [23 : 00, 24 : 00)). According to {rLib}, almost
100% of entering libraries records are generated in 07:00–23:00. So we use 16
elements to record entering libraries frequency in 07:00–23:00 for each day as the
upper-right of Fig. 1 shows. In this way, we get behavior sequence of entering
libraries: b1,1, b1,2, ..., b1,x, ..., b1,X (x is the index. X = 63 because the number
of days in half semester is 63).

One going back to dormitory record is defined as the last record of entering
dormitory of the day. Based on {rDorm}, around 84% of going back to dormitory
records are generated in 18:00–24:00. So we use a vector with a length of 6 to
record the situation of going back to dormitory in 18:00–24:00 for each day as
the upper-right of Fig. 1 shows. In this way, we get behavior sequence of going
back to dormitory: b2,1, b2,2, ..., b2,x, ..., b2,X .
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4.2 Profile-Aware LSTM

RNN is widely used to deal with sequence data and has achieved good perfor-
mance in various domains. There are many well-known variants of RNN models,
such as LSTM [12], GRU [5], bidirectional RNNs [20]. But student profiles can
not be considered when modeling student behavior sequence with these variants
of RNN models. Similar behaviors of different kinds of students may mean dif-
ferently. So we propose a new variant of LSTM called Profile-Aware LSTM. We
treat student profiles as a strong signal in the gates of Profile-Aware LSTM (as
Eq. (2), (3) and (5) show). That is to say, what to extract, what to remember and
what to forward are extensively affected by student profiles. Behavior sequence
is the only input of Profile-Aware LSTM (as Eq. (4) shows).

Profile-Aware LSTM model is formulated as follows:

ix = σ(Wibb
s
m,x + Wihh

s
m,x−1 + Widd̄

s + bi), (2)

fx = σ(Wfbb
s
m,x + Wfhh

s
m,x−1 + Wfdd̄

s + bf ), (3)

cx = fx � cx−1 + ix � tanh(Wcbb
s
m,x + Wchh

s
m,x−1 + bc), (4)

ox = σ(Wobb
s
m,x + Wohh

s
m,x−1 + Wodd̄

s + bo), (5)

hs
m,x = ox � tanh(cx), (6)

where bs
m,x and hs

m,x are one input element and the corresponding output of
Profile-Aware LSTM unit, i.e., hidden state at time x, respectively. m = 1, 2. W
terms denote weight matrices and b terms are bias vectors. σ is the element-wise
sigmoid function and � is the element-wise product.

We use two Profile-Aware LSTMs to model two kinds of behaviors respec-
tively.

4.3 Attention-Based Pooling

The hidden representation of all heterogeneous behaviors of the x-th day can be
formalized as:

hs
x = hs

1,x ⊕ hs
2,x, (7)

where ⊕ is concatenation operation.
Behaviors of different days to the task will have different degrees of impact.

For example, the academic efforts of students on different days may change due
to many reasons. Inspired by the success of attention mechanism in machine
translation [1], we apply a novel attention mechanism over Profile-Aware LSTM
to draw information from the sequence by different weights. In the model, we
consider each vector hs

x as heterogeneous behaviors representation of the x-th
day, and represent the sequence by a weighted sum of the vector representation
of all the days. The attention weight makes it possible to perform proper credit
assignment to days according to their importance to the student. Mathemati-
cally, We compute attention weight αs

x for each day with the following equations:
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as
x = Wa0 tanh(Wa1h

s
x + Wa2d̄

s + ba), (8)

αs
x =

exp(as
x)

∑X
x=1 exp(as

x)
, (9)

where W terms denote weight matrices; ba is bias vector. Similar to Profile-
Aware LSTM, student profiles also contribute to the attention weights.

The advanced student behavior representation is generated using the follow-
ing equation:

b̄s =
X∑

x=1

αs
xh

s
x, (10)

The student representation rs is the concatenation of d̄s and b̄s:

rs = d̄s ⊕ b̄s. (11)

LSTM LSTM LSTM

Dense

Dense

Output

: PNBB task

Historical # borrowed books

LSTM LSTM LSTM

Dense

Dense

Output: PNFC task

Historical # failed courses Course Info.

LSTM LSTM LSTM

Dense

Dense

Output: PAP task

Historical WAG Course Info.

Fig. 2. The detailed structures of different modules w.r.t. different tasks.

4.4 Multiple Prediction Tasks

After obtaining the personalized student representation, we define several related
tasks to learn simultaneously as Fig. 2 shows. For each task, the other tasks are
viewed as regularization. Information about historical WAG, information about
historical number of borrowed books, information about historical number of
failed courses and information about courses are task-specific. We hope learned
student representation does not contain these task-specific features. So we do
not merge all information together as common multi-task learning.

PAP Task: As mentioned in Sect. 2, we use WAG to quantitatively describe the
academic performance. Given {rGrade}, WAG is calculated with the following
equation:

gs
t =

Θ∑

θ=1

credit(cθ)grades(cθ)
∑Θ

θ=1 credit(cθ)
, (12)
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where Θ is the number of courses chosen by student s in semester t. In this
way, we get historical WAG sequence of student s: gs

1, g
s
2, ..., g

s
t , ..., g

s
T . Historical

WAG sequence reveals students’ trends of academic performance. Note that the
length of historical WAG sequence may vary from person to person, so we adopt
a dynamic LSTM to model the sequence and get the higher representation ḡs.

We find that students get higher grades easily in some courses such as CS362
as Fig. 3 shows. This means different courses have different levels of difficulty.
So for each course, we extract descriptive statistics (i.e., minimum, maximum,
median, first quartile, third quartile, mean, standard deviation) as features.
These features can describe the properties of distribution from multiple aspects.
The feature vector of course cθ is represented as eθ. Next, we aggregate feature
vectors of all courses by leveraging course credit information:

ēs =
Θ∑

θ=1

credit(cθ)eθ
∑Θ

θ=1 credit(cθ)
. (13)

Fig. 3. Grade distributions of some different courses set in Department of Computer
Science and Engineering.

Then we feed rs, ḡs and ēs into a feed forward neural network and get the
prediction result ĝs

T as the left of Fig. 2 illustrated.
We use the mean squared error (MSE) as the loss function for training PAP

task:

L1(Φ1) =
1
U

U∑

i=1

(gi
T − ĝi

T )2, (14)

where u donates one training sample; U is the number of training samples; gi
T

denotes the label of the i-th sample and Φ1 is all trainable parameters for PAP
task.

PNBB Task: Similarly, historical number of borrowed books sequence reveals
students’ trends of the number of borrowed books. We utilize another dynamic
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LSTM to model historical number of borrowed books sequence and get the high-
level features q̄s. Then rs and q̄s are fed to another feed forward neural network
which could model the complex interactions between the high-level features and
give the final prediction result q̂s

T as the middle of Fig. 2 shows.
We use MSE as the loss function for training PNBB task:

L2(Φ2) =
1
U

U∑

i=1

(qi
T − q̂i

T )2, (15)

where qi
T denotes the label of the i-th sample and Φ2 is all trainable parameters

for PNBB task.

PNFC Task: LSTM is leveraged to model historical number of failed courses
sequence. We also extract some features such as course failure rate and descrip-
tive statistics. The feature vector of course cθ is represented as vθ as the right
of Fig. 2 illustrated. We merger information of every course by:

v̄s =
Θ∑

θ=1

vθ

Θ
. (16)

Then a shallow neural network is adopted as the decoder and the final prediction
result ŷs

T is generated.
We use MSE as the loss function for training PNFC task:

L3(Φ3) =
1
U

U∑

i=1

(yi
T − ŷi

T )2, (17)

where yi
T denotes the label of the i-th sample and Φ3 is all trainable parameters

for PNFC task.

4.5 Optimization

The total loss is computed as the sum of the three individual losses:

LTotal = λ1L1 + λ2L2 + λ3L3, (18)

where λ is weight parameter which is decided based on the importance of the
task in the overall loss. In this paper, we choose (λ1 = λ2 = λ3 = 1) for our
experiments assuming that theses tasks are equally important.

We adopt the adaptive moment estimation (Adam) [13] as the optimizer.
Adam is an optimization method that can compute adaptive learning rates for
each parameter and converges faster.

In order to improve the generalization capability of our models, we adopt
dropout [22] to prevent the potential overfitting problem.
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5 Experiments

In this section, we will describe the detailed experimental settings and discuss
the results.

5.1 Dataset

The data were collected at SJTU with an enrollment of 10k undergraduate stu-
dents. For protecting privacy, the data are collected and analyzed anonymously.
This study has been approved by the Institutional Review Board (IRB). Dataset
statistics are shown in Table 1.

Table 1. Dataset statistics.

Item Value

# Students 10,000

Student behaviors time span 09/12/2016–01/15/2017 (i.e., Fall 2016 semester)

02/20/2017–06/25/2017 (i.e., Spring 2017 semester)

# Library entrance records 867,571

# Dormitory entrance records 1,783,595

# Demographic records 10,000

# Courses 2,482

5.2 Baselines and Metric

We compare our proposed method with the following models and MSE is adopted
as the evaluation metric:

– HA: We give the prediction result by the average value of historical situations.
– LSTM [8]: LSTM is widely used to model sequence data.
– BRR [9]: Bayesian Ridge Regression (BRR) is a generalized linear model

which has L2 regularization.
– SVR [26]: Support Vector Regression (SVR) is a variant of support vector

machine (SVM) for supporting regression tasks. SVR is a minimum-margin
regression which could model the non-linear relation between features.

– RF: Random Forest (RF) is an ensemble method with decision trees as base
learners. It is based on “bagging” idea and its performance is much better
than decision tree.

– GBDT: Gradient Boosting Decision Tree (GBDT) is another kind of ensem-
ble method using decision trees as base learners. GBDT is a generalization of
boosting to arbitrary differentiable loss functions.

– FNN [23,29]: Feedforward Neural Network (FNN) consists of multiple layers
of nodes. Each layer is fully connected to the next layer in the network.



308 H. Liu et al.

5.3 Implementation Details

For baselines, we extract features from heterogeneous student behaviors as Guan
et al. suggested [10]. As for the data preprocessing, we represent the categorical
features with one-hot encoding. We process numerical inputs with the Min-Max
normalization to ensure they are within a suitable range. For WAG, the number
of borrowed books and the number of failed courses, because we use tanh as
the activation function in the output layer, we scale them into [−1, 1]. In the
evaluation, we re-scale the predicted value back to the normal value, compared
with the groundtruth. For the other numerical inputs, we scale them into [0, 1].
Around half of the data (Fall 2016) are used as the training set and the other
half (Spring 2017) are used for testing.

The hyperparameters of all models are tuned with a ten-fold cross-validation
method on the training dataset. We only present the optimal settings are as
follows. The dense embedding layer has 30 neurons. The dimensions of the hidden
states in the Profile-Aware LSTMs which handle entering libraries and going
back to dormitory behaviors are set as 12 and 4 respectively. The dimension of
the hidden state in the dynamic LSTM which handles historical WAG/number
of borrowed books/number of failed courses sequence is set as 5. The shallow
feed forward neural networks for giving the final prediction results have the same
structure: 100 → 100 → 1. We adopt PReLU [11] as activation functions in the
first 2 dense layers. We apply dropout to each dense layer with a dropout rate
equal to 0.4.

Table 2. Comparison of different methods. The results with the best performance are
marked in bold.

Compared methods PAP PNBB PNFC

MSE MSE MSE

HA 31.85 63.50 0.344

LSTM 28.46 57.21 0.319

BRR 27.68 50.06 0.306

SVR 26.81 49.83 0.275

RF 18.24 30.17 0.197

GBDT 18.87 29.73 0.220

FNN 17.72 28.64 0.183

APAMT trained w. single task 15.10 26.43 0.177

APAMT w. standard LSTM 15.08 25.92 0.174

APAMT w/o attention mechanism 15.13 27.04 0.177

APAMT 14.52 24.77 0.167
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5.4 Results and Discussion

Comparison with Baselines. We compare our model with baselines. All base-
lines are trained with single task. Quantitative comparison between different
models is shown in Table 2. From the table, we can see that APAMT achieves
the best performances with the lowest MSE 14.52 on PAP task, the lowest MSE
24.77 on PNBB task and the lowest MSE 0.167 on PNFC task.

We can see that LSTM performs not well, as it only utilizes historical
WAG/number of borrowed books/number of failed courses values. Other base-
lines further consider student demographic information and student behaviors
and therefore achieve better performances. FNN will perform better among base-
lines. It can model complex relations among features with deep learning. Ensem-
ble models (i.e., RF and GBDT) also perform well. Usually, ensemble methods
will utilize multiple learning algorithms to obtain better prediction performance
than could be obtained from any of the constituent learning algorithms alone.

It is worth mentioning that APAMT achieves 18.1%, 13.5%, 8.7% relative
improvements on PAP, PNBB, PNFC tasks, compared with the best baseline,
i.e., FNN. One important reason is that extracting features manually from het-
erogeneous behaviors may lead to loss of lots of undiscovered useful information.

(a) (b)

(c) (d)

Fig. 4. (a) and (b) show visualizations of learned student representations r. (c) and
(d) show visualizations of learned representations after one task-specific layer.
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Fig. 5. MSE with activation functions (a) and number of dense layers (b).

Ablation Studies. Table 2 also provides the comparison results of variants of
our proposed method. First, we study the effectiveness of multi-task learning.
We train APAMT with single task. From the table we can see that multi-task
learning achieves 3.8%, 6.3%, 5.6% relative improvements on PAP, PNBB, PNFC
tasks compared with single-task learning. Second, we prove the benefit of Profile-
Aware LSTM. We replace Profile-Aware LSTM with standard LSTM. The result
is that APAMT achieves lower MSE values (a reduction of 3.7%, 4.4% and
4.0%, respectively) with the help of Profile-Aware LSTM. Third, we remove the
attention mechanism and the performances of the tasks become much poorer.
This demonstrates the effectiveness of our attention mechanism.

Representations Visualization. We remove course information ē and v̄ from
APAMT and retrain APAMT with the three tasks. Figure 4(a) and (b) show
visualizations of learned student representations r. Figure 4(c) and (d) show
visualizations of learned representations after the first dense layer in PAP task
based module. The technique we use is t-SNE algorithm [15]. We randomly
choose two groups of students (EI & EE (i.e., Electronic Information and Elec-
trical Engineering) students and ME (i.e., Mechanical Engineering) students)
and mark these students. From Fig. 4(a), we can clearly find two clusters of EI
& EE students and ME students. But we can not clearly find two clusters in
Fig. 4(c). We can only distinguish these two groups.

Next, we mark the top 10% students and the last 10% students according to
the mean of all WAGs. From Fig. 4(b), we can not distinguish these two groups
of students. But there are clearly two clusters in Fig. 4(d).

This experiment indicates student representation r is general and could be
transferred to other tasks.

Effect of Activation Functions. We investigate the influence of the activation
function which exists in dense layers. We choose PReLU, ReLU and tanh to do
the experiment. Figure 5(a) shows the results. We observe that on our dataset,
PReLU is more suitable while tanh performs the worst.

Effect of the Number of Dense Layers. As we utilize feed forward neural
networks as decoders, a problem worth studying is that how many dense layers
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are appropriate. Experimental results are shown in Fig. 5(b). As the number of
layers grows, the performance grows. When the number of dense layers is 3, the
performance drops. We think overfitting problem occurs.

6 Conclusion

In this paper, we propose an Attentional Profile-Aware Multi-Task model (i.e.,
APAMT) to deal with multiple prediction tasks about students. With APAMT,
we can learn personalized and general student representations from student pro-
files and student heterogeneous behaviors. Once there arise new prediction tasks,
we only need to retrain simple and shallow feed forward neural networks with
the representations. Of course, APAMT can also be retrained for new tasks with
all the existing tasks. Besides, the learned model of APAMT can also be used
as initialization, and the whole network is fine-tuned for new tasks. All in all,
APAMT has flexibility and extension. Qualitative and quantitative experiments
on a real-world dataset have demonstrated the effectiveness of APAMT. We
believe APAMT can even be utilized to model heterogeneous behaviors of one
person rather than one student.
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Abstract. Crowdsourcing can be used to determine a total order for
an object set (e.g., the top-10 NBA players) based on crowd opinions.
This ranking problem is often decomposed into a set of microtasks (e.g.,
pairwise comparisons). These microtasks are passed to a large number
of workers and their answers are aggregated to infer the ranking. The
number of microtasks depends on the budget allocated for the problem.
Intuitively, the higher the number of microtask answers, the more accu-
rate the ranking becomes. However, it is often hard to decide the budget
required for an accurate ranking. We study how a ranking process can
be terminated early, and yet achieve a high-quality ranking and great
savings in the budget. We use statistical tools to estimate the quality of
the ranking result at any stage of the crowdsourcing process, and termi-
nate the process as soon as the desired quality is achieved. Our proposed
early-stopping module can be seamlessly integrated with most existing
inference algorithms and task assignment methods. We conduct exten-
sive experiments and show that our early-stopping module is better than
other existing general stopping criteria.

1 Introduction

Crowdsourcing has been used to address a variety of problems, such as entity
matching [28], image labeling [14], and object ranking [12,16]. These problems,
which are typically hard for computers to solve, can be easier for humans. In
this paper, we study the use of crowdsourcing on ranking objects. This approach,
which has received a lot of attention from different research communities [6,16,
21], is particularly helpful when ranking cannot be done objectively. For example,
to determine the greatest athletes of all times or the best pictures of a landmark,
we could solicit opinions from the crowd and aggregate them to a ranking that
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maximizes the consensus. In addition, crowdsourced ranking can be used to filter
data for subsequent machine learning tasks. For instance, ranking answers to a
question posted in a forum and selecting only the top ones can ease the burden
of natural language processing.

To conduct crowdsourced ranking, existing solutions typically decompose the
ranking process into a set of small and easy-to-answer microtasks, such as pair-
wise comparisons [31]. The microtasks are then distributed via crowdsourcing
platforms, such as Amazon Mechanical Turk (AMT) [1] and FigureEight [2],
to crowd workers by offering incentives, e.g., money, reputation, etc. The final
ranking is computed by an inference algorithm based on the answers collected
from the crowd. Naturally, the ranking accuracy is proportional to the number
of collected answers to microtasks, i.e., the total budget paid by the requester.

Recent studies [6,8,12] attempt to improve the inference algorithm I and
fine-tune the task assignment T (i.e., by dispatching tasks to suitable workers),
in order to spend the budget more effectively. Typically, the microtask answers
are collected in batches. Let Ai be the ith batch of answers; Inference algorithm
module I infers the interim ranking from A1 ∪ ... ∪ Ai; Task assignment mod-
ule T is used to determine the next batch of microtasks and assign them to
crowdsourcing platforms.

According to a recent experimental survey on crowdsourced ranking [31],
there is no single winner method that outperforms all others in all performance
factors (accuracy, convergence rate, efficiency, scalability). In addition, most
approaches require the budget to be set in advance, but they offer no guide-
line on how to set this value. Hence, it is expected that the requester sets a
large enough budget, hoping that the ranking process will converge to a sta-
ble ranking. This raises an interesting question: can we spend less and achieve
approximately the same ranking, as if we had spent all the budget?

To answer this question, we first investigate how much budget could be saved
when some representative inference algorithms are applied, i.e., Copeland [22],
CrowdBT [8], Iterative [12], and Local [12]. Details about these methods are
given in Sect. 4.1. We carry out the top-10 query tasks on two public datasets,
namely peopleAge [31] and peopleNum [15]. Figure 1 shows how the accuracy
of these algorithms varies as the budget increases. As an accuracy measure, we
utilize Kendall’s tau distance between the rankings progressively inferred and
the ground truth ranking. All methods converge to a stable state1, where the
change of the distance induced by the inferred ranking is very small. In Fig. 1(a)
and (b), CrowdBT reaches a stable state after using just 40% of the budget,
whereas all other methods converge when 60% of the budget is used. Obviously,
we can stop early the crowdsourcing process when we reach a stable state. We
now face the following challenge: how do we know if the ranking process has
reached a stable state?

To tackle this challenge, we develop a novel Early-Stopping (ES) module that
attempts to predict the next batch of answers by probabilistic analysis. We then
use Monte Carlo simulation [19], based on the prediction model, to construct

1 A formal definition of the stable state is provided in the Sect. 2.2.
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the distribution of the final answer and, in turn, derive the expected accuracy
of the final state. This helps us to assess when the ranking process reaches its
stable state, subject to a budget B. To early-stop the process, our ES module
requires an accuracy tolerance θ parameter, i.e., the acceptable accuracy that we
can afford to lose when compared to the ranking that will be obtained if all the
budget is used up.

Our ES module can seamlessly be used by most ranking processes with min-
imal effort. The only requirement is that the process provides interfaces for the
inference and task assignment modules, and accepts a programming call to termi-
nate the crowdsourcing process, when our module determines that the expected
accuracy already satisfies tolerance θ.

The main contributions of this paper are summarized as follows:

– To the best of our knowledge, we are the first to propose a general Early-
Stopping (ES) module for crowdsourced ranking.

– Our ES module is orthogonal to any inference algorithm or task assignment
method, and does not interfere with the flow of the crowdsourced ranking
process.

– We thoroughly evaluate our ES module with subjective and objective tasks,
different inference algorithms and task assignment methods, varying budgets
and accuracy tolerances. Our module can save even half of the budget given
to the ranking processes.

The rest of the paper is organized as follows. We formulate the problem and
provide definitions and notations in Sect. 2. Our ES module is described in detail
in Sect. 3. The experimental evaluations are shown in Sect. 4. We discuss related
work in Sect. 5 and conclude in Sect. 6.

2 Preliminaries

We first define crowdsourced ranking and top-k queries as follows.

Definition 1 (Crowdsourced Ranking). Given a set of n objects O =
{o1, ..., on}, use human workers to decide a total order σ = {oi ≺ oj ≺ ...}.
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Definition 2 (Crowdsourced Top-k Query). Given a set of n objects O =
{o1, ..., on}, use human workers to find a ranked list σk = {oi ≺ oj ≺ ...} of size
k, such that for any oi ∈ σk ∧ ol /∈ σk, oi ≺ ol.

Note that the operator ≺ is a conclusion drawn from the crowd’s answers.
For instance, given some replies to a question posted in a forum, we can ask
the crowd to conduct pairwise comparisons between the replies, and then use
existing inference algorithms to process the crowd’s input and find the top-5
replies. Note that comparing two replies is not machine friendly since it not
only requires strong natural language processing techniques but also a good
understanding of the question, i.e., domain expertise.

2.1 Distance Between Rankings

In our solution, we need to measure the distance (i.e., difference) between the
ranking inferred at an intermediate state and the ranked list at the final state.
To measure the distance between two rankings, a common practice is to use
Kendall’s tau distance, i.e., the number of inverse pairs of objects.

We use the normalized Kendall’s tau distance for complete rankings and
top-k ranked lists as defined in Eq. 1 and Eq. 2, respectively:

D(σ1, σ2) =

∑
(oi,oj)∈O×O,i<j 1(oi ≺ oj , σ1) × 1(oi � oj , σ2)

n(n − 1)/2
(1)

D(σk
1 , σk

2 ) =

∑
(oi,oj)∈O×O,i<j 1(oi ≺ oj , σ

k
1 ) × 1(oi � oj , σ

k
2 )

k2
(2)

where 1 is the indicator function that equals to 1 when its predicate is true,
or 0 otherwise. When σ1 and σ2 are reversed, the numerator of Eq. 1 takes its
maximum possible value n(n−1)/2, and Eq. 1 reaches the highest value of 1. As
for Eq. 2, the numerator takes its maximum value k2 when objects in σk

1 and σk
2

have no intersection.

2.2 Stable State and Optimal Stopping Point

Publishing a batch of microtasks into the crowdsourced platform is a common
strategy to accelerate the speed of collections. Let pi be the state after collecting
the ith batch of answers Ai and σi = I(A1 ∪ ... ∪ Ai) is the ranked list at
pi. The stopping module should check whether to stop at each pi. Without loss
of generality, we assume that the budget B is the total number of microtasks
we plan to publish and the number of microtasks, nbatch, is the same in each
batch. B/nbatch is the total number of batches needed to collect all answers.
We then give a formal definition of the stable state that we mentioned in the
Introduction:

Definition 3 (Stable State). Given the whole collection process {A1, A2,
· · · , AB/nbatch

} and an accuracy tolerance θ ∈ [0, 1] from the requester, pl is
called as a stable state of the process if:
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1. ∀pi, pj ∈ [pl, pfinal], D(σi, σj) ≤ θ 2. � pi < pl, pi is a stable state
where l ∈ [1, B/nbatch] and pfinal = B/nbatch.

The first condition secures that the distances between the rankings at any
two states (from pl to the final) do not exceed θ. The second condition secures
the maximality that no earlier (better) stable state can be found in the entire
process. It is obvious only one stable state exists in each collection process.

The stopping point psc is the moment decided by a stopping criterion (SC)
to early stop the ranking process. Based on the stable state definition, we can
say that

Corollary 1 (The Optimal Stopping Point). The optimal point poptimal to
early stop a ranking process is when the process turns into the stable state, i.e.,
poptimal = pl.

The optimal stopping point guarantees the optimality because it saves up as
much as possible the budget and ensures the distances from the ranked list at
the stopping point to the final are always smaller than the accuracy tolerance θ.

For example, Fig. 2 shows the distance between the current and the final
ranking at all states of the process. We show two optimal stopping points with
θ = 5% or θ = 2%. Basically we may save more budget with larger θ. Here we
save 50% budget for θ = 5%, and 10% budget for θ = 2%.

One may wonder whether some simple method, e.g., Moving Average and
Weighted Moving Average [3], can find poptimal. We also show two kinds of
intervals in Fig. 2. The first purple rectangle is an interval that tends to be
stable during a certain time but descends gradually as more budget consumes.
The second one also tends to be stable but the change of rankings is larger than
θ as more budget consumes. Given a current point pi, moving average uses the
previous rank lists in a certain window size to represent the inferred rankings in
the future. It is easy to drop out into these intervals and cause the process to
stop earlier than it should. Besides, it is hard for users to set the best parameter
values for them, such as the window size. Bad parameters lead to the worst
stopping position. To avoid stopping at these intervals, we propose a novel ES
module that attempts to discover the optimal stopping point.

3 Early-Stopping Module

3.1 Predicting the Next Answer Set

Consider a crowdsourcing rank process R, based on an inference module I and
a task assignment module T , that has already collected the ith batch answer set
(Ac = A1 ∪ ... ∪ Ai). We predict the next batch of answers by a three-stage
process, including (1) determining new tasks tnew, (2) predicting the answers
anew of tnew, and (3) estimating the influence of worker reliability.

Determining New Tasks, tnew . Recall that the microtasks of crowdsourced
ranking are pairwise comparisons (oi, oj). Given the collected answer set Ac, the
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task assignment module T decides the importance of tasks. The most important
nbatch tasks are distributed to crowdsourcing platforms as the next batch. We
predict answers for these tasks in our subsequent prediction model.

Predicting the Answer, anew . Given the collected answer set Ac and a chosen
task tnew = (oi, oj), we want to predict the answer to tnew. We assume that the
workers are reliable since they have to obey the crowdsourcing platform policy,
e.g., gain reputation via user feedback. Thereby, we can regard the answer anew

of the task tnew = (oi, oj) as a Bernoulli distribution of the probability of oi ≺ oj ,
denoted as Pij . Formally, it can be written as anew ∼ Bernoulli(Pij) where Pij is
the probability of oi ≺ oj . Several models for Pij has been suggested in previous
crowdsourcing studies [5,18,26]. For instance, the Bradley-Terry (BT) model [5]
defines Pij = esi

esi+esj , where si is the latent score of object oi. The Thurstonian
model [26] defines Pij = Φ(si−sj), where Φ is the normal cumulative distribution
function. However, some inference modules [10,11] do not build on the latent
scores of objects.

We attempt to design a new estimation model that is suitable for most infer-
ence modules. We estimate the probability Pij independently, i.e., Pij only based
on the previous answer set of the task (oi, oj). Suppose that the current answer
set is Ac; we build an observed matrix M , where Mij is the number of answers
reporting oi ≺ oj in Ac. Pij depends on Mij and Mji.

We use maximum a posteriori probability (MAP) to calculate P̂ij :

P̂MAP(M) = argmax
P

Pr(P | M) = argmax
P

∏

i,j|i<j

Pr(Pij | Mij ,Mji)

= argmax
P

∏

i,j|i<j

Pr(Mij ,Mji | Pij)Pr(Pij)∫ 1

0
Pr(Mij ,Mji | pij)Pr(pij) dpij

∝ argmax
P

∏

i,j|i<j

Pr(Mij ,Mji | Pij)Pr(Pij)

(3)
If we assume the prior distribution of Pij as Beta(1, 1) which is the conjugate
prior for the Bernoulli distribution, the posterior distribution of Pij is Pr(Pij |
Mij ,Mji) ∼ Beta(Mij + 1,Mji + 1). The reason behind using Beta(1, 1) is that
we believe that we have equal probability to get either oi ≺ oj or oi 	 oj . It could
also be interpreted as Laplace smoothing to avoid some undefined calculation,
e.g., Beta(0, 0). The MAP of P̂ij equals the mode of the posterior distribution,
which is

P̂ij =
Mij + 1

Mij + Mji + 2
. (4)

Alternatively, we could also use maximum likelihood estimate (MLE) to cal-
culate P̂ij :

P̂MLE(M) = argmax
P

Pr(M | P ) = argmax
P

∏

i,j|i<j

Pr(Mij , Mji | Pij)

=
∏

i,j|i<j

(Mij + Mji

Mij

)
Pij

Mij (1 − Pij)
Mji = argmax

P

∏

i,j|i<j

Pij
Mij (1 − Pij)

Mji

(5)

The MLE of P̂ij equals to Mij

Mij+Mji
. Similarly, if we replace Mij and Mji by

Mij + 1 and Mji + 1, respectively, by the Laplace smoothing, then the MLE
equation will be identical to Eq. 4 (from MAP).
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In summary, we estimate Pij from M based on Ac and then sample an answer
anew by Bernoulli(Pij) for the task (oi, oj).

Estimating the Influence of Worker Reliability. In this section, we dis-
cuss how worker reliability influences the predicting process of answer anew. As
mentioned in Sect. 3.1, the posterior distribution Pij can be estimated based on
the collected answers Ac. The estimation framework is built on our underlying
assumption that every worker is reliable.

We attempt to add the effect of workers’ reliability (i.e., the probability of
answering correctly). Assume that we already know the average worker reliability
rel in Ac, the probability of a new answer anew should be revised as P ′

ij =
Pij × rel +(1−Pij)× (1− rel). It means that workers give reliable answers with
the probability rel while giving untrustworthy and opposite answers with the
probability 1 − rel. The worker reliability can be provided by the platforms and
calculated based on workers’ answer history in other projects. If the platforms
do not provide this function, we could also set a lower bound of the required
quality of workers or do the qualification test to filter bad workers before the
actual assignments. This lower bound or qualified reliability is regarded as rel.

Generating Answers in the Next Batch Ai+1 . So far, we have discussed
how to predict the next task answer anew based on the collected answers Ac and
worker reliability. To predict the answers Ai+1 obtained in the next batch, we
apply an iterative process that generates answers one after another. Algorithm1
shows the pseudo code of the iterative process. We first estimate Pij in line 2–6.
Then we utilize the assignment module T to get the importance of tasks. We
select the first nbatch important tasks, predict the answers respectively and add
into Ai+1 in line 7–12.

We can also predict a “complete” answer set A (obtained when we use up the
budget B). Based on Algorithm 1, we predict Ai+1 based on Ac = A1 ∪ ... ∪ Ai.
Similarly, Ai+2 is predicted based on A1 ∪ ... ∪ Ai+1, Ai+3 is predicted based on
A1 ∪ ... ∪ Ai+2 and so on. Finally, we can predict A = Ac ∪ Ai+1 ∪ Ai+2 ∪ Ai+3...
until the size of A is equal to the given budget B.

3.2 Calculating Deviation

In the last section, we showed how to predict a “complete” answer set A. In this
section, we discuss how to judge whether the current point satisfies the definition
of the optimal stopping point.

Expected Distance Between Rankings. Given a “complete” and deter-
ministic answer set A, the inference module I can be used to compute each
interim ranking σi = I(A1 ∪ ... ∪ Ai) and the distance D(σi, σj) between each
two interim rankings (cf. Eq. 1 and 2). However, the probabilistic process may
create many possible worlds, i.e., many possible answer sets A = {A1, A2...}.
If we know the occurrence probability of each possible world Pr(A′) where
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Algorithm 1. Predicting the Next Answer Set
Input: Current answer set Ac, Inference module I, Task assignment module T , the
number of tasks in a batch nbatch

1 Initialize Ai+1 = ∅

2 // Step 1: Build the matrix M and P
3 Built matrix M based on the answer in Ac

4 for all possible (i, j) do

5 Estimate Pij =
Mij+1

Mij+Mji+2 by Eq. 4

6 Calculate P ′
ij by Pij with worker reliability rel

7 // Step 2: Getting the next nbatch important tasks from T
8 T = T (Ac)
9 for each tnew in T do

10 // Step 3: Predict the answer of tnew = (oi, oj)

11 Sample a ∼ Bernoulli(P ′
ij)

12 Ai+1 = Ai+1 ∪ {a}
13 return Ai+1;

A′ ∈ A, the expected distance between the ith and jth batches can be defined
as E[Dij ] =

∑
A′∈A

Pr(A′) × D(I(A′
1 ∪ ... ∪ A′

i), I(A′
1 ∪ ... ∪ A′

j)).
However, it is difficult to calculate the occurrence probability because it is

impossible to conduct a brute-force search for all possible worlds. To tackle
this problem, we apply the Monte Carlo method, that allows an estima-
tion of the sampling distribution of almost any statistic using random sam-
pling method. The Monte Carlo method helps to generate a list of possi-
ble worlds, i.e., “complete” answer sets {A1, A2, ..., As, ...|s ∈ [1, nsample]}.
Given a pair (i, j), we are able to compute a list of pairs of rankings (σs

i ,
σs

j ) and the corresponding distances D
s
ij . By the law of large numbers, the

expected distance E[Dij ] can be approximated by taking the sample mean
Dij = 1

nsample

∑nsample
s=1 D(I(As

1 ∪ ... ∪ As
i ), I(As

1 ∪ ... ∪ As
j)). If pcurrent is the

earliest point satisfying ∀pi, pj ∈ [pcurrent, pfinal], Dij ≤ θ, pcurrent is the stopping
point decided by our ES module.

The Number of Required Samples. In the Monte Carlo method, it is impor-
tant to decide the number of required samples such that the quality is secured.
Following common practice, we use Hoeffding’s inequality [13] to decide it.

Hoeffding’s Inequality. Let X1, ...,Xn be independent random variables
bounded by the interval [0, 1] : 0 ≤ Xi ≤ 1. Define the mean of these vari-
ables as X = 1

n (X1 + ... + Xn). Then we have Pr(E[X] − X ≥ t) ≤ e−2nt2

where t ≥ 0.
We regard a possible world answer set As as a sample. The distance D

s
ij can be

regarded as an independent random variable given (i, j). Based on Hoeffding’s
Inequality, we have Pr(E[Dij ] − Dij ≥ t) ≤ e−2nt2 . This inequality could be
transformed into a confidence interval of E[Dij ]:

Pr(E[Dij ] ≤ Dij + t) > 1 − e−2nt2 , (6)
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where Dij is computed using Sect. 3.2. We require at least ln(1/α)
2t2 samples to

acquire (1 − α)-confidence interval for E[Dij ] ≤ Dij + t.
Given the targeted accuracy tolerance θ, if we find that Dij ≤ θ − t, we can

also derive Pr(E[Dij ] ≤ Dij + t ≤ θ) > 1 − e−2nt2 . We summarize it as the
following theorem.

Theorem 1. Given two points pi and pj, we secure that E[Dij ] ≤ θ with confi-
dence (1 − α) after we random sample ln(1/α)

2t2 “complete” answer sets and find
Dij ≤ θ − t, for some 0 < t < θ.

Here we set the confidence level α = 5% and the estimation error t as an
order of magnitude smaller than θ which secures enough samples to give a good
estimation. We need to sample nsample ≈ 104 for θ = 0.1, and nsample ≈ 106 when
we set θ = 0.01. The workload of sampling can be accelerated by multithreading
or distributed computation.

We then analyze the number of samples to secure all E[Dij ] ≤ θ with high
probability from the current to the final state, i.e., judge whether the following
formula holds: ∀pi, pj ∈ [pcurrent, pfinal], E[Dij ] ≤ θ.

Assume that number of batches for remaining budget is m = B−|Ac|
nbatch

, there
are (m+1)m/2 different expected distances needed to compute and check. If we
acquire confidence (1 − α′) for all the expected distances, the confidence (1 − α)
and the number of samples for each expected distance can be set as

α =
α′

(m + 1)m/2
and nsample =

ln((m + 1)m/2) + ln(1/α′)
2t2

. (7)

We utilize the union bound to prove them. Let E[Dij ] ≤ Dij + t for a pair
(pi, pj) be an event. The confidence (1−α) means the probability that one event
fails is α. Then based on the union bound, we derive that the probability that at
least one of the events fails is no greater than the sum of the probabilities of the
individual events, which is

∑(m+1)m/2
i=1 α = α′. In other words, the probability

that no event fails is at least α′, which satisfies our requirement.

Putting It All Together. We put all of these techniques together to finalize
the ES module, as shown in Algorithm2.

4 Experimental Evaluation

In this section, we thoroughly evaluate our ES module on two real pub-
lic datasets. Based on the different inference algorithms and task assignment
approaches, we compare our ES module with some standard quality estimation
methods.

4.1 Experimental Settings

Datasets. We use two real public datasets collected in AMT.
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Algorithm 2. Early-Stopping module
Input: Current answer set Ac, Inference module I, Distance function D, Budget B,

accuracy tolerance θ, confidence interval α′

1 Calculate number of batches for remaining budget m =
B−|Ac|
nbatch

2 Estimate the number of samples nsample by Eq. 7

3 Initialize distance array d and D

4 for 1 ≤ s ≤ nsample do
5 Set a temporary answer set A = Ac

6 Create a temporary array of ranked lists σ and set σ[0] = I(Ac)
7 for 1 ≤ j ≤ m do
8 Predict a batch of answers Aj based on A by Alg. 1
9 A = A ∪ Aj

10 σ[j] = I(A)

11 for 0 ≤ i ≤ m − 1 do
12 for i + 1 ≤ j ≤ m do
13 d[s][i][j] = D(σ[i], σ[j])

14 for 0 ≤ i ≤ m − 1 do
15 for i + 1 ≤ j ≤ m do

16 D[i][j] = 1
nsample

∑
1≤s≤nsample

d[s][i][j]

17 if D[i][j] ≤ θ − t, ∀i, j then
18 Invoke a programming call to terminate the rank process R
19 else
20 Continue collecting the next batch of answers

– PeopleNum [15] concerns 39 images taken in a mall, each of which includes
multiple persons. The goal is to find the images with the most people in
them. 6066 answers were collected from 197 workers. Each pair of images is
answered by at least 5 workers.

– PeopleAge [31] has 50 human photos with ages from 50 to 100. The goal is
to find the photos that include the youngest person. There are 4930 answers
from 150 workers. Each pair of photos is answered 3 times at least.

PeopleAge is hard because it is relatively subjective and different workers may
have different opinions on age. The difficulty of PeopleNum is medium because
it costs some time to count the persons.

Inference Modules I. According to [31], we select some recommended infer-
ence algorithms and task assignment strategies to work with our ES module. For
rank inference algorithms, we choose 4 methods:

– Copeland is a basic election approach where the objects are sorted by the
times they win/lose in the comparisons.

– Local is a heuristic-based method based on a comparison graph, where nodes
are objects and edges are built based on the pairwise comparisons. The score
of an object is defined by the number of winning objects minus the number
of losing objects in its 1-hop and 2-hop neighborhood.

– Iterative is an extended version of local supporting top-k queries. It keeps
discarding the bottom half of the objects in the inference process and then
re-computes the scores of the surviving objects. It repeats these two processes
until k objects are left.
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– CrowdBT is a representative method that uses the Bradley-Terry (BT) model
to estimate the latent score si of the object oi. It models the probability
oi ≺ oj as esi

esi+esj . Based on the crowdsourced comparisons A, it computes
scores for the objects by maximizing

∑
oi≺oj∈A log( esi

esi+esj ).

Task Assignment Modules T . We implemented 4 task assignment strategies
based on commercial systems and existing work.

– Random is the strategy used by Amazon Mturk; tasks are assigned to coming
workers at random and all tasks are answered the same number of times.

– Greedy chooses the pair of objects with the highest product of scores as the
next task.

– Complete finds the top-x objects with the highest scores, where x is the largest
integer satisfying x(x−1)

2 ≤ nbatch, and sets their pairwise comparisons as the
next tasks.

– CrowdBT is an active learning method which selects the pair of objects which
maximizes the information gain based on the estimated scores.

Based on the characteristics of the inference algorithms and the task
assignment strategies, we form and test 7 rank processes R: Copeland-
Random, Iterative-Random, Local-Random, CrowdBT-Random, Local-Greedy,
Local-Complete, and CrowdBT-CrowdBT.

Competitors. In order to evaluate our ES module, we also investigate two
alternative stopping criteria based on statistical analysis.

– Moving Average (MA) stops when the following equation is smaller than θ
at the first time. We calculate the distances between all pairs of consecutive
rankings or top-k lists, generated at the last w points before the current stage
and average them. Suppose we already collected i batches of answers:

MA(i, w) =

∑w
j=1 D(I(A1 ∪ ... ∪ Ai−j), I(A1 ∪ ... ∪ Ai−j+1))

w
(8)

– Weighted Moving Average (WMA) is similar to MA, except that we assign
different weights to the distances based on how far away they are from the
current stage. The distance between the latest two rankings has the largest
weight w, the second latest w − 1, etc., and so on.

WMA(i, w) =

∑w
j=1(w − j + 1)D(I(A1...Ai−j), I(A1...Ai−j+1))

w(w + 1)/2
(9)

Evaluation Metrics. We define the optimal stopping point poptimal in the
Sect. 2.2. To evaluate the effectiveness of different stopping criteria, we ana-
lyze the difference between poptimal and the stopping point psc predicted by a
stopping criterion. Mathematically, it can be written as Δsc = |poptimal−psc|

B/nbatch
.



A General Early-Stopping Module for Crowdsourced Ranking 325

 0

 0.2

 0.4

 0.6

 0.8

 1

Copeland-Random

Iterative-Random

Local-Random

CrowdBT-Random

Local-Greedy

Local-Complete

CrowdBT-CrowdBT

 0

 0.2

 0.4

 0.6

 0.8

 1
Δ S

C

S
to

pp
in

g 
P

oi
nt

(a)  Threshold = 0.01 

MA WMA ES MA’s Stopping Point WMA’s Stopping Point ES’s Stopping Point Optimal Stopping Point

 0

 0.2

 0.4

 0.6

 0.8

 1

Copeland-Random

Iterative-Random

Local-Random

CrowdBT-Random

Local-Greedy

Local-Complete

CrowdBT-CrowdBT

 0

 0.2

 0.4

 0.6

 0.8

 1

Δ S
C

S
to

pp
in

g 
P

oi
nt

(b) Threshold = 0.02 

 0

 0.2

 0.4

 0.6

 0.8

 1

Copeland-Random

Iterative-Random

Local-Random

CrowdBT-Random

Local-Greedy

Local-Complete

CrowdBT-CrowdBT

 0

 0.2

 0.4

 0.6

 0.8

 1

Δ S
C

S
to

pp
in

g 
P

oi
nt

(c)  Threshold = 0.03 

Fig. 3. Δsc & stopping points in PeopleNum dataset for top-10 lists
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Fig. 4. Δsc & stopping points in PeopleAge dataset for top-10 lists

4.2 Experimental Results

Implementation Details. We compare our ES module with two competitors,
MA and Weighted MA, on two datasets for ranking or top-k queries. The objec-
tive is to show the superiority and robustness of ES on top of different rank
processes R.

The total budget is set to the number of answers in each original dataset.
The number of microtasks in a batch is set to 200. To get an answer of a pairwise
comparison (oi, oj), we randomly sample an answer from the answer set of (oi, oj)
without replacement. If some pairs are running out of answers, we will simulate
the next answer by a worker that has average reliability. To solve the cold-start
problem of some task assignment strategies, we pre-generate an answer to every
comparison. We also choose the best window size for MA and Weighted MA,
which is 20 for PeopleNum dataset and 10 for PeopleAge dataset, respectively.
Besides, a little change of initial answers for the cold-start problem will change
the next sequence of microtasks. Thus, we run the collection process 10 times,
and report the average performance.

We use two y-axes in Fig. 3, 4, 5 and 6. The left y-axis is Δsc, which is defined
in Sect. 4.1. The right y-axis is the relative stopping point of MA, Weighted MA,
ES and the optimal stopping point, which divided by the maximum possible
stopping point, B/nbatch.

Top-k Ranking. Figures 3 and 4 show Δsc and the stopping point of our ES
module and the two alternative stopping criteria for top-k queries. Each stopping
criterion is evaluated with seven rank processes (cf. Sect. 4.1). We set k = 10
by default. The accuracy tolerance θ is set to {0.01, 0.02, 0.03}. For instance,
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θ = 0.01 means the possible number of inverse pairs between the current ranked
list and the final state is smaller than 102 × 0.01 = 1.

ES outperforms the other two competitors for different rank processes and
different datasets in all settings. When we set θ to a larger value (accepting
higher accuracy loss), MA and Weighted MA tend to fall into the false states
mentioned in the Sect. 2.2 and stop much earlier than the optimal stopping point,
which results in high accuracy loss. According to the right y-axis, the position
of poptimal varies from 0.5 to 0.9. The stopping point of our ES module is very
close to poptimal when compared with the stopping points of MA and Weighted
MA. This reveals that ES is effective in finding poptimal.

Complete Ranking. Figures 5 and 6 show the performance for ranking queries.
The accuracy tolerance θ is set to {0.01, 0.15, 0.02}. Note that we exclude two
inference algorithms, Iterative and Complete, since they are designed for top-k
queries. Similar to top-k queries, our ES module is much better than the other
two competitions in terms of Δsc. The curve of ES’s stopping point is very close
to that of poptimal compared with MA and Weighted MA.
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Fig. 5. Δsc & stopping points in PeopleNum dataset for rankings
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4.3 Parameter Analysis

In this section, we test the effect of the total budget B and the number of
microtasks in one batch nbach. We evaluate these parameters with two rank
processes, Local-Random and Local-Greedy on PeopleNum dataset.

Figure 7 shows the effect of nbatch. In these experiments, we set the budget B
equal to the total number of answers in the original dataset and set θ = 0.02. ES
is the clear winner since its Δsc is always less than or equal to 0.2 and outper-
forms MA and Weighted MA. In addition, MA and Weighted MA perform worse
when nbatch becomes small (i.e., fewer microtasks in a batch), which means that
the distance between two consecutive batches does not represent the distance
between the current state and the final state.

Figure 8 evaluates the effect of the budget B. Note that we use the abso-
lute number of answers instead of a percentage in the y-axis. We set θ = 0.02
and nbatch = 200 as default. We try {2.5, 5.0, 10.0, 20.0} ∗ 103. Δsc of ES is
always smaller than the corresponding Δsc of MA and Weighted MA. Particu-
larly, errors of MA and Weighted MA increase dramatically when B increases
in Local-Random. This is because increasing budget B improves the quality of
the final result and the position of the optimal stopping point moves backwards.
But the stopping points predicted by MA and Weighted MA do not change.

5 Related Work

Crowdsourced Ranking. The ranking problem has a long history and has been
studied in the past several decades. Simple traditional ranking algorithms, e.g.,
BordaCount [4] and Copeland [22], rank objects by the times they win/lose in
the comparisons. But these algorithms do not consider that the crowd may give
incorrect answers. How to deal with noisy answers and control worker qualities
is the key component in almost all crowdsourcing problems [17,24,25]. Several
inference algorithms and task assignment strategies are proposed to solve it.

Inference algorithms in raking problems can be divided into two categories:
heuristic-based solutions from the DB community approach the problem as a
top-k operation in databases, and machine-learning algorithms formalize it as a
leaning problem and maximize the likelihood of top-k objects. Heuristic score-
based algorithms [12,20,27,29] rank objects by estimating the underlying score
of objects. CrowdBT [8] and CrowdGauss [21] are ML algorithms, which set
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the objective function based on the assumption and use maximum likelihood to
obtain the top-k object with the highest probability. Regarding task assign-
ment strategies, Amazon MTurk follows a random assignment strategy; i.e.,
microtasks are randomly dispatched to each coming worker. Random assign-
ment does not consider the difficulties of microtasks. Some heuristic assignment
methods [12] aim at maximizing the probability of obtaining the top-k result,
e.g., by selecting most promising object pairs (e.g., with the largest latent scores)
to compare. [6] avoids some unnecessary comparisons by setting a bound for the
object latent score. Active learning methods are also used in CrowdBT [8] and
CrowdGauss [21] to compare objects with the largest expected information gain.

According to a recent experimental study [31], different inference and assign-
ment methods have their own advantages and there does not exist a single best
one. Machine-learning methods typically have high quality. Still, global inference
heuristics that utilize global comparison results achieve comparable and even
higher quality than ML methods. Local inference heuristics have poor quality,
but have higher efficiency and scalability. For task assignment, active-learning
methods achieve higher quality than heuristics, but they have low efficiency.

Stopping Criteria. Stopping criteria have been defined for various crowd-
sourcing problems. [23] designs an early-stopping strategy for multiple-choice-
question problems (e.g., choosing the opinion positive, neutral, or negative in
a sentence). [30] uses Sequential Probability Ratio Test to decide when to stop
for multi-labeling tasks (e.g., labeling pictures as a portrait or a landscape).
Besides, [7] uses Chao92 estimator to evaluate the level of completion for entity
collection (e.g., collecting a set of active NBA players). The settings of all these
problems are quite different from crowdsourced ranking because microtasks are
independent in these problems while correlated in the ranking problem.

Some previous studies on crowdsourced ranking define their special stopping
conditions. For instance, [9] assumes that each object has a latent score and
answers to pairwise comparisons follow the Bradley-Terry model [5]. [16] asks
the crowd to give a numerical answer in [0, 1] for a pairwise comparison and
calculates the confidence interval of the result. However, these approaches are
based on special assumptions that cannot generalize to most situations.

6 Conclusion

In this paper, we proposed a general stopping criterion for crowdsourced ranking.
We demonstrated the robustness of our method in different situations, includ-
ing subjective or objective tasks, diverse inference modules or task assignment
modules and different budget and tolerance parameter values.

Acknowledgement. Leong Hou U was funded by the National Key R&D Plan
of China (2019YFB2102100), the FDCT Macau (SKL-IOTSC-2018-2020), and UM
RC (MYRG2019-00119-FST). Caihua Shan and Reynold Cheng were supported by
HK RGC (RGC Projects HKU 17229116, 106150091, and 17205115), HKU (Projects
104004572, 102009508, and 104004129), and HK ITF (ITF project MRP/029/18).



A General Early-Stopping Module for Crowdsourced Ranking 329

Nikos Mamoulis has been co-financed by the European Regional Development Fund,
Research–Create–Innovate project “Proximiot” (T1EDK-04810).

References

1. Amazon mechanical turk. https://www.mturk.com
2. Figure eight. https://www.figure-eight.com
3. Moving average. https://en.wikipedia.org/wiki/Moving average
4. Adelsman, R.M., Whinston, A.B.: Sophisticated voting with information for two

voting functions. J. Econ. Theory 15(1), 145–159 (1977)
5. Bradley, R.A., Terry, M.E.: Rank analysis of incomplete block designs: I. The

method of paired comparisons. Biometrika 39(3/4), 324–345 (1952)
6. Busa-Fekete, R., Szorenyi, B., Cheng, W., Weng, P., Hüllermeier, E.: Top-k selec-
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Abstract. In this work, we specify a guaranteed delivery booking sys-
tem which helps the publishers provide view-guarantees to advertisers.
We provide these guarantees while ensuring that content is not repeated
to users in a visit (deduplication) and users are not overwhelmed by the
same content across visits (frequency capping). We discuss the applica-
tion of the guaranteed delivery system to two different use-cases: one in
e-commerce and another in video streaming systems. We pose the book-
ing problem as an optimisation of revenue under several constraints. We
show that, the optimisation can be solved efficiently and such a system
could provide near-real-time responses and act as a self-serve platform
for advertisers. We also address the various practical considerations in
providing such guarantees.

1 Introduction

In a typical e-commerce store-front, content on products is delivered to the
customers either through a search interface or via banners or widgets that contain
promotional information. Content shown in response to a search query has a
specific intent associated with it whereas promotional content displayed through
banners or widgets need not necessarily have an intent.

Content could be promoted for one of two major reasons. First is to show
content which the user might be interested in and this would improve cus-
tomer engagement and in turn improve the value to both the customer and
the company. The second reason—the one driving this work—is to show content
which lets the customer explore merchandise from various categories of the e-
commerce store. Here the goal is to give visibility to the content of advertisers.
This is akin to a store front in a brick and mortar shop which serves the purpose
of piquing the customer’s interest and thus drive engagement.

This problem is generally solved by affixing banners to the page displayed,
or by allowing the content to be pinned to pages of users who satisfy certain
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targeting criteria. We propose a system where the merchandisers request views
of a target audience and the system provides a maximum bookable quantity and
provides guarantees on the delivery once the booking is confirmed.

This work closely follows literature on guaranteed delivery of advertisements
and builds on it to enable e-commerce store fronts. In the existing literature one
of the core assumptions is that there is only one advertisement per page. But
in a store-front—and for that matter even for advertisements on web pages—
there can be more than one promotional content on a page. This constrains the
guarantees further by a couple of experiential requirements like, (i) Deduplica-
tion: Not allowing duplicate content on a page and (ii) Frequency capping: Not
showing a content more than a finite number of times to a customer during their
multiple visits.

The contributions of this work are as follows: (i) A booking system which
maximises content views, (ii) Unique content in any given visit, (iii) Frequency of
content per user across visits finitely capped. This paper is organised as follows:
Sect. 2 explores the relevant literature in this field, Sect. 3 gives an overview of
the components in a basic guaranteed delivery system. Section 4 delves deeper
into the current problem by formulating the guarantees and constraints required
to solve this problem. Section 5 provides a brief interlude into a different domain
where our solution becomes pertinent. We then present our practical observations
in Sect. 6 and experiments in Sect. 7 before concluding.

2 Related Literature

Guaranteed delivery for advertisements by publishers has been an active area
of research in past few years. Theoretically a very generic solution has been
proposed by Vee et al. [12] which can be used for online bipartite matching,
allocation and budgeted bidders. Their solution gives a near optimal allocation
for users coming in online fashion. They propose a compact allocation plan
of requests by advertisers on publishers website for multiple users as convex
optimization problem with linear constraints. Here we can see the robustness
of solution under sampling of original problem. Extending this work Bharadwaj
et al. [2] proposed SHALE for display advertising, where early stop feature in
dual space gives near optimal primal solve and linear time allocation in large
systems. Both of these work assume one advertisement for each user visit while
in practice we may want to show more than one ad when a user visits. Hence
they do not focus on de-duplication property or on frequency capping constarint.

In allocation plans we can see representativeness as key objective to maximize
along with reducing penalties for under deliveries. Bharadwaj et al. and Yang
et al. [14] model allocation by maximizing it. They employ different methods to
generate allocation plans. Yang et al. also model maximizing revenue from non-
guaranteed advertisers and with clicks or conversions obtained from guaranteed
ads. Chakrabarti et al. [5] address the joint problem of maximizing the CTR
(click through rate) of ads considering the user engagement aspect along with
minimizing under-delivery with the help of traffic shaping probabilities. To the
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best of our knowledge, there is little prior work concerning the booking problem.
Booking of users’ slots for different advertisers becomes problem when we start
considering practical issues like,

1. More than one ad is shown on the page at the same time.
2. Every ad on a page is unique when a user visits the page.
3. Advertiser defined caps on the number of views per user.
4. Advertisers can target different cohorts of users or supplies.

Frequency capping has been addressed in the past but in the context of
one advertisement per page. Treating it as online stochastic bipartite match-
ing problem Feldman et al. [7] provided an approximate algorithm. Shanahan
et al. [9] proposed frequency capping policies for each user segment via Markov
Decision Process. Farahat [6] presents the idea of having frequency capping con-
straints in a linear optimization program for allocation. Buchbinder et al. [4]
analyze greedy algorithms for special cases with frequency cap and also gives a
primal-dual algorithm that holds even when various user segments are targeted
by different advertisers and may help in improving the competitive ratio. Hojjat
et al. [8] and Shi et al. [10] consider other aspects as well like fair allocation
of ads to users(representativeness), user-level pacing and diversification along
with frequency caps to solve the allocation problem. They propose a two phase
framework to solve this problem in which first is to get the optimal allocation
plan like we see in [2] but with frequency capping constraints and second is to
get the pattern pools for each supply node. Zinkevich [15] present a weighted
method for guaranteed delivery with focus on the frequency capping constraint.
Our formulation is partially influenced by this constraint.

To the best of our knowledge, there is very little work on booking as an
optimisation in guaranteed delivery. This merits a separate discussion around
formulation because unlike allocation booking if implemented correctly is a time
critical step where responses are expected in the matter of seconds.

3 Guaranteed Delivery

A guaranteed delivery (GD) system provides view-guarantees to advertisers on
targeted audience segments at an agreed upon price. On failing to deliver the
views the publisher pays a penalty for every view which was guaranteed but
could not be delivered. The various components of a GD system are shown in
Fig. 1 and described below.

Audience Manager is the system which divides the total number of content
views generated by all users into disjoint segments of views. Typically this is
done by dividing views using user attributes and then by context attributes.
The final disjoint segments are termed as the supply nodes. In our GD sys-
tem, each supply node is uniquely identified by a combination of the follow-
ing: (Gender×Location×Affinity ×PageID×SlotID). But in practice, we
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allow advertisers to target only on user attributes and not on context attributes.
Hence targeting is restricted to user groups (Gender×Location×Affinity)
and not all supply nodes.

Fig. 1. GD system Fig. 2. Mobile e-commerce layout

Forecasting system predicts the number of page views for each supply node for
several days into the future. We use si to indicate the forecast of the views of the
ith supply node. In practice, we use ARIMAX [3] with sale and calendar events as
exogenous variables and Holt-Winters [13] to choose the best forecast based on
validation data. We also found that bottom-up forecasting—independent fore-
casts for each supply node—worked best. For each supply node we can forecast
two months into the future.

Booking is the process of adding/booking a new promotional content or adver-
tisement to the GD system. It creates a contract between the publisher and the
advertiser through the following steps:

1. Advertiser specifies a targeting criterion which reduces to a set of supply
nodes to which they want to show an advertisement at an agreed upon price
and penalty.

2. The GD booking system responds with a maximum number of views that the
system can provide to that advertiser. This is a time-critical step and it is
expected to be completed in the time taken for a transaction.

3. The advertiser books a number of views which is less than or equal to the
maximum number of views provided by the system.
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Each new booking, termed as demand, represents the number of views agreed
upon by the booking system and the advertiser. The views of the jth demand
node are represented as dj . The corresponding price (value) and penalty are
represented as νj and pj respectively. The booking system also defines the map-
ping Γ (j) which maps every booking to a set of supply nodes. The supply and
demand nodes can be thought of as a bipartite graph and booking defines the
edges of this graph. During booking the edge weights xij represent the hypo-
thetical allocation of a supply node i to a demand node j. The under-delivery
of a campaign is represented as uj . Under-delivery can be either due to booking
more valuable advertisements or it could be due to change in forecasts between
bookings. The problem formulated as a linear programming problem as below:

maximise
x,u

⎛
⎝νk

m∑
i=1

sixik −
k−1∑
j=1

pjuj

⎞
⎠ (1)

subject to
∑

i∈Γ (j)

sixij + uj ≥ dj , ∀j (2)

∑
j∈Γ (i)

xij ≤ 1, ∀i (3)

xij , uj ≥ 0, ∀i,∀j (4)

where k is the advertisement being booked. This optimisation will yield the
largest hole that can be created to accommodate k while minimising the under-
delivery of previously booked advertisements. Equations 2, 3, 4 are the demand,
supply and non-negativity constraints respectively.

Allocation is the process by which we display a targeted advertisement to a
user. It allocates a set of views from each supply node to a targeted demand
node. It is represented as xij which indicates the fraction of views of supply
node i which will be shown to the content provided by the demand node j. The
formulation for allocation is very similar in constraints but the objective is to
reduce under delivery.

minimise
x,u

n∑
j=1

pjuj (5)

subject to
∑

i∈Γ (j)

sixij + uj ≥ dj , ∀j (6)

∑
j∈Γ (i)

xij ≤ 1, ∀i (7)

xij , uj ≥ 0, ∀i,∀j (8)
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Some approaches [2] add a fairness criterion called representativeness represented
as θij which would be considered a fair allocation and re-write Eq. 5 as:

minimise
x,u

⎛
⎝

n∑
j=1

m∑
i=1

si(xij − θij)2 +
n∑

j=1

pjuj

⎞
⎠ (9)

The allocation and booking formulation given here would suffice if we were to
have only one advertisement per page and if we do not limit the number of
views of the same advertisement to a user. In practice, these assumptions do
not hold as there can be more than one advertisement per page—at least in
our use cases—and advertisers do not like getting a large number of views for
one advertisement from the same user. In the next section we reformulate the
optimisation problems to honour deduplication and frequency capping.

4 Booking Reformulation

Before reformulating the optimisation problem let us take a brief foray into the
business problem of running an e-commerce store-front and the practical issues.

4.1 E-Commerce Store-Front

A typical e-commerce store-front as depicted in Fig. 2 consists of a search bar
followed by several rectangle pieces of content. The content can be either promo-
tional (like advertisements) or recommendations based on the user’s past activity
or any other non-commerce content (like shipping status).

There are several advertisement slots per page and it can be seen that all
slots do not garner the same number of views. The view is an event that happens
when a content is in the view-port. The view counts are dependent on the vertical
scroll behaviour of the user1.

User Affinity. In an e-commerce store different users would tend to have dif-
ferent interests. Some might be book-lovers, others might be interested in DIY
goods and some others might shop for home appliances. Based on a user’s past
activity if we find that a user is likely to shop for a certain category of goods
then we term it as that user’s affinity towards that category. Advertisers like
targeting affinities as it gets them a very relevant user base.

In our GD system, we take the set of top 3 affinities of a user. Given that we
have around 20 high-level affinities we can define around

(
20
3

)
disjoint affinities.

If an advertiser chooses book-lovers as their target audience then we choose all
sets which have book-lovers as one of the affinities for that advertisers.

1 Visits from a mobile device make up more than 90% of our traffic and hence without
loss of generality we assume the device to be a mobile phone.
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4.2 Deduplication

Deduplication can be solved at serving time by removing duplicates and serving
alternate content in their place. Doing so will not violate the constraint but
will end up causing significant under-delivery. In a page with several slots the
booking system might assume all of them are available for an advertisement
causing under-delivery. To resolve this issue we transform a set of supply nodes
in a page taken in the descending order of views {s1, s2, . . . , sk} into an equivalent
number of σ-supply nodes {σ1, σ2, . . . , σk} as in Fig. 3(a) to 3(b).

First, let us define {ω1, ω2, . . . , ωk} as follows:

ωi =

{
sk, if i = 1
sk−i+1 − sk−i+2 otherwise

(10)

Now let us define k σ-supply nodes {σ1, σ2, . . . , σk} as in Eq. 11,

σi = ωi × (k − i + 1) (11)

Each ωi represents the number of unique times a user would scroll till a depth
k − i + 1 and the corresponding σi represents the total number of views. This
transformation enables us to constrain each user to be allotted not more than
ωi views from σi, for anything larger than ωi would lead to duplicates.

Fig. 3. Visualising supply nodes
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Algorithm 1. Transformation of supplies in a user group for fcap constraint
1: Inputs:

σ = [σ1, σ2, . . . , σk], ω = [ω1, ω2, . . . , ωk],

f = [f1, f2, . . . , fn] s.t.
V∑

i=1

fi = 1

2: Outputs:
z = [z1, z2, . . . , zb], w = [w1, w2, . . . , wb], v = [v1, v2, . . . , vb]

3: Initialize:
z = [],w = [],v = []
i ← j ← l ← 1
total visits ← ∑

k ω
allotted visits ← 0
remaining visits ← ωj

4: while allotted visits ≤ total visits do
5: required visits ← fi × total visits
6: height ← σj/ωj

7: vl ← V − i + 1
8: if required visits ≥ remaining visits then
9: wl ← remaining visits

10: j ← j + 1
11: if required visits = remaining visits then
12: i ← i + 1
13: else
14: fi ← fi − (remaining visits/total visits)
15: allotted visits ← allotted visits + wl

16: remaining visits ← ωj

17: end if
18: else
19: wl ← required visits
20: allotted visits ← allotted visits + wl

21: remaining visits ← remaining visits − wl

22: i ← i + 1
23: end if
24: zl = wl× height
25: l ← l + 1
26: end while

4.3 Frequency Capping Constraint

Every advertiser provides a frequency cap ψj associated with demand dj . In
order to reformulate the optimisation to honour these frequency caps we need to
re-transform σ-supply nodes to a form where we can define frequency capping
constraints. Before doing that, let us introduce the notion of user frequency
distribution.

A user group is the set of user attributes to which an advertisement is tar-
geted. We term every unique combination of (Gender×Location×Affinity)
as a user group. Every user falls in exactly one user group. For every user group
we compute a distribution of number of users visiting v number of times in the
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given forecasting period. This means that for every user group we have the infor-
mation about the fraction of users that visit once, twice, thrice in a forecasting
period as shown in Fig. 3(c). This histogram is provided by our forecasting sys-
tem. Note that we do not allow targeting at a page level as that would not enable
us to honour the frequency capping constraint.

Now we impose the user frequency distribution on the σ-supply nodes to
transform them into z-supply nodes which enable us to define frequency capping
constraints over deduplication constraints.

As a thought exercise, let us assume that the users who visit only once scroll
the deepest and the users who visit most frequently do not go beyond the first
slot in the page. This makes the optimisation simpler as the deep scrolls (σ1, σ2)
will not have frequency cap constraints, as they are from users who do not revisit
and hence will not have frequency caps. And in the shallow scrolls (σk−1, σk) the
frequency cap constraints can be modelled in a straight-forward way (as shown
by Shi et al. [10]), due to the lack of deduplication problems. In reality, this
assumption will be obviously wrong and the true nature might be closer to the
fact that the number of visits and the depth of scrolling would be independent.
But to ensure we provide the right guarantees, we assume the contrary, that the
users who visit most will also scroll the most and the users who visit the least
also scroll the least. This is the worst case scenario with respect to guarantees
on frequency capping.

We do this by selecting the traffic in the descending order of visit count
from the histogram and assigning it to the σ-supply nodes as given in Fig. 3(d).
Whenever we switch from one visit count bucket to another we break the σ-
supply node and the corresponding ω value. These new supply nodes are termed
z-supply nodes and the equivalents of ω values are called w values. The exact
transformation is detailed in Algorithm1. Note that unlike the earlier transfor-
mation Fig. 3(b), this transformation increases the number of supply nodes in
a page at most by V where V is the number of visit count buckets. As a part
of this transformation we also assign a vi with every pair of zi and wi making
them a triplet.

So the final formulation of our booking problem is:

maximise
x,u

⎛
⎝νk

m∑
i=1

zixik −
k−1∑
j=1

pjuj

⎞
⎠ (12)

subject to
∑

i∈Γ (j)

zixij + uj ≥ dj , ∀j (13)

∑
j∈Γ (i)

xij ≤ 1, ∀i (14)

zixij ≤ wi, ∀i, (15)
zixij ≤ min(ψj , vi) × (wi/vi), ∀i,∀j (16)
uj ≤ κdj , ∀j where 0 ≤ κ ≤ 1 (17)
xij , uj ≥ 0, ∀i,∀j (18)
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In the optimisation above, we can observe that the objective (Eq. 12) mirrors
that of the booking objective provided in Sect. 3 (Eq. 1) in all forms except that
the supply nodes are replaced by z-supply nodes. The demand, supply and non-
negativity constraints (Eqs. 2, 3, 4) are similarly formulated (Eqs. 13, 14, 18).
The deduplication constraint (Eq. 15) states that any z-supply node is never
assigned more than w views. In the frequency capping constraint (Eq. 16) the
ratio wi/vi gives the unique number of users. Every user is given no more than
the frequency cap ψj number of views of an advertisement. Equation 17 is a
fairness constraint which states that a higher priced campaign can never fully
eliminate a lower priced campaign. In practice we use a κ of 0.5.

4.4 Allocation

As we saw earlier the allocation optimisation (Eqs. 5, 9) and the booking optimi-
sation (Eq. 1) share the same set of constraints while differing in the objectives.
This remains to be the case in our formulation as well. The computational time
constraints to solve the allocation problem are relaxed to a few hours instead
of a few seconds in which we need to book a new advertisement. So, we use a
quadratic objective—variant of the allocation provided in SHALE (Eq. 9)—as
given below:

minimise
x,u

⎛
⎝

n∑
j=1

m∑
i=1

zi(xij − θij)2 +
n∑

j=1

pjuj

⎞
⎠ (19)

5 Guaranteed Video Ads

Online video ads is an application where guaranteed delivery through affinity
based targeting seems to be the best way to optimise content. Traditional per-
formance advertising through CTR modelling requires a response from the user
to work. The response can be a click or a conversion. But video ads typically are
not linked to a response, as it is very hard to build such systems for television
which is the primary medium for video consumption. The only means to reach
a relevant set of users is through targeting based on user affinities. There has
been prior work on using guaranteed delivery in videos by Sumita et al. [11].

The optimisation formulation presented in the paper is perfectly extensi-
ble for video advertisements. The supply node can be mapped to (Gender×
Location × Affinity ×VideoID×SlotID) instead of (Gender×Location ×
Affinity ×PageID× SlotID) and the rest of the paper naturally falls into its
place. A web page is scrollable and hence slots higher up have more views than
slots lower below. Similarly a video can be played and ad slots earlier on will
garner more views than ad slots towards the end. Deduplication and frequency
caps are pertinent for online videos as well.
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6 Practical Considerations

Booking over Multiple Days. Most of the time advertisers would want to
book an advertisement over several days sometimes even weeks. For booking,
compute the maximum bookable views for each day in parallel and report the
sum along with the distribution of views to ensure transparency of pacing. For
allocation we take the booked amount and the demand overhang from the pre-
vious day and compute the allocation plan. This splitting by days ensures us to
horizontally scale as per the requirements.

Booking Cache. Another optimisation we employ for better turnaround times
is to precompute the maximum allocatable booking for a set of frequently tar-
geted user bases. This computation needs to be performed once for each cached
audience targets after the successful completion of a booking transaction. And
the computation for a targeting is independent of others (for caching purposes)
and hence can be horizontally scaled.

Fallbacks. Not all slots will be booked by guaranteed delivery and hence as a
fallback we use performance advertising where the user response is modelled as
Pr(click|view) and Pr(conversion|view).

Simplifying Frequency Capping Constraint. The final transformation of
supplies for modelling frequency capping constraint yields a triplet (zi, wi, vi) for
every z-supply node in any user group, say G. Here vi of a z-supply denotes that
the visits in that supply of user segment are solely made up of users who visit
exactly vi number of times. Let’s define a set of user groups that are targeted
by an advertiser j as S(j). Note that a user group is the one which contains
multiple supply nodes si which we transform into zi.

Instead of the constraint in Eq. 16, where there is one constraint for every
atomic supply, we can instead write the constraint for every advertiser and user
groups targeted by that advertiser, thus reducing the number of individual con-
straints in the solver. Note that the users visiting less than or equal to ψj will
not see the advertisement more than ψj times. We show this in Eq. 21 which
turns out to be the deduplication constraint i.e. Eq. 15. Therefore we exclude
the frequency capping constraint for transformed supplies having vi value less
than or equal to ψj . For users visiting more than ψj times we reformulate Eq. 20
to Eq. 22. We create a single constraint for each demand (dj) and for each user
group (G ∈ S(j)) it targets. The LHS of the inequality is the supply allotted from
the z-supply nodes with vi greater than ψj while in the RHS we have ψj times
the unique users with the number of visits greater than ψj in those transformed
supplies.
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zixij ≤ min(ψj , vi) × (wi/vi), ∀i,∀j (20)

if vi ≤ ψj =⇒ zixij ≤ vi × wi

vi
=⇒ zixij ≤ wi, ∀i,∀j (21)

∑
i∈{i|zi∈G∧vi>ψj}

zixij ≤ ψj ×
∑

i∈{i|zi∈G∧vi>ψj}
(wi/vi), ∀j,∀G ∈ S(j) (22)

7 Experimental Setup and Results

In the set of experiments we want to show how quick and robust we are in our
formulations.

Data. We test our approaches on simulated graphs that have a scale of real
world data we face on usual business days. The number of supply nodes or user
segments is 234150, the number of demands nodes is 100 and the number of
edges they make are 587485. We also distributed the edges in a manner repre-
sentative of the targeting that we observe in practice. The cost to advertiser of
a guaranteed delivery advertisement is higher than that of a performance based
advertisement. Hence in practice we typically see around 30–70 such advertise-
ments at any given time. In our experiments we assumed that we would take
up to 100 such advertisements. We used Mosek 9.0.89 [1] solver to solve our linear
program (LP) on Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz machine.

7.1 Analysis of Time as Demands Arrive Progressively

When an advertiser has a demand with well-defined targets we would want to
inform her about the maximum amount of views we can allocate as soon as
possible. Hence the time taken to complete the optimisation has to be in the
duration of a transaction—less than a few minutes. With every new demand
coming in, the number of variables and constraints keeps on increasing. So in
order to speed up the procedure, for every new demand we use the optimal
solution of the previous LP as a warm start.

In this experiment we want to show with new demand coming in we would
be able to solve our optimisation problem within few seconds irrespective of
how many supplies they target. Figure 4 shows the variation of time taken to
solve the formulation and obtain the maximum visits that we can promise for
different demands coming in. The arrival order of demands is shuffled a hundred
times and hence for each shuffled order of arrival the whole booking process
has to be carried out. The X-axis shows the index of the arrival of demand and
Y-axis shows the spread of time taken to solve the optimisation for different
demand indices across the hundred booking procedures. Thus at each demand
index we would have 100 corresponding time values as we have repeated booking
procedure 100 times for all 100 demands in random order coming in.
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Fig. 4. Time vs demand

From Fig. 4 we can see that the time varies almost linearly as the number
of demands grow. Here shuffling makes sure that in whatever order demands
come with whatever targets they want and corresponding edges they make, we
still solve our formulation within 10 s. Each new demand increases the variables
and constraints in the booking system and as a result the time for solving the
optimisation also increases but in a linear fashion. Thus when a new demand
will come we will be able to reply with how much we can allocate him within
few seconds.

Fig. 5. Time vs number of edges

7.2 Variation in Time as Number of Targets Increase

We wanted to check the time taken supposing every demand targets the same
number of supply nodes but targets nodes between demands are different.
Figure 5 shows this experiment where each demand targets exactly 1 supply,
then 10 supplies, then 100 and so on till 100, 000 different supplies each. The
X-axis represents the number of targeted supplies by each demand. The Y-axis
represents the time taken to solve the LP problem. The box plot shows the
distribution of time taken on the arrival of each demand. Say for the first case
where each demand is just targeting 1 supply node, the box plot shows the time
taken to solve for all 100 demands coming in. We can see that the least time
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taken for booking for any demand is around 10−4 seconds while the highest time
taken for any demand is 10−2 seconds. Now let’s consider a case where all 100
demands ask for 100, 000 different supplies and hence make 100× 100, 000 edges
in our optimisation problem. For this case we check the last box plot. And we
see that the maximum time taken to solve for any demand is less than 2 min.

7.3 Early Stopping

One of the biggest sources of error in the GD system comes from the errors in
traffic forecasting and hence a slightly sub-optimal solution to the optimisation
problem would not be of much concern. Early stopping can on the other hand
speed up the transaction time significantly. In this experiment, we check the
trade-off between saving time and error introduced due to early stopping. We
enable early stopping by setting the maximum iterations parameter in our solver.

Figure 6 shows the trade-off between error and time as the iterations for
early-stopping is varied. The X-axis shows the maximum allowed iterations for
each demand, the left Y-axis shows the error or revenue loss and the right Y-axis
shows the maximum time for any single demand in that batch. We can see that
if stop early at just few iterations like 10 the revenue loss is huge even though
the time taken is minimal. While as we increase the maximum iterations, we
see a sudden jump to optimality but this jump, comes at a significant cost in
terms of time. After this jump the optimisation converges and hence maximum
iterations has no further effect on time taken.

Fig. 6. Error and time vs max iterations Fig. 7. Solver time vs number max
iterations.

We compute the sub-optimality in terms of the difference of the total rev-
enue generated at the end of the complete booking procedure with the revenue
generated when we stop early. In Fig. 7 we present a finer view of this jump and
across several runs—in each run we randomise the order of bookings. And we see
this abrupt jump from sub-optimality to optimality once again. Hence it seems
almost impossible to tune maximum iterations to give any benefit in the time
taken for a booking.
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7.4 Effect of Variation in the Forecasts on Optimality

We obtain our views in a supply nodes from a forecasting system which uses
historic data to predict future. There is always a difference between what we
predict and what actually occurs. It might be possible that we may forecast
more than the actual visits thus leading to under-delivery for us. The opposite
leaves us with under-booking and money left on the table. In this experiment,
we analyse this effect of the instability in forecasts on under-delivery and under-
booking.

Fig. 8. Error vs the variance in the forecasts

We measure the error we make by observing the revenue we loose if the actual
users visiting the platform varies highly from the forecasts. It is expected that
as the variance increases the error will also increase. In order to simulate real
visits by actual users visits we added variance into the forecast and then do
the booking for these perturbed supplies. In Fig. 8 the X-axis is the variance in
forecast of supply numbers inside each user segment. We have revenue from the
forecast supplies and then we also calculate revenue from the perturbed supplies,
these two giving us the error in percentage for revenue which is the Y-axis. From
this figure it is clear that even with the highest variance in forecast we receive an
error of 0.94%. This shows that our formulation is robust to forecasting errors
with respect to actual visits.

8 Conclusions

In this paper, we proposed a formulation to enable booking and allocation of
guaranteed delivery campaigns on pages with more than one advertisement. We
also formulated the deduplication and frequency capping constraints and through
experiments we have seen that we can book such advertisements in the duration
of a transaction—in a few seconds. We discuss the practical considerations of
implementing such a system. We observed through experiments that the formu-
lation scales linearly in computation times with the number of demands and is
also robust to forecasting errors.
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Abstract. Cycle is a fundamental structure in graphs. Motivated by the
wide applications of cycle search, namely computing the cycles related to
a vertex in the graph, we investigate efficient parallel algorithm to address
the cycle search problem in large graphs. We first propose a two-phase
paradigm tailored for the parallel cycle search problem. Based on the
paradigm, we further devise a workload estimation method to improve
the efficiency and scalability of the algorithm by balancing the work
assigned to different threads. We experimentally evaluate our algorithms
on real datasets and the results demonstrate the effectiveness of our
approach.

Keywords: Cycle search · Parallel algorithm · Graph

1 Introduction

Graphs have been widely adopted to represent the relationships of entities in real
applications such as social networks [29], web search [8], road networks [16,17],
collaboration networks [15], and biology [25]. With the proliferation of graph
applications, research efforts have been devoted to many problems in managing
and analyzing graph data [18,24,26–28]. Among them, the cycle is fundamental
structure of a graph and has been studied in. Formally, given a graph G =
(V,E), a path from u to v, denoted by p(u, v), is a sequence of vertices u =
v0, v1, . . . , vn = v such that (vi−1, vi) ∈ E and there is not repeated vertices in
v0, v1, . . . , vn. A cycle is a path p = v0, v1, . . . , vn where v0 = vn.

Applications. Computing cycles in a graph can be used in many application
scenarios. For example:

(1) Automobile Insurance Fraud Detection. In automobile insurance fraud detec-
tion, a collision network is a graph in which each car represents a vertex and
there is an edge between two vertices if the corresponding cars involved in
the same collision. A cycle in a collision network is a strong indicator of the
insurance fraud behaviour and computing the cycles in the collision network
can be beneficial for detecting suspect fraud behaviours [3].

c© Springer Nature Switzerland AG 2020
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(2) Investment Risk Detection. In investment risk detection, cycle search is an
effective way to deal with wash trades. To conduct a wash trade, traders
usually set up an agreement to construct a network. Every trader may con-
nect to exactly two other trading neighbours forming a single continuous
pathway for transactions. These transactions form a clockwise cycle. Fraud-
sters expand their balance sheet by wash trade. So where there is a cycle in
trade networks, there may exist investment risk [5].

(3) Stock Manipulation Criminal Detection. In stock manipulation criminal
detection, a criminal transaction network is formed by nominee accounts
given by penny stock companies. These nominee accounts are controlled by
criminal gangs. The criminal gangs use some abnormal manipulative trad-
ing with others to give the market a false impression that there were real
demands for these stocks. A cycle in the transaction network usually indi-
cates a potential crime [10,14].

Motivations. Due to its wide application scenarios, computing the cycle struc-
ture in a graph has been extensively studied in the literature [4]. However, all
the existing works focus on the cycle detection problem, namely, computing all
the cycles in the entire graph, which is generally time-consuming especially on
large graphs. Moreover, from the application scenario perspective, users are more
interested in the cycles related to a specific vertex instead of all the cycles in the
graph. For example, in the application of automobile insurance fraud detection
[3]. The insurance companies generally know some suspicious users and they are
more interested in the cycles containing cars of these suspicious users. There-
fore, we study the cycle search problem in this paper, namely, given a vertex
q ∈ V (G), computes all the cycles containing q in G.

Driven by current commodity, single multi-core servers can easily fit graphs
with over a hundred billion edges in memory and these multi-core servers have
sufficient memory bandwidth to get quite good speedups over sequential codes
[22], we adopt the single shared-memory multi-core platform and aim to devise
efficient parallel algorithms to address the cycle search problem.

Our Approach. To address the cycle search problem in parallel, we propose
a new paradigm for parallel cycle search in the paper. Our paradigm contains
two phases, namely, prefix expansion and parallel search. In prefix expansion, we
extend query vertex to a batch of path prefix into a task queue. In parallel search
phase, every thread steals task from the task queue and continue searching for
cycles. Following these two phases, our algorithm can answer the cycle search
efficiently.

Contributions. In the paper, we make the following contributions:

(1) A new parallel paradigm for cycle search problem. We are the first to propose
a paradigm for parallel cycle search. And we can improve the paradigm by
the distribution of the graph.

(2) A novel algorithm to search the cycles. Following the expansion-parallel-
search paradigm, we devise a new parallel cycle search algorithm. Our new



Efficient Parallel Cycle Search in Large Graphs 351

parallel cycle search algorithm is highly effective and scalable. Besides, we
also prove that our algorithm is work efficient in theory.

(3) Extensive performance studies on large real datasets. We conduct exten-
sive experimental studies to evaluate the proposed algorithms on eight real
graphs, one of which contains 65 million vertices and 1.8 billion edges. The
experimental results demonstrate the good parallelism and scalability of our
algorithm.

2 Preliminaries

We model a graph as G(V,E), where (1) V (G) represents the set of vertices;
(2) E(G) represents the set of edges in G. We denote the number of vertices
as n and the number of edges as m, i.e., n = |V (G)| and m = |E(G)|. For a
vertex u ∈ V (G), we use nbr(u,G) to denote the neighbour set of u in G, i.e.,
nbr(u,G) = {v ∈ V (G)|(u, v) ∈ E(G)}. The degree of a vertex u ∈ V , denoted
by deg(u,G), is the number of neighbours of u, i.e., deg(u,G) = |nbr(u,G)|. In
this paper, we omit G when it is explicit in context. A path p from vertex u to
v is a sequence of vertices u = v0, v1, . . . , vn = v which every adjacent vertices
are joined by (vi−1, vi) ∈ E(G). We can use p(u, v) to represent a path from
vertex u to v. The length of path p, denoted by len(p), is the number of edges
in the path. A cycle is a path p with v0 = vn and len(p) ≥ 3. A simple cycle
is a cycle with no repetitions of vertices and edges, except the starting and the
ending vertex.

Definition 1 (Length Constraint). We say a path or cycle p satisfy the
length constraint if len(p) ≤ k, where k is a given integer.

Definition 2 (Length Constraint Cycle Search). Given a graph G, a query
vertex q and a length constraint k, cycle search computes all simple cycles {p|
v0 = q

∧
len(p) ≤ k} in G.

Problem Statement. In this paper, we study the problem of parallel cycle search.
Given a graph G, a vertex q, and a length constraint k, we need to search all
cycles p which contain vertex q and len(p) ≤ k. We use the standard PRAM
model machine proposed in [23]. It assumes that a set of similar types of proces-
sors, all the processors share a common memory unit and a memory access unit
connects the processors with the single shared memory. And the cost of parallel
algorithms is analyzed in two measures: work and span. The work of an algorithm
corresponds to the total number of primitive operations performed by the algo-
rithm. The span of an algorithm basically corresponds to the longest sequence
of dependences in the computation. In this paper, we discuss the problem on
the undirected graph, and the algorithm in this paper is easy to extend to the
directed graph.

Cycle search problem is NP-Hard. We can prove it by reducing the Hamilto-
nian cycle problem to cycle search problem. Because the length of the Hamilto-
nian path is n, if the cycle search with length n can be solved in the polynomial
time, we just need to check if there is a cycle with length n, then the Hamiltonian
cycle will be solved. Therefore the problem is NP-Complete.



352 Z. Qing et al.

3 Baseline Algorithm

3.1 Single Thread Algorithm

In this section, we first introduce the DFSEnum algorithm, which is a sin-
gle thread algorithm. For q, we have neighbours nbr(q) and for every edge in
{(q, t)|t ∈ nbr(q)} where there is a path(q, t), there is a cycle including q. Thus
the key is to find all simple paths {p | p ∈ path(q, t) ∩ len(p) < k}. We can easily
come up with a simple algorithm based on depth-first search (DFS) to find all
simple paths between q and t.

The inputs of the Algorithm 1 are the graph G, the query vertex q and the
length constraint k. When we enter the procedure Search-Path, two conditions
need to be satisfied: (1) whether the vertex n is the target vertex t, (2) whether
the current path is under the length constraint. If the vertex n is the target
vertex and the length of the current path is under the constraint, we report the
path. If the length of the current path exceeds the limit, we discard the path
and pop back the vertex. Then we move on to the next vertex in nbr(n). The
algorithm stops until all paths under the length k have been explored.

Algorithm 1. DFS-Enum(Graph G, Vertex q, Length k)
1: p ← empty path
2: p.push(q)
3: visited[] ← false
4: for each t in nbr(q) do
5: remove (q, t) from G
6: Search-Path(G, p, q, t, k − 1, visited)
7: add (q, t) back to G

8: Procedure Search-Path(Graph G, Path p, Vertex n, Vertex t, Length l, Bool
visited[])

9: if n = t then
10: report p;
11: if l = 0 then
12: return ;
13: for m in nbr(n) do
14: if not visited(m) then
15: visited(m) ← true
16: p.push(m);
17: Search-Path(G, p, m, t, l − 1, visited)
18: p.pop();
19: visited(m) ← false
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Example 1. Consider the graph G in Fig. 1, assuming that the vertex 18 is the
target vertex t and path length constraint k is 5. In the DFSEnum algorithm,
after entering the vertex 12, the current path is (1, 4, 8, 12) and the nbrs(12) is
{17, 18, 19}. When get to the vertex 17, we find the lenght exceeded limit and
the vertex 17 is not the target. We discard the path and follow the arrow back
to the vertex 12. Following the nbrs(12), we enter the vertex 18 and find our
target vertex. The path (1, 4, 8, 13, 18) will be reported.

Drawbacks of Existing Solution. The complexity of the search algorithm is
O(mk), in which m is the maximum degree of the graph. Thus the single thread
algorithm is too slow for applications in the real world. As shown in Algorithm1,
DFSEnum does not make full use of today’s computation architecture with a large
amount of memory and multi-cores in one processor. The procedure Search-Path
can be parallelized to solve these problems.

4 A New Approach

4.1 Expansion-Parallel-Search Paradigm

As discussed in Sect. 3, DFSEnum cannot fully utilize the available architecture.
Motivated by this, we propose a new paradigm that parallelizes the problem. To
solve the problem, we take the DFSEnum into two parts: the serial part and the
parallel part. Therefore our paradigm has two phases, namely, prefix expansion
phase and parallel search phase.

Fig. 1. Depth-first search

In the prefix expansion phase, we generate a set of prefix {p1, p2, . . . , pk},
which is a prefix set of all paths. When the number of prefixes exceeds the
number of threads, the expansion phase stops. In the parallel search phase, we
send every prefix into threads, and each thread will rebuild the program state
to continue searching.



354 Z. Qing et al.

Using this paradigm, we can fully use the multi-cores in today’s servers. How-
ever, to make our paradigm practically applicable, the following issues should
be addressed when designing our algorithm:

– Correctness: We should be able to create a correct prefix set which can promise
no paths are missed or duplicated in the parallel search phase.

– Efficiency: We should be able to get a more balanced prefix set. Because
some graphs obey power-law, there is the imbalanced data distribution in
these graphs.

In the following, we will introduce how to address these issues one by one.

4.2 Naive Expansion

We give two concepts to help us judge whether the prefix set is correct. It is
trivial to just consider the expansion alone. For example, we can arbitrarily
select a batch of prefixes that walks randomly from the query vertex. However,
this approach doesn’t satisfy the correctness of expansion. We must generate
a set of prefixes to make sure there are no paths duplicated or leaked in the
parallel search.

Definition 3 (Prefix Relation). Given two paths p1 and p2, p1 = (v0, v1, . . . ,
vn), p2 = (v0, v1, . . . , vk). When 0 ≤ k ≤ n, p2 = prefix(p1).

Definition 4 (Legal Expansion). Given a graph G, a query vertex q, a length
constraint k. The answer set S includes all paths that less than k from q. A legal
expansion is a path set L that for every p ∈ S, there are prefix(p) ∈ L. And
there is no such two elements p1 and p2 ∈ L, p1 is prefix(p2).

Example 2. Consider the graph G in Fig. 2 with the query vertex 1 and the
length constraint 5, the path set {(1, 2), (1, 3), (1, 4)} is a legal expansion of
vertex 1.

We use the idea of hierarchical traversal to split DFSEnum and integrate the
shallow traversal results into the prefix set. After giving the algorithm, we prove
it using the legel expansion.

Algorithm Design. The algorithm is shown in Algorithm2, which gives a set
of prefixes starting from q. The inputs of the algorithm are the graph G, the
query vertex q, the target vertex t, the length constraint k and the number of
threads threads.

In each recursion, we get a sequence p(v1, v2, v3, . . . , vk). There are three
possible situations: (1) If vk is equal to target, we report it as an answer; (2) If
the u = nbr(vk) is present in {vi|i ∈ 2..k}, the path is ignored; (3) For other
cases, we attach the vertex to the back of the path until the length reaches the
limit. Once the length of the path reaches the limit, we collect it as a seed for
the multi-thread processing.
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Example 3. For the given graph in Fig. 2 with the length constraint 5,
the number of threads 4, the expansion sets generated by the algorithm is
{(1, 2, 5), (1, 3, 6), (1, 3, 7), (1, 4, 8)}.

Fig. 2. Naive expansion

Lemma 1. The prefix generated by naive expansion is a legal expansion.

Proof. We can prove it by mathematical induction. First, the initial prefix set
{(s)} is a legal expansion. Next, we expand the sequences (v1, v2, v3, . . . , vk)
from the previous set by attaching all the nbr(vk) to the back of sequence in
each iteration. And the sequence will be extended to {(v1, v2, v3, . . . , vk, t)|t ∈
nbr(vk)}. We do the same jobs for every sequence in the previous set, therefore,
we do not omit any prefix. Duplicate vertices are not permitted in nbr(vk).Thus
the prefixes are different from each other in simple graph. In conclusion, the
prefix generated by naive expansion is a legal expansion.

4.3 Parallel Search

In this section, we give the details of the parallel search algorithm. The algorithm
will send prefixes to each thread and make each thread to continue searching.
We use the work stealing model as a dynamic scheduler.

Algorithm Design. As shown in Algorithm 3, the function Parallel-Search
accepts the graph G, the target vertex t, the length limit k, and a prefix set
prefixes. We search paths for every prefix in each thread. In Search-Path-From-
Prefix, the function accepts the graph G, a prefix of path p, the target vertex
t, the total length limit k, and a bool set visited. We rebuild the visited set
by marking the vertices in p as visited in each thread. In each recursion, the
algorithm takes the last vertex of the path and expand legal vertex as rules in
Sect. 3.
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Algorithm 2. Naive-Expansion(Graph G, Vertex q, Vertex t, Length k, Int
threads)
1: ans ← {(q)}
2: visited[] ← false
3: visited[q] = true
4: while len(ans) < threads do
5: for p in ans do
6: ans ← Recursive-Expand-Prefix(G, p, t, k, visited)

7: Procedure Recursive-Expand-Prefix(Graph G, Path p, Vertex t, Length k, Bool
visited[])

8: u ← last vertex of p
9: if u = t then

10: report p;
11: ans ← ∅
12: if k = 0 then
13: collect p into ans
14: return ans
15: for n in nbr(u) do
16: if not visited(n) then
17: visited(n) ← true
18: p.push(n)
19: collect ans from Recursive-Expand-Prefix(G, p, t, k − 1, visited);
20: p.pop()
21: visited(n) ← false
22: return ans

Lemma 2. Algorithm2 and 3 compute paths start from u under the length k
correctly.

Proof. When we follow a path(u, v) to enter v, the visited only contains the ver-
tices along the path(u, v) in 1. If there are two paths, path1(u, v) and path2(u, v),
the visited of path1(u, v) and the visited of path2(u, v) are independent from
each other. We build the visited of each paths correct in Algorithm 3. So each
thread can do search procedure correctly. And by Lemma1, the naive expansion
is legal. In conclusion, we get the answer correctly.

Drawbacks of Naive Solution. In the naive expansion algorithm, the imbalance
of the workloads always happens. So we use a work stealing [2] scheduler for the
parallel search. But the effectiveness of the work stealing scheduler is limited.
In the social graph, there are always some small dense groups connected with
outside. In this application, we should detect these groups and divide them into
different threads. We need to estimate how many paths appear under each prefix
and assign these prefixes to threads based on workload.
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Algorithm 3. Parallel-Search(Graph G, Vertex t, Length k, Paths prefixes[])
1: openmp parallel for
2: for p ∈ prefixes do
3: visited[] ← false
4: mark vertices in p as visited
5: Search-Path-From-Prefix(G, p, t, k − len(p), visited)

6: Procedure Search-Path-From-Prefix(Graph G, Path p, Vertex t, Length k, Bool
visited[])

7: u ← last vertex of p
8: if u = t then
9: report p;

10: if k = 0 then
11: return ;
12: for n in nbr(u) do
13: if not visited(n) then
14: visited(n) ← true
15: p.push(n)
16: Search-Path-From-Prefix(G, p, v, k − 1, visited);
17: p.pop()
18: visited(n) ← false;

5 Smart Expansion

In this section, we propose the smart expansion algorithm and the DAG-Tail-
Index. First, we will see how to expand prefixes from the query vertex after
we getting the workloads. Then we will show that it is impossible to get a
completely accurate workload. Finally, we will put forward a fuzzy estimation
index of workload and a method to calculate it.

5.1 Prefix Container and Smart Expansion

Prefix container is a completely accurate workload for parallel search. It tells us
how many paths under the length constraint follow the prefix. In the distribution
phase, we need to extend those prefixes with many paths forward so that they
can be evenly distributed among each thread. The formal definition is below.

Definition 5 (Prefix Container). There is a graph G, a path prefix p, a length
limit k. The prefix container is the number of paths that start with path prefix.

Example 4. If we have a prefix sequence (1, 2, 3) and the length constraint is
5. Assuming there are two paths (1, 2, 3, 4, 5) and (1, 2, 3, 4, 6) under the length
constraint, the Ω((1, 2, 3)) is 2.

As we can see, Ω(prefix) indicates the time complicity of the thread receiving
the prefix. An intuitive idea about the algorithm is that after we get the set
of prefixes, we divide the prefix with the highest Ω(prefix) by extending one
frontier of the path.
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Algorithm Design. The algorithm is shown as Algorithm4. The inputs of the
algorithm are the graph G, the query vertex q, the target vertex t, the path
length constraint k, the number of threads threads, and the Ω(prefix). And
the algorithm return sets of the path prefix.

We first push the path that only contains the query vertex into the queue.
In each iteration, we pop the path with the largest Ω(prefix) from the priority
queue. Then we divide the path into two situations: (1) If the path is already
long enough, we discard the prefix; (2) If the target vertex appears, the result
will be reported. Therefore, we propose a new index to replace Ω(prefix), which
is easier to calculate.

Lemma 3. The result of smart expansion is a legal expansion.

Proof. We also use mathematical induction. First, the initial prefix set {(q)} is
a legal expansion. Next, when a prefix from the priority queue is chosen to be
expanded, all the neighbours of this prefix’s the last vertex are tested. This oper-
ation promises no missing paths. Duplicate vertices are not permitted in nbr(vk),
therefore, the prefixes are different from each other. In conclusion, prefixes in
priority queue is a new legal expansion.

Algorithm 4. Smart-Expansion(Graph G, Vertex q, Vertex t, Length k, Int
threads, Int Ω[])
1: q ← priority queue
2: init-path ← (cur)
3: q.push(Ω(init-path), init-path)
4: while q.size() < threads do
5: (Ω(path), path) = q.pop()
6: if len(path) ≥ k then
7: discard the path
8: n ← the last vertex of p
9: for m ∈ nbr(n) do

10: if m = t then
11: report p
12: continue
13: if m not in p then
14: cur-path ← path expand m
15: push (Ω(cur-path), cur-path) into q
16: return q

5.2 DAG-Tail-Index

It is easy to see that if each Ω(prefix) is known, all paths are searched. For
the difficulty of computation of the prefix container, we propose a new index to
help us process expansion. The index has two requirements: (1) The index must
be easy to calculate; (2) The index can give us the approximate number of the
paths with given prefixes.

Lemma 4. Calculating Ω(prefix) is as difficult as cycle search.
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Proof. The Ω(prefix) = Σ{Ω(prefix-expansion)}. Then we get the expansion
recursively until the length of prefix is equal to the length limit. After getting
Ω(prefix), we have already done the cycle search.

The DAG-Tail-Index intuitively simplifies the problem into computing the
number of paths from an arbitrary vertex to the farthest vertices.

Definition 6 (Farthest Vertices Set). Given a graph G, a query vertex q, a
length constraint k. Farthest vertices set is {y|∀y ∈ nbr(x)dist(y, q) ≥ dist(x, q)∧

dist(y, q) ≤ k}, and dist(a, b) means the shortest distance between a and b.

The simplification is based on the shortest path. The farthest vertex is always
the last vertex of the path which is used as the end of the work. In this way,
we put the graph as a view of the divergent network where the vertices near the
query vertex point to those farther. We use the shortest distance from the query
vertex to build the DAG.

Definition 7 (Shortest Path Based DAG). Given a graph G, query vertex
q. Shortest path based DAG is a graph that the vertex of this DAG is equal to
the G, and the edge set is {(x, y)|dist(x, q) < dist(y, q)}. The dist(x, q) means
the shortest distance between x and q in the G.

If there are edges (x, y) and (y, x), we only keep one direction (x, y) in which
x is closer to the query vertex q than y. Then we turn the Graph G into a DAG.
The definition of the DAG Tail index is below.

Definition 8 (DAG-Tail-Index). Given a DAG D, a length constraint k. For
a vertex v, the number of paths from the vertex to the farthest vertex is called
the DAG-Tail-Index of the vertex v.

Fig. 3. Smart expansion

Example 5. For the given graph in Fig. 3 with the query vertex 1 and the
length constraint 5, the farthest vertex set is {15, 16, 17, 18, 19}. The blocks
near the vertices show their indexes and the result of smart expansion is
{(1, 2), (1, 3), (1, 4, 8, 12), (1, 4, 8, 13), (1, 4, 8, 14)}.
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5.3 Calculation of DAG-Tail-Index

Based on the definition of the DAG-Tail-Index, a simple algorithm is introduced
in this section. After building shortest path based DAG, we can calculate the
DAG-Tail-Index using depth-first search.

Algorithm Design. The Algorithm 5 shows the procedure. The inputs of the
algorithm are the Graph DAG, the query vertex q, the target vertex t, the length
constraint k, an integer array that gives shortest-distance shortest, a bool array
to record visited, and an integer array to record priority.

The vertices that we encounter are divided into three conditions: (1) If the
vertex is v or the length reaches k, we set the priority of the vertex as 1. For
another vertex, we traversal its neighbours; (2) If the neighbour has been visited,
we just add the priority of son vertices to the parent vertex; (3) If the neigh-
bour has not been visited, we enter the son vertices and calculate the priority
recursively.

Algorithm 5. Smart-Priority(Graph DAG, Vertex q, Vertex t, Length k, Int
shortest[], Bool visited[],Int priority[])
1: if shortest-len(q) ≥ k or q = t then
2: priority(q) ← 1
3: return
4: visited[q] ← true;
5: for n in nbr(q) do
6: if not visited(n) then
7: Smart-Priority(DAG, n, v, k, shortest, visited, priority)
8: priority(q) ← priority(q) + priority(n);

However, it is still difficult to compute the number of prefixes per path.
Because we use the breadth-first search framework in the expansion phase, we
usually get a prefix that is the shortest path for u. As a result, we use the priority
of the last vertex in prefix as the Ω(prefix).

5.4 Analysis

There are three major steps to get the priority index. We prove that it can be
done fast and effective.

Theorem 1. The Algorithm 4 and 3 are work efficient parallel algorithm.

Proof. The breadth-first search for the graph and searching the farther set is
O(n + m). The proof is omitted. And it is easy to see that Smart-Priority just
visit every vertex and edge once. The complexity of smart expand is O(T ) in
which T is the number of threads.
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For there are infinite processors, we use parallel-search in multi-round. The
result of prefix obtained in the previous round will be treated as input of next
round. work and span are caculated as below.

Span(m, k) =

{
m, if k = 1
mk

pk + Span(m, k − 1), other condition
(1)

Work(m, k) =

{
m, if k = 1
O(mk + Work(m, k − 1), other condition

(2)

As p ≥ m, Span(m, k) = O(k ∗ m) and Work(m, k) = (mk) where m is the
maximum degree of the graph.

Therefore our parallel algorithm that can be done in O(k ∗ m) with mk−1/k
processors is efficient since the work O(mk) is as good as any sequential algo-
rithm. And the experiment shows it brings a nice improvement to our perfor-
mance. The analysis of data distribution can help us to improve the efficiency
of the parallel algorithm.

6 Evaluation

In this section, we conduct experimental studies by comparing speedup, scala-
bility, and variance between NExp, SExp, and DFSEnum. Datasets are shown in
Table 1. The first four are small datasets, and the last four are large datasets.

Table 1. Datasets used in experiments

Datasets Type Number of vertices Number of edges Average degree

Amazon Communities 334, 863 925, 872 2.76

DBLP Network 317,080 1,049,866 3.31

Web-Google Web 875,713 5,105,039 5.82

Youtube Communities 1,134,890 2,987,624 2.63

wiki-topcats Communities 1,791,489 28,511,807 15.91

LiveJournal Social 3,997,962 34,681,189 17.35

Twitter7 Social 17,069,982 476,553,560 27.92

Friendster Social 65, 608, 366 1, 806, 067, 135 27.52

Algorithms. We implement and compare following the three algorithms:

DFSEnum: Single thread depth-first search.
NExp: Naive Expansion and dynamic scheduler.
SExp: Smart Expansion and dynamic scheduler.
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Table 2. Speed Up and Baseline time Experiments

Path Length 5 6 7 8

Algorithm SExp NExp Time SExp NExp Time SExp NExp Time SExp NExp Time

Amazon 13.57 2.48 0.26 15.07 2.98 4.83 18.83 3.12 45.08 19.59 3.88 317.76

DBLP 14.16 3.03 2.96 16.25 3.75 12.04 18.57 3.23 51.32 21.36 3.86 463.12

web-Google 15.19 3.15 2.83 15.86 3.31 15.92 20.18 3.72 78.37 22.60 3.87 646.42

Youtube 15.66 3.38 1.72 17.46 3.43 13.26 21.80 3.69 107.76 21.98 4.03 973.16

wiki-topcats 15.57 3.31 4.43 16.87 3.38 23.74 20.37 3.92 328.12 21.32 4.48 1367.59

LiveJournal 14.32 3.42 5.41 17.83 3.75 63.24 21.32 3.96 356.2 22.52 4.83 1421.11

Twitter7 15.52 3.18 5.81 16.52 3.78 43.13 21.91 4.05 415.44 22.42 4.64 1634.96

Friendster 15.57 3.22 4.28 17.87 3.72 52.78 22.62 4.23 430.88 22.92 5.25 2192.87

The NExp and SExp are developed using C++ with openmp [6]. We evaluate
the program on an Intel(R) Core(R) E5 CPU with 44 cores(at 2.2 GHz) and
128GB of memory. We choose some random vertices and compute the average
time of results.

Exp-1: Speedup. In this experiment, we compare speedup when we vary the
length of the path from 5 to 8. The results are shown in Table 2. We present
T1/T32 in the first two columns and the processing time(s) of DFSEnum in the
last column. T1 means the running time of single thread and T32 means the
running time of 32 threads.

From Table 2, (1) we can see that in all datasets, the speedup of SExp is
better than NExp. NExp performance bad because of the imbalance of the data.
The thread delays the total time of the performance when one prefix has a
heavy amount of paths to search. SExp outperforms NExp. Because of the proper
estimation of running time of tasks, SExp divides the tasks evenly. The speedup
of SExp is better than NExp; (2) The speedup will increase as the length of paths
increases. As we know Tx = Texp +Tsearch, the expansion step is serial while the
search steps are parallel. As the length of paths increases, search steps take up
most of the time.

Exp-2: Scalability. In this experiment, we compare the scalability of the algo-
rithms. We process the scalability experiment in all datasets under the length
constraint 8 when we vary the number of threads from 1 to 32.

The result is shown in Fig. 4, 5, respectively. The running time of both algo-
rithms decreases as the number of threads increases. This is because all algo-
rithms can split tasks into parts and reduce the total running time. But the
performance gap increases as the number of threads increases. Due to the sim-
ilar reason as previous analysis, the imbalance of data causes the gap increases
as the number of threads increases.
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Fig. 4. Scalability (small)
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Fig. 5. Scalability (large)

Exp-3: Time Difference between Threads. In this experiment, we compare
the time difference between threads when we vary the number of threads from 2
to 32 and the length constraint is 8. We compare the maximum time of threads
minus the minimum time of threads in all datasets.
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Fig. 6. Time difference between threads (small)

Figure 6, 7 show the time difference of threads. And the difference between
NExp is much larger than SExp. As discussed before, threads with heavy search
tasks are avoided due to the average assignment of tasks.
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Fig. 7. Time difference between threads (large)

7 Related Work

Cycle detection is a fundamental problem in graph analysis and has been exten-
sively studied in the literature. For the single thread cycle detection algorithm,
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[4] describes an algorithm by depth-first search based algorithm. A solution
based on an index is proposed in [19]. For distributed cycle detection algorithm,
[20] gives us a solution based on the vertex-centric programming model and [9]
proves that, for every k ≥ 3, there exists a 1-sided error distributed property
testing algorithm for Ck-freeness, performing in O(1/ε) rounds in the CON-
GEST model. The incremental cycle detection has been studied in literature(e.g.,
[1,12,21]).

There are also many works in applications of cycle search. [3] gives an appli-
cation of cycle detection in organized groups of fraudsters, which brings more
leakage revenue to the insurance industry, especially the automobile industry.
[5] tells us the cycle is an important network topology in the wash trade of
the financial market. [14] tells that where is a stock manipulation ring, there is
a risk of fraud. The detection of rings will give users information about stock
manipulation.

The general pattern match is also important in graphs. And many studies
are conducted in pattern mining. [13] gives a general-purpose distributed pattern
matching system.Graphflow [11] applies a worst-case optimal join algorithm to
incrementally evaluate subgraph matching for each update. IncIsoMat [7] is pro-
posed to continuously identify subgraph matching upon the update of the graph
where a candidate subgraph region is computed to reduce the search space.

8 Conclusion

In this paper, we study the parallel cycle search algorithm in large graphs. After
investigating the drawbacks of existing solutions, we propose a new expansion-
parallel-search paradigm for the cycle search problem. Based on the expansion-
parallel-search paradigm, we devise a smart expansion that can divide tasks
based on the distribution of the data for the cycle search problem. Besides, we
also prove that our algorithm is work efficient in theory. We conduct exten-
sive experiments on real graphs and the results demonstrate the efficiency and
scalability of our proposed algorithm.

Acknowledge. Long Yuan is supported by NSFC61902184 and NSF of Jiangsu
Province BK20190453.
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Abstract. As a crucial prerequisite for graph mining, graph alignment
aims to find node correspondences across multiple correlated graphs. The
main difficulty of graph alignment lies in how to seamlessly bridge multi-
ple graphs with distinct topology structures and attribute distributions.
A vast majority of earlier efforts tackle this problem based on alignment
consistency, which directly measures the attribute and structure similar-
ity of nodes. However, alignment consistency is prone to be violated due
to the radically different patterns owned by different graphs. Another
group of methods tackle the problem in a supervised manner by learn-
ing a mapping function that maps the node representations of both the
source and target graphs into the same feature space. However, these
methods heavily rely on observed anchor links between different graphs
while these anchor links are usually limited or even absent in many real-
world applications. To address these issues, we propose an unsupervised
cross-graph representation learning framework to jointly learn the node
representations of different graphs in a unified deep model. Specifically,
we employ an auto-encoder model to learn the cross-graph node repre-
sentations based on both attribute and structure reconstruction, where
source and target graphs share the same encoder but are decoded by their
respective decoders. To step further, we also introduce a discriminator
to better align the learned representations for different graphs via adver-
sarial training. Extensive experiments on both synthetic and real-world
datasets demonstrate the effectiveness of the proposed approach.
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1 Introduction

Recent years have witnessed an increasing attention on graph analysis in the
data mining community. In previous literature, a surge of algorithms for a single
graph have been proposed for various graph mining tasks, such as link prediction
[23], node classification [7], and anomaly detection [26]. Despite their efficacy,
these methods heavily rely on the assumption that all the nodes appear in the
same graph, while fail to consider the fact that the same object may be involved
in multiple graphs simultaneously. Unfortunately, we usually do not have access
to the shared nodes to build connections between different graphs. Thus, find-
ing node correspondence across different graphs (a.k.a. graph alignment), has
become a fundamental problem and crucial step for many graph mining tasks.
In this field, the shared nodes among different graphs are denoted as anchor
nodes and the relationships among them are defined as anchor links.

The key point of graph alignment lies in how to seamlessly integrate both
graph structure and attribute information. Due to the distinct topology struc-
tures and attribute distributions among different graphs, these information can-
not be directly utilized to calculate the similarity between nodes for align-
ment. To tackle this issue, extensive research efforts have been devoted in the
past decade. Earlier efforts mainly deal with this problem based on the con-
sistency principle for both topology and attribute. For example, several meth-
ods [10,21,30] infer anchor links based on the topology consistency assumption
that correspondent nodes should have consistent connectivity structure pat-
terns across different networks. Nonetheless, these methods fail to take the rich
attribute information of nodes into consideration, which may also be beneficial
for the alignment task. For this issue, Kong et al. [9] and Zhang et al. [28] extract
discriminative social features for a pair of user accounts in two disjoint social net-
works to facilitate the alignment task. Zhang et al. [29] formulates the attribute
and structure matrices from different graphs into a quadratic function w.r.t S
based on the alignment consistency. The final alignment results could be derived
by solving this function. Heimann et al. [6] proposes to use node representations
generated based on degree distribution, and, if available, attribute information
to calculate the similarity between nodes. Despite the empirical success of above
methods, it could be easily violated because of the distinct patterns owned by
different graphs, which would lead to sub-optimal alignment results.

Recently, there is an emerging trend that utilizes representation learning
to tackle the above problem with a two-stage pipeline [13,15,32]. First, graph
embedding techniques [5,18,22] are employed to learn the raw node representa-
tions for both graphs. Second, a mapping function from one graph embedding
space to the other graph embedding space is learned based on the observed
anchor links. Based on the learned mapping function, the node representations
of both graphs can be mapped into the same space, and thus a similarity matrix
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can be calculated by measuring the similarity between each pair of node repre-
sentations. These approaches bridge the gap between different graphs by using
the mapping function learned from the observed anchor links. At the same time,
they also make better use of the structural regularities of networks through
representation learning. However, most of them fall into a supervised paradigm
and rely on a large amount of training data, i.e., observed anchor links, thus
the performance cannot be guaranteed if the training data is small. To this end,
how to align different graphs based on representation learning in an unsupervised
manner still remains a daunting task.

Taking all the above mentioned challenges into consideration, we propose
a cross-graph representation learning framework for unsupervised graph align-
ment. Specifically, we learn the node representations of source and target graphs
simultaneously using two auto-encoders that share the same encoder function.
For each auto-encoder, both the structure decoder and the attribute decoder are
incorporated to guarantee that enough information could be retained into the
learned representations. To further reduce the discrepancy existing in attribute
and structure distribution of different graphs, we employ a discriminator to dif-
ferentiate the learned node representations from different graphs, and thus the
encoder would play another role as generator to compose a adversarial training
procedure with the added discriminator.

The main contributions are summarized as follows:

1) We first analyze the limitations of existing alignment algorithms and elaborate
the prominent property of the proposed Cross-graph Representation Learning
for Unsupervised Graph Alignment.

2) We propose a cross-graph representation learning method accompanying with
adversarial training to directly generate comparable node representations.

3) We conduct extensive experiments on both synthetic and real-world datasets
to show the superiority of the proposed method against existing graph align-
ment methods.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce
the notations and problem definitions utilized in this paper. Section 3 elaborates
the formulations of the proposed cross-graph representation learning framework
for unsupervised graph alignment. In Sect. 4, extensive experiments over both
synthetic and real-world datasets are conducted to verify the effectiveness and
superiority of the proposed method. Section 5 gives a brief review of the related
works. Conclusions are given in Sect. 6.

2 Preliminary and Problem Definition

In this paper, attributed network (graph) is represented as a triplet G =
{V, E ,X}, where the set V = {v1, v2, v3, · · · , vn} collects all the n nodes of
graph G; E refers to the set of edges between nodes in graph G; X is the node
attribute matrix, written as X = [x1,x2, · · · ,xn]� ∈ R

n×d with xi ∈ R
d being

the attribute vector of node vi ∈ V. Without loss of generality, we assume that
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the edges in graph G are undirected and unweighted. In this sense, the topo-
logical structure information of the attributed network is characterized by an
adjacency matrix A ∈ R

n×n, where A(vi, vj) = 1 if the unordered pair of two
nodes vi and vj are connected in graph G, and A(vi, vj) = 0 otherwise. Fol-
lowing the well established graph convolutional network (GCN) [7], layer-wise
latent representations of the nodes are induced based on the properties of their
neighborhoods, i.e.,

H(l+1) = σ
(
R− 1

2 ÃR− 1
2 H(l)W (l)

)
, (1)

where H(l) ∈ R
n×d(l)

and H(l+1) ∈ R
n×d(l+1)

refer to the input and output of
the convolution layer l; σ(·) is a non-linear operation (such as ReLU); R ∈ R

n×n

is a diagonal matrix with diagonal element R(k, k) =
∑

i Ãk,i for k = 1, 2, · · · , n

and Ã = A+I ∈ R
n×n; W (l) is the trainable weight matrix of the l-th layer. For

the first layer, we take attribute matrix X ∈ R
n×d as its input H(0). By stacking

L convolution layers to the graph encoder, node representations of graph G could
be generated as output of the last convolutional layer, i.e.,

Z = f (W;G) = σ
(
R− 1

2 ÃR− 1
2 · · · σ

(
R− 1

2 ÃR− 1
2 XW (1)

)
· · · W (L)

)
, (2)

where W =
{
W (1),W (2), · · · ,W (L)

}
collects all of the parameters in L convo-

lutional layers.
With the above notations and preliminaries, we formally define the studied

problem as follows.

Problem 1. Unsupervised Graph Alignment with Representation
Learning: Given a source graph Gs = {Vs, Es,Xs} and a target graph Gt =
{Vt, Et,Xt} without any observed anchor links, the problem aims to identify
all the hidden anchor links across graph Gs and Gt based on the learned nodes
representation Zs and Zt correspondingly.

It is noteworthy that the proposed problem is different from most existing
supervised models that rely on predefined anchor links to bridge the distinct dis-
tributions of node representations for graph alignment. Specifically, this paper
mainly focuses on identifying hidden anchor links based on the generated repre-
sentations without any need of observed anchor links or prior information.

3 Methodology

In this section, we elaborate the formulation of the proposed framework, which
mainly consists of two essential components, i.e., (1) cross-graph reconstruction,
and (2) adversarial learning. The architecture is illustrated in Fig. 1 for a better
understanding.
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3.1 Cross-Graph Reconstruction

Given the source graph Gs = {Vs, Es,Xs} and the target graph Gt = {Vt, Et,Xt}
with their adjacency matrices As ∈ R

m×m and At ∈ R
n×n respectively, we

learn the node representations Zs ∈ R
m×p and Zt ∈ R

n×p by sharing the same
parameters of convolution layers W, i.e.,

Zs = f (W;Gs) = σ
(
R

− 1
2

s ÃsR
− 1

2
s · · · σ

(
R

− 1
2

s ÃsR
− 1

2
s XsW

(1)
)

· · · W (L)
)

,

Zt = f (W;Gt) = σ
(
R

− 1
2

t ÃtR
− 1

2
t · · · σ

(
R

− 1
2

t ÃtR
− 1

2
t XtW

(1)
)

· · · W (L)
)

.

This strategy aims to bridge the gap between different graphs Gs and Gt, and
thus makes the node representations of both graphs comparable.

Fig. 1. The proposed framework CrossUGA for unsupervised graph alignment.

In the decoder part, both attribute and structure reconstruction are taken
into consideration to ensure the generated representations could retain as much
information from the original graph as possible. Inspired by [8], the structure
reconstruction decoder takes latent node representations as input and then pre-
dicts whether there exists a link between a pair of nodes. In such a way, the
reconstructed adjacency matrices are calculated by

Âs = Sigmoid
(
ZsZ

�
s

)
and Ât = Sigmoid

(
ZtZ

�
t

)
, (3)

where Sigmoid(·) refers to the sigmoid activation. In this sense, the decoder loss
for the structure reconstruction of graphs Gs and Gt are formulated as

Lstru
s

(
W;As, Âs

)
=

m∑
u=1

m∑
v=1

As (u, v) log Âs (u, v) + (1 − As (u, v)) log
(
1 − Âs (u, v)

)
,

Lstru
t

(
W;At, Ât

)
=

n∑
u=1

n∑
v=1

At (u, v) log Ât (u, v) + (1 − At (u, v)) log
(
1 − Ât (u, v)

)
.
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Regarding to the decoding of attribute information, we leverage a simple
dense layer to reconstruct the attributes in the source and target graph, respec-
tively

X̂s = frelu (WsZs + bs) and X̂t = frelu (WtZt + bt) , (4)

where frelu refers to the Relu activation. The reconstruction errors on attributes
of graphs Gs and Gt are calculated using the Frobenius norm, i.e.,

Lattr
s (W,Ws, bs;Xs) =

∥∥∥Xs − X̂s

∥∥∥
F

,

Lattr
t (W,Wt, bt;Xt) =

∥∥∥Xt − X̂t

∥∥∥
F

.
(5)

Taking both the structure and attribute information into consideration, the
total reconstruction errors for graphs Gs and Gt are formulated as

Lrec
s (W,Ws, bs;Gs) = αLstru

s (W,As) + (1 − α) Lattr
s (W,Ws, bs;Xs) ,

Lrec
t (W,Wt, bt;Gt) = αLstru

t (W,At) + (1 − α) Lattr
t (W,Wt, bt;Xt) ,

(6)

where hyper-parameter α ∈ [0, 1] controls the balance of structure and attribute
reconstruction. Moreover, we formulate the loss on cross-graph reconstruction of
both source graph Gs and target graph Gt by

Lrec (W,M;Gs,Gt) = Lrec
s (W,Ws, bs;Gs) + βLrec

t (W,Wt, bt;Gt) , (7)

where M = {Ws, bs,Wt, bt} collects all parameters of the decoder involved in
the reconstruction procedure. Hyper-parameter β controls the impact of recon-
struction for the target graph during the cross-graph representation learning.

3.2 Adversarial Training

The adversarial training plays an important role in reducing discrepancy existing
in attribute and structure distribution among different graphs. Let the represen-
tation of source graph Gs be the real data, and the representation of target graph
Gt be the fake data generated by the cross-graph encoder. We impose a discrim-
inator D : Rp → R to distinguish the fake representations Zt from Zs. Without
loss of generality, the discriminator D is comprised of two fully connected neural
network layers, i.e., ∀Zs(i) ∈ R

p,

D (Θ;Zs(i)) = W
(2)
D frelu

(
W

(1)
D Zs(i) + b

(1)
D

)
+ b

(2)
D , (8)

where Θ =
{

W
(1)
D , b

(1)
D ,W

(2)
D , b

(2)
D

}
is the set of parameters in the neural net-

work layers. The responsibility of discriminator is to distinguish the fake rep-
resentations Zt from Zs, while the cross-graph encoder aims to confuse the
discriminator by generating representations for graphs Gs and Gt with similar
patterns. As a result, the adversarial loss function is derived as

Ladv
D (Θ;Zs,Zt) = EZt∼f(W;Gt) [D (Θ;Zt)] − EZs∼f(W;Gt)(Gs) [D (Θ;Zs)] , (9)

Ladv
G (W;Zt) = −EZt∼f(Gs) [D (Θ;Zt)] . (10)
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Algorithm 1. The proposed CrossUGA algorithm.
Input: Source graph Gs = {Vs, Es, Xs} and target graph Gt = {Vt, Et, Xt}, learning

rate η1, η2 and η3, the number of steps to apply to the encoder and discriminator,
kG and kD.

1: Initialize W, M and Θ
2: repeat
3: for kG steps do
4: compute Lrec and Ladv

G according to Eq. 7 and 10, respectively;
5: W ← Adam(∇W, Lrec, Ladv

G , η1);
6: M ← Adam(∇W, Lrec, η2);
7: end for
8: for kD steps do
9: compute Ladv

D according to Eq. 9;
10: Θ ← Adam(∇Θ, Ladv

D , η3);
11: end for
12: until convergence;
13: Output Zs, Zt.

In summary, the overall loss function of the proposed cross-graph represen-
tation learning for unsupervised graph alignment is formulated as

min
Θ

max
W,M

−Lrec (W,M;Gs,Gt) + λ
(Ladv

D (Θ;Zs,Zt) − Ladv
G (W;Zt)

)
, (11)

where trade-off parameter λ is utilized to balance the reconstruction loss and
adversarial loss. By simultaneously playing the min-max game, we can eventually
enforce the node representations of two graphs in the same distribution.

3.3 Model Inference

Note that there are three sets of parameters to estimate in the proposed opti-
mization problem (11), including W, M, and Θ. We optimize this objective
function by alternately updating each set of parameters. Algorithm1 summa-
rizes the procedure for learning the model. It first calls the encoders to generate
node representations Zs and Zt simultaneously. Then it updates parameters in
the M for reconstruction based on Eq. (6). As the encoder also plays the role of
generator in the min-max game, W should also be updated based on Eq. (10).
After a certain number of epochs kG, the model turns to update the Θ in dis-
criminators for another kD epochs based on Eq. (9).

4 Experiments

In this section, we present the experimental results on both synthetic and real-
world datasets to demonstrate the effectiveness of the proposed CrossUGA. We
also include sensitive analysis to assess the impact of the controlling hyper-
parameters β and λ. Specifically, we conduct experiments to answer the following
research questions:
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Table 1. Details of datasets.

Douban Offline/Online Lastfm/Myspace Flickr Wiki

Number of nodes 3,906/1,118 4,115/1,104 7,575 2,405

Number of attributes 538 1,010 12,047 4,973

Number of edges 17,981/4,732 3,989/1,135 479,476 24,357

Number of anchor links 1,118 1,104 7,575 2,405

– Q1 How effective is the proposed framework in tackling graphs with distinct
topology structures and attribute distributions?

– Q2 Whether the proposed framework can work well for graphs of different
scales?

– Q3 Whether the node representations trained by the proposed framework are
well distributed in the same space?

4.1 Experimental Setup

Datasets. In this paper, to verify the proposed model can deal with the align-
ment task in most cases, we employ two synthetic datasets and two real-world
datasets to evaluate the alignment performance. The detailed statistics for used
datasets are summarized in Table 1.

– Synthetic datasets: We follow the method proposed by Derr et al. [3] to
generate synthetic dataset from a single graph. Specifically, we randomly
discard αe% edges from the original graph G and get the source graph Gs.
The target graph Gt can be generated in the same manner. We choose Flickr
[11] and Wiki1 to generate synthetic datasets using the above method. Both
of them possess rich accompanying attributes on the nodes.

– Real-world datasets: Douban dataset provided by [29] consists of two net-
works with different scales. Besides the size information illustrated in Table 1,
a prior alignment preference H based on the degree similarity is also provided.
Another dataset, i.e., Lastfm-Myspace, contains two subgraphs extracted
from the original graphs [31]: Lastfm and Myspace. Following [29], we use
the username similarity to construct a prior alignment preference based on
Jaro-Winkler [4] distance.

Implementation Details. For the Douban dataset, we employ a two-layer
GCN to encode both graphs simultaneously, where the number of hidden units is
set to 512. For the attribute decoder, the hidden units of the fully connected layer
is set to 512. In terms of the discriminator, we use a two-layer fully connected
network with 256 hidden units and Leaky ReLU activation function. Besides, we
set the hyper-parameters β = 0.4 and λ = 0.3. For the Lastfm-Myspace dataset,
we use a single-layer GCN with 2,048 hidden units for the encoder. The number
1 https://github.com/thunlp/OpenNE/tree/master/data/wiki.

https://github.com/thunlp/OpenNE/tree/master/data/wiki
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of hidden units in the attribute decoder is set to 2,048. Meanwhile, the discrimi-
nator is built with two fully connected layers (512 neurons and 512 neurons). For
this dataset, we set the hyper-parameters β = 0.6 and λ = 0.2. As for the syn-
thetic datasets, we use a single-layer GCN with 512 hidden units. The number
of hidden units in the attribute decoder is set to 1, 024. The discriminators for
the synthetic datasets are designed to be the same as that of Lastfm-Myspace.
Besides, we set the hyper-parameters β = 0.2 and λ = 0.

Evaluation Metrics. In this paper, we employ Precision@k [6] as the evalu-
ation metric for graph alignment. Precision@k measures whether the positive
matching occurs in the top-k candidates, i.e., the top k nodes possessing the
highest similarity with the source node. It is computed by

Precision@k =
|Correct alignments in top-k candidate pairs|

|Ground truth node pairs|
where |Ground truth node pairs| refers to the number of anchor links.

Comparison Methods. In this paper, we compare CrossUGA with three
centrality-based algorithms and three state-of-the-art alignment methods. Here,
the compared methods are listed as follows:

– Centrality-based algorithms are simple baselines that use degree,
betweenness, and closeness centrality for the alignment task [3]. Once we
compute the centrality for each node in both graphs, we can measure the
distance between each pair of nodes and obtain the similarity matrix.

– Isorank [21] measures the node similarity based on network topology and
then propagates the similarity in the product graph until convergence. The
key idea of Isorank is that two nodes from different graphs are more possible
to be aligned if their neighborhoods are similar as well.

– FINAL [29] is the first method that takes both node attribute and topology
information into consideration when tackling the alignment task. Notably,
both FINAL and Isorank can include a prior alignment preference matrix H
to assist the alignment task.

– REGAL [6] is another approach that takes advantage of both structure and
attribute information. It first generates node representations conditioned on
degree distribution, and then measures the distance between each pair of
nodes based on node attributes and the generated node representations.

4.2 Experimental Results

Performance on synthetic datasets. For the synthetic datasets constructed
from Flickr and Wiki with the sub-graph generation approach [3], we regard the
difference level between two generated graphs as structure noise. In this sense,
higher difference level in structure means the alignment task would be more diffi-
cult. We evaluate the performance of the competitors by increasing the difference
level λe of two graphs from 0 to 0.5. Experimental results on Precision@1 and
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Precision@5 are shown in Fig. 3 and Fig. 2, respectively. Due to the absence of
prior information, Isorank performs poorly over the synthetic datasets. That is
why we do not show its experimental results. It is reasonable that the alignment
performances decline with the increase of structure noise. However, the precision
of some baselines such as Isorank and REGAL decreases sharply when the noise
level increases, which shows their poor performance toward handling graphs
with distinct topology structures. Our proposed CrossUGA outperforms differ-
ent baselines with respect to different levels of noise. It might because CrossUGA
learns the node representation with the GCN based cross-graph encoding, which
mitigates the adverse effects caused by the structure noise.

(a) Flickr Dataset (b) Wiki Dataset

Fig. 2. Effect of structure noise on Precision@1

(a) Flickr Dataset (b) Wiki Dataset

Fig. 3. Effect of structure noise on Precision@5.

Performance on Real-World Datasets. In addition to synthetic datasets,
we also compare CrossUGA against other baselines on real-world datasets.
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Table 2. Experimental results on Douban given different Precision@K settings.

Top-K 1 5 10 20 30 50

(1) Degree 0.0036 0.0072 0.0098 0.0188 0.0223 0.0403

Closeness 0.0054 0.0116 0.0233 0.0492 0.0707 0.1208

Betweeness 0.0018 0.0072 0.0143 0.0304 0.0438 0.0742

(2) ISORANK 0.0018 0.0036 0.0089 0.0143 0.0224 0.0358

REGAL 0.0152 0.0626 0.0841 0.1512 0.1843 0.2496

FINAL 0.1145 0.3023 0.4499 0.5671 0.6503 0.7549

(3) ISORANK+ 0.0662 0.0859 0.1047 0.1324 0.1565 0.2013

FINAL+ 0.2496 0.5411 0.6467 0.7728 0.8318 0.9114

CrossUGA 0.3658 0.6163 0.7245 0.8542 0.9034 0.9132

Table 3. Experimental results on Lastfm-Myspace given different Precision@K set-
tings.

Top-K 1 5 10 20 30 50

(1) Degree 0.0009 0.0053 0.0142 0.0328 0.0612 0.1046

Closeness 0.0009 0.0062 0.0168 0.0381 0.0683 0.1144

Betweeness 0.0009 0.0062 0.0151 0.0355 0.0638 0.1090

(2) ISORANK 0.0009 0.0027 0.0044 0.0089 0.0133 0.0142

REGAL 0.2754 0.3307 0.3732 0.4212 0.4547 0.4918

FINAL 0.3546 0.4929 0.5346 0.5789 0.6011 0.6215

(3) ISORANK+ 0.1339 0.2766 0.3590 0.4007 0.4016 0.4043

FINAL+ 0.4814 0.5878 0.6073 0.6259 0.6339 0.6463

CrossUGA 0.5762 0.6020 0.6179 0.6286 0.6401 0.6524

Table 2 presents the Precision@k results on the Douban dataset. The first obser-
vation is that all of the centrality-based algorithms have significantly poor per-
formance compared with other baselines. It is reasonable because the centrality
properties of different real-world networks are usually different, which makes
them undesirable for the alignment task. We then evaluate the performance
of other unsupervised methods without prior information. In this case, all the
baselines perform poor except FINAL, which can reach 11.45% in terms of
Precision@1. It is worth noting that, except REGAL, the other existing align-
ment methods can also impose a prior alignment preference matrix H to assist
the alignment task. With the help of prior information, a significant improvement
on Precision@K can be achieved. Once we added the prior information [29] to
the FINAL model (indicated as FINAL+), its Precision@1 value improves from
11.45% to 24.96%. This phenomenon indicates that the prior information has a
significant influence on these algorithms. Notably, we can also observe that our
model performs better than all the baselines even without any prior information.
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(a) Douban Dataset (b) Lastfm-Myspace Dataset

(c) Douban Dataset (d) Lastfm-Myspace Dataset

Fig. 4. Sensitive analysis for β and λ on real-world datasets.

CrossUGA can achieve 46.55% improvement in precision@1 compared with the
best performed baseline FINAL and is also the highest when we take different
Precision@k settings. Additionally, as mentioned in Sect. 1, the prior informa-
tion is usually difficult to obtain. Thus our model shows stronger capabilities in
graph alignment and is more practical compared with the above baselines.

We also report the experimental results over Lastfm-Myspace in Table 3.
From the table we can derive the same conclusion that no matter the base-
lines use prior information or not, the proposed CrossUGA always achieves the
best performance, achieving 19.69% performance improvement compared with
FINAL+. These results prove that the proposed CrossUGA is able to work well
for graphs of different scales and also outperform all of these baselines on both
synthetic and real-world datasets.

4.3 Sensitivity Analysis

To investigate the effect of hyper-parameters, we present the performance on
precision@1 over the real-world datasets by varying the controlling parameters
β and λ.

Sensitive Analysis for β. We first discuss the impact of parameter β on the
performance of proposed CrossUGA. As shown in Fig. 4a and Fig. 4b, when the
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(a) GCN (b) The proposed CrossUGA

Fig. 5. The t-SNE visualization of node representations on Douban dataset.

(a) GCN (b) The proposed CrossUGA

Fig. 6. The t-SNE visualization of node representations on Lastfm-Myspace dataset.

model reconstructs both graphs simultaneously through the process of cross-
graph representation learning i.e., β ≥ 0, the performance of our model gains a
notable improvement and becomes flattening up to a point if we keep increases
the value of β. This proves that the cross-graph embedding learning procedure
indeed makes the learned representations possess similar distributions.

Sensitive Analysis for λ. Then we discuss the impact of controlling parameter
λ. As shown in Fig. 4c and Fig. 4d, choosing λ around 0.3 tends to yield the
best performance for Douban dataset. As for the Lastfm-Myspace dataset, the
best choice of λ is 0.2. Larger controlling parameter λ tends to degrade the
alignment performance. It proves that employing the discriminator with proper
λ can indeed better align the node representations from different graphs, and
thus make it more comparable.

4.4 Qualitative Analysis

To verify if the proposed CrossUGA can indeed map the node representa-
tions into the same space, we visualize the node representations before and
after the learning procedure on real-world datasets. In Fig. 5 and 6, it can be
observed that the node representations generated by GCN independently can-
not be aligned because of the difference of the graph topology. After using our
proposed CrossUGA, the node representation of both graphs are successfully
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projected into the same space and the node representations become closer after
the cross-graph representation learning procedure.

5 Related Work

Graph Alignment. Graph alignment has been employed in various fields
like link prediction, information diffusion, and recommendation. Many research
efforts have been devoted to solving this challenging problem. The early meth-
ods tried to align different graphs based on the alignment consistency principle
– including both topology and attribute consistency. For example, Bayati et al.
[1] formulates graph alignment as an integer quadratic programming problem
based on the total number of shared edges across graphs and develops an effec-
tive solution based on message passing. Singh et al. [21] only utilizes topology
information to calculate similarity among nodes and propagates the similarity
scores in the product graph until convergence. Zhang et al. [27] promotes align-
ment transitivity penalty for multiple anonymized graphs. Koutra et al. [10]
formulates the bipartite network alignment problem and uses the alternating
projected gradient descent to solve the problem. Zhang et al. [30] proposes a
method that jointly deals with graph alignment and graph completion at the
same time to alleviate the adverse effects of incomplete networks. Kong et al. [9]
extracts heterogeneous features from multiple heterogeneous graphs to predict
the anchor links, including user’s social, spatial, temporal, and text information.
Zhang et al. [29] first investigates the alignment problem for attributed graphs.
Heimann et al. [6] devises a method to calculate the similarity between nodes
using the degree-based node representations and attribute information to align
the nodes.

Recently, with the development of graph embedding [12,25] and deep learn-
ing, representation learning has been used to improve the effectiveness of align-
ment algorithms. These methods first embed nodes into low-dimensional feature
space, then learn a mapping function using the observed anchor links to map
the representations into the same space. For example, Man et al. [15] leverages
the observed anchor links between two graphs to complete the edges that are
available in one graph but absent in the other one. Then by imposing specific
embedding methods [18] on the extended graphs, they construct the node repre-
sentations for both graphs. After learning the mapping function, it successfully
maps the node representations into the same space and calculates the similarity
matrix for the alignment task. Zhou et al. [32] further improves the quality of
mapping functions by leveraging the anchor nodes in a dual learning process. Liu
[13] uses the same mapping function as PALE. It also takes the neighborhood
of a node into consideration during representation learning.

Graph Representation Learning. Nowadays, graph analysis aims to extract
useful information hidden in graphs which could promote a wide range of appli-
cations, such as link prediction [14,16], node classification [17], and network
clustering [19,20]. Graph representation learning targets at converting nodes in
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the graph into a low dimensional feature space, which significantly improves the
performance and computation efficiency of various graph mining algorithms. Per-
ozzi et al. [18] successfully generalizes the neural language models to learn social
representations of a graph’s vertices, by modeling a stream of random walks.
Then the LINE algorithm proposed by Tang et al. [22] deals with the embedding
problem for large graphs by optimizing an objective that takes both the local
and global structure into consideration. node2vec [5] learns node embeddings by
biased random walks on top of the Deepwalk algorithm. With the development of
deep learning, deep neural networks based methods have been applied to graph
representation learning. Wang et al. [24] proposes to use auto-encoders to pre-
serve the first and second order node proximity for representation learning. Cao
et al. [2] adopts a random walking model to capture graph structural information
directly. The model consists of random surfing, positive point wise mutual infor-
mation calculation, and stacked denoising auto-encoders. Graph Convolutional
Network (GCN) [7] successfully learns hidden layer representations that encode
both local graph structure and features of nodes by stacking several nonlinear
convolutional layers.

6 Conclusion

In this paper, we propose CrossUGA, an unsupervised alignment framework that
is able to directly generate comparable node embeddings by using cross-graph
representation learning. The proposed method does not require any anchor links
or prior information. At the same time, it also makes better use of the struc-
tural regularities of graphs through representation learning. By training these
representations in an adversarial process, we further mitigate the distribution
differences between different graphs, thus the refined representations could be
directly aligned. Extensive experiments show the superiority of the proposed
CrossUGA against existing alignment methods.
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Abstract. Accurate hospital readmission prediction is conducive to
reducing medical waste, improving the quality and efficiency of public
health services, and providing better medical services for more people.
The readmission of each patient is closely related to their disease his-
tory. Therefore, it is of great help to accurately predict the readmission
by using the patient’s diagnosis history information. However, the diag-
nosis history of some patients may be very short, and it is difficult to use
the features of individual patients to predict their readmission. In this
paper, a hospital readmission prediction model based on patient and
disease bipartite graph, PDGraph, is proposed. In this method, hetero-
geneous graph is used to establish the correlations between patients and
diseases, which can express the historical disease information of patients
and the latent relationships between patients with the same disease. By
constructing the bipartite graph of patients and diseases, one patient
establishes an indirect relationship with patients with the same diseases
through disease nodes. Thus, the features of other related patients can
be used to assist the hospital readmission prediction and improve the
prediction effect. Then, PDGraph embedding generation algorithm is
designed to aggregate the information of disease and related patients to
each patient to improve the predictive performance. Our proposed model
was tested on a real dataset, and the results show that the proposed
method is more accurate in the prediction task than baselines.

Keywords: Heterogeneous graph · Hospital readmission prediction ·
Graph representation learning

1 Introduction

The hospital readmission is defined as a patient who is admitted shortly after
discharge. Hospital rehospitalization events are frequent and costly, which brings
c© Springer Nature Switzerland AG 2020
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huge burden to patients and medical system [1,2]. As an important indicator to
measure the quality of medical services [3], the high readmission rate has become
a growing focus for the government, medical institutions, insurance companies
and patients. Policy makers in the United States [4] medical insurance and Medi-
caid Service Center (CMS) and the United Kingdom [5] even reduce the payment
for patients who are readmitted within 30 days after discharge, so as to impose
economic penalties on hospitals with high readmission rate. Therefore, solving
the problem of hospital readmission prediction from the perspective of data anal-
ysis has attracted more and more attention in the research field [6]. Accurate
hospital readmission predictions can help clinicians develop better treatment
plans, help medical institutions identify patients at risk for intervention, make
researchers better understand medical results of complex patient groups, and
help medical insurance institutions actively prevent and reduce the cost of med-
ical insurance, so as to provide better medical services for more people.

Reviewing previous studies on hospital readmission prediction, most early
studies used various regression techniques to establish prediction models. In
recent studies, machine learning algorithms, such as decision tree and support
vector machine, have been applied more and more [6]. Recently, many people
have also applied deep learning to the prediction of hospital readmission, which
has achieved good results [9,10]. In recent years, some people predict hospital
readmission based on graphs [11]. In order to solve the problem of vertical and
heterogeneous electronic health records (EHR), they propose to use temporal
graph to represent the sequence of medical events.

The hospital readmission of each patient is closely related to their diagnosis
history and personal health information. Therefore, with the help of the patient’s
medical history and personal health information, it is very helpful to accurately
predict the hospital readmission. However, some patients have a short history
of diagnosis and it is difficult to predict their readmission time based on their
own features. To solve this problem, the features of other patients with the same
disease can be used to assist the hospital readmission prediction and improve the
prediction effect. Moreover, even for patients with a long history of diagnosis,
the prediction effect can be improved by learning from the features of other
related patients. Therefore, this paper uses patient and disease bipartite graph
to establish the correlation between patients and diseases, which can express the
historical disease information of patients and the indirect relationship between
patients with the same disease. and make full use of the health information of
patients.

In this paper, we propose a hospital readmission prediction framework based
on heterogeneous graph representation learning. First of all, according to the
patient’s medical records, the patient and disease bipartite graph is constructed
to establish the correlation between patients and diseases and to establish the
indirect relationship between patients with the same diseases. Then, PDGraph
embedding generation algorithm is designed to aggregate information from the
diseases and related patients for each patient. Finally, aggregate information is
used to predict hospital readmission.



Predicting Hospital Readmission Using Graph Representation Learning 387

We summarize our main contributions as follows:

– We construct Patient and Disease Bipartite Graph to establish the correlation
between patients and diseases, which can express the historical disease infor-
mation of patients and the indirect relationship between the patients with the
same disease, and can make good use of the health information of patients.
Thus, the information of other patients with the same disease can be used to
assist the hospital readmission prediction and improve the prediction effect.

– A hospital readmission prediction method based on Patient and Disease
Bipartite Graph is proposed. The PDGraph embedding generation algorithm
is designed to aggregate information from the diseases and related patients
for each patient. Finally, we use the aggregation information of patient nodes
to predict hospital readmission.

– The proposed method is validated on a real-word healthcare datasets. Exper-
imental results show that the proposed method is promising and effective in
prediction, and our model outperformes the baselines in the hospital read-
mission prediction experiment.

The rest of this paper is organized as follows. Section 2 reviews related work,
and the details of the methodology is discussed in Sect. 3. Experiments and
results analysis are given in Sect. 4, and Sect. 5 concludes this paper.

2 Related Work

Reviewing previous studies on hospital readmission prediction, most early stud-
ies used various regression techniques to build prediction models. In recent
studies, machine learning algorithms, such as decision tree and support vec-
tor machine, have been increasingly applied [6]. In paper [7], support vector
machine, decision tree and naive bayesian model were used to predict the rehos-
pitalization risk of icu patients. In paper [8], multilayer perceptron, decision tree,
k-nearest neighbor algorithm and bayesian classifier are used to predict patients’
rehospitalization, and neural network is recommended as a classification training
method.

In the last few years, the prediction methods of hospital readmission can be
roughly divided into two categories. One is to apply deep learning to hospital
readmission prediction, and the other is to predict hospital readmission based
on temporal graph.

As we all know, deep learning has been widely applied in various fields and
achieved good results, such as speech recognition, machine translation, image
recognition and so on. Recently, many people have also applied deep learning
to the prediction of hospital readmission, with good improvement. Chopra et al.
[9] designed a regression neural network model to predict whether the patients
would be hospitalized again, and compared with the accuracy of the basic clas-
sifier (e.g., SVM, random forest, simple neural network). The results showed
that RNN showed the highest predictive ability among all the models used.
Using LSTM, Reddy et al. [10] predicted hospital readmission within 30 days by
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extracting temporal relationships in longitudinal EHR clinical data. The results
show that compared with traditional classification methods (such as ANN and
penalty logistic regression), deep learning method has significant performance
improvement.

As an important source of big data, graphs have been widely used in social
media marketing, knowledge discovery, transportation network and other fields
[15]. In recent years, some people predict hospital readmission based on graphs
[11]. They proposed using temporal graph to the sequences of medical events
to address the longitudinal and heterogeneous properties of electronic health
records (EHR). Temporal graph can capture the temporal relation of medical
events in each event sequences, and has strong robustness, anti-noise and anti-
irregular observation ability. Based on the representation of temporal graphs, a
method of identifying temporal phenotypes was further developed to identify the
most important and interpretable graph basis as phenotypes, which could help
us better understand the evolution patterns of diseases. Finally, by expressing
the temporal graph with phenotypes, the expression coefficient was used to pre-
dict hospital readmission. In this method, some features are acquired based on
graphs. In the end, the traditional machine learning method is used to predict
readmission.

In summary, the current methods for solving the problem of hospital read-
mission prediction are generally using traditional machine learning classifiers, or
using RNN and its variants in deep learning. However, the existing methods do
not take into account the latent correlations between the patients who have had
the same disease. Therefore, our method uses heterogeneous graph to establish
the correlations between patients and diseases, which can express the histori-
cal disease information of patients and the latent relationships between patients
who have had the same disease. Then through the representation learning of
heterogeneous graph, personalized vector representation of each patient can be
learned for hospital readmission prediction, which can achieve better prediction
effect.

3 Methodology

In this section, we will introduce the details of the hospital readmission pre-
diction method using heterogeneous graph representation learning. First, we
introduce how to build the Patient and Disease Bipartite Graph based on the
medical record histories of patients. Then, we describe the details of our predic-
tion method based on the constructed bipartite graph.

3.1 Patient and Disease Bipartite Graph

Hospital readmission is influenced by many factors, especially the patient’s per-
sonal health information and the disease information. Moreover, the predictive
effect of hospital readmission for each patient can be improved by using the
features of other relevant patients to assist the hospital readmission prediction.
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Therefore, this paper constructs a “patient-disease” bipartite graph to combine
patient information and disease information, and by constructing a bipartite
graph, the patient can have a deep connection with relevant patients through
the disease. The left in Fig. 1 shows a simple example of Patient-Disease Bipar-
tite Graph construction with three patients and five diseases. After constructing
the bipartite graph, we can find the related patients for each patient. For exam-
ple, through the two paths shown on the right side of Fig. 1, P2 → D → P1 and
P2 → D → P1 → C → P3, we can find that patient P1 and patient P3 are
related patients of patient P2.

Fig. 1. Left: A simple example of Patient-Disease Bipartite Graph construction with
three patients and five diseases. Right: A simple example shows how to find related
patients of P2 through the bipartite graph.

First, the diseases are extracted from the patients’ medical record history,
and the diseases of each patient are serialized according to the timestamp of the
disease.

Definition 1 (Disease Sequence Set). Suppose we have a set of dis-
ease sequences {sn|n = 1, 2, 3, ...N}, where N is the number of disease
sequences. Each disease sequence sn is represented as < (dn1, tn1), (dn2, tn2),
...(dnLn

, tnLn
) >, where Ln is the length of sn, a disease dni takes place at

timestamp tni, and tnp ≤ tnq, for all p < q.



390 Z. Liu et al.

A simplified example of a medical event sequence is shown in Fig. 1. Then,
based on the patients’ disease sequence set, we construct a patient-disease bipar-
tite graph. All patients are taken as patient node set of the bipartite graph, and
the unique disease of the disease set 〈dn1, dn2, ..., dnLn

〉 is taken as disease node
set of the bipartite graph. The edge between the patient and the disease indicates
that the patient suffered from the disease.

Definition 2 (Patient-Disease Bipartite Graph). Suppose we have a patient-
disease bipartite graph G(Vp + Vd, E), where Vp is the set of pateient nodes and
Vd is the set of disease nodes. E is the set of edges, which indicate the correlation
between patients and diseases, and each edge has a weight.

Then, we normalize the reciprocal of the time interval as the weight of the
edge. The later one disease in the disease sequence, the smaller the interval
of the disease is and the greater the weight of the corresponding edge is. The
underlying idea behind this weight computation approach is that the closer a
disease is to the prediction window, the greater the impact of this disease is on
hospital readmission.

The specific calculation formula for the weight of the edge is as follows:

eij =
exp (1/ (tip − tij))∑

k∈Ni
exp (1/ (tip − tij))

(1)

eij represents the weight of edge between patient i and disease j, tip represents
the prediction time of patient i, tij is the time that patient i had disease j, Ni

represents all neighbor nodes of patient i, i.e. all diseases of patient i.

3.2 Prediction Model Based on Patient-Disease Bipartite Graph

After the construction of the Patient and Disease Bipartite Graph, heteroge-
neous graph representation learning should be carried out to learn the personal-
ized vector representation of each patient for the prediction of hospital readmis-
sion. Therefore, we proposed the PDGraph embedding generation algorithm to
learn the medical heterogeneous graph we constructed, which aggregated node
neighborhood information layer by layer, and finally we used the aggregation
information of patient nodes to predict hospital readmission.

PDGraph Embedding Generation Algorithm. In this section, we intro-
duce the details of PDGraph embedding generation algorithm. The intuition of
our algorithm is that patient nodes aggregate information from the linked disease
nodes at each iteration, meanwhile disease nodes aggregate information from the
linked patient nodes at each iteration. As the iteration continues, patient nodes
and disease nodes incrementally gain more and more information from further
reaches of the Patient-Disease Bipartite Graph.

Step 1 in Fig. 2 illustrates the idea of PDGraph embedding generation algo-
rithm. Algorithm 1 describes the process of embedding generation in the case
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Fig. 2. An example of the idea of our method.

where the patient-disease bipartite graph, G (Vp + Vd, E), and features of patient
nodes and disease nodes are provided as input. Each iteration in the outer loop
of Algorithm 1 proceeds as follows, where l represents the current iteration in
the outer loop and hl represents a node’s representation at this step: First, each
patient node p ∈ Vp aggregates the representations of the linked disease nodes,
hl−1
u ,∀u ∈ N (p), to obtain the next layer representation of the patient node hl

p.
It should be noted that this aggregation step depends on the representations
generated at the previous iteration (i.e., l −1), and the l = 0 representations are
defined as the input features of patient nodes. For each disease node, do similar
operations, but the aggregator method is different.

Aggregator. As shown in Algorithm 1, for each iteration, we need to aggregate
the neighborhood information of patient node and disease node. In this paper,
different aggregators are used to aggregate neighborhood information for patient
node and disease node, which are named patient aggregator and disease aggre-
gator respectively. And our aggregator method inspired by Hamilton et al. [12]
and Velickovic et al. [13].

The inputs for two kinds of aggregators are both two sets of node features.
hp = {hp1, hp2, . . . , hpm} , hpi ∈ RFp is the set of patient node features, where
m is the number of patient nodes, and Fp is the number of features in each
patient node. hd = {hd1, hd2, . . . , hdn} , hdi ∈ RFd is the set of disease node
features, where n is the number of disease nodes, and Fd is the number of features
in each disease node. The aggregator produces two new sets of node features,{
h′
p1, h

′
p2, . . . , h

′
pm

}
, h′

pi ∈ RF ′
p and h′

d = {h′
d1, h

′
d2, . . . , h

′
dm} , h′

di ∈ RF ′
d , as its

output.
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Patients should have different concerns about different diseases, because the
later the disease is, the greater the impact on patient hospital readmission is.
Therefore, we need to determine the weight of the edge between the disease and
the patient. The weights, i.e. attention coefficients, is calculated as follows:

α (hpi,hdj, eij) =
exp

(
σ

(
aT [Wphpi||eijWdhdj]

))

∑
k∈Npi

exp (σ (aT [Wphpi||eijWdhdj]))
(2)

Where T represents transposition; || represents the connection operation; σ rep-
resents a nonlinearity; Npi represents the neighbors of patient node i; hpi is the
features of patient node i; hdj is the features of disease node j; eij is the current
attention coefficient that indicates the importance of node j to node i. It is the
attention coefficient of the previous layer, and it is the initial weight of the edge
at the first layer.

Patient Aggregator. The attention coefficients are used to compute a linear com-
bination of the features corresponding to them, to obtain the final output features
for each patient node,

hl
pi = σ

⎛

⎝
∑

j∈Npi

α
(
hl−1
pi , hl−1

dj , el−1
ij

)
W l−1hl−1

dj

⎞

⎠ (3)

Disease aggregator. Similar to patient aggregator, disease aggregator uses the
attention coefficients to compute a linear combination of the features correspond-
ing to them as the final output features for each disease node,

hl
dj = σ

⎛

⎝
∑

i∈Ndj

α
(
hl−1
pi , hl−1

dj , el−1
ij

)
W l−1hl−1

pi

⎞

⎠ (4)
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Where hl−1
pi represents the features of patient node i at layer l−1; hl−1

dj represents
the features of disease node j at layer l − 1; el−1

ij is the weight of the edge which
links node j to node i at layer l −1; W l−1 is the corresponding weight matrix at
layer l−1, which is used to propagate information between different layers of the
model; α is the weight calculation function mentiond before; σ is a nonlinearity.

Predict Hospital Readmission. By PDGraph embedding generation algo-
rithm, we aggregate information from the diseases and related patients for each
patient. Thus, the good patient representations zp for all p ∈ Vp are obtained.
Then, as shown in step 2 in Fig. 2, we use aggregated information (i.e., zp) to
predict hospital readmission for each patient. Since we obtain good representa-
tion of each patient by the method mentioned before, we simply use a softmax
layer to predict hospital readmission,

ŷ = softmax(zp) (5)

where ŷ indicates whether the patient will be readmitted.

4 Experiment

4.1 Datasets

We use a real-world healthcare dataset of patients with coronary heart disease
to evaluate the effectiveness of our method, including the diagnosis information
and the health examination information. Our datasets include the records of 710
patients for 6 years, from 2011 to 2016.

The statistics of the dataset is summarized in Table 1. The Coronary Heart
Disease dataset includes 710 patients and 435 distinct diseases. Among these
patients 381 are hospitalized within one year after CHD confirmation, and the
rest 329 patients are not. The average number of diseases per patient is 4.269,
and the maximum number of diseases per patient is 14. Each patient has at least
one diagnosis, up to 14, and most patients have no more than 10 diagnoses.

4.2 Experimental Settings

Here we give some details of the our model, and the baseline approaches to
compare with. Our task is to predict whether the patient with coronary heart
disease will be hospitalized or not within 180 days after discharge from hospital.
All of methods use a 5-fold cross validation method to evaluate method perfor-
mance, in order to more accurately evaluate the performance of each method.
And the classification performance is measured by Precision, Recall, F1-score
and Accuracy.



394 Z. Liu et al.

Baseline Approaches. For comparison purpose, we also implemented the fol-
lowing baselines:

– LR: Reviewing previous studies on hospital readmission prediction, a variety
of regression techniques are mostly used to construct the prediction model
in the early stage, and logistic regression is one of the most commonly used
algorithms [6]. Logistic regression is a statistical model that in its basic form
uses a logistic function to model a binary dependent variable.

– SVM: Support vector machine is a common supervised learning model to ana-
lyze data used for classification. In the most recent studies, machine learning
algorithms have been increasingly used, among which SVM is one of the most
commonly used algorithms [6].

– DT: Decision tree algorithm is a basic classification and regression algorithm,
and in our task, we use it to perform a binary classification task. Classification
decision tree model is a tree structure that describes the classification of
instances.

– RF: Random forests or random decision forests are an ensemble learning
method for classification task that operates by constructing a multitude of
decision trees at training time and outputting the class that is the mode of
the classes of the individual trees.

Table 1. Statistics of dataset.

Cohorts Coronary heart disease dataset

# Patients 710

Total # distinct diseases 435

Avg. # of diseases per patient 4.269

Max # of diseases per patient 14

Our Model. Our task is to predict the risk of hospital readmission for each
patient with coronary heart disease. We set the prediction window as 180 days,
and all the rest records before prediction window belong to observation window.
First, we use the records in observation window to construct the patient and
disease bipartite graph, and embed the basic health information of patients as the
features of patient nodes, and use the medical concept embedding method [14] to
learn appropriate disease vector representation as the features of disease nodes.
The basic health information of patients includes the average hospital days,
the average hospital costs, the hospital frequency, gender, age, BMI, whether
smoking or not, etc. Then, we train our model described in Sect. 3.2 to obtain
the optimized parameters. After that, we predict hospital readmission for each
testing patient.
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Table 2. Results of predicting hospital readmission. Pre, Rec, F1 and Acc represent
Precision, Recall, F1-score and Accuracy, respectively. The prediction performance over
5-fold cross validation on real-world data sets.

LR SVM DT RF PDGraph

Pre 0.5070 0.5139 0.5397 0.5932 0.5857

Rec 0.7347 0.7551 0.6939 0.7143 0.7884

F1 0.6000 0.6116 0.6071 0.6481 0.6721

Acc 0.5200 0.5300 0.5600 0.6200 0.6364

Fig. 3. The F1-score of each fold for all five methods

4.3 Prediction Performance

The experimental results are shown in Table 2. It contains the comparison among
four classification performance measures (Pre, Rec, F1, Acc), and five prediction
methods (LR, SVM, DT, RF, PDGraph). Among them, LR, SVM, DT and RF
are machine learning methods commonly used to predict hospital readmission,
and PDGraph is our method based on patient and disease bipartite graph. Pre,
Rec, F1 and Acc represent Precision, Recall, F1-score and Accuracy, respectively.

From Table 2, We can see that PDGraph has the dominating overall pre-
diction accuracy on coronary heart disease data sets and its performance is
promising. PDGraph outperforms the other methods by reaching the F1-score
0.6721 and the accuracy 0.6364. And the value of recall of PDGraph is much
higher than other methods, indicating that our method can better find hospital
readmission patients.

Figure 3 shows the F1-score measure across all the folds for all five methods.
We can see that our method has a great advantage compared with the other
four methods. Although the predictive performance of our method fluctuates
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in different folds and even has a big decline in fold-3, we can still see that our
method is more competitive than the other four methods.

5 Conclusion

In this paper, we propose a hospital readmission prediction model based on het-
erogeneous graph representation learning. Specifically, a “patient-disease” bipar-
tite graph is constructed according to the patients’ medical records, through
which each patient can have a deep correlation with other patients with the
same disease. Then, PDGraph embedding generation algorithm was designed
to aggregate information from the diseases and information from the relevant
patients for each patient to improve predictive performance. Finally, the aggre-
gate information was used to predict hospital readmission. We validated the pro-
posed model on a real dataset, and the results show that our proposed method
is more accurate in the prediction tasks compared with the baselines.
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Abstract. Attributed information network embedding (AINE) has been
widely used in network analysis. Existing AINE methods mainly focus on
preserving network proximities and minimizing the reconstruction loss of
node attribute information from a single aspect. However, complex net-
work data may stem from different aspects. For example, a social net-
work may consist of working relationship networks, alumni associations
and so on. In this paper, we propose a novel model, called Aspect-level
Attributed Network Embedding (AANE), to embed nodes by learning
different aspect-level information. Specifically, we use a transform matrix
to model aspect-level network topological structure and node attributes.
Then, we leverage graph neural networks to learn aspect-level embed-
ding. To learn a robust representation, we aggregate different aspect-
level embeddings via the attention mechanism in a variational manner.
Experimental results on four real-world network datasets demonstrate
that AANE outperforms the state-of-the-art network embedding meth-
ods.

Keywords: Attributed information network embedding · Graph
neural networks · Variational auto-encoder

1 Introduction

In the era of information explosion, attributed information networks (AINs)
[6] have been widely used in social media and e-commerce. AIN is a powerful
tool to store and access relational data. Data mining tasks on AINs, such as
community detection [4], node classification [25], and link prediction [11], have
attracted continuous attention. Network embedding [5,17], which maps nodes
into a low-dimension space, plays an important role in data mining tasks on
AINs. Particularly, unsupervised network embedding is more flexible and more
general because it is hard and expensive to obtain the labels of nodes in most
cases.

Unsupervised attributed information network embedding methods can be
categorized into two classes [9]. The first class, such as DANE [4] and ANRL
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[25], usually uses random walk based model [17] to capture the linkage infor-
mation and an auto-encoder to capture the content information of nodes. The
second class, like DGI [21], embeds nodes into a low-dimensional space through
mutual information maximization. However, existing methods usually learn node
representations from a single aspect, ignoring that network data may stem from
different aspects. For instance, a social network, as illustrated in Fig. 1, consists
of working relationship networks, alumni associations, hobby networks and so
on. Citation networks are made up of citations of different topics. More specif-
ically, a person may have different character traits and social relationships in
different circumstances, and a paper may draw knowledge and cite references
from two or more fields. So, from different aspects, nodes may have different
features and the network topological structure may be different. The observed
network information is a blend of different aspect-level data. Actually, aspect-
level analysis has shown its positive effect in handling complex information in
many fields, such as heterogeneous information network based recommendation
[6] and sentiment classification [24]. Thus, it will be better to apply aspect-level
analysis to attributed information networks, rather than from a single aspect.

Fig. 1. Illustration of a social network with different aspect-level data.

In this paper, we propose a method called Aspect-level Attributed Network
Embedding (AANE), which learns a robust representation in a variational man-
ner. We first design a transform matrix to capture aspect-level attributes and
topology information. Then, nodes are embedded into a low-dimensional repre-
sentation space according to the attribute information and topology information
of each aspect. By combining the node embeddings of different aspects via atten-
tion mechanism [1] in a variational manner, our model obtains the final embed-
ding of each node. Our model focuses on unsupervised AIN embedding and it
can be easily applied to plain networks, heterogeneous information networks,
signed information networks and so on. Besides, our model can be fine-tuned in
a supervised way if the labels are available. Our contributions are as follows:
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– We present a unified method AANE, which analyses attributed information
networks in an aspect-level way, and then integrates the topology information
as well as content information of different aspects in a low dimensional space.

– We design an aspect-level encoder, which uses a transform matrix to capture
different aspect-level network topology information and node attributes.

– We conduct experiments on four datasets: Cora, Citeseer, Pubmed and Wiki.
The experiment results demonstrate the effectiveness of AANE.

2 Related Work

In this section, we first give a brief introduction to unsupervised network embed-
ding. Next, we focus on attributed information network embedding.

2.1 Unsupervised Network Embedding

Network embedding attempts to map nodes into a low-dimensional space that
preserves the topology information of the network. Network embedding has been
widely used in a variety of tasks, such as social recommendation and community
detection [5,17,19]. Early methods, such as Laplacian Eigenmaps [2] and Local
Linear Embedding (LLE) [18], are hard to be applied to large-scale network rep-
resentation learning. In recent years, a variety of scalable network embedding
models have been proposed with the help of deep learning. Among them, Deep-
Walk [17], proposed by Perozzi et al., employs random walk to generate node
sequences. Then, node sequences are used to approximate node centrality as well
as similarity and fed into skip-gram negative sampling model [15] to learn node
embeddings. Inspired by this, Grover and Leskovec propose node2vec [5], which
combines BFS-like and DFS-like exploration to guide a biased random walk. To
take structural similarity into account, Struc2vec [19] leverages random walk on
a context graph that enables the node sequences to consider both node proxim-
ity and structural similarity. Instead of using a random walk-based model, LINE
[20] employs a factorization based model to preserve both the first-order and the
second-order proximity. GraRep [3] is proposed to capture high-order proximity.
However, these models fail to consider the node attribute information.

2.2 Attributed Information Network Embedding

Attributed information network embedding (AINE) aims to integrate node
attribute information and topology information to learn node representations.
With the help of node attributes, AINE is promising to be more representative
than plain network embedding [25]. TADW [23] employs matrix factorization
to combine topological structure and text features of nodes. DANE [4] uses an
auto-encoder to capture node attribute information and proposes a strategy
to capture the consistency information between topological structure and node
attributes. ANRL [25] mainly focuses on the aggregation information of the first-
order proximity and node attributes under the help of the neighbor enhancement
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autoencoder. Recently, graph neural networks (GNNs) [22] are proved to be an
effective framework for network representation learning. VGAE [11], proposed by
Kipf and Welling, uses a graph convolutional network [12] and an inner product
decoder to learn node embeddings in an unsupervised manner. To capture the
mutual information between node representations (local information) and graph-
level summaries (global information), Velickovic et al. [21] propose a GNN-based
model to learn node embedding by applying Deep InfoMax [8] to network data.
However, these works fail to analyze the aspect-level information of a network.

3 Aspect-Level Attributed Network Embedding

3.1 Problem Definition

An attributed information network is an undirected graph G = (V,A, EV , EA)
with adjacency matrix A ∈ R

N×N and the attribute matrix X = R
N×D, where

V is node set and A is attribute set. N = |V| is number of nodes and D = |A| is
number of attributes. EV ⊂ V × V is the edge set and EA ⊂ V × A is the set of
node attributes.

Given an AIN G = (V,A, EV , EA), the goal of attributed network embed-
ding is to learn a mapping function f that maps each node vj ∈ V to a low
dimension vector zj ∈ R

d, where d is the embedding size. Moreover, the map-
ping function f preserves not only network topological structure but also node
attribute information. We denote the latent representation matrix for all nodes
as Z ∈ R

N×d.

3.2 The Architecture of AANE

AANE is a variational model that employs the aspect-level encoder (inference
model) to capture the content information and topological structure of complex
attributed information networks. We demonstrate the framework of our model
in Fig. 2. The details of AANE are described as follows.

Given an AIN, G = (V,A, EV , EA) with adjacency matrix A and the attribute
matrix X, the log-probability of the observed adjacency matrix A and the
attributed matrix X is defined as follows.

log p(A,X) = log
∫
Z

p(A,X,Z)dZ

= log
∫
Z

p(A,X,Z)
qφ(Z|A,X)
qφ(Z|A,X)

dZ

≥ Eqφ
[log(

pθ(A,X|Z)p(Z)
qφ(Z|A,X)

)],

(1)

where p(Z) is the prior distribution of Z and inference model (encoder) qφ is
parameterized by aspect-level encoder, which will be introduced in the following
subsection. By assuming qφ(·) to be mean-field distribution, we have
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Fig. 2. The framework of AANE. The overall architecture of AANE consists of two
components: inference model (aspect-level encoder) and generative model (decoder).
The inference model is to capture aspect-level network topological structure and node
attributes. The generative model is to preserve network structure and node attributes.

qφ(Z|A,X) =
N∏

j=1

qφ(zj |A,X). (2)

As for the generative model (decoder) pθ, we assume that the linkage informa-
tion and the content information are independent of each other when conditioned
on Z.

log pθ(A,X|Z) = log pθ(A|Z) + log pθ(X|Z), (3)

where the first term is a reconstruction error for the topological structure of G,
while the second term is for the content information of nodes. By substituting
the Eq. 2, Eq. 3 into Eq. 1, we have the corresponding evidence lower bound
objective (ELBO) as follows.

log p(A,X) ≥ Eqφ
[log(pθ(A|Z))] + Eqφ

[log(pθ(X|Z))] − DKL(qφ(Z|A,X)||p(Z))
(4)

where DKL(·||·) denotes the Kullback–Leibler divergence [13]. Following the set-
ting of [10], we let the prior distribution p(Z) to be the centered isotropic multi-
variate Gaussian, the approximate posterior qφ to be a mutli-variate Gaussian
with diagonal co-variance. Then, the last term DKL(qφ(Z|A,X)||p(Z)) in Eq. 4
can have an analytical form.

p(Z) = N (0, I) (5)

qφ(zj |A,X) = N (μzj
,σ2

zj
I) (6)

DKL(qφ(Z|A,X)||p(Z)) =
1
2

N∑
j=1

((σ2
zj

+ μ2
zj

) − log(σ2
zj

) − 1) (7)
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Similar to variational auto-encoder, our model is optimized with the reparam-
eterization trick and Stochastic Gradient Variational Bayes (SGVB) algorithm
[10].

3.3 Aspect-Level Encoder

In this subsection, we introduce the aspect-level encoder qφ(Z|A,X) in detail.
As discussed earlier, a complex AIN is made up of multi-aspect information.
Moreover, both the topological structure and the content information may differ
in different aspects. To address this issue, we first get the latent representation
of each aspect, then we fuse all the aspect-level representation into the final
representation Z.

We design a transform matrix to extract the node feature and topological
structure under different aspects. For the i-th aspect, we denote the transform
matrix as M(i) ∈ R

Da×D. Here, M(i) is a learnable matrix and Da is the dimen-
sion of aspect-level node attribute. On the i-th aspect, M(i) serves as a feature
extractor for each node. The i-th aspect-level attributes of node vj is defined as
follows.

x(i)
j = M(i) · xj , i = 1, 2, · · · ,K (8)

where xj is the original feature of vj and K is the aspect number. Based on the
aspect-level attributes, the aspect-level connection strength between vj and its
neighbor vk is modeled by an attention mechanism.

a
(i)
jk =

exp(a(x(i)
j ,x(i)

k ))∑
k′∈Nei(j)

exp(a(x(i)
j ,x(i)

k′ ))
=

exp(a(M(i) · xj ,M(i) · xk))∑
k′∈Nei(j)

exp(a(M(i) · xj ,M(i) · xk′))
, (9)

where Nei(j) denotes the set of neighbor nodes of vj . For (vj , v
′
k) /∈ EV , we set

a
(i)
jk′ = 0. We use A(i) = (a(i)

jk )N×N to denote the aspect-level adjacency matrix.
To get the aspect-level latent representations, it is important to take both

topological structure and content information into account. GNN [22] is a pow-
erful tool to integrate the node feature as well as the topological structure and
it has been proved to be effective in network representation learning. Thus, we
employ a two-layer graph convolutional network (GCN) to get aspect-level rep-
resentations. For the i-th aspect with aspect-level feature X(i) = M(i) · X and
adjacency matrix A(i), the two-layer GCN of aspect i is defined as follows.

H(i)
1 = σ(Ã(i)X(i)W(i)

0 ), (10)[
μZ(i) ,σ2

Z(i)

]
= σ(Ã(i)H(i)

1 W(i)
1 ), (11)

where μZ(i) ,σ2
Z(i) denote the mean and variance of Z(i). Ã(i) = (D(i))− 1

2

A(i)(D(i))− 1
2 is normalized adjacency matrix of A(i). D(i) is the diagonal degree

matrix of A(i) and D(i)
ll =

∑
p A(i)

lp . W(i)
0 and W(i)

1 are learnable parameters and

H(i)
1 is hidden representations of nodes. σ(·) is a non-linear activation function,
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such as ReLU(·) [16] and tanh(·) function. In our experiment, we use tanh(·)
function.

Here we assume that Z(i) are independent of each other and Z(i) ∼
N (μZ(i) ,σ2

Z(i)). After obtaining the mean and variance of aspect-level repre-
sentation Z(i), we propose two ways to fuse them to get the final representation.
The first one is to average all aspects.

Zavg =
1
K

K∑
i=1

Z(i) ∼ N (
1
K

K∑
i=1

μZ(i) ,
1

K2

K∑
i=1

σ2
Z(i)I) (12)

This method does not distinguish the different importance of each aspect.
However, different aspects may have different contributions to the final repre-
sentation. Attention mechanism [1], which can learn the weight of each aspect,
has been proved to be an effective tool in information fusing. We use the atten-
tion mechanism to fuse all aspects in a weighted manner. We denote ei as the
attention weight of the i-th aspect. Then, we have

Zatt =
K∑

i=1

eiZ(i) ∼ N (
K∑

i=1

eiμZ(i) ,
K∑

i=1

e2i σ
2
Z(i)I) (13)

ei =
exp(a(Z(i)))

K∑
j=1

exp(a(Z(j)))
, (14)

where a(·) is the scoring function, which is a two-layer perceptron in our exper-
iment.

3.4 Decoder

The decoder aims to reconstruct the topological structure and attribute informa-
tion from the latent representation Z. Here, we assume that the linkage informa-
tion and the content information are independent of each other when conditioned
on Z. Then, we have

log pθ(A,X|Z) = log pθ(A|Z) + log pθ(X|Z). (15)

To reconstruct the content information, we use a two-layer perceptron g(Z)
to preserve the node attributes.

X ∼ N (g(Z), I), g(Z) = σ(Wθ,2(σ(Wθ,1Z + bθ,1)) + bθ,2).

To model the topology information, we employ the Skip-Gram Negative Sam-
pling (SGNS) model to capture the linkage information. SGNS model has been
widely used in network embedding [5,17,25]. SGNS model assumes that nodes
with similar content should have similar latent representations. Given a random
walks set RW , we have

log pθ(A|Z) =
N∑

j=1

∑
r∈RW

∑
−j≤b≤j,b �=0

log p(vj+b|vj), (16)
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where vj+b is the context node of node vj in the random walk r and b is the
window size. The conditional probability p(vj+b|vj) represents the likelihood of
observing the context nodes given the node vj .

p(vj+b|vj) =
exp((zj+b)T zj)∑

vw∈V
exp((zw)T zj)

. (17)

Similar to DeepWalk [17], pθ(A|Z) is optimized by negative sampling [15].
Thus, the overall objective function of our model is as follows:

O =Eqφ
[pθ(A|Z)] + Eqφ

[pθ(X|Z)] − DKL(qφ(Z|A,X)||p(Z))

= − 1
N2

||X − g(Z)||2F +
n∑

j=1

∑
r∈RW

∑
−j≤b≤j,b �=0

exp((zj+b)T zj)∑
vw∈V

exp((zw)T zj)

+
1

2N

N∑
j=1

(1 + log(σ2
zj

) − (σ2
zj

+ μ2
zj

)).

(18)

Furthermore, if the labels of nodes are available, our model can be trained
in a supervised manner with a classifier.

Osup = Eqφ [pθ(A|Z)] + Eqφ [pθ(X|Z)]− DKL(qφ(Z|A,X)||p(Z)) +
∑

j∈L

p(zj |yj ; θcls), (19)

where L is the set of labelled nodes and θcls is the parameter set of the classifier.

3.5 Applications to Different Types of Networks

Our model can be easily applied to different types of networks. For plain networks
without node attributes, we can use the one-hot representation of node ID as
node attributes. As for heterogeneous information networks, we can use the node
type as node attributes. Moreover, the connection matrix of meta-paths can be
employed as the aspect-level adjacency matrix in our model. Signed information
networks are an aggregation of positive (friendly) and negative (antagonistic)
interactions. Thus, the connection matrix of positive signs and negative signs
can be used as aspect-level adjacency matrices in our model. Then, the trans-
form matrices are used to capture aspect-level node attributes. After obtaining
the aspect-level adjacency matrix and node attributes, the decoder described in
Sect. 3.4 is employed to capture linkage information and content information.
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4 Experiments

In this section, we evaluate the performance of AANE on four AIN datasets:
Citeseer, Pubmed, Cora, and Wiki1, and compare it with the state-of-the-art
network embedding methods.

4.1 Experiment Settings

Datasets. The statistics of the datasets are summarized in Table 1. Cora, Cite-
seer and Pubmed are citation networks. Each node in the network represents a
scientific publication and edges between nodes represent citation links between
publications. The attribute of nodes is the bag-of-words representations or TF-
IDF word vectors [14] of the corresponding publication. The publications in
datasets are classified into several classes, which are the label information of
each node. For instance, publications in the Citeseer dataset are classified into
one of the following six groups: Agents, AI, DB, IR, ML, and HCI. Nodes in the
Wiki dataset are webpages from 17 categories and edges are hyperlinks between
webpages. Node attribute is a TF-IDF vector of web content.

Table 1. Statistics of the datasets and corresponding parameter settings

Datasets #nodes #edges #attributes #labels #neurons of decoder #aspect-level dim

Citeseer 3312 4660 3703 6 200-1000-3703 1000

Cora 2708 5278 1433 7 200-1000-1433 1000

Pubmed 19717 44338 500 3 200-200-500 200

Wiki 2405 12761 4973 17 200-1000-4973 1000

Baselines. To evaluate the performance of AANE, we compare it with several
network embedding methods:

Attribute-only

– AE [7] is the auto-encoder model that only takes node attributes as input.
The number of hidden neurons is the same as the decoder of AANE.

Structure-only

– DeepWalk (DW) [17] employs random walk to generate node sequences and
learns node embeddings by feeding node sequences into Skip-Gram Negative
Sampling model. The length of node sequences is set to 80, and the window
size is 10.

1 https://linqs.soe.ucsc.edu/data.

https://linqs.soe.ucsc.edu/data


AANE 407

– Node2Vec [5] is a variant model of DeepWalk. Different from DeepWalk,
Node2Vec combines BFS-like and DFS-like exploration to guide a biased ran-
dom walk.

– LINE [20] uses a factorization-based model to preserve both the first-order
and the second-order proximity.

– GraRep [3] is a factorization-based model that can capture global structural
information of the network.

Attribute + Structure

– TADW [23] employs matrix factorization to combine the topological structure
and text features of nodes.

– GAE/VGAE [11] learns node embeddings by a graph convolution network
encoder and an inner product decoder. VGAE is a variational version of
GAE.

– DANE [4] uses two auto-encoders to capture node attribute information and
topology information respectively and proposes a strategy to focus on the con-
sistency information between the topological structure and node attributes.

– ANRL [25] leverages the neighbor enhancement auto-encoder to capture the
aggregate information of the first-order proximity and node attributes.

AANE-variants

– AANE-AVG averages all aspect-level representations to get the final repre-
sentation.

– AANE-ATT uses attention mechanism to fuse the aspect-level representations
as defined in Eq. 13.

Table 2. Node classification result of Citeseer

Method 10% 30% 50%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

AE 0.5438 0.5131 0.6373 0.5996 0.6691 0.6156

DW 0.5052 0.4645 0.5783 0.5329 0.5900 0.5486

Node2Vec 0.5233 0.4832 0.6110 0.5651 0.6335 0.5972

GraRep 0.4817 0.4589 0.5511 0.5118 0.5707 0.5048

LINE 0.5139 0.4726 0.5761 0.5384 0.6075 0.5700

TADW 0.6048 0.5344 0.6481 0.5769 0.6578 0.5897

GAE 0.6058 0.5532 0.6550 0.5814 0.6540 0.5808

VGAE 0.6115 0.5662 0.6386 0.5824 0.6443 0.5837

DANE 0.6443 0.6043 0.7137 0.6718 0.7393 0.6965

ANRL 0.6849 0.6322 0.7275 0.6721 0.7279 0.6805

AANE-AVG 0.7098 0.6355 0.7305 0.6754 0.7415 0.6768

AANE-ATT 0.7132 0.6562 0.7370 0.6844 0.7548 0.6982
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Parameter Settings. In experiments, the aspect-level feature dimension is set
to be 1000. The aspect number is set to be 4. The number of decoder layers is
set to be 2. The architecture of decoder is summarized in Table 1. Learning rate
and batch size are set to as 10−4 and 512. For the skip-gram model, we set the
window size as 10, the walk length as 80, the number of walks as 10. At last,
the embedding size is set to be 200 for all baselines and AANE. The parameter
sensitivity is analysed in Sect. 4.4.

4.2 Node Classification

We conduct experiments on node classification to validate the effectiveness of
AANE. After obtaining the node embedding, we use a standard SVM classifier
in sklearn with default parameter setting to classify nodes into different classes.
To conduct a comprehensive evaluation, we random select {10%, 30%, 50%}
nodes as the training set and the rest as the testing set. Similar to previous
studies [4,25], we use Micro-F1 (Mi-F1) and Macro-F1 (Ma-F1) score as evalu-
ation metrics. We repeat this process 10 times and report the average results.
The performance of DW, Node2Vec, LINE, GraRep, TADW, GAE/VGAE, and
DANE are cited from [4]. The classification results are demonstrated in Table 2,
3, 4, 5, respectively. The best result is boldfaced and the next best is underlined.
From these results, we have the following observations:

– “Attribute-only” methods outperform “Structure-only” methods a lot in Wiki
as well as Citeseer, and get comparable results in Pubmed. “Structure-only”
methods outperform “Attribute-only” methods a lot in Cora. This is because
different dataset has different characteristics. For Wiki and Citeseer, node
attribute contributes more than topology information, while topology infor-
mation contributes more to Cora. However, “Attribute+Structure” methods
outperform these two methods in most situations. Thus, it is meaningful to
take both node attributes and topological structure into account.

– Our model achieves the best performance in most cases. Furthermore, the
gain is statistically significant in Citeseer and Cora. The results verify the
effectiveness of our proposed model.

– AANE-ATT outperforms AANE-AVG in most situations. This is because
attention mechanism has more flexibility to aggregate all aspect-level repre-
sentations than average them directly.

4.3 Ablation Study

To evaluate the contributions of each component of AANE, we compare it with
its four variants to verify the effectiveness of variational auto-encoder, aspect-
level encoder, linkage information pθ(A|Z) and content information pθ(X|Z).

To validate the effectiveness of variational auto-encoder, we remove the vari-
ational part of our model and denote this variant as “AANE-var”. We replace
the aspect-level encoder with a two-layer graph convolutional network to verify
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Table 3. Node classification result of Pubmed

Method 10% 30% 50%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

AE 0.8245 0.8232 0.8395 0.8387 0.8430 0.8419

DW 0.8047 0.7873 0.8168 0.8034 0.8156 0.8034

Node2Vec 0.8027 0.7849 0.8110 0.7965 0.8103 0.7981

GraRep 0.7951 0.7785 0.8031 0.7901 0.8051 0.7937

LINE 0.8037 0.7892 0.8129 0.8007 0.8110 0.7994

TADW 0.8358 0.8343 0.8586 0.8584 0.8643 0.8633

GAE 0.8285 0.8238 0.8263 0.8191 0.8284 0.8203

VGAE 0.8299 0.8240 0.8350 0.8291 0.8361 0.8299

DANE 0.8608 0.8579 0.8731 0.8706 0.8775 0.8749

ANRL 0.8424 0.8422 0.8586 0.8559 0.8424 0.8422

AANE-AVG 0.8696 0.8661 0.8795 0.8764 0.8804 0.8757

AANE-ATT 0.8716 0.8688 0.8797 0.8765 0.8813 0.8797

Table 4. Node classification result of Cora

Method 10% 30% 50%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

AE 0.6587 0.6146 0.7315 0.7074 0.7563 0.7310

DW 0.7568 0.7498 0.8064 0.7943 0.8287 0.8177

Node2Vec 0.7477 0.7256 0.8201 0.8121 0.8235 0.8162

GraRep 0.7568 0.7441 0.7927 0.7893 0.7999 0.7921

LINE 0.7338 0.7191 0.8122 0.8105 0.8353 0.8254

TADW 0.7510 0.7234 0.8006 0.7801 0.8354 0.8187

GAE 0.7691 0.7573 0.8059 0.7921 0.8095 0.7989

VGAE 0.7888 0.7736 0.8054 0.7909 0.8117 0.7994

DANE 0.7867 0.7748 0.8281 0.8127 0.8502 0.8377

ANRL 0.7806 0.7635 0.8270 0.8148 0.8368 0.8223

AANE-AVG 0.8121 0.8060 0.8592 0.8489 0.8597 0.8496

AANE-ATT 0.8228 0.8153 0.8576 0.8457 0.8604 0.8501

the effectiveness of aspect-level encoder. We mark this model as “AANE-ale”.
Besides, we remove the reconstruction loss to evaluate the contributions of link-
age information and remove the Skip-gram model to evaluate the contributions
of content information. We name these two models as “AANE-attr” and “AANE-
topo”. The result in Citeseer is demonstrated in Table 7. We have the following
analyses by observing the results.
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Table 5. Node classification result of Wiki

Method 10% 30% 50%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

AE 0.6656 0.5070 0.6948 0.5535 0.7049 0.5736

DW 0.5621 0.4536 0.6479 0.5267 0.6675 0.5942

Node2Vec 0.5603 0.4131 0.6099 0.4760 0.6376 0.5203

GraRep 0.5801 0.4393 0.6223 0.5143 0.6642 0.5341

LINE 0.5806 0.4634 0.6538 0.5425 0.6766 0.5656

TADW 0.7266 0.6300 0.7565 0.6434 0.7764 0.6519

GAE 0.6245 0.4842 0.6526 0.5038 0.6567 0.5076

VGAE 0.6591 0.5215 0.6817 0.5621 0.7041 0.5790

DANE 0.7293 0.6180 0.7702 0.6597 0.7839 0.6838

ANRL 0.6679 0.5362 0.7257 0.6392 0.7340 0.6436

AANE-AVG 0.7207 0.6017 0.7781 0.6478 0.7822 0.6623

AANE-ATT 0.7370 0.6193 0.7805 0.6585 0.7897 0.6973

– AANE performs better than AANE-var among all settings, validating that
AANE learns a more robust embedding with the help of variational auto-
encoder. It is worth mentioning that AANE-var still outperforms above base-
lines among all settings, which demonstrates the effectiveness of our model.

– Aspect-level encoder can improve the performance a lot by comparing AANE
with AANE-ale. AANE outperforms AANE-ale 9.54% with 10% labeled nodes
in terms of Micro-F1. This is because that the aspect-level encoder can cap-
ture the information of different aspects, which makes the embedding more
representative (Tables 3, 4 and 5).

– Similar to the previous observation, attribute information contributes more
than topology information in Citeseer by comparing the result of AANE-topo
with AANE-attr. Moreover, the results demonstrate that our model provides
an effective way to take both topology information and attribute information
into consideration (Table 6).

Table 6. Description of AANE and its variants

Methods Variational Aspect-level encoder Topological loss Reconstruction loss

AANE � � � �
AANE-var × � � �
AANE-ale � × � �
AANE-topo � � × �
AANE-attr � � � ×
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Table 7. Results of AANE and its variants

Method 10% 30% 50%

Micro-F1 Marco-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

AANE 0.7132 0.6562 0.7370 0.6844 0.7548 0.6982

AANE-var 0.7037 0.6530 0.7119 0.6708 0.7409 0.6889

−1.33% −0.49% −3.41% −1.99% −1.84% −1.33%

AANE-ale 0.6511 0.6154 0.7020 0.6623 0.7289 0.6833

−8.71% −6.22% −4.75% −3.23% −3.43% −2.13%

AANE-topo 0.6733 0.6226 0.7130 0.6644 0.7236 0.6751

−5.59% −5.12% −3.26% −2.92% −4.13% −3.31%

AANE-attr 0.5888 0.5543 0.6596 0.6187 0.6896 0.6488

−17.44% −15.53% −10.50% −9.60% −8.64% −7.08%

4.4 Parameter Sensitivity

In this subsection, we study the parameter sensitivity in AANE for node classi-
fication. We evaluate how different sizes of the embedding dimensions, different
sizes of the aspect-level dimensions and different values of the aspect number
affect the performance, respectively. The results in Citeseer are illustrated in
Fig. 3.

Embedding dimensions As illustrated in Fig. 3(a) and 3(d), we vary the
embedding size from [25, 50, 100, 200, 400], other hyper-parameters keep
the same. From the results, we can see that the trend under different set-
tings is similar. The Macro-F1 score and Micro-F1 score increase at first and
decrease when the embedding size increases. Besides, we can find that the
performance of our model is comparatively stable when the embedding size
range from 100 to 200.

Aspect-level dimensions We vary the aspect-level dimensions from [200, 400,
600, 800, 1000]. The results are demonstrated in Fig. 3(b) and 3(e). It is can
be seen that the Macro-F1 score and Micro-F1 score increase as the aspect-
level dimensions increase. It will cost more space if we use a larger aspect-level
dimension. Thus, there exists a trade-off between the performance and the
cost of model training.

Aspect number We vary the aspect number from 2 to 16 and the results are
reported in Fig. 3(c) and Fig. 3(f). From the results, we can see that the
Macro-F1 score and Micro-F1 score increase as first and decrease when the
aspect number increases. The aspect number is suggested to set a range from
2 to 8. Besides, we find that the curves are “unimodal”, thus it is easy to find
a suitable setting for aspect number by grid searching.
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(a) Embedding Size, Mi-F1 (b) Aspect-level Dimen-
sions, Mi-F1

(c) Aspect Num, Mi-F1

(d) Embedding Size, Ma-F1 (e) Aspect-level Dimen-
sions, Ma-F1

(f) Aspect Num, Ma-F1

Fig. 3. Parameter Sensitivity

5 Conclusion

In this paper, we proposed a novel model, called AANE, to learn different aspect-
level information of attributed information networks in a variational manner. We
designed an aspect-level encoder to capture aspect-level topology information
and node attribute information, which achieved sssignificant improvement for
unsupervised attributed information network embedding. We employed the skip-
gram negative sampling model and multi-layer perceptron to preserve network
topology information and node content information. To learn a more robust
representation, our model was optimized in a variational manner. Furthermore,
our model can be easily applied to different types of networks and can be fine-
tuned in a supervised way if the labels are available. Experimental results on
four real-world network datasets verified the effectiveness of our model.
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Abstract. The top-k most relevant Semantic Place retrieval (kSP)
query on spatial RDF data combines keyword-based and location-based
retrieval. The query returns semantic places that are subgraphs rooted
at a place entity with an associated location. The relevance to the query
keywords of a semantic place is measured by a looseness score that aggre-
gates the graph distances between the place (root) and the occurrences of
the keywords in the nodes of the tree. We observe that kSP queries may
retrieve semantic places that are spatially close to the query location,
but with very low keyword relevance. When any single nearby place has
low relevance, returning instead multiple relevant places maybe helpful.
Hence, we propose a generalization of semantic place retrieval, namely
semantic region (SR) retrieval. An SR query aims to return multiple
places that are spatially close to the query location such that each place
is relevant to one or more query keywords. An algorithm and optimiza-
tion techniques are proposed for the efficient processing of SR queries.
Extensive empirical studies with two real datasets offer insight into the
performance of the proposals.

Keywords: Semantic region · Spatial RDF data · Query processing

1 Introduction

Large knowledge bases like DBpedia [1] and YAGO [2] typically adopt the
Resource Description Framework (RDF) data model, which represents data
as collections of (subject , predicate, object) triples. Currently, YAGO includes
knowledge of more than 10 million entities (persons, organizations, cities, etc.)
and contains more than 120 million facts about these entities. The English
version of DBpedia describes 4.58 million entities, including 1,445,000 persons,
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735,000 places, 411,000 creative works, 241,000 organizations, 251,000 species,
and 6,000 diseases.

RDF data is traditionally accessed using a structured query language, like
SPARQL [20,25,30]. However, it is not friendly to common users, since query
issuers need to understand the language itself and to be aware of the data
domain. Hence, SPARQL limits data access mostly to domain experts. This
leaves room for a keyword search model on RDF data [8,18,27]. This model
allows common users to access RDF knowledge bases using ad-hoc keyword
queries. RDF data can be modeled as a directed graph with subjects and objects
as vertices and predicates as edges. In the keyword search model [18], outgoing
edges from subjects that connect to types or literals are removed, and all the
keywords in the URIs, types, and literals of such entities are collected to form a
document of each vertex. A keyword query retrieves a set of (small) subgraphs,
where the vertices in each subgraph collectively cover all the given keywords.

The recent top-k relevant Semantic Place retrieval (kSP) query [29] on spatial
RDF data takes a query location and a set of query keywords as parameters
and combines keyword-based and location-based retrieval. The query returns k
semantic places that are subgraphs rooted at place entities that have associated
locations. Specifically, a kSP query returns the top-k Tightest Qualified Semantic
Places (TQSP) according to a scoring function that considers both the spatial
distance of a semantic place to the query location and the graph proximity of
the occurrences of the query keywords in the RDF graph of a place. A qualified
semantic place satisfies two conditions: (i) it is a tree rooted at a place entity (i.e.,
a vertex in the RDF graph associated with a spatial location), (ii) the documents
associated with the vertices in the tree collectively cover all query keywords. A
looseness score of a qualified semantic place is an aggregate of the graph distances
between the place (root) and the occurrences of the query keywords covered by
the nodes of the tree rooted at the place [8,18,27]. The kSP query returns the k
places with the smallest combined looseness and spatial distance with respect to
the query parameters. However, we observe that kSP queries may retrieve places
that are spatially close to the query, but with poor looseness score, or places that
have good looseness score, but far from the query. Consider the example kSP
query q in Fig. 1 with keywords “childhood” and “scientific.” The top-1 semantic
place, shown in Fig. 3, is rooted at p1. Although p1 is spatially close to the query
location in Fig. 1, the looseness of the semantic place rooted at p1 is large, i.e.,
“scientific” is six edges away and “childhood” is eight edges away from p1, which
means that p1 may not satisfy the user’s intent. When a single place cannot
satisfy a user’s intent, returning instead several relevant places that are close
to each other may be helpful. In practice, they can be considered as one place,
since users can easily visit them. Take again query q in Fig. 1 with keywords
“childhood” and “scientific” as an example. Returning two spatially close places
p2 and p3 is more helpful than returning p1. Places p2 and p3 collectively satisfy
the user’s intent, since “childhood” is close to p2 and “scientific” is close to p3
on the RDF graph, shown in Fig. 2.
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Motivated by the above observation, we propose a generalization of semantic
place retrieval called semantic region (SR) retrieval. Specifically, an SR query
takes a spatial range and a set of query keywords as arguments and returns the
qualified semantic region that minimizes a scoring function. The semantic region
is composed of a subgraph T (r, P ) connecting a set of places that are in the query
spatial range and the so-called keyword-relevant paths of the query keywords.
The scoring function considers both the graph proximity of the occurrences of
query keywords in the RDF graph to the places and the graph proximity among
the places. An SR query aims to retrieve multiple places that are spatially close
to the query location such that each place is relevant to one or more the query
keywords.

Fig. 1. Map of places in Figs. 2
and 3 and query location.

Fig. 2. Semantic region.

Fig. 3. Semantic place.

A straightforward method to process the SR query is to first find the place
set P0 in the query spatial range and then to enumerate all the subsets of P0.
The next step is to construct the semantic region for each subset of places and
to compute its score. The semantic region with the smallest score is returned.
However, this method is inefficient, since considering all subsets of P0 is time
consuming and unnecessary. In addition, constructing the semantic region for
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a subset of places is expensive. It involves finding the graph proximity of the
query keywords to each place and computing the graph proximity among the
places. We propose the SRRA algorithm for efficiently computing SR queries.
A lemma guarantees that the number of places in the semantic region of an SR
query cannot exceed the number of query keywords, thus reducing the number of
subsets of places to be computed. Also, it first finds a candidate semantic region
of the query and derives a lower bound on the scores of un-computed subsets.
Then, the subsets with bound no less than the candidate can be pruned. In addi-
tion, a lower bound is derived on the graph proximity among the places. During
the process of constructing T (r, P ), this bound is used to prune unpromising
semantic regions. To further improve the performance of the SRRA algorithm,
two additional pruning rules are proposed. The SRRA algorithm first considers
subsets of places of size 2 and then expands small subsets to larger subsets by
adding places. The proposed pruning rules use the places already in the pro-
cessed subsets to prune the places to be added, so that more subsets of places
can be pruned.

Outline. Section 2 defines the semantic region retrieval query and relevant con-
cepts. The SRRA algorithm for computing SR queries is presented in Sect. 3,
and optimizations of SRRA are covered in Sect. 4. Our empirical study is the
subject of Sect. 5. Related work is reviewed in Sect. 6, and we conclude in Sect. 7.

2 Problem Definition

An RDF data set is a collection of (subject, predicate, object) triples, where sub-
jects are entities linked to objects (other entities, types, or literals) via predi-
cates. Such a data set can be modeled as a directed graph G = (V,E), where
vertices refer to entities, and edges represent connections between entities based
on predicates. Some entities are associated with spatial coordinates λ. We call
such entities places. We use v to denote any vertex in an RDF graph, while p
denotes a place vertex. In accordance with previous work on querying spatial
RDF data [29], we construct, for each entity, a document ψ from the entity’s
URI and literals. In addition, for each triple, the description of the predicate is
added to the document of the object entity.

Definition 1 Keyword-Relevant Path. Given an RDF graph G = (V,E),
a keyword w, and a place p, a w-relevant path of p is a path with the fewest
edges from p to a vertex whose document contains w. Formally, let γ(p, v) be
the shortest path from place p to vertex v, and let d(p, v) be the length (number
of edges) of γ(p, v). Let V (w) be the set of vertices whose documents contain
keyword w. A w-relevant path of p is defined as Γw(p) = γ(p, v∗), where
v∗ = arg minv∈V (w) d(p, v).

Definition 2 Keyword-Distance of a Place. In an RDF graph G = (V,E),
the distance between a place p and a keyword w, denoted by dg(p,w), is the
number of edges in Γw(p) (a w-relevant path of p).



Semantic Region Retrieval from Spatial RDF Data 419

According to Definitions 1 and 2, a place p is relevant to a keyword w (denoted
as p ∼ w) if it is connected to a vertex whose document contains the keyword.
A small keyword-distance of a place indicates that this place is relevant to the
keyword. If no documents of any of the vertices connected to a place p (including
the document of p itself) contain keyword w, the keyword-distance dg(p,w) is
undefined. In this case, place p is irrelevant to keyword w.

Definition 3 Keyword-Distance of a set of Places. In an RDF graph
G = (V,E), the distance between a keyword w and a set of places P is defined
as dg(P,w) = minp∈P dg(p,w).

Example 1. Figure 4 shows an example RDF graph. Figure 5 shows (part of) the
documents attached to the vertices in Fig. 4. Considering keyword w3, there are
two paths from p2 to the vertices (i.e., v1 and v6) whose documents contain w3.
The w3-relevant path of p2 is the shorter path, i.e., Γw3(p2) = p2 → v5 → v6.
The distance between p2 and w3 is dg(p2, w3) = 2. Similarly, the w3-relevant
path of p1 is Γw3(p1) = p1 → v3 → v2 → v1. The distance between p1 and w3

is dg(p1, w3) = 3. Consider the set of places P = {p1, p2}. The distance between
w3 and P is dg(P,w3) = 2.

Fig. 4. RDF graph.

Vertices Document
v1 w2, w3, w5

v4 w1, w4, w5

v6 w3, w6

v8 w1, w5, w6

Fig. 5. Documents.

A semantic region R(P ) = (T (r, P ), {Γw(p) | p ∈ P}) is a connected sub-
graph of the RDF graph. It consists of a tree T (r, P ) with root r and the places
in P as leaves, and the keyword-relevant paths of the places in P . A special case
is a semantic region with only one place, i.e., |P | = 1, which is called a semantic
place [29]. This paper studies the case where a semantic region contains at least
two places, i.e., |P | > 1.

A Semantic Region (SR) retrieval query q takes two parameters: a
spatial range q.r and a keyword set q.ψ. Given an SR query q, a qualified semantic
region R(P ) of q satisfies two properties: (i) all the places in R(P ) are in the
query spatial range q.r, and (ii) for each keyword w in q.ψ, there exists a relevant
place p in R(P ). The qualified semantic region w.r.t. an SR query is formally
defined in Definition 4.
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Definition 4 Qualified Semantic Region (QSR). Given an SR query q, a
qualified semantic region Rq(P ) = (T (r, P ), {Γw(p) | p ∈ P,w ∈ q.ψ}) satisfies
∀p ∈ P (p.λ ∈ q.r) ∧ ∀w ∈ q.ψ ∃p ∈ P (Γw(p) �= ∅).

Definition 5 Semantic Region Retrieval. Given an SR query q on an
RDF graph G, the result of q is the qualified semantic region Rq(P ) =
(T (r, P ), {Γw(p) | p ∈ P,w ∈ q.ψ}) that minimizes the following scoring func-
tion.

f(Rq(P )) = α · min(cscore(T (r, P )), L)
L

+ (1 − α) · min(kscore(P ), L)
L

cscore(T (r, P )) =
∑

p∈P

d(r, p) kscore(P ) = max
w∈q.ψ

dg(P,w)

where L is the maximum allowed number of edges (e.g., L=10), cscore(T (r, P ))
is the graph proximity of the places in P , kscore(P ) indicates the relevance of
the set of places P w.r.t. the query keywords, and parameter α is used to balance
the importance of cscore(T (r, P )) versus kscore(P ).

Given an SR query, if there exist multiple QSRs that minimize the scoring
function, the firstly found such QSR is returned as the answer for simplicity.

Example 2. Consider an SR query q with keywords q.ψ = {w1, w2, w3}. Figure 5
shows (part of) the documents attached to the vertices in Fig. 4. The omitted
content does not contain any of the query keywords. Assuming that all the
places in Fig. 4 are in the query spatial range q.r, the result of q is the qualified
semantic region Rq(P ) = (T (r, P ), {Γw(p)}) (the gray part in Fig. 4), where
P = {p1, p2, p3}, r = p1, Γw1(p3) = p3 → v4, Γw2(p1) = p1 → v3 → v2 → v1, and
Γw3(p2) = p2 → v5 → v6. Given α = 0.5, its score is 0.5×2/10+0.5×3/10 = 0.25,
where cscore(T (r, P )) = 2 and kscore(P ) = 3.

3 Semantic Region Retrieval Algorithm

3.1 Data Structures

The semantic region retrieval algorithm (SRRA) uses three main data structures.
An R∗-tree indexes the locations of all places in the RDF graph. A disk-resident
inverted index I indexes the documents of all vertices in the RDF graph. This
index consists of two main components: (1) a vocabulary of all distinct terms in
the collection of documents and (2) a posting list for each term t in the vocabu-
lary. The posting list for term t is a list of the ids of all vertices v whose document
ψ contains term t. An additional disk-resident inverted index Iα indexes the α-
radius word neighborhoods of all places in the RDF graph [29]. The α-radius
word neighborhood WN (p) of a place p contains the set of word-distance pairs
{(wi, dg(p,wi))}, where the shortest graph distance from p to wi is no larger
than α, i.e., dg(p,wi) ≤ α.
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Algorithm 1. SRRA(q,Rtree, G, I, Iα)
1: for each keyword wi in q.ψ do
2: Load posting list pli of wi from I
3: Load posting list plαi of wi from Iα

4: P0 ← Rtree.RangeQuery(q.r)
5: for each keyword w in q.ψ do
6: v ← argp min dg(p, w)
7: Add v to Pc

8: Compute f(Rq(Pc))
9: Rc ← Rq(Pc)

10: j ← 2
11: while j ≤ |q.ψ| do � Lemma 1
12: if P ← GenerateCover(Rc, j) �= NULL then
13: for each Pi in P do
14: Compute {Γw(p) | p ∈ Pi, w ∈ q.ψ}
15: Compute T (r, Pi) � Lemma 4 is applied for pruning.
16: Compute f(Rq(Pi))
17: if f(Rc) > f(Rq(Pi)) then
18: Rc ← Rq(Pi)

19: j++

20: return Rc

3.2 Algorithm SRRA

The semantic region retrieved by the SR query q is formed by the subset of
places in the query spatial range that minimizes the scoring function f(Rq(P )). A
straightforward way of finding the result is to compute the scores of the qualified
semantic regions formed by each subset of the places in the query spatial range.
This method is inefficient. First, the number of the subsets of places in the query
spatial range may be large; second, constructing the semantic region formed by
a set of places P is expensive as it involves computing the keyword-relevant
path of each place Γw(p) for each query keyword and the subgraph T (r, P ) that
connects all the places in P . Algorithm SRRA tries to reduce the search space
in three ways. (i) We show that the number of places in the result region cannot
exceed |q.ψ|, so SRRA prunes subsets of places larger than |q.ψ|. (ii) SRRA first
computes a candidate QSR with the best kscore(P ) using index structure Iα.
It also derives bounds on the scores of other subsets of places. Then, subsets
with bounds larger than the score of the candidate QSR are pruned. (iii) SRRA
derives a lower bound on the cscore(T (r, P )) of the QSRs. During the process of
constructing T (r, P ), this bound is used for early termination of the computation
of unpromising QSRs.

Algorithm 1 shows the pseudo code of SRRA. Given an SR query q, it first
loads the posting lists {pli} and {plαi } of each query keyword wi from both I
and Iα. Then the places P0 in the query range q.r are retrieved from the R∗-
tree via a range query. Next, a candidate QSR Rc is constructed by using the
nearest places of each query keyword, i.e., v ← argp min dg(p,w). Ties are broken
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arbitrarily. Having the candidate QSR Rc, the algorithm tries to find a better
QSR in terms of f(Rq(P )) from the places in P0. If one is found, Rc is replaced.
In the end, Rc is returned as the answer to query q.

To find a better QSR, algorithm SRRA generates place sets of size j, j ∈
[2, |q.ψ|], from P0, since an SR query aims to retrieve a result containing at
least two places and at most |q.ψ| places (according to Lemma 1). However,
considering all place sets of size j is time consuming. Algorithm SRRA instead
calls Algorithm 2 to obtain promising place sets. Algorithm 2 derives a lower
bound kdB (P j) (Lemma 2) on the keyword distance of each place set and a
lower bound fB(Rq(P j)) (Lemma 3) on the score of the QSR formed by each
place set. The place sets P whose lower bounds on their scores are smaller than
the score of the candidate QSR are returned to Algorithm1 to compute the
corresponding QSRs Rq(Pi). To compute the QSR for a set of places Pi, the
keyword-relevant path of each place in Pi for each query keyword is calculated
using a variant of Dijkstra’s Algorithm [29]. Next, T (r, P ) is computed using an
existing Algorithm [18]. Since T (r, P ) is constructed incrementally, Lemma 4 is
applied to terminate the computation early if the current QSR cannot obtain a
better score than the candidate.

Lemma 1. The result of an SR query q contains at most |q.ψ| places.
Proof. Suppose the result Rq(P ) of an SR query q contains |q.ψ| + n places,
i.e., |P | = |q.ψ| + n. Create a subset P ′ of P in the following way: for
each query keyword wi ∈ q.ψ, let pi be the place in P having the short-
est keyword distance, i.e., pi = arg minpi∈P dg(p,w); add pi to P ′. Then, we
have cscore(T (r, P )) > cscore(T (r, P ′)), since P ′ ⊂ P . Also, by construction,
kscore(P ) ≥ kscore(P ′). Hence, we obtain f(R(P )) > f(R(P ′)), which leads to
a contradiction. In addition, |P ′| ≤ |q.ψ|. The equality holds when each place
added to P ′ is distinct. This proves the lemma.

Algorithm 2. GenerateCover(Rc, j)
1: for each P j do
2: Compute kdB (P j)
3: Compute fB(Rq(P

j)) � Pruning Rule 1
4: if fB(Rq(P

j)) < f(Rc) then
5: Add P j to P
6: return P

Lemma 2. Given a place set P j, for each place p ∈ P j and for each keyword
w ∈ q.ψ, if p does not have the word-distance pair {(w, dg(p,w))} in α-radius
word neighborhood WN (p), we set dg(p,w) = α + 1. Otherwise, dg(p,w) is the
value in WN (p). A lower bound on kscore(P j) is as follows:

kdB (P j) = max
w∈q.ψ

dg(P,w) = max
w∈q.ψ

min
p∈P

dg(p,w)
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Proof. For each place p ∈ P j and for each keyword w ∈ q.ψ, if p does not have
the word-distance pair {(w, dg(p,w))} in α-radius word neighborhood WN (p),
it must hold that dg(p,w) ≥ α + 1. When computing kdB (P j) for such places,
α + 1 is used instead of their real keyword distances. And kdB (P j) is computed
based on all real keyword distances. Obviously, kdB (P j) ≤ kscore(P j).

Lemma 3. Given a place set P j, a lower bound on the score of semantic region
Rq(P j) is as follows:

fB(Rq(P j)) = α · min(|P j | − 1, L)
L

+ (1 − α) · min(kdB (P j), L)
L

Proof. Given a place set P j , cscore(T (r, P )) takes its minimum value |P j | − 1
when one of the places is the root and all the other places connect to the root
via one edge. According to Lemma 2, kdB (P j) ≤ kscore(P j). Hence, we obtain
fB(Rq(P j)) ≤ f(Rq(P j)).

Pruning Rule 1. Given an SR query q, let P be the subset of the places
in the query spatial range generated by Algorithm2. According to Lemma 3, if
fB(Rq(P )) ≥ f(Rc), P cannot be the result and is pruned.

Lemma 4. Let Rc be the candidate QSR. A lower bound on cscore(T (r, P )) is
defined as follows (normalization parameter L is ignored for convenience):

cscoreB (P) =
f(Rc) − (1 − α) · kscore(P )

α

Proof. First, f(Rc) is the score of the candidate QSR. Second, kscore(P ) is the
keyword distances of the places in P . Then cscoreB (P) is derived according the
scoring function using f(Rc) and kscore(P ), which is the worst allowed value for
R(P ) to become the result.

Example 3. Consider the SR query q with keywords q.ψ = {w1, w2, w3} in the
running example in Fig. 4 and 5, assuming that all the places are in the query
range q.r, i.e., P0 = {p1, p2, · · · , p6}. Inverted index Iα contains the α-radius
word neighborhood of all the places. The candidate QSR Rc is formed by place
set Pc = {p1, p2, p3}, and f(Rq(Pc)) = 0.5×2/10+0.5×3/10 = 0.25, where α =
0.5, cscore(T (r, Pc)) = 2 and kscore(Pc) = 3. Consider place set P = {p2, p3, p4}.
Here, kdB (P ) = max{1, 4, 2} = 4, and fB(Rq(P )) = 0.5 × 2/10 + 0.5 × 4/10 =
0.3 > f(Rq(Pc)). According to Pruning Rule 1, set P cannot be the result and
is pruned.

4 Optimization

In order to find the subset of places in the query spatial range of an SR query
q that minimizes the scoring function, algorithm SRRA generates place sets of
size j, j ∈ [2, |q.ψ|]. For each generated place set, it is expensive to compute the
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corresponding semantic region. Although algorithm SRRA uses a candidate QSR
to prune some subsets of places, many subsets still have to be computed when
the number of query keywords is large. Next, we propose two pruning techniques
to further prune subsets of places that cannot be the result. The correctness of
the pruning rules are guaranteed by Lemmas 5 and 6.

Definition 6. Place pi is dominated by place pj with respect to keyword set ψ,
denoted by pj �ψ pi, if ∀w ∈ ψ (dg(pj , w) ≤ dg(pi, w)).

Lemma 5. Given an SR query q, let P1 and P2 be subsets of places in the
query spatial range, and let P1 ⊂ P2. If ∀p ∈ P2 \ P1 ∃p0 ∈ P1 (p0 �ψ p) then
f(Rq(P1)) ≤ f(Rq(P2)).

Proof. Since P1 ⊂ P2 and ∀p ∈ P2\P1 ∃p0 ∈ P1 (p0 �ψ p), we have kscore(P1) ≤
kscore(P2). Because P1 ⊂ P2, we have cscore(T (r, P1)) ≤ cscore(T (r, P2)). This
proves that f(Rq(P1)) ≤ f(Rq(P2)).

Pruning Rule 2. Given an SR query q, let P be the subset of the places in the
query spatial range generated by Algorithm2. Let P contain all the sets of places
in the query spatial range and ∀Pi ∈ P (P ⊆ Pi). If ∀p ∈ Pi \ P ∃p0 ∈ P (p0 �ψ

p), according to Lemma 5, Rq(Pi) cannot have a better score than Rq(P ) and
can be pruned.

Example 4. Consider the RDF graph in Fig. 4. Given ψ = {w1, w2, w3}, let P1 =
{p1, p2} and P2 = {p1, p2, p5}. According to Definition 6, p1 �ψ p5, since ∀w ∈
ψ dg(p1, w) ≤ dg(p5, w). According to Pruning Rule 2, P2 can be pruned.

Definition 7. Place pi is dominated by a set of places P with respect to a key-
word set ψ, denoted by P �ψ pi, if ∀w ∈ ψ ∃pj ∈ P (dg(pj , w) ≤ dg(pi, w)).

Lemma 6. Given an SR query q, let P1 and P2 be subsets of places in the
query range, and let P1 ⊂ P2. If ∀p ∈ P2 \ P1 ∃P ′ ⊆ P1 (P ′ �ψ p), f(Rq(P1)) ≤
f(Rq(P2)).

Proof. Since P1 ⊂ P2 and ∀p ∈ P2 \ P1 ∃P ′ ⊆ P1 (P ′ �ψ p), we have
kscore(P1) ≤ kscore(P2). Because P1 ⊂ P2, we have cscore(T (r, P1)) ≤
cscore(T (r, P2)). This proves that f(Rq(P1)) ≤ f(Rq(P2)).

Pruning Rule 3. Given an SR query q, let P be the subset of the places in the
query spatial range generated by Algorithm2. Let P contain all the sets of places
in the query spatial range, and let ∀Pi ∈ P (P ⊆ Pi). If ∀p ∈ Pi \ P ∃P ′ ⊆
P (P ′ �ψ p), according to Lemma 6, Rq(Pi) cannot have a better score than
Rq(P ) and can be pruned.

Example 5. Consider the RDF graph in Fig. 4. Given ψ = {w1, w2, w3}, let
P1 = {p1, p2} and P2 = {p1, p2, p6}. According to Definition 7, P1 �ψ p6, since
dg(p1, w1) < dg(p6, w1), dg(p1, w2) < dg(p6, w2), and dg(p2, w3) < dg(p6, w3).
According to Pruning Rule 3, P2 can be pruned.
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5 Empirical Study

This section evaluates the performance of the SRRA algorithm (proposed in
Sect. 3) and of SRRA*, which is the SRRA algorithm combined with the opti-
mization techniques presented in Sect. 4.

5.1 Data and Queries

The data used in our experiments are from DBpedia and Yago (version 2.5).
DBpedia’s directed RDF graph contains 8,099,955 vertices and 72,193,833 edges,
and the dictionary contains 2,927,026 unique words. The documents of all ver-
tices are organized by an inverted index. The average posting list length is 56.46,
which means that a word appears on average in the documents of 56.46 vertices
in the graph. Among all vertices, 883,665 are places with coordinates. Yago’s
directed RDF graph has 8,091,179 vertices and 50,415,307 edges, and its dictio-
nary contains 3,778,457 distinct words. The documents of all vertices are orga-
nized by an inverted index with average posting list 7.83. A total of 4,774,796
vertices are places with coordinates.

Generating SR queries at random reduces the probability of obtaining any
results. To generate more meaningful SR queries, we follow the spatial and key-
word distribution of the datasets. For each generated query, its spatial range is
a rectangle centered at a point location selected at random from the data. Since
the SR query aims to retrieve a semantic region rather than a semantic place,
we avoid using keywords that are close to a single place. Specifically, query key-
words are generated in the following way. We randomly select a vertex p with
low degree1 from the RDF graph, and we randomly select a keyword from its
document. We randomly choose up to |q.ψ| vertices and randomly extract |q.ψ|
keywords from the distinct words in the documents of these vertices.

5.2 Setup

The query processing time is evaluated when varying the number of query key-
words |q.ψ|, α in the scoring function, and the size of the query spatial range q.r.
We vary one parameter while keeping the others fixed. Table 1 lists the values
of the parameters. The values in bold are the (fixed) default values. For each
setting, we run 100 queries and measure the average runtime. To evaluate the
effectiveness of the proposed techniques, the computations on graph are also
reported, including the times of constructing subgraphs connecting places and
the times of computing the keyword-relevant paths. All methods were imple-
mented in Java and evaluated on 3.4 GHz quad-core machine running Ubuntu
12.04 with 16 GBytes memory. For both datasets, the RDF graph is assumed
to be memory-resident. Although the inverted indexes used can also fit in main
memory, we choose to follow the setting of commercial search engines, where
the inverted index is disk-resident. This is reasonable because for each query,

1 Vertices with degree less than 12 on Yago and less than 20 on DBpedia.
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Table 1. Parameter settings.

Parameter Values

|q.ψ| 2, 3, 4, 5

α 0.1, 0.3, 0.5, 0.7, 0.9

|q.r| 625 km2, 784 km2, 900 km2, 1600 km2

Fig. 6. Varying the number of query keywords (Yago).

Fig. 7. Varying the number of query keywords (DBpedia).

only a small portion of the inverted index is relevant and needs be kept in main
memory. In addition, such a design is scalable when more textual data is added
to an RDF knowledge base.

5.3 Performance Evaluation

Varying the Number of Query Keywords. Figures 6 and 7 show the cost
of both SRRA and SRRA* on datasets Yago and DBpedia, respectively. As
expected, the runtime and the computations on graph increase as the number
of keywords increases, since more RDF graph vertices need to be explored to
discover QSRs covering all the query keywords. SRRA* is significantly faster
than SRRA, and the performance gap widens with the number of keywords. For
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both algorithms, the cost of constructing QSRs dominates the runtime. SRRA* is
more efficient than SRRA, confirming the effectiveness of the pruning techniques
proposed in Sect. 4.

Fig. 8. Varying α (Yago).

Fig. 9. Varying α (DBpedia).

Varying α. Figures 8 and 9 shows the performance of SRRA and SRRA* on
Yago and DBpedia when varying α in the scoring function. Large α favor seman-
tic regions where places are closely connected, while small α favor semantic
regions where places are close to the query keywords. On both datasets, the per-
formance of the two algorithms are not sensitive to α. The runtime is strongly
correlated with the computations on graph. SRRA* outperforms SRRA consis-
tently for all values of α.

Varying the Size of the Query Spatial Range. Figures 10 and 11 show
the computational costs of SRRA and SRRA* on the two datasets. As the size
of query spatial range increases, the costs of the algorithms slightly decreases.
Intuitively, if the query spatial range is large, a lot of places are involved in the
computation, so that the computational cost is expected to be high. However,
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we observe from the datasets that a large query spatial range tends to find the
semantic region with more places and each place has short keyword relevant
path, so that the derived bound on the score is small which is able to prune
more sets of places. The amount of computations on graph in Figs. 10b and 11b
is the evidence of this observation. Again, SRRA* is more efficient than SRRA
in this experiment.

Fig. 10. Varying the size of the query spatial range (Yago).

Fig. 11. Varying the size of the query spatial range (DBpedia).

6 Related Work

Keyword Search on Graph Data. Traditional graph search algorithms con-
vert queries into searches in feature spaces, such as paths [26], frequent-pat-
terns [31], and sequences [16], which focus predominantly on the structure of
the graph rather than on the semantic content of the graph. However, keyword
search over graph data [3,6,7,12,14,15,17] takes both the content and the graph
structure into account. These two sources of information improve the overall
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quality of the results. Moreover, interesting answers that are often difficult to
obtain via rigidly-formatted structured queries may be discovered by keyword
search. A recent survey covers keyword search on schema graphs (e.g., relational
data and XML documents) and schema-free graphs [28]. Keyword-based search
is also studied on temporal graphs [22]. Zhong et al. [32] investigate diverse set
of most relevant results for a given keyword query on graphs.
Keyword Search on RDF Data. RDF data is traditionally queried using
structured query languages, like SPARQL. Due to the advantages of keyword
queries over RDF data, SPARQL queries thus have been augmented with key-
words for ranked retrieval of RDF data [9]. Elbassuoni et al. study a keyword-
based retrieval model over RDF graphs [8] that identifies a set of maximal sub-
graphs whose vertices contain the query keywords. These subgraphs are ranked
based on statistical language models (LMs) [24]. Different from directly search-
ing for keywords on RDF data, Tran et al. [27] first construct a set of k query
subgraphs based on the query keywords and then let users choose the appropri-
ate query graph. There are studies focus on the scalable and efficient processing
of keyword queries on large RDF graphs [18,27]. These two studies follow the
definition of BLINKS [14] for the result subgraphs. Next, k-nearest keyword (k-
NK) search on RDF graphs [19] finds the k closest pairs of vertices, (vi, ui) that
contain two given keywords q and w, respectively. Keyword query interpretation
[10] uses a sequence of structured queries to personalize the interpretation of a
new query on RDF databases. Personalized keyword search on RDF [11] returns
ranked results using the Ranking SVM approach that trains ranking functions
based on historical user feedback. Diversified keyword search on RDF graphs
[4] finds diversifies results in terms of both the content and the structure of
the results. A path-oriented RDF index for keyword search query [5] improves
the query processing performance based on associations across RDF paths. A
query graph assembly approach [13] converts keyword queries into graph queries.
SPARQL and keyword search has been integrated to find SPARQL matches that
are closest to all keywords in RDF graphs [23]. Lin et al. [21] translate keyword
queries to SPARQL queries using a type-based summary which summarizes all
the inter-entity relationships from RDF data.

All these studies concern the querying of general graph and RDF data using
keyword-based constraints. Semantic place retrieval [29] from RDF data is the
most relevant work, which combines keyword-based and location-based retrieval.
The semantic region retrieval studied in this paper is a generalization of semantic
place retrieval. It makes up for the shortcomings of semantic place retrieval,
addressing the cases where a single place cannot satisfy a users’ intent.

7 Conclusion

We propose a novel semantic region retrieval (SR) query that takes as parame-
ters a query spatial range q.r and a set of query keywords q.ψ, and returns the
qualified semantic region in an RDF graph that minimizes a scoring function.
The scoring function takes the graph proximity of the places in the region and
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the graph proximity of the places w.r.t. the query keywords into account. Com-
pared to existing semantic place retrieval, the SR query targets for the situation
when a single place cannot satisfy the users’ requirements. It retrieves multiple
nearby relevant places. In order to support efficiently processing of SR queries,
we propose algorithm SRRA that follows the branch-and bound paradigm. The
most expensive part of the algorithm is computing keyword-relevant paths and
connected subgraphs that cover sets of places. To improve the performance of
SRRA, we propose two pruning rules that are able to reduce the number of
computed semantic regions. The proposed techniques are evaluated on DBpe-
dia and Yago, two large real RDF data sets. The results show that applying all
techniques enables processing SR queries efficiently.
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Abstract. Entity alignment is a fundamental task of matching syn-
onymous entities from different knowledge graphs (KGs). Most of the
existing methods perform this task by evaluating the similarity among
entity embeddings learned from heterogeneous KGs, where Graph Con-
volutional Network (GCN) based embedding is widely adopted for cap-
turing complex network structure. However, the semantics and direc-
tional information of relations are ignored in previous GCN based efforts,
which affect the integrality of embedding definitely and decrease the effi-
ciency consequently. To overcome this shortcoming, this paper proposes
a Relation-Enhanced Graph Convolutional Network (RE-GCN) method
for entity alignment including two stages. First, to take advantage of the
semantics of the relations, a novel triadic graph is designed to integrate
relation nodes into the primal graph by using triadic closure. In a tri-
adic graph, both relations and entities nodes could be organized in a
unified network. The corresponding triadic graph convolution is utilized
together with the primal one to learn the relation and entity embeddings,
simultaneously. Second, in order to make use of direction information of
the relations, a bidirectional context aggregation mechanism is proposed
to aggregate the embeddings from the first stage. The final aggregation
embeddings are utilized for entity alignment. On three real-world mul-
tilingual datasets, experimental results demonstrate that RE-GCN pro-
duces a more excellent performance compared with some state-of-the-art
entity alignment methods.
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Fig. 1. The primal graph is an unweighted and undirected network and preserves the
equivalent relations between entities. The triadic graph is derived from a primal graph
to preserve structure information between entities and relations. The relations in KGs
are added in the triadic graph as vertices, and the interaction is constructed between
entities and relations from triadic closure. Over the course of triadic closure, the for-
mation of closure edge makes the open triad become a closed triad.

1 Introduction

Knowledge graphs (KGs), with a massive set of machine-readable entity-relation
triples, have become an important resource for many knowledge-driven appli-
cations in areas like question answering, semantic search and recommender
systems, etc. In reality, most of the existing KGs are constructed separately
(e.g., YAGO [16] and DBpedia [1]), or even in different languages. These KGs
inevitably contain heterogeneous but semantically consistent knowledge. That is
the main reason why heterogeneous KGs integration draws extensive attention
in recent years.

Many efforts have been devoted to integrating KGs by aligning entities,
which work on knowledge representation learning to bridge the language gap
among multilingual KGs. Traditional researches [3,7,28] mainly adopt machine
translation techniques to learn entity representations. However, the translation
based models are constrained by the strong assumption head entity+relation ≈
tail entity, resulting in a low efficiency for capturing the complex structure infor-
mation [22]. Most recently, several approaches [10,21] are proposed to utilize
Graph Convolutional Network (GCN) to embed KG entities from a graph per-
spective, which broadly follows a recursive neighborhood aggregation scheme to
capture the structural information within the neighborhood. Nevertheless, since
the vanilla GCN operates on the unweighted and undirected graphs, the useful
relation semantic and direction information of multi-relational KGs would be
ignored. Although several variants of GCN [13,14,22] tend to consider relation
information between entities. They only choose to enable relation-aware weights
for different neighbors of an entity.

However, in fact, it is not enough to distinguish between relations only with
weights. For instance, the relations in the triples (Sun Yat sen, spouse, Soong
Ching ling) and (Soong Mei ling, sister, Soong Ching ling) are ‘spouse’ and ‘sis-
ter’, respectively. As relation ‘spouse’ and ‘sister’ are both intimate relationship,
the semantic differences between the above two relations are arduous to distin-
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guish only by weights. Besides, KGs contain many patterns of relationships, such
as inversion, composition, transition, etc. The direction information of relations
is necessary to further understand the relation patterns. It underscores the need
for us to design a new model to represent relations as well as entities in a unified
network and jointly learn two kinds of embeddings with rich semantic. Moreover,
direction information of the relations should also be considered to enhance the
entity embeddings for alignment.

To overcome the above shortcoming, this paper proposes a Relation-
Enhanced Graph Convolutional Network (RE-GCN) method for entity align-
ment, including two stages. On the one hand, in order to enable relation embed-
ding as well as entity one, the triadic closure is utilized to extend the primal
graph to a novel triadic graph. Both the primal graph convolution and the
corresponding triadic convolution are formulated to learn entity and relation
embeddings, simultaneously. As shown in Fig. 1, the primal graph [13] only pre-
serves connection structure among entities, where vertices denote entities and
relations are only treated as equivalent connecting edges. The triadic graph pre-
serves interaction structure among entities and relations, which is constructed
from the course of triadic closure to add relations as extended vertices to the pri-
mal graph. In the triadic graph, the triple facts in KGs are organized as a triadic
closure, which increases the strength and the stability of the tie between triples
[15]. On the other hand, in order to further capture the directional interactions
among entities, both input and output contextual information of a focal entity
are considered for embedding. Specifically, the head entities and relations of a
focal entity are regarded as its input context. At the same time, the tail entities
and relations of a focal entity are regarded as its output context. Accordingly,
a bidirectional context aggregation(BCA) mechanism is proposed to aggregate
the directional interactions from two individual neighborhood sub-graphs infor-
mation for entity alignment.

The main contributions are summarized as follows:

– A novel knowledge embedding model RE-GCN is presented to represent rela-
tions as well as entities, simultaneously, where a multiple structural graph
convolution driven by a triadic graph and primal graph is integrated.

– A bidirectional context aggregation mechanism is designed to learn entity
embeddings for alignment with the awareness of both relation semantic and
direction.

– On three real-world multilingual datasets, experimental results demonstrate
that RE-GCN produces a more excellent performance compared with some
state-of-the-art entity alignment methods.

The rest of this paper is organized as follows. We review related works briefly
in Sect. 2. In Sect. 3, we formally define the problem of entity alignment in multi-
lingual KGs and some essential notions. The proposed RE-GCN will be described
in Sect. 4. In Sect. 5, extensive results are presented on three real-world multi-
lingual datasets to evaluate the effectiveness and efficiency of RE-GCN. Finally,
we conclude the paper in Sect. 6.
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2 Related Work

2.1 Knowledge Alignment

Conventional knowledge alignment methods usually require well-designed hand-
crafted features [12] in different knowledge graphs. Due to the complexity of the
alignment problem, the embedding of the above single view feature is insufficient
to align two KGs. [26,27] learned representations of entities in KGs from multi-
view features and brought a big boost to the hit precision of alignment. However,
such methods rely on knowledge graphs providing sufficient multi-granularity
features, which is usually expensive to obtain. Inspired by the study of knowl-
edge represent learning [2,20], many embedding-based methods have proposed
to model known aligned triple facts for multilingual knowledge graphs align-
ment [3,7,8]. Based on these methods, [28] used the newly-labeled alignment in
an incremental manner and leveraged it to guide the subsequent training itera-
tively. In order to tackle the problem of error propagation in [28], [18] proposed
improvements mechanism by checking the newly-labeled alignment roll back to
the unlabeled state. Apart from this, the method represented by [17] combined
embedding-based models with entity features to align the knowledge graphs. [29]
regarded that the neighborhood sub-graph knowledge of entities that implies
more richer alignment information for aligning entities. They considered neigh-
borhood information of focal entities with translation based embeddings and
have achieved promising results. In this paper, we explicitly aggregate neighbor-
hood contextual information through a BCA mechanism with the awareness of
both relation semantic and direction.

2.2 Graph Convolutional Networks

Recently, there has been a surge of interest in Graph Conventional Network
(GCN). GCN and its variants belong to a family of graph message passing archi-
tectures where each node aggregates feature vectors of its neighbors to compute
its new feature vector recursively [23]. Since the vanilla GCN operates on the
unweighted and undirected graphs, many researches [13,14,22] tend to consider
relation information to enhance the integrality of embeddings in multi-relational
networks. Recently, Graph Attention Networks have aggregated neighborhood
information according to trainable attention weights [19], which achieve state-of-
the-art performance on many fundamental tasks. GCN has recently been prac-
ticed with a variety of successful applications [4,25]. Since the graph representa-
tion learning models GCN can naturally be embedded with node features, [21]
brought the GCN to the knowledge graphs alignment for the first time, they
indicated the neighbor-aware contextual information of an entity in the KG is
crucial to the KG alignment task. GMNN [24] formulated the entity alignment
problem as a graph matching problem. They roughly matched the sub-graphs of
focal entities and failed to capture relation information in the neighborhood sub-
graph structure. RDGCN [22] has recently proposed to model relation informa-
tion for entity alignment in multi-relational KGs. They pre-incorporated entity
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features with relation information to fed into the GCN with high way gates
mechanism. Their method only enabled specific weights to aggregate neighbor
entities and did not explicitly formulate the semantic representations for the
relations. Therefore, this paper proposes a novel RE-GCN to study the entity
and relation embeddings simultaneously.

3 Preliminaries

Knowledge in a typical KG is usually organized into triples of (head entity,
relation, tail entity), also abridged as (h, r, t). Let G = (E,R, T ) denote the
knowledge graph, where E,R, T are the sets of entities, relations and triples
respectively. Given two knowledge graphs from different sources or languages as
G1 = (E1, R1, T1) and G2 = (E2, R2, T2). The task of heterogeneous knowledge
alignment is to align synonymous entities cross the two KGs. As a starting
point, a small set of synonymous entities among KGs, which have already prior
aligned and can be used as training data. We define these synonymous entities
as alignment seeds L = {(ei1 , ei2)|ei1 ∈ E1 ∧ ei2 ∈ E2}. We study the knowledge
alignment problem as automatically identity synonymous entities based on initial
alignment seeds. With reference to the setting of [28], we assume that all of the
alignments between relations are known. For notations, we use the bold lowercase
letters to represent vector and bold uppercase letters to matrice. We construct
two graph definitions to learn the representations of entities and relations in the
KGs organized as follows:

3.1 Primal Graph

A primal graph is defined as Gp = 〈Vp, Ep〉, which is an unweighted and undi-
rected network among entities, where Vp = {e |e ∈ E} represents the set of
vertices and Ep = {r |r ∈ R} represents the set of edges. The primal graph
preserves the equivalent connection structure between entities.

3.2 Triadic Graph

In order to model relation information properly, we regard both relations and
entities as vertices in a triadic graph. We introduce the triadic graph as Gt =
(Vt, Et), which is derived from the primal graph Gp through the course of triadic
closure, where Vt = Vp ∪ Ep and the path edges P between the relation node
and the entity node are added to construct the Et = Ep ∪ P. Take the triple (e0,
r1, e1) as an example, we add the path edges 〈e1 → r1〉 and 〈r1 → e0〉 to the
triadic graph which preserve the relation fact from e0 through r1 to e1. Then
we construct the triadic edge 〈e1 → e0〉 to make the open triad become a closed
triad. The triadic graph organizes triple structures in KGs as a triadic closure,
which preserves interaction structure among entities and relations.
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Fig. 2. The overview of RE-GCN model.

4 Methodology

In this section, we describe the proposed RE-GCN method in detail. The
overview of RE-GCN model is illustrated in Fig. 2, including two stages. First,
RE-GCN jointly studies the embeddings of entities and relations via unifies mul-
tiple graph convolution driven by a primal graph and triadic graph. Second, we
propose a BCA mechanism to enhance the entity embeddings for alignment
via aggregating the contextual information with the awareness of both relation
semantic and direction. In this way, we evaluate the similarity of entity aggre-
gation embeddings to align entities cross heterogeneous KGs.

4.1 Multiple Structural Graph Convolution

In order to represent relation as well as the entities, RE-GCN unifies multiple
graph convolution driven by a primal graph and triadic graph. Consequently, RE-
GCN consists of multiple stacked graph convolutional layers. The node messages
are passing in the primal graph and triadic graph alternately to study the entity
and relation embeddings, simultaneously.

Primal Graph Convolution. The messages passing of primal graph convolu-
tion is in the primal graph iteratively. The input of primal graph convolutional
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layer l is derived from the output Xt(l−1)
o ∈ R

(ne+nr)×dt(l−1) of the previous
layer l − 1 from the triadic graph convolution as follows:

X
p(l)
i = Xt(l−1)

o [1 : ne], (1)

where dt(l − 1) is the combined dimension of entity and relation in layer l − 1,
ne is the entity numbers and nr is the relation numbers. Each row of Xt(l−1)

o

corresponds to a vertex in triadic graph and [1 : ne] is the slice of the matrix by
row. The output Xp(l)

o of primal graph convolution is computed as follows:

Xp(l)
o = σ(D̂

− 1
2

p ÂpD̂
− 1

2
p X

p(l)
i W l

p), (2)

where σ is an activation function; Âp = Ap + I is the ne × ne adjacency matrix
of primal graph, with added self-connections and I is the identity matrix of
ne × ne; D̂p is the diagonal node degree matrix of Âp; W l

p ∈ R
dt(l−1)×dp(l) is

the trainable weight matrix of primal graph convolutional layer at the l layer.
In the concrete implementation, we regard the primal graph as an undirected
graph to construct adjacency matrix Ap.

A special case is when the primal graph convolutional layer is the first con-
volution layer. Let X

e(0)
i ∈ R

ne×de(0) denote the initial entity representation
matrix. In our model, the initial representations of entities are initialized with
word embeddings of entity names, which have great potentials for capturing the
entity similarity [26].

Triadic Graph Convolution. The messages passing of triadic graph convolu-
tion is in the triadic graph. Graph convolution in RE-GCN is alternated between
the primal graph convolution layer and triadic graph convolution layer. The input
of triadic graph convolutional layer l is derived from the output Xe(l)

o ∈ R
ne×de(l)

of the previous layer l from the primal convolution. Xt(l)
i is computed as follows:

X
t(l)
i = Concat(Xe(l)

o ;Xt(l−1)
o [ne : ne + nr]), (3)

where [ne : ne + nr] is the slice of the matrix from row ne to nr, Concat(· ; ·)
is the concatenation of two matrix. The output representations of Xt(l+1)

o in
triadic graph convolutional layer is defined as follows:

Xt(l+1)
o = σ(D̂

− 1
2

t ÂtD̂
− 1

2
t X

e(l)
i W l

t), (4)

where Ât = At+It is the ne ×ne adjacency matrix of triadic graph, with added
self-connections and It is the identity matrix of (ne + nr) × (ne + nr); D̂t is the
diagonal node degree matrix of Ât; W l

t ∈ R
de(l)×de(l+1) is the trainable weight

matrix of triadic graph convolutional layer at the l layer. We also regard the
triadic graph as an undirected graph to construct adjacency matrix At.

Note that when the model loads the triadic graph convolutional layer for the
first time, we need to define the feature information of relations to construct
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a mixed feature matrix of entities and relations. Since the names of the rela-
tion in the knowledge graph are often not regular. We approximate the relation
representation in triadic graph refer to [22] as follows:

x
r(0)
k = Concat(

∑
eh∈Hk

x
e(0)
h

|Hk| ;

∑
et∈Tk

x
e(0)
t

|Tk| ), (5)

where x
r(0)
k denote the initial representation of relation rk which is concatenated

by its averaged head and tail entity representations of triples in knowledge graph;
Hk is the head entities set of rk and Tk is the tail entities set of rk; x

e(0)
h and

x
e(0)
t are initial representation of entity eh and et. Through the multiple graph

convolution from different network structures, we can study the representations
of entities and relations simultaneously. Then the final embeddings of entity and
relation are computed as X̄

e = Xt
o[1 : ne] and X̄

r = Xt
o[ne : ne + nr], where

Xt
o is the output of final triadic graph conventional layer.

4.2 Bidirectional Context Aggregation

In the KGs, the neighborhood sub-graph knowledge of entities that implies more
richer alignment information for aligning entities [29]. In this section, we design a
directional context aggregation method to incorporate neighborhood information
with the awareness of both relation semantic and direction.

We regard the neighborhood context of a focal entity as a sub-graph contains
relations and entities within input and output two directions. The head entities
and relations of a focal entity are regarded as its input context. At the same
time, the tail entities and relations of a focal entity are regarded as its output
context. For instance, as elaborated in Fig. 3 (a), the sub-graph of focal entity e0
consists of head entities and tail entities associated with relations. Head entity
e1, e2 and e3 connect to e0 through r1, r2 and r3, which forms the input context.
e1 and r1 can denote as the input context pair 〈r1, e1〉 of focal entity e0. And
output context can be obtained by a similar procedure.

The aggregation model is illustrated in Fig. 3 (b). As we have represented
entities and relations at the above stage, for a neighbor pair 〈r, e〉, the context
embedding can represented as x̄c = x̄r	x̄e, where x̄e ∈ X̄

e and x̄r ∈ X̄
r are the

entity and relation embeddings, 	 is the elementwise multiplication operation.
We utilize multi-head attention to encode input context and output context,
respectively. An attention mechanism can be described as mapping a query and
a set of key-value pairs to output as follows:

Attention(q,K,V ) = ξ(
qKT

√
d

V ). (6)

Take input context aggregation as example, for an entity ek, q(query) is
the embedding of ek represented as x̄e

k. K(key) and V (value) are input context
matrix X̄

c(i)
t which consist of et’s input context embeddings; ξ(·) is the activation
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Fig. 3. (a) shows the sub-graph extracts from neighborhood context of a focal entity
and (b) shows the framework of the bidirectional context aggregation model.

function. d is the key vector’s dimension.
√

d is denoted as the scaling factor. So
the multi-head attention based input encoder module as follows:

MultiHead(x̄e
k, X̄

c(i)
k ) = Concat(head1; ...;headh)W c(i)

a ,

where headj = Attention(x̄e
k · W c(i)

qj , X̄
c(i)
t W

c(i)
Kj

, X̄
c(i)
t W

c(i)
Vj

),
(7)

and the projections are parameter matrices W c(i)
qj , W c(i)

Kj
, W c(i)

Vj
. W c(i)

a is the
transform matrix of the context aggregation. The output context is aggregated
similarly. Therefore the input and output context aggregation of ek is computed
as follows:

cik = MultiHead(x̄e
k, X̄

c(i)
k ),

cok = MultiHead(x̄e
k, X̄

c(o)
k ),

(8)

then we use the following module to concatenate entity embeddings with the
above context aggregation.

ak = Concat(MLP (cik; cok); x̄
e
k), (9)

where MLP is a single linear layer for the context transformation.

4.3 Entity Alignment

For both KGs G1 and G2, RE-GCN can get the entity representations separately.
We utilize a margin-based score function as the training objective, which defined
as:

L =
∑

(ei1 ,ei2 )∈L+

[E(ei1 , ei2) − γ1]+ + μ
∑

(ej1 ,ej2 )∈L
−
[γ2 − E(ej1 , ej2)]+, (10)
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Table 1. Summary of the DBP15K datasets.

Datasets # Entities # Relations # Relation triples # Aligned entity

ZH-EN ZH 66,469 2,830 153,929 1,5000

EN 98,125 2,317 237,674 1,5000

JA-EN JA 65,744 2,043 164,373 1,5000

EN 95,680 2,096 233,319 1,5000

FR-EN FR 66,858 1,379 192,191 1,5000

EN 105,889 2,209 278,590 1,5000

where [a]+ = max{0, a} denotes the maximum between 0 and a. We denote
alignment seeds as L+ and non-aligned entities as L−. As for hyper-parameters,
γ1 and γ2 control the loss boundary. And μ → [0, 1] is the preference param-
eter to trade off the two objectives. E(·) is the function to evaluate entities
similarity cross different KGs which is also assigned as the probability of entity
alignment. The proposed objective function has two desirable properties. First,
aligned entities are expected to have high similarity. And another property is
that non-aligned entities are expected to have a low similarity.

5 Experiments

In this section, we compare RE-GCN with some existing baseline methods for
entity alignment in heterogeneous KGs and conduct some analysis.

5.1 Experiment Settings

Datasets. We evaluate the RE-GCN on three real-world datasets from DBP15K
[17]. These datasets are extracted from the multilingual versions of DBpedia.
Each dataset contains aligned entity pairs from two KGs in different languages.
The details are summarized in Table 1. Followed by [18], we split 30% for training
and 70% for testing.

Implementation Details. We implement our experiment by Pytorch 1.0. Our
experiments are conducted on a personal workstation with an Intel Xeon E3 3.3
GHz CPU, a NVIDIA GeForce GTX 2080 Ti GPU.

In our approach, we adopt the Ada-Grad [6] method for learning the param-
eters. The optimal parameter settings for each method are either determined by
experiments or taken from the suggestions by previous works [22]. All dimensions
of entity embeddings and relation embeddings ware set to 300. In this work, we
employ h = 8 parallel attention heads in Eq. (7). We set margin γ1 = 0.9 and
γ2 = 0.2 in Eq. (10) and for the trade-off term of the two learning objectives, we
set μ = 0.5. The learning rate is set to 0.001, and batch size of the experiment is
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Table 2. The performance for all models on the DBP15K datasets.

Models ZH-EN JA-EN FR-EN

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

JE 21.27 42.77 – 18.92 39.97 – 15.38 38.84 –

MTransE 30.83 61.41 0.364 27.86 57.45 0.349 24.41 55.55 0.335

IPTransE 40.59 73.47 0.516 36.69 69.26 0.474 33.30 68.54 0.451

JAPE 41.18 74.46 0.490 36.25 68.50 0.476 32.39 66.68 0.430

BootEA 62.94 84.75 0.703 62.23 85.39 0.701 65.30 87.44 0.731

NAEA 65.01 86.73 0.720 64.14 87.27 0.718 67.32 89.43 0.752

GCN 41.25 74.38 0.549 39.91 74.46 0.546 37.29 74.49 0.532

KECG 47.77 83.50 0.598 48.97 84.40 0.610 48.64 95.06 0.610

GMNN 62.90 77.89 0.645 63.48 76.86 0.667 79.72 91.21 0.829

RDGCN 69.69 84.23 0.750 76.27 89.59 0.811 87.82 95.59 0.901

RE-GCN(w/ T) 70.11 87.77 0.763 77.18 90.45 0.817 91.90 97.22 0.938

RE-GCN(w/o R) 69.38 90.93 0.769 77.02 93.17 0.826 92.12 98.02 0.943

RE-GCN(w/o D) 67.82 90.40 0.757 76.14 93.05 0.821 91.85 98.07 0.942

RE-GCN(w/o RD) 65.27 89.55 0.702 73.54 93.02 0.804 90.72 97.96 0.933

RE-GCN 73.49 90.29 0.798 79.90 93.27 0.845 93.28 98.13 0.951

set to 500. The initial embeddings of the entity in the present paper is referred
to [22].

Two standard measures: Mean Reciprocal Rank(MRR) and Hit-Precision
(Hits@1 and Hits@10) are considered as evaluation metrics. A Hits@k score is
computed by measuring the proportion of correct alignment ranked in top-k.
And MRR is the average of the reciprocal ranks of results. We prefer higher
Hits@k and MRR that indicate better alignment. Note that Hits@1 should be
more preferred, and it is equivalent to precision widely-used in conventional
entity alignment [26].

Comparison Methods. We compare RE-GCN with two kinds of baseline
methods: 6 recent translation based models, such as JE [7], MTransE [3],
IPTransE [28], JAPE [17], BootEA [18], NAEA [29]. And 4 GCN based models,
such as GCN [21], KECE [10], GMNN [24], RDGCN [22].

Model Variants. We use four variants of the RE-GCN model to assess the
robustness of different components of our model: 1) RE-GCN(w/ T): a two lay-
ers Triadic Graph Convolution Network with BCA mechanism. 2) RE-GCN(w/o
R): the variant of RE-GCN model which aggregate neighborhood context with-
out consider relation information. 3) RE-GCN(w/o D): the variant of RE-GCN
model which aggregate neighborhood context without consider direction infor-
mation. 4) RE-GCN(w/o RD): the variant of RE-GCN model which aggregates
neighborhood context without consider relation and direction information.
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5.2 Knowledge Alignment Results

The results of all models are shown in Table 2. In this experiment, some results
of baseline models are directly copied from their papers since the same datasets
are used. The other experiment results are implemented with the source code
provided by the authors. From Table 2, we can observe that our model RE-GCN
consistently outperforms all baselines on the three datasets. Looking into the
results, RE-GCN gets 4.76% to 6.22% on Hits@1, 2.66% to 7.19% on Hits@10,
and 4.19% to 6.40% on MRR improvements over the strongest baseline RDGCN
model in three datasets.

Comparison with Translation-Based Baselines. Comparing with trans-
lation-based baselines, RE-GCN has achieved statistically significant improve-
ments increase. JE [7], MTransE [3] are the plain translation-based KG embed-
ding models and they obtain the worst alignment performance. JAPE [17] com-
bines the attribute information of entities to KG triples with a joint objective in
an unsophisticated way. NAEA [29] considered neighborhood information of a
focal entity and lacks clear modeling of rich relation information. IPTransE [28],
BootEA [18] conducted entity alignment in a bootstrapping process and labels
likely alignment as training data, which gives the perspectives to take advan-
tage of limited prior-aligned users data. We believe that a bootstrapping process
can further improve the performance of RE-GCN, and we leave this for future
work. The above translation-based are constrained by the strong assumption
head entity + relation ≈ tail entity, which makes it inefficient for the model to
capture the complex structure information [22]. Therefore, most of these meth-
ods inevitably have limited performance.

Comparison with GCN-Based Baselines. GCN-based model [21,22,24] can
naturally utilize node attribute to aggregate neighborhood information itera-
tively over the entire graph [10], which clearly outperforms most translation
based models. GCN [21] is the vanilla GCN model driven by primal entity graph,
which studies entity embeddings without considering the relation information.
KECG [10] combines a translation based model and GCNs together to learn the
embeddings of the entities. They take advantage of the two kinds of methods, but
also inherit the disadvantages of them. GMNN [24] formulates the entity align-
ment as a graph matching problem and roughly aggregates neighborhood entity
embeddings with similarity. This naive method cannot exploit the rich informa-
tion in the neighborhood context of a focal entity. RDGCN [22] incorporates
entity features with relation information and enable specify different weights to
aggregate neighborhood information. Their model does not explicitly formulate
the semantic representations for the relations and has no considering the direc-
tion of the relations. With the enhance of relation semantic and direction, our
model achieved the best performance comparison with GCN-based baselines.
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(a) 2-layers permutations (b) 3-layers permutations

Fig. 4. Performance of different convolution layers arrangement. The abbreviated let-
ters ‘P’ and ‘T’ represent the graph convolution layers driven by the primal graph
and the triadic graph. The arrangement of the convolution layers is the same as the
alphabetical order. The x-axes are the epochs of training processes, and the y-axes are
Hits@1 scores.

Ablation Studies. In Table 2, we also compare our model with the ablation of
some model components on overall performance. We find that a model with all of
these components can achieve the best performance. The result of RE-GCN (w/o
RD) is worse than other variants, which verified aggregation of neighborhood
context with relation semantic and direction is not surprising very important.
The performance of RE-GCN (w/o R) is better than RE-GCN (w/o D), which
shows that directional information is more critical than relation information in
the aggregation scheme.

5.3 Model Analysis

Impact of Convolution Layers Arrangement. In this paper, RE-GCN
stacks of multiple graph convolutional layers with different structures. To ana-
lyze the robustness of this architecture, we show the performance of different
graph convolution layer arrangements during training progresses. Figure 4 (a)
illustrates the arrangement of two-layers graph convolution. RE-GCN(PT) is
architecture proposed in the present paper, also abridged as PT. RE-GCN(TT)
and RE-GCN(PP) are the two-layers graph convolution of triadic graph convolu-
tional layers and primal graph convolutional layers. As shown in Fig. 4 (a), RE-
GCN(PT) outperforms the other models, because of this arrangement using mul-
tiple graph convolution, which leverages complex structure information. Figure 4
(b) illustrates the arrangement of three-layers graph convolution. Similar to the
two-layers graph convolution, RE-GCN(PTP) performs better than other vari-
ant models. The performance of RE-GCN(PPT) is very close to RE-GCN(PTP).
RE-GCN(PTT) performs the worst in graph convolutions across different graph
structures. This result due to the high degree connectivity of multiple triadic
graphs leading to excessive smoothing of entity features.
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Fig. 5. Performance evaluation of five aggregators on three datasets. The x-axes are
shown in the legend, and the y-axes are Hits@1 scores.

Comparison of Context Aggregation Models. In order to verify the valid-
ity of the aggregation method for the neighborhood knowledge of a focal entity
in our model, we compare the performance impact of some aggregators on neigh-
borhood context. The Mean aggregator simply average each dimension of entity
embeddings in the neighborhood. Recurrent neural networks (RNNs) have excel-
lent sequence modeling capacity, especially the two improved variants of the long-
short term memory (LSTM) networks [9] and the gated recurrent unit (GRU)
networks [5]. Therefore, we consider the two alternative methods for compari-
son. GMN is the graph embedding model from [11]. As detailed in Fig. 5, five
neighborhood context aggregators show similar patterns on three datasets. BCA
model outperforms other four aggregators which illustrates the BCA model can
incorporate neighborhood subgraph-level information of entities effectively.

6 Conclusion

In this paper, we propose a novel RE-GCN to study the entity and rela-
tion embeddings, simultaneously, where a multiple structural graph convolution
driven by a triadic graph and primal graph is integrated. Then, the neighbor-
hood context information of entities with the awareness of relation semantic and
directions are explicitly aggregated to align entities cross heterogeneous KGs.
On three real-world multilingual datasets, experimental results demonstrate that
RE-GCN produces a more excellent performance compared with some state-of-
the-art entity alignment methods.
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Abstract. Graph decomposition methods using k-core and k-truss hier-
archically group vertices and edges from external to internal by degrees
of vertices or tie strength of edges. As both the user engagement of nodes
and the strength of relationships are important, the (k,s)-core model is
proposed in the literature to discover strong communities. Nevertheless,
the decomposition algorithm regarding (k,s)-core is not yet investigated.
In this paper, we propose (k,s)-core algorithms to decompose a graph
into its hierarchical structures considering both user engagement and tie
strength. We first present the basic (k,s)-core decomposition methods.
Then, we propose the advanced algorithms DES and DEK which index
the support of edges to enable higher-level cost-sharing in the peeling pro-
cess. In addition, effective pruning strategies are applied to DES/DEK
to further enhance performance. Moreover, we build a novel index based
on the decomposition result and investigate an efficient (k,s)-core query
algorithm based on our index. Extensive experimental evaluations on 12
real-world datasets verify the efficiency of our proposed decomposition
algorithms and show that our index-based query algorithm can speed up
the state-of-the-art query algorithms by up to three orders of magnitude.

Keywords: Graph decomposition · Cohesive subgraph · Index · Query

1 Introduction

Graph hierarchical decomposition has been widely studied in the literature [27]
and proved useful in many real-world applications such as community detection
[22,24,26], network analysis [2,5,23,28,29], and protein function prediction [1].
Recent works on graph decomposition are based on cohesive subgraph models.
Decomposition generates a nested chain of cohesive subgraphs to discover the
c© Springer Nature Switzerland AG 2020
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hierarchical structure of those subgraphs. Among those cohesive subgraph mod-
els, k-core [13,19] and k-truss [4,15] are two of the most well-known models
where k-core is vertex oriented and each vertex in it has a degree of at least k
while k-truss is edge oriented and each edge in it is a strong tie (i.e., contained
in at least k triangles). However, none of k-core or k-truss decomposition meth-
ods considers the vertex engagement and tie strength at the same time while
they are both important. In some cases, although people have a strong connec-
tion with only a few friends or family members, they also have some weaker
relationships with some more other people and even weaker ties with a larger
group of casual acquaintances [12]. Figure 1 depicts an example of a graph G,
consisting of 15 nodes. Here, some levels of k-core decomposition are shown by
dashed lines and some levels of k-truss decomposition are depicted by dotted
lines. Despite the fact that the induced subgraph of {v4, v5, v6, v8, v9, v10, v11}
is tightly connected and every user has at least one strong relation (with three
common friends) with the other users, it can not be found by k-truss or k-core.
Motivated by this, Zhang et. al [25] propose the (k,s)-core model to fulfil vari-
ous requirements to be either user engaged or with a good tie strength. Under
the (k,s)-core model, this subgraph can be found as (1,3)-core. In real-world
applications, the request of arbitrary (k,s)-core computation may happen not
only once in a graph. The proposed online (k,s)-core computation method in
[25] needs O(m1.5) time to compute the (k,s)-core for given k and s where m
denotes the number of edges. Thus, it is impractical when we request several
queries with various range of k and s in a large graph. In this paper, we study
the (k,s)-core decomposition problem which is never addressed in the literature.
Specifically, given a graph G, we aim to find all the (k,s)-cores in G. Utilizing the
result of (k,s)-core decomposition, an offline space efficient index can be built
and we can return an arbitrary (k,s)-core efficiently within O(m) time based on
the index. For instance, to answer 100 random (k,s)-core queries on WikiTalk
dataset with 4 million edges, our index-based query algorithm takes about 1 s
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while the existing method takes more than 160 s. Furthermore, benefiting from
the hierarchical decomposition result, there exist many other applications such
as identifying nested communities [18], and analysing network structures [2,5].

Challenges. The challenges of efficient (k,s)-core decomposition are as follows:

– The first challenge is developing an efficient model for (k,s)-core decomposi-
tion. Although having both k and s factors ensures high flexibility to adjust
different requirements, it can complicate the computing of all the (k,s)-cores
as computing a single (k,s)-core takes O(m1.5) time.

– The second challenge is finding a trade-off between space size of the (k,s)-core
index and the efficiency of the query for arbitrary (k,s)-cores. By storing all
the vertices for any combination of k and s, we can efficiently answer all the
queries, however, the storage cost could be very huge. So we need to wisely
select and store results of any vertex in a (k,s)-core number set which can
help identify tightly interlinked groups with similar thresholds.

Our Solution. Firstly, we propose BasicDES and BasicDEK algorithms
which start with a pre-computed k-core and then iteratively computing (k,s)-core
number of nodes regarding a dedicated k from 1 to kmax or a defined s from 1 to
its maximum value. To reduce redundant computation in our basic algorithms,
we introduce Strong Neighbour Number to understand the effect of removing an
edge to the core number of its incident nodes. However, in the basic algorithms,
there are a lot of support and engagement calculations among all the iterations.
Motivate by this issue, We improve the basic models in DEK and DES by intro-
ducing Core Support which indexes support of edges for different core values in
a pre-computed Core Support List for possible cost-sharing. In addition, in DES
we avoid redundant computation by updating the engagements of affected nodes
in outer loop computations. Finally, to speed up the (k,s)-core queries, we build
the Basic Index and the Advanced Index utilizing the decomposition result.

Contributions: To summarize, we make the following contributions:

– We define (k,s)-core decomposition model to capture the hierarchy of sub-
graphs regarding both user engagement and tie strength.

– We propose efficient algorithms for (k,s)-core decomposition by exploring pos-
sible cost-sharing and avoiding redundant work. In addition, we analyse the
time and space complexity of the proposed algorithms (Sect. 3).

– We investigate non-trivial indexing techniques to support efficient (k,s)-core
queries. In addition, we compact the index and optimize the query process to
achieve higher performance (Sect. 4.1).

– We conduct extensive experiments on 12 real-world datasets and show that
our (k,s)-core decomposition algorithms can efficiently find cohesive substruc-
tures over real-world datasets (Sect. 5). Also, our index-based query algorithm
significantly outperforms the state-of-the-art method to query (k,s)-cores by
up to three orders of magnitude.
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Table 1. The summary of notations

Notation Definition

G(V, E) An unweighted and undirected graph

u, v, w Vertexes in G

e(u, v) An edge with u and v as endpoints in G

N(u, G) Set of adjacent vertices of u in G

E(u, G) Set of edges where each edge is incident to u in G

deg(u, G) The number of adjacent vertices of u in G

sup(e, G) The number of triangles each containing e in G

eng(u, G) The number of edges where each edge e has sup(e, G) ≥ s and e
is incident to u in G

Ck(G)/Ck,s(G) k-core/(k,s)-core of G

c(v) Core number of a vertex v

�uvw The triangle formed by vertices u, v and w

supk(e, Ck) Support of an edge e(u, v) in Ck which is the number of �uvw

contain e(u, v) and w has a core number of at least k

2 Preliminary

2.1 Basic Definitions

Table 1 summarizes the notations frequently used throughout the paper.
Consider an undirected, unweighted graph G = (V,E), where V is the set of

vertices and E ⊆ V × V is the set of edges in G. We denote n = |V |, m = |E|
and assume m > n. The degree of vertex u ∈ G, is noted by deg(u,G).

Definition 1 (k-core). Given a graph G and an integer k, the subgraph Ck

of G is the k-core of G if it is the maximal subgraph in which all vertices have
degree at least k.

Definition 2 (Support). A cycle of length 3 in a graph G is called a triangle.
We note the support of an edge e(u, v) in G by sup(e,G), to represent the number
of triangles that contain e.

sup(e,G) = |�uvw : �uvw ∈ �G| (1)

Definition 3 (k-truss). Given a graph G, an integer k, the k-truss of G is
defined as the maximal subgraph where each edge has a support of at least k.

2.2 (k,s)-Core

Definition 4 (Strong tie). Given an integer s, an edge e is called a strong tie
in G if sup(e,G) ≥ s; otherwise, it is assumed as weak.
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Definition 5 (Engagement). The engagement of u in G, denoted by
eng(u,G), represents the number of strong ties incident to u with sup(e,G) ≥ s.

Definition 6 (Strong engagement). For an integer k, a vertex u is strongly
engaged in G if u is incident to at least k strong ties in G, i.e., eng(u,G) ≥ k,
otherwise, it is weakly engaged.

Definition 7 ((k,s)-core). Given a graph G, two integers k and s, the (k,s)-
core Ck,s(G) of G is the maximal subgraph where each vertex engages at least k
strong ties.

Definition 8 ((k,s)-core number). The (k,s)-core numbers of v is set of (k,s)
pairs denoted as φ(v). For each (k,s) pair in φ(v), there is a (k,s)-core containing
v, and there is no (k+1,s)-core or (k,s+1)-core containing v.

Although the lack of considering both user engagement and tie strength is
answered in the (k,s)-core model [25], there is no any (k,s)-core decomposition
model or any efficient indexing technique for answering queries yet.

2.3 Problem Statement

In this paper, we study the problem of (k,s)-core decomposition, that is, to
compute the (k,s)-cores for all possible k and s values in a given graph. This
problem can be transferred to compute the (k,s)-core numbers of all the vertices
since finding the induced subgraph of vertices takes only linear time.

3 Solutions for (k,s)-Core Decomposition

In this section, we focus on efficient algorithms for (k,s)-core decomposition.

3.1 Basic (k,s)-Core Decomposition Methods

We first explain our basic decomposition methods. Following the fact from [25],
when k > 0, (k,s)-core of G is a subgraph of k′-core of G (i.e., Ck,s(G) ⊆ Ck′(G))
where k′ = max(k, s + 1)). So, we compute the k-core as a base for (k,s)-core
computation and use proper Ck′(G) in different levels of decomposition. We
start by core decomposition and assign core number to each node as a primitive
engagement when s = 0. Also, by considering the minimum support for calcu-
lating engagement, we may need to update the engagements of those endpoint
nodes.

Example 1. By considering engagements of at least 3, we can discard v13 and v14
and consequently related edges of e(v13, v14), e(v9, v14), e(v11, v13) and e(v12, v13)
in Fig. 1. In (k,s)-core decomposition with two parameter of k and s, for example
we also consider s > 1, then we should check the engagements of their neighbours
(v9, v11 and v12). In fact, removing edge e(v11, v13) or e(v12, v13) decreases the
support of edge e(v11, v12) from 2 to 1 as there is no more �v11v12v13. This may
decreases eng(v11) and eng(v12).
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For solving this problem, we need to find a way to understand if this edge is
counted towards the current engagement of endpoint node. A node in (k,s)-
core with eng(v) = l have l or more incident edges with sufficient support and
removing one of its incident edges may or may not make eng(v) = l − 1. So, we
introduce Strong Neighbours Number strsumk,s(v,G) as below:

Definition 9 (Strong Neighbours Number). We define the Strong Neigh-
bours Number of a vertices v in edge e(v, u) in the graph G by strsumk,s,e(v,u)

(v,G), to represent the number of edges in G which sup(e(v, w)) ≥ s and
eng(w) ≥ k and w �= u.

strsumk,s,e(v,u)(v,G) = |
⋃

(N(v)|(e(v, u) ≥ s, eng(u) ≥ k)|, w �= u; (2)

Lemma 1. When the support of an edge e becomes less than the support
threshold (i.e., sup(e(v, u) < s), the engagement of v is decreased by 1 only if
strsumk,s,e(v,u)(v,G) < eng(v), that is:

eng(v) = eng(v) − 1, if strsumk,s,e(v,u)(v,G) < eng(v); (3)

Proof: If strsumk,s,e(v,u)(v,G) ≥ eng(v), we have more than eng(v) edges with
sup(e(v, w)) ≥ s which is enough for the definition of engagement in (k,s)-core.
Thus, the core number of v remains unchanged. Otherwise, eng(v) should be
decreased by 1 since one of its strong tie becomes weak tie. Thus, this lemma
holds.

BasicDES: Basic (k,s)-Core Decomposition, Iterating First on s Then
k. In this method, we define the maximum k value for every node regarding a
fixed s. We nested two main loops, the outer loop is iterating on s until all the
nodes are removed and takes control of complete repetitions of the inner loop
which works on k. This is represented in Algorithm 1.

The algorithm starts by initiating an empty result set (φ(v)) for each vertex
v in line 1 and then with k-core computation in line 2. Then, starting from s = 1
in each iteration on s, it uses the (s+1)-core (line 4) as G′ and initializes the
engagements of nodes by their core number (line 5) and sorts them in line 7 by
the engagements. Next, the algorithm calculates support of each edge in G′ and
sorts them in line 8. Then, in line 9 to 10 the engagements of nodes who have
weak ties are updated.

Iterating in the inner loop from k = 1 to kmax and while the graph is not
empty, we update the graph G

′
by removing every vertex with the engagement

of less than current k and update their neighbours (line 12 to 20). Obviously, the
deletion of an edge will respectively decrease the engagement of its neighbour
if this edge had support of at least s. Also, the deletion of an edge may cause
a reduction in the support of other edges of its triangles and consequently the
engagements of the other nodes on the triangles (line 16 to 19). The algorithm
returns all (k,s)-core numbers for each vertex v ∈ G in line 22.
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Algorithm 1: BasicDES(G)
Input : G: a social network
Output: φv : (k,s)-core numbers for each vertex v ∈ G

1 φv ← ∅ for each v ∈ G; s ← 1 ;
2 Run core decomposition(G);
3 while the graph is not empty do

4 k ← s + 1; G
′ ← Ck(G) ;

5 eng(u) ← c(u) for each u ∈ G′;

6 compute sup(e, G
′
) for each e ∈ G

′

7 order the vertices in G
′

with increasing order of eng(u) for each u;

8 order the edges in G
′

with increasing order of sup(e, G
′
) for each e;

9 for (sup(e(v, u), G
′
) < s) do

10 eng({v, u}) ← UpdateEngagement({v, u}) ; // by equation 3

11 for k = 1, ..., kmax do

12 while exists u ∈ G
′
and eng(u) < k do

13 foreach vertex v ∈ N(u, G
′
) and eng(v) > k do

14 if sup(e(u, v)) ≥ s then
15 eng(v) ← UpdateEngagement(v)

16 foreach w ∈ N(u) ∩ N(v) and eng(w) > k and
sup(e(v, w)) ≥ s do

17 sup(e(v, w)) ← sup(e(v, w)) - 1 and reorder;
18 if sup(e(v, w)) < s then
19 eng({v, w}) ← UpdateEngagement({v, w})

20 G
′ ← (G

′\(u ∪ E(u, G
′
)); φu ← φu ∪ (k − 1, s) ; k ← k + 1 ;

21 s ← s + 1

22 return φv for each vertex v ∈ G ;

BasicDEK: Basic (k,s)-Core Decomposition, Iterating First on k Then
s. The only difference between this method and BasicDES is that here the outer
loop iterates on k and inner loop on s, so the line (line 9 and 10) move to inner
iteration on s.

Example 2. We start by decomposed graph G in Fig. 1 which consists of 15
vertices in 3 levels from 2 to 4. Then starting from k = 1, we copy the k-core
with core numbers more than 1 which is here the whole graph. Then, we calculate
and sort the support of every edge in this level of decomposition. In the next
step, we calculate and sort engagements of nodes with respect to current k in
G

′
. Then step by step, we increase s and update the graph G

′
.

While k = 1 and s > 0, we select elements of support list with the support of
less than one to update their engagements. The support of edges e(v9, v14) and
e(v13, v14) are zero, so we need to update the core number of v9, v14 and v13 if
required. However, as explained before, updating engagements by the support
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of these two edges do not have any effect on core numbers of v9 and v13 while
the engagement of v14 should reduce from 2 to 0 and consequently we need to
remove this node for k = 1 and s > 0.

Time Complexity Analysis. Note that the order can be updated in O(1)
time in Line 9, 5, and whenever we have UpdateEngagement, by using bin sort
following [7]. The computation of support of all the edges takes O(m1.5) time
[21]. The removal of all vertices and edges takes O(m) time in each inner loop and
updating supports for the edges takes O(m1.5) time. So the time complexity of
BasicDES is O(smax×∑smax

s=1 2×|E(C1,s(G))|1.5). Similarly, the time complexity
of the algorithm BasicDEK is O(kmax × ∑kmax

k=1 2 × |E(Ck,1(G))|1.5).
Space Complexity Analysis. For the space complexity, the algorithm DES
requires O(m+n) memory space to keep the input graph and also for the inner
loop it requires O(m) space for supports. Thus the space complexity of Algo-
rithm2 is O(m).

Drawbacks of the Basic Solutions. In the baseline algorithms, we need to
calculate supports and engagements in each outer iteration. Since the support
of every edge is derived by the number of common neighbours of its endpoint
vertices, and these common neighbours have different core numbers, the sup-
port of an edge may vary in different levels of decomposition and we need to
continuously update them. Consequently, the engagements of related nodes that
are derived from supports need updating. Considering this problem, we should
avoid a noticeable amount of redundant computation in the baseline algorithm.

3.2 Efficient (k,s)-Core Decomposition Methods

Since the support of every edge is derived by the number of the common neigh-
bours of its endpoint vertices and these common neighbours have different core
numbers, the support of an edge may vary in different levels of decomposition.
While we beneficiary from using the pre-calculated k-core, we can not use a fixed
support list. Therefore, we need to compute the support of every edge in every
outer iteration of (k,s)-core decomposition. However, counting the number of
�uvw which contain e(u, v) and w has a core number of at least k is expensive.
To relax this issue, here we define the support of an edge in the Ck(G) by the
number of common neighbours who have the core number of at least k as below:

Definition 10 (Core Support). We define the Core Support of an edge e(u, v)
in the graph by coreSup(e, Ck(G)), to represent the number of �uvw which con-
tain e(u, v) and w has a core number of k.

coreSup(e, Ck(G)) = |
⋃

(�uvw|(�uvw ∈ �G, c(w) = k))|; (4)
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Example 3. In the represented graph in Fig. 1, edge e(v5, v12) is contained in two
triangles �v5v12v7 and �v5v12v11 and consequently has two common neighbours
of v7 with c(v7) = 3 and v11 with c(v11) = 4. So coreSup(e(v5, v12), C4(G)) = 1
and coreSup(e(v5, v12), C3(G)) = 1.

Definition 11 (Support in Ck(G)). We define the Support of an edge e(u, v)
in Ck as supk, to represent the number of �uvw which contain e(u, v) and w has
a core number of k as below:

sup(e(u, v), Ck(G)) = |
⋃

(�uvw|(�uvw ∈ �G, c(w) ≥ k))|; (5)

Calculate by below formula:

sup(e(u, v), Ck(G)) =
kmax∑

i=k

coreSup(e, Ci(G)) (6)

Lemma 2. When k > 0, we can use Core Support to have the support of an
edge for different k values from Eq. 4.

Proof: While the support of edge e(u, v) is derived by the number of common
neighbours of its endpoint vertices (Eq. 1), these common neighbours have dif-
ferent core numbers and are removed in various levels of decomposition. Since
Core number c(w) of a vertex w is equal to the highest-order core that w belongs
to it but not to any higher core, to have the support of an edge in the current
order of core, we can count the number of �uvw which contains e(u, v) if w has
a core number of at least k.

Example 4. In Example 3, we calculate coreSup(e(v5, v12), C4(G)) = 1 and
coreSup(e(v5, v12), C3(G)) = 1. Following the Eq. 6, we have: sup(e, C4(G)) = 1,
sup(e, C3(G)) = 2, sup(e, C2(G)) = 2, sup(e, C1(G)) = 2, sup(e, C0(G)) = 2.

However, the edge e(u,v) will not exist after the minimum value of c(u) and c(v)
and we do not need to calculate and support values after that.

Definition 12 (Support List). We define the Support List of an edge e(u, v)
in G as supList, to represent its support value in different level of decomposition
as below:

supList(e(u, v)) =
min{c(u),c(v)}⋃

k=0

sup(e(u, v), Ck(G)) (7)

Example 5. Following the Example 4 and Eq. 7 we have: supList(e(v5, v12)) =
{2, 2, 2, 2}. Because the minimum value for the core number of v5 and v12 is 3,
we stop calculation when k > 3.
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DES: Efficient (k,s)-Core Decomposition, Iterating First on s Then k.
The purpose of this decomposition is defining the maximum k value for every
node regarding a fixed s while we step by step iterate s from 1 to minimum of
smax and kmax − 1. The Algorithm 2 represents this idea.

The algorithm starts by initiating an empty result set (φ(v)) for each vertex
v in line 1 and computing k-core in line 2. Then it computes supList of all the
edges in line 3 by using Eq. 4, 6 and 7. In line 4 and 5 the engagements of nodes
are initialized by their core number and nodes are sorted by their engagements.

Then, starting from s = 1 in each iteration of s, the (s+1)-core is used while
the support of each edge in Ck is derived from supList. The edges are sorted in
the next line with increasing order of their supports. Then, in the following lines
from 10 to 13 the engagements of nodes who have weak ties are updated.

Algorithm 2: DES(G)
Input : G: a social network
Output: φv : (k,s)-core numbers for each vertex v ∈ G

1 φv ← ∅ for each vertex v ∈ G;
2 Run core decomposition(G);
3 Compute supList(e) for each e ∈ G ; // calculate by equation 6

4 eng(u) ← c(u) for each u ∈ G;
5 order the vertices in G with increasing order of eng(u) for each u;
6 for s = 1, ..., min{smax, kmax − 1} do
7 k ← s + 1
8 get sup(e, Ck(G)) from supList(e) for each e ∈ Ck(G)
9 order the edges in Ck(G) with increasing order of sup(e, Ck(G));

10 for (sup(e(v, u)) < s) ∈ Ck(G) do
11 eng({v, u}) ← UpdateEngagement({v, u}) ; // by equation 3

12 foreach e(w, y) ∈ {�vwy ∪ �uwy} and eng(w) > k and eng(y) > k
and sup(e(w, y)) ≥ s do

13 update supList(e(w, y));

14 while exists u ∈ G with eng(u) = 0 do
15 foreach vertex v ∈ N(u, G) and eng(v) > 0 do
16 sup(e(v, w)) ← sup(e(v, w)) - 1;
17 if sup(e(v, w)) < s then
18 eng({v, w}) ← UpdateEngagement({v, w})

19 φv ← φv ∪ (0, s); G ← (G\v);

20 G′ ← Ck(G);
21 get sup′(e) from supList(e) for each e ∈ G′

22 run Algorithm 1 line 11 to 20, replace sup(e) with sup′(e);

23 return φv for each vertex v ∈ G ;

As explained before, updating core numbers of nodes is not as simple as
a k-core and we need to check their Strong Neighbours Number as defined in
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Eq. 2 and Theorem 1. Obviously, decreasing the engagements of node v affects
supList(e(u,w)) when e(u,w) ∈ �vuw (line 12 and 13).

In line 14 to 19, nodes who have no engagements are removed, the support
of related edges and the result sets are updated. In the cases that updating the
support of an edge make it weak, we need to update the engagements of its
incidents nodes (line 17 and 18). For inner iteration on k the algorithm uses a
copy of updated Ck (line 20) and supports of edges (line 21). The inner iteration
is similar to line 12 to 20 in Algorithm 1. Finally, the algorithm returns the
(k,s)-core numbers for any vertex in line 23.

DEK: Efficient (k,s)-Core Decomposition, Iterating First on k Then s.
We skip the explanation of this model as it is similar to the DES model Sect. 3.2.
The obvious difference is that here the outer loop iterates on k and inner loop
on s. Therefore we can not update engagement by using the current s threshold
in (line 10 to 19 in Algorithm2) and consequently we need more time in inner
computations.

Avoiding Redundant Work. To overcome the drawbacks of the baseline
solution in Sect. 3.1, DES and DEK avoid plenty of support calculation by using
the core support as explained before.

Time Complexity Analysis. Note that the order can be updated in O(1)
time in Line 9, 5, and whenever we have UpdateEngagement, by using bin sort
following [7]. Computing the support list for all the edges takes O(m1.5) time
in total. The removal of all vertices and edges takes O(m) time in each inner
loop. So the time complexity of the algorithm DES is O(m1.5+min(smax, kmax−
1) × ∑min(smax,kmax−1)

s=1 |E(C1,s(G))|1.5). Similarly, the time complexity of the
algorithm DEK is O(m1.5 + kmax × ∑kmax

k=1 |E(Ck,1(G))|1.5).

Space Complexity Analysis. For the space complexity, the algorithm DES
requires O(m+n) memory space to keep the graph and O(

∑
(u,v)∈E(G) c(u), c(v))

space to keep the support list and also for inner loop it requires O(m) space for
supports. Thus space complexity of Algorithm 2 is O(

∑
(u,v)∈E(G) c(u), c(v)).

4 Space Efficient Index and Optimized Query Processing

4.1 Index

In this section, we propose the index and the method for answering (k,s)-core
queries. Given a (k, s) value in a graph G, the problem is to find a sub-graph
of G when all of its nodes have the engagement of at least k, when the support
threshold is at least s. For ease of presentation, we refer a request of comput-
ing (k,s)-core for the given k, s as Qk,s. We investigate this problem with the
following three methods:
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The Naive Method, Using (k,s)-Core Model. In this method, we traverse
the whole graph to calculate (k,s)-core by using the Algorithm in [25]. However,
it is not efficient when we need to answer a large number of queries. A lot of
re-calculation for each query is the main reason that we need to decompose and
index the graph.

Basic Index. Here we make the basic index while decomposing a graph by
Algorithm 2. We store all the vertices of each Ck,s(G) and record their locations
by two-level pointer table. By visiting the location referred by the (k,s) value
we can return the vertices of Ck,s(G) in optimal time. The storage size takes
O(m∗smax) space. This is because, for each vertex v ∈ G, it can have O(deg(v))
values for k and each of them links to O(smax) buckets in the second level where
v can exist.

Advanced Index. For answering storage size problem in Basic Index, we
develop a compact index by reducing the number of times that a node is stored.
Given a graph G, Ck,s′ is contained Ck,s in if s ≥ s′. we develop a compact index
by avoiding redundant storage by considering to only save Ck,s′ - Ck,s for each
s. Also, in the advanced index, the edges are returns by using a neighbours list
which is sorted by the core number of nodes. Thus we can avoid searching all the
neighbours by stopping at nodes with the core number of less than requested k.
The advanced index takes only O(m) space since for each vertex v ∈ G, it has at
most deg(v) values for k and we store only the maximal s number for a k value.

4.2 Query Processing

The first method to process queries is following Algorithm 2 in [25]. This naive
method does not require any index and calculates Ck,s by using a pre-computed
k-core. The second method uses the basic index and can return nodes of Ck,s

in optimal time by traversing bucket for k and then visiting bucket s. Then it
calculates edges of Ck,s using neighbour list. The last method uses a compact

(a) Basic Index (b) Advanced Index

Fig. 2. Index on running example graph
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index for returning nodes of Ck,s by first traversing to the related bucket for
requested k and then retrieving all the nodes in the bucket with the value between
zero to s.

Example 6. Following the running example, we show the basic index in Fig. 2(a).
For instance, node v11 is stored 13 times in the Basic Index. The result of Q2,2

(C2,2) is stored in grey bucket following pointer k = 2 and then s = 2. We also
show the compact index in Fig. 2(b). Here for finding C2,2, we follow all the
arrows which pointing to s ≥ 2, showed in grey colour.

5 Experiment

5.1 Experimental Setting

In this section, to evaluate the efficiency of our proposed techniques. All programs
were implemented in standard C++ and compiled with G++ 8.2.0 at -O3 level
in Linux. All experiments were performed on a machine with Intel Xeon 3.00
GHz CPU with 64 GB memory.

Datasets. 12 real-life networks were deployed in our experiments and we
assume all vertices in each network are initially engaged. All datasets are from
http://snap.stanford.edu/ and http://socialcomputing.asu.edu/. Table 2 shows
the statistics of the 12 datasets.

Table 2. Statistic of datasets

Dataset Type |V | |E| davg |�| dmax kmax smax

ArXiv Coauthorship 18,771 198,050 21 1,351,441 504 56 350

Brightkite Social 58,228 214,078 7 494,728 1134 52 272

Facebook Social 63,731 817,035 25 3,500,542 1098 52 265

Amazon Misc 334,863 925,872 6 667,129 549 6 161

Gowalla Social 196,591 950,327 10 2,273,138 14730 51 1297

DBLP Coauthorship 317,080 1,049,866 7 2,224,385 343 113 213

NotreDame Miscellaneous 449,885 1,496,528 9 5,812 10,721 152 682

Livemocha Social 104,103 2,193,083 42 3,361,651 2,980 92 881

Hyves Social 1,402,673 2,777,419 4 752,401 31,883 39 1,141

Youtube Social 1,134,890 2,987,624 5 3,056,386 28,754 51 4,034

WikiTalk Social 2,394,385 4,659,565 4 9,203,519 100,029 131 1,631

Flixster Social 2,611,083 7,918,801 2 1,949 1431 40 41

http://snap.stanford.edu/
http://socialcomputing.asu.edu/
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Algorithms and Methods. We compare the performance of following decom-
position methods:

– BasicDEK: Naive (k,s)-core decomposition, iterating first on k.
– BasicDES (Algorithm 1): Naive (k,s)-core decomposition, iterating first on

s.
– DEK: Efficient (k,s)-core decomposition, iterating first on k.
– DES (Algorithm 2): Efficient (k,s)-core decomposition, iterating first on s.

We compare the space usage of:

– Basic index: Stores all the vertices for each k and s (Ck,s);
– Advanced index: Wisely selects and store the vertices for each k and s and

uses the sorted neighbour list by the core number of nodes.

In addition, we evaluate the performance of our indexes in handling queries:

– Naive method: Uses the state-of-the-art (k,s)-core computation algorithm
in [25] to compute Ck,s for each Qk,s.

– Basic query processing: Uses the basic (k,s)-core index.
– Advanced query processing: Uses our advanced (k,s)-core index.

5.2 Performance on Decomposition

Total Decomposition Time. Figure 3 summarizes the performances of our
decomposition algorithms by showing the running time for various datasets.The
figure shows that DES and DEC are always faster than BasicDEK and BasicDES,
thanks to using the Core Support and our pruning strategies. DES outperforms
the other three algorithms on all the datasets because of less calculation in inner
loops. DES updates the engagements of nodes by the support of edges in outer
iteration which saves a lot of computations which is not possible in DEK.

Fig. 3. Algorithms performances

Decomposition Time in Different Iterations. Although the numbers of
iterations are the same in some of the datasets, the spent time in various itera-
tions which has a great impact on total time is different. Figure 4(a) to 4(l) show
the amount of spent times in different iterations of our algorithms. The spent
time in all of the datasets are less in DES. With less number of triangles, the



462 M. Ghafouri et al.

performance of DES is clearly better, because DES updates the engagements of
nodes by the support of edges in the outer iteration, so having less number of
triangles means weaker ties and consequently, the engagements of a lot of nodes
are decreasing in early iterations on s towards zero. As an example, DES is 48
times faster than BasicDEK in NoterDome datasets with 1.5 million edges and
the graph is empty after 12 iterations on s.

(a) ArXiv (b) Brightkite (c) Facebook (d) Amazon

(e) Gowalla (f) DBLP (g) NotreDame (h) Livemocha

(i) Hyves (j) Youtube (k) wikiTalk (l) Flixster

Fig. 4. Running time in iterations

5.3 Performance on Index Space

Figure 5 shows the index size (MB) of the datasets presented in Table 2 in the
logarithmic scale for the BasicIndex and AdvancedIndex. Our experiments show
that we can save from 2.5 to 20 times more space with the Advanced Index.
Specifically, we observe that the basic index uses more than 10 times space
(in datasets ArXiv, Facebook, and Livemocha) comparing with the advanced
indexing technique. This is because these datasets have larger ratio of the number
of triangles to the number of nodes which means that for each k-bucket in Basic
Index, more nodes are stored in more s-buckets.

5.4 Performance on Query Processing

We evaluate and compare the performance of answering 100 random queries in
our different datasets with the three query methods in Fig. 6. Although comput-
ing k′-core in advance in the naive method reduces the candidate set for further
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Fig. 5. Index size

Fig. 6. Processing time for 100 queries in different datasets

computation and consequently saves time, its performance is worse and shows
the need for having a proper index. For instance, on WikiTalk dataset with
4 million edges, our advanced index-based method takes about 1 s while the
existing method takes more than 160 s to finish. Also, on NotreDame dataset,
our advanced index-based query algorithm significantly outperforms the state-
of-the-art method by more than three orders of magnitude. This is because the
number of triangles is small in this dataset which leads to a limited number of
nodes in the resulting (k,s)-cores.

6 Related Work

Various popular models for hierarchical decomposition of graph are proposed
in recent literature including; degree based decomposition such as k-core
[11,19], tie-strength based decomposition such as k-truss [4,9], density
based decomposition which following the concept of locally-dense subgraph
with different density value [14,20], connectivity based decomposition such
as (k-ECC) [3] and the other variants like (k,s)-core [25], S-core on weighted net-
work [6], CoreCube in multilayer graphs [10], k-(r,s)-nucleus [16,17], (k,d)-core
[8]. Zhang et al. [25] developed (k,s)-core model but no decomposition method is
introduced. In addition, we propose index-based (k,s)-core computation methods
which significantly outperform their algorithm.
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7 Conclusion

In this paper, we propose novel algorithms to decompose and index a graph into
its hierarchical structures considering both user engagement and tie strength
(i.e., the (k,s)-core model). We first present the basic (k,s)-core decomposi-
tion methods. Then, we propose the advanced algorithms DES and DEK which
index the support of edges to enable higher-level cost-sharing in the peeling pro-
cess. Moreover, we build a novel (k,s)-index based on the decomposition result
and investigate efficient on-line search algorithms based on our index. Extensive
experimental evaluations on real-world datasets verify the efficiency and effec-
tiveness of our proposed decomposition algorithms and indexing techniques.
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Abstract. Roles in a complex network usually represent the local con-
nectivity patterns of nodes, which reflect the functions or behaviors of
corresponding entities. Role discovery has great meaning for understand-
ing the formation and evolution of networks. While the importance of role
discovery in networks has been realized gradually, a variety of approaches
of role-oriented network representation learning are proposed. Almost
all the existing approaches are dependent on manual high-order struc-
tural properties which are always fragmentary. They suffer from unsta-
ble performances and poor generalization ability, because their hand-
craft structural features sometimes miss the characteristics of different
networks. In addition, graph neural networks (GNNs) have great poten-
tial to automatically capture structural properties, but it is hard to be
given the rein to for the difficulty of designing role-oriented unsuper-
vised loss. To overcome these challenges, we provide an idea that leverage
low-dimensional extracted structural features as guidance to train graph
neural networks. Based on the idea, we proposed GAS, a novel graph
auto-encoder guided by structural information, to learn role-oriented rep-
resentations for nodes. Results of extensive experiments show that GAS
has better performance than other state-of-the-art approaches.

Keywords: Role discovery · Network embedding · Graph convolution
networks · Graph auto-encoder

1 Introduction

Graph or Network is the natural representation structure of irregular data in
numerous application domains, including social networks [28], proteomics [31],
etc. Specifically, nodes and edges in a network are used to represent real-world
entities and their relationships. In this way, different problems in many domains
can be transformed into corresponding research problems on networks. While
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modeling complex systems in reality, networks contain a lot of useful hidden
information which is worth mining out and analyzing considerately. Commu-
nity Detection [11] and Role Discovery [21,24] are such two research fields
of mining network information at the mesoscopic level.

Community detection and role discovery are two kinds of graph clustering
problems based on different criteria. As shown in Fig. 1, the nodes play different
roles as reflected in their local connectivity patterns while forming communities
having more connections inside than outside. Correspondingly, real-world enti-
ties always perform various functions and behaviors in groups, such as employ-
ers and employees at different positions forming companies. Naturally, studying
communities can help to learn the shared interests and objectives of entities while
studying roles are conductive to capturing the distinctions between relationships.
Therefore, communities and roles are of great significance for understanding the
formation and evolution of networks. However, community detection has been
profoundly studied for a long time while role discovery has attracted little but
increasing attention in recent years.

Fig. 1. Comparison between role discovery and community detection. (a) The result
of role discovery. (b) The original network. (c) The result of community detection.

Essentially, role discovery is the process of capturing structural properties
of nodes. Thus, classic metrics computed based on node-centric structure, such
as PageRank [18] and other node centralities, could be considered as role mea-
sures. But these metrics can only represent roles from a particular viewpoint
and usually have high computational complexity, which limit their applications
for complex and massive analysis and machine learning tasks on large-scale net-
works.

Fortunately, Network Embedding (also known as Network Represen-
tation Learning), which uses low-dimensional vectors to preserve original node
information in networks, has shown great power on representing large-scale net-
works. Compared with the above metrics, the learned embeddings are more
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versatile representations. While losing complex graph structure and preserving
much information in vectors, the embeddings can be easily and effectively utilized
for large amounts of tasks of network analysis and machine learning. However,
most of existing network embedding algorithms [5,19,25] are based on proxim-
ity of nodes, which means the closer nodes in the network have more similar
embeddings. In other words, these algorithms are oriented to communities. As
the importance of roles has been realized gradually, some role-oriented network
embedding approaches have been proposed recently.

The aim of role-oriented network embedding is to encode node-centric struc-
tural information and transform the structural similarities between nodes into
the geometric relationships in embedding space. Guided by the purpose, almost
all of role-oriented network embedding approaches are in two steps: (S1) Cap-
ture the structural properties of nodes. (S2) Mapping structural properties and
similarities into embeddings. Most role-oriented embedding approaches lever-
age high-order structural features to capture sturctural information. For exam-
ple, role2vec [1] and HONE [23] leverage small induced subgraphs called motifs
while RolX [8], GLRD [3] and DMER [12] take advantages of a recursive fea-
ture aggregation algorithm ReFeX [9]. DRNE [27] uses layer normalized LSTMs
to represent nodes on sorted neighbors. Meanwhile, random walks [1,20], matrix
factorization [7,8] and graph neural networks [12,27] are commonly used as map-
ping methods.

Evidently, obtaining high-quality structural properties is the key to learning
role-oriented embeddings. However, the methods of extracting structural proper-
ties that most role-oriented embedding approaches use have a number of limita-
tions. First, those extraction methods are manual, with the result that obtained
information is quite fragmentary. While the characteristics decisively determin-
ing roles vary in different networks, the extracted features are not generally
applicable. Second, some unsupervised learning methods would make generated
embeddings overfitting the input features while ignoring the graph structure.
Though hand-craft structural features are intuitive to understand and easy to
handle, they suffer from massive information loss. Third, extraction of high-order
structural features such as motifs could be quite time-consuming.

What’s more, graph neural networks (GNNs) have the natural ability to
learn structural properties due to its propagation mechanism on the edges. How-
ever, it is pretty difficult to design the role-oriented unsupervised loss. Though
some works tried in different ways including reconstructing input features and
approximating embeddings by recursively aggregation on neighborhood, they
still face limitations mentioned above for over-dependency on manual extraction
process. What role-oriented GNN models need is only little guidance with which
they can extract high-quality structural information automatically.

To address aforementioned problems, we propose GAS, a novel graph auto-
encoder guided by structural information. In GAS, we use graph convolutional
layers [14] to capture structural properties. We replace the symmetric normal-
ized adjacency matrix in each graph convolutional layer with the unnormalized
adjacency matrix to distinguishing local structures more powerfully. We leverage
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structural features as guidance information instead of inputs so that our method
can greatly alleviate the problems caused by over-dependence on hand-craft fea-
tures. Additionally, the features we use are obtained by aggregating neighbor’s
primary features only once and their dimensions are very low. Without lots of
unnecessary computations, our model is highly efficient.

In summary, the contributions of our paper are as follows:

1. We are the first to provide the idea of using structural features as guidance
information to train role-oriented graph neural networks.

2. We propose GAS, a novel graph auto-encoder guided by structural informa-
tion for role-oriented tasks. We leverage features in very low dimensions to
GAS for high efficiency and effectiveness.

3. While performing better than other state-of-the-art embedding methods in a
variety of experiments on several real-world datasets, the correctness of our
guidance idea and the effectiveness of our approach are verified.

2 Related Work

Graph is irregular structure and real-world networks are always in large-scale
and sparse. Therefore, it is too difficult to utilize graph structure data directly
as inputs of complex and massive network tasks. Inspired by word embedding
methods, which generate dense representations in low dimensions for sparse dis-
tributed words, Network Embedding methods are proposed to encode nodes
into low-dimensional embedding space.

DeepWalk [19] is the first to introduce the classic language model Skip-
Gram [17] to network representation learning. It leverages random walks to
generate sequences composed of nodes as the inputs of Skip-Gram. Then Skip-
Gram produces representations of nodes. On the basis of DeepWalk, Node2vec [5]
makes random walks biased by adding two hyper-parameters in order to capture
both homogeneity and structural properties of nodes. However, embeddings of
the nodes that are close in the network are still similar due to the similar node
contexts. To be appliable for large-scale networks, LINE [25] uses an objective
function that preserves direct links (first-order proximity) and shared neighbors
(second-order proximity) of nodes and an edge-sampling algorithm for optimizing
the objective. Therefore, these methods are all designed for capturing proximity
of nodes and not feasible for role-orient tasks.

Some role-oriented network embedding approaches have been proposed
recently. ReFeX [9] extracts local and egonet features and aggregates the features
of neighbors recursively. As an efficient method of high-order structural feature
extraction, ReFeX is applied extensively in many other role-oriented embedding
approaches. For example, RolX [8] leverages ReFeX to extract structural fea-
tures and generates embeddings via Non-negative Matrix Factorization. Soon
afterwards, GLRD [3] extends RolX by adding sparsity and diversity constraints
to the NMF formulation. Similarly, xNetMF in REGAL [7] firstly obtains struc-
tural features by counting of node degrees of k-hop neighbors of each node. Then
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it uses Singular Value Decomposition to encode the similarity calculated based
on both structure and attributes to representations.

There are several approaches based on random walks. Role2vec [1] designs
a feature based random walk for learning role-oriented embeddings. It replaces
the sequences of nodes in DeepWalk with sequences of motif-based feature val-
ues so that structural information could be kept in the representations. In con-
trast to Role2vec which leveraging features to random walks in a direct way,
Struc2vec [20] constructs a hierarchy of complete graphs by transforming degree-
based structural similarities to weights of edges. After construction, Skip-Gram
are trained on the multi-layer network.

Graph neural networks have great potential to capture local connectivity
patterns due to their propagation mechanisms on edges. Nevertheless, to our
best known, only two role-oriented embedding methods leverage graph neu-
ral networks. DRNE [27] uses layer normalized LSTMs [10] to handle graph
data entered. In essence, it is an semi-manual method of capturing structural
properties. DRNE also defines a recursive aggregation process to learn regular
equivalence of nodes. DMER [12], a deep mutual encode model combining graph
convolutional networks [14] and feature-based auto-encoder, is an attempt to
reduce dependency on manual processes. It should be noted that the propaga-
tion mechanisms could be a double-edged sword. A large number of aggregation
processes might smooth embeddings of connected nodes to much, which is really
harmful to role-oriented embeddings.

Additionally, HONE [23] and GraphWave [2] use different diffusion methods
to learn the local connectivity patterns of nodes.

It’s apparent almost all of above role-oriented embedding approaches can be
summed up in two steps: structural properties extraction and mapping. While
the quality of extracted properties determines the effectiveness of learned repre-
sentations, these approaches face lots of problems caused by their mutual extrac-
tion methods.

3 Method

In this section, we introduce the notations and the details of our proposed role-
oriented network embedding framework named GAS. As the overview is shown in
Fig. 2, our framework are roughly divided in three parts: (a) Extract structural
features as the guidance information; (b) Use a graph auto-encoder for encoding
nodes to role-oriented embeddings which are reconstructed to features by the
decoder; (c) Compute the loss based on guidance features and reconstructed
features for training the graph auto-encoder.

3.1 Notations

Given a undirected unweighted network G = (V,E), where V = {v1, ..., vn} is
the set of n nodes and E ⊆ V × V is the set of edges among the nodes. For each
node v ∈ V , the set of its neighborhood is denoted as N (v) = {u|(v, u) ∈ E}.
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Feature  
Extraction

... ... ...

Normalization

Graph Convolutional Encoder Decoder

Fig. 2. Overview of our proposed GAS framework. (a): Structural feature extraction.
(b): Encoder-decoder architecture. (c): Loss computation based on artificially extracted
features and features reconstructed by decoder.

Table 1. Main notations and their definitions.

Notation Definition

G = (V,E) The graph G with node set V and edge set E

A ∈ R
n×n The adjacency matrix of G

D ∈ R
n×n The degree matrix of G

F ∈ R
n×d The extracted structural matrix of G

N (v) = {u|(v, u) ∈ E} The set of node v’s neighbors G

E(v) = (VE(v), EE(v)) The egonet of node v

T (v) The set of triangles node v participates in

A ∈ R
n×n is the adjacency matrix of G. Aij = 1 if vi and vj are linked in G,

otherwise Aij = 0. E(v) = (VE(v), EE(v)) denotes the egonet of node v, where
VE(v) = N (v) ∪ {v} and EE(v) = {(u, u′)|(u, u′) ∈ E ∧ u, u′ ∈ VE(v)} are the sets
of nodes and edges in E(v) respectively. T (v) = {{v, u, u′}|(v, u), (v, u′), (u, u′) ∈
E} means the set of triangles node v participates in. The symbol of degree matrix
is Dii =

∑
j Aij . F ∈ R

n×m represents the extracted structural feature matrix,
where each row Fi is the m-dimensional feature vector of node vi. The notations
mainly used in this paper are sumarized in Table 1.

3.2 Feature Extraction

Role-oriented network representation learning is unsupervised. While treating
hand-craft structural features as inputs, the generated embeddings would fit
features. This kind of dependence on features is too strong and makes embedding
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approaches not generally appliable. To alleviate the problems, we choose to use
extracted features as guidance information for training our role-oriented graph
auto-encoder.

We draw on the experience of ReFeX [9] which aggregates the simple local
and egonet features of neighbors recursively. For each node v, extracted local
and egonet features are enumerated as follows:

– (F1) The degree of v: f1 = |N (v)|.
– (F2) The number of edges in the egonet of v: f2 = |EE(v)|.
– (F3) The sum of node’s degree in the egonet of v: f3 =

∑
E(v) |N (u)|.

– (F4) The approximate proportion of within-egonet edges to all the edges
entering and leaving the egonet of v: f4 = f2/f3.

– (F5) The approximate proportion of non-egonet edges to all the edges enter-
ing and leaving the egonet of v: f5 = 1 − f2/f3.

– (F6) The number of triangles v participates in: f6 = |T (v)|.
– (F7) The clustering coefficient of v: f7 = 2f6/(f1(f1 − 1)).

Then each kind of above features are normalized to range (0, 1). We construct
the primary structural feature matrix F̃ in which each row is a 7-dimensional
vector composed of normalized features. We calculate Finally, the features are
aggregated by computing the mean and sum of node features in each egonet as
follows:

F = F̃ ◦ D̂−1ÂF̃ ◦ ÂF̃ , (1)

where ◦ is the concatenation operator. Â = A + I is the adjacency matrix of
graph G with added self-loops where I ∈ R

n×n is the identity matrix, and
D̂ii =

∑
j Âij . Because a small F is enough as guidance information, we only

aggregates the features only once. The dimension of every node’s ultimate feature
vectors is only m = 21. Intuitively, the full process of feature extraction is simple
and efficient while high-order structrual information are captured.

3.3 Graph Auto-encoder

Our encoder consists of multi layers of graph convolutional networks (GCN) [14].
The original GCN use the propagation rule as follows:

H(l) = σ(D̂− 1
2 ÂD− 1

2 H(l−1)Θ(l)), (2)

where l = 1, 2, · · · , L. H(l−1) ∈ R
n×d and Θ(l) ∈ R

d×c represent the activation
matrix and the trainable weight matrix of the lth layer respectively. H(0) is Â
or a randomly initialized matrix. σ(·) denotes a nonlinear activation function.

As discussed in [30], the propagation rule of original GCN is essentially a
variety of mean-pooling. Sometimes mean-pooling does not perform well for
distinguishing local structures, which is lethal to role-oriented tasks. For greater
discrimination, we apply following sum-pooling propagation rule in our graph
convolutional encoder:

H(l) = σ(ÂH(l−1)Θ(l)). (3)
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The output of the Lth layer of graph convolutional network, i.e. H(L), is the
representation matrix whose ith row H

(L)
i is the representation of node vi.

Then we use multi-layer perceptrons to decode the representations as follows:

Ĥ(s) = σ(Ĥ(s−1)W (s) + b(s)), (4)

where s = 1, 2, · · · , S. Ĥ(s−1) ∈ R
n×d′

is the activation matrix in the sth layer,
W (l) ∈ R

d′×c′
and b(s) are the trainable weight matrix and the biases of the

sth-layer perceptron respectively. Ĥ(0) = H(L). The reconstructed structural
features are generated by the last layer of perceptron:

F̂ = Ĥ(S) = σ(Ĥ(S−1)W (S) + b(S)), (5)

which is used to construct loss function.

3.4 Training

In contrast to most existing methods which treat hand-craft structural features
as inputs, we use extracted features as guidance of training for our algorithm.
Thus, we let the reconstructed feature matrix F̂ approach the extracted feature
matrix F by minimizing the guidance loss which is defined as follows:

Lg =
∥
∥
∥F̂ − F

∥
∥
∥
2

fro
, (6)

where ‖·‖fro denotes the Frobenius norm. In order to increase the robustness
of our model, we introduce the following L2 regularization to the parameters of
our graph convolutional auto-encoder:

Lreg =
L∑

l=1

∥
∥
∥Θ(l)

∥
∥
∥
2

fro
+

S∑

s=1

(
∥
∥
∥W (s) + b(s)

∥
∥
∥
2

2
). (7)

The final loss function is as follows:

L = Lg + λLreg, (8)

where λ is the weight of Lreg. As we discussed above, the embeddings obtained
via most existing methods fit the mutually extracted features. In contrast, our
approach GAS can provide embeddings containing richer structural information
which can reconstruct the extracted features while minimizing the guidance loss.

3.5 Computational Complexity

Let |V | denotes the number of nodes, |E| denotes the number of edges, f be the
number of extracted primary local and egonet features. f = 7 in our method. For
a input real-world network, computing primary local and egonet features takes
O(|V |) [9]. Though we express the aggregation process as matrix multiplications,
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Table 2. Detailed statistic of the datasets.

Dataset # Nodes # Edges # Classes Density(%)

Brazil 131 1, 003 4 11.7792

Europe 399 5, 995 4 7.5503

USA 1, 190 13, 599 4 1.9222

Reality-call 6, 809 7, 680 3 0.0331

Actor 7, 779 26, 752 4 0.0884

each aggregation actually take O(|E|f) due to the sparsity of the network. While
aggregating only once, the total time complexity of feature extraction is O(|E|f+
|V |f). Thus, the process of feature extraction in our framework is highly efficient.

Each layer of graph convolutional networks has complexity O(|E|dc) [14],
where d is the dimension of input representations and c is the dimension of
output representations. Compared with other graph neural networks propagating
on all the edges, i.e. without sampling in each node’s neighborhood, our encoder
composed of GCNs is one of the most efficient models.

4 Experiments

4.1 Datasets

To verify the effectiveness of our proposed approach GAS, we conduct experi-
ments on following real-world networks:

– Air-traffic networks [20]: There are three air-traffic networks, including
American, Brazilian and European air-traffic networks (shortly denoted as
USA, Brazil, and Europe). In these networks, nodes represent airports and
edges represent commercial flights existing between airports. Airports are
grouped based on the volume of airplanes or people.

– Actor co-occurance network [15]: It is an actor only network extracted
from a film-director-actor-writer network [26]. In this network, nodes mean
actors and edges between them mean that they have appeared on the same
Wiki pages. Actors are labeled based on the number of words of their Wiki
pages. For convenience, we use Actor to denote this network.

– Phone call Network [22]: This real phone call data records a total of 52050
calls from 6809 users during the period from September 2004 to January 2005.
We express it as a static network in which nodes denote users and edges
denote communication between them. The users are divided into different
classes based on their frequencies of calls. For convenience, we use Reality to
denote this network.

The details of these datasets are provided in Table 2.
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Table 3. The micro-averaged F1 score on different datasets (The mean results of 10
runs; OM means out of memory).

Dataset Brazil Europe USA Reality Actor

DeepWalk 0.4050 (8) 0.4064 (8) 0.4936 (8) 0.5098 (7) 0.3560 (7)

Node2vec 0.4145 (7) 0.4441 (7) 0.4988 (7) 0.4917 (8) 0.3609 (6)

RolX 0.7107 (6) 0.5495 (4) 0.6424 (2) 0.6538 (5) 0.4723 (3)

GraphWave 0.7300 (4) 0.5331 6) 0.5180 (6) 0.8255 (3) OM

Struc2vec 0.7262 (5) 0.5788 (2) 0.6113 (5) 0.6074 (6) 0.4679 (4)

DRNE 0.7555 (2) 0.5574 (3) 0.6159 (4) 0.8389 (2) 0.4751 (2)

Features 0.7365 (3) 0.5373 (5) 0.6227 (3) 0.7740 (4) 0.4653 (5)

GAS 0.7995 (1) 0.5825 (1) 0.6737 (1) 0.8458 (1) 0.4822 (1)

Table 4. The macro-averaged F1 score on different datasets (The mean results of 10
runs; OM means out of memory).

Dataset Brazil Europe USA Reality Actor

DeepWalk 0.4009 (8) 0.4009 (8) 0.4763 (7) 0.3332 (7) 0.3456 (7)

Node2vec 0.3994 (7) 0.4218 (7) 0.4818 (6) 0.3240 (8) 0.3473 (6)

RolX 0.7053 (6) 0.5364 (5) 0.6352 (2) 0.4290 (5) 0.4586 (4)

GraphWave 0.7144 (5) 0.4953 (6) 0.4730 (8) 0.5180 (3) OM

Struc2vec 0.7205 (4) 0.5752 (2) 0.6036 (4) 0.3874 (6) 0.4611 (3)

DRNE 0.7446 (2) 0.5475 (3) 0.6013 (5) 0.5244 (2) 0.4682 (2)

Features 0.7206 (3) 0.5422 (4) 0.6141 (3) 0.4986 (4) 0.4542 (5)

GAS 0.7940 (1) 0.5799 (1) 0.6658 (1) 0.5327 (1) 0.4815 (1)

4.2 Model Configuration

We adopt two layers of graph convolutional networks as the encoder and two
layers of multi-layer perceptrons. For the nonlinear activation function σ(·), sig-
moid function is selected. We set the dimension of embeddings to 128 and the
weight of L2 regularization to 0.8. The models is initialized using Glorot initial-
ization [4] and trained using the Adam SGD optimizer [13] with a learning rate
of 0.001 for at most 200 epochs. We also use an early stopping strategy on the
loss L with a patience of 15 epochs.

4.3 Baselines

We compared our model with several state-of-the-art network representation
learning approaches including both classic models and role-oriented models. The
dimension of embeddings is set to 128 to all the baselines except Features and
DRNE [27]. The baselines and their parameter settings are listed as follows:



476 X. Guo et al.

– Features: Features denotes the handcraft structural features referenced
ReFeX [9] which we use as guidance information.

– DeepWalk [19]: DeepWalk learns node representations by leveraging Skip-
Gram [17] to node sequences generated by random walks. We set window size
to 10, walk length to 80 and each node’s number of walks to 20.

– Node2vec [5]: Node2vec uses a biased random walk method to capture more
neighborhood information than DeepWalk. To capture more structural infor-
mation, we set hyper-parameter p = 1 and q = 3. The parameters of random
walks are the same as those of DeepWalk.

– RolX [8]: RolX decompose the feature matrix generated by ReFeX [9] using
non-negative matrix factorization. For different networks, we tune the number
of aggregation recursions to get the best results.

– GraphWave [17]: GraphWave treats spectral graph wavelets as probability
distributions and generate embeddings by characterizing the distributions.
We use its default settings.

– Struc2vec [20]: Struc2vec applies random walk method on a reconstructed
multi-layer networks. We tune the layer number of the reconstructed hierarchy
for different networks and the parameters of random walks are the same as
those of DeepWalk.

– DRNE [27]: DRNE uses layer normalized LSTMs to represent nodes and
captures the regular equivalence by recursively aggregating the representa-
tions. The dimension of embeddings is set as 32, with which DRNE gets the
best results. The other parameters are set as default.

Fig. 3. The micro-averaged F1 score for role-oriented node classification on different
dataset splits. Left: USA. Right: European. The shorthands DW, N2V, GW and S2V
denote methods DeepWalk, Node2vec, GraphWave and Struc2vec respectively.

4.4 Role-Oriented Node Classification

We conduct role-oriented node classification tasks to evaluate the proposed graph
auto-encoder guided by structural information. For each dataset, a linear logistic
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Fig. 4. Parameter Sensitivity w.r.t. the dimension of embeddings (left), the weight of
L2 regularization (right).

regression classifier trained and tested using embeddings generated by each base-
line and our model. We randomly sample 70% node embeddings as the training
set and the other embeddings are used as the test set. The micro-averaged F1
score and macro-averaged F1 score are reported in Table 3 and Table 4 respec-
tively, where the ranks of results are in brackets.

We have following observations:

– Role-oriented embedding methods including RolX, GraphWave and DRNE
performs much better than classic embedding methods including DeepWalk
and Node2vec, which verifies the no-free-lunch theorem [29] and the necessity
of role-oriented network representation learning.

– Role-oriented baseline methods get fluctuating results because node roles in
different networks are determined by different features. That is one of our
motivation to use manually extracted features as guidance information.

– The results of our extracted features are not bad though their dimension is
only 21. That indicates the extracted features contain a certain amount of
structural information, which is their foundation to be used as guidance.

– Compared with Features, our approach GAS has improved performance
greatly, which verifies the correctness of the idea using extracted structural
features as guidance information.

– Our GAS overperforms all of the baselines on all the datasets. GAS is a
state-of-the-art method for role-oriented network representation learning.

We also report the results of role-oriented node classification tasks using
different train/test splits of the networks in Fig. 3. It can be observed that our
model GAS still performs better than baselines on different splits.

4.5 Parameter Sensitivity

To evaluate how parameters influence the performance of our proposed GAS,
role-oriented node classification tasks are conducted to datasets Reality, Europe



478 X. Guo et al.

and USA. We illustrate the effect of embedding dimension and the weight of L2
regularization in Fig. 4.

The effect of embedding dimension is demonstrated in the left part of Fig. 4.
The performance becomes better when embedding dimension increases from a
small value due to more information contained. Our model achieves the best
results when the dimension is 120 and shows stable performance on larger dimen-
sions. The effect of the weight of L2 regularization is demonstrated in the right
part of Fig. 4. As we can observed, the performance of GAS varies on different
datasets. While the weight increasing, micro-averaged F1 score on Reality raises
rapidly, grows slowly on Europe, and keeps stable on USA. It indicates these
networks have different sensitivities to the quality of embeddings. All the results
achieve the best when the weight is about 0.8. The score starts decreasing when
the weight exceeds 0.8.

Fig. 5. Effectiveness w.r.t the propagation rules of graph convolutional encoder.

4.6 Propagation Rule Analysis

Graph neural networks could capture structural information due to its propaga-
tion mechanisms on edges. For GAS, we leverage graph convolutional networks
as the encoder. And we use sum-pooling propagation rule defined as Eq. 3 for its
great power of distinguishing local structures. To verify the point, we change the
propagation rule of GAS to that of original GCN and mean-pooling propagation
rule [6] defined as Eq. 2 and Eq. 9 respectively.

H(l) = σ(D̂−1ÂH(l−1)Θ(l)). (9)

The results are reported in Fig. 5 where we denotes the three propagation
rules shortly as Â, D̂−1Â and D̂− 1

2 ÂD̂− 1
2 . The sum-pooling does perform much

better than the other two methods. Original GCN and mean-pooling propagation
rule perform differently due to the distinctions of datasets.
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Fig. 6. Visualization of node representations on Brazil network.

4.7 Visualization

We illustrate the embeddings which are generated by our approach GAS and
baselines in Fig. 6. Here, the embeddings are projected to two dimensions using t-
SNE [16] and the colors of nodes represents their labels. The closer the ebeddings
of nodes with the same label are, the better effectiveness are demonstrated. Thus,
the same observations described in Sect. 4.4 can be obtained again from Fig. 6.

Fig. 7. The result of clustering nodes by using K-means based on embeddings.

We also adopt K-means algorithm on embeddings generated by GAS to clus-
ter the nodes. As shown in the Fig. 7, we divide the nodes of Reality network
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into four clusters which are denoted by colors. We can see that nodes in the same
clusters have similar local structural patterns. For example, almost all the orange
nodes are star-center nodes; blue nodes are mainly bridge nodes; though nodes
in red and yellow are mainly star-edge nodes, the yellow nodes are connected to
higher-degree nodes.

The above visualization experiments indicate that GAS can capture high-
quality structural properties and encode them into low-dimensional embeddings.

5 Conclusion

In this paper, we discuss the importance of role-oriented network representation
learning. To avoid the limitations of existing methods, we introduce a novel
idea using manual extracted structural features as guidance information to train
a role-oriented graph neural network model. And we implement the idea via
our proposed approach GAS which leverages sum-pooling propagating graph
convolutional layers as encoder and handcraft structural features as the guidance
of training. The extensive experiments verify the correctness of our idea and the
effectiveness of GAS.
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Abstract. With the increase of large graph data arising in applications like
Web, social network, knowledge graph, and so on, there is a growing need for
partitioning and repartitioning large graph data in graph data systems. However,
the existing graph repartitioning methods are known for poor efficiency in the
dynamic environment. In this paper, we devise an efficient lightweight method
to identify and move the candidate vertices to achieve graph repartitioning in the
dynamic environment. Different from previous approaches that just focus on the
case of moving a single vertex as a basic unit, we show that the movement of
some closely connected vertices as a group can further improve the quality of
graph repartitioning result. We conduct experiments on a large set of real and
synthetic graph data sets, and the results showed that the proposed method is
more efficient comparing with existing method in several aspects.

Keywords: Graph repartitioning � Large graph data � Graph algorithm �
Lightweight method

1 Introduction

Nowadays, applications with very large graph structured data are becoming more and
more common. Google has reported that manages more than a trillion links of
knowledge graph. DBpedia has extracted 1.89 billion graph links from Wikipedia.
The WWW contains more than 50 billion web pages and more than one trillion unique
URLs [1]. The friendship network of Facebook recently reported more than 1 billion of
users and 140 billion of friend links [2]. The linked open data [3] had collected over 20
billion RDF triples from 295 interlinked datasets on the Web. Such graphs are too
massive to be managed on a single machine system. A typical approach is to partition it
across a graph data system. The problem of optimal graph partitioning expects to divide
the vertices of a given graph into equal sized components and the number of edges
connecting vertices among different components is minimum. This has been exten-
sively studied in the past and proved NP-Hard [4].
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Most previous methods focus on static graph partitioning, such as the classical
graph partitioning method Metis [5] and its variants. However, most of the graphs
encountered in the real-world are inherently dynamic, the graph structures evolved over
time. For example, the accounts and relationships receive thousands of update per
second in the online services such as Facebook and Twitter, new vertices and edges
being added at high rates and in some cases, vertices and edges may be removed. It is
critical to keep up with graph update, monitoring and adapting partitions over time.

In this paper, we focus on graph repartitioning in the dynamic environment.
A straightforward method for graph repartitioning is that periodically running the
existing static graph partitioning methods [5–7] to obtain the graph repartitioning
results continuously. However, the high complexity of computation makes them no
longer suitable for large dynamic graph data. Recently, some methods have been
proposed for dynamic graph partitioning problems [8–10]. However, they perform
vertex movement in an asynchronous mode, which would cause migration interference.
Additionally, we found that taking a single vertex as a basic unit for movement will
limit the quality of graph repartitioning results.

Inspired by the existing lightweight methods, this paper introduces a new method to
identify and move the appropriate vertex to achieve graph repartitioning in the dynamic
environment. Instead of taking a single vertex as a basic unit for vertex movement, we
propose a vertex-group based vertex movement method. By doing this, the graph
repartitioning result could be improved by facilitating load balance as well as
decreasing total edge cut among the distributed partitions. More specifically, we pro-
pose a label propagation algorithm (LPA) [11] based method to detect the vertex-group
within a given partition locally. Different from the existing methods, the proposed
method does not require to process the entire graph data and the label assignment and
updating is only started from the selected boundary vertices of a given partition in this
paper. The experimental results indicate that the proposed method is more efficient
comparing with existing method in several aspects.

The remainder of this paper is organized as follows. Section 2 provides a brief
review of related works on graph partitioning and repartitioning. Section 3 gives the
description of preliminaries. In Sect. 4, we first give a basic method for graph repar-
titioning and then detail the proposed vertex-group based method. Section 5 discusses
the experimental results. Finally, we conclude the paper in Sect. 6.

2 Related Work

There are a lot of distributed graph database systems have been developed to support
large graph data management, such as Trinity [12], Pregel [13], HyperGraphDB [14],
Neo4j [15], and Tao [16]. Most of them apply a simple hash function to allocate each
vertex of the graph into different data partitions. The hash based approach is easy to be
implemented in dynamic environments, but the main disadvantage is the lack of control
of the graph structure to be destroyed.

Traditional Graph Partitioning: The classical graph partitioning method Metis [5]
and its parallel version ParMetis [17] were proposed to produce high quality result by
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adopting graph theory. However, they require to access to the global structure of the
entire graph before performing graph partitioning, which make them inapplicable for
large dynamic graphs in distributed environments. After that, Sheep [18] proposed to
support graph partitioning in a distributed system. It first transforms the given graph
into an elimination tree, and then performs the graph partitioning on the elimination
tree. [19] designed a multi-level algorithm on top of Trinity [12]. However, they also
required the knowledge of global graph structure. Ja-Be-Ja [20] is a distributed algo-
rithm for graph partitioning without global knowledge. However, it has to process the
entire graph to ensure obtaining the graph partitioning result, which is not the case for
graph repartitioning in a dynamic environment. Recently, streaming graph partitioning
[6, 7] have been proposed for very large graph data. After that, several improved
methods [22–24] were proposed to improve the quality of streaming graph partitioning
result. In [25], an overview of streaming graph partitioning techniques based on their
assumptions was introduced. However, the streaming techniques cannot be straightly
adopted to handle graph repartitioning in the dynamic environment.

Dynamic Graph Repartitioning: In order to process the dynamic graph partitioning
problem, some lightweight methods [8–10, 26] have been proposed. [8] and [9]
assumed a heterogeneous system which can be considered as the special case of the
environment in [10]. Leopard [26] introduced a dynamic graph partitioning algorithm
build on the existing streaming approaches [7]. It focused on integrating replication
policy [27] with the graph repartitioning. Lightweight means that they only rely on a
small amount of information about the graph structure to perform graph repartitioning
over the dynamic graph data. However, adopting the existing lightweight method in the
dynamic environment have problems in several aspects: 1) adopting asynchronous
ways to migrate vertices would incur migration interference; 2) the processing of a
single vertex as a basic unit limits the quality of the graph partitioning result to some
extent; 3) lacking balanced mechanisms between load balances and crossing edges for
graph repartitioning. In this paper, we focus on resolving the above mentioned prob-
lems for graph repartitioning in the dynamic environment.

3 Preliminaries

3.1 Basic Concepts

We assume a graph G = (V, E), where V denotes the vertices set, and E denotes the
edges set. Note that, the graph can be either directed or undirected, unweighted or
weighted on both vertices and edges. In what for ease of presentation, we assume the
case of an undirected graph with unweighted vertices and edges. Initially, the given
graph G can be divided into different partitions and distributed across a set of k storage
nodes by adopting existing static graph partitioning methods such as Metis [5] and
streaming based method [6]. An initial k partitioning set of graph G can be defined as
P = {Pi: [ k

i¼1 Pi = G, and Ps \ Pt = Ø for any s 6¼ t, 1 � s, t � k}, where P de-
notes a partitioning set of graph G decomposed with size k, and each partition Pi is
called a partition element.

484 H. Li et al.



Definition 1 (Boundary vertex). If a vertex vi of Pi having neighboring vertices in the
other partitions, we define that vertex vi is a boundary vertex of partition Pi.

Definition 2 (Edge cut [21]). Given a graph partition pair Ps and Pt, the edge cut is
the set of crossing edges that can divide the given partition pair into two disjoint
partitions by removing them, where the remove of the subset of it cannot divide the
partition pair into two disjoint partitions.

If a given graph G is decomposed of k partitions, the edge cut is the set of crossing
edges that can divide graph G into k disjoint sub-graph by removing them, where the
remove of the subset of it cannot divide the given graph G into k disjoint partitions. For
a subset of vertices S � V, let e(S, S) be the set of edges with both vertices in S, and
let e(S, V\S) be the set of edges with vertices across the edge cut. The edge cut valu
ec(S, V\S) is measured by the number of crossing edges in an edge cut set, i.e.,
ec(S, V\S) = |e(S, V\S)|. If the given graph G is decomposed of k partitions, the total
edge cut value (Tec) of the k partitioning set P is defined as

Tec Pð Þ ¼ 1
2

Xk

i¼1
ec Pi;VnPið Þ;Pi 2 P: ð1Þ

Let W(Pi) be the weight of partition Pi, here we adopt the number of vertices in Pi

to measure the weight of partition Pi, and it can also be replaced by the number of
edges if necessary. 1k

Pk
j¼1 W Pj

� �
denotes the average weight of all the partitions. When

|V| = n, 1k
Pk

j¼1 W Pj
� � ¼ n

k. A partition Pi is said to be overloaded when W(Pi) >
1þ eð Þn

k ,

and a partition Pi is said to be underloaded when W(Pi) <
1�eð Þn
k , where e (0 � e � 1)

is a user allowed imbalance ratio of the distributed partitions, i.e., how imbalance the
partitions are allowed to be. Then, the summation of the total load imbalance (Tib) of
the given partitioning set P can be defined as

Tib Pð Þ ¼
Xk

i¼1
W Pið Þ � n

k

���
���: ð2Þ

3.2 Problem Statement

Dynamic Graph Repartitioning: It is obvious that moving a vertex from the over-
loaded partition to the underloaded partition could decrease the load imbalance ratio of
the graph partitioning set, and moving the vertex to the partition which has more
connectivity than that of the current one could reduce edge cut. Then, the problem of
graph repartitioning in the dynamic environment can be transformed to exchange the
appropriate vertices among the distributed partitions continuously to maintain the
optimization of the graph repartitioning result. The objective of graph repartitioning is
to find a possible repartitioning set P0 ¼ fP0

i: [ k
i¼1 P

0
i ¼ Gg, s.t. Tib(P′) and Tec(P′) are

minimized with the given partitioning set P = {Pi: [ k
i¼1 Pi = G}. We define an

objective function f,
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f P0ð Þ ¼ c � Tec Pð Þ � Tec P0ð Þ
Ej j þ 1� cð Þ � Tib Pð Þ � Tib P0ð Þ

Vj j ; ð3Þ

where Tec(P) and Tib(P) denote the total edge cut value and load imbalance of the
given initial partitioning set P. c (0 � c � 1) is a weight value which is used to
control the balance between the edge cut value and load imbalance of different parti-
tions. The divisor |E| and |V| are used to provide us a proper scaling between the edge
cut value and load imbalance of the different partitions.

4 The Proposed Method

4.1 A Basic Method

Since the complex connectivity of the graph data, the neighboring vertices will be
distributed in different partitions inherently. If the neighboring vertices in different
partitions moved independently, whether their neighbors in the other partitions have
been moved is unpredictable.

Example 1: Consider the given graph G = {P1, P2, P3} in Fig. 1(a), P1, P2, and P3 are
partitions distributed in different storage nodes. It is clear that moving vertex b from
partition P1 to P2 can decrease edge cut value since it has more neighboring vertices in
partition P2. Similarly, it is preferable to move vertex d from partition P2 to P1 and
move vertex h from partition P3 to P2. However, as shown in Fig. 1(b), when moving
vertex d from partition P2 to P1, vertex h in P3 has to be moved to P1 and vertex b in P1

is not necessary to be moved to P3.

In order to mitigate this migration interference, we design a sequential method to
move vertices among the partitions. Before vertex movement, we first determine which
vertex should be moved out from their local partitions. It is obvious that moving the
vertex to the partition which has more connectivity can reduce total edge cut and
moving the vertex from the overloaded partition to the underloaded partition can
improve load balance. Therefore, if two connected vertices located on different

               
(a) Initial state                                              (b) Vertex migration
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Fig. 1. Illustration of migration interference in graph repartitioning among different partitions.
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partitions, they may become candidates for reassignment when the movement of which
could decrease edge cut value or improve the load balance of the partitions.

Definition 3 (Edge-cut gain). The edge cut gain of moving vertex v from partition Ps

to partition Pt is defined by the difference between the number of its neighboring
vertices in Ps and in Pt.

Consider a partition pair (Ps, Pt) and let v be a boundary vertex in partition Ps, the
edge cut gain ec: gains!t vð Þ is used to denote the decrease of edge cut value between
Ps and Pt when moving v from Ps to Pt.

ec: gains!t vð Þ ¼ Nt vð Þ�Ns vð Þ; ð4Þ

where Nt(v) and Ns(v) denote the number of neighbors of vertex v in Pt and in Ps,
respectively.

Algorithm 1 (Basic Graph Repartitioning)
if the partitioning has not converged then

load information exchange
foreach partition Pi P do

find Pi with maximum overload ratio;
Identify boundary vertices of Pi; 
foreach boundary vertex v Pi do

compute ec:gains t(v) of vertex v; 

find v with maximum ec:gains t(v); 

if ec:gains t(v)>0&&W(Ps)> &&W(Pt) < then
migration(v, Pt); 
continue; 

end if
CheckPartitionConvergence(); 
end if

As the boundary vertex has relationships with the other partitions directly, the
movement of the boundary vertex may affect edge cut value among the distributed
partitions. When the partition with maximum overload ratio is selected, the vertex
movement is started from the boundary vertex of it. The boundary vertices are proposed

to move to their target partitions when W(Ps) >
1�eð Þn
k , W(Pt) <

1þ eð Þn
k and ec:

gains!t(v) > 0, where n denotes the size of vertex set V, W(Ps) and W(Pt) denote the
weights of their current partitions and target partitions. When the candidate vertex has to
be migrated to more than one partition, the partition with maximum gain value is
selected as its target partition. Note that once a boundary vertex is identified as a
candidate vertex and moved to its target partition, its neighboring vertices in the current
partition will become new boundary vertices. In each time, the partition with maximum
overload ratio is selected to perform vertex movement. Like this, the vertex movement is
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processed until we cannot find any vertex with positive edge cut gain or the load balance
criterion e is violated. The pseudo-code of this process is shown in Algorithm 1.

4.2 Vertex-Group Based Method

Most of the graph partitioning and repartitioning methods take a single vertex as a basic
unit for processing. Intuitively, it is clear that the movement of a single vertex with
negative gain value will degrade the edge cut among the partitions for graph reparti-
tioning. However, we found that in some cases the migration of some vertices with
negative gain values as a whole could further reduce the total edge cut value among the
distributed partitions. For instance, as shown in Fig. 2, there are two partitions P1 and
P2, ec: gain1!2 eð Þ = −1, ec: gain1!2 fð Þ = −1, and ec: gain2!1 dð Þ = −3. As is well
known, moving any single vertex d, e, and f from P1 to P2 cannot decrease the edge cut
value between partition P1 and P2. However, moving them as a whole from P1 to P2

can further result in a decrease of the total edge cut.

Since the movement of vertices as a group can further reduce the total edge cut
value among the distributed partitions, the vertex movement is processed only based on
the single vertex that will limit the quality of the graph repartitioning result. Especially,
the advantage of the vertex group based movement is obvious for high overloaded
partitions. We define a vertex-group to represent the vertices group in vertex migration
processing.

Definition 4 (Vertex-group). Given a partition Pi = {Vi, Ei}, C(v) = {V 0
i ;E

0
i} is a

vertex-group of Pi represented by a vertex v, if V 0
i � Vi, E0

i � Ei, and migrating C(v) as
a whole from its local partition to another partition could decrease the total edge cut
value.

Theorem 1. Given a partitioning set P = {Pi: [ k
i¼1 Pi = G} and a partition Pi 2 P, C

is a vertex-group of Pi iff C � Pi and Ni
c

�� ��\ N j
c

�� ��, for i 6¼ j and 1 � j � k, where Ni
c

and N j
c denote the neighboring set of C within partition Pi and Pj, respectively.

According to the property of the vertex-group, the vertex and edge of the original
graph can be reduced into a smaller graph with shrinking the vertex within the same
vertex-group into a super-vertex. The weight of the connectivity of the vertex-group is
integrated based on the original vertex. Then, we can get the edge cut gain of moving a
vertex-group among different partitions. The edge cut gain of moving a given vertex-

d
e

f

g
b

h

a

P2P1

Fig. 2. Illustrating the effect of moving vertices as a group.
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group from partition Ps to partition Pt is defined as ec: gains!t Cð Þ ¼ Nt Cð Þ�Ns Cð Þ,
where Nt(C) and Ns(C) denote the number of neighboring vertices of the vertex-group
C in partition Pt and Ps, respectively.

Here, we propose a label propagation algorithm (LPA) based method to detect the
vertex-group within a given partition locally. Different from the original LPA method,
the label assignment and update is started from the boundary vertices of a given
partition. Each source vertex updates its label by using the majority voting rule (5) in
parallel, i.e.

c vð Þ ¼ argmax
X

u2Ni
v
w uð Þ; ð5Þ

where c(v) is the new label of vertex v and Ni
v is the set of neighbors of vertex v within

partition Pi where v 62 Pi. Initially, the label of the boundary vertex is the partition ID
that the maximum number of its external neighbors in. Afterwards, the vertex propa-
gates the label to its neighboring vertices within it in the same partition.

The new vertex which receives the message of label propagation updates its label
by using the same majority voting rule (5). Note that, when the vertex which receives
the message of label propagation has already been assigned a label, it updates its new
label by using the majority voting rule (6), i.e.

c xð Þ ¼ argmax c x1ð Þ; . . .; c xið Þ; . . .; c xj
� �� �

; ð6Þ

where x1, …, xi, …, and xj are the neighbors of the vertex x including itself that have
already updated their labels. c(x) returns the label that the maximum number of its
neighbors carry. Since we adopt the partition ID as the label for propagation, the
maximum number of different labels within a given partition will be less than that of
the number of partitions.

The vertices are expanded by absorbing new vertices that connected with them and
have the common label. By doing this, the vertex has the same label as the maximum
number of its neighbors are formed within a same group in a given partition. The
vertex-group is formed when this process found that the edge cut gain of the vertices
group with ec: gains!t(C) > 0. There are two auxiliary information associated with
each vertex-group, such as the edge cut gain and the aggregated vertex weight within it.
The processing of vertex-group detection is performed in parallel in a given partition of
different boundary vertices. The termination condition of vertex-group detection is
different with the original LPA method. The vertex-group detection is terminated when
moving which violate the size constraint of the partitions, such as W(Ps)-P

C2Ps W Cð Þ\ 1�eð Þn
k . At this time, the algorithm rollback to find the vertex-groups

which have the maximum edge cut gain. By doing this, the proposed method does not
require to process the entire graph data which is different from the existing commu-
nication methods. The pseudo-code of this vertex-group detection algorithm is given in
Algorithm 2. Afterwards, the vertex-group detection and movement are performed in
the next partition which has maximum overload ratio. Like Algorithm 1, it is processed
sequentially in each partition until we cannot find any vertex-group with positive edge
cut gain or the load balance criterion e is violated.
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Algorithm 2 (Vertex-group Detection)
Begin from the boundary vertices of the partition Ps: 
foreach boundary vertex v Ps do
// The process of the boundary vertices is performed in parallel;

assign a new label to v according to the rule (5);
//run LPA under the size constraint of Ps; 
while W(Ps) do

the vertex which has a label performs LPA;
the vertex updates the label according to the rule (6);
if W(Pt)+W(C))< then

W(Ps)-=W(C); 
continue;

else
break;

end if
end while
rollback to find the vertex-groups with minimum edge cut;

4.3 Complexity Analysis

In this section, we provide the complexity analysis of the proposed method. The
proposed method is designed for graph repartitioning by performing vertex movement
among the distributed partitions. During the processing in each partition, the vertex
only needs to know the locations of its neighbors and the load information of the target
partition.

Theorem 2. In each partition, the cost of processing graph repartitioning takes at
most O(|CSi| + |CSi|*log(|CSi|)) with CSi denotes the set of candidate vertices that
have to be checked for movement in partition Pi.

Proof. For Algorithm 1, we will move up to O(|CSi|) candidate vertices in partition Pi

and perform extracting at most O(|CSi|*log(|CSi|)) neighbors from the moving of the
candidate vertices. Then we can get that the time complexity of Algorithm 1 in partition
Pi is O(|CSi| + |CSi|*log(|CSi|)). Algorithm 2 requires an additional memory, which
including at most k arrays of size O(|CSi|/k)) to record the information about the vertex-
groups in partition Pi. The label propagation takes at most O(|Si|) vertices. Actually, the
movement of the vertex is far less than |Si| under the constraint of load balance. The
update of the label takes at most O(r*|Si|) with r denotes the number of iterations. Since
the time complexity of building the group is bounded by the update of the label, the
cost of Algorithm 2 is O(r*|Si|).

Theorem 3. After a bounded number of iterations, the sequential migration algorithm
converges to a stable partitioning state.
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Proof. In the proposed method, the vertex and vertex-group are selected for moving
only when migrating them could improve edge cut value or load balance. We have to
consider three cases:

1) W(Pi) > n
k, let Tec(P) denote the total edge cut value and Tib(P) denote the total load

imbalance. In general, the values of Tec(P) and Tib(P) are expected to be decreased
with the migration of the selected vertices. This implies that the migration process
will be terminated when a stable value is achieved;

2) W(Pi) � n
k, that is to say the partition is considered as load balance under before

vertex movement. In this case, the migration of vertex v will increase the value of
Tib(P). However, the migration of candidate vertices with high gain values can be
used to amortize the increase of Tib(P) and this will be terminated at a certain point,
such as d(v, Ps, Pt) = 0;

3) W(Pi) < n
k, note that the proposed method selects high overloaded partition

(argmax1� i;j� k PijW Pið Þ � n=k;Pi 2 Pf g) to perform migration process. Then, the
vertex migration process will not be occurred in the partition with W(Pi) < n

k.
Instead, the specified partition will receive vertices from the other partitions during
the processing of the first two cases. With the reception of the candidate vertices the
specified partition will tend to balance.

5 Experiments

In this section, we present the evaluation result of the proposed dynamic graph
repartitioning (DGR) method comparing with Streaming [6] and Hermes [10]. Hermes
is considered as the closest to the proposed method. Planar [9] is a special case of
Hermes which assume a heterogeneous network architecture. We implement three of
the proposed methods, which including DGR-V(single vertex based movement), DGR-
G(vertex-group based movement), and DGR-B(adjusting the parameter c).

5.1 Experimental Setting

Datasets: Five real-world data sets [28] provided by the work of Stanford University
named DBLP, Youtube, RoadNet-PA, LiveJournal, Orkut, and two synthetic graph
data sets generated following the Lancichinetti Fortunato Radicchi (LFR) benchmark
[29] were used to evaluate the performance. The two synthetic graph data sets represent
different size and sparsity. The detail descriptions of the seven datasets are shown in
Table 1. Initially, we select 70% of the seven graph datasets randomly and partition
them by using the streaming based graph partitioning method [6]. In order to simulate
the dynamic environment, we select the remaining 30% of the seven graph datasets
proportionally to insert into the initial partitions. To keep up with Hermes, the load
balance criterion e is set to 0.1 in the experiments.
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Setting: All experiments were conducted on a Hadoop File System with 16 storage
nodes. Each storage node runs on Ubuntu OS with i7-3.6 GHz CPU and 32 GB RAM.
All the algorithms were coded in Java 1.7.

Metrics: We consider the following three metrics, such as edge cut, load balance, and
migration efficiency.
Edge cut (EC), the edge cut is the basic metric to evaluate the quality of the graph
partitioning results. Given a partition set P, the edge cut (EC) ratio is defined as

EC ratio ¼ Tec Pð Þ
Ej j : ð7Þ

And the edge cut improvement of graph repartitioning result P’ is defined as

EC improvement ¼ Tec Pð Þ � Tec P0ð Þ
Tec Pð Þ : ð8Þ

Load balance (LB), given a partition set P, the load balance (LB) ratio is defined as

LB ratio ¼ Tib Pð Þ
Vj j : ð9Þ

And the load balance improvement of graph repartitioning result P’ is defined as

LB improvement ¼ Tib Pð Þ � Tib P0ð Þ
Tib Pð Þ : ð10Þ

Migration efficiency, migration efficiency is an important factor for graph reparti-
tioning in dynamic environment. We use migration interference (MI) to count up the
number of vertices that cause migration interference during vertex migration and total
migrations (TM) to count the number of total vertices that have to be moved to achieve
graph repartitioning.

Table 1. Summary description of different graph datasets.

Data name Number of vertices Number of edges Average degree

DBLP 317,080 1,049,866 6.62
Youtube 1,134890 2,987,624 5.27
RoadNet 1,088,092 1,541,898 2.83
LiveJournal 3,997,962 34,681,189 17.35
Orkut 3,072,441 117,185,083 76.28
LFR1 10,000,000 9,672,167 1.93
LFR2 30,000,000 174,470,043 11.63
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5.2 Experimental Results

We first compare the parameter c of the proposed method DGR-B that affects the balance
of edge cut value and load imbalance ratio. As discussed in previous, the two goals
(minimum edge cut value and minimum load imbalance ratio) of graph repartitioning are
always in conflict. Figure 3 shows the results on Youtube dataset, and the results of the
other datasets are shown on Table 2. When c = 0, it means that the proposed method
DGR-B only focuses on reducing the load imbalance ratio and the edge cut value of the
partition is ignored completely. All the results showed that the load balance improvement
is maximum when c = 0. However, the corresponding value of edge cut improvement is
minimum.With the increase of c, the vertexwhose gain is greater than 0 has a chance to be
migrated during the graph repartitioning. The EC improvement will gradually increase.
However, the weight of load balance will decrease, which will result in the reduction of
LB improvement. Then, we select the optimal parameter c with the intersection position
for DGR-B in the following experiments.

Convergence Speed Comparison: Both Hermes and the proposed method perform
vertex migration in an iterative mode. For each movement of the iteration, the edge cut
ratio and load balance ratio will be decreased. For DGR-B, the objective function that
balancing the edge cut and load balance can make the vertex movement of the graph
repartitioning converge rapidly. Hermes adopts a parameter N in the algorithm which
will affect convergence speed. A large value of N will result in faster convergence of
iterations but it will cause more migration interference and load imbalance, as shown in
Table 3 and Fig. 5, respectively. In order to be fair, Hermes is performed with two
different values of N, where N = 500 and N = 2000. Figure 4 shows the result of
iteration times over the Youtube dataset. The edge cut ratio and load balance ratio of
Hermes, DGR-V, DGR-G, and DGR-B tending to be stable after several iterations. The
edge cut ratio and load balance ratio of the proposed method are decreased sharply with
the movement of the selected vertices and tend to be stable more rapidly than Hermes.

(a) Youtube (8 partitions)    (b) Youtube (16 partitions)

Fig. 3. The result of edge cut improvement and load balance improvement according to the
value of parameter c.
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Migration Efficiency Comparison: Table 3 shows the result of migration interfer-
ence (MI) and total migration (TM) over Youtube dataset. DGR-V performs vertex
migration among the different partitions in a sequential method, the result of migration
interference is 0. Hermes performs vertex migration in parallel, the migration inter-
ference will occur inherently. Therefore, a lot of vertex migration will cause migration
interference. However, the result of migration interference of both Hermes and DGR-V
are 0 when the number of partition is 2. This is because the vertex migration of Hermes
is also performed in a sequential model when the number of partition is only 2. In this

Table 2. The selection of optimal parameter c on different datasets

Dataset name c of different number of partitions
2 4 8 16

DBLP 0.7 0.8 0.8 0.7
RoadNet-PA 0.6 0.6 0.7 0.7
Youtube 0.5 0.4 0.5 0.5
LiveJournal 0.6 0.6 0.6 0.6
Orkut 0.3 0.2 0.2 0.3
LFR1 0.7 0.7 0.8 0.8
LFR2 0.5 0.6 0.6 0.5

Table 3. The result of migration interference and total migration.

|P| DGR-V Hermes
(N = 500)

Hermes
(N = 2000)

MI TM MI TM MI TM

2 0 100,549 0 107,831 0 109,129
4 0 297,360 6,106 341,570 6,912 344,369
8 0 324,783 15,896 355,023 16,599 360,059
16 0 317,837 20,196 336,851 21,246 372,065

(a) Edge cut ratio (b) Load balance ratio
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Fig. 4. The result of convergence speed under the edge cut ratio and load balance ratio.
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case, the migration interference is not occurred. When the number of partition is larger
than 2, the advantage of the proposed method is obvious. For Hermes, there are more
vertices to be migrated at a time when N = 2000, and the higher the probability of
migration interference is occurred.

Dynamic Graph Repartitioning Result: Figure 5 shows the result of graph reparti-
tioning methods on both edge cut ratio and load balance ratio over all the datasets
comparing with the initial state. Since the streaming based graph partitioning algorithm
joining the punishment mechanism to guarantee the load balance of the graph parti-
tioning result, a vertex with high edge cut gain will be ignored and assigned to a
partition with large storage space. Therefore, the edge cut ratio of streaming based
graph partitioning method is a little high comparing with the other graph repartitioning
methods. However, its load balance ratio is relatively low comparing with the other
methods. Both the proposed method DGR-V and Hermes take the single vertex as a
basic unit for vertex migration to achieve graph repartitioning, the results of edge cut
ratio of them are similar. However, DGR-V can avoid migration interference and the
number of iterations of DGR-V will be less than that of Hermes. The proposed method
DGR-G takes the vertex-group as a basic unit for vertex migration to achieve graph
repartitioning, the edge cut ratio of the graph repartitioning is significantly reduced
comparing with DGR-V and Hermes in most cases. This is because the migration of the
group of vertices which have negative edge cut gains can further reduce the total edge
cut. As for DGR-B, it has a slightly higher edge cut ratio comparing with DGR-G. This
is because it focuses on balancing the edge cut and load balance of the graph repar-
titioning result. However, the advantage of the load balance ratio of DGR-B is obvious.

(a) edge cut ratio with 8 partitions                           (b) edge cut ratio with 16 partitions 

(c) load balance ratio with 8 partitions                            (d) load balance ratio with 16 partitions 
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6 Conclusions

This paper addresses the problem of graph repartitioning in the dynamic environment.
We devise an efficient lightweight method to identify and move the candidate vertices
to achieve graph repartitioning in the dynamic environment. In order to get a com-
petitive graph repartitioning result, instead of migrating a single vertex as a basic unit
the candidate vertex is processed based on vertex-group. Extensive experiments are
conducted to evaluate the efficiency of the proposed methods on different types of real-
word and synthetic graph datasets. The results show that the considering of vertex-
group is more efficient than the other methods. Additionally, the results also show that
the load balance ratio of DGR-B can be improved by nearly 90% comparing with
Hermes.

Acknowledgements. This work was supported by the Natural Science Foundation of China
(No. 61602354), Natural Science Foundation of Shaanxi Province (No. 2019JM-227), and the
National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2019R1A2C2084257).

References

1. http://www.wordwidewebsize.com/
2. http://www.facebook.com/press/info.php?statistics/
3. http://www.w3.org/
4. Garey, M.R., Johnson, D.S.: A guide to the Theory of NP-Completeness. Computers and

Intractability (1990)
5. Karypis, G., Kumar, V.: A fast and high quality multi-level schemes for partitioning irregular

graphs. SIAM 20(1), 359–392 (1998)
6. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs. In: KDD

(2012)
7. Tsourakakis, C., Gkantsidis, C., Radunovic, B., Vojnovic, M.: Fennel: streaming graph

partitioning for massive scale graphs. In: WSDM (2014)
8. Zheng, A., Labrinidis, A., Pisciuneri, P., Chrysanthis, P.K., Givi, P.: Paragon: parallel

architecture-aware graph partitioning Refinement algorithm. In: EDBT (2016)
9. Zheng, A., Labrinidis, A., Chrysanthis, P.K.: Planar: parallel lightweight architecture-aware

adaptive graph re-partitioning. In: ICDE (2016)
10. Nicoara, D., Kamali, S., Daudjee, K., Chen L.: Hermes: dynamic partitioning for distributed

social network graph databases. In: EDBT (2015)
11. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community

structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)
12. Trinity. http://research.microsoft.com/en-us/projects/trinity/
13. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD (2010)
14. Iordanov, B.: Hypergraphdb: a generalized graph database. In: WAIM (2010)
15. Neo4j. http://www.neo4j.org/
16. Venkataramani, V., et al.: Tao: how Facebook serves the social graph. In: SIGMOD (2012)
17. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/
18. Margo, D., Seltzer, M.: A scalable distributed graph partitioner. In: VLDB (2015)

496 H. Li et al.

http://www.wordwidewebsize.com/
http://www.facebook.com/press/info.php?statistics/
http://www.w3.org/
http://research.microsoft.com/en-us/projects/trinity/
http://www.neo4j.org/
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/


19. Wang, L., Xiao, Y., Shao, B., Wang, H.: How to partition a billion-node graph. In: ICDE
(2014)

20. Rahimian, F., Payberah, A.H., Girdzijauskas, S., Jelasity, M., Haridi, S.: JA-BE-JA: a
distributed algorithm for balanced graph partitioning. In: SASO (2013)

21. Rosen, K.H.: Discrete Mathematics and its Applications. China Machine Press (2012)
22. Ioanna, F., Kotidis, Y.: Online and on-demand partitioning of streaming graphs. In: the IEEE

International Conference on Big Data (2015)
23. Mayer, C., et al.: ADWISE: adaptive window-based streaming edge partitioning for high-

speed graph processing. In: ICDCS (2018)
24. Xu, N., Cui, B., Chen, L., Huang, Z., Shao, Y.: Heterogeneous environment aware streaming

graph partitioning. TKDE 27(6), 1560–1572 (2015)
25. Abbas, Z., Kalavri, V., Carbone, P., Vlassov, V.: Streaming graph partitioning: an

experimental study. VLDB 11(11) (2018)
26. Huang, J., Abadi, J.: Leopard: Lightweight edge-oriented partitioning and replication for

dynamic graphs. VLDB 9(7), 540–551 (2016)
27. Jayanta, M., Deshpande, A.: Managing large dynamic graphs efficiently. In: SIGMOD

(2012)
28. http://snap.stanford.edu/data
29. https://en.wikipedia.org/wiki/Lancichinetti%E2%80%93Fortunato%E2%80%93Radicchi_

benchmark/

Dynamic Graph Repartitioning: From Single Vertex to Vertex Group 497

http://snap.stanford.edu/data
https://en.wikipedia.org/wiki/Lancichinetti%25E2%2580%2593Fortunato%25E2%2580%2593Radicchi_benchmark/
https://en.wikipedia.org/wiki/Lancichinetti%25E2%2580%2593Fortunato%25E2%2580%2593Radicchi_benchmark/


Modeling Heterogeneous Edges
to Represent Networks with Graph

Auto-Encoder

Lu Wang1,2,3, Yu Song1,2,3, Hong Huang1,2,3(B), Fanghua Ye4,
Xuanhua Shi1,2,3, and Hai Jin1,2,3

1 National Engineering Research Center for Big Data Technology and System,
Huazhong University of Science and Technology, Wuhan, China

wluluo@gmail.com, {yusonghust,honghuang,xhshi,hjin}@hust.edu.cn
2 Service Computing Technology and Systems Laboratory,

Huazhong University of Science and Technology, Wuhan, China
3 School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan, China
4 Department of Computer Science, University College London, London, UK

smartyfh@outlook.com

Abstract. In the real world, networks often contain multiple relation-
ships among nodes, manifested as the heterogeneity of the edges in the
networks. We convert the heterogeneous networks into multiple views by
using each view to describe a specific type of relationship between nodes,
so that we can leverage the collaboration of multiple views to learn
the representation of networks with heterogeneous edges. Given this,
we propose a regularized graph auto-encoders (RGAE) model, commit-
ted to utilizing abundant information in multiple views to learn robust
network representations. More specifically, RGAE designs shared and
private graph auto-encoders as main components to capture high-order
nonlinear structure information of the networks. Besides, two loss func-
tions serve as regularization to extract consistent and unique information,
respectively. Concrete experimental results on realistic datasets indicate
that our model outperforms state-of-the-art baselines in practical appli-
cations.

Keywords: Network embedding · Network analysis · Deep learning

1 Introduction

The research of network analysis has made rapid progress in recent years. In fact,
network data are usually complex and therefore hard to process. To mine network
data, one fundamental task is to learn a low-dimensional representation for each
node, such that network properties are preserved in the vector space. As a result,
various downstream applications, such as link prediction [22], classification [36],
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and community detection[10], can be directly conducted in such vector space.
As for learning representations for networks, there are two main challenges that
have not yet been fully resolved:

(1) Preservation of heterogeneous relationships between nodes. There
usually exist diverse and different types of relationships between nodes, leading
to the heterogeneity of edges. For example, in the twitter network, four types
of relationships may be observed in the interactions between two users, that is
one user may retweet, reply, like, and mention another user’s tweet. Thus it is
reasonable to build four types of edges between the two users with each type
of edge corresponding to one type of relationship. Although these edges reflect
the similarity between the two users, we can not ignore the slight difference at
the “semantic” level. Therefore, taking heterogeneity of edges into consideration
for representing such networks is quite significant. In literature, several hetero-
geneous network embedding approaches (e.g. PTE [29], Metapath2vec [4], and
HIN2Vec[7]) have been proposed to represent heterogeneous nodes or edges into
the same semantic vector space. However, these methods only learn a final repre-
sentation for all relationships jointly but ignore the different semantic meanings
of edges. Therefore, in order to explore the heterogeneity of edges, it is necessary
to learn a relation-specific representation for each type of relationship.

(2) Preservation of high-order node proximities. As described in
LINE [30], it defines two loss functions to preserve both 1-st and 2-nd order
proximities together. However, it is also meaningful to further integrate the
information of k-th-order neighbors for enhancing the representation of nodes
with small degrees. Moreover, most existing network embedding methods are
equivalent to implicit matrix factorization [23], which is a shallow model that
fails to capture high-order nonlinear proximities between nodes. GraRep [2] aims
to capture the k-th-order proximity by factorizing the k-step (k = 1, 2, · · · , K)
transition matrices. However, the matrix factorization technique is usually time
inefficient and hard to learn nonlinear relationships between nodes. SDNE [34]
designs a deep auto-encoder framework to extract the nonlinear structural infor-
mation of networks, but it still only considers 1-st and 2-nd order proximities
without preserving even higher order proximities between nodes. Consequently,
to preserve the complex network information, a better solution should lever-
age high-order nonlinear structural information to yield more robust network
representations.

Recently, it has witnessed that multi-view learning is applied successfully in
a wide variety of applications, especially for mining heterogeneous data, such as
clustering [13], computer vision [16], and information retrieval [21]. In this regard,
we convert heterogeneous edges into multiple views for a network, and solving
a multi-view learning problem to learn representations for such networks. To be
more specific, we abstract each relationship as a view of the network, reflecting a
type of proximity between nodes, thus the original network can be further inter-
preted as a multi-view network. Finally, we formalize the task as a multi-view
network embedding problem. Existing multi-view network embedding methods,
such as MVE [24] and MINEs [19], first learn a single-view network representa-
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Fig. 1. (a) Illustration of converting heterogeneous relationships to multiple views of
the network. (b) Consistent and unique information carried by each pair of AMiner
network views.

tion using skip-gram model then fuse them directly. Since their fusion strategies,
i.e. averaging and adding, are both linear functions, they fail to capture the com-
plex nonlinear information, leading to a sub-optimal result. Besides, there are
some works [27,37,40] learning a unified representation and a view-specific rep-
resentation for each view simultaneously, but they are shallow models without
considering the high-order proximities between nodes.

Targeting at modeling the heterogeneity of edges and preservation of high-
order node proximities for learning network representations, we propose a novel
Regularized Graph Auto-Encoders framework, namely RGAE. To better illus-
trate our motivation, we first introduce a case study on a multi-view AMiner
network (see details in Sect. 4.1). As shown in Fig. 1 (a), it contains two types
of information, consistent information and unique information, as its edges are
partial aligned as well as partial distinct between different views. Different views
may share some consistent information. At the same time, each of them also
carries some unique information that others do not have. We further follow a
similar method [27] to perform a statistical analysis. Given a pair of views, the
edge sets are E1 and E2. We treat the Jaccard coefficient between the two sets
as the proportion of consistent information. As we can see in Fig. 1 (b), there
exists noticeable consistent information between coauthor and text similarity
views while other pairs of views are quite negligible. Thus we conclude that it
is unreasonable to preserve only consistent or unique information for multi-view
network embedding. As a result, RGAE model aims to preserve consistent and
unique information simultaneously, as well as capturing high-order nonlinear
proximities between nodes. The contributions of our model are threefold:

(1). In consideration of preserving heterogeneous information of edges as much
as possible, we design two kinds of graph auto-encoders to deal with consistent
and unique information respectively: one is the shared across view and the other
is private to each view. Through these deep and nonlinear graph auto-encoders,
our RGAE model is able to represent complex high-order structural information.
(2). We further introduce two regularized loss functions, i.e. the similarity loss
and the difference loss, to explicitly avoid the information redundancy of the
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Table 1. Summary of symbols

Symbol Definition Symbol Definition

U Node set Ei Edge set of view i

|V | Number of views D Dimension of Y

N Number of nodes d = �D/(|V | + 1)�
Ai ∈ R

N×N Adjacency matrix of view i α, β, γ Hyper-parameters

Yi,p ∈ R
d Private embedding of view i IN ∈ R

N×N An identity matrix

Yi,s ∈ R
d Shared embedding of view i Ãi = Ai + IN

Ycon ∈ R
d Consistent embedding D̃i(m, m) =

∑
n Ãi(m, n)

Y ∈ R
D Final network embedding X1 ⊕ X2 Concatenation in the last dimension

two types of graph auto-encoders. The similarity loss is used to extract consis-
tent information from shared graph auto-encoders. The difference loss aims to
encourage the independence between shared and private graph auto-encoders,
so the unique information can also be well preserved at the same time.
(3). To evaluate the performance of the RGAE model, we conduct abun-
dant experiments on four real-world datasets. The experimental results demon-
strate that the proposed model is superior to existing state-of-the-art baseline
approaches as well as examining the novelty of our model.

2 Problem Formulation and Notations

We first briefly define a multi-view network, multi-view network embedding and
list the main notations used throughout this paper in Table 1:

Definition 1. Multi-View Network. A multi-view network is a network
defined as G =

{U , E1, E2, · · · , E|V |
}
, where U is a node set shared by all views,

and Ei (1 ≤ i ≤ |V |) is the edge set of the i-th view, which reflects a specific type
of relationship between nodes.

Problem 1. Multi-View Network Embedding. Given a multi-view network
G =

{U , E1, E2, · · · , E|V |
}
, the multi-view network embedding problem aims to

learn a low-dimensional embedding representation Y ∈ R
D (D � N). More

specifically, an intermediate view-specific embedding representation Yi,p ∈ R
d

is learned to preserve the unique information of view i and a shared embed-
ding representation Ycon ∈ R

d is learned to preserve the consistent information
among all views. The final embedding representation Y is obtained from all view-
specific embedding representations and the shared embedding representation by
an aggregation function.

3 Method

In this section, we introduce our proposed Regularized Graph Auto-Encoders
framework, namely RGAE, for tackling the multi-view network embedding prob-
lem in detail. An illustrative example of the RGAE model is shown in Fig. 2.
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Fig. 2. The framework of RGAE. The illustration takes a network with three views as
an example.

3.1 The Shared and Private Graph Auto-Encoders

Graph convolutional network (GCN) [11] is built on the idea of message passing,
and convolves the representation of the central node with the representations
of its neighbors to derive an updated representation of the central node. Our
shared and private graph auto-encoders are both motivated as an extension of
existing GCN that is able to learn valuable information for graphs. By stacking
multiple GCN layers as an encoder and a simple inner production operation as
a decoder, the graph auto-encoders in the RGAE model is capable of extracting
consistent and unique information in a multi-view network. Specifically, given a
multi-view network denoted as G =

{U , E1, E2, · · · , E|V |
}
, for a specific view i,

the propagation rule of l-th layer in the private encoder is formulated as:

Y(l+1)
i,p = σ(D̃i

− 1
2 ÃiD̃

− 1
2

i Y(l)
i,pW

(l)
i ) (1)

where the σ(·) is the non-linear activation function. In this paper, we choose relu

as activation function in all cases. W(l)
i is the weight matrix, and Y(0)

i,p = Xi is
the feature matrix for view i. Specially, if the node features are not available the
Xi will be an identity matrix, as described in [11].

The key point of the shared encoder is that the weight matrices in all layers
are shared across different views1, which is clearly different from the private
graph auto-encoder. In detail, the propagation rule of the l-th layer in the shared
graph encoder is formulated as:

Y(l+1)
i,s = σ(D̃i

− 1
2 ÃiD̃

− 1
2

i Y(l)
i,sW

(l)) (2)

Note that the weight matrix W(l) is only shared in view-wise rather than layer-
wise. Through this shared architecture we can project all views into the same
semantic space so that the process of extracting the consistent information is
1 Note the node set is shared across all views.
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more interpretable. We can also allow different views to influence mutually and
collaborate implicitly.

The GCN layer is motivated by a first-order approximation of the localized
spectral filters on graph-structured data [3]. In this regard, it is possible to stack
multiple GCN layers in both shared encoders and private encoders to capture the
high-order proximity between nodes. The final outputs of these stacked shared
encoders and private encoders are denoted as Yi,s and Yi,p for each view respec-
tively. During the forward pass, the graph decoder in view i aims to calculate
the reconstructed adjacency matrix Âi. In order to utilize the complete infor-
mation to make a better reconstruction, we first concatenate the outputs of the
shared encoder and private encoder for view i, then we utilize the inner produc-
tion operation to yield the reconstructed adjacency matrix, as described in [12],
which is computed as follow:

Yi = Yi,s ⊕ Yi,p, Âi = sigmoid(YiYi
T) (3)

Since the adjacency matrix preserves the topology information of the graph, it
is momentous to minimize the reconstruction loss. It has been demonstrated that
minimizing the reconstruction loss is helpful to preserve the similarity between
nodes [26]. Due to the sparsity of networks, there exist a great deal of zero
elements and the number of zero elements and non-zero elements is extremely
unbalanced in the adjacency matrix. As a result, we minimize the reconstruction
error by optimizing the Balanced Cross-Entropy loss, which allows the model to
pay more attention to the non-zero elements thus ignores the redundant noises
from zero elements. For the view i, we compute the reconstruction loss as follows:

Lrec
i =

∑

a
(m,n)
i ∈Ai,â

(m,n)
i ∈Âi

[−a
(m,n)
i log(â(m,n)

i )ς −(1−a
(m,n)
i )log(1− â

(m,n)
i )] (4)

where the ς is a weighting factor to balance the importance of the non-zero
elements, defined as #zero elements

#non−zero elements in Ai.

3.2 Regularization

Similarity Loss. Intuitively, the consistent information can be extracted from
the outputs of the shared encoders. Since we have projected all these outputs
into the same semantic space, it is meaningful to make them collaborate to vote
for the consistent representation. In this process, we encourage the consistent
representation Ycon to be similar to the shared representation Yi,s of each view
as much as possible. As the importance of views may be different, we further
allow the model to assign different weights to them. Taking all these into con-
sideration, we introduce the following similarity loss to regularize the extraction
process:

Lsim =
|V |∑

i=1

λγ
i ‖Ycon − Yi,s‖2F ,

|V |∑

i=1

λi = 1, λi ≥ 0 (5)
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where λi is the weight for view i, and γ moderates the weight distribution. By
learning proper weights, the extraction process can let the consistent representa-
tion focus on the most informative views. Naturally, the consistent representation
is calculated as the weighted combinations of the outputs of the shared encoders,
which illustrates the collaboration between different views.

Difference Loss. In order to preserve the unique information, the difference loss
is also introduced to encourage the isolation between consistent embeddings and
unique embeddings. As the consistent information and unique information have
essential differences, they should be distinguished clearly to avoid the informa-
tion redundancy. In other words, the shared embeddings and private embeddings
should describe the information of multiple views in different perspectives, thus
we define the difference loss via an orthogonality constraint between the private
embedding and shared embedding in each view:

Ldif
i = ‖Yi,s � Yi,p‖2F , i = 1, 2, · · · , |V | (6)

where the � is the row-wise inner production. Obviously, the difference loss
will drive the shared embeddings to be orthogonal with the private embeddings,
thus they will be as dissimilar as possible. In this way, the shared and private
encoders are able to encode different aspects of the multi-view network. In this
paper, we treat the output of the private graph encoder for each view as its
private representation.

3.3 The Aggregation Process

As introduced above, our RGAE model includes the three types of losses, i.e.
the reconstruction loss, the similarity loss, and the difference loss. In order to
train these losses jointly, the overall loss of our proposed model is summarized
as follow:

L =
|V |∑

i=1

Lrec
i + α ∗ Lsim + β ∗

|V |∑

i=1

Ldif
i (7)

where α and β are hyper-parameters to control the importance of similarity loss
and difference loss respectively. Up to now, we have obtained the representations
of consistent and unique information. Finally, we design an aggregation process
to yield the final network representation, which can be illustrated as:

Y = Aggregator(Ycon,Y1,p, · · · ,Y|V |,p) (8)

The aggregator should be able to integrate both the consistent and unique infor-
mation effectively, and it can be add, average, pooling and some other designed
functions. In this paper, we choose concatenation as the aggregation function
since it has been proven to be useful and efficient in many existing network
embedding methods [15,27,30]. As shown in Table 1, the total dimension D has
been assigned to each graph auto-encoder equally, thus after the concatenation
process the final network embedding will still satisfy Y ∈ R

D.
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3.4 Implementation

In practice, we utilize Tensorflow for an efficient GPU-based implementation of
the RGAE model. Then the parameters of RGAE model except λi can be effi-
ciently optimized automatically with back propagation algorithm. To save space,
we omit details here. Since the sparsity of network data, we use sparse-dense
matrix multiplication for Eqs. (1) and (2), as described in [11]. Specially, for the
view weight λi in Eq. (5), we follow the same method [1] to update it. Let’s denote
‖Ycon −Yi,s‖2F as Bi, then Eq. (5) is equivalent to

∑|V |
i=1 λγ

i Bi − ξ(
∑|V|

i=1 λi −1),
where ξ is Lagrange multiplier. By taking the derivative of this formula with

respect to λi as zero, we can obtain the update rule of λi: λi ← (γBi)
1

1−γ

∑|V |
i=1(γBi)

1
1−γ

. It

is efficient to use one parameter γ for controlling the distribution of view weights
during the optimization process dynamically. According to the update rule, we
would assign equal weights to all views when γ closes to ∞. When γ closes to 1,
the weight for the view whose Bi value is smallest will be assigned as 1, while
others are almost ignored since their weights are close to 0.

4 Experiments

4.1 Experimental Setup

We select four multi-view network datasets in different fields. The statistic anal-
ysis is shown in Table 2.

Table 2. Overview of datasets

Task Dataset Views Nodes Edges Labels Type

Multi-class Node Classification AMiner 3 8,438 2,433,356 8 Academic

PPI 6 4,328 1,661,756 50 Biological

Multi-label Node Classification Flickr 2 34,881 3,290,030 171 Social

Link Prediction YouTube 4 5,108 3,263,045 − Social

• AMiner [31]: AMiner network is an academic network representing the rela-
tionships between authors. It consists of three views: author-citation, co-
authorship, and text similarity. Text similarity between two authors is cal-
culated by TF-IDF from titles and abstracts in their papers. An author
establishes connections with his top ten similar authors and we only pre-
serve authors in eight research fields as [4]. The research fields are treated as
node labels.

• PPI [5]: The PPI network is a human protein-protein interaction network. Six
views are constructed based on the co-expression, co-occurrence, database,
experiment, fusion, and neighborhood information. Gene groups are treated
as node labels.
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• Flickr [32]: It is a social network of online users on Flickr with two views. One
view is the friendship network among bloggers. The other is a tag-proximity
network in which a node connects with its top 10 similar nodes according to
their tags. We treat community memberships as node labels.

• YouTube [38]: It is a social network consists of four views: the friendship,
the number of common friends, the number of common subscribers, and the
number of common favorite videos between two users.

In order to evaluate the effectiveness of RGAE, we compare our model with
three types of baselines. The single-view based baselines include:

• Deepwalk [22]: It is a well-known baseline for network embedding. We set the
number and the length for each node as 80 and 40 respectively following the
recommendations of the original paper. The window-size is set as 10.

• GraRep [2]: It aims to capture the k-order proximities by factorizing the
k-step transition matrices. We set k as 5.

• SDNE [34]: It utilizes the auto-encoders to preserve the neighbor structure of
nodes. The first-order and second-order proximity are proposed to preserve
the global and the local network structure. We set the number of layers as 3,
and the hidden size as [800,400,128].

• GAE [12]: It stacks GCN layers as an encoder and the inner production
operation as a decoder. The reconstruction loss helps it to capture structural
information in an unsupervised manner. We set the number of layers and
hidden sizes same as SDNE.

The heterogeneous network embedding methods include:

• PTE [29]: It is a heterogeneous network embedding method which can also be
used to jointly train the embedding, because multi-view network is a special
type of heterogeneous network. We set the number of negative samples as 5.

• Metapath2vec [4]: It utilizes meta-paths guided random walk to generate the
node sequences then uses skip-gram model to learn the node representations.
We set the number, the length of walks and window size same as deepwalk.
We perform experiment using one of all possible meta-paths at a time, and
report the best result.

The multi-view based baselines include:

• Deepwalk-con: It applies Deepwalk to get a d dimensional representation for
each view then concatenates these representations from all K views to gen-
erate a unified representation with K ∗ d dimensions.

• MultiNMF [17]: It is a multi-view matrix factorization algorithm, which
extracts consistent information by a joint matrix factorization process.

• MVE [24]: It combines single view embeddings by weights learned from atten-
tion mechanism to construct a multi-view network embedding. We set the
parameters of random walk and skip-gram model same as Deepwalk, and
other parameters are same as the original paper.
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• MNE [40]: It combines the information of multiple view by preserving a high
dimensional common embedding and a lower dimensional embedding for each
view. The dimensions of the additional vectors are set as 10.

• MTNE-C [37]: It combines the common embedding and node-specific embed-
ding of each node to be a complete embedding for the closeness measurement.
We follow the default parameter setting in the original paper.

For RGAE and all baselines except Deepwalk-con, the embedding dimension
is set as 128. The number of graph auto-encoder layers is set as 3, and two
hidden layers’ dimensions are set as 800 and 400 respectively. Both α and β
are selected from [0.1, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0], and γ is selected from [0.05,
0.5, 5, 10, 50, 100, 500]. The learning rate is selected from [0.001, 0.01, 0.1]. As
node features are not available for our datasets the feature matrix will be an
identity matrix. We treat the node embedding learned by various methods as
feature to train linear classifiers for multiclass classification, and train one-vs-
rest classifiers for multilabel classification. For link prediction, we use the cosine
similarity between node pairs as features to train a logistic classifier to predict
the link existence. Follow the setting in [24], we use other three views to train
embeddings and predict the link existence in friend view. To generate negative
edges, we randomly sample an equal number of node pairs which have no edge
connecting them. We report the best results among multiple views for single-
view based baselines. To guarantee a fair comparison, we repeat each method
ten times and the average metrics are reported.

4.2 Experimental Results

Node Classification. We evaluate the performance of our method and three
categories of baselines using the Micro-F1 and Macro-F1 scores. Table 3 shows
the comparison on three datasets. As can be seen, our RGAE model outperforms
all baselines except for Macro-F1 on Flickr dataset. For example, on AMiner
dataset, it achieves a sustainable performance gain of 1%, 2%, and 3% with the
percentage of training data increasing. It is noted that RGAE always outperforms
GAE consistently, which shows that with making good use of information from
multiple views, we are indeed able to learn a robust representation for a multi-
view network. The superiority of RGAE over SDNE further verifies that it is
reasonable to model the heterogeneity of edges. Although GraRep captures high
order proximities between nodes, the matrix factorization process makes it hard
to preserve non-linear network information, which is not compared with our
model. One may see that the existing multi-view network embedding approaches
are also not comparable to our RGAE model. The reason is that either they are
not possible to consider the uniqueness of each view, like Metapath2Vec and
MVE, or they are not possible to capture high-order proximities between nodes,
such as MTNE-C and MNE. All these observed results show that the RGAE
model can indeed capture more complete non-linear information from multiple
views.
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Table 3. Node classification results w.r.t. Micro-F1(%) and Macro-F1(%) with different
training ratio. ‘-’ means out of memory error.

Datesets Category Methods 0.1 0.3 0.5

Micro Macro Micro Macro Micro Macro

AMiner Single-View Deepwalk 69.9 68.4 74.3 73.3 75.1 74.3

GraRep 23.3 20.5 44.8 41.8 61.9 60.6

SDNE 64.8 62.5 70.3 68.0 70.8 69.4

GAE 60.4 54.8 62.5 57.7 63.6 59.3

Heterogeneous PTE 52.9 46.9 56.6 52.7 58.1 55.2

Metapath2Vec 70.6 70.1 75.3 73.5 76.2 74.9

Multi-View Deepwalk-con 61.4 59.0 74.2 72.6 76.1 74.9

MultiNMF 57.4 52.6 66.4 64.1 66.8 62.8

MVE 73.6 72.7 78.8 77.5 78.9 77.6

MNE 73.6 72.2 79.2 77.8 79.6 78.1

MTNE-C 54.5 48.8 57.2 53.9 58.6 55.2

RGAE 74.9 73.3 80.6 79.7 82.0 80.9

PPI Single-View Deepwalk 8.9 4.2 10.9 6.1 12.1 7.3

GraRep 4.0 2.0 5.1 3.1 13.1 10.0

SDNE 11.8 10.7 14.7 13.4 17.6 15.0

GAE 9.5 4.3 12.3 8.0 13.7 9.1

Heterogeneous PTE 12.8 9.5 19.7 11.7 22.0 14.0

Metapath2Vec 13.4 10.0 20.2 12.8 22.3 15.7

Multi-View Deepwalk-con 9.9 6.2 11.9 8.5 13.6 9.9

MultiNMF 15.3 11.9 17.8 15.2 20.3 17.5

MVE 11.7 9.9 12.1 10.6 13.3 10.8

MNE 13.3 11.8 14.1 12.2 15.6 12.1

MTNE-C 3.4 1.6 4.0 2.0 6.2 3.5

RGAE 19.0 15.1 24.4 21.0 25.0 21.3

Flickr Single-View Deepwalk 51.7 32.1 51.9 27.6 53.2 27.8

GraRep 52.4 32.2 53.8 35.0 55.9 35.8

SDNE 47.6 32.1 48.2 32.6 49.6 30.5

GAE 34.5 9.1 37.0 10.4 38.4 11.1

Heterogeneous PTE 55.7 30.4 56.4 34.3 56.2 31.0

Metapath2Vec 55.7 30.8 56.6 33.9 56.7 32.2

Multi-View Deepwalk-con 51.9 32.6 52.5 28.2 53.7 28.3

MultiNMF - - - - - -

MVE 52.0 32.5 53.0 28.9 54.3 28.8

MNE 52.4 33.1 53.5 29.9 54.8 29.8

MTNE-C 23.9 5.2 23.3 4.8 22.9 4.6

RGAE 56.7 32.9 57.6 33.7 58.4 36.2

Link Prediction. We select the YouTube dataset to verify the performance
of link prediction. Table 4 shows that the RGAE model significantly outper-
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Table 4. Link Prediction results on YouTube dataset w.r.t. ROC AUC Score(%) and
Average Precision Score (AP)(%) with different training ratio

Category Methods 0.1 0.3 0.5

ROC AUC AP ROC AUC AP ROC AUC AP

Single-View Deepwalk 74.4 73.6 74.7 74.0 78.4 77.2

GraRep 80.2 79.6 80.3 79.8 80.7 80.0

SDNE 81.8 82.7 82.3 83.0 85.0 85.3

GAE 77.0 77.7 77.3 78.2 80.3 79.6

Heterogeneous PTE 69.5 63.8 70.1 64.8 69.1 64.7

Metapath2Vec 78.5 73.8 80.6 75.8 81.9 79.7

Multi-View Deepwalk-con 78.9 78.0 79.8 78.9 84.7 83.1

MultiNMF 80.3 80.2 81.9 82.3 82.2 82.8

MVE 82.0 82.4 83.0 82.8 83.4 83.1

MNE 82.3 82.7 83.3 83.5 84.1 84.6

MTNE-C 52.4 53.0 62.3 62.9 66.1 65.8

RGAE 82.7 83.2 85.5 85.2 86.3 85.9

forms all baseline methods. The results verify again that RGAE indeed can
preserve the abundant information in multi-view networks. It is noticeable that
the SDNE even outperforms all multi-view and heterogeneous network embed-
ding approaches. By designing two kinds of graph auto-encoders, RGAE utilizes
both consistent and unique information from multiple views to describe the node
proximity in a detailed way, which achieves better performance than SDNE. As
a result, we conclude that RGAE is able to explore the structural properties of
multi-view networks.

(a) Citation (b) Coauthor (c) Text-Similarity (d) RGAE

Fig. 3. 2d t-SNE Visualization for AMiner Dataset. Each point represents a node and
colors represent labels. red: computational linguistics; blue: computer graphics; green:
theoretical computer science (Color figure online)

Network Visualization. We project the embeddings of AMiner dataset onto
2d vectors with t-SNE [20]. Figure 3 shows the network visualizations of the
RGAE model as well as each view’s visualization obtained by its shared and pri-
vate encoders. The difference between RGAE model and the single-view model
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is that single-view model lacks not only the constraints of the loss function to
divide the consistent information and unique information in a view, but also the
cooperation and supplementary between different views. In order to make the
visualization results more clear and legible, we select three from the eight cate-
gories of nodes for visualization, and each color represents a research field. We
can see that our multi-view based approach works better than learning each view
individually. Citation view may achieve relatively good representation effect, but
there are still a few nodes that have not been assigned to the correct cluster.
Therefore, it still needs more useful information from other views to comple-
ment and properly correct it to get a robust representation. The visualization of
RGAE, by contrast, separates the three research fields clearly, which illustrates
the necessity of modeling heterogeneous edges with consideration of all types of
relationships.

4.3 Influence of Loss Functions

The visualization results have proven the importance of both consistent and
unique information. In this part, we research the effect of the loss functions.
In our RGAE model, there exist two loss functions, i.e. the similarity loss and
the difference loss, that regularize the processes of extracting the consistent and
unique information respectively. To evaluate the influences of the two loss func-
tions, we remove similarity loss, difference loss, and both of them respectively,
and show the performance in Fig. 4. The histogram clearly shows the importance
of the two loss functions for our RGAE model. When we remove the similarity
loss function, there is slight decline in performance. Because without similar-
ity loss function, the quality of consistent information will be affected. Whereas
there is relatively little consistent information among the views, and the propor-
tion of the dimensions of the common representation in the final representation
is small, so that the performance declination will not be quite severe. When there
is no difference loss, there will be a noticeable decrease in performance, because
the isolation between different view’s specific information becomes worse without
the regularization of difference loss. Moreover, if we remove the similarity loss

(a) Node classification on
AMiner dataset w.r.t Micro-
F1(%)

(b) Node classification on
AMiner dataset w.r.t Macro-
F1(%)

Fig. 4. The effectiveness of the similarity loss and difference loss in our RGAE model
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and difference loss simultaneously, the performance of the RGAE model declines
further dramatically. All these observations can demonstrate the necessity of the
similarity loss and difference loss, but the degree of influence varies between the
two losses.

4.4 Parameter Sensitivity

With results presented in Fig. 5, we focus on the parameter sensitivity of RGAE
model, including the number of embedding dimensions, α, β, and γ. We perform
node classification on AMiner dataset and link prediction on YouTube dataset to
evaluate the parameter sensitivity. To explore the contributions of these param-
eters, we fix others to evaluate the effect of one parameter at a time on the
experimental results.

Overall, different datasets and tasks have different sensitivities to embedding
dimensions. On AMiner dataset, the performance increases with the dimension
increasing then stabilizes when the dimension reaches 64. While on the YouTube
dataset, the model performs well when the dimension is 32 and the performance
decreases slightly when the dimension continues to increase. Compared with the
AMiner dataset, the Youtube dataset achieves good results in lower dimensions.
When the proportion of the training data set is small, a large number of dimen-
sions tend to cause overfitting.

(a) Parameter sensitivity on AMiner node classification

(b) Parameter sensitivity on YouTube link prediction

Fig. 5. Performance of the RGAE models under varying hyper-parameters

The curves of the experimental metrics with the parameters α or β are not
monotonic. Their overall trends are both first rising and then falling. Because
when the proportion of similarity loss function and difference loss function are
too large, the proportion of reconstruction loss will be weakened, which will
affect the representation abilities of graph auto-encoders. As for γ, we find that
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it actually influences the results for both tasks. As we can see, it is more suitable
to set the value of γ larger than 5.

5 Related Work

Network Embedding: Network embedding is dedicated to mapping nodes in
a network into a low-dimensional vector space for preserving structural infor-
mation. Earlier studies such as Deepwalk [22], node2vec [8], and Struc2vec [25]
use skip-gram model to preserve network structures through neighborhood sam-
pling. Traditional deep neural networks also get widespread attention because of
its nonlinear underlying structure. SDNE [34], SiNE [35], and Deepcas [14] have
a strong advantage in retaining the highly nonlinear structure of the network.
More recent methods adopt graph neural network to perform convolutional oper-
ations on graphs. GCN [11], GATs [33], and GraphSAGE [9] are all representa-
tive works as end-to-end approaches for network representation learning. These
studies are directed at homogeneous networks. Heterogeneous network embed-
ding has also attracted attention because of its practical significance. PTE [29]
is an extension method of LINE on heterogeneous networks. Besides, Metap-
ath2vec [4], HIN2vec [7], and RHINE [18] use meta path to capture the structure
and semantic information in heterogeneous networks.

Multi-view Learning: Another related work is about multi-view learning.
Some traditional multi-view learning algorithms, such as co-training [13], co-
clustering [39], and cross-domain fusion [6] analyze multi-view networks for spe-
cific tasks. MVE [24], MINES [19], MVNE [28], and mvn2vec [27] account for the
first-order collaboration to align the representations of each node across views.
For these studies, the models responsible for learning the network representation
of each view are shallow so that they cannot capture the high-order non-linear
network structure. With that in mind, we consider using deep neural networks
to replace the shallow models as the basic components to embed the network.
ACMVL [18] uses multiple auto-encoders to learn the specific features of each
view and map all specific features to the same potential space. But it requires
a supervised network to help the auto-encoder optimize its parameters. Com-
pared with it, our model is totally unsupervised to solve the multi-view network
embedding problem.

6 Conclusion

In this paper, we explore how to model the heterogeneity of edges by solving
a multi-view network embedding problem and propose a novel RGAE model.
More specifically, our model makes use of two types of graph auto-encoders to
extract consistent and unique information of views respectively, and innovatively
proposes two loss functions to distinguish these two types of information. Exper-
imental results not only indicate the superiority of the proposed model but also
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investigate the contributions of two loss functions. In the future, we plan to apply
the framework to more applications. A meaningful direction is to use multi-view
learning to represent general heterogeneous networks, that is, the nodes and
edges of the network have multiple types at the same time.
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Abstract. Triangle listing is an important topic significant in many
practical applications. Efficient algorithms exist for the task of triangle
listing. Recent algorithms leverage an orientation framework, which can
be thought of as mapping an undirected graph to a directed acylic graph,
namely oriented graph, with respect to any global vertex order. In this
paper, we propose an adaptive orientation technique that satisfies the
orientation technique but refines it by traversing carefully based on the
out-degree of the vertices in the oriented graph during the computation of
triangles. Based on this adaptive orientation technique, we design a new
algorithm, namely AOT, to enhance the edge-iterator listing paradigm.
We also make improvements to the performance of AOT by exploiting
the local order within the adjacent list of the vertices.

We show that AOT is the first work which can achieve best perfor-
mance in terms of both practical performance and theoretical time com-
plexity. Our comprehensive experiments over 16 real-life large graphs
show a superior performance of our AOT algorithm when compared
against the state-of-the-art, especially for massive graphs with billions
of edges. Theoretically, we show that our proposed algorithm has a
time complexity of Θ(

∑
〈u,v〉∈E min{deg+(u), deg+(v)})), where E and

deg+(x) denote the set of directed edges in an oriented graph and the
out-degree of vertex x respectively. As to our best knowledge, this is the
best time complexity among in-memory triangle listing algorithms.

Keywords: Triangle · Enumeration · Graph algorithm

1 Introduction

Triangle-listing is one of the most fundamental problems in graphs, with numer-
ous applications including structural clustering [25], web spamming discovery [4],
community search [5,18], higher-order graph clustering [26], and role discov-
ery [6]. A large number of algorithms have been proposed to efficiently enu-
merate all triangles in a given graph. These include in-memory algorithms
[15,19,20,27], I/O efficient algorithms [7,8,11,12], and parallel/distributed algo-
rithms [10,16,21], etc. In this paper, we focus on in-memory triangle-listing
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algorithms and aim to achieve the best performance from both theoretical and
practical aspects.

State-of-the-Art. The existing state-of-the-art in-memory triangle-listing algo-
rithms are based on vertex ordering and orientation techniques [9,15]. Given an
undirected simple graph, these algorithms first compute a total-order η for all its
graph vertices; one example of such ordering is the non-increasing degree order.
With the total-order η, a direction can then be specified for each undirected
edge (u, v) such that η(u) < η(v). Once complete, the graph orientation tech-
nique converts the initial undirected graph G into a directed acyclic graph G.
With an oriented graph, the original problem of triangle-listing on an undirected
simple graph G is recast to a problem of finding three vertices u, v, w so that
directed edges 〈u, v〉, 〈v, w〉, 〈u,w〉 exist in G. For directed triangle instances,
we refer to the role of vertex u with 2 out-going edges that form a triangle as a
pivot.

Motivation. We give an example for finding triangles in an oriented-graph
[9]. For each pivot vertex u, the method first initializes an index to the out-
neighbors of u; after that, for each out-neighbor v of u, it traverses the out-
neighbor w of v and checks to see whether w is also an out-neighbor of v in the
index. The advantage of this technique is twofold: First, by simply processing all
pivot vertices using the above procedure, it already guarantees that each triangle
is generated only once without performing the normal pruning for duplicate
triangle solutions. Secondly, parallelization of the algorithm is easy if we process
sets of pivot vertices independently. This algorithm has the time complexity of
Θ(Σv∈V deg+(v) · deg−(v)) and is bounded by O(m1.5) [9], where V is the set
of vertices in G; deg+(v) and deg−(v) are the numbers of out-neighbors and
in-neighbors of v in G respectively; and m is the number of edges in G.

A dominant cost of the above algorithm is that of look-up operations, where
the algorithm searches the out-neighbors of each pivot. A natural question is
raised: Is it possible to significantly reduce the number of look-up operations
needed by the algorithm? To answer this question, we first find the time com-
plexity of the former algorithm is equivalent to that of Θ(Σ〈u,v〉∈Edeg+(v)),
where E is the set of directed edges in G. In other words, for each directed
edge 〈u, v〉 ∈ E, the algorithm will always spend deg+(v) amount of look-up
operations irrespective of whether deg+(v) ≤ deg+(u) holds. We find that if we
are able to spend deg+(u) operations in the case that deg+(v) > deg+(u) for
the edge 〈u, v〉 ∈ E, the cost of the algorithm can be further lessened, there-
fore it motivates us to explore new ways to further leverage the properties from
graph orientation at a finer level, to improve the algorithm both theoretically
and practically.

Challenges. Faced with the above problem, we ask intuitively: Can we tackle
the asymmetry by manually reversing the direction of each edge 〈u, v〉 ∈ E if
deg+(v) > deg+(u) and then reuse the same algorithm on the now modified
oriented graph? Unfortunately, this solution is infeasible. To explain, reversing
the direction of the selected edges can result in cycles (〈u, v〉, 〈v, w〉, and 〈w, u〉) in
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Table 1. The Summary of notations

Notation Definition

G = (V, E) An undirected graph with vertices V and edges E

G A directed graph with vertices V and directed edge E

u, v, w, x, y Vertices in the graph

(u, v) An undirected edge between vertices u and v

〈u, v〉 A directed edge from vertex u to v

(u, v, w) A triangle with vertices u, v and w

deg(u) The degree of the vertex u

deg+(u) The out-degree of u in oriented graph

the oriented graph G, such cyclic triangles will be missed by the aforementioned
algorithm. To ensure algorithmic correctness, for each undirected edge (u, v),
up to two orientations need to be kept simultaneously: the original orientation
in G and the orientation specified by the comparison of deg+(u) and deg+(v)
because the two orientations can be inconsistent. Therefore, to make our idea
practically applicable, the following issues will be addressed in this paper: (1)
How can we integrate the two orientations to improve the algorithm complexity
and also ensure that each triangle is enumerated once and only once? and (2)
Can we further improve the efficiency of the algorithm practically by exploring
some local vertex orders?

Contributions. In this paper, we answer the above questions and make the
following contributions.

(1) We have designed a new triangle listing algorithm named Adaptive Oriented
Triangle-Listing (AOT) by developing novel adaptive orientation and local
ordering techniques, which can achieve the best time complexity among the
existing algorithms in the literature.

(2) We conduct an extensive performance study using 16 real-world large graphs
at billion scale, to demonstrate the high efficiency of our proposed solutions.
The experimental results show that our AOT algorithm is faster than the
state-of-the-art solutions by up to an order of magnitude. It is also shown
that AOT can be easily extended to parallel setting, significantly outper-
forming the state-of-the-art parallel solutions.

Organization. The rest of the paper is organized as follows. Section 2 provides
a problem definition and states the notations used and introduce two state-of-
the-art methods. Section 3 explains some motivation and explains our proposed
algorithm. Section 4 describes the experimental studies conducted and reports on
findings from the results. Section 5 presents the related work. Section 6 concludes
the paper.
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2 Background

In this section, we formally introduce the problem and the state-of-the-art tech-
niques. Table 1 is a summary of the mathematical notations used in this paper.

2.1 Notations and Problem Definition

Let G = (V,E) be an undirected simple graph, where V and E are a set of
vertices and a set of edges, respectively. Below, we also use V(G) and E(G) to
denote V and E of a graph G. The number of vertices and the number of edges is
denoted as n and m for n = |V | and m = |E|, respectively. For undirected graph
G, we denote the set of neighbors of vertex u in G as N(u) and denote the degree
of u in G as deg(u) which is equal to |N(u)|. For a directed graph G = (V,E),
we use E to denote the set of directed edges {〈u, v〉} where u and v are the
starting and ending vertex respectively. We denote the set of outgoing-neighbors
of vertex u in G as N+(u), and the out-degree as deg+(u) = |N+(u)|. Likewise,
we denote the in-neighborhood of vertex u in G as N−(u), and the in-degree
as deg−(u) = |N−(u)|. By (u, v), we denote an undirected edge between two
vertices u and v. A triangle is a set of three vertices fully connected to each
other. We denote by (u, v, w) a triangle consisting of three vertices u, v and w.

Problem Statement. Given an undirected simple graph G = (V,E), we aim
to develop an efficient main-memory algorithm to list all triangles in the graph
G one by one, with both good time complexity and practical performance.

2.2 Compact Forward (CF) Algorithm

We consider the method Compact-forward (CF) [15] as a state-of-the-art for tri-
angle listing; although it was designed in 2008, its efficiency for triangle listing
is still referred to frequently [9]. There are two key components in the CF algo-
rithm: the “edge-iterator” computing paradigm and the orientation technique.

Edge-Iterator. The “edge-iterator” is a recurring computing paradigm for tri-
angle listing, its strategy for triangle listing is to find triangles with reference
to pairs of adjacent vertices. Given an edge (u, v), any triangle that includes
the edge must contain a third vertex w that has connections to both of u and
v. Thus, we can obtain any triangles containing edge (u, v) based on the inter-
section of N(u) and N(v). For each edge, the edge-iterator returns the set of
triangles associated with that edge, and when repeated on all edges, the set of
all triangle solutions is made available.

Orientation Technique. An orientation technique is recently leveraged in tri-
angle listing algorithms, this involves the generation of a directed (i.e., oriented)
graph G from an initially undirected input graph G [15]. Each undirected edge
is mapped to a directed edge where the direction (i.e., orientation) is decided
by the rank of its endpoints in a vertex-ordering (e.g., out-degree [15]). We refer
to vertex u as a pivot vertex if u has two out-going edges. We can association a
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triangle in the undirected graph with only one pivot vertex to ensure one and
only one instance of this triangle in the output, which significantly improves the
performance.

Algorithm 1: CF(G)
Input : G : an undirected graph
Output : All triangles in G
G ← Orientation graph of G based on degree-order;1

for each vertex u ∈ G do2

for each out-going neighbor v do3

T ← N+(u) ∩ N+(v) ;4

for each vertex w ∈ T do5

Output the triangle (u, v, w);6

Compact Forward (CF) Algorithm. The CF algorithm is designed based
on the edge-iterator and the orientation technique. We show its pseudocode in
Algorithm 1. In line 1, undirected graph G is transformed into a directed graph
G via the orientation technique. (Line 2 onward follows the edge-iterator frame-
work.) In Line 3, triangles are enumerated by iterating through the outgoing-
neighborhoods rather than the full neighborhood. In Line 4, a merge-based inter-
section identifies the common out-going neighbors of u and v, denoted by T . A
set of triangles (u, v, w) is then output for every vertex w ∈ T .

Algorithm 2: kClist(G)
Input : G : an undirected graph
Output : All triangles in G
G ← Orientation graph of G based on degeneracy order η ;1

for each vertex u ∈ G do2

for any two out-going neighbors {v, w} of u with η(v) < η(w) do3

if there is a directed edge 〈v, w〉 ∈ E then4

Output triangle (u, v, w);5

Analysis. Since all triangles identified are unique, a naive traversal of the ori-
ented graphs edges (the outgoing-neighborhoods for each vertex) yields the com-
plete set of unique solutions without explicit duplicate pruning. In terms of time
complexity, the merge-based intersection operation at Line 4 takes Θ(deg+(u)+
deg+(v)), assuming that the directed adjacency lists of u and v are sorted. In
total, the CF algorithm has a complexity of Θ(

∑
〈u,v〉∈E deg+(u) + deg+(v)).

Remark 1. There is also an alternative implementation of the CF algorithm that
adopts hash tables for the intersection operation, namely CF-Hash. Suppose a
hash table has been built for each vertex based on the out-going neighbors in
the oriented graph. At Line 4 of Algorithm 1, we may choose the vertex with
larger number of neighbors as the hash table for intersection operation with
Θ(min{deg+(u), deg+(v)}) look-up cost. This can come up with a better time
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complexity of Θ(
∑

〈u,v〉∈E min{deg+(u), deg+(v)})). However, as reported in [15,
21] and our experiments, the practical performance of hash-based CF algorithm
is not competitive compared to the above merge-based CF algorithm. Thus, the
merge-based CF algorithm is used as the representative of CF algorithm in the
literature.

2.3 K-Clique Listing Algorithm (kClist)

We introduce the second state-of-the-art algorithm for in-memory triangle list-
ing. The kClist algorithm [9] lists cliques for a queried size k, we restrict our
discussion to the relevant use-case when k = 3 for listing triangles. kClist fol-
lows the node-iterator triangle listing paradigm which is described below.

Node-Iterator. The “node-iterator” triangle listing paradigm lists triangles by
inspecting for adjacency between vertex pairs within one vertex neighborhood.
For example, consider the neighboring vertices of node u, if there is an edge
between two neighbors v2 and v3, then the triangle solution (u, v2, v3) is output.

k-Clique Listing (kClist) Algorithm. The kClist algorithm begins by gen-
erating an oriented graph G based on the degeneracy ordering [2]. We use η to
denote the degeneracy ordering here. In lines 3–5 of Algorithm 2, for every two
out-going neighbor v and w where η(v) < η(w), the existence of a directed edge
〈v, w〉 is assessed; for each edge found, a triangle solution is output.

Analysis. The running time of kClist is Θ(m +
∑

u∈V deg+(u) × deg−(u)), this
can also be expressed as Θ(

∑
〈u,v〉∈E deg+(v)). It is apparent that the time

complexity of kClist is an improvement compared to the CF algorithm which
takes Θ(

∑
〈u,v〉∈E (deg+(u) + deg+(v))) time, its practical performance is also

shown to be efficient.

3 Our Approach

We introduce our adaptive orientation technique and implement it in our algo-
rithm, AOT, to push the efficiency boundary for main-memory triangle listing
algorithms.

3.1 Motivation and Problem Analysis

Since the proposal of the orientation technique, its nice properties and good
practical performance have allowed it to gradually become a valuable technique
utilized in subsequent studies of triangle listing.

Shortcoming of Orientation Technique. We recognize the prevalent usage
of this orientation technique, however, we respond by showing that although
current methods leverage the salient benefits of orientation, there are still finer
benefits that are overlooked. We argue that there are still ways to further leverage
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Fig. 1. Limit of orientation technique

properties that can improve the existing performances of triangle-listing. Our
goal is therefore to maximize the benefits of the orientation technique.

In the following discussion of oriented edges, relative to a vertex u, we refer
to edges 〈u, v〉 as positive edges if the out-degree relation of its adjacent vertex
v has an out-degree value that is greater or equal to that of the pivot vertex
(deg+(u) ≤ deg+(v)); we also refer to edges 〈u, v〉 as negative edges if the pivot
vertex has the greater out-degree value (deg+(u) > deg+(v)).

We refer to the time complexity of the kClist algorithm and see that it is
Θ(

∑
〈u,v〉∈E deg+(v)) when listing triangles. However, this is not optimal for

triangle listing. In Fig. 1, consider the point in the triangle listing computation
where triangles of edge 〈u, v〉 are processed. With respect to pivot vertex u,
deg+(v) is larger than that of deg+(u) since 4 > 3. The aforementioned com-
plexity is not favorable for processing this ordinary edge. Its issue is because its
cost is strictly that of deg+(v) (i.e., 4). Our observation is that, if we can reverse
the direction of the edge 〈u, v〉 to follow the out-degree vertex-order, we can
process 〈u, v〉 more favorably with deg+(u) (i.e., 3) and come up with a better
time complexity.

Solutions are Non-trivial. Obviously, the optimal instance for a running time
of Θ(

∑
〈u,v〉∈E deg+(v)) is an oriented graph G where all edges are positive.

However, most graphs do not exhibit that property: in most cases, not all graphs
edges {〈u, v〉} are necessarily positive at the same. Recall Fig. 1: while edges such
as 〈u, x〉 and 〈u,w〉 are positive, negative edges such as 〈u, v〉 are also possible.

We remedy the existence of negative edges by making a series of modifications
to the computed orientation of negative edges after it is oriented. One naive way
of achieving this is to manually change the direction of the oriented edge. For
example, there is a negative edge 〈u, v〉 in Fig. 1, we see that it can become a
positive edge if its direction is simply changed to 〈v, u〉. This methodology is
limited because it ultimately undermines the total order used in the orientation,
moreover, changing 〈u, v〉 creates a cycle subgraph (u, x, v, u); this is a critical
complication since triangle (u, x, v) would surely be omitted and missing from
the result set of existing methods.

Ultimately, the out-degree of a vertex is a result of the orientation of its
incident edges, and therefore depends directly on the total ordering used for
the orientation techniques, it is difficult to significantly reduce the number of
negative edges by manually changing its orientation.



AOT: Pushing the Efficiency Boundary of Main-Memory Triangle Listing 523

The Main Idea. As an alternative, we instead suggest modifying the computing
order of u and v on the fly when encountering negative edges instances {〈u, v〉}.
We notice that the CF algorithm cannot take advantage of this because its com-
plexity of Θ(deg+(u) + deg+(v)) for every edge 〈u, v〉 suggests that the design
of CF is insensitive to the direction of the edge. We also notice that the kClist
algorithm cannot do this either, because the accessing order of the vertices has
to strictly follow the degeneracy order on the oriented graph to ensure the cor-
rectness of the algorithm. We have showed that two state-of-the-art techniques
cannot trivially take advantage of this observation. In contrast, our algorithm
does not depend on any total order, any total order will be acceptable.

Following the above analysis, we are motivated to develop a technique that
tightens the boundary for efficient triangle listing, by taking advantage of the
resulting out-going degree order of each incoming edge, and adaptively listing
triangle based on its property. Our key idea involves selecting the optimal pivot
vertices for each triangle accordingly, such that each triangle is found only from
the vertex with a smaller out-going degree. This way we achieve the time com-
plexity Θ(min{deg+(u), deg+(v))) for every edge 〈u, v〉 ∈ E, which is now opti-
mal for a given oriented graph following the edge-iterator paradigm.

When finding the intersection between the out-going neighbors of adjacent
vertices u and v (i.e. N+(u)∩N+(v) for an oriented edge 〈u, v〉), there is a larger
and a smaller out-degree vertex, we use the hash-join approach as the appropriate
method to perform the set-intersection. Note that one hash-table here contain
the out-going neighbors for one single vertex. Following the hash-join approach,
we choose to look-up the out-going neighbors of the vertex with the lesser out-
degree in the hash structure of the vertex with the greater out-degree. However,
with one endpoint fixed, within its adjacent neighborhood, the endpoint with the
lesser out-degree vertex varies, to accomplish the former statement efficiently is
hard because it is not known in advance which endpoint has the smaller out-
degree vertex. The known solution requires both hash tables for either endpoints
be available when the edge is visited. There are two methods for constructing
the two indexes in advance: (1) Building hash tables of all graph vertices prior
to listing. Where this is a naive solution, it is computationally infeasible due to
its high storage demand and a high look-up cost. (2) For each vertex u, building
a hash table for all for its out-going neighbors on the fly. This is also infeasible
because one vertex is likely to need to rebuild its hash table multiple times
throughout the listing stage.

Categorizing Triangles. To facilitate understanding of technique, we discuss
two categorizes for each triangle in an oriented graph G: positive triangle or
negative triangle. The category of each triangle depends on its pivot edge: given
an oriented triangle, were refer to it as positive if its pivot edge 〈x, y〉 is positive
i.e. η(x) < η(y) and deg+(x) ≥ deg+(y); otherwise, it is negative if η(x) < η(y)
and deg+(x) < deg+(y), where η is the vertex ordering used in the orientation.

An example instance of positive and negative triangles is shown in Figs. 2(a)-
(b). We consider the two triangles from a sample graph with a common vertex
u, we note that without additional structural information from the graph, the
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Fig. 2. Motivation for adaptive orientation

induced subgraphs u, v, w and x, u, y are isomorphic. However, with attention
to pivot edges 〈u, v〉 and 〈x, u〉, we observe that the two triangles are different
in terms of the out-going degree order (the dotted line points to the vertex with
the higher out-degree), and there for their orientation is different.

We propose seperate computations for the two types of triangles due to their
subtle differences, by selecting different respective piviot veritices. The selection
of the pivot vertex affects the amount of computation to list the triangle. If it
is a positive triangle, we remain consistent with the orientation technique and
use the vertex with two out-going edges as the pivot vertex (e.g. the vertex u in
Fig. 2(a)). However, if it is a negative triangle, we select a different vertex as the
pivot vertex (e.g. u in Fig. 2(b)).

A direct benefit from the above selection is that, every vertex u ∈ G is
now the pivot vertex for both positive and negative triangles solutions, where
the previous technique rigidly processes all triangles as positive triangles. In the
traditional orientation technique, both triangles would be processed equally and
listed by vertices u and x respectively, this was because the pivot vertex of each
triangle is strictly the vertex with two out-going edges and does not account for
our positive or negative triangle definitions. A desirable property of our adaptive
orientation technique is that this way each vertex u only needs to build a hash
table once for its out-going neighbors.

To conclude: For positive triangles with pivot vertex u, for each out-going
neighbor v of u (e.g. v in Fig. 2(a)), we will look-up if each out-going neighbors w
of v (e.g. w in Fig. 2(a)) is also in the hash table, to see if w is also an out-going
neighbor of u. For the negative triangles with pivot vertex u, for each in-coming
neighbor x of u (e.g. x in Fig. 2(b)), we will look-up if each out-going neighbor y
of x (e.g. y in Fig. 2(b)) is also in the hash table, to see if y is also an out-going
neighbor of u.

As we later show in the theoretical analysis in Sect. 3.2, our proposed
adaptive orientation technique achieves the time complexity of Θ(

∑
〈u,v〉∈E

min{deg+(u), deg+(v)})) because, in terms of the hash-based intersection, the
look-up operations will always be performed on the vertex with larger out-degree
values for each oriented edge.
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3.2 The Algorithm

We introduce the algorithm with our proposed adaptive orientation technique.
With reference to the pseudo-code in Algorithm 3, In line 1, the orientated graph
G is generated following the degree vertex order. In lines 2–13, a vertex u acts
as pivot vertex and lists its associated positive and negative triangles. For each
pivot vertex u, Line 3 generates a bitmap hash table H based on its adjacency
neighborhood.

For pivot vertex u, all positive triangles are enumerated in Lines 4–8. That
is, for each out-going neighbor v of u with deg+(v) < deg+(u) (i.e. positive pivot
edge), we find its out-going neighbors which are also out-going neighbors of u
by looking up the hash table H as illustrated in Fig. 2(a).

Similarly, all negative triangles for pivot vertex u are enumerated in Lines
9–13. For each in-coming neighbor x of u with deg+(x) < deg+(u) (i.e. negative
pivot edge), we find its out-going neighbors which are also out-going neighbors
of u by looking up the hash table H as illustrated in Fig. 2(b).

Algorithm 3: Our Algorithm – AOT (G)
Input : G : an undirected graph
Output : All triangles in G
G ← orientation graph of G based on degree-order;1

for u ∈ V (G) do2

Set-up the hash table H with IDs of the out-going neighbors of u (N+(u)) ;3

for every out-going neighbor v of u do4

if deg+(v) < deg+(u) then5

for every out-going neighbor w of v do6

if Find w in H then7

output triangle (u, v, w);8

for every in-coming neighbor x of u do9

if deg+(x) < deg+(u) then10

for every out-going neighbor y of x do11

if Find y in H then12

output triangle (u, x, y);13

Correctness. To explain the correctness of our algorithm, we recall that each
oriented triangle in G belongs to either a positive type triangle or a negative
type triangle, we note that this is true for any vertex total-order.

Given an oriented triangle (u, v, w): such that u is the pivot vertex, and 〈u, v〉
is its pivot edge as illustrated in Fig. 1. If deg+(v) < deg+(u), then (u, v, w) is a
positive triangle with pivot vertex u; given w is the common out-going neighbor
of u and v, a triangle will be output at Line 8 of Algorithm 3. Otherwise, if the
triangle is not positive i.e., if deg+(u) < deg+(v)1, (u, v, w) is a negative triangle
with pivot vertex v, this oriented triangle will be output at Line 13 of Algorithm 3
when v is the pivot vertex, because w is the common out-going neighbor of u

1 Recall that ties are broken by vertex ID.
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and v. Evidently, this oriented triangle (u, v, w) will not be output under any
other scenario when following the oriented triangle technique. Consequently, this
showed that (u, v, w) will be output once and only once, the correctness of the
Algorithm 3 follows.

Time Complexity. We use a bitmap with size |V | to implement the hash table
H, where H[v.ID] = 1 if the vertex v is the out-going neighbor of the pivot
vertex. For each pivot vertex u visited, we can use Θ(deg+(u)) time to initiate
or clean the hash table H. Thus, the maintenance of H takes Θ(2m) time.

Recall that for a pivot edge 〈u, v〉, the set of triangles it outputs can be
a mix of either positive or negative triangles. For every pivot edge 〈u, v〉, the
time complexity for its positive triangles is Θ(deg+(v)) with deg+(v) < deg+(u)
since the time complexity of Line 8 is Θ(1). Similarly, the time complexity for
its negative triangles is Θ(deg+(u)) with deg+(u) < deg+(v) since the time
complexity of Line 13 is Θ(1). It follows that the total time complexity of our
Algorithm 3 is Θ(

∑
〈u,v〉∈E min{deg+(u), deg+(v)})).

Example 1. In Fig. 3, the oriented graph has 14 vertices and 21 edges. Out
of the 21 edges, 9 for which have a deg+(v) value of greater than 0. For
∑

〈u,v〉∈E deg+(v)): Edges 〈v1, v3〉, 〈v5, v7〉 and 〈v9, v11〉 each incur a cost of
3. Edges 〈v2, v4〉, 〈v6, v8〉, 〈v10, v12〉 each incur a cost of 2. Edges 〈v3, v4〉,
〈v7, v8〉 and 〈v11, v12〉 each also incur a cost of 2. The remaining edges incur
no cost. In total,

∑
〈u,v〉∈E deg+(v)) = 3 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 2 = 21.

For
∑

〈u,v〉∈E min{deg+(u), deg+(v)}): Edges 〈v1, v3〉, 〈v5, v7〉 and 〈v9, v11〉 each

incur a cost of 1. Edges 〈v2, v4〉, 〈v6, v8〉, 〈v10, v12〉 each also incur a cost of 1.
Edges 〈v3, v4〉, 〈v7, v8〉 and 〈v11, v12〉 each incur a cost of 2. The remaining edges
incur no cost. In total,

∑
〈u,v〉∈E min{deg+(u), deg+(v)}) = 1 + 1 + 1 + 1 + 1 +

1 + 2 + 2 + 2 = 12.
The former is a calculation of the computation required by the state-of-the-

art, the latter is the computations required by our algorithm. In comparison,
Example 1 illustrates that our algorithm incurs significantly fewer computation
to list triangles. Where the costs for some edges is the same between two algo-
rithms, our algorithm uses less computation for edges 〈v1, v3〉, 〈v5, v7〉, 〈v9, v11〉,
〈v2, v4〉, 〈v6, v8〉 and 〈v10, v12〉.

Remark 2. Note that the bitmap hash table cannot be deployed by CF-Hash
technique. Clearly, on large graphs we cannot afford to construct |V | bitmap
hash tables each of which has size |V |. On the other hand, it is time consuming to
build H on the fly because, unlike we build the hash table H only once2 for each
vertex in AOT algorithm, H might be built multiple times for a vertex because
it’s hash table will be chosen (i.e., build on the fly) by CF-Hash algorithm once
its hash table size is smaller than that of pivot vertex.

2 When it is chosen as the pivot vertex.
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Fig. 3. Example graph

Space Complexity
We only need to keep the graph G, the oriented graph G and the global hash table
H, as a result, Algorithm 3 is space efficient, with space complexity O(m + n)
where m is the number of edges and n is the number of vertices in G.

Exploiting Local Order. In addition to the global vertex order, we also con-
sider a local vertex ordering used to store vertices within the scope for each
vertex neighborhood list (i.e. local order). In Algorithm 3, the dominant cost
is the hash table look-ups happen at Lines 7 and 12. There is a good chance
that a vertex w will be repeatedly checked because of the overlap of the neigh-
borhood. Ideally, the ID of w should be kept in the CPU cache such that the
following look-up of w can be processed efficiently. We may design sophisticate
local ordering strategy with some assumptions on the workload such that the
neighbors of a (pivot) vertex is well organized by their neighborhood similarity.
However, we cannot afford such cost for the preprocessing. In this paper, we
order the vertices in the adjacent list of a vertex by the decreasing order of their
degree; that is, we visit the vertices at Lines 4 and 9 in Algorithm 3 following
the degree order. This is because we believe the vertex with a high degree is
more likely to have common neighbors with other vertices. For each vertex, we
can keep its neighbors with this local order in the adjacent list. Our empirical
study confirms the efficiency of this local order strategy.

4 Experimental Study

Algorithms. To show the efficiency of our proposed technique, we compare
our proposed algorithm with the following state-of-the-art methods. In total, we
make comparisons between the four algorithms listed below.

– CF [15,21]. The CF algorithm, presented in Sect. 2.2.
– CF-Hash [15,21]. A variant of CF, where the intersection of two adjacency

lists are implemented by hashing.
– kClist [9]. The kClist algorithm for triangle listing, presented in Sect. 2.3.
– AOT. Our proposed algorithm with adaptive orientation and local ordering,

presented in Sect. 3.2.
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Table 2. Statistics of 16 datasets.

Graph #nodes
(M)

#edges (M) Avg.
degree

Max. degree #Triangles (M)

web-baidu-baike 2.14 17.01 8 97,848 25.21

uk-2014-tpd 1.77 15.28 9 63,731 259.04

actor 0.38 15.04 39 3,956 346.81

flicker 1.62 15.48 10 27,236 548.65

uk-2014-host 4.77 40.21 8 726,244 2,509.74

sx-stackoverflow 6.02 28.18 5 44,065 114.21

ljournal-2008 5.36 49.51 9 19,432 411.16

soc-orkut 3.00 106.35 35 27,466 524.64

hollywood-2011 2.18 114.49 53 13,107 7,073.95

indochina-2004 7.41 150.98 20 256,425 60,115.56

soc-sinaweibo 58.66 261.32 4 278,489 212.98

wikipedia link en 12.15 288.26 24 962,969 11,686.21

arabic-2005 22.74 553.90 24 3,247 36,895.36

uk-2005 39.46 783.03 20 5,213 21,779.37

it-2004 41.29 1,027.47 25 9,964 48,374.55

twitter-2010 41.65 1,202.51 29 2,997,487 34,824.92

The source-code for the assessment of CF , kClist, and CF -Hash are
acquired from their respective authors. We note that for CF and CF -Hash,
we use the implementation from [21] named TC-Merge and TC-Hash respec-
tively, due to their more efficient implementations.

Datasets. The datasets used in the experiments are listed in Table 2. We used
16 large real-world graphs with up to a billion edges. Networks are treated as
undirected simple graphs, and are processed appropriately.

Settings. The tests are run on a 64 bit Linux machine with a Intel(R) Xeon(R)
CPU E5-2650 v3 @ 2.30 GHz processor, the L1, L2 and L3 cache of 32K, 256K,
and 25600K respectively, with 591 GB of available RAM.

4.1 Results Against the State-of-the-Art

Figure 4 reports the relative running times of the algorithms tested. The mea-
sured time captures the elapsed time between the point when the graph is loaded
until the point of successful program termination. For the state-of-the-art meth-
ods, the kClist algorithm requires fewer running time than the CF algorithm. For
datasets containing up to 100 million edges, kClist is observed to significantly
outperform CF; this gap in running time is less significant for graphs where the
edge count is greater than 100 million. There are also instances where CF is
more efficient than kClist, as observed in the social-network soc-sinaweibo.
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Fig. 4. Performance analysis

In comparison, our algorithm AOT consistently outperforms the
two state-of-the-art, which supports the tightened running bound of∑

{u,w}∈E min(deg+(u), deg+(v)) from its theoretical analysis. We notice that
on a large graph twitter-2010 that has 41.65 million vertices, 1.2 billion edges
and contains 35 billion triangles, the observed running times of kClist and CF
are 2, 381 s and 4, 230 s respectively. In contrast, our algorithm listed all triangles
in twitter-2010 in 433 s and achieved a speedup of 10-times. It is noticed that
hash-based CF (CF-Hash) is consistently outperformed by AOT with big mar-
gins, though two algorithms have the same asymptotic behavior. This is because
the high efficiency of look-up operation of the bitmap hash table as well as the
local ordering technique in AOT algorithm. Recall that, without the adaptive
orientation technique proposed in this paper, hash-based CF cannot take this
advantage. This reflects the non-trivial nature of our adaptive orientation tech-
nique.
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Fig. 5. Incremental improvements
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4.2 More on AOT

To show the efficiency of our algorithm, we evaluate the benefits for having adap-
tive orientation and local ordering in our technique. For this setting, a baseline
method is one that has neither adaptive orientation or local ordering. We con-
sider CF algorithm as a proper baseline since it uses the existing orientation
technique, but uses neither of the aforementioned techniques. In addition to con-
sidering the AOT algorithm with both adaptive orientation and local ordering.
We also require an algorithm that uses adaptive orientation without utilizing a
local ordering technique, for this, we consider our AOT algorithm with a random
local ordering, denoted later as AOT -randomOrder.

As we can see in Fig. 5, the processing time decreases after introducing adap-
tive orientation and the local ordering strategy. In comparison to the baseline
processing time, the adaptive orientation contributes a greater drop in process-
ing time compared to that from the later adoption of the local-order strategy
Where the difference between AOT -randomOrder and CF is greater than that
between AOT and AOT -randomOrder. This highlights that our adaptive ori-
entation technique performs better than the orientation technique in its current
state. Furthermore, the results also show that using a local order reduces the
running time needed on most graphs; this can be explained by an improvement
in the algorithms cache performance.

4.3 Parallel Experiments

Our algorithm AOT can be easily made parallel. This is achieved by processing
vertices in parallel. As a result, we analyze the parallelism of our algorithm
and compare it against the state-of-the-art methods. TC-Merge (i.e., parallel
implementation of CF proposed in [15]), TC-Hash and kClist all provided
parallel implementations of their algorithms. For this parallel experiment, we
consider the two largest datasets It-2004 and Twitter-2010.
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Fig. 6. Evaluating parallel performance
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As seen in Fig. 6, increasing the number of threads decreases the amount of
processing time needed to list all triangles, this is expected and true for all four
algorithms tested. In the case of kClist, the drop is less pronounced for both
networks after 4 threads. In the case of TC-Merge and TC-Hash, the drop in
processing time is not visible when handling It-2004 past 8 threads. In contrast,
this decrease is visible for our method AOT across both datasets. All in all, AOT
is consistently the fastest method in this parallel experiments.

5 Related Work

Triangle Listing. In-memory algorithms for listing triangles have been exten-
sively studied in the literature. The edge-iterator [1] and node-iterator [13] are
two popular triangle listing computing paradigms, which share the same asymp-
totic behavior [20]. A lot of subsequent algorithms are mostly improvements
based on the original two paradigms. While Ortmann was the first to formalize
a generalized framework based on undirected graph orientation, past literature
Forward and Compact Forward(CF) had previously considered triangle-listing
on induced directed graphs with respect to a vertex ordering [20]. In literature,
the orientation technique is observed beyond triangle-listing; it is also applied
for higher-order structure enumeration [9]. In more recent years, the topics of
interest have shifted to parallel/distributed processing (e.g., [16,21]), efficient
I/O external memory methods (e.g., [7,12], and the asymptotic cost analysis of
triangle listing in random graphs [24].

Triangle Counting. The triangle counting is a related problem to the trian-
gle listing problem, solving the listing problem solves the counting problem.
The triangle counting problem is the task to find the total number of triangles
in a graph G. Compared to listing algorithms, counting algorithms find ways
to compute the number without relying on the exploration of triangle instances.
Many algorithms have been designed to count triangles (e.g., [3,14,17]). Approx-
imate methods are useful for settings that handle large-scale graphs, or settings
where a given approximation is as useful as knowing the exact triangle count
(e.g., [22,23]).

6 Conclusion

The triangle listing is a fundamental problem in graph analysis with a wide
range of applications. This problem has been extensively studied in the litera-
ture. Although many efficient main memory algorithms based on the efficient
orientation technique have been proposed, in this paper, we pushed the effi-
ciency boundary of the triangle listing and developed a new algorithm with
best theoretical time complexity and practical performance. On the theoret-
ical side, we showed that our proposed algorithm has the time complexity
Θ(

∑
〈u,v〉∈E min{deg+(u), deg+(v)})) where E is the directed edges in the ori-

ented graph, which is the best known theoretical time complexity for the prob-
lem of in-memory triangle listing so far. On the practical side, our comprehensive
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experiments over 16 real-life large graphs show the superior performance of our
AOT algorithm compared with two state-of-the-art techniques, especially on
large-scale graphs with billions of edges.
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Abstract. As a classic metric, closeness centrality can measure the
importance of a node in a graph by its proximity to the other nodes. How-
ever, exactly calculating closeness centrality of all nodes is significantly
time-consuming. Besides, graphs usually evolve with inserted and/or
deleted edges, which exacerbates the performance issue if we recompute
results from scratch. The paper proposes a preliminary algorithm for cal-
culating exact closeness centrality by using biconnected components and
articulation points. Firstly, a large graph is divided into a series of bicon-
nected components which are connected by articulation points. Then dis-
tance between arbitrary nodes on the whole graph can be converted into
multiple distances between different biconnected components. We fur-
ther propose an incremental update technique to dynamically maintain
the computation results when graphs are changing, like inserting and/or
deleting edges, by efficiently detecting all the affected shortest paths to
update the closeness centrality based on articulation points. We finally
conduct extensive experiments over real graphs to validate the efficiency
and effectiveness of our techniques.

Keywords: Dynamic graph · Exact closeness centrality · Articulation
point

1 Introduction

Centrality is used to measure the importance of nodes in a graph, which plays a
very important role in real applications, especially for social networks. There are
many centrality metrics [1], such as degree centrality [2], betweenness centrality
[3,4], closeness centrality [5,6], and eigenvector centrality [7,8]. Among them,
closeness centrality as the focus of this paper, is widely used [9–12].
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On the other hand, real-world graphs change dynamically. For example, in
social networks, if two unrelated people establish relationship, a new edge will be
created. In contrast, an edge will be deleted. Such insertion and deletion can be
performed very frequently. Clearly, if every update triggers a re-computation of
closeness centrality from scratch, the expensive cost is not acceptable. Thus, the
efficient processing for dynamic graphs consists of two stages: executing a pre-
liminary algorithm for the initial static graph in the off-line manner and running
an incremental algorithm on line when an update occurs. Some pioneering works
have explored efficient solutions to closeness evaluation over dynamic graphs and
the representative exact algorithms are CC [13] and CENDY [14]. However, two
key issues have not been sufficiently considered.

Leveraging the Static Algorithm to Facilitate the Incremental Main-
tenance. Both CC and CENDY ignore the optimization of this step. They just
employ the BFS (Breath First Search)-based algorithm for the entire graph to
obtain initial results in the off-line stage, from which the later incremental main-
tenance cannot benefit. In contrast, we make an improvement to propose a static
algorithm which can better support the incremental maintenance. Specifically,
we introduce the biconnected component in the static algorithm and reserve
some necessary intermediate results to avoid redundant computation of the on-
line stage.

Constraining the Incremental Calculation in the Local Regions. CC
uses the divide and conquer strategy based on biconnected components only for
the on-line stage. CC finds the affected nodes within the affected biconnected
component, but the closeness centrality of the affected nodes is still calculated
in the whole graph. For the remaining nodes, the algorithm finds the articula-
tion point corresponding to each node in the remaining ones and update them.
Therefore, the number of affected node sets is also very large. On the other hand,
CENDY finds the affected shortest path in the entire graph, and puts the pair of
vertices corresponding to the affected shortest path in two sets. The algorithm
uses each node in the set with fewer nodes as the source node but the evaluation
needs to be performed on the entire graph to calculate the amount of change.
In this paper, we devise an incremental method which can limit the incremental
calculation to the affected biconnected component and avoid the deficiency of
CC and CENDY.

Based on the above analysis, our main contributions can be concluded as
follows:

1. Preliminary method for the initial graph. Firstly we propose a prelimi-
nary algorithm. We divide a large graph into small biconnected components
by articulation points. The distance between nodes in the large graph can
be converted to the distance between biconnected components. Then we con-
nect the distance by articulation points. The algorithm can reserve some
useful intermediate results for the incremental maintenance and thus avoid
redundant computation.
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2. Incremental method for the dynamic graph. Based on the preliminary algo-
rithm, we propose an incremental algorithm in the dynamic graph which
includes the insertion and deletion of edges. The incremental algorithm is
efficient due to limiting the computation in the local regions and leveraging
the results of the preliminary algorithm.

3. Experiment. Compared with the existing algorithms, ours can yield up to
one order-of-magnitude performance gains on public datasets.

The reminder of this paper is organized as follows. Section 2 investigates the
related works. Section 3 introduces the basic concepts and definitions. Section 4
proposes preliminary off-line algorithm for the initial graphs, and Sect. 5 explores
a novel on-line incremental method to handle high-speed updates. Section 6
reports our experiment results. Our work is finally concluded in Sect. 7.

2 Related Work

Closeness Centrality over Static Graphs. Calculating the exact closeness
centrality of the static graph usually employs BFS. The time consumption of BFS
is very large in a large graph. Therefore, many attempts in different perspectives
are made to improve performance, like approximate variants [15–17], distributed
computations [18,19], and top-k query [20,21].

Closeness Centrality on Dynamic Graphs. Normally, graphs in applica-
tions evolve over time. Specifically, dynamic top-k closeness centrality is explored
in [22]. [13,14,23] aim to evaluate exact closeness centrality of all the nodes in
dynamic graphs. [23] focuses on directed graphs, which is not suitable for the effi-
cient processing of undirected graphs. The other two approaches namely CC [13]
and CENDY [14] stand out for updating closeness centrality in generic evolving
graphs. These two algorithms calculate the change based on the entire graph,
while our algorithm can limit the calculation within subgraphs.

Other Centrality Algorithms. There are some other centrality algorithms.
For example, [2] focuses on betweenness centrality. And [24] aims to deal with
pagerank, which is a variant of eigenvector centrality. Due to different definitions
and application scenarios, the above methods can not be directly used to solve
closeness centrality.

3 Preliminaries

For simplicity, we use the undirected and unweighted graph as an example to
introduce our technique. Our algorithms can be easily extended to the directed
and weighted graphs.
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3.1 Problem Definition

Given a connected graph G(V,E), the closeness centrality value C(v) of node v
in G is the derivative of the sum of the distance duv from any other node u to
it in G as shown in Formula (1). Formally:

C(v) =
1

∑

u∈V,u�=v

duv
(1)

3.2 Related Concepts

In the following, we introduce the related concepts including articulation point,
bridge edge and biconnected component. The algorithm that we use to find the
biconnected components is Tarjan [25].

Definition 1 (articulation point). In the connected graph G(V,E), if we
delete a vertex and its adjacent edges, G is divided into two or more non-
connected subgraphs, then the node is called articulation point.

Definition 2 (bridge edge). In the connected graph G(V,E), if we delete an
edge e(u, v), G is divided into two non-connected subgraphs, then the edge is
called bridge edge.

Definition 3 (biconnected component). If a connected graph has no artic-
ulation points, we call the connected graph as a biconnected component.

Fig. 1. Articulation points and biconnected components

Figure 1 shows an example. If we remove node 1, the original graph becomes
two disconnected subgraphs, so node 1 is an articulation point. In the same way,
nodes 6, 5, 17, 18, 23, 24 are also articulation points. There are no articulation
points in the subgraph formed by nodes 1, 9, 10, and 11, so this subgraph is a
biconnected component. Note that, the subgraph formed by the remainder nodes
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and connected to 1 is not a biconnected component, because it contains articu-
lation points 5, 6, etc. In Fig. 1, different biconnected components are circled by
colored dotted lines, and nodes connecting different biconnected components are
articulation points. We can see that several adjacent biconnected components
may share a common articulation point. The Tarjan algorithm can enumerate
biconnected components of a given undirected graph by performing DFS only
once. Further, edge e(18, 23) is thereby removed, and the entire graph becomes
two disconnected subgraphs. e(18, 23) is called a bridge edge.

4 Preliminary Algorithm for the Initial Graph

In this section we introduce the preliminary algorithm for the initial graphs.
Firstly, we calculate the closeness centrality of articulation points. We then cal-
culate the closeness centrality of the nodes which are located in the biconnected
components where the articulation points reside. Finally, we design the whole
process of the algorithm and calculate the closeness centrality of all nodes.

4.1 The Closeness Centrality of Articulation Point

After we find the biconnected components and articulation points, we will get
a adjacent relations graph which is similar to Fig. 2 (The edges represent the
articulation points and rectangles represent biconnected components). Bicon-
nected components are connected to each other by articulation points. Firstly
we introduce a few symbols. Gbc = {G1, G2, G3, · · · , Gt} represents the bicon-
nected component set of graph G. If u is a node of graph G, suGi

represents
the sum of the distance from node u to other nodes which locate in biconnected
component Gi. Γu = {Gi|u in Gi ∧ Gi ∈ Gbc} represents the set of biconnected
components including node u. A represents the sum of the distances from u to
other nodes which locate in Γu, as shown in Formula (2). B represents the sum
of the distances from node u to all the nodes which do not locate in Γu, as shown
in formula (3).

A =
∑

Gi∈Γu

suGi
(2)

B =
∑

Gi �∈Γu

suGi
(3)

In Formula (2), we can get the result by one BFS from node u in Gi. The
calculation of Formula (3) is a little bit complicated. Under the hypotheses of
Lemma 1, suGi

in Formula (3) can be computed by Formula (4). In Formula (4),
|Gi| represents the number of nodes in Gi, au is the nearest articulation point
from node u in Gi, and duau

represents the length of the shortest path from u
to au. In particular, when u is an articulation point, duau

can be computed by
accumulating the distance between articulation points visited on the path. The
distance between any two articulation points can be calculated directly by per-
forming BFS in their common biconnected component, which can be calculated
in advance, and shared in process of calculating the C(u) of every articulation
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Algorithm 1. the closeness centrality of articulation point
Input: an articulation point u of G, Gbc

Output: C(u)
1: Γu = {Gi|u in Gi ∧ Gi ∈ Gbc}, Γpast = ∅
2: A = 0, B = 0
3: sort Gbc according to the order of BFS traversal from u
4: for each g ∈ Gbc do
5: if g ∈ Γu then
6: A = A + sug

7: else
8: a = Γpast

⋂
g //

⋂
is the operate of finding the common articulation point

9: B = B + dua ∗ (|g| − 1) + sag

10: end if
11: Γpast = Γpast

⋃
g

12: end for each
13: C(u) = 1

A+B

point u. Next, we give Lemma 1 to prove the important property of articulation
points.

suGi
= duau

∗ (|Gi| − 1) + sauGi
(4)

Lemma 1. If nodes u and v are not in the same biconnected component, the
path from u to v must pass articulation points.

Proof: We use contradiction to prove. Assume there is a shortest path puv from
u to v, which does not cross any articulation points. Then the deletion of arbi-
trary articulation point must not affect the puv. But if the articulation points of
biconnected components which puv crosses are removed, the biconnected compo-
nents which u and v are located in will be disconnected. That means puv doesn’t
exist, which contradicts our assumption.

According to Lemma 1, if u and au are not in the same biconnected com-
ponent, the shortest path from u to au must pass some articulation points.
Assuming that they are au1, au2, au3, · · · , auk, duau

can be computed by For-
mula (5).

duau
= duau1 +

k−1∑

j=1

daujau(j+1) + daukau
(5)

Based on this analysis, we design our algorithm as shown in Algorithm1.
Figure 2 shows an example. If we calculate the closeness centrality of articulation
point u, A is calculated by traversing the biconnected components which include
articulation point u, so A = suG1 + suG5 . The calculation of B is the sum of
suG2 , suG3 , suG4 , suG6 . Then B = suG2 + suG3 + suG4 + suG6 , where suG2 =
dua1 ∗ (|G2| − 1) + sa1G2 , suG3 = dua2 ∗ (|G3| − 1) + sa2G3 , suG4 = (dua1 +
da1a3) ∗ (|G4| − 1) + sa3G4 , and suG6 = dua4 ∗ (|G6| − 1) + sa4G6 . sa1G2 , sa2G3 ,
sa3G4 , sa4G6 can be calculated by traversing G2, G3, G4, G6 respectively. The
closeness centrality of u is thereby 1

A+B .
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Fig. 2. Calculating articulation points

4.2 The Closeness Centrality of Nodes in Γu

The closeness centrality of nodes in Γu can be computed using the results of
articulation point u, which can avoid some repetitive calculations. After we cal-
culate C(u), we can also get the number of nodes in each subgraph if node u
is removed from G. For each node v which belongs to Γu is not u, the cost
of calculation can be reduced by using the partial results. We use Gu

⋃
v to

represent the biconnected component where nodes u and v are located. Then
Gu

⋃
v ∈ Γu is true. Similar to calculating the closeness centrality of articu-

lation point u, here we divide the calculation of C(u) into two parts which
are ΔA and ΔB. ΔA represents the difference between svGu

⋃
v

and suGu
⋃

v
,

and ΔB represents the difference between sv(G\Gu
⋃

v) and su(G\Gu
⋃

v). The
calculation of ΔA and ΔB is shown as formula (6) and formula (7) respec-
tively. AGu

⋃
v

=
{
ai|ai ∈ Gu

⋃
v ∧ iscut[ai] = 1

}
represents the set of articula-

tion points in Gu
⋃

v, where iscut[ai] = 1 represents that node ai is an articula-
tion point. If we remove Gu

⋃
v, graph G is divided into several subgraphs which

are G′
a1

, G′
a2

, G′
a3

, · · · . G′
ai

represents the subgraph which includes articulation
point ai. |G′

ai
| represents the number of nodes in G′

ai
. When we get ΔA and

ΔB, we can calculate C(v) by formula (8). We design our algorithm as shown
in Algorithm 2.

ΔA = svGu
⋃

v
− suGu

⋃
v

(6)

ΔB =
∑

ai∈Aa

(dvai
− duai

) ∗ |G′
ai

| (7)

C(v) =
1

1
C(u) + ΔA + ΔB

(8)
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Algorithm 2. the closeness centrality of node in Γu

Input: an articulation point u, Γu, Gbc,
Output: C(v) of each node v in Γu

1: for each g ∈ Γu do
2: find Ag = {ai|ai in g ∧ iscut[ai] = 1}
3: for each ai ∈ Ag do
4: find G′

ai

5: get |G′
ai

|
6: end for each
7: for each v in g do
8: ΔA = 0, ΔB = 0
9: BFS traverse g from v, get svg, and also dvai of ai ∈ Ag

10: ΔA = svg − sug

11: for each ai ∈ Ag do
12: ΔB = (dvai − duai) ∗ |G′

ai
|

13: end for each
14: C(v) = 1

1
C(u)+ΔA+ΔB

15: end for each
16: end for each

Fig. 3. The example of calculating nodes in Γu

Figure 3 shows an example. Assuming we have calculated the closeness cen-
trality of node u, and now we want to calculate the closeness centrality of node
v. Node u and v are both in GA, and the set of articulation points in GA includes
u, a1 and a2. If GA is removed, we can get the same number of subgraphs as
articulation points which are G′

u, G′
a1

, and G′
a2

. After we calculate the close-
ness centrality of node u, we get c(v), |G4|, |G′

a1
|, and |G′

a2
|. We can get svGA

by
traversing GA from node v, so ΔA is calculated by ΔA = svGA

−suGA
. ΔB can be

calculated by ΔB = dvu∗|G4∪G2∪G3|+(dva1−dua1)∗|G′
a1

|+(dva2−dua2∗|G′
a2

|).
The closeness centrality of node v can be obtained by formula (8).
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4.3 Putting Together

Firstly we get the articulation points and the biconnected components. Secondly,
we calculate the shortest distance of between articulation points which are locate
in the same biconnected component, the sum of the shortest distance from artic-
ulation points to other nodes which are in the same biconnected component, and
the number of nodes in each biconnected component. The calculation can be fin-
ished only in each biconnected component, and each articulation point saves the
related information. Then we calculate the closeness centrality of a articulation
point by Algorithm 1, and the closeness centrality of other nodes belonging to
the same biconnected component by Algorithm 2. Algorithm 1 and Algorithm 2
are performed alternately until the closeness centrality of all the nodes in the
graph have been calculated. A concrete example is given in the following.

In Fig. 1, after we calculate the closeness centrality of articulation point 1,
according to the intermediate results we can easily calculate the closeness cen-
trality of nodes 9, 10, 11, 2, 3, 4, 5, 6, 7, 8. Then we calculate the closeness
centrality of articulation point 17. According to the intermediate results we can
easily calculate the closeness centrality of nodes 15, 19, 16, 18, 20. In addition we
calculate the closeness centrality of articulation points 23, 24, and 6 in turn, and
further calculate the value of nodes 21, 22, 25, 26, 12, 13, 14. As can be seen, we
only need to calculate the closeness centrality of about half of the articulation
points, and the other nodes can be calculated easily.

4.4 Intermediate Results for Incremental Maintenance

After the preliminary algorithm is executed, we will get the following intermedi-
ate results which are the basis of the incremental algorithm in dynamic graphs.

(1) The closeness centrality C(v) of each node v in graph G;
(2) The set of articulation points AG in G;
(3) The set of biconnected components Gbc of G;
(4) Graph Garti(Varti, Earti) designed based on adjacent relations among artic-

ulation points in G;
(5) Graph Gbcg(Vbcg, Ebcg) designed based on adjacent relations among bicon-

nected components of G.

Fig. 4. Garti of Fig. 1.
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Nodes of graph Garti represent articulation points in G. There are edges
between articulation points belonging to the same biconnected component.
Nodes of graph Gbcg represent biconnected components of G. In Gbcg, nodes
represent biconnected components, and each edge represents the adjacency of a
biconnected component pair, which is actually their common articulation point.
Garti and Gbcg of Fig. 1 are shown in Fig. 4 and Fig. 5 respectively.

Fig. 5. Gbcg of Fig. 1.

5 Incremental Maintenance for Dynamic Graphs

5.1 The Change of Graph

We get graph G′ after we insert/delete an edge e(a, b) into/from graph G. Firstly,
we traverse G and G′ respectively from node a, and we get the distance from a
to other nodes in G. If d′(a, u) �= d(a, u), this indicates that node u is affected
by edge e(a, b). We then add u to V ′

a for further incremental update. If d′(b, u) �=
d(b, u), this indicates that node u is affected by edge e(a, b). We add u to V ′

b . We
employ the definition of unstable vertex pair in [14]. If d′(u, v) �= d(u, v), (u, v)
is called an unstable vertex pair, otherwise (u, v) is called a stable vertex pair.
If d′(u, v) �= d(u, v), there must be u ∈ V ′

a and v ∈ V ′
b .

After edge e(a, b) is inserted in the graph G, if nodes a and b are in the same
biconnected component, affected biconnected component G′

affect is the bicon-
nected component that they are located in. If not, Gbc and Gbcg are changed.
We need to merge some biconnected components as G′

affect. We traverse G′
affect

and Gaffect from node a (b) to get V ′
a (V ′

b ). If V ′
a or V ′

b have articulation points,
the nodes belonging to the subgraph connected to G′

affect through the articu-
lation points are also affected nodes, and we save this type of affected nodes in
the V ′

ab. We find all node pairs in G′
affect, and calculate the change of closeness

centrality δ. In addition, we define an array which is represented by fnode. For
each node t in G′

affect, we set fnode[t] = t. Assuming the articulation points are
a1, a2, a3, · · · , ak in G′

affect, the subgraphs connected to G′
affect by the articu-

lation points are G′
a1

, G′
a2

, G′
a3

, · · · , G′
ak

respectively.

5.2 Incremental Algorithm

Next, we propose Theorem 1 to instruct how to calculate the nodes outside
the affected biconnected components through the articulation points instead
of performing BFS in the entire updated graph, and then prove it. We set
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fnode[t] = ai, t ∈ G′
ai

, i = 1, 2, 3, . . . , k, and the amount of change for each
node in G′

ai
is equal to the amount of change node ai according to Theorem 1,

so we only need calculate δai .

Theorem 1. The change of the sum of distance for each node in G′
ai

is equal
to the change of articulation point ai.

Proof: For each node v in G′
ai

, because G′
ai

does not change with the graph
update, the change of the sum of the distance from v to other nodes in G′

ai
is zero,

and ai is the same as v. For each node u in G′\G′
ai

, d(v, u) = d(v, ai) + d(ai, u),
d′(v, u) = d′(v, ai) + d′(ai, u), d′(v, u) − d(v, u) = d′(v, ai) + d′(ai, u) − d(v, ai) −
d(ai, u) = d′(ai, u) − d(ai, u). It is obvious that the change is equal too.

Assuming |V ′
a| ≤ |V ′

b |, for each node v in V ′
a, we traverse G′

affect and Gaffect

from v. For each u in V ′
b , if u is an articulation point, the change of v is δv =

δv +((d′(v, u)−d(v, u))∗ |G′
u|), otherwise the change of v is δv = δv +(d′(v, u)−

d(v, u)). If v is an articulation point, the change of u is δu = δu + ((d′(v, u) −
d(v, u))∗ |G′

v|), otherwise the change of u is δu = δu +(d′(v, u)−d(v, u)). Finally
we update the closeness centrality of nodes by Formula (9). In Formula (9), 1

C(v)

is the sum of the distance from v to other nodes in G. δfnode[v] is the change
of the sum of the distance from v to other nodes. The pseudo code is shown in
Algorithm 3.

C ′(v) =
1

1
C(v) + δfnode[v]

(9)

Algorithm 3. the proposed incrementally updating algorithm(IUA)
Input: G(V, E), Gbc, AG, C(v) of each v ∈ V , the changed edge e(u, v)
Output: the closeness centrality C′(v) of node v in G′
1: update Gbc, AG and fnode, and find G′

affect, get V ′
a, V ′

b , V ′
ab

2: for each v ∈ V ′
a (Suppose |V ′

a| ≤ |V ′
b |) do

3: perform BFS starting from v in G′
affect and Gaffect respectively

4: for each u ∈ V ′
b do

5: if iscut[v] = 1 then
6: δu = δu + ((d′(v, u) − d(v, u)) ∗ |G′

v |)
7: else
8: δu = δu + (d′(v, u) − d(v, u))

9: end if

10: if iscut[u] = 1 then
11: δv = δv + ((d′(v, u) − d(v, u)) ∗ |G′

u|)
12: else

13: δv = δv + (d′(v, u) − d(v, u))
14: end if

15: end for each

16: end for each

17: updatenode = V ′
a ∪ V ′

b ∪ V ′
ab

18: for each v in updatenode do

19: C′(v) = 1
1

C(v)+δfnode[v]

20: end for each



Efficient Closeness Centrality Computation for Dynamic Graphs 545

5.3 Analysis of Complexity

When edge (a, b) is inserted/deleted into/from graph G, the worse case is that
a and b are not in the same biconnected components. Firstly, we find (and
update) Gaffect and get V ′

a and V ′
b by traversing it, which requires O(|Vaffect|+

|Eaffect|)+O(|Vbcg|+ |Ebcg|) time. We then need to update intermediate results,
such as Garti, AGi

, and fnode, which takes O(|Varti| + |Earti|) + O(|V |) time.
To summarize, the overall maintenance time complexity is O(|V | + |E|). For
each node in V ′

a, BFS in Gaffect and G′
affect is performed respectively. So the

computation time cost is O(|V ′
a|(|(|Vaffect| + |Eaffect|)|).

Table 1 shows the time complexity of different algorithm. In CENDY, |V |+|E|
is large. In CC, Vcid is large. In IUA (the incrementally update algorithm), |V ′

a|
and |Vaffect| + |Eaffect| are both small. |Vbcg| + |Ebcg| and |Vbcg| + |Ebcg| is so
small that they can be ignored. IUA has more advantages in efficiency.

Table 1. The compare of time complexity

Algorithm The time complexity

IUA O(|Vaffect| + |Eaffect|) + O(|V |) + O(|V ′
a|(|Vaffect| + |Eaffect|))

CENDY O(|V | + |E|) + O(|V ′
a|(|V | + |E|))

CC O(|V | + |E|) + O(|Vcid|(|Vaffect| + |Eaffect|))

6 Experiments

6.1 Settings

All algorithms are run on the win10 system. The computer memory is 8G, and
CPU is 3.2 Hz. The employed graph datasets are obtained from [2], which are
shown in Table 2. The datasets Cagr, Erdos02, Erdos972 and com-dblp are col-
laboration graphs. Epa is a web graph. Eva is a media network. Wiki-Vote is a
voting network. Contact and email-EuAll are communication networks.

Table 2. The datasets

Dataset |V | |E| BCn rate |MBC| rate

Cagr 4158 13428 0.6376 0.7519

Epa 4253 8897 0.5086 0.9864

Eva 4475 4654 0.0523 0.9940

Erdos972 5440 8940 0.3184 0.9992

Erdos02 6927 11850 0.3097 0.9996

Wiki-Vote 7066 100736 0.6773 0.9996

Contact 13373 79823 0.6224 0.9877

email-EuAll 224832 340795 0.1601 0.9999

com-dblp 317080 1049866 0.3241 0.9991
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Fig. 6. Runtime comparison of algorithms for
static graph.

Table 3. The ratio of V ′
a and V ′

b

respectively

Dataset |V ′
a|/|V | |V ′

b |/|V |
Cagr 0.08 0.67

Epa 0.01 0.13

Eva 0.002 0.03

Erdos972 0.005 0.1

Erdos02 0.001 0.02

Wiki-Vote 0.001 0.04

Contact 0.001 0.04

email-EuAll 0.001 0.03

com-dblp 0.0005 0.1

The number of nodes |V | and edges |E|, the number rate of small biconnected
components BCn rate, and the number rate of nodes in the biggest biconnected
components |MBC| rate are listed in Table 2. BCn rate = BC2 n

BC n is computed
by the number BC2 n of biconnected components formed by two nodes and
the total number of biconnected components. |MBC| rate = |V maxBC|

|V | is com-
puted by the number |V maxBC| of nodes in the biggest biconnected compo-
nent and the total number of nodes. From the value of parameters, BCn rate
and |MBC| rate of the Wiki-Vote and Contact are relatively large, thus with
many extreme biconnected components. Eva has a large |MBC| rate but small
BCn rate value, meaning that most of the biconnected components occupies
few of nodes, and the dataset is very sparse.

6.2 The Experiment Results

(1) The experiment result of the preliminary algorithm
As far as we know, calculating the exact closeness centrality of all nodes in a
static graph usually employs BFS currently, so the preliminary algorithm in this
paper is compared with the BFS. The experimental results using seconds (s) as
the time unit are shown in Fig. 6.

The static algorithm is more than twice as fast as BFS in Cagr, Epa and
Erdos972. However, the performance benefit is marginal for Wiki-Vote and Con-
tact. This is because the biconnected components are heavily skewed in Wiki-
Vote and Contact. That is, the largest biconnected component occupies most
of the graph, while the remaining 99% are formed by two nodes mostly. In this
scenario, it takes a lot of time to calculate the distance between the articula-
tion points in the largest biconnected component, which shows that most of the
remaining nodes are articulation points, whose closeness centralities need to be
calculated. The static algorithm is more efficient than BFS, and can help conve-
niently design and speedup the incremental algorithm for the on-line update.
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Table 4. The experimental results of insertion edges

Dataset IUA(s) CENDY(s) CC(s)

Cagr 33.39 99.83 158.67

Epa 9.81 41.43 71.37

Eva 0.69 60.79 0.42

Erdos972 4.21 9.22 38.63

Erdos02 2.14 14.66 12.67

Wiki-Vote 39.18 41.33 451.3

Contact 84.66 135.38 1932.76

email-EuAll 496.21 2031.29 4961.02

com-dblp 612.65 3192.12 6002.13

(2) The experiment result of incremental algorithm Insertion of
Edges: In order to evaluate the efficiency of IUA, the average execution time(s)
is used as the metric. We insert 100 edges randomly, and update the results
every time for each insertion. The various corresponding average percentages of
|V ′

a| and |V ′
b | are shown in Table 3, and the efficiency is evaluated in Table 4.

In Table 3, we can observe that |V ′
a| is remarkably smaller than |V ′

b | on each
dataset. With such a small |V ′

a|, only a few of BFS are required. Therefore
IUA yield better update efficiency. Although Table 4 indicates that IUA has
different efficiencies in different graphs, in most cases, it can greatly improve the
performance. As an exception, we can see that IUA is not as efficient as CC on
Eva dataset, because Eva is sparse and IUA requires maintaining biconnected
components which is a little time consuming.

The scalable results performed over two small graphs Cagr and Wiki-Vote,
and two large graphs email-EiAll and com-dblp, are shown in Fig. 7. We can
observe that IUA is not only efficient, but also relatively stable in execution,
indicating that IUA can scale very well with the dynamic update. Note that the
fluctuations of curves in Fig. 7, are caused by randomly inserting edges.

Deletion of Edges: For deletions, we delete 100 edges, and update the results
every time once a deletion operation is finished. We use the average runtime as
the evaluation. Table 5 lists all the runtime results.

We can generally draw the similar conclusion for deletion and insertion of
edges. The only exception is Eva. The results are similar in the term of scalability
on the datasets with various ratios of V ′

a and V ′
b . Details are omitted due to space

limitation.
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(a) Cagr. (b) Wiki-Vote.

(c) email-EuAll. (d) com-dblp.

Fig. 7. The experiment results of inserting edges.

Table 5. The experimental results of deletion edges

Dataset IUA(s) CENDY(s) CC(s)

Cagr 33.23 100.03 164.14

Epa 9.86 41.43 71.28

Eva 0.1 60.75 0.4

Erdos972 4.2 49.12 38.79

Erdos02 2.13 14.63 12.71

Wiki-Vote 39.2 41.32 449.92

Contact 84.46 135.55 1915.79

email-EuAll 489.52 2011.79 4897.85

com-dblp 598.07 3001.34 5988.13

7 Conclusions

In this paper, we focus on the efficiency problem of computing the exact close-
ness centrality for the evolving graphs. First, we propose a preliminary algorithm
instead of performing BFS in the off-line stage, which leverages the biconnected
component and reserves key intermediate results to boost the later incremen-
tal maintenance. Further, based on the preliminary algorithm, we explore an
incremental algorithm to handle on-line updates by constraining the evaluation
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into affected biconnected components. The experimental results show that our
proposed algorithms are superior to the previous ones.
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Abstract. Due to the increasing use of RDF data, efficient processing
of SPARQL queries over RDF datasets has become an important issue.
In graph-based RDF data management solution, SPARQL queries are
translated into subgraph patterns and evaluated over RDF graphs via
graph matching. However, answering SPARQL queries requires handing
RDF reasoning to model implicit triples in RDF data, which is largely
overlooked by existing graph-based solutions. In this paper, we investi-
gate to equip graph-based solution with the important RDF reasoning
feature for supporting SPARQL query answering. (1) We propose an on-
demand saturation strategy, which only selects an RDF fragment that
may be potentially affected by the query. (2) We provide a filtering-
and-verification framework to efficiently compute the answers of a given
query. The framework groups the equivalent entity vertices in the RDF
graph to form semantic abstracted graph as index, and further com-
putes the matches according to the multi-grade pruning supported by
the index. (3) In addition, we show that the semantic abstracted graph
and the graph saturation can be efficiently updated upon the changes
to the data graph, enabling the framework to cope with dynamic RDF
graphs. (4) Extensive experiments over real-life and synthetic datasets
verify the effectiveness and efficiency of our approach.

1 Introduction

The Resource Description Framework (RDF)1 is a graph-based data model pro-
moted by the W3C for modeling Web Objects as part of the prospective semantic
web. An RDF dataset is in essence a set of triples, each of the form 〈s, p, o〉 for
〈subject, property, object〉. A triple indicates a relationship between s and o
captured by p. Consequently, a collection of triples can be modelled as a directed
labeled graph where the graph vertices denote subjects and objects while graph
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1 https://www.w3.org/RDF/.
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edges are used to denote predicates, as shown in Fig. 1. In order to query RDF
data, the W3C recommends a formal language, namely, SPARQL2. For example,
to retrieve the actor in a science fiction film who won an America award, one
may formulate the query using SPARQL:

Q1:Select ?m Where {?m 〈won〉 ?p. ?n 〈hasActor〉 ?m. ?m 〈rdf : type〉 Actor.
?p 〈rdf : type〉 America Award. ?n 〈type〉 Science Fiction Film. }

Fig. 1. Sample RDF graph

From the perspective of data management, there exist two types of
solutions—relational and graph-based—to RDF data [1]. Using relational
databases does not always offer an elegant solution towards efficiently RDF
query evaluation, and still lacks best practices currently [2]. Recently, graph-
based solution emerges, attributed to the fact that RDF is a universal graph
model of data. In graph-based solution, a SPARQL query is translated into a
graph pattern P , which is then evaluated over the RDF graph G. The query eval-
uation process is performed via matching the variables in P with the elements of
G such that the returned graph is contained in G (pattern matching). The main
focus of this article is on a well-known subset of SPARQL consisting of (unions
of) basic graph pattern (BGP) queries, which is identified in the SPARQL rec-
ommendation, are more expressive than relational conjunctive queries [3].

The major advantage of graph-based solution lies in that RDF query3

becomes easier to formulate without losing its modeling capability, and more

2 https://www.w3.org/TR/sparql11-query/.
3 In this paper, we may use SPARQL BGP query” and RDF query” interchangeably.

https://www.w3.org/TR/sparql11-query/
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importantly, graph pattern matching, without optimization strategies, is able
to perform, if not better, as good as relational RDF query engines [4]. In suc-
cession, a few novel graph-based systems were put forward [4–6]. In particular,
gStore [5] uses a carefully designed index VS*-tree to process RDF queries. Tur-
boHom++ [4] transforms RDF graphs into labeled graphs and applies subgraph
homomorphism methods to RDF query processing. AMbER [6] is a graph-based
RDF engine that represents the RDF data and SPARQL queries into multi-
graphs and the query evaluation task is transformed to the problem of subgraph
homomorphism.

All the aforementioned work can be summarized as graph-based efforts
for RDF query evaluation (not answering) since they ignore the essen-
tial RDF feature called entailment, which allows model implicit information
within RDF graph. Taking entailment into account is crucial, without which
leads to incomplete answers. For instance, assume the claim that “Titanic
has an actor Leonardo DiCaprio” is not in the RDF data; nonetheless, we
can derive 〈Titanic Film, hasActor, Leonardo DiCaprio〉, on the basis of the
explicit triple 〈Titanic Film, leadingRole, Leonardo DiCaprio〉 and the descrip-
tion “leadingRole belongs to the subproperty of hasActor” in terms of RDFS.
RDFS represents an ontology language that can be used to enhance the descrip-
tion of RDF graphs. As a result, RDF query answering can be split into a
reasoning step and a query evaluation step.

There are two disparate reasoning steps, i.e., saturation and reformula-
tion [7,8], in relational-based approaches. Saturation-based query answering
exhaustively makes explicit all of the implicit information. Reformulation-based
query answering performs rewriting a query into an equivalent large union of con-
junctive queries and posing them against the original RDF data [9,10]. While
saturation leads to efficient query evaluation, it requires large amount of time
to compute, space to store, and must be recomputed upon updates; query refor-
mulation adversely affects query response times due to syntactically great com-
plexity and subtle interplay between RDF and SPARQL dialects.

In this paper, we investigate to close the gap by supplementing reasoning
mechanism to existing graph-based systems. Conceptually, we strike a balance
between saturation and reformulation, and propose to deal with entailment by
using an on-demand saturation strategy. That is, we need not make explicit
all of the implicit data in the RDF graph, since most implicit information is
irrelevant to the query; instead, we carefully choose only the RDF fragment that
is revelent to the query, and then, saturate it accordingly. Based on the reasoning
mechanism, we propose a filtering-and-verification framework, namely, GQARDF,
for computing the answers of a given query.

Contributions. In short, the major contributions under the framework we have
made are summarized below:

– We group the equivalent entity vertices in the RDF graph to form multi-grade
abstracted graph as index.

– Using the index, we develop a filtering strategy, which extracts a small sub-
graph of G as a compact representation of the query results.
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– We propose a new encoding method for further refining the candidates of
each query vertex and conduct subgraph matching calculations.

– We provide techniques to incrementally maintain the index and the graph
saturation upon the changes to the RDF graph, enabling the framework to
cope with dynamic data graphs.

Experiment results demonstrate that our techniques significantly outperform
the state-of-the-art RDF data management system.

2 Preliminaries

RDF data is a set of triples of the form 〈s, p, o〉, where s is an entity or a
class, and p denotes one attribute associated to one entity or a class, and o is
an entity, a class, or a literal value. We consider only well-formed triples, as
per the W3C RDF standard, both entity and class can be represented by IRIs
(Internationalized Resource Identifiers). In this work, we will not distinguish
between an“entity” and a “literal” since we have the same operations. As an
alternative, RDF data is expressed as an RDF graph, formally defined as follows.

Definition 1 (RDF graph). An RDF graph is a directed labeled graph G =
(UG, EG, ΣG, LG), where UG is a set of vertices that correspond to all subjects
and objects in RDF data, EG ⊆ UG×UG is the set of directed edges that connect
the subjects and objects, ΣG is a finite set of labels for vertices and edges, and the
labeling function LG maps each vertex or edge to a label in ΣG. More precisely,
a vertex of a subject has a label corresponding to its IRI, while a vertex of an
object can possess a label of either IRI or literal. The label of an edge is its
corresponding property.

Definition 2 (RDF schema). RDF Schema (RDFS) is a valuable feature of
RDF that allows enhancing the descriptions in RDF graphs. RDFS triples declare
semantic constraints between the classes and the properties used in those graphs.

Definition 3 (RDF entailment). The W3C named RDF entailment the
mechanism, through which, implicit RDF triples can be derived, based on a set
of explicit triples and some entailment rules.

Table 1. Instance-level entailment

Constraints Description Entailment rules Entailed triples

≺sc subclass s′ ≺sc s′′; s rdf:type s′ s rdf:type s′′

≺sp subproperty p ≺sp p′; s p s′ s p′ s′

↼d domain p ↼d s; s1 p o s1 rdf:type s

⇀r range p ⇀r s; s1 p o o rdf:type s
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In this research, we concentrate ourselves on the core entailment of RDFS
regime. Using RDFS, we can recover a large amount of implicit information, part
of which may be answers to queries. Specifically, Table 1 enumerates the possible
RDFS constraints and the corresponding entailment rules. The first two columns
show the allowed semantic constraints, and the notations to express them, where
domain and range denote the first and second attribute of every property (edge
label), respectively. The last two columns show the entailment rules to get the
entailed triples. Since the overwhelming practical impact of querying only the
instance-level (implicit and explicit) data, we focus on query answering only for
instance-level queries (cf. Table 1).

We consider the most fundamental building block of SPARQL, which consists
of (unions of) basic graph pattern (BGP) queries4.

Fig. 2. An illustrate of query pattern graph

Definition 4 (BGP query). A BGP can be modelled as a directed labeled
query pattern graph Q = (VQ, EQ), where VQ is a collection of subject and object
vertices, which can be IRIs, literals or variables, EQ ⊆ VQ × VQ is a set of
directed edges that connect the corresponding subjects and objects, each of which
has an edge label of literal or variable. Figure 2 shows a BGP query, and the
circles in it represent variable vertices.

Definition 5 (Query evaluation). Given a query pattern Q = (VQ, EQ) that
has n vertices {v1, . . . , vn}. A set of n vertices {u1, . . . , un} in G is said to be a
match, or embedding, of Q, if and only if the following conditions hold:

– if vi is a literal vertex, vi and ui have the same literal value;
– if vi is an entity vertex, vi and ui have the same IRI;
– if vi is a variable vertex, there is no constraint on ui; and
– if there is an edge 〈vi, vj〉 ∈ EQ with property p, there is an edge 〈ui, uj〉 ∈ EG

with the same property p.

Definition 6 (Query answering). Query answering is the evaluation of Q
against G that takes the entailment into account. The answers of Q are consti-
tuted of returned bindings to query variables.

4 https://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns.

https://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns
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3 Framework

Recall that the SPARQL BGP query answering problem is a major challenge
that is largely overlooked by existing graph-based efforts towards RDF data
management. To this end, we provide a novel filtering-and-verification framework
named GQARDF. Generally speaking, our approach consists of two stages: offline
index construction and online RDF query answering (see Fig. 3). We briefly
review the two stages before we discuss them in details in upcoming sections.

Fig. 3. Solution framework of GQARDF

Offline Index Construction. The offline process is used to build the semantic
abstracted graph as index. We describe the main components. Firstly, we con-
struct an auxiliary data structure, namely, STP, which is a series of sets that
represent the semantic inclusion relation in RDFS. Then, based on STP, we
merge the entity vertices in the RDF graph that is adjacent to equivalent class
vertices (have equivalent type) to construct an abstracted graph as index. The
index is precomputed once, and is dynamically maintained upon changes to G.

Online Query Processing. The online process is used to calculate the answers
of a given query. Upon receiving an RDF query Q, the framework extracts a small
subgraph as a compact representation of all the matches that are similar to Q,
by visiting the abstracted graphs. If such a subgraph is empty, the framework
determines that Q has no answers. Otherwise, we use the proposed on-demand
saturation strategy to obtain the candidates of each variable vertex and conduct
subgraph matching to calculate the answer. Specially, we propose a new encode
module to encode the neighborhood structure around a vertex into a bitstring,
and prune the candidates via “Bloom filter”.

4 Semantic Abstracted Graph

In this section, we propose an effective index to reduce the space cost and facil-
itate the query processing.
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4.1 Semantic Relationships Extraction

In order to construct the abstracted graph, we need to group and merge the
equivalent entity vertices in G, where two entity vertices are equivalent if they
are adjacent to equivalent class vertex (have the equivalent type). To this end, we
construct an auxiliary data structure named STP by using the semantic relation
in RDFS, such that given a class vertex t and an entity vertex u, one can check
whether u has type t. STP is comprised of the following four sets.

– SubPro(·): given an edge property p in RDFS, SubPro(p) is a set of edge
properties that are the subproperty of p;

– SubClass(·): given a class vertex t in RDFS, SubClass(t) is a set of class vertices
that are the subclass of t;

– Domain(·): given a class vertex t in RDFS, Domain(t) is a set of edge properties
that belong to the domain of t; and

– Range(·): given a class vertex t in RDFS, Range(t) is a set of edge properties
that belong to the range of t.

To obtain SubPro(·), we extract all triples in RDFS with edge property
“rdfs:subPropertyOf ”, i.e., 〈p1, rdfs:subPropertyOf, p2〉. Then, the vertex p1 is
extracted to form the set SubPro (p2). The other three sets can be constructed
in a similar flavor as the set SubPro(·). Note that, in the STP construction pro-
cess, we need to obtain corresponding superclass vertices for constructing the
index.

Definition 7 (Superclass vertex). We say a class vertex ts is a superclass
vertex if there exists no other class vertex t such that ts ∈ SubClass(t).

To achieve the superclass vertices, we use a counter num(t) (initialize to
0) for every class vertex t in RDFS to count the times of t that is extracted
to construct SubClass(·). For example, in processing a trip in RDFS with edge
property “rdfs:subClassOf ”, i.e., 〈t1, rdfs:subClassOf, t2〉, t1 is extracted to form
the set SubClass (t2). Then, we set num(t1) ← num(t1) + 1. Intuitively, we say
a class vertex ts is a superclass vertex if ts has a 0 count (i.e., num(ts) = 0).
The class vertices {t} within SubClass(·) are sorted in descending order of vertex
weights w(t) where w(t) = 1

num(t) .

4.2 Semantic Abstracted Graph

Relying on the semantic class constraint set in STP, we construct a semantic
abstracted graph as index to reduce the space cost further.

Given an RDF graph G = (U,E,L), a concept graph Gc = (Uc, Ec, Lc) is
a directed graph by ignoring edge labels. In detail, (1) Uc is a partition of U ,
where each Uc ∈ Uc is a set of entity vertices; (2) each Uc has a label Lc(Uc) from
the superclass vertices obtained in STP, such that for any entity vertex u ∈ Uc

of type tu, tu ∈ SubClass(Lc(Uc)); (3) 〈U1
c ,U2

c 〉 is an edge in Ec if and only if for
each entity vertex u1 in U1

c (resp. u2 in U2
c ), there is an entity vertex u2 in U2

c
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(resp. u1 in U1
c ), such that 〈u1, u2〉 (resp. 〈u2, u1〉) is an edge in G. Specially, if u

has no type, we can use STP to derive corresponding type of u. To differentiate
the vertices of the concept graph from the vertices of Q and G, we call vertices
of the abstracted graph as nodes. Here, a entity vertex u of type tu means there
is a class vertex tu that is adjacent to u.

Figure 4 shows the concept graph Gc of the RDF graph in Fig. 1. Each node Uc

in Gc represents a set of entity vertices whose types belong to SubClass(Lc(Uc)).
In the node Film, the types of Inception F ilm (i.e., Science F iction F ilm)
and Titanic F ilm (i.e., Romantic Movie) both belong to SubClass(Film).

Fig. 4. Concept graph

Definition 8 (Semantic abstracted graph). A semantic abstracted graph is
multi-grade concept graph, where

– the first grade, Gc1 = (Uc1 , Ec1 , Lc1), represents the initial concept graph
constructed by using the superclass vertices;

– the i-th (i ≥ 2) grade, Gci = (Uci , Eci , Lci), is a more detailed concept graph
constructed from Gci−1 in the (i − 1)-th grade by dividing each node Uci−1

(Uci−1 ∈ Uci−1) into smaller partitions. In this case, (1) each Uci (Uci is
in Uci−1) has a label Lci(Uci), which is the child-class of Lci−1(Uci−1); (2)
〈U1

ci ,U2
ci〉 (U1

ci ∈ U1
ci−1

, U2
ci ∈ U2

ci−1
) is an edge in Eci if and only if for each

entity vertex u1 in U1
ci (resp. u2 in U2

ci), there is a entity vertex u2 in U2
ci

(resp. u1 in U1
ci), such that 〈u1, u2〉 (resp. 〈u2, u1〉) is an edge in G.

An important issue is to get the child-class vertices of a given class vertex tu.
Recall that we can obtain the subclass vertices {tnu} of tu based on SubClass(tu)
in STP, each of which has a weight w(tnu). Note that, the closer tnu is to tu, the
greater the value of w(tnu) is. As a result, we say {t1u, . . . , tiu} (1 < i ≤ n) is
the set of child-class vertices of tu if they have the same and greatest value of
weights in SubClass(tu). In specific, if SubClass(tu) = Ø, we say the child-class
vertex of tu is itself. Figure 5(b) depicts a semantic abstracted graph of the RDF
graph in Fig. 1, which is also a two-grade concept graph.

Our empirical study showed that three-grade concept graph are enough for
optimization. Thus, we set the grade as 3 in our experiments.

Semantic Abstracted Graph Construction. In Gc1 , we first construct the
node set Uc1 as a vertex partition of G, where each node Uc1 of Uc1 consists
of the entity vertices of type Lc1(Uc1) ∈ SubClass(ts). The edge set Ec1 is also
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constructed accordingly. We then check the condition whether for each edge
〈U1

c1 ,U2
c1〉, each vertex u1 (resp. u2)in U1

c1 (resp. U2
c1) has a child in U2

c1(resp.
parent in U1

c1). If not, we refine Uc1 by splitting and merging the node U1
c1 (resp.

U2
c1) to make the condition satisfied. Gc1 is updated accordingly with the new

node and edge set. The refinement process repeats until a fixpoint is reached.
In Gci (i ≥ 2), we replace the class vertices used in Gci−1 with corresponding
child-class vertices and adopt the same procedure to construct Gci .

Fig. 5. Construction of abstracted graph

For example in Fig. 5(a), nodes Person and Film are divided into a set
of nodes {Actress,Actor,Director} and {Romantic Movie, Seience F iction
F ilm} in Gc2 , respectively. Since the entity vertex Christopher Nolan in
Director has no neighbor in node Romantic Movie, we split the node Director
into two nodes to produce Gc2 (Fig. 5(b)) as the 2-nd grade concept graph.

5 Query Pruning and Answering

In this section, we illustrate the filtering phase of the query answering framework
based on the abstracted graph index, and then obtain the answers of the query
by adding the on-demand saturation strategy.

5.1 Multi-grade Filtering

In order to retrieve the final answers, we need to obtain candidates for each vari-
able vertex in the query. Instead of performing the subgraph matching directly
over the RDF graph, we extract a (typically small) subgraph of G that contains
all the matches of the query based on the abstracted graph.

We first search the query graph over Gc1 . For each variable v in Q, we can
obtain the corresponding superclass ts of v based on STP. Let cand(v) denote
the candidates of v, which is initialized as the set of nodes labeled ts in Gc1 .
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We conduct a fixpoint computation for each query edge 〈v, v′〉 (v′ is not a class
vertex) using cand(v) and cand(v′). Regarding each node Uc1 ∈ cand(v), we check
if there is a node U ′

c1 in cand(v′) such that edge 〈Uc1 ,U ′
c1〉 in Gc1 has the same

direction as 〈v, v′〉. If not, Uc1 (and all the data vertices contained in it) is no
longer a candidate for v, and will be removed from cand(v). Specially, if cand(v)
is empty, then we can say the query Q has no answers over the RDF graph.

Multi-grade Pruning. Since the semantic abstracted graph is a multi-grade
concept graph, we can refine candidates by going through i-th (i ≥ 2) grade
concept graph one-by-one. For example, in the 2-nd grade, given a query edge
〈v, v′〉, let tv and t′v denote the types of v and v′, respectively. For each node
Uc2 contained in Uc1 (Uc1 ∈ cand(v)), we check if (1) tv ∈ SubClass(Lc2(Uc2))
(or tv = Lc2(Uc2)); (2) there is node U ′

c2 contained in U ′
c1 (U ′

c1 ∈ cand(v′))
that is adjacent to Uc2 and t′v ∈ SubClass(Lc2(U ′

c2)) (or t′v = Lc2(U ′
c2)). If not,

Uc2 (and all the entity vertices contained in it) can be pruned. Note that, if
the type tv of v is equal to Lc2(Uc2), then we will not check the query edges
adjacent to v any more in larger grades concept graphs. To differentiate v from
other query vertices, we use a flag for each query vertex (initialize to false) and
set flag[v] = true. Similarly, one may further refine the candidates by going
through larger grades concept graphs.

Consider the semantic abstracted graph in Fig. 5(b), and the SPARQL query
graph in Fig. 2. In Gc1 , we initialize cand(?p) = {U3

c1}, cand(?m) = {U1
c1},

cand(?n) = {U2
c1}. After checking, we find all the candidate nodes satisfy the

edge constraint and will not be pruned. Then, in Gc2 , we refine the candidates
set of each variable vertex based on the child-class of each superclass used in Gc1 .
After the refinement, cand(?p) = {U7

c2}, cand(?m) = {U2
c2}, cand(?n) = {U6

c2}.

5.2 On-Demand Saturation

To obtain complete answers of the query, in this section, we present an on-
demand saturation strategy, which consists of two stages: edge property satura-
tion and entity type saturation.

Edge Property Saturation. Edge property saturation is used to check whether
a data edge can match a query edge with respect to property, either directly or
via entailment. That is, if a data edge has a different property from a query
edge, we examine the subproperties entailed by the data edge, to see if any of
them matches the query edge.

To this end, let 〈v, v′〉 be an outing going edge labeled pv adjacent to v.
For each candidate entity vertex u in cand(v), we check whether there exists
an outgoing edge 〈u, u′〉 labeled pu adjacent to u such that pu = pv or pu ∈
SubPro(pv). If not, u will be pruned from cand(v). Otherwise, if pu ∈ SubPro(pv)
and there is no other outing edge adjacent to u with the property pv, we add
the outgoing edge 〈u, u′〉 labeled pv into u.

Entity Type Saturation. Entity type saturation is used to check if a entity
vertex matches a query vertex with respect to type in the query graph.
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Given a variable vertex v of type tv s.t. flag[v] = false, for each entity
vertex u in cand(v), we check if one of the following three conditions hold: (1)
tu ∈ SubClass(tv) where tu is the type of u; (2) there exists an outgoing edge
〈u, u′〉 labeled pu adjacent to u such that pu ∈ Domain(tv); (3) there exists an
incoming edge 〈u′, u〉 labeled pu adjacent to u such that pu ∈ Range(tv). If not,
u will be pruned from cand(v).

5.3 RDF Query Answering

Note that, in the filtering process, we ignore the edge property information for
each query edge. In this section, we use the neighborhood encoding technology
to further prune invalid candidates.

Neighborhood Encoding. Neighborhood encoding has been widely adopted
to assist various operations in managing RDF data [11], which describes each
vertex as a bit string, namely, vertex signature. In a similar flavor, we choose
to encode, for each vertex in RDF graph, its adjacent edge properties and the
corresponding neighbor vertex properties into bit strings via Bloom filter [12].

Let 〈u, u′〉 labeled pu be an adjacent edge of an entity vertex u in G, m the
length of pu’s bit string, n the length of u′’s bit string. Bloom filter uses a set
of hash functions H to set m out of m bits to be “1”, and set n out of n bits
to be “1”, where m and n represent the number of independent hash functions,
respectively. The bit string of u, denoted by Bit(u), is formed by performing
bitwise OR operations over all it’s adjacent edge bit strings. Note that given a
variable vertex v, if the adjacent neighbor of v is also a variable vertex, we set
the bit string of the vertex with all “0” (same as variable edge). u is a candidate
of v only if Bit(v) & Bit(u) = Bit(v), where ‘&’ is the bitwise AND operator.

Fig. 6. Bit string of a vertex

The encoding method in [5] divides the bit string of the vertex into two parts:
the first part represents the outgoing edge properties information, while the
second represents the properties information of linked neighbors. Such method
can be insufficient in fully harness the neighborhood information for candidate
pruning. In this connection, we propose to encode the neighborhood of a vertex
using six parts, as depicted in Fig. 6. The first two parts describe the information
of outgoing edges information and linked vertices. In the third part, we bind
each edge with the neighbor corresponding to it. The last three parts are the
information about incoming edges, which are processed in a similar manner as
for outgoing edges. In order to avoid the “false drop” problem that may exist in
the encoding method, we follow the method in [5] to set the length of each part
as 100 and use 3 different hash functions.
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Then, upon receiving the final concise candidates set of each query vertex,
we conduct subgraph homomorphism calculations to obtain the answers of the
query. Here, we adopt the cost model proposed in the state-of-the-art algorithm,
i.e., CPI [13], for computing an efficient matching order and conduct subgraph
homomorphism matching accordingly.

6 Rationale of Maintenance

In this section, we investigate the incremental maintenance of the semantic
abstracted graph index and the graph saturation, which further enables the
RDF query answering to cope with dynamic data graphs.

6.1 Index Maintenance upon Updates

Instead of recomputing the semantic abstracted graph and the saturation from
the scratch each time the RDF graph is updated, we relay on an incremental
maintain strategy.

Handling Edge Insertions. Consider an edge 〈u, u′〉 inserted into G, we take
a split-merge-propagation strategy for each grade in the abstracted graph as
follows. In the 1-st grade, we first identify Uc1 and U ′

c1 in Gc1 that contains u
and u′, respectively. We then separate u′ from U ′

c1 , and split Uc1 similarly if Uc1

and U ′
c1 violate the structural constraints of a concept graph due to the edge

insertion. Next, we check whether the separated data vertices can be merged into
other nodes in Gc1 , due to satisfying the edge constraints. Since the updates of
nodes Uc1 (resp. U ′

c1) may propagate to its adjacent nodes, we should further
check the neighbor nodes of Uc1 (resp. U ′

c1) in the same way until there is no
update in Gc1 . Similarly, after updating Gc1 , we update Gci (i ≥ 2) following
the same split-merge-propagation strategy.

Handling Edge Deletions. Consider an edge 〈u, u′〉 deleted from G, we take
a similar operations as the updating procedure of edge insertions. Omitted in
the interest of space, we do not describe here.

6.2 Saturation Maintenance upon Updates

To maintain the saturation efficiently, an important issue is to keep track of the
multiple ways in which an edge was entailed. This is significant when considering
both implicit data and updates: for a given update, we must decide whether
this adds/removes one reason why a triple belongs to the saturation. A näıve
implementation would record the inference paths of each implied triple, that is,
all sequences of reasoning rules that have lead to that triple being present in the
saturation. However, the volume of such justification grows very fast and thus
the approach does not scale. Instead, we chose to keep track of the number of
reasons why an edge has been inferred. In subproperty saturation, the number
of reason is 1 since an implied edge only entailed by one explicit edge. In entity
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type saturation, for each data vertex u in cand(v), we use the notation Type(u)
to record the number of reasons that can entail u has the same type as v. Then,
for a given edge insertion (resp. edge deletion), we will decide whether this adds
(resp. deletes) one reason why an type edge belongs to the saturation. When
this count reaches 0, the implied type edge should be deleted.

7 Experiments

In this section, we report experiment results and analyses.

7.1 Experiment Setup

The proposed algorithms were implemented using C++, running on a Linux
machine with two Core Intel Xeon CPU 2.2 Ghz and 32 GB main memory. Par-
ticularly, three algorithms were implemented: (1) GQARDF, our algorithm; (2)
TurboHom++, which extends existing subgraph homomorphism method to han-
dle SPARQL queries [4]; (3) gStore, which tags each vertex with a signature and
match signatures of data vertices and pattern vertices one by one [5].

Experiments were carried out on real-life RDF and synthetic datasets (as
shown in Table 2). For query evaluation, we choose to use the SPARQL BGP
queries in [14] over Yago and use the SPARQL BGP queries in [15] over LUBM,
each of which has six queries (Q1 ∼ Q6).

Table 2. Graph datasets

Dataset Edge Predicate Entity

Yago 20,263,756 21,843 2,218,624

LUBM10M 12,237,135 18 1,684,231

LUBM20M 25,124,227 18 3,243,658

LUBM30M 32,457,671 18 4,752,538

7.2 Evaluating the Effectiveness of On-Demand Saturation

In this subsection, we evaluate the effectiveness of our on-demand saturation
technology, which is scaled by the number of match results. For the sake of
simplicity, we use Qy

i to represent the query Qi in Yago, and use Ql
i to represent

the query Qi in LUBM. We ran experiments with both datasets and report the
results obtained for all queries. The conclusions are reported below.

Table 3 shows the total number of match results. It is not surprising to notice
that GQARDF can get more complete match results for almost all the queries than
gStore. Especially, in Qy

2, Qy
4 and Ql

3, the number of match results is 0 if we use
gStore. This is because in Qy

2, the edge label “placedIn” does not exist in original
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Table 3. Match results

Queries Yago LUBM 10M

gStore GQARDF gStore GQARDF

Q1 1,638 3,271 211 495

Q2 0 1,063 2,201 6,731

Q3 397 1,817 0 4,062

Q4 0 18,849 1,336 1,849

Q5 125 428 29 231

Q6 863 1,093 784 784

RDF graph, however, GQARDF can use the constraint isLocatedIn ≺sp placedIn
to get the entailed triples which satisfy the query. Similarly, in Qy

4 and Ql
3, some

edges in pattern graph but not in RDF graph will be entailed, and added to the
RDF graph to get more match results. In general, the comparisons verify the
effectiveness of our proposed on-demand saturation strategy.

7.3 Evaluating the Efficiency and Scalability of GQARDF

We evaluated the performance of GQARDF, gStore and TurboHom++ using both
Yago and LUBM, and their scalability using LUBM. In these experiments, the
indexes were precomputed, and thus their construction time were not counted.
Note that, gStore and TurboHom++ cannot handle SPARQL query answering
since they ignore the essential RDF feature called entailment. As a result, we
adopt the reformulation reasoning strategy, and rewrite the queries that are
used in gStore and TurboHom++ to directly compute all the answers.

Fig. 7. Performance evaluation-I

Query Answering Time. Figure 7(1) and Fig. 7(2) show the query answering
time for each RDF query graph over Yago and LUBM, respectively. Since Tur-
boHom++ needs offline process for transforming the RDF graph into labeled
graph and gStore needs offline process for building the VS*-tree index, we only
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consider the online performance for each competitors. GQARDF consistently out-
performs its competitors. This is due to our on-demand saturation strategy that
can avoid large amounts of subgraph matching calculations for rewritten queries.
Specially, in Yago, GQARDF outperforms TurboHom++ by up to 11.28 times (see
query Qy

4), gStore by up to 10.19 times (see query Qy
6); in LUBM, GQARDF out-

performs TurboHom++ by up to 5.89 times (see query Ql
5), gStore by up to 8.47

times (see query Ql
5). Note that, in most cases, gStore has the worst performance,

since it traverses the RDF graph in a BFS order, which will produce redundant
Cartesian products.

Evaluating the Scalability. Figure 7(3) shows the performance results of
GQARDF against existing algorithms regarding the scalability by using LUBM for
varying the dataset size. Here, we vary the size of the RDF graph from 12,237,135
(LUBM10M) to 32,457,671 (LUBM30M). We use Q6b since the performance gap
is largest at this case. It reveals that GQARDF consistently outperforms its com-
petitors regardless of the dataset size. In generally, the scalability suggests that
GQARDF can handle reasonably large real-life graphs as those existing algorithms
for deterministic graphs. Specially, GQARDF outperforms TurboHom++ by up to
12.75 times and gStore by up to 22.57 times.

7.4 Evaluating the Effectiveness of Semantic Abstracted Graph

Using synthetic and real-life datasets, we next investigate (1) the index building
cost of GQARDF and its competitors, including time cost and physical memory;
(2) the memory reduction mr = |MI |

|M | , where |MI | and |M | are the physical
memory cost of the index and the data graph, respectively; (3) the filtering rate
fr = |Gsub|

|G| , where |Gsub| is the average size of the induced subgraphs in the
filtering phase, and G is the size of G. The result is shown below.

Table 4. Effectiveness of index

Dataset GQARDF gStore

mr fr mr fr

Yago 0.43 0.13 0.64 0.27

Figure 8(1) and Fig. 8(2) show the space cost and time cost of index con-
struction using LUBM, respectively. Since TurboHom++ does not construct any
index, we only compare GQARDF with gStore. We see that GQARDF has consis-
tently better performance than its competitors regardless of memory and time.
What’s more, the figure reads a non-exponential increase as the data size grows.
In specific, GQARDF outperforms gStore by up to 11.24 times and 40.31 times, in
terms of the memory cost and time cost, respectively.

Table 4 gives the effectiveness of the index using Yago. It reveals: (1) GQARDF

beats gStore regardless of mr and fr; (2) the semantic abstracted graph contains
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Fig. 8. Performance evaluation-II

much less nodes and edges over the RDF graph, and takes less than half of its
physical memory cost; (3) using semantic abstracted graph can effectively filter
the search space, that is, the size of Gsub for verification is only 17% over Yago.

We finally compare the performance of GQARDF and its competitors upon
RDF graph changes. We use Yago dataset and fix edge insertions |EI | =
1, 376, 286. Since updating one edge at a time is too slow for TurboHom++
and will reach the timeout (1-h) for all queries. As a result, we insert edges in
batches of 100K (= 100 × 103) for it. Figure 8(3) tells us that GQARDF greatly
outperforms its competitors. Specially, GQARDF performs TurboHom++ by up to
26.43 even the edge updates are inserted in bathes for TurboHom++.

8 Related Work

We categorize the related work as follows.

Relational-Based RDF Query Evaluation. Relational-based RDF stores
use relational models to store RDF data and translate SPARQL queries into
relational algebraic expressions. SW-Store [16] uses a column-oriented store as its
underlying store, triples are stored as sorted by the subject column. RDF-3X [1,
17] and Hexastore [18] model RDF triples as big three-attribute tabular structures
and build six clustered clustered B+-trees as indexes for each permutation of
subject, predicate and object. H-RDF-3X [19] is a distributed RDF processing
engine where RDF-3X is installed in each cluster node.

Graph-Based Query Evaluation. Graph-based stores use graph traversal
approaches, i.e., subgraph homomorphism, and graph indexing. TurboHom++ [4]
eliminates corresponding query vertices/edges from a query graph by embed-
ding the types of an entity into a vertex label set to boost query performance.
GRIN [20] uses graph partitioning and distance information to construct the
index for graph queries. gStore [5] tags each vertex with a signature and matches
signatures of data vertices and query vertices by using the VS*-tree index.
Grass [21] performs the graph pattern matching by the concept of fingerprint
for star subgraph to prune search space.

Query Answering. RDF query answering needs to take the entailment into
account, as ignoring which leads to incomplete answers. 3store [7], Jena [22],
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OWLIM [8], Sesame [23] support saturation-based query answering, based on
(a subset of) RDF entailment rules. The work by Goasdoue et al. [24] extends
above studied by the support of blank nodes. Algorithms in [25] consider some
novel rules to reformulate relational conjunctive queries. However, above query
answering approaches are relational-based, and there is no graph-based methods
towards efficient query answering.

9 Conclusion

In this paper, we have studied graph-based approach for efficient query answering.
We devise GQARDF to provide effective support. On top of it, we propose an on-
demand saturation strategy, which only selects an RDF fragment that may be
potentially affected by the query. In addition, we devise a semantic abstracted
graph index for discovering candidate vertices, which brings a constant-time
reduction of candidate search space. The semantic abstracted graph and the
graph saturation can be efficiently updated upon the changes to the data graph.
Finally, comprehensive experiments performed on real and benchmark datasets
demonstrate that GQARDF outperforms its alternatives.
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Abstract. This paper studies the closest community search problem.
Given a graph G and a set of query vertices Q, the closest community of
Q in G is the connected subgraph of G that contains Q, is most cohesive
(i.e., with the largest possible minimum vertex degree), is closest to Q,
and is maximal. We show that this can be computed via a two-stage
approach: (1) compute the maximal connected subgraph g0 of G that
contains Q and is most cohesive, and (2) iteratively remove from g0 the
vertex that is furthest to Q and subsequently also other vertices that vio-
late the cohesiveness requirement. The last non-empty subgraph is the
closest community of Q in G. We first propose baseline approaches for
the two stages that run in O(n+m) and O(n0 ×m0) time, respectively,
where n (resp. n0) and m (resp. m0) are the number of vertices and
edges in G (resp. g0). Then, we develop techniques to improve the time
complexities of the two stages into O(n0 + m0) and O(m0 + n0 logn0),
respectively. Moreover, we further design an algorithm CCS with the
same time complexity as O(m0 + n0 logn0), but performs much better
in practice. Extensive empirical studies demonstrate that CCS can effi-
ciently compute the closest community over large graphs.

1 Introduction

The graph model has been widely used to capture the information of entities and
their relationships, where entities are represented by vertices and relationships
are represented by edges [13]. With the proliferation of graph data, research
efforts have been devoted to managing, mining and querying large graphs. In
this paper, we study the problem of community search for a given set of query
vertices, where a community is a group of vertices that are densely connected to
each other [7,9].

Traditionally, the problem of community detection has been extensively stud-
ied (e.g., see the survey [7] and references therein), which aims to mine the
community structures in a graph. Essentially, it partitions vertices of a graph
into disjoint or overlapping groups such that each group represents one com-
munity. Community detection is a one-time task, and the result is the same set
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of communities for different users and thus does not reflect users’ personalized
information. To remedy the non-personalization issue of community detection,
there is a growing interest to search communities for user-given query vertices
which facilitates a user-centric personalized search (e.g., see the tutorial [9] and
references therein). This querying problem is known as the community search
problem. In principle the total number of distinct communities that are discov-
erable by community search can be much larger than n—the number of vertices
in the data graph—and even may be exponential, while most of the community
detection methods can only identify at most n distinct communities. As a result,
community search has many applications [6,8,11], such as advertisements target-
ing, recommendation in online social networks, and metabolic network analysis.

Given a data graph G = (V,E) and a set of one or more query vertices
Q ⊂ V , the problem of community search aims to find a connected subgraph of
G that contains all query vertices, and is (most) cohesive. In the literature, the
cohesiveness of a subgraph is usually measured by its minimum vertex degree
(aka k-core) [2,6,12,14], minimum number of triangles each edge participates in
(aka k-truss) [10], or edge connectivity [3]. Among them, the minimum vertex
degree-based cohesiveness measure is popularly used due to its simplicity and
easy computability. However, there could be an exponential number of subgraphs
of G that contain Q and have the same cohesiveness (i.e., minimum vertex
degree). In light of this, Cui et al. [6] reports an arbitrary one satisfying the
requirements as the result, while Sozio and Gionis [14] introduces a distance
threshold τ such that all vertices in the reported subgraph should be within
distance τ from the query vertices. For the former, it is obviously not a good
idea to report an arbitrary one since vertices in the result could be far away from
the query vertices, while for the latter it may not be an easy task to specify an
appropriate distance threshold τ .

In this paper, we formulate the closest community search problem. Specifi-
cally, the closest community of Q in G is the connected subgraph of G that con-
tains all query vertices, is most cohesive (i.e., with the largest possible minimum
vertex degree), is closest to Q, and is maximal. Here, the closeness of a subgraph
is measured by the largest value among the shortest distances between query
vertices and other vertices in the subgraph. Compared to [6], closest community
only includes vertices that are close and thus relevant to the query vertices Q.
Compared to [14], closest community search does not require end-users to input
a distance threshold τ , but automatically finds the subgraph that satisfies the
smallest τ .

We show that the closest community of Q in G can be computed via a two-
stage approach: (1) stage-I computes the maximal connected subgraph g0 of
G that contains Q and is most cohesive, and (2) stage-II iteratively removes
from g0 the vertex that is furthest to Q and subsequently also other vertices
that violate the cohesiveness requirement due to the removal of their neighbors.
Then, the last non-empty subgraph will be the closest community of Q in G.
We first propose baseline approaches for the two stages that run in O(n + m)
and O(n0 × m0) time, respectively, where n (resp. n0) and m (resp. m0) are the
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number of vertices and edges in G (resp. g0). Then, we develop techniques to
improve the time complexities of the two stages into O(n0 + m0) and O(m0 +
n0 log n0), respectively. As a result, we have the IndexedLO algorithm whose time
complexity is O(m0 +n0 log n0); this is near-optimal in the worst case, since the
closest community of Q could be g0 itself whose size is O(n0+m0). Nevertheless,
in practice the closest community of Q could be much smaller than g0, as it is
expected that the closest community of Q usually contains only a few vertices
that are close to Q. Thus, we further develop an algorithm CCS that has the
same time complexity as IndexedLO but performs much better in practice. Our
contributions are as follows.

– We formulate the closest community search problem (Sect. 2), and develop a
Baseline approach (Sect. 4.1).

– We develop techniques to improve the time complexity and obtain the
IndexedLO algorithm that runs in O(m0 + n0 log n0) time, which is near-
optimal (Sect. 4.2).

– We design a CCS algorithm that has the same time complexity as IndexedLO
but runs faster in practice (Sect. 4.3).

– We conduct extensive empirical studies to demonstrate the efficiency and
effectiveness of our techniques (Sect. 5).

Proofs of all lemmas and theorems are omitted due to limit of space.

2 Preliminaries

For presentation simplicity, we focus our discussions on an undirected and
unweighted graph G = (V,E),1 where V and E are the vertex set and edge
set of G, respectively. We use n and m to denote the number of vertices and
the number of edges of G, respectively. We denote the undirected edge between
vertices u and v by (u, v). The set of neighbors of a vertex u is denoted by
N(u) = {v ∈ V | (u, v) ∈ E}, and the degree of u is denoted by deg(u) = |N(u)|.
A path between u and v is (v0, v1, . . . , vl) such that v0 = u, vl = v and
(vi−1, vi) ∈ E for 1 ≤ i ≤ l; the length of the path is l. The distance between u
and v, denoted δ(u, v), is defined as the shortest length among all paths between
u and v.

Given a set Q ⊂ V of query vertices, the query distance of a vertex v ∈ V
is the maximum value among the distances between v and vertices of Q, i.e.,
δ(Q, v) = maxu∈Q δ(u, v). For example, for the graph in Fig. 1 and Q = {q1, q2},
δ(Q, v1) = 1, δ(Q, v3) = 2, and δ(Q, v7) = 3. Then, the query distance of a sub-
graph containing Q is the maximum query distance of its vertices. For example,
the query distance of the subgraph induced by vertices {q1, q2, v1, v2, . . . , v9} is
3, the query distance of the subgraph induced by vertices {q1, q2, v1, v2, . . . , v6}
is 2, and the query distance of the subgraph induced by vertices {q1, q2, v1, v2}
is 1.
1 The techniques we propose in this paper can be straightforwardly extended to

directed graphs and weighted graphs.
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Fig. 1. An example graph

Given a set Q of query vertices, we aim to find the closest community of Q
in G. Intuitively, (1) the community should be connected and contain all query
vertices, (2) the community should be cohesive such that the vertices are tightly
connected, and (3) the community should be close to the query vertices such that
it is relevant to the query. In this paper, for presentation simplicity we adopt
the minimum vertex degree to measure the cohesiveness of a subgraph, while
our techniques can be easily extended to other cohesiveness measures such as
trussness [10] or edge connectivity [3]. We formally define the closest community
as follows.

Definition 1. Given a graph G = (V,E) and a set of query vertices Q ⊂ V , the
closest community of Q in G is the connected subgraph g of G that contains
Q and satisfies the following three conditions.

1. Most Cohesive: the minimum vertex degree of g is the largest among all
connected subgraphs of G containing Q.

2. Closest: g has the smallest query distance among all subgraphs satisfying the
above conditions.

3. Maximal: g is maximal.

The closest community of Q = {q1, q2} in Fig. 1 is the subgraph induced by
{q1, q2, v1, v2}, where the minimum vertex degree is 2 and the query distance is 1.

Problem Statement. Given a graph G = (V,E) and a set of query vertices
Q ⊂ V , we study the problem of efficiently computing the closest community of
Q in G.

We assume that the input graph G is connected, and a tie-breaker (e.g., vertex
ID, or personalized PageRank values [2]) is introduced such that all vertices
have different query distances. In the running examples, we use vertex ID for tie
breaking.

3 General Idea

The general idea of our approaches is based on the concept of (k, d)-community.
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Definition 2. Given a graph G = (V,E), a set of query vertices Q ⊂ V , and
integers k and d, the (k, d)-community of Q in G is the connected subgraph
g of G that contains Q and satisfies the following three conditions:

1. Cohesive: the minimum vertex degree of g is at least k.
2. Close: the query distance of g is at most d.
3. Maximal: g is maximal.

It is easy to see that the closest community of Q in G is the (k, d)-community
of Q in G that exists and has the largest k and the smallest d. Note that, the
(k, d)-community of Q (if exists) is unique. Moreover, the (k, d)-communities of Q
for different k values and different d values form hierarchical structures. That is,
for a fixed d, the (k1, d)-community of Q is a subgraph of the (k2, d)-community
of Q if k1 > k2; for a fixed k, the (k, d1)-community of Q is a subgraph of the
(k, d2)-community of Q if d1 < d2. Thus, we can compute the closest community
of Q by a two-stage framework.

Algorithm 1: TwoStageFramework

1 (kQ, g0) ← Stage-I(G,Q);
2 return Stage-II(g0, Q, kQ);

Stage-I. In the first stage, we compute the (k,∞)-community of Q in G that
has the largest k value. Denote this value of k as kQ, and denote the (kQ,∞)-
community of Q by g0. Then, kQ is the largest k value such that Q is in a
connected component of the k-core of G, and g0 is the connected component
of the kQ-core of G that contains Q. This is because, for any k, the (k,∞)-
community of Q is the connected component of the k-core that contains Q,
where the k-core of a graph is the maximal subgraph g such that every vertex in
g has at least k neighbors in g. Note that, the k-core is unique. For the graph in
Fig. 1, the entire graph is a 1-core, the subgraph induced by vertices {q1, q2, v1,
v2, . . . , v9} is a 2-core, the subgraph induced by vertices {q1, v7, v8, v9} is a 3-core,
and there is no 4-core. Thus, for Q = {q1, q2} in Fig. 1, kQ = 2 and the (kQ,∞)-
community of Q is the subgraph induced by vertices {q1, q2, v1, v2, . . . , v9}.

Stage-II. In the second stage, we compute the (kQ, d)-community of Q that
exists and has the smallest d value. As all vertices not in g0 are guaran-
teed to be not in the (kQ, d)-community of Q for any d, we can focus our
computations on g0. Thus, we iteratively reduce the graph g0 to obtain the
(kQ, d)-community of Q with the next largest d value, and the final non-
empty subgraph is the result. For example, the (kQ,∞)-community of Q =
{q1, q2} is the subgraph induced by vertices {q1, q2, v1, v2, . . . , v9}. The next
(kQ, d)-communities that will be discovered are the subgraphs induced by
vertices {q1, q2, v1, v2, . . . , v8}, {q1, q2, v1, v2, . . . , v6}, {q1, q2, v1, v2, v3, v4}, and
{q1, q2, v1, v2}, respectively, where the last one is the closest community of Q.
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4 Our Approaches

We first propose a Baseline approach in Sect. 4.1, then improve its time complex-
ity in Sect. 4.2, and finally improve its practical performance in Sect. 4.3.

4.1 A Baseline Approach

Baseline Stage-I: Baseline-S1. A naive approach for stage-I in Algorithm1
would be iteratively computing the k-core of G for k values decreasing from n to
1, and stopping immediately if Q is contained in a connected component of the
computed k-core. However, the worst-case time complexity will be quadratic to
the input graph size, which is prohibitive for large graphs. To aim for a better
time complexity, we propose to first compute the core number for all vertices,
where the core number of a vertex u, denoted core(u), is the largest k such
that the k-core contains u. For the graph in Fig. 1, core(q1) = core(v7) =
core(v8) = core(v9) = 3, core(v10) = core(v11) = 1, and the core numbers of
all other vertices are 2. Note that, the core number for all vertices in G can be
computed by the peeling algorithm in linear time [1]. Then, the k-core of G is
the subgraph induced by vertices whose core numbers are at least k [4]. Thus,
we can compute kQ, the largest k value such that Q is in a connected component
of the k-core of G, by conducting a prioritized search from an arbitrary vertex
of Q. That is, we grow the connected component from an arbitrary vertex of Q,
and each time we include, into the connected component, the vertex that has
the largest core number among all vertices that are connected to (a vertex of)
the connected component. Once the connected component contains all vertices
of Q, the minimum core number among all vertices of the connected component
then is kQ. The pseudocode of our baseline approach for stage-I is shown in
Algorithm 2, denoted Baseline-S1.

Example 1. Consider Q = {q1, q2} and the graph in Fig. 1, and assume we con-
duct the prioritized search from q1. The algorithm will first visit the vertices
{q1, v7, v8, v9} that have core numbers 3 and are connected to q1. Then, the
algorithm will visit a subset of the vertices {v1, v2, q2, v3, v4, v5, v6} that have
core numbers 2. Thus, kQ = 2, and the (kQ,∞)-community of Q is the subgraph
induced by vertices {q1, q2, v1, v2, . . . , v9}.

The correctness of Baseline-S1 (Algorithm 2) can be verified from the defini-
tions of kQ and (kQ,∞)-community, and the property that the k-core of G is
the subgraph induced by vertices whose core numbers are at least k. The time
complexity of Baseline-S1 is proved by the theorem below.

Theorem 1. The time complexity of Baseline-S1 is O(n + m) where n and m
are the number of vertices and the number of edges of G, respectively.

Baseline Stage-II: Baseline-S2. In the second stage, we aim to iteratively
reduce the graph g0, obtained from the first stage, to compute the (kQ, d)-
community of Q with the next largest d value. Intuitively, the vertex that is
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Algorithm 2: Baseline-S1
Input: Graph G = (V,E) and a set of query vertices Q ⊂ V
Output: kQ and the (kQ,∞)-community of Q

1 Run the peeling algorithm of [1] to compute the core number for all vertices of
G;

2 Initialize a priority queue Q to contain an arbitrary vertex of Q;
3 kQ ← n;
4 while not all vertices of Q have been visited do
5 u ← pop the vertex with the maximum core number from Q;
6 Mark u as visited;
7 if core(u) < kQ then kQ ← core(u) ;
8 for each neighbor v ∈ N(u) do
9 if v is not in Q and has not been visited then Push v into Q;

10 g0 ← the connected component of the kQ-core of G that contains Q;
11 return (kQ, g0);

Algorithm 3: Baseline-S2
Input: A set of query vertices Q ⊂ V , an integer kQ, and a graph g0 that

contains Q and has minimum vertex degree kQ
Output: Closest community of Q

1 Compute the query distance for all vertices of g0;
2 i ← 0;
3 while true do
4 u ← the vertex in gi with the largest query distance;
5 gi+1 ← the connected component of the kQ-core of gi\{u} that contains Q;
6 if gi+1 = ∅ then break ;
7 else i ← i + 1 ;

8 return gi;

furthest from the query vertices in g0 will not be in the next (kQ, d)-community;
thus, we can remove this vertex from g0 and then reduce the resulting graph to
the connected component of the kQ-core that contains Q. The final non-empty
subgraph will be the closest community of Q.

The pseudocode of our baseline approach for stage-II is shown in Algorithm 3,
denoted Baseline-S2. Line 1 computes the query distance for all vertices of g0.
Then, at Lines 4–5, we iteratively remove from gi the vertex that is furtherest
from the query vertices (i.e., has the largest query distance), and compute the
connected component gi+1 of the kQ-core of the graph gi\{u} that contains Q.
If there is no such gi+1 (i.e., gi+1 = ∅), then gi is the closest community of Q
and the algorithm terminates (Line 6). Otherwise, we increase i and continue
the next iteration (Line 7).
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Example 2. Continue Example 1. kQ = 2 and g0 is the subgraph induced by ver-
tices {q1, q2, v1, v2, . . . , v9}. v9 is the vertex that has the largest query distance in
g0. Then, g1 is computed as the connected component of the kQ-core of g0\{v9}
that contains Q, which is the subgraph induced by vertices {q1, q2, v1, v2, . . . , v8}.
v8 is the vertex that has the largest query distance in g1, and g2 is computed as
the subgraph induced by vertices {q1, q2, v1, v2, . . . , v6}. Similarly, g3 is the sub-
graph induced by vertices {q1, q2, v1, v2, v3, v4}, and g4 is the subgraph induced
by vertices {q1, q2, v1, v2}. Now, v2 is the vertex that has the largest query dis-
tance in g4. After removing v2 from g4, the kQ-core of g4\{v2} does not contain
all vertices of Q. Thus, the algorithm terminates, and g4 is the closest community
of Q.

The correctness of Baseline-S2 (Algorithm 3) is straightforward. The time
complexity of Baseline-S2 is proved by the theorem below.

Theorem 2. The time complexity of Baseline-S2 is O(n0 × m0) where n0 and
m0 are the number of vertices and the number of edges of g0, respectively.

As a result, the total time complexity of Baseline that first runs Baseline-S1
and then runs Baseline-S2 is O(n + m + n0 × m0). Note that, n0 and m0 in the
worst case can be as large as n and m, respectively. Thus, the time complexity
of Baseline is quadratic to the input graph size in the worst case.

4.2 Improving the Baseline Approach

The Baseline approach proposed in Sect. 4.1 is too slow to process large graphs
due to its quadratic time complexity O(n+m+n0 ×m0). In this subsection, we
propose techniques to improve the time complexity for the two stages of Baseline.

LinearOrder-S2: Improving Baseline-S2. As shown by our empirical studies in
Sect. 5, Baseline-S2 takes more time than Baseline-S1 in Baseline. Thus, we first
aim to reduce the time complexity of stage-II of Baseline, i.e., Baseline-S2. The
main cost of Baseline-S2 comes from Line 5 of Algorithm 3 that in each iteration
computes the connected component of the kQ-core of gi\{u} that contains Q. To
avoid this quadratic cost, we do not immediately search for the connected com-
ponent of the kQ-core that contains Q in each iteration. Instead, we separate the
computation into two steps: step-1 builds the entire hierarchical structure for the
(kQ, d)-communities of Q for all different d values by ignoring the connectedness
requirement, and step-2 searches for the connected (kQ, d)-community of Q that
has the smallest d value. This is based on the fact that the (kQ, d1)-community
of Q is a subgraph of the (kQ, d2)-community of Q if d1 < d2.

To build the hierarchical structure for the (kQ, d)-communities of Q for
all different d values, we propose to compute a linear ordering for vertices of
g0; recall that g0 is the (kQ,∞)-community of Q. Specifically, we encode the
hierarchical structure by a linear ordering seq of vertices of g0 and a subse-
quence targets of seq, such that there is one-to-one correspondence between
each (kQ, d)-community for a different d value and each suffix of seq that starts
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from a vertex of targets. Figure 2 shows such an example. Note that, to be more
precise, we here refer to a variant of (kQ, d)-community that does not necessarily
to be connected, i.e., we remove the connected requirement from Definition 2. To
compute the linear ordering, we iteratively remove from g0 the vertex that has
the largest query distance (and add it to the end of seq and targets), and then
subsequently remove from g0 all vertices that violate the kQ-core requirement
(and add them to the end of seq).

Fig. 2. Hierarchical structure of (kQ, d)-communities for all different d values

Given seq and a vertex u ∈ seq, let sequ denote the suffix of seq that starts
from u. Then, the closest community of Q will be the connected component, of
the subgraph induced by sequ, containing Q, where u is the right-most vertex of
targets such that Q is connected in the subgraph induced by sequ. For example,
in Fig. 2, the closest community of Q = {q1, q2} simply is the subgraph induced
by seqv2

= {v2, v1, q1, q2}. It is worth mentioning that, in general Q may be
disconnected in the subgraph seqv where v is the last vertex of targets. This
is because we do not check the connectedness of Q during the computation of
seq and targets for the sake of time complexity. To get the closest community
of Q from seq and targets, we can use a disjoint-set data structure [5] to
incrementally maintain the connected components of the subgraphs of g0 induced
by vertices of suffices of seq.

The pseudocode of our improved algorithm for stage-II is shown in Algo-
rithm4, denoted LinearOrder-S2. Lines 1–14 compute the hierarchical structure
for the (kQ, d)-communities of Q for all different d values, and Lines 15–21 find
the closest community of Q from the hierarchical structure. Note that, in order
to efficient check whether Q is entirely contained in a single set of the disjoint-set
data structure S at Line 21, we maintain a counter for each set recording the
number of Q’s vertices that are in this set. The counter can be maintained in
constant time after each union operation of Line 20, and Line 21 can be tested
in constant time; we omit the details.

Example 3. Reconsider Example 2. kQ = 2 and g0 is the subgraph induced by
vertices {q1, q2, v1, v2, . . . , v9}. Firstly, v9 is the vertex with the largest query dis-
tance, so v9 is removed from the graph and is appended to both seq and targets;
no other vertices are removed as a result of the kQ-core requirement. Secondly,
v8 is the vertex with the largest query distance, and it is removed from the graph
and is appended to both seq and targets; subsequently, v7 is also removed from
the graph and is appended to seq due to the violation of the kQ-core requirement.
So on so forth. The final results are seq = (v9, v8, v7, v6, v5, v4, v3, v2, v1, q1, q2)
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Algorithm 4: LinearOrder-S2
/* Compute the hierarchical structure for the (kQ, d)-communities */

1 Compute the query distance for all vertices of g0;
2 Sort vertices of g0 in decreasing order with respect to their query distances;
3 seq ← ∅; targets ← ∅;
4 g′ ← g0; deg(u) ← the degree of u in g′ for all vertices u ∈ g′;
5 while g′ is not empty do
6 u ← the vertex in g′ with the largest query distance;
7 if Q ∩ seq = ∅ then Append u to targets;
8 Q ← {u}; /* Q is a queue */;
9 while Q �= ∅ do

10 Pop a vertex v from Q, and append v to seq;
11 for each neighbor w of v in g′ do
12 deg(w) ← deg(w) − 1;
13 if deg(w) = kQ − 1 then Push w into Q ;

14 Remove v from g′;

/* Search for the closest community of Q */

15 Initialize an empty disjoint-set data structure S;
16 for each vertex u ∈ targets in the reverse order do
17 for each vertex v ∈ seq between u (inclusive) and the next target vertex

(exclusive) do
18 Add a singleton set for v into S;
19 for each neighbor w of v in g0 do
20 if w ∈ S then Union v and w in S ;

21 if Q is entirely contained in a single set of S then break ;

22 return all vertices in the set of S that contains Q;

and targets = (v9, v8, v6, v4, v2) as shown in Fig. 2. As the subgraph induced
by seqv2

= {v2, v1, q1, q2} is connected and contains both q1 and q2, the closest
community of Q = {q1, q2} is the subgraph induced by vertices seqv2

.

Theorem 3. The time complexity of LinearOrder-S2 is O(m0 + n0 log n0).

Indexed-S1: Improving Baseline-S1. By improving Baseline-S2 to LinearOrder-S2
which has a time complexity of O(m0 + n0 log n0), stage-I (i.e., Baseline-S1),
which processes the entire input graph and takes O(n + m) time, now becomes
the bottleneck. Thus, in the following we propose to utilize an index structure
to improve Baseline-S1.

Baseline-S1 computes two things: kQ and g0 where g0 is the connected com-
ponent of the kQ-core of G that contains Q. We first discuss how to efficiently
get g0 from G based on an index structure if kQ is known. Recall that, for any
k, the k-core of G is the subgraph induced by vertices whose core number are
at least k. Thus, in the index structure, we precompute and store the core num-
ber for all vertices of G, and moreover we sort the neighbors of each vertex in
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the graph representation in decreasing order with respect to their core numbers.
Thus, to search for g0, we can conduct a pruned breath-first search which starts
from an arbitrary vertex of Q and visits only vertices whose core numbers are at
least kQ. It can be verified that, the vertices and edges visited during the pruned
breath-first search form the g0.

Secondly, to efficiently compute kQ, we further maintain a maximum span-
ning tree of the edge-weighted graph of G where the weight of edge (u, v) equals
max{core(u), core(v)}. For example, the weighted graph and the maximum
spanning tree for the graph in Fig. 1 are shown in Fig. 3(a) and Fig. 3(b), respec-
tively. It can be verified by a similar argument as in [3] that kQ equals the
minimum weight among all edges in the paths between q1 and qi for 2 ≤ i ≤ |Q|
in the maximum spanning tree, where Q = {q1, q2, . . . , q|Q|}. For example, the
path between q1 and q2 in Fig. 3(b) is (q1, v3, v4, q2) and k{q1,q2} = 2. Note that,
by further processing the maximum spanning tree using the techniques in [3],
kQ can be computed in O(|Q|) time; we omit the details.

Fig. 3. Weighted graph and maximum spanning tree

Algorithm 5: Indexed-S1
1 Compute kQ based on the index I;
2 Conduct a pruned breadth-first search on G by starting from an arbitrary

vertex of Q and visiting only vertices whose core numbers are at least kQ;
3 g0 ← the subgraph of G induced by vertices visited at Line 2;
4 return (kQ, g0);

The pseudocode of our index-based algorithm for stage-I is shown in Algo-
rithm5, which is self-explanatory.

Theorem 4. The time complexity of Indexed-S1 is O(n0 + m0).

By invoking Indexed-S1 for stage-I and LinearOrder-S2 for stage-II, we get an
algorithm that computes the closest community of Q in O(m0 +n0 log n0) time;
denote this algorithm as IndexedLO.
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4.3 The CCS Approach

The time complexity of IndexedLO is near-optimal in the worst case, because the
closest community of Q could be g0 itself whose size is O(n0+m0). Nevertheless,
the closest community of Q could be much smaller than g0 in practice, as it is
expected that the closest community of Q usually contains only a few vertices
that are close to Q. Motivated by this, in this section we propose a CCS approach
to improve the performance of IndexedLO in practice. The general idea of CCS fol-
lows the framework of [2]. That is, instead of first computing g0—the connected
component of the kQ-core of G that contains Q—and then shrinking g0 to obtain
the closest community of Q as shown in Algorithm 1, we start from working on a
small subgraph containing Q and then progressively expand it by including next
few further away vertices. As the vertices are added to the working subgraph in
increasing order according their query distances, once the working subgraph has
a connected kQ-core that contain all vertices of Q, the closest community of Q
can be computed from the working subgraph by invoking LinearOrder-S2.

Algorithm 6: CCS
Input: Graph G = (V,E), a set of query vertex Q, and an index I
Output: Closest community of Q

1 Compute kQ based on the index I;
2 h0 ← the subgraph of G induced by Q;
3 i ← 0; g ← ∅;
4 while true do
5 g′ ← the connected component of the kQ-core of hi that contains Q;
6 g ← LinearOrder-S2(Q, kQ, g

′);
7 if g = ∅ then
8 i ← i + 1; hi ← hi−1;
9 while hi �= G and the size of hi is less than twice of hi−1 do

10 Get the next vertex u that has the smallest query distance;
11 Add to hi the vertex u and its adjacent edges to existing vertices

of hi;

12 else break;

13 return g;

The pseudocode of CCS is shown in Algorithm 6. We first compute kQ based
on the index I (Line 1), and initialize the working subgraph h0 to be the sub-
graph of G induced by Q (Line 2). Then, we go to iterations (Lines 5–12). In
each iteration, we try to compute the closest community of Q in hi by invoking
LinearOrder-S2 on the connected component of the kQ-core of hi that contains
Q (Lines 5–6). Let g be the result. If g is not empty, then it is guaranteed to
be the closest community of Q in G (Line 12). Otherwise, the current working
subgraph hi does not include all vertices of the closest community of Q, and we
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need to grow the working subgraph (Lines 8–11). To grow the working subgraph,
we (1) include vertices in increasing order according to their query distances, and
(2) grow the working subgraph exponentially at a rate of two. Here, the size of
a graph is measured by the summation of its number of vertices and its number
of edges. We will prove shortly that the time complexity of this strategy will be
O(m0 +n0 log n0) in the worst case. Note that, if we grow the working subgraph
at the rate of adding one vertex, then it is easy to see that the time complexity
would be quadratic (i.e., O(n0 × m0)).

Example 4. Reconsider Q = {q1, q2} and the graph in Fig. 1, and recall that the
vertices in increasing query distance order are q1, q2, v1, v2, . . . , v11. kQ = 2. The
initial working subgraph h0 consists of vertices q1 and q2 and is of size 2, as
shown in Fig. 4. The second working subgraph h1 is of size 5, as shown in Fig. 4.
h1 does not have a 2-core, and we continue growing the working subgraph. The
third working subgraph h2 is the subgraph induced by vertices {q1, q2, v1, v2, v3},
and g is computed as the subgraph induced vertices {q1, q2, v1, v2} which is the
closest community of Q. Thus, the algorithm terminates and reports g as the
closest community of Q.

Fig. 4. Running example of CCS

Although CCS may need to process many subgraphs of g0, we prove in the
theorem below that its worst-case time complexity is O(m0 + n0 log n0).

Theorem 5. The worst-case time complexity of CCS is O(m0 + n0 log n0).

5 Experiments

In this section, we conduct extensive empirical studies to evaluate the perfor-
mance of our algorithms on real-world graphs. We evaluate the following four
algorithms.

– Baseline, which invokes Baseline-S1 (Algorithm 2) for stage-I and Baseline-S2
(Algorithm 3) for stage-II.

– LinearOrder, which invokes Baseline-S1 (Algorithm 2) for stage-I and
LinearOrder-S2 (Algorithm 4) for stage-II.
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– IndexedLO, which invokes Indexed-S1 (Algorithm 5) for stage-I and
LinearOrder-S2 (Algorithm 4) for stage-II.

– CCS (Algorithm 6).

All the algorithms are implemented in C++.

Datasets. We use six real graphs that are downloaded from the Stanford Network
Analysis Platform2 in our evaluation. Statics of these graphs are shown in Table 1,
where coremax denotes the maximum core number among vertices in a graph.

Table 1. Statistics of real graphs

Graphs n m coremax

Email 36,692 183,831 43

Amazon 334,863 925,872 6

DBLP 317,080 1,049,866 113

Youtube 1,134,890 2,987,624 51

LiveJournal 3,997,962 34,681,189 360

Orkut 3,072,441 117,185,083 253

Setting. We compare the performance of the algorithms by measuring their
query processing time. The reported time includes all the time that is spent in
computing the closest community for a query, except the I/O time for reading the
graph from disk to main memory. All experiments are conducted on a machine
with 2.9 GHz Intel Core i7 CPU and 16 GB main memory.

5.1 Experimental Results

In this testing, the query vertices for a graph are randomly selected from its 5-
core. The total running time of the four algorithms on the six graphs is shown in
Fig. 5. We can see that the algorithms in sorted order from slowest to fastest are
Baseline, LinearOrder, IndexedLO, and CCS. This results align with our theoretical
analysis. That is, the time complexities of these four algorithms are O(n + m +
n0 ×m0), O(n+m+m0 +n0 log n0), O(m0 +n0 log n0), and O(m0 +n0 log n0),
respectively, where n0 usually is much smaller than n, and m0 usually is much
smaller than m. Baseline cannot finish with 10 min, except for the two small
graphs Email and Amazon. The improvement of CCS over LinearOrder is up-to
607 times. The improvement of CCS over IndexedLO is up-to 148 times, despite
having the same worst-case time complexity.

To get a more detailed analysis of the algorithms, we separate the total run-
ning time into the running time of stage-I and the running time of stage-II, for
each algorithm. The results are shown in Table 2. Recall that the algorithm for
2 http://snap.stanford.edu/.

http://snap.stanford.edu/
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Fig. 5. Total running time of the algorithms (ms)

stage-I of LinearOrder is the same as that of Baseline, and the algorithm for stage-
II of IndexedLO is the same as that of LinearOrder. We can see that Indexed-S1
(used in stage-I of IndexedLO) significantly improves upon Baseline-S1 (used in
stage-I of Baseline and LinearOrder) as a result of the index-based approach,
and the improvement is more than one order of magnitude. Regarding stage-
II, we can see that LinearOrder-S2 (used in LinearOrder and IndexedLO) signif-
icantly improves upon Baseline-S2 (used in Baseline) due to the improved time
complexity from quadratic (specifically, O(n0 ×m0)) to near-linear (specifically,
O(m0 + n0 log n0)).

Table 2. Stage-I and stage-II time of the algorithms (ms)

Graphs Baseline LinearOrder IndexedLO CCS

Stage-I Stage-II Stage-I Stage-II Stage-I Stage-II Total

Email 56.01 56,322 56.10 12.66 7.48 12.22 6.31

Amazon 445.14 104,581 445.03 68.52 35.89 68.24 12.85

DBLP 493.02 >10 min 493.95 120.84 59.5 120.77 14.00

Youtube 1,385 >10 min 1,385 291 128.49 291 74.07

LiveJournal 19,343 >10 min 19,343 4,178 2374.39 4,178 226.74

Orkut 58,815 >10 min 58,815 13,620 4295.06 13,620 176.63

Now, let’s compare the two stages within each algorithm. We can see that
for Baseline, stage-II (Baseline-S2 with time complexity O(n0 × m0)) dominates
stage-I (Baseline-S1 with time complexity O(n + m)) due to the quadratic time
complexity of stage-II, and stage-II takes more than 10 min for graphs DBLP,
Youtube, LiveJournal, and Orkut. This motivates us to improve Baseline-S2 to
LinearOrder-S2 that runs in O(m0 + n0 log n0) time, which leads to our second
algorithm LinearOrder. Due to the improved time complexity of LinearOrder-S2,
we can see that stage-I of LinearOrder (i.e., Baseline-S1) now dominates due to
processing the entire input graph. This motivates us to utilize an index structure
that is built offline to improve the online query processing time, which results in
our third algorithm IndexedLO that has a time complexity of O(m0 + n0 log n0).
The time complexity of IndexedLO is near-linear to the size of the initial graph
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g0, which increases along with the input graph size. Thus, the processing time
of IndexedLO increases significantly for large graphs (e.g., Orkut), which moti-
vates us to design the CCS algorithm. We can see that CCS significantly outper-
forms both stages of IndexedLO, and the processing time of CCS on large graphs
increases much slower than that of IndexedLO.

Fig. 6. DBLP with distance 1 among query vertices

Fig. 7. DBLP with distance 2 among query vertices

Fig. 8. DBLP with distance 3 among query vertices

Vary Query Size. In this testing, we evaluate the impact of the number of
query vertices on the performance of the algorithms. In particular, we sep-
arately consider the algorithms for stage-I and for stage-II. For stage-I, we
compare Indexed-S1 with Baseline-S1, and for stage-II, we compare CCS with
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LinearOrder-S2. Note that, (1) we do not include Baseline-S2 because it is too
slow as shown in Table 2, and (2) we compare CCS with LinearOrder-S2 although
the reported time of CCS is its total processing time. We vary the number of
query vertices |Q| from 1 to 5. For each query size, we generate three sets of
queries such that the distances among the query vertices are 1, 2, and 3, respec-
tively. The results on DBLP are shown in Fig. 6, Fig. 7 and Fig. 8. We can see
that the processing time for both stages increases slightly when the number
of query vertices increases. Nevertheless, this is not significant, and CCS still
significantly outperforms the other algorithms.

Case Study. We conduct a case study for the closest community search on
the DBLP coauthor graph, which is built based on the dataset BigDND: Big
Dynamic Network Data3 extracted from DBLP. The dataset includes all author
publication information stored in DBLP up-to October 2014. In our coauthor
graph, each vertex represents one author, and there is an edge between u and v
if they have published at least 3 papers together. The final coauthor graph has
367, 202 vertices and 821, 205 edges.

Fig. 9. Closest community search for “Terence Tao”

In the case study, we search for the closest community of “Terence Tao”,
an Australian-American mathematician who is one of the Fields Medal recipi-
ent in 2006. The result is shown in Fig. 9, which has 18 authors. Terence Tao
has published more than 3 papers together with Van H. Vu and Emmanuel J.
Candes. The most cited paper of Tao’s is Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information, which is a
collaborated work with Emmanuel J. Candes and Justin Romberg. Emmanuel
J. Candes also has over 80 papers recorded in our dataset, so there are a lot of
scholars that coauthor with him as well, as shown in Fig. 9, there are 13 nodes
that represent his coauthors.

3 http://projects.csail.mit.edu/dnd/.

http://projects.csail.mit.edu/dnd/
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6 Related Works

Community Search. Given a set of one or more query vertices Q, commu-
nity search aims to find cohesive subgraphs that contain Q. In the literature,
the cohesiveness of a subgraph is usually measured by minimum degree (aka
k-core) [6,14], minimum number of triangles each edge participates in (aka k-
truss) [10], or edge connectivity [3]. In this paper, we use the minimum degree-
based cohesiveness measure in our closest community search problem. The tech-
nique of [6] cannot be used for closest community search as it inherently ignores
the distance between vertices. Although the technique of [14] can be extended
to compute the closest community which corresponds to our Baseline approach,
it is infeasible for large graphs as shown by our experiments. On the other hand,
the closest community search problem is recently studied in [10] which uses the
trussness-based cohesiveness measure, the general idea of the algorithm in [10]
is similar to our combination of Indexed-S1 and Baseline-S2. We have shown that
Baseline-S2 cannot process large graphs due to its quadratic time complexity.
In order to process large graphs, heuristic techniques (such as bulk deletion and
local exploration) are used in [10] which destroys the exactness; that is, the com-
puted result may be not the closest community. It will be an interesting future
work to extend our implementation to handle the query of [10].

Influential Community Search. The problem of influential community search
is recently investigated in [2,12]. Influential community search does not have
query vertices but considers a vertex-weighted input graph, and aims to find
top subgraphs that have minimum vertex degree k and have largest minimum
vertex weight. Due to not having query vertices and not aiming for most cohesive
subgraph, the algorithms in [2,12] cannot be used to process closest community
search queries.

7 Conclusion

In this paper, we formulated the closest community search problem based on
the minimum degree-based cohesiveness measure. We firstly developed a Baseline
algorithm, and then progressively improved it to IndexedLO, and CCS. We the-
oretically analyzed their time complexities, and conducted extensive empirical
studies to evaluate the efficiency and effectiveness of the algorithms.
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Abstract. Knowledge Representation Learning (KRL) methods pro-
duce unsupervised node features from knowledge graphs that can be
used for a variety of machine learning tasks. However, two main issues
in KRL embedding techniques have not been addressed yet. One is that
real-world knowledge graphs contain millions of nodes and billions of
edges, which exceeds the capability of existing KRL embedding systems;
the other issue is the lack of a unified framework to integrate the current
KRL models to facilitate the realization of embeddings for various appli-
cations. To address the issues, we propose PDKE, which is a distributed
KRL training framework that can incorporate different translation-based
KRL models using a unified algorithm template. In PDKE, a set of func-
tions is implemented by various knowledge embedding models to form
a unified algorithm template for distributed KRL. PDKE implements
training arbitrarily large embeddings in a distributed environment. The
effeciency and scalability of our framework have been verified by exten-
sive experiments on both synthetic and real-world knowledge graphs,
which shows that our approach outperforms the existing ones by a large
margin.

Keywords: Knowledge Representation Learning · Knowledge
Graphs · Distributed framework · Knowledge embedding

1 Introduction

With the proliferation of Knowledge Graphs (KG), the applications of knowledge
graphs have a rapid growth in recent years. In fact, a KG is a type of large-
scale Semantic Web [1], which is constructed to represent millions of objects
and billions of relations in the real world, such as Freebase [2], DBpedia [9],
and YAGO [19]. In the Semantic Web community, the Resource Description
Framework (RDF) has been widely recognized as a flexible graph-like data model
to represent large-scale KGs. An RDF triple is represented as (h, r, t), where h

c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 588–603, 2020.
https://doi.org/10.1007/978-3-030-59416-9_35
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is the head entity, t the tail entity, and r the relation connecting the head and
tail. A triple indicates an existing fact that two entities are connected by the
relation. Take (Cameron, directs, T itanic) as an example, the statement claims
a fact that the director Cameron directs the movie Titanic. Although a set
of triples is effective in representing graph-structured data, KGs’ inherent graph
nature may incur high complexity when they are involved in most learning tasks.

To tackle this issue, a new research direction called Knowledge Representa-
tion Learning (KRL) is proposed. The key idea is to embed the components of
a KG containing entities and relations into a continuous vector space in order
to simplify operations while retaining the inherent structure of the KG. The
relations of triples are represented as various types of operators between vectors
of head and tail entities, which can be further used for various machine learning
tasks, such as knowledge graph completion [3], relation extraction [18], entity
visualization [5], and entity classification [17].

Among the existing KRL models, translation-based models, such as TransE
[3], TransH [21], and TransR [13], have exhibited high accuracy on benchmark
datasets (e.g., FB15K and WN18). However, the following issues are largely
ignored in previous works: (1) the scalability is not yet considered in the existing
models, which mainly focus on the synthetic benchmark datasets instead of real-
world large-scale KGs; (2) there is a lack of a unified algorithm framework that
can incorporate at least a set of models in the same category (e.g., translation-
based) to facilitate applications of these models.

To this end, we propose a novel PyTorch-based Distributed Knowledge
Embedding (PDKE) framework1 to uniformly train the translation-based mod-
els. PDKE uses a partitioning scheme, which is proposed in [11], to support mod-
els that are too large to fit in memory on a single machine. Therefore, the PDKE
framework supports distributed training, in which all computing sites participate
the training process in parallel without performing synchronization. In PDKE,
an efficient negative sampling technique is adopted, which can uniformly sample
entities from data and reuse negative examples in batch processing to reduce
memory consumption. PDKE realizes a unified algorithm framework, which can
incorporate translation-based KRL models. We have conducted extensive exper-
iments for the PDKE framework on both synthetic and real-world KGs. The
experimental results show that our framework is comparable to the baselines in
accuracy. Meanwhile, the PDKE framework can smoothly perform training on
real-world KGs, which shows that our framework is scalable when dealing with
large KGs. Our contributions in this paper can be summarized as follows:

(1) We propose a PyTorch-based Distributed Knowledge Embedding frame-
work, which uses entity and relation partitioning to support distributed
training in order to achieve the scalability for large KGs.

(2) PDKE realizes a unified algorithm framework that can incorporate
translation-based models to facilitate applications of these models. KRL
models can be implemented through the API interface provided by PDKE.

1 https://github.com/RweBs/PDKE.

https://github.com/RweBs/PDKE
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(3) Extensive experiments have been conducted to verify the efficiency and scal-
ability of the proposed framework on both synthetic and real-world KGs.
The results show that the PDKE framework can significantly improve train-
ing efficiency and reduce memory consumption without reducing accuracy.

The rest of this paper is organized as follows. Section 2 reviews related works.
In Sect. 3, we introduce preliminaries for the distributed embedding framework.
In Sect. 4, we describe in detail the proposed algorithms for learning embeddings
of entities and relations in knowledge graphs. Section 5 shows the experimental
results, and we conclude in Sect. 6.

2 Related Work

Recent years have witnessed great advances in Knowledge Graph Embedding
(KGE) techniques, which can be classified into the following categories: (1) tra-
ditional KRL models [3,8,13,21]; (2) the unified training framework [7,10,11,13].
Currently, the capability of existing unified framework is limited, which is only
able to incorporate a few KRL models (i.e., TransE [3], TransH [21], TransR
[13], and TransD [8]) and perform training on small benchmark datasets.

2.1 Traditional KRL Models

Existing facts stored in knowledge graphs are exploited for training by most
currently available KRL models, which can be classified into two categories:
translation-based models and semantic matching models.

(1) Translation-based models. TransE [3] is the initial work in this category,
which is extended by a series of following works, e.g., TransH [21], TransR
[13], and TransD [8]. TransE represents entities and relations as vectors in
the same space. TransH embeds entities and relations into different hyper-
planes, and thus solves the problem of different types of entity vectors with
similar distances during the multi-relation embedding process, which cannot
be solved in TransE. In TransR, an entity usually has more than one prop-
erty at the same time, and different relations focus on various properties
of the entity. However, the high complexity of TransR has become its main
drawback. TransD uses projection vectors to replace the projection matrix
in TransR, which significantly reduces time complexity while achieving the
same effect as TransR.

(2) Semantic matching models. Related works on the semantic matching model
includes RESCAL [16], DistMult [22], HolE [15], ComplEx [20], etc.
RESCAL associates each entity with a vector to capture its latent seman-
tics, and represents each relation as a matrix that models the pairwise
interactions between factors. DistMult restricts the matrices mentioned in
RESCAL to diagonal matrices to simplify the model, which causes DistMult
to handle only symmetric relations. HolE represents all entities and relations
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as vectors in a vector space, which allows it to have both the expressive power
of RESCAL and the simplicity of DistMult. ComplEx extends DistMult by
introducing complex-valued embeddings, which allows it to better model
asymmetric relations.

2.2 The Unified Training Framework

The existing unified training frameworks generally perform single-process train-
ing on one machine, which requires a relatively long training time. To address
the low efficiency of the single-process training, the Parameter Server (PS) [12]
distributed architecture is proposed to implement parallel training, which uses
parameter server to store model parameters and clients for processing train-
ing data. Multiple clients perform training in parallel and communicate asyn-
chronously with the server, which improves training efficiency. With reasonable
scheduling, the PS architecture can avoid conflicts during parallel training. Based
on the PS architecture, a series of unified training frameworks are constructed,
which can be classified as follows:

(1) Standalone KRL framework. KB2E [13] is a graph embedding toolkit that
integrates the unified implementation of various KRL models. However,
KB2E cannot perform distributed training, which makes it difficult to sat-
isfy the requirements of large-scale KGs. In the OpenKE [7] framework,
GPU acceleration and parallelization mechanisms are applied to the whole
training procedure, which can speed up the training process. Nevertheless,
the parallelization mechanism is actually executed on a single machine, not
on a distributed cluster, thus OpenKE still does not support embedding for
large-scale KGs.

(2) Distributed KRL framework. SANSA [10] is an open-source distributed
stack for computation over large-scale KGs. SANSA provides efficient scal-
ability, fault tolerance, and wide interfaces to execute various applications
for users. In SANSA, the distributed machine learning layer is built on
top of the architecture and implements TransE, which is the most basic
translation-based KRL model. Nevertheless, the accuracy of the TransE in
SANSA is quite low since the embedding module of SANSA is still in the
alpha development phase and has bugs in the distributed updating process
of the training model. PBG is a large-scale graph embedding system, which
consists of distributed execution models based on block decomposition and
a negative sampling strategy for distributed workers. Unlike previous works,
our PDKE framework is a unified algorithm framework that can incorporate
all translation-based KRL models.

More recently, DKRL proposed in [4] is a distributed representation learning
algorithm based on Spark [23]. DKRL incorporates different translation-based
KRL models and are able to train them in parallel, which is most similar work to
ours. However, our PDKE framework is based on the Parameter-Server architec-
ture and implemented on the PyTorch distributed learning library, which enables
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PDKE to handle larger KGs than DKRL. Furthermore, PDKE leverages entity
and edge partitioning to avoid conflicts in the update process to solve the prob-
lem in SANSA. We also devise an efficient negative sampling technique in PDKE,
which can sample negative triples uniformly from the data and reuse the negative
examples in batch processing to reduce memory consumption.

3 Preliminaries

In this section, we introduce the definitions of relevant background knowledge.

Definition 1 (Knowledge Graph). Knowledge graph is denoted as G =
(V,R, T ), where V and R are the entity set and relation set, respectively,
T = {(h, r, t)} ⊆ V × R × V is the set of triples.

Inspired by the graph partitioning method in [11], we introduce an entity
and edge partitioning strategy on knowledge graphs.

Definition 2 (Entity Partition). Entity Partition P = {p1, p2, ..., pn}(1 ≤ n ≤
|V |) is a subset of P(V ), where V is entity set and P(V ) is the power set of
V . P satisfies the following conditions: (1) ∀pi ∈ P, pi �= ∅; (2) ∀pi, pj ∈ P ;
i �= j → pi ∩ pj = ∅; (3)

⋃n
i=1 pi = P .

After entities are divided into n partitions (n is defined by the user), edges
can be divided into n2 partitions.

Definition 3 (Edge Partition). Edge Partition Q = {qij | qij = {(pi, pj)} ∧ 1 ≤
i, j ≤ n} is a multi-set combined by ordered pairs of entities, which satisfies the
following conditions: (1) ∀qij ∈ Q, qij �= ∅; (2) ∀qij , qrs ∈ Q; i �= r ∧ j �= s →
qij ∩ qrs = ∅; (3)

⋃n
i=1(

⋃n
j=1 qij) = Q.

PDKE is a distributed parallel embedding framework that we proposed for
large-scale KGs. The computation tasks of PDKE are implemented on top of
a distributed cluster of multiple machines. The PDKE framework are formally
defined as follows:

Definition 4 (PDKE framework). Given a KG S as the input data, let C be
a set of machines in a distributed cluster, each computing site s ∈ C has two
states, i.e., active or inactive. The function getState(): C → {active, inactive}
gets current state of a computing site. The master site sm ∈ C. In the initial
stage, only master site is active, the other slave sites are inactive. An inactive
site would be invoked while receiving the signal from the master site. During
the computation process, the function trainExecution(α, γ, Trans(X)) may be
executed in parallel on each computing site, where α is the learning rate, γ the
margin, Trans(X) the KRL model. When each computing site si starts working,
it (1) first calls the function acquireToken() to request a token from the lock
server in order to access the corresponding resources, (2) generates sample triples
in the edge partition Q, (3) executes the loss functions and gradient for the update
procedure, (4) returns tokens to lock server, and (5) starts the next iteration or
stops training. The parallel training continues until all sites are inactive.
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In the entire PDKE framework, the master site is the most critical one which
is responsible for resource allocation and management, work scheduling, as well
as training.

4 Algorithm Framework

In this section, we propose a distributed algorithm framework for parallel knowl-
edge embedding, which employs the entity and relation partitioning introduced
in Sect. 3. First, we illustrate the architecture of our framework, then we describe
the implementation of distributed algorithms. Finally, we analyze the complexity
results of the proposed method.

4.1 Architecture

The popularity of large-scale real-world KGs, with millions of nodes and billions
of edges, demands the efficiency and scalability of the knowledge embedding app-
roach. The architecture of PDKE for KRL is depicted in Fig. 1. The numbered
arrows in Fig. 1 respectively indicate: 1© given a knowledge graph, the frame-
work loads the KG and performs the partitioning algorithm; 2© the initializer
initializes parameters of a KRL model in preparation for distributed training; 3©
the executors process training in parallel and get embedding vectors and trained
models; 4© the embedding vectors are used for downstream machine learning
tasks.

Fig. 1. The PDKE architecture

The design rationale of the PDKE framework is in line with the Template
Method design pattern [6]. It is worth noting that the PDKE algorithm frame-
work can accommodate all translation-based KRL models, not limited to the
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four exemplary models mentioned above. New models can be easily added by
providing concrete classes that implement the Template Method interface in
PDKE.

Existing works have shown that the PS architecture is effective for training
with large sparse models. PDKE uses the PS architecture to support represen-
tation learning for large-scale knowledge graphs. In the PDKE architecture, the
parameter server stores all embeddings in the form of key-value pairs. Each time
the SGD function is called, the clients request the required embedding param-
eters from the parameter server and asynchronously send the gradients to the
server to update the parameters.

Fig. 2. The workflow of the PDKE distributed training framework

Figure 2 shows the workflow of the distributed PDKE training framework.
PDKE employs a distributed file system to achieve the goal that all computing
sites are able to share entity and edge partitions asynchronously. The partitioning
management is handled by the lock server on the master site, which distributes
partitions to different computing sites to avoid conflicts during parallel train-
ing. The numbered arrows in Fig. 2 indicate the communication workflow in the
training process. 1© The task schedulers acquire tokens from the lock server;
2© the executors load data from the distributed file system and perform train-
ing in parallel; 3© during the training process, the clients communicate with the
parameter server asynchronouslys; 4© the computing sites upload the embedding
results to the distributed file system.
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4.2 Distributed Training Model

We propose a distributed training model to address the parallel training issue.
Algorithm 1 presents an overview of the distributed training process. In the ini-
tial phase, input data is stored in the distributed file system, and all computing
sites are in the inactive state. After the data is preprocessed, the master site
independently completes the tasks of entity and edge patitioning. Entities are
divided into n partitions, where n is chosen such that each partition can fit into
memory or to meet the conditions required by the parallel execution (line 4).
Edges are divided into n2 partitions that is detemined by the types of head and
tail entities (line 5). After entity and edge partitioning is complete, the master
site starts the lock server to manage the access tokens, which are needed by
the computing sites during training execution (line 6). Once the access tokens
have been obtained from the lock server, different computing sites can load par-
titions, implement training, and update parameters in parallel without conflicts.
Trans(X) represents a translation-based KRL model (e.g., TransE), which is usu-
ally stored on the parameter server in the form of a set of parameters generated
by dataInit(Tp, Trans(X)). The computing sites start the training procedures
in parallel by communicating with the distributed file system and the parame-
ter server synchronously (lines 8–10). The training procedure will be terminated
when reaching the maximum number of iterations, which is equal to the param-
eter epoch.

Algorithm 1: PDKE-Training
Input: A set of RDF triples S = {(h, r, t) | h, t ∈ V, r ∈ E}
Parameter: max training iterations epoch, embedding dimension d, learning

rate α, margin γ
Output: Embedding results of S: V ec(S) = {(h, r, t) | h, t ∈ V, r ∈ E}

1 V ec(S) ← ∅;
2 V, R, T ←dataPreprocess(S) ; /* Load RDF triple set S */

3 if si is master then
4 Vp ← split V into patitions ;
5 Tp ← split T into patitions ;
6 startLockServer();

7 dataInit(Tp, Trans(X)) ; /* X ∈ {E, H, R, D} */

8 for each computing site si is inactive do
9 while not end of epoch do

10 {(h, r, t)} ← trainExecution(α, γ, Trans(X));
/* train on each site in parallel */

11 V ec(S) ← V ec(S) ∪ {(h, r, t)};
12 return V ec(S);

On each site, the training procedure is performed as shown in Algorithm2.
Access tokens are acquired in order that the computing sites are able to use
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resources on the distributed file system. In each iteration, the executor calls
getSample(pid, rand seed[si]) to sample a set of positive triples (line 3), and uses
getNegative(pid, rand seed[si]) to generate corresponding negative triples (line
4). Then, the executor uniformly divides the positive samples into nc chunks and
calculates the loss parameter for each chunk. If the loss > 0, which indicates that
the positive sample score is higher than the negative one, the Gradient Descent
(GD) function is invoked to update the embedding results (line 9). After the
training process is completed, computing sites update embeddings stored on the
distributed file system, free up occupied resources, and return the access tokens.

Algorithm 2: trainExecution(α, γ, Trans(X))
Input: number of chunks nc, learning rate α, margin γ, and algorithm

Trans(X)
Output: Embedding results: {(h, r, t)}

1 pid ← acquireToken();
/* pid is the index number of the partition */

2 Tpid ← getEmbeddings(pid) ; /* Tpid is the embedding vectors */

3 Tpos ← getSample(pid, rand seed[si]) ;
4 Tneg ← getNegative(pid, rand seed[si]) ; /* Tpos, Tneg ⊆ Tpid */

5 {(h, r, t)} ← split Tpos into nc chunks ;
6 while not end of nc do
7 loss ← γ+fr({(h, r, t)})−fr(Tneg) ;
8 if loss > 0 then
9 {(h, r, t)} ← update{(h, r, t)} w.r.t. GD;

10 else
11 {(h, r, t)} ;

12 returnToken(pid) ;
13 return {(h, r, t)} ;

As shown in Table 1, the PDKE framework leverages the Template Method
design patterns to accommodate multiple translation-based embedding models
by exposing initialization and score functions of concrete models as an abstract
interface. For the concrete models that we have implemented, (1) TransE [3]
represents the relation as a translation vector r so that the entity embeddings
h and t can be connected by r; (2) TransH [21] introduces relation-specific
hyperplanes and models a relation r as a vector r on a hyperplane with wr

as the norm vector, where hp and tp represent the projection vectors of the
entity embeddings h and t on the hyperplane of the relation r, respectively; (3)
in TransR [13], entities h and t are represented as vectors h and t in an entity
space R

n, each relation is represented as a vector r in a specific space R
m, where

the projection matrix Mr ∈ R
m×n projects the vectors h and t to the relation

space R
m to obtain the vectors hp and tp; (4) TransD [8] simplifies TransR by

decomposing the projection matrix Mr into a product of two vectors h�
p and rp.
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Table 1. KRL models implemented in the PDKE framework

Trans(X) dataInit() Score function fr(T ) Time complexity

TransE [3] h: head vector −‖h + r − t‖1/2 O(Nt)

t: tail vector

r : relation vector

TransH [21] h: head vector hp = w�
r · h · wr O(2mNt)

t: tail vector tp = w�
r · t · wr

r : relation vector −‖hp + r − tp‖1/2

wr: norm vector

TransR [13] h: head vector −‖M r · h + r − M r · t‖1/2 O(2mnNt)

t: tail vector

r : relation vector

M r: projection matrix

TransD [8] h: head vector h⊥ = h�
p · h · rp + [h�, 0�]� O(2nNt)

t: tail vector t⊥ = t�
p · t · rp + [t�, 0�]�

r : relation vector −‖h⊥ + r − t⊥‖1/2

hp: projection vector

tp: projection vector

rp: projection vector

The correctness and time complexity of the PDKE algorithms are guaranteed
by the following theorems.

Theorem 1. Given a knowledge graph G, Algorithm1 and 2 give the correct
embedding vector sets Vec(S) in the O(|epoch|) number of iterations, where epoch
is the total number of iterations.

Proof. (Sketch) The correctness of the algorithms can be proved as follows:
(1) In each training iteration, each computing site may choose an edge partition
Tpid and sample from edge partitions, where pid is the index number of the
partition. A set of positive triples Tpos of size |batchsize| is obtained from Tpid,
meanwhile, the function getNegative(pid, rand seed[si]) is called to generate
the corresponding negative samples Tneg, where rand seed[si] is a random seed.
(2) The loss function is loss = γ + fr(Tpos) − fr(Tneg). If loss > 0, which means
that the positive sample score is higher than the negative one, the GD function
is invoked to update the embedding results. Each time GD is called, the distance
between h + r and t would be closer, which means that the score of the triple
is increasing, and the results become better. The loss value of the embedding
results in each partition is gradually decreasing. (3) After the iteration of |epoch|
rounds are completed, we can get the optimal embedding vectors V ec(S). �
Theorem 2. The time complexity of the PDKE algorithm is bounded by
O(|epoch| · |batchsize| · |n|2/|k|), where |epoch| is the total number of iterations,
|batchsize| is the maximum number of the sampled triples, |n| and |k| represent
the number of entity partitions and the number of computing sites, respectively.

Proof. (Sketch) The time complexity consists of three parts: (1) The algo-
rithm has |epoch| iterations; (2) in each iteration, all computing sites need to
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process |n2| edge partitions; (3) when dealing with an edge partition, |batchsize|
positive and negative samples are generated. The above time complexity is
O(|epoch| · |batchsize| · |n|2). Since the algorithm is executed in parallel on |k|
sites, the time complexity of PDKE is O(|epoch| · |batchsize| · |n|2/|k|). �

5 Experiments

In this section, we evaluate the performance of our framework. We conducted
extensive experiments to verify the efficiency and scalability of the proposed
algorithms on both synthetic and real-world KGs.

5.1 Experimental Settings

The proposed algorithms are implemented in Python using PyTorch, which were
deployed on a 4-site cluster in the Tencent Cloud2. Each site in this cluster
installs a 64-bit CentOS 7.6 Linux operating system, with a 6 Intel(R) Xeon(R)
cores (two sockets) and two hyperthreads per core, for a total of 12 virtual cores,
and 96 GB of RAM. Our algorithm was executed on Python 3.7 and PyTorch
1.2. In the comparison experiments, the parameters used in PDKE are similar
to the previous research work [11], and we adjust the best results of grid search
with learning rate between 0.001–0.2, margin between 0.05–0.2, and negative
batch size between 100–500.

Table 2. Datasets used in the experiments

#Dataset #Relation #Entity #Train #Valid #Test

FB15K 1,345 14,951 483,142 50,000 59,071

WN18 18 40,943 141,142 5,000 5,000

DBpedia 663 5,526,333 17,197,311 500,000 597,701

The evaluation task of link prediction [20] is usually implemented on two
popular benchmark datasets, i.e., Freebase [2] and WordNet [14]. (1) Freebase is
a famous knowledge base, which is consisted by a large volume of general facts.
(2) WordNet is a semantic lexical knowledge graph and has been widely used
in the field of natural language processing. In this paper, we use two subsets of
the benchmark knowledge bases, i.e., FB15K and WN18. In order to verify the
efficiency and scalability of PDKE, we conducted experiments on a real-world
knowledge graph DBpedia3, which is a dataset extracted from Wikipedia. As
listed in Table 2, we summarize the statistics of these datasets.

2 https://cloud.tencent.com/.
3 http://wiki.dbpedia.org/.

https://cloud.tencent.com/
http://wiki.dbpedia.org/


PDKE: An Efficient Knowledge Embedding Framework 599

5.2 Experimental Results

The link prediction task is widely employed to predict missing entities or the
entities that are able to be incorporated into knowledge graphs. After learning
the representation of entities and relations, we used link prediction to evaluate
the quality of entity and relation embeddings. Mean Rank, Mean Reciprocal
Rank (MRR), and Hits@N are used to evaluate the results. Mean Rank is the
average rank of correct triples, and MRR represents the average reciprocal rank
of the correct triples. Hits@N is the percentage of rankings that are less than N,
which are the metrics commonly used to evaluate the validity of experimental
results.

Table 3. Experimental results on link prediction

Dataset WN18 FB15K

Metrics Mean Hits@10 Mean Hits@10

Raw Filt Raw Filt Raw Filt Raw Filt

TransE (Baseline) 263 251 0.754 0.892 243 125 0.349 0.471

TransH (Baseline) 318 303 0.754 0.867 211 84 0.425 0.585

TransR (Baseline) 232 219 0.783 0.917 226 78 0.438 0.655

TransD (Baseline) 242 229 0.792 0.925 211 67 0.494 0.742

TransE (PDKE) 254 226 0.761 0.858 234 119 0.335 0.485

TransH (PDKE) 295 276 0.745 0.874 261 114 0.386 0.607

TransR (PDKE) 237 215 0.773 0.912 214 107 0.475 0.692

TransD (PDKE) 232 203 0.781 0.937 208 81 0.462 0.738

Exp 1. Effectiveness of the Algorithms in Accuracy. To verify the valid-
ity of our methods, we conducted extensive experiments on the two benchmark
datasets mentioned above, i.e., WN18 and FB15K. We conducted a comparison
experiment on a stand-alone machine to compare the accuracy of our method
with that of the baselines, with that of the baselines [8]. During 40 epochs train-
ing, 300-dimensional embeddings are trained with a ranking loss over negatives
using cosine similarity. Table 3 shows that our approach are highly competitive
compared to the existing works [3,8,13,21], which verifies the correctness of our
algorithms.

As shown in Fig. 3, PDKE has comparable accuracy to OpenKE and KB2E
in most evaluations. Since KB2E does not implement the TransD model, the
experimental results of TransD on KB2E in the two figures are blank. It is
worth noting that the TransE model implemented by OpenKE performs excep-
tionally well on the FB15K dataset, mainly because OpenKE has made some
improvements on the original TransE model. The results show that PDKE can
achieve comparable accuracy to previous works on a stand-alone machine, and
also supports distributed training that is not available in existing works.
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Fig. 3. Accuracy comparison with OpenKE and KB2E.

Exp 2. Time Efficiency of the Algorithms. In order to verify the time
efficiency of our method, we conducted experiments on a cluster of four machines.
OpenKE and KB2E are only available on a single machine, so we chose the
distributed system SANSA [10] as a baseline. Since SANSA cannot deal with
the DBpedia dataset due to its large scale, we conducted the comparisons only
on the FB15K dataset.

Table 4. Evaluation on FB15K

Models Mean rank Hits@10 Time(s)

TransE(PDKE) 268 0.317 5,157

TransH(PDKE) 295 0.355 6,995

TransR(PDKE) 247 0.467 9,537

TransD(PDKE) 242 0.524 8,392

TransE(SANSA) 7,340 0.008 8,094

Among the typical translation-based models, SANSA only implemented the
TransE model in its beta version. As shown in Table 4, the training time on
PDKE decreased by 36.29% compared to SANSA, however, the accuracy of
SANSA is much lower than PDKE In order to find the reasons for the low
accuracy of SANSA, we checked the source code and found that there were
errors in the update procedure of SANSA. All entities in datasets are updated
in each iteration, which caused conflicts in the distributed environment.

Due to the partitioning of entities and edges, all computing sites can inde-
pendently perform the training process and asynchronously exchange resources
on the distributed file system, which saves a significant amount of consumed by
the synchronization process and speeds up the model training process. Mean-
while, experimental results show that distributed training techniques based on
entity and relation partitioning could not affect the accuracy. In summary, the
experimental results validates the time efficiency of the PDKE framework, which
is consistent with our previous analysis.
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Exp 3. Scalability of the Algorithms. In order to verify the scalability of
our method, we performed experiments on a cluster of four machines using the
DBpedia dataset to study the impact of the number of partitions and the cluster
size on the training accuracy and efficiency.

Fig. 4. The impact of partition numbers

The results in Fig. 4 show that when training on single machine, as the num-
ber of partitions increases, the peak memory usage decreases, and the training
time almost linearly increases. The main reason is that the increase in the num-
ber of partitions makes the size of each partition smaller, thereby reducing the
memory consumption for a certain period of time, but it brings additional I/O
overhead. The results in Fig. 4 show that different numbers of partitions would
not affect the accuracy of the results, which verifies the scalability of our method
on a single machine.

Fig. 5. The impact of cluster size

For the experiments on multiple machines, we set the number of partitions
to twice the number of machines. Figure 5 shows the effect of cluster size on the
training results. As the number of machines increases, the training time gradually
decreases, and the peak memory usage first increases and then decreases. The
reason is that, in a distributed setting, the training model as a whole can be
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shared across all machines rather than partitioned among different machines.
The accuracy of the algorithms are the same in different cluster sizes, which
verifies that our method is scalable in a distributed environment.

6 Conclusion

In this paper, we propose an efficient distributed training framework PDKE for
knowledge graph embedding. The PDKE framework integrates various existing
models and can speed up training efficiency in distributed settings. A basic
set of interface functions are defined in PDKE, allowing different knowledge
embedding models to be implemented under a unified algorithm template. The
proposed framework is verified by extensive experiments on both synthetic and
real-world KGs, which shows that our approach can efficiently train the current
translation-based KRL models with great scalability.
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Abstract. In the current information explosion era, many complex sys-
tems can be modeled using networks/graphs. The development of artifi-
cial intelligence and machine learning has also provided more means for
graph analysis tasks. However, the high-dimensional large-scale graphs
cannot be used as input to machine learning algorithms directly. One
typically needs to apply representation learning to transform the high-
dimensional graphs to low-dimensional vector representations. As for
network embedding/representation learning, the study on homogeneous
graphs is already highly adequate. However, heterogeneous informa-
tion networks are more common in real-world applications. Applying
homogeneous-graph embedding methods to heterogeneous graphs will
incur significant information loss. In this paper, we propose a numerical
signature based method, which is highly pluggable—given a target het-
erogeneous graph G, our method can complement any existing network
embedding method on either homogeneous or heterogeneous graphs and
universally improve the embedding quality of G, while only introducing
minimum overhead. We use real datasets from four different domains, and
compare with a representative homogeneous network embedding method,
a representative heterogeneous network embedding method, and a state-
of-the-art heterogeneous network embedding method, to illustrate the
improvement effect of the proposed framework on the quality of network
embedding, in terms of node classification, node clustering, and edge
classification tasks.

Keywords: Heterogeneous network · Network embedding ·
Representation learning

1 Introduction

In this big data era, information is being generated at a rapid rate. The develop-
ment of artificial intelligence and machine learning provides a good platform for
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using these data. Among all the generated data, lots of them can be modeled as
graphs, such as co-authorship networks, computer networks, infrastructure net-
works, interaction networks, online social networks, and protein-protein inter-
actions. However, the high dimensionality and structural information of com-
plex networks make it difficult to apply machine learning algorithms directly.
Therefore, network embedding/representation learning, which assigns nodes in
a network to low-dimensional representations and effectively preserves the net-
work structure [2], provides a way for machine learning methods to be used on
complex networks.

There have been extensive studies on homogeneous graphs, which only con-
sider network topologies. However, in real world applications, lots of nodes and
edges of complex networks are in different types, which also carry a lot of use-
ful information. Ignoring such type/label information would result in significant
information loss.

When we try to perform representation learning on a heterogeneous infor-
mation network (HIN), where both nodes and edges are associated with distinct
types, if we apply homogeneous network embedding methods on such graphs,
we will not be able to encode type information in the learned vectors. Many
researchers realized this. Therefore, several embedding methods specifically for
HINs have been proposed. Most of them are random walk based methods, where
node types are used to guide random walks. However, some of them depend heav-
ily on expert knowledge. The edge types correlate significantly with the adjacent
node types too. Moreover, for those methods, it is difficult to ensure that the
type information of a node’s neighborhood has been completely represented.

As a result, an intuition is whether we can completely represent the type infor-
mation of a node’s neighborhood in HINs and use the existing fully developed
homogeneous network embedding methods to represent the topology of HINs, and
combine the two parts to produce high quality HIN representation results. We pro-
pose a numerical signature based method, which leverages the properties of prime
numbers to encode the type information of a node’s neighborhood, and concate-
nates the result to existing embedding vectors to get the final representation of
the given HIN, improving the embedding quality accordingly.

Our Contributions: We formally state the problem of heterogeneous infor-
mation network embedding, and formally define a HIN node’s neighborhood
for the first-order proximity (Sect. 3). We propose a numerical signature based
framework for HIN representation learning, which can be applied to any existing
network embedding method, and improve the embedding quality on HINs with
minimum overhead (Sect. 4). We perform a comprehensive evaluation on real
datasets from four different domains, and compare with three different embed-
ding methods, using node classification, node clustering, and edge classification
tasks as examples, to illustrate the accuracy improvement and low overhead of
the proposed method on HIN embedding over existing methods (Sect. 5).
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2 Related Work

Cui et al. give an excellent survey [2] on network embedding. Shi et al. give
a survey on heterogeneous network analysis [13]. Dave et al. give a study [1]
on the problem that which topological structure of graph can be captured by
embedding. HOPE [12], Node2Vec [8] and SDNE [15] are all network embedding
methods on homogeneous networks. There are also studies on attributed network
embedding, where nodes are accompanied with attributes, or text, or image
contents. To name a few, Neural-Brane [3] and DANE [7] all belong to this
category. However, this problem is different from ours, as it only considers node
contents, and does not differentiate edges/links of different types.

Considering the characteristics of heterogeneous network, Huang et al.
develop a dynamic programming approach [9] which preserves meta path similar-
ity for HIN embedding. Recently, Dong et al. propose metapath2vec [4]. Hussein
et al. propose a JUMP & STAY method [10] to guide the random walk, and
set the probability that a walker jump to another type of nodes to preserve the
neighborhood node type information.

However, all the existing HIN embedding methods have strict restrictions
on edge types. In other words, they either assume that, when the two endpoint
node types are known, the edge type is determined as well, or simply ignore
the edge types. However, in practical applications, we often observe that the
node types and edge types are more or less independent, or there are many-to-
many mappings (a single type of edge may connect nodes of multiple types at
either end). Can we also preserve the information from both node types and
independent edge types for representation learning? This paper aims to solve
this problem.

3 Preliminaries

Definition 1. An Undirected Heterogeneous Information Network
(HIN) is defined as a graph G = (V,E) where V is a set of vertices
{v1, v2, . . . , vn} and E is a set of edges {e1, e2, . . . , em}. There is a vertex type
function Tv : V → ΣN , and there is an edge type function Te : E → ΣE, with
|ΣN | ≥ 1 and |ΣE | ≥ 1.

Most previous HIN embedding work focuses on embedding with |ΣN | ≥ 1,
and the edge types are determined once the two endpoints’ types of an edge are
known. In this work, we allow |ΣN | > 1 and |ΣE | > 1, and the edge types and
node types can be independent and the mapping can be many-to-many. In order
to encode the node and edge type features, we need to define the neighborhood
of a node. In this work, we consider two kinds of neighborhood.

Definition 2. A Direct Neighborhood of a node v is denoted as Ndv, where
Ndv consists of v and a set of nodes Vv such that ∀vi ∈ Vv, (vi, v) ∈ E, and a
set of edges Ev such that ∀ei ∈ Ev, an endpoint of ei is v.
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Definition 3. An Ego-Network of a node v is denoted as Nen, where Nen

consists of v and a set of nodes Vv such that ∀vi ∈ Vv, (vi, v) ∈ E, and a set of
edges Ev such that ∀ei ∈ Ev, the two endpoints of ei ∈ Ndv.

4 Numerical Signature Based Heterogeneous Information
Network Representation

In this section, we present the framework of Numerical Signature based HIN
Representation (NSHR), which is compatible with and complement any existing
homogeneous or HIN embedding methods.

We adopt the same objective function as in [4] and extend it to fit in HINs.
As for a HIN G = (V,E,Σ), where Σ defines the type set of nodes and edges in
G, the local structure of a node v also considers the node and edge types in v’s
neighborhood. So now the objective function is:

arg maxθ

∏

v∈V

[
∏

c∈Nt(v)

p(c|v; θ) ⊕
∏

c∈NΣ(v)

p(c|v; θ)] (1)

where Nt(v) represents the topological neighborhood of v, NΣ(v) represents the
neighborhood type set of v, and ⊕ stands for a representation concatenation.
And p(c|v; θ) in (1) is the conditional probability of having a context node c
given a node v.

Thus in this way, the task of HIN representation learning has been divided
into two parts, where the first part is to learn the topological neighborhood
features of a node v, and the second part is to learn the neighborhood type
set information features of a node v. For the first part, any existing network
embedding methods can be applied, as they all reflect topological information.
For the second part, we will present a numerical signature based method as
follows, and combine the two parts to get the final representation.

In order to maximize the network probability in terms of local type set infor-
mation, we need to differentiate different nodes’ neighborhood type set informa-
tion. That is, nodes with similar neighborhood type set should have similar type
set representations, and vice versa. To achieve this, we use prime numbers to
represent different node and edge types; so each distinct type is associated with
a particular prime number. Then we build a numerical signature representation
for a node v to represent v’s neighborhood type set information as:

NT (v) =
∏

m∈NHIN (v)

prime(m) (2)

where NHIN (v) represents the neighborhood of v in HINs. In this work, we
consider two kinds of neighborhood as shown in Definitions 2 and 3.

It is possible that a numerical signature is too large and cannot be held
within one integer. In that case, we start a new dimension if the integer for the
current dimension times the next prime number would exceed the maximum
integer. Hence the whole signature could be broken down into multiple integers,
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Fig. 1. (a) The procedure of numerical signature representation to present type infor-
mation. (b) Concatenating the topological information representation to get the final
representation.

whose product is the whole signature. Suppose that for a network G, adopting
either of the two kinds of neighborhood, after the signature computation, each
node vi of G will have a signature vector of length svi. The length of the longest
signature vector will be used as the length of signature representation lr. All
other signature vectors shorter than lr will be padded 0s on the right up to
the length lr. Therefore, all nodes with similar local type set information will
result in similar signature representations of the same length. After getting the
signature vectors of length lr, we use PCA [11] for dimensionality reduction
to fit our particular dimensionality requirements. We then do standardization
to get the signature ready for our framework. The whole process of signature
preparation is illustrated in Fig. 1 (a).

After getting the topological representation meeting the dimensionality
requirement and the neighborhood type set representation, we concatenates the
two parts to return the final representation of the given HIN as in Fig. 1 (b).

5 Experiments

5.1 Datasets and Setup:

We use the following four real-world datsets: Phone [5], Enron Email [6] (pre-
processed into 20 edge types), Foursquare [16] (8 node types including time,
check-in, user, and 5 categories of points of interest) and DBIS [14].

We compare our method with (1) a representative homoegeneous network
embedding method node2vec [8], and use the parameters p = 1 and q = 1 as in
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[4]; (2) a representative HIN embedding method metapath2vec [4], and apply
the most meaningful metapaths; (3) a state-of-the-art HIN embedding method
JUST [10], and use α = 0.5 and m = 1. For all these methods, we use walk
length l = 80, the number of walks per node r = 10, and the representation
learning dimensions d = 100. For our methods, we adjust the signature dimen-
sions ds for evaluation. The maximum integer used for computing the signature
representation is set according to the computation resource limitation and the
number of types of the dataset. In our experiments, we choose 1,000,000 as the
maximum integer for Enron, and 1,000 for the other three datasets. We repeat
each experiment 5 times, and report the average scores for evaluation. All algo-
rithms are implemented in Python and run on a machine with an Intel Core i7
3.40 GHz processor and a 64 GB memory1.

5.2 Evaluation Results

Node Classification: The node representations are learned from the full
dataset using the three competing methods, as well as our framework using
two kinds of neighborhood. We use a simple logistic regression classifier for the
classification task and report Macro-F1 score. Micro-F1 score is omitted due to
space limitation. The size of the training set is set to 80% and the remaining
20% is used as the test set.

Figure 2 shows the results, where we report the best results by adjusting the
parameter ds from 1 to 30. The NSHR framework using direct neighborhood
is reported as sig, and the framework using ego-network is reported as sig-ego.
We can see that our framework can improve the quality of learning results of
baseline methods by as much as from 20% to more than four times in general
on all datasets. In general, our methods improve the quality of existing methods
up to more than four times, and give superior results for rare-type classification.

(a) Phone (b) Enron (c) Foursquare (d) DBIS

Fig. 2. Results of edge classification (Macro-F1)

1 All datasets and code are publicly available at https://github.com/guaw/sig py.

https://github.com/guaw/sig_py.


610 C. Song et al.

(a) Phone (b) Enron (c) Foursquare (d) DBIS

Fig. 3. Results of node clustering

Node Clustering: We use k-means for node clustering and report NMI in Fig. 3.
We can see that our framework improves the performance of its corresponding
baseline significantly. In most cases, direct-neighborhood performs better than
ego-network. This is because for node clustering, node types themselves con-
tribute to the final result the most. In general, our framework improves the
performance of the corresponding baseline by up to five orders of magnitude.

Edge Classification: The representation vector of an edge is the concatenation
of those of its two endpoints. We use logistic regression to do edge classification.
We only show the results of Macro-F1 in Fig. 4 due to space limitation. The
results of Micro-F1 are similar to those of Macro-F1. We can see that before
applying our framework, node2vec performs the best among the three in most
cases. This is because, traditional HIN embedding methods ignore the possible
independence between edge and node types. After incorporating our framework,
the predictive quality of all baselines increases by 10% to 70%.

(a) Phone (b) Enron (c) Foursquare (d) DBIS

Fig. 4. Results of edge classification (Macro-F1)

Runtime Performance: Fig. 5 shows the learning time of applying our frame-
work, where the final representation learning time consists of applying the base-
line method as well as computing the signatures. We can see from Fig. 5 that the
time needed for computing the signatures are negligible, compared to the cost
of baseline methods.
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Fig. 5. A breakdown of execution times of various components

Summary: Our evaluations provide strong evidence that the proposed frame-
work can improve the representation learning quality of the baseline methods on
HINs significantly, with negligible extra running time. We have also done exper-
iments that consider either topological features or neighborhood type features
alone. However, as both parts are important to HINs, ignoring either of them
would result in inferior evaluation results. Thus we did not report them in the
paper. The experiments also demonstrate that our framework provides strong
support for edge types that are more or less independent of node types.

6 Conclusions

In this work, we present a numerical signature based heterogeneous informa-
tion network representation learning framework, which is compatible with and
complements any existing homogeneous or HIN embedding methods. Under the
same original dimensionality, with only about one-tenth extra time of existing
embedding methods, the framework can improve the representation learning
quality for downstream predictive analysis by two to three times, in terms of
node classification, node clustering, and edge classification tasks.
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Abstract. In this paper, we study the problem of keyword search over
federated RDF systems. We utilize the full-text search interfaces pro-
vided by SPARQL endpoints and the authoritative documents of URIs
to map keywords to the classes, and generates SPARQL queries by
exploring the schema graph. Then, we send the generated queries to
the SPARQL endpoints and evaluate these queries. Experiments show
that our approaches are effective and efficient.

1 Introduction

Recently, Resource Description F ramework (RDF) has been widely used in var-
ious applications to mark resources in the Web. An RDF dataset is a collection
of triples, denoted as 〈subject, property, object〉. We can also represent an RDF
dataset as a graph, where subjects and objects are vertices and triples are edges
with labels between vertices.

As many data providers represent data in RDF model and provide the
SPARQL interfaces in their own sites, the federated RDF systems [6,9] are put
forward. In federated RDF systems, different RDF datasets are stored on differ-
ent “autonomous” sites, and the data providers only provide the query interface
to access their RDF datasets. In this paper, an autonomous site with a SPARQL
query interface is called a SPARQL endpoint. The federated RDF system pro-
vides an interface to receive and handle the user requests over multiple SPARQL
endpoints.

The federated RDF systems usually only support the SPARQL query to
complete the data acquisition. However, in many applications, keyword search
is more frequently used and easy to understand. Many studies [2,3] have been
carried out on keyword search over other types of RDF systems. However, few
solutions to federated RDF systems have been proposed.

For example, Fig. 1 shows an example RDF graph in a federated RDF system,
which consists of four SPARQL endpoints. Assume an user wants to find out the
anti-inflammatory that John Robert Vane is related to. John Robert Vane is a
scientist that discovered how aspirin, an anti-inflammatory drug, produces pain-
relief effects. Hence, the user may input two keywords, “anti-inflammatory” and
“John Robert Vane”, to specify his needs. We should utilize the two keywords
to find out the relevant substructures returned to the user.
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 613–622, 2020.
https://doi.org/10.1007/978-3-030-59416-9_37
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Fig. 1. Example federated RDF graph

In this paper, we propose a keyword search technique over federated RDF
systems. In the offline phase, we combine the schemas of different SPARQL
endpoints to construct a schema graph. In the online phase, we first utilize the
SPARQL query interfaces and authoritative documents to map keywords to the
candidate classes in the schema graph. Then, we traverse the schema graph to
construct some queries to model users’ query intentions. We evaluate the queries
over federated RDF systems to find results returned to users.

In summary, our main contributions are summarized as follows:

– We put forward a SPARQL query interface-based approach for mapping key-
words to the RDF graph over federated RDF systems.

– We propose an algorithm over the schema graph to construct SPARQL queries
connecting the vertices corresponding to the keywords. We can evaluate these
queries to find results returned.

– Finally, we evaluate our approach in real federated RDF datasets and confirm
the superiority of our approach.

2 Preliminaries

In this section, we introduce some definitions used in this paper.
First, an RDF graph G can be defined as 〈V,E,L, f〉, where V = VL ∪ VE ∪

VC is a set of vertices that correspond to all subjects and objects in RDF data
and VL, VE and VC denote all literal vertices, resource vertices and class vertices;
E ⊆ V × V is a multiset of directed edges that correspond to all triples in RDF
data. L = LA∪LR∪{type} is a set of edge labels, i.e. properties. LA is the set of
named attributes, LR is the set of named relationships between resources, and
type connects resources to their classes. f : E → L is a function, and for each
edge e ∈ E, f(e) is its corresponding property.

On the other hand, a federated RDF system is a combination of many
SPARQL endpoints at different sites [6]. Moreover, according to the principles
for the web of Linked Data [4], resources, classes and properties are identified by
their URI. For each URI, there exists a document describing it, which is consid-
ered as an authoritative document. We model the relationship between URIs and



Keyword Search over Federated RDF Systems 615

their authoritative documents by using the mapping adoc, and we can retrieve
the authoritative document of a resource by looking up its URI.

A SPARQL query Q is a collection of triple patterns with variables and
constraint filters, which can be represented as a query graph with variables and
constraint filters. Then, given a SPARQL query Q over RDF graph G, a match
µ is a subgraph of G homomorphic to Q and satisfying all constraint filters [12].

Given a set of keywords KW = {w1, w2, w3, . . . , wn} and a federated RDF
system W , a result is a substructure over W that connects the vertices matching
the keywords. In this paper, we convert KW to a set of SPARQL queries Q over
W of top-k smallest sizes and get their results as the final results.

3 Overview

In this section, we give an overview of three main steps involved in our specific
execution process as shown in Fig. 2. The first step is keyword mapping. We build
up a schema graph for the federated RDF graph in the offline phase, which can
intuitively capture the relationships between different classes. We also look up
the authoritative documents of classes and properties in the schema graph and
build up the invert indices for them. All the above indices are maintained in the
control site. In the online phase, we first compute out a set of candidate classes
in the schema graph for each keyword through the SPARQL query interfaces or
the authoritative documents of classes and properties. The class vertices in the
schema graph mapping to keywords are called keyword elements in this paper.
After keyword mapping, the second step is SPARQL query construction. We
explore the schema graph to find a substructure that is connected to all keyword
elements. For each substructure, some SPARQL queries are constructed through
the mapping of graph elements to query elements. We construct a set of SPARQL
queries, Q, to generate results for the keywords. The last step is query execution.
We send Q to their relevant SPARQL endpoints and evaluate them there.

Fig. 2. System architecture
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4 Keyword Mapping

In this section, we describe the detailed process of mapping keyword to the
schema graph by using the full-text search interfaces in SPARQL endpoints.

4.1 Schema Graph

In this paper, to guide the keyword mapping and query construction process, we
introduce the schema graph, which intuitively captures only relations between
classes of resources. A schema graph S is defined as a triple S = {V S , ES , LS},
where V S = VC ∪ {Resource} is a set of vertices corresponding to class vertices
in G. Here, we use Resource to represent the class of the resources with no given
class. ES = V S ×V S is a set of directed edges, and

−→
titj ∈ ES if and only if there

is an edge −−→vivj ∈ E where vi has a class ti and vj has a class tj . LS = LR is the
set of edge labels, and

−→
titj ∈ ES has a property p if and only if there is an edge−−→vivj ∈ E of property p where vi has a class ti and vj has a class tj . For example,

Fig. 3 shows the schema graph for our example federated RDF graph.

Drug Drug 
(Bank)

Offer

Target

Scientist

Compound

Compound

keggCompoundId

DBpedia DrugBank ChEBI
Concept

resource

resource

KEGG

Fig. 3. Example schema graph

How to build up the schema graph is also a challenge. Fortunately, many
SPARQL endpoints provide their own schemas to link themselves to users. Thus,
we can build up the schema graph by merge the schemas of different SPARQL
endpoints. Furthermore, we can utilize the crawler, like LDspider [7], to figure
out edges that cross between different sources, since we can look up the URIs to
retrieve their hosts. The schema graph is maintained in the control site.

In addition, as mentioned in Sect. 2, the properties and classes in RDF model
are also identified by URIs and can be dereferenced by their authoritative doc-
uments. Thus, when we build up the schema graph in the offline phase, we also
look up the authoritative documents of properties and classes and build up the
inverted indices for mapping keywords to them in the control site.

4.2 Mapping Process

In real applications, keywords entered by users might refer to resources, classes
or properties. In our approach, the full-text search interfaces are used to map
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keywords to resources, while the descriptions of classes and properties in the
control site are used to map keywords to classes and properties. Note that, these
two mapping processes are executed concurrently, because resource mapping only
concerns the full-text search interfaces in the SPARQL endpoints and class and
property mapping only concerns the descriptions of classes and properties in the
control site. Many existing RDF repositories used for building up the SPARQL
endpoints, like Sesame1 and Virtuoso2, provide the full-text search interfaces for
users to access to the internal structure of string literals rather than treating
such literals as opaque items.

Based on the results, we can annotate the corresponding class vertices in the
schema graph with the keywords, and get an augmented schema graph anno-
tated with keywords. For example, we can find out that the class mapping to
“John Robert Vane” is “Scientist” in DBpedia, and the classes corresponding
to keyword “anti-inflammatory” are “Drug (Bank)” and “Offer” in DrugBank.
Then, we get the schema graph annotated with keywords as shown in Fig. 4.

Drug Drug 
(Bank)

Offer

Target

Scientist

Compound

Compound

keggCompoundId

DBpedia DrugBank ChEBI
Concept

resource

resource

KEGG

anti-inflammatory

anti-inflammatoryJohn Robert Vane

Fig. 4. Example schema graph annotated with keywords

5 SPARQL Query Construction

In this section, we introduce our method for SPARQL construction based on the
results of keyword mapping. After keyword mapping, some class vertices in the
schema graph are annotated with keywords, which are called keyword elements.
Then, we explore the schema graph from the keyword elements to generate the
substructures connecting them for constructing SPARQL queries. Our algorithm
for query construction is displayed in Algorithm 1.

Generally, we maintain a result set RSi and a priority queue PQi for each
keyword wi. The exploration starts with keyword elements that are placed into
the queues (Lines 1–3 in Algorithm 1). At each step, we pick a queue PQi

(i = 1, . . . , n) and pop its head to expand in a round-robin manner. When a
vertex v is popped from queue PQi, we have computed its distance to key-
word wi, so we insert it into result set RSi and try to add its neighbors into
1 http://rdf4j.org/.
2 https://virtuoso.openlinksw.com/rdf-quad-store/.

http://rdf4j.org/
https://virtuoso.openlinksw.com/rdf-quad-store/
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Algorithm 1: SPARQL Query Construction Algorithm
Input: The schema graph S = {V S , ES , LS}, a set of keywords

KW = {w1, w2, w3, . . . , wn} mapping to keyword elements
{C1, C2, C3, . . . , Cn}, the priority queues PQ1, . . . , PQn.

Output: Constructed queries Q.
1 for each set Ci of keyword elements for keyword wi do
2 for each keyword element vC in Ci do
3 Insert (vC , ∅, 0) into PQi;

4 while not all queues are empty do
5 for i = 1, . . . , n do
6 Pop the head of PQi (denoted as (v, p, |pi|));
7 for each adjacent edge

−→
vv′ (or

−→
v′v) from v in ES do

8 Set p′′ = p ∪ −→
vv′ (or p′′ = p ∪ −→

v′v);
9 if p′′ is a simple path then

10 if there exists another element (v′, p′, |p′|) in PQi then
11 if |p′| > |p| + 1 then
12 Delete (v′, p′, |p′|), and insert (v′, p′′, |pi| + 1) in PQi;

13 else
14 Insert (v′, p′′, |p| + 1) in PQi;

15 for each vertex vC in V S do
16 Call function ConstructQueries(vC ,{RS1, . . . , RSn}) to construct a query

and insert it into Q;
17 Sort all queries in Q according to their sizes.
18 Return the top-k queries in Q.

the queue PQi (Lines 4–14 in Algorithm 1). We run the exploration algorithm
until all vertices (in schema graph S) have been explored by all keywords. Then,
each class vertex can correspond to a substructure connecting all keywords. We
call a function ConstructQueries to construct SPARQL queries for these sub-
structures (Lines 15–16 in Algorithm 1). In ConstructQueries, a vertex v is
associated with a distinct variable var(v), and var(v) is also associated with a
triple pattern that has the type of v in the schema graph (Line 5 in Function
ConstructQueries). If v is a keyword element through resource mapping, it is
associated with some triple patterns that map it to its corresponding keyword
through the full-text search interface (Line 7 in Function ConstructQueries). If
v is a keyword element through property mapping, the triple pattern with the
mapping property is inserted into the constructed query (Line 9 in Function
ConstructQueries). In addition, for each edge

−→
vv′, its is mapped to a triple pat-

tern 〈var(v), LS(
−→
vv′), var(v′)〉 (Line 10–11 in Function ConstructQueries). Last,

we sort the constructed queries according to their sizes and return the queries
of the top-k smallest sizes (Lines 17–18 in Algorithm 1).
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Function ConstructQueries(vC ,{RS1, ..., RSn})
1 Initialize a query Q;
2 for i ← 1 to n do
3 Get pi in RSi that connects vC to keyword elements in Ci;
4 for each vertex v in pi do
5 Insert var(v) and a triple pattern 〈var(v), type, v〉 into Q;
6 if v is a keyword element from resource mapping then
7 Insert some triple patterns mapping v to its keyword through the

full-text search interface into Q;

8 if v is a keyword element mapping to property LS(
−→
vv′) then

9 Insert a triple pattern 〈var(v), LS(
−→
vv′), var(v′)〉;

10 for each edge e =
−→
vv′ in pi do

11 Insert a triple pattern 〈var(v), LS(
−→
vv′), var(v′)〉 into Q;

12 Return Q;

6 Query Execution

After we construct a set of SPARQL queries, we should execute them to get their
results. First, we decompose each query in Q to a set of subqueries expressed
over relevant SPARQL endpoints. Then, we send the subqueries to their relevant
SPARQL endpoints and evaluate them. Results of subqueries are returned to the
control site and joined together to form final results presented to users. Moreover,
when we join the results of subqueries, we can utilize the optimizations for
joins [6,9], which group a set of join variables’ matches in some subqueries and
rewritten other subqueries using FILTER or UNION operators.

7 Experiments

In this section, we evaluate our method over a well-known real federated RDF
benchmark. We compare our system with a federated keyword search engine,
FuhSen [1], which has released their codes in GitHub3.

7.1 Setting

FedBench [8] is a benchmark suite to test both the efficiency and effectiveness
of federated RDF systems. It includes 4 life science domain datasets and 6 cross
domain datasets. To assess the effectiveness of our approach, we have asked
colleagues to provide 8 keyword queries for each datasets (L1−L8 for life science
and C1 − C8 for cross domain) along with the descriptions in natural language
of the underlying information need.

We conduct all experiments on a cluster of machines running Linux on
Alibaba Cloud, each of which has one CPU with two core of 2.5 GHz and 32 GB
3 https://github.com/LiDaKrA/FuhSen-reactive.

https://github.com/LiDaKrA/FuhSen-reactive
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memory. The prototype is implemented in Java. At each site, we install Sesame
2.8.10 to build up a SPARQL endpoint for a dataset in FedBench. Each SPARQL
endpoint can only communicate with the control site through HTTP requests.

7.2 Effectiveness Study

In this section, we do experiments to show the effectiveness of our methods.
We use the mean average precision (MAP) [11] to assess the effectiveness of
the results. Table 1 reports the MAP values of the sixteen queries. Generally,
we observe that our method gets rather better results than FuhSen. This is
because FuhSen directly merges all keywords into one search constraint of a
SPARQL query and cannot find answers for multiple keywords mapping to dif-
ferent resources across different endpoints. However, our method can find out
the relevant substructures across multiple sites.

Furthermore, we find that the experimental result in life science is better
than that in cross domain. The reason is that the datasets of cross domain have
more complex schemas than that of life science. Thus, keywords may result in
more ambiguity in cross domain than in life science.

Table 1. MAP values

Our method FuhSen

FedBench (Life Science) 0.87 0.30

FedBench (Cross Domain) 0.65 0.28

7.3 Efficiency Study

In this experiment, we compare the performance of our method with FuhSen
[1]. Figure 5 shows the performance of different approaches. Generally speaking,
our method can outperform FuhSen in most cases. FuhSen translate the input
keywords into a simple query that need retrieve the whole RDF datasets in the
sites, which take much more time than our method.

8 Related Work

For keyword search over federated RDF systems, one paper [5] utilizes the cen-
tralized technique in [2] to generate local queries for different SPARQL end-
points, and then synthesizes the local queries to form a federated query. Thus,
it requires that the SPARQL endpoints should support to translate keywords
to SPARQL queries, Hermes [10] build up a global keyword index for mapping
keywords and generating query graphs across multiple sources. Then, Hermes
evaluates these query graphs and return the evaluation results. Both of them are
not practical in real federated RDF systems. FuhSen [1] develops an instance of
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Fig. 5. Performance comparison

the RDF Wrapper component, which translates the keywords into a SPARQL
query against the SPARQL endpoints. The union of matches are ranked returned
to users. FuhSen fails to handle the cases that users input multiple keywords and
results crossing multiple SPARQL endpoints need to be returned.

9 Conclusions

In this paper, we propose a keyword search approach over federated RDF sys-
tems. By mapping the keywords to the schema graph derived from the fed-
erated RDF system, we construct SPARQL queries of the smallest sizes from
the keywords, and evaluate them over the underlying federated RDF systems.
Experiments show that our method is efficient and effective.
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Abstract. Question Answering over Knowledge Graph (KG-QA)
becomes a convenient way to interact with the prevailing information.
The user’s information needs, i.e., input questions become more com-
plex. We find that the comparison, relation, and opinion questions
are witnessed a significant growth, especially in some domains. How-
ever, most of the current KG-QA methods cannot appropriately handle
the inherent complex relation and coverage characteristics within the
questions.

In this work, we propose to utilize the relation information with the
questions and knowledge graph in a mutual way, improving the final
question answering performance. Wse design local and global attention
models for relation detection. We combine the features for relation detec-
tion in an attention matching model. Experiments on our new dataset
and common dataset reveal its advantages both in accuracy and effi-
ciency.

1 Introduction

Question answering over knowledge graph(KG-QA) has attracted many atten-
tions and acheived remarkable progress in recent years [2,3,14,15]. With the
great benefits of KG-QA, we have witnessed an information access paradigm
shift, from a proactive search to voice/question oriented automatic assistant in
recent years. Under the hood of these services, structured knowledge graphs play
an essential role, which are constructed from a wide range of related data sources.
Common ways of KG-QA include semantic parsing, retrieval and recent neural
matching based. Though impressive performance, KG-QA is still a challenging
problem. The difficulty issues lie at not only the vague question description but
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also a growing variety of complex relation types within the diverse knowledge
graphs [12,20].

Take an insurance product KG as our motivation scenario, we have con-
structed a knowledge graph for insurance products (InsKG, abbrv. later in this
paper). Currently, it has more than 200k nodes, consisting of insurance cate-
gories, types, attributes, diseases, detailed terms, etc. We have set up a KG-QA
service on top of it. With intuitive answers, we collected almost 100k questions
from ordinary users, in less than one year. A part of this knowledge graph and
its question examples are shown in Fig. 1. These new questions cover a wide
range of question types and usually need several hops to identify the answers in
the target knowledge graph. The required answers also connect different kinds
of relation connection. These new input questions are difficult to well process
under current KG-QA methods, requiring more complex relation detection and
composition.

Fig. 1. Complex Questions and Multi-Hop Answers in KG-QA

Relation detection is not new for knowledge graph communities. Especially,
some recent work [7,19] made impressive progress for relation inference in knowl-
edge graph or type detection for improving question answering. However, they
either focus on relation matching or type extension, and are difficult to support
complex and long questions. It is still challenging to effectively process the user’s
growing complex questions for the knowledge graph.

In this paper, we propose a Mutual Relation Detection (MRD) framework
with attention mechanism [6,17]. We combine the relation detection and ques-
tion answering together in a natural way. We utilize the features extracted from
question logs and knowledge graph for the relation detection. Also, we utilize the
question logs and knowledge graph as global features to enrich the relation detec-
tion. Experiments on two real datasets demonstrate its improved performance
on relation detection.
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The contributions of this paper can be briefly summarized as follows. We
exploit the rich features embedded in questions and knowledge graphs to improve
relation detection, and finally the KG-QA. We then utilize the attention model to
match the relation detection features in the complex KG-QA task, in a natural
way. The experimental results demonstrate the effectiveness of our proposed
approach, especially in domain knowledge graphs.

2 Related Work

Question Answering over knowledge Graph: Semantic parsing-based
methods compile the input natural language questions into logical forms, with
the help of a combinatory grammar [4] or dependency-based compositional
semantics [9]. Recent deep learning methods usually transform questions and
answers into the form of semantic vectors [3], and then conduct the matching,
ranking operations. These methods are impressive and useful, but encounter
difficulties in handling the complex user questions.

Relation Detection: With the benefits for relation inference, knowledge graph
completion and even collective classification, relation detection in knowledge
graph are becoming more and more important. [5,7] discussed the reasoning
framework and translation based methods for relation detection in knowledge
graph. [10,20] presented type selection approach. [19] discussed relation detection
for precise question match with edge descriptions. This paper differs from these
recent work, and we focus on answer relation detection and composition in a
mutual way.

Attention Models: [18] designed an attentive max-pooling layer for CNN to
answer factual questions. [6] discussed attention based end-to-end model with
the global knowledge graph features for question answering. [8] introduced the
interactive model for question answering. We proceed to design a mutual atten-
tion model, combining both question and knowledge graph features, from the
local and global perspectives.

3 Mutual Relation Detection

3.1 Relation Detection Framework

Figure 2 shows the general design of the proposed approach. Given an input
question, we first extract the local features within the input question and embed
the candidate relations. As well as the local question analysis and knowledge
graph extraction, we also enrich global features, leveraging the existing question
corpus and the global knowledge graph context to improve the relation detec-
tion performance in a mutually way. The extraction covers the local and global
aspects, and generate the question and graph features.

We extract relation features from the question corpus with the help of LSTM
model. Graph global type and context features are served into the relation detec-
tion task. We then utilize the attention based matching models to process the
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Fig. 2. Framework of Mutual Relation Detection in KG-QA

local question parts and the global features. In the training procedure, we employ
the pairwise training strategy. The loss function is defined as follows, where a
denotes the correct answer, a′ denotes the wrong answer and γ is the margin
which is always a small positive real number within 1.

Lq,a,a′ =
∑

a∈Pq

∑

a′∈Nq

[γ + S(q, a′) − S(q, a)]+ (1)

3.2 Local and Global Feature Extraction

Relation Features in Questions. We utilize the tree-structured LSTM model,
a variant of recursive neural networks [13] for question feature extraction. The
architecture of the network will be constructed according to the tree structure
of the extracted concept layers from the input question. We set up constituency
trees for each question, and use Tree-LSTM to handle the constituency tree.
The constituency tree is intuitive to cover different semantic modules within it,
beneficial for the question representation since the left subtree contains noun
information, while the right contains the verb relation.

Global Question Features: Though Tree-LSTM model can leverage local word
patterns with the help of tree patterns, it is difficult to capture global infor-
mation, especially from many existing questions. To extract a global view of
topics from the questions, we propose to utilize global term features to rep-
resent question as a supplement to the Tree-LSTM model. Given a vocab-
ulary of words V = (w1, w2, · · · , w|V |), the question will be represented as
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qtf = {n1, n2, · · · , n|V |} where ni represents the frequency or other weights of
the word wi appearing in the question. Then a linear layer and tanh function
are chosen to handle the global question representation. In this way, we generate
a dense global representation for each question.

Relation Features in Knowledge Graph. In the formulation of the rela-
tion detection as a mutual matching problem, we take not only relation name
descriptions but also more rich tail entity type and context information into
consideration.

Relation Modeling: Here we choose word-level features to represent relations.
Formally, the relation will be denoted as r = {wr1 , wr2 , · · · , wrn}. Take the
relation “product.insurance.cover. disease” as example, we will split the relation
name into words sequence as “product”, “insurance”, “cover” and “disease”. The
relation can be regarded as a word sequence. The pre-trained word embedding
vectors such as GloVe [11] are used to initialize the embedding for words in
the relation sequence. Finally, one max-pooling is be used to generate the final
representation ha(r) from the outcome of the Bi-LSTM model.

Global Graph Feature Modeling: We continue to exploit the relation’s correspond-
ing tail entity types as a feature source. The difficult issue is that the tail entity
types are confusing. We propose a method to collect tail entity type for each
relation with the global information of the KG. For each relation, we collect
all the tail entity of this relation and then rank the numbers of entity types.
Shown in Fig. 3, the type “cardiopathy”, “neoplasm” and “inflammation” will
be filtered since they are not the global type for relation “disease cover”.

Fig. 3. Global type and question context

Local Graph Feature Modeling: The context information is also taken into con-
sideration in order to provide a local structure view for corresponding relations.
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For each candidate relation, we collect all the relations connected to the tail
entity as the context of the candidate relation.

3.3 Mutual Attention Matching Models

Local Attention. We combine the hroot, hleft and hright from question fea-
tures. The weight of attention is evaluated by the relevance between each feature
node on question representation and answer aspect representation.

αi
j =

exp(wij)∑3
k=1 exp(wik)

(2)

wij = tanh(WT [hj ; ai] + b) (3)

Here αi
j denotes the attention weight between an answer aspect ai and

tree node representation hj where hj ∈ {hleft, hroot, hright} and ai ∈
{ha(r), ha(t), ha(c)}.

Global Attention. Questions should also take varying attention to different
answer aspects. Different questions will concentrate on different answer aspects,
which leads to question-towards-answer attention, shown in Fig. 2. We gener-
ate the question-towards-answer attention distribution β, which are βr, βt, βc

respectively, denoting the attention weight for each answer aspect. This weight
distribution reflects the importance of different answers aspects w.r.t. the input
question.

βai
=

exp(wai
)∑

aj∈r,t,c exp(waj
)

(4)

wai
= tanh(WT [q̄;ha(i)] + b) (5)

q̄ =
1
3
(hq(r) + hq(t) + hq(c)) (6)

For example, in some QA cases, the answer type may play a key role in
determining the final answer. So the corresponding weight βet will be larger
than other weights. The final score of each answer is summed up by scores from
different answer aspects in the question-towards-answer attention. Candidate
with the highest score is selected.

S(q, a) = βrS(hq(r), ha(r))+ βtS(hq(t), ha(t))
+ βcS(hq(c), ha(c))

(7)
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4 Experiments

4.1 Experimental Setup

We conduct extensive experiments on two datasets. One is the insKG dataset
we have created and released, as the specific domain knowledge graph. A subset
with 200k nodes is used in this experiment. Another one is the commonly used
WebQuestions [1] dataset, as the open domain knowledge graph dataset.

In the WebQuestions dataset, there are about 4.8k q-a pairs, containing 3,116
training pairs training and 1,649 testing pairs. In the insKG dataset, we carefully
select 1,527 q-a pairs for training and 794 q-a pairs for testing.

4.2 Improved QA Accuracy

Table 1 shows the QA tests on WebQuestions and InsKG datasets. The pro-
posed model outperforms the baslines and achieve significant improvements. In
WebQuestions, global feature is not significant. In contrast, the global feature
contributes a lot in the improvement.

Table 1. QA performance

Methods WebQuestions InsKG

Bi-CNN [16] 77.74 84.08

Bi-LSTM [6] 79.32 86.07

Residual network [19] 82.53 89.67

Proposed approach 84.11 95.34

w/o global feature 83.38 92.30

w/o context and type feature 83.02 93.82

4.3 Training Process

To test the efficiency of the model structure, we diagnose the model training pro-
cess in InsKG dataset in Fig. 4. Our model can always have a swift convergence,
compared with other baselines.
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Fig. 4. Training Process on InsKG

5 Conclusion

In this paper, we propose a mutual relation detection approach for question
answering over knowledge graph. We design an attention based matching frame-
work, which includes comprehensive feature selection and composition. Experi-
ments demonstrate its advantage not only in increasing complex specific domain
knowledge graphs but also improves the open domain ones. In the ongoing work,
we are exploiting its potential for users’ ad hoc relation inference and suggestion
problems.
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(eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 165–180. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44848-9 11

4. Cai, Q., Yates, A.: Large-scale semantic parsing via schema matching and lexicon
extension. In: Proceedings of ACL, pp. 423–433 (2013)

5. Fan, Z., Wei, Z., Li, P., Lan, Y., Huang, X.: A question type driven framework
to diversify visual question generation. In: Proceedings of IJCAI, pp. 4048–4054
(2018)

https://doi.org/10.1007/978-3-662-44848-9_11


Mutual Relation Detection for Complex Question Answering 631

6. Hao, Y., et al.: An end-to-end model for question answering over knowledge base
with cross-attention combining global knowledge. In: Proceedings of ACL, pp. 221–
231 (2017)

7. He, X., Qian, W., Fu, C., Zhu, Y., Cai, D.: Translating embeddings for knowledge
graph completion with relation attention mechanism. In: Proceedings of IJCAI,
pp. 4286–4292 (2018)

8. Li, H., Min, M.R., Ge, Y., Kadav, A.: A context-aware attention network for inter-
active question answering. In: Proceedings of KDD, pp. 927–935 (2017)

9. Liang, P., Jordan, M.I., Klein, D.: Learning dependency-based compositional
semantics. Comput. Linguist. 39(2), 389–446 (2013)

10. Miyanishi, T., Hirayama, J.i., Kanemura, A., Kawanabe, M.: Answering mixed
type questions about daily living episodes. In: Proceedings of IJCAI, pp. 4265–
4271 (2018)

11. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)

12. Saha, A., Pahuja, V., Khapra, M.M., Sankaranarayanan, K., Chandar, S.: Complex
sequential question answering: towards learning to converse over linked question
answer pairs with a knowledge graph. In: Proceedings of AAAI, pp. 705–713 (2018)

13. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. In: Proceedings of ACL, pp.
1556–1566 (2015)

14. Yang, M., Duan, N., Zhou, M., Rim, H.: Joint relational embeddings for knowledge-
based question answering. In: Proceedings of EMNLP, pp. 645–650 (2014)

15. Yao, X., Durme, B.V.: Information extraction over structured data: question
answering with freebase. In: Proceedings of ACL, pp. 956–966 (2014)

16. Yih, W., Chang, M., He, X., Gao, J.: Semantic parsing via staged query graph
generation: question answering with knowledge base. In: Proceedings of ACL, pp.
1321–1331 (2015)

17. Yin, J., Zhao, W.X., Li, X.M.: Type-aware question answering over knowledge base
with attention-based tree-structured neural networks. J. Comput. Sci. Technol.
32(4), 805–813 (2017)

18. Yin, W., Yu, M., Xiang, B., Zhou, B., Schütze, H.: Simple question answering by
attentive convolutional neural network. In: Proceedings of COLING, pp. 1746–1756
(2016)

19. Yu, M., Yin, W., Hasan, K.S., dos Santos, C.N., Xiang, B., Zhou, B.: Improved
neural relation detection for knowledge base question answering. In: Proceedings
of ACL, pp. 571–581 (2017)

20. Zhang, Y., Dai, H., Kozareva, Z., Smola, A., Song, L.: Variational reasoning for
question answering with knowledge graph. In: Proceedings of AAAI, pp. 6069–6076
(2018)



DDSL: Efficient Subgraph Listing
on Distributed and Dynamic Graphs

Xun Jian1(B), Yue Wang2, Xiayu Lei1, Yanyan Shen3, and Lei Chen1

1 The Hong Kong University of Science and Technology, Hong Kong, China
{xjian,xylei,leichen}@cse.ust.hk

2 Shenzhen Institute of Computing Sciences, Shenzhen University,
Shenzhen, China

ywangby@connect.ust.hk
3 Shanghai Jiao Tong University, Shanghai, China

shenyy@sjtu.edu.cn

Abstract. Subgraph listing is a fundamental problem in graph theory
and has wide applications in many areas. Modern graphs can usually be
large-scale and highly dynamic, which challenges the efficiency of exist-
ing subgraph listing algorithms. In this paper, we propose an efficient
join-based approach, called Distributed and Dynamic Subgraph Listing
(DDSL), which can incrementally update the results instead of run-
ning from scratch. Extensive experiments are conducted on real-world
datasets. The results show that DDSL outperforms existing methods in
dealing with both static and dynamic graphs in terms of the responding
time.

Keywords: Distributed graph · Dynamic graph · Subgraph listing

1 Introduction

In this paper, we study subgraph listing, one of the fundamental problems in
graph theory. Given two undirected and unlabeled graphs d and p, it requires to
list all subgraphs of the data graph d, which are isomorphic to the pattern graph
p. Such a subgraph is also called a match. Despite its NP-hardness [2], subgraph
listing has wide applications in areas like sociology, chemistry, telecommunication
and bioinformatics [8,10].

The large size and high dynamic of real-world graphs challenge the efficiency
of subgraph listing algorithms. Although existing distributed solutions like [1,7,
9] achieve good performance on static graphs, they fall short in exact subgraph
listing on distributed and dynamic graphs.

In this paper, we propose Dynamic and Distributed Subgraph Listing (DDSL),
which is able to solve the exact subgraph listing problem on distributed and
dynamic graphs. Considering that disks are preferred to store massive matching
results, which might be updated subsequently to graph changes, we develop
our method in MapReduce [3]. The whole approach can be divided into two
c© Springer Nature Switzerland AG 2020
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stages. The initial stage follows a general distributed join framework [7], where
matches of join units (subgraphs of the pattern graph p in pre-defined forms)
are listed from a distributed storage of the data graph d, and those matches are
joined to recover the matches of p. In the incremental updating stage, we design
an algorithm which can update the distributed storage according to the graph
changes with a low cost. To update the matches, we design a novel Navigated
Join (Nav-join) approach to extract a patch set that contains only the newly-
appeared matches. Then we can simply merge the old matches with the patch
set, and filter out the matches that no longer exist. By expectation, our approach
has a lower cost compared to running from scratch under mild assumptions.

2 Preliminaries

Given an undirected and unlabeled graph g, we use V (g) and E(g) to denote
the vertex set and edge set in g, respectively. An edge connecting vi and vj is
denoted by (vi, vj) (or equivalently (vj , vi)). Edge (vi, vj) is incident to both vi
and vj . For any vertex v ∈ V (g), denote Ng(v) as the neighbors of v, which is
defined as Ng(v) = {u|(v, u) ∈ E(g)}, and deg(v) = |Ng(v)| as the degree of v.

Given two graphs d and p, subgraph listing requires outputing all subgraphs
of d, which are isomorphic [11] to p. Here d is called the data graph, and p is
called the pattern graph. Each isomorphism f from p to a valid subgraph of d is
called a match, and we denote M(p, d) as the set of all matches of p in d.

The automorphism of a graph g is the isomorphism f : V (g) �→ V (g). In this
work, we use Symmetric Breaking (SimB) [4] to avoid duplicate results caused
by the automorphisms of p. In this case, for each valid subgraph of d, we can
find only one match.

A dynamic graph is defined as an initial graph d, followed by several updates
U1, U2, . . ., where each update Ui contains a set Ed(Ui) of edges to delete and
a set Ea(Ui) of edges to insert. Assuming that after applying each of those
updates, we get the updated graphs d′, d′′, . . ., our goal is to output the match
set M(p, d), M(p, d′), M(p, d′′), . . . efficiently. For simplicity, we only consider
one update, because if we can compute M(p, d′) efficiently, we can handle the
next one by treating d′ as the new initial graph.

Problem Statement. Given a distributed file system, which can store and load
data as key-value pairs, a pattern graph p, a data graph d, and a graph update
U , we consider two problems:

1. To compute M(p, d) efficiently.
2. To compute M(p, d′) efficiently given M(p, d), where d′ is the updated graph.

3 DDSL: Initial Subgraph Listing

We use all graphs with radius= 1 as join units, which are called R1 units. Given
an R1 unit q, we can find at least one vertex, who is the common neighbor of all
other vertices. We randomly pick such a vertex as the anchor vertex of q.
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To support directly listing the matches of any R1 unit without join, we use
the Neighbor-Preserved (NP) storage mechanism. Specifically, for each vertex
vi, we store its local graph loc(vi) = d[{vi} ∪ Nd(vi)] in partition dh(i), where h
is an arbitrary partition function.

Perceptually, ui lies on the “center” of loc(ui), so we call ui a center vertex of
dj if h(i) = j. For non-center vertices of dj , we call them border vertices. To list
matches of a join unit q, we use an alternative version Mac(q, di) which requires
that q’s anchor vertex must be matched to one of di’s center vertices. In this
way, the union of all Mac(q, di) will be M(q, d)1.

3.1 Pattern Decomposition and Join

With the two building blocks decided, we can perform the subgraph listing within
the join framework. Given a pattern graph p, we decompose p into a set of join
units Q = {q1, q2, . . . , qk}, such that (1) Each qi is an R1 unit, and (2)

⋃

qi∈Q

qi = p.

We then list the matches of all the join units in Q directly from the NP
storage, and join the matches together. Assuming that we have two matches
f1 ∈ M(p1, d) and f2 ∈ M(p2, d), then f1 can be joined with f2 if ∀v ∈ V (p1) ∩
V (p2) : f1(v) = f2(v). This guarantees that there exists no conflict when merging
the mappings in f1 and f2, and the vertex set {fi(v)|∀v ∈ V (p1)∩V (p2)} is called
the join keys. After the join, we need to check each result, and drop every match
that maps two or more vertices in p to the same vertex in d.

To find a good decomposition as well as a join order to reduce the I/O cost,
we apply techniques like match size estimation and computation cost model as
in [7]. We refer the reader to [5] for details.

4 DDSL: Incremental Updating

In this section we address the problem of handling dynamic graphs. Assuming
that a batch U of edge updates is applied on the original data graph d, resulting
in a new data graph d′, we update Φ(d) and M(p, d) in three steps:

1. Update Φ(d) to Φ(d′) according to U ;
2. Compute a patch set Mnew(p, d′) containing all newly-appeared matches, i.e.,

Mnew(p, d′) = M(p, d′)\M(p, d);
3. Compute M(p, d′) by first filtering matches in M(p, d) that should be

removed, and then merging the result with Mnew(p, d′).

4.1 Updating the NP Storage

To update the NP storage Φ(d), essentially we need to update each local graph
loc(ui) correctly.

1 All the proofs can be found in [5].
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Edge Insertion. There are two possible situations that inserting an edge can
lead to the change of loc(ui).

1. Inserting edge (ui, uj), which means uj becomes a new neighbor of ui. In this
case, we need to check all edges adjacent to uj , and add edge (uj , uk) into
loc(ui) if uk is ui’s neighbor.

2. Inserting edge (uj , uk), where uj and uk are both ui’s neighbors. In this case,
we only need to add (uj , uk) into loc(ui).

Edge Deletion. Edge deletion is the reverse of edge insertion, so it can be
handled by the above two situations with all edge insertions replaced with edge
deletions. The only difference is that, in situation (1), we can just delete all edges
in loc(ui) which are adjacent to uj .

In DDSL we deal with all cases in a single MapReduce round, which is sum-
marized in Algorithm 1. Each mapper takes dk and U as the input, which causes
S(Φ(d)) + m · |E(U)| I/O cost. All mappers output the neighbor sets of vertices
in U , which are shuffled to the reducer. This incurs at most 3 · ∑

ui∈U |Nd′(ui)|
communication cost. The reducers read dk, U and Nd′

k
, and then output Φ(d′),

so the I/O cost of reduce is S(Φ(d)) + m · |E(U)| + ∑
ui∈U |Nd′(ui)| + S(Φ(d′)).

In summary, the total cost of updating Φ(d) is

2 · S(Φ(d)) + 2 · m · |E(U)| + 4 ·
∑

ui∈U

|Nd′(ui)| + S(Φ(d′))

4.2 Updating the Match Set

The update of the match set can be divided into two categories: the removed
matches and the newly-appeared matches. The removed matches exist in
M(p, d), but are no longer valid because some edges are deleted. They can be
removed by checking each match in M(p, d), and removing those who contain
edges in Ed(U). The extra I/O cost comes from reading the deleted edge set
Ed(U) by each mapper, which is in total m · |E(U)|.
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The newly-appeared matches do not exist in M(p, d), but appear in M(p, d′).
According to Lemma 1, we can use Ea(U) to identify these matches, which consist
the patch set Mnew(p, d′).

Lemma 1. A match in M(p, d′) is not in M(p, d) if and only if it maps any
edge in E(p) to an inserted edge in Ea(U).

In DDSL, we design a navigated join (Nav-join) to compute Mnew(p, d′) with
a lower cost based on two assumptions:

– The inserted edge number is small compared to |E(d)|, so |Mnew(pi, d′, qi)|
for any pi and qi should be small.

– The size of M(pi, d) for a small pi is usually much larger than |E(d)|.
Instead of joining two match sets, we may use a partition-and-expand strat-
egy to reduce the join cost. Basically, for a join pi = pj ∪ qk, where qk is
a join unit, we can send each f ∈ Mnew(pj , d′) to several partitions. Then
inside each partition d′

x, we expand f to get the matches of pi. If we choose
the partitions carefully, we can guarantee the correctness of the result. Sup-
pose that Mnew(pj , d′) takes Snew(pj) storage, the total cost is now at most
S

(
Φ(d′)

)
+ (4m + 1) · Snew(pj) + Snew(pi). According to our assumptions, this

cost should be lower than the original bushy-join cost. Based on this, we design
the Nav-join to compute Mnew(p, d′, qi) as follows:

1. Find a left-deep tree w.r.t. the join unit set Q, where qi is the lowest leaf.
2. Extract Mnew(qi, d′, qi) from each partition separately with the constraint

that every match must map at least one edge in qi to an inserted edge.
3. For a join in the tree, we compute the result using Nav-join by partitioning

the matches on the left side, and expanding them in each part of the NP
storage.

4. Repeat step (3) from the bottom of the tree to the root, and the final result
is Mnew(p, d′, qi).

The Optimal Left-Deep Tree. In a join pi = pli ∪ pri , the mappers take
Mnew(pli, d

′, qi) as input, and output the matches sent to each d′
k, which are

shuffled to the reducers. The reducers take Φ(d′) and received matches as input,
and output Mnew(pi, d′, qi). According to assumption (1), the main cost would
be reading Φ(d′), i.e., S(Φ(d′)). Assuming a left-deep tree involves j join units,
then the total cost is j · S(Φ(d′)), which comes from 1 unit match listing and
j−1 Nav-joins. Thus, the optimal left-deep tree is the one involving the minimum
number of join units.

Match Navigation. In step (3), supposing the join is pi = pli ∪ pri , we decide
whether f should be sent to d′

k as follows:

1. If pri ’s anchor vertex v is used to generate the join-key, and f(v) = uj , then
f can only be joined with matches in M(pri , loc

′(uj)), where loc′(uj) is the
local graph of uj in d′. In this case, we only send f to d′

h(j).
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2. Otherwise, we generate the join-key of f . If a match f ′ can be joined with f ,
f ′ must have the same join-key, and thus f ′(v) must be the common neighbors
of all vertices in the join-key. For each vertex uj in the join-key, we send f to
d′
h(j).

Parallelize All Trees. For each qi ∈ Q we need to compute Mnew(p, d′, qi)
according to its left-deep tree. If we compute all sets in serialization, the total
cost is S(Φ(d′)) · |Q|2. We noticed that in each join and unit match listing, the
input Φ(d′) can be shared, so we compute all match sets in parallelism. In each
MapReduce round, we process the same level of all left-deep trees simultaneously.
Since all left-deep tress has the same height |Q| − 1, the calculation can be done
in exact |Q| rounds, and the total cost is thus S(Φ(d′)) · |Q|.
Match Deduplication. For Mnew(p, d′, qi), there might be a match f , which
maps an edge in qi to an inserted edge, and another edge in qj to an inserted
edge. This f will also appear in Mnew(p, d′, qj) according to our algorithm. To
avoid such duplications, we assign a total order {qi < qj if i < j} on Q, then
∀f ∈ Mnew(p, d′, qi), we keep it only if for any qj < qi, f does not map an edge
in qj to an inserted edge. In other words, f can map an edge in qj to an inserted
edge if and only if qj > qi.

Theorem 1. By assigning the total order in the Nav-join, there will be no dupli-
cate matches or lost matches.

5 Experiments

5.1 Experiment Setup

Datasets and Queries. In our experiments, we use 4 commonly-used real-word
graphs WebGoogle (WG), WikiTalk (WT), LiveJournal (LJ), and UK-2002 (UK)
as the data graph. Datasets WG, WT and LJ can be downloaded from SNAP2,
and dataset UK can be downloaded from WEB3. The size of each dataset is
listed in Table 1. For the pattern graphs, we pick 5 commonly used ones from
recent works [6,7,9], which are shown in Fig. 1.

Table 1. Sizes of datasets.

WG WT LJ UK

|V | 0.87M 2.39M 4.84M 18.5M

|E| 5.1M 5.0M 34M 227.5M

a

b c

d

q1

a

b c

d

q2

a

b

c d

e

q3

a

b

c d

e

q4

a

b

c d

e

f

q5

Fig. 1. Pattern graphs.

2 http://snap.stanford.edu/data/index.html.
3 http://law.di.unimi.it.

http://snap.stanford.edu/data/index.html
http://law.di.unimi.it
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Fig. 2. Preprocessing cost.
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Fig. 3. Performance on static graphs: vary pattern.

Compared Methods. In the experiments on static graphs, we compare DDSL
with two state-of-the-art distributed approaches SEED [7] and Crystal [9]. In the
experiments on dynamic graphs, we compare to Delta-BigJoin [1]. Since edges in
Delta-BigJoin have directions, we replace each undirected edge (u, v) with two
directed edges (u, v) and (v, u).

Running Environment. All methods in our experiments are running on a
cluster of 11 machines. The master has 47 GB RAM, two Intel Xeon X5650
CPUs, and one 900 GB HDD. Each slave has 125 GB RAM, two Intel Xeon E5-
2630 CPUs, and one 900 GB HDD. By default we set the number of mappers
and reducers to be 200, each with 4 GB memory space. For Delta-BigJoin, we
set the number of processes to be 200.

5.2 Experiments on Static Graphs

We first evaluate the computation and space cost of preprocessing the data
graph. Then we investigate the cost of listing all matches of a given pattern.

In Fig. 2a, we compare the preprocessing time of DDSL with SEED and
Crystal. Compared to constructing Φ(d), the cost for listing all 3-cliques is much
larger, and DDSL outperforms SEED and Crystal by up to 5 times.

Besides the construction time, we also compare the space cost of each
method’s underlying storage. For each method, the total file size across the
cloud is shown in Fig. 2b. Compared to the original graph, the NP storage takes
at most 4.6 times of extra space, while SEED and Crystal can take more than 7
and 10 times of extra space, respectively.
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Fig. 4. Performance of incremental updating.

In Fig. 3 we show the overall running time of each method on all pattern
graphs. The missing bars mean that the running time is larger than 104 s. In
general, DDSL outperforms other two methods in most of the situations. It is
slightly slower than Crystal only for processing q1 and q3 on LJ. For these two
patterns, all three methods performs similar joins while listing the matches, and
thus DDSL does not have notable advantages over other two methods. For other
three patterns, DDSL has the best performance on all datasets.

5.3 Experiments on Dynamic Graphs

Experiments in this part also contain two parts. The first part is to evaluate the
cost of updating the NP storage, and the second part is to evaluate the cost of
updating the matches of a pattern. For both two parts, we vary the batch size
in {102, 103, 104, 105}, and generate the update batch by randomly picking b/2
edges in d to delete, and generating b/2 edges that do not exist in d to insert.

To evaluate the cost of updating the NP storage, we count the time of updat-
ing the NP storage on each dataset. As Fig. 4a shows, DDSL can update the NP
storage very efficiently. In comparison to Fig. 2, the updating time is less than
the construction time even for the largest batch size. We also noticed that for
each dataset, the updating time remains nearly unchanged as the batch size
grows, which means the message size during the updating also grows slowly.

To evaluate the performance of updating the match set, we count the overall
elapsed time of DDSL and Delta-BigJoin. For DDSL, we also include the time
for updating of the NP storage, to illustrate its overall performance. For Delta-
BigJoin, we randomly assign a direction to each edge in the query, and average
the running time in 5 runs. The inf indicates that either the running time is
too long, or the memory usage exceeds our capacity.

As Fig. 4b to Fig. 4e show that, except for q2, the increasing of running time
of Delta-BigJoin is much faster than that of DDSL. On the other hand, DDSL
performs stabler. The updating time of all 4 patterns remains to be low. Com-
paring the updating time with the running time on LJ in Fig. 3, the updating
time for every pattern is much smaller than that on static graphs even for the
105 batch size.
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6 Conclusion

In this paper, we study the problem of subgraph listing on distributed and
dynamic graphs. We propose an efficient method, called DDSL, to handle
dynamic graphs through two stages: initial calculation and incremental updat-
ing. Extensive experiments show that DDSL can handle static subgraph listing
with a competitive performance compared with the state-of-the-art distributed
methods. Moreover, DDSL can efficiently handle dynamic subgraph listing with-
out computing from scratch.
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Abstract. In a signed social network, users can express emotional tendencies
such as: like/dislike, friend/foe, support/oppose, trust/distrust to others. Sign
prediction, which aims to predict the sign of an edge, is an important task of
signed social networks. In this paper, we attempt to tackle the problem of sign
prediction by proposing a Deep Sign Prediction (DSP) method, which uses deep
learning technology to capture the structure information of the signed social
networks. DSP considers the “triangle” structures each edge involves compre-
hensively, and takes both the “balance” theory and the “status” theory into
account. We conduct experiments and evaluations on five real signed social
networks and compare the proposed DSP method with multiple state-of-the-art
methods. The experimental results show that the proposed DSP method is very
effective and outperforms other methods in terms of four metrics (AUC, binary-
F1, micro-F1, macro-F1).

Keywords: Sign prediction � Balance theory � Status theory � Triangle
structure

1 Introduction

With the emergence of online social networks, individuals show more interests in
participating in social intercourse on the Internet. Numerous studies focus on unsigned
social networks while only a few of them have studied the signed ones. Due to the
existence of negative edges, many effective unsigned social network analysis methods
cannot be applied to signed social networks directly [4–6]. Signed social networks are
usually based on balance theory [1, 2] and status theory [3], both of which are proposed
by observing social phenomena. At the same time, with the rapid development of deep
learning technology, many scholars have begun to adopt the idea of network embed-
ding to solve the problem of sign prediction. Although these methods have achieved
good sign prediction performance, they have some drawbacks. Firstly, most methods
basing on balance theory [9, 11] obtain the node embedding by optimizing single
balance triangle each edge involves during each round of training process. These
methods can have some limitations: 1. The interactions between multiple triangles each
edge involves are ignored. 2. Most methods only consider triangles that satisfy the
balance theory, and ignore those violating the theory, which will lead to the key
information loss. 3. There is no common neighbor between the two endpoints of an
edge, which is called a “bridge” edge in the paper [9]. Thus, how to properly model this
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type of edges is also an essential aspect. Secondly, for some methods based on skip-
gram models [12, 13], they use shallow models to train node embedding and cannot
capture the non-linear structure information of the network well. Thirdly, a sign pre-
diction method should fuse balance theory and status theory reasonably to obtain
optimal sign prediction performance [9], but there are few methods considering both
theories together. Last but not least, as stated in the paper [7], it is necessary to
specifically design a solution framework for sign prediction problem.

The main contributions of this paper are:

• This paper proposes an end-to-end framework: Deep Sign Prediction
(DSP) method, which uses the deep learning technology and optimizes a loss
function specifically designed for sign prediction.

• This paper extends the balance theory by considering all possible “triangle”
structures each edge involves and solves the drawbacks of former methods which
only model single balanced triangle each edge involves.

• In this paper, a two-layer neural network architecture is designed to combine the
balance theory with status theory reasonably.

• We conduct experiments and evaluations on five real signed social networks and
compare the proposed DSP method with multiple state-of-the-art methods. Exper-
imental results show that our method outperforms other methods in terms of four
metrics (AUC, binary-F1, micro-F1, macro-F1).

2 Related Work

Signed Network Embedding: Signed network embedding methods can be roughly
divided into following four categories. The first category does not consider any soci-
ological theory. In [10], Yuan et al. propose a SNE method, which uses a log-bilinear
model to train the target embedding of nodes along a given path. The second category
makes use of balance theory. For example, SiNE [11] method is based on the extended
structural balance theory. In SIGNet [12], the authors propose a scalable signed net-
work embedding method. In [13], Kim et al. propose the SIDE method, which fully
encodes the direction and sign of the edges in the learned embedding space. The third
category is based on status theory. In SSNE [14], the authors design an energy-based
ranking loss function based on status theory. The last type considers both two theories.
For example, the BESIDE method in [9].

Sign Prediction: There are many methods solving sign prediction from different
perspectives, apart from signed network embedding methods mentioned above. For
example, in [8], Leskovec et al. manually extract degree features of the nodes and triad
features of edges to train a logistic regression classifier for sign prediction. In [15],
Javari et al. design a probability prediction model based on the local and global
structure of networks in order to deal with the sparsity problem of signed social
networks.
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3 Preliminary

Signed Social Network: A signed social network can be modeled as a directed signed
graph G ¼ V ;E;Eþ ;E�; Sð Þ, where V ;E;Eþ ;E� represent the sets of all nodes,
signed edges, positive edges, and negative edges in the network; S is a signed adja-
cency matrix, and each entry Sij of S represents the relationship from node i to j
(Specifically, Sij ¼ 1;�1; 0 indicates positive, negative, no relationship in the current
network).

Sign Prediction: Given a signed social network G, sign prediction aims to predict the
sign of edges that are not observed in current network.

4 The Proposed Method

4.1 Model “Triangle” Structures Each Edge Involves

In a signed social network, there are multiple situations for the interaction between any
directed edge eij and any node k. Nodes i; j; and k can form a triangle, which may not
necessarily conform to balance theory, or they cannot even form a triangle. And, eij
may be involved in multiple “triangles” at the same time. As shown in Fig. 1, without
considering the edge sign, edge eij and node k can form four possible “triangle”
structures (dashed line indicates that edge may not exist). Each “triangle” type corre-
sponds to interactions between the neighbor structure of node i and that of the node j in
directed edge eij. For example, the first type of “triangle” corresponds to the interaction
between the out-neighbor structure of node i and the in-neighbor structure of node j.

According to Fig. 1, we generate a “balance” neighbor structure vector for two
endpoints of the directed edge eij:

b sti ¼ Souti ; Souti ; Sini ; S
in
i

� �
; b enj ¼ Sinj ; S

out
j ; Sinj ; S

out
j

h i
ð1Þ

in formula (1): b sti, b enj 2 R1�4 Vj j; Souti 2 R1� Vj j is the i th row of the matrix S, and
Sini 2 R1� Vj j is the i th column of the matrix S.

Fig. 1. Four possible “triangle” structures each edge involves.
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By constructing b sti and b enj for each edge eij, and training b sti and b enj
simultaneously, our method can consider the four “triangle” types in Fig. 1. This
solution extends the balance theory and considers all possible “triangle” structures each
edge involves comprehensively. Next we want to find a function f , which takes b sti or
b enj as input, and output the “balance” embedding b emi or b emj. Namely,

b emi ¼ f b stið Þ; b emj ¼ f b enj
� � ð2Þ

in formula (2): b emi 2 R1�d and d is the dimension of “balance” embedding.

4.2 Modeling Directed Edges by Status Theory

For a user in signed social networks, her status is determined by two parts: her
“subjective” status/self-evaluation, and her “objective” status, which is evaluated by
others. The “subjective”/“objective” status can be reflected by the user’s out-
neighbor/in-neighbor structure. Then for a node i, we want to find a function g �; �ð Þ
which inputs the Souti and Sini and outputs a “status” neighbor structure vector: s nei.

s nei ¼ g Souti ; Sini
� � ð3Þ

we use the vector addition to define the function g. In formula (3): s nei 2 R1� Vj j.
After obtaining the “status” neighbor vectors of node i, j, we will learn two

functions: st h and en h to obtain the “status” embedding: s emi, s emj respectively.

s emi ¼ st h s neið Þ; s emj ¼ en h s nej
� � ð4Þ

in formula (4): s emi; s emj 2 R1�d , d is the dimension of the “status” embedding.
Based on status theory, we define a status loss function Lst, as:

Lstij ¼ max 0; d� Statusi � Statusj
� � � �Sij

� �� � ð5Þ

in formula (5): Statusi 2 �1; 1ð Þ is the status value of node i, which is generated by
the non-linear mapping function sta h;

Statusi ¼ sta h s emið Þ ð6Þ

Sij is the sign of eij; d is the threshold of the difference between the two status
values, and we set it to 0.5 according to the previous experimental research.

4.3 Deep Sign Prediction Model

Our network architecture is divided into two parts: the first part is used to extend
balance theory, and the second part is used to consider the status theory. The input of
DSP is an edge. The detailed network architecture of the DSP method is shown in
Fig. 2.
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First, we use a two-layer fully connected neural network to define function f .

b emi ¼ tanh tanh b stiW
0 þ b0

� �
W1 þ b1

� � ð7Þ

in formula (7): tanh is a non-linear activation function; W0 2 R4 Vj j�2d and W1 2
R2d�d are the weight parameters; b0 2 R1�2d and b1 2 R1�d are the bias parameters.

For the functions st h and en h, they are defined by using a layer of fully con-
nected neural network, respectively.

s emi ¼ tanh s neiW
2 þ b2

� �
; s emj ¼ tanh s nejW

3 þ b3
� � ð8Þ

in formula (8): W2, W3 2 R Vj j�d ; b2, b3 2 R1�d .
We also use a layer of fully connected neural network to define the function sta h.

Statusi ¼ tanh s emiW
4 þ b4

� � ð9Þ

in formula (9): W4 2 Rd�1; b4 2 R1�1.
Then, we concatenate “balance” embedding and “status” embedding of two end-

points of each edge as the final feature representation.

finalij ¼ b emi; b emj; s emi; s emj
� � ð10Þ

in formula (10): finalij 2 R1�4d is the final embedding vector.
For the prediction layer, we use a three-layer fully connected neural network to

generate the edge’s prediction value.

Fig. 2. Network architecture of the DSP method
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pij ¼ softmax ReLU ReLU finalijW
5 þ b5

� �
W6 þ b6

� �
W7 þ b7

� � ð11Þ

in the formula (11): ReLU and softmax are two non-linear activation functions;
W5 2 R4d�d , W6 2 Rd�d

2, and W7 2 R
d
2�2; b5 2 R1�d , b6 2 R1�d

2, and b7 2 R1�2.
We use the cross-entropy loss to define the loss of sign prediction.

Lsignij ¼ �
X

m
yijm log pijm ð12Þ

in the formula (12): m 2 0; 1f g is the subscript. y denotes the one-hot encoding
vector of the edge sign (negative and positive); p defines the predicted probability for each
type of sign (negative and positive). For the DSP method, the overall loss function is:

L ¼ 1
Ej j

X
eij2E Lsignij þ Lstij

� � ð13Þ

The input scale of the DSP method is O Ej jð Þ. We use the Adam [17] algorithm to
optimize the DSP model. The learning rate is 0.0001, and the batch size is 128.

5 Experiments

5.1 Datasets

We conduct experiments and evaluations on five real online signed social networks.
The specific statistical information of five datasets is shown in Table 1.

5.2 Baseline Methods

We compare the proposed DSP method with several state-of-the-art sign prediction
methods: two feature engineering methods (All23 [8] and FxG [16]), two unsigned
network embedding methods (DW [4] and N2V [6]), three signed network embedding
methods (SIGNet [12], SIDE [13], and BESIDE [9]), and the part of extends balance
theory in DSP model (DSP_B). For the above methods, we use the same parameters
setting recommended by the original papers. For the unsigned network embedding
methods, we ignore edge sign during training process. For the node embedding

Table 1. The statistical information of five datasets

Dataset Node Edge Positive (%) Negative (%)

Alpha 3783 24186 93.65% 6.35%
OTC 5881 35592 89.99% 10.01%
RfA 7118 107080 78.41% 21.59%
Slashdot 82140 549202 77.40% 22.60%
Epinions 131828 641372 85.30% 14.70%
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methods, we concatenate the node embedding to obtain the edge embedding, and then
train a logistic regression model for sign prediction. Our method uses the DSP
framework for sign prediction and sets the dimension of the embedding vector d ¼ 40.

5.3 Sign Prediction

As in previous studies [9], we use AUC, binary-F1, micro-F1, and macro-F1 to
evaluate the performance of sign prediction. We randomly divide the datasets into a test
set and a training set with a ratio of 2–8. The experimental results are shown in Table 2.

From Table 2, we can see that the DSP method has obtained the best experimental
results in most cases. It is better than All23 and FxG, which shows the powerful
learning ability of deep model. The performance of two unsigned network embedding
methods is relatively poor, which means the unsigned network embedding methods
cannot adapt to sign prediction. By comparing DSP with SIGNet and SIDE, we find
that using deep models and considering both balance theory and status theory together
can achieve better sign prediction performance. DSP is superior to BESIDE, indicating
that comprehensive consideration of all possible “triangle” structures each edge
involves can capture the latent features related to sign prediction well. The results also
indicate that solution framework specifically designed for sign prediction problem is
crucial to achieve better sign prediction performance by comparing DSP with other
methods of signed network embedding. In most cases, the DSP method is better than
DSP_B, which shows that combining balance theory with status theory reasonably can
achieve the best sign prediction performance.

Table 2. The result of sign prediction

Dataset Metric All23 FxG DW N2V SIGNet SIDE BESIDE DSP_B DSP

Alpha AUC 0.8878 0.8793 0.8460 0.8451 0.8678 0.8787 0.8833 0.9143 0.9200
binary-F1 0.9718 0.9452 0.9681 0.9689 0.9651 0.9682 0.9695 0.9741 0.9742
micro-F1 0.9464 0.8988 0.9388 0.9403 0.9342 0.9397 0.9422 0.9511 0.9513
macro-F1 0.7151 0.6411 0.6051 0.6256 0.6963 0.6945 0.7186 0.7808 0.7837

OTC AUC 0.9109 0.8919 0.8649 0.8664 0.8793 0.8854 0.9069 0.9320 0.9350
binary-F1 0.9644 0.9308 0.9591 0.9588 0.9550 0.9569 0.9628 0.9714 0.9714
micro-F1 0.9344 0.8769 0.9240 0.9235 0.9180 0.9210 0.9322 0.9481 0.9481
macro-F1 0.7734 0.6877 0.7117 0.7112 0.7461 0.7444 0.7912 0.8447 0.8450

RfA AUC 0.8718 0.8925 0.8080 0.8091 0.9038 0.8369 0.9072 0.9198 0.9210
binary-F1 0.9047 0.9082 0.8935 0.8894 0.9162 0.8955 0.9193 0.9238 0.9242
micro-F1 0.8442 0.8495 0.8205 0.8133 0.8657 0.8257 0.8701 0.8778 0.8787
macro-F1 0.7388 0.7450 0.6614 0.6452 0.7889 0.6851 0.7940 0.8111 0.8125

Slashdot AUC 0.8873 0.8141 0.8049 0.8045 0.8852 0.8466 0.8903 0.9258 0.9271
binary-F1 0.9063 0.8617 0.8780 0.8776 0.9030 0.8919 0.9131 0.9266 0.9262
micro-F1 0.8462 0.7803 0.7965 0.7959 0.8472 0.8265 0.8617 0.8847 0.8843

macro-F1 0.7394 0.6641 0.6325 0.6320 0.7718 0.7264 0.7878 0.8289 0.8289
Epinion AUC 0.9433 0.9240 0.8673 0.8682 0.9214 0.9197 0.9391 0.9643 0.9664

binary-F1 0.9555 0.9441 0.9400 0.9399 0.9556 0.9579 0.9660 0.9712 0.9712
micro-F1 0.9213 0.9032 0.8927 0.8926 0.9231 0.9262 0.9411 0.9501 0.9501
macro-F1 0.8060 0.7906 0.7177 0.7183 0.8337 0.8300 0.8734 0.8925 0.8924
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We compare the prediction performance of each algorithm on a test set that con-
tains only “bridge” edges. The experimental results on “bridge” edges are shown in
Table 3. From Table 3, we can see that BESIDE achieves the best performance on all
baseline methods, which means that BESIDE method with status theory is quite useful
for modeling “bridge” edges. The proposed DSP and DSP_B methods are both superior
to BESIDE, showing that considering the neighbor structures of two endpoints of each
edge comprehensively, the “bridge” edges can be trained and predicted well.

6 Conclusion and Future Work

This paper presents a DSP method specifically for solving sign prediction task. DSP
makes use of the powerful learning ability of deep learning to capture the complex
structure of signed social networks. At the same time, the DSP method extends the
balance theory, comprehensively considers all possible “triangle” structures each edge
involves. Finally, the DSP method reasonably combines balance theory with status
theory. We perform two types of comparative experiments on the five real signed social
network datasets. The experimental results on four commonly used evaluation metrics
show the superiority of our proposed methods.

Although DSP achieves excellent sign prediction performance, there are still some
directions that can be further explored. For example, in the future, we will explore more
ways of combining balance theory with status theory. Moreover, we will explore the
attribute information of nodes in the next research work.

Table 3. The performance of sign prediction on the “bridge” edges.

Dataset Metric All23 FxG DW N2V SIGNet SIDE BESIDE DSP_B DSP

Alpha AUC 0.8321 0.8093 0.7769 0.7840 0.8021 0.8313 0.8208 0.8696 0.8742
binary-F1 0.9804 0.9014 0.9796 0.9809 0.9642 0.9716 0.9798 0.9817 0.9810

micro-F1 0.9618 0.8237 0.9602 0.9628 0.9323 0.9454 0.9608 0.9648 0.9634
macro-F1 0.6313 0.5356 0.5915 0.5942 0.6583 0.6370 0.7160 0.7535 0.7435

OTC AUC 0.8442 0.8065 0.7948 0.8003 0.8121 0.8120 0.8584 0.8755 0.8814
binary-F1 0.9645 0.8820 0.9667 0.9681 0.9540 0.9580 0.9683 0.9708 0.9708
micro-F1 0.9324 0.7956 0.9363 0.9390 0.9147 0.9213 0.9407 0.9457 0.9455

macro-F1 0.6283 0.5585 0.6208 0.6299 0.6802 0.6635 0.7651 0.7977 0.7958
RfA AUC 0.8064 0.8867 0.7899 0.7696 0.8527 0.8027 0.8590 0.8853 0.8860

binary-F1 0.8184 0.8536 0.8174 0.8035 0.8426 0.8136 0.8595 0.8749 0.8750
micro-F1 0.7238 0.8057 0.7390 0.7129 0.7885 0.7401 0.8057 0.8277 0.8279
macro-F1 0.6210 0.7823 0.6801 0.6355 0.7600 0.6920 0.7722 0.7994 0.8001

Slashdot AUC 0.8615 0.7951 0.7844 0.7846 0.8674 0.8277 0.8724 0.9085 0.9094
binary-F1 0.8930 0.8492 0.8783 0.8734 0.8939 0.8837 0.9086 0.9178 0.9172
micro-F1 0.8218 0.7654 0.7890 0.7881 0.8337 0.8146 0.8547 0.8709 0.8705

macro-F1 0.6805 0.6610 0.6153 0.6122 0.7550 0.7138 0.7778 0.8098 0.8100
Epinion AUC 0.8575 0.8573 0.7918 0.7948 0.8409 0.8709 0.8609 0.9039 0.9066

binary-F1 0.8962 0.8694 0.8832 0.8837 0.9036 0.9142 0.9306 0.9395 0.9389
micro-F1 0.8211 0.8064 0.8090 0.8090 0.8463 0.8639 0.8873 0.9025 0.9017
macro-F1 0.6244 0.7476 0.6800 0.6752 0.7622 0.7931 0.8159 0.8443 0.8440
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Abstract. Session-based recommendation, which is the task of predict-
ing user behavior based on anonymous sessions in the recommendation
domain, has drawn increasing interests in recent years. Most existing
studies focus on modeling a session as a sequence and only capturing
the item-level dependency. Although newly impressive progress has been
made to session-based recommendation utilizing graph neural networks,
those methods are deficient in incorporating multi-level coupling rela-
tions and capturing the session-level information. In this paper, we pro-
pose a multi-level interests network (MinSR) based on Graph Neural
Networks (GNN) and Attention mechanism, which can simultaneously
integrate multi-level interests in the recommendation process and pro-
vide a framework for exploiting both current and global session relation-
ships. On the aspect of the current session, we extract Current Preference
(CP) and Interest Point (IP) for each session using graph neural network
and attention network. On the aspect of the global session, we generate
Global Tendency (GT) via self-attention graph pooling for the session
graph. Finally, by inherently combining them in a unified framework,
our method can take into account both current and global session depen-
dencies. Extensive experimental results based on two real-world datasets
demonstrate that the proposed MinSR achieves competitive results com-
pared with the state-of-the-art approaches.

Keywords: Session-based recommendation · Graph neural network ·
Attention mechanism · Graph pooling

1 Introduction

Recently, session-based recommendation (SR) has attracted wide attention,
which aim to predict user next action from an ongoing session or recent his-
torical sessions, as shown in Fig. 1a.

Many works have been proposed for SR, which model each session as a
sequence of items. Previously, Markov Chain based approaches, such as FMC
[11], predict the next action based on the previous ones. It is obvious that an
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 650–657, 2020.
https://doi.org/10.1007/978-3-030-59416-9_41
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independent combination of past actions may limit the accuracy of recommen-
dation under the circumstances. The past few years have witnessed the enor-
mous success of deep learning in recommender systems. A multitude of relevant
works [2,7,8] using the recurrent neural network (RNN) for SR obtain promising
results, by reason of RNN’s intrinsic advantages for modeling sequential depen-
dency. Except for RNN, STAMP [6] exploits Multilayer Perceptron (MLP) net-
works and an attention net to capture the hybrid features of current and general
interests. More recently, some methods [9,10] take advantage of Graph Neural

Fig. 1. Session sequences and session graph.

Networks to make recommendation, where session sequences are modeled as
graph-structured data (see Fig. 1b). Compared with previous conventional
sequential methods, GNN can capture complex transitions of items. Based on
the session graph, Wu et al. [9] propose the session-based recommendation with
graph neural networks (SR-GNN) to explore rich transitions among items. Sim-
ilar to STAMP [6], SR-GNN also constructs each session representations via the
global preference and the current interest. More recently, GC-SAN [10] lever-
ages self-attention mechanism and graph neural network for learning long-range
dependency. Although GNN based models have been proven useful in learning
users’ interests from a session graph, existing literature only consider modeling
each session as a combination of the global preference and the current interest
and neglect the entire session graph information.

To address the above issues, we propose a novel multi-level interests network
for session-based recommendation, named as MinSR, which can provide a frame-
work for exploiting both current and global session relationships and model users’
interests from multi-level. On the aspect of the current session, we extract Cur-
rent Preference (CP) and Interest Point (IP) for each session using graph neural
network and attention network. On the aspect of the global session, we generate
Global Tendency (GT) via self-attention graph pooling [4] for the session graph.
Finally, by inherently combining them in an attention network, our method can
take into account both current and global session dependencies simultaneously.
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It is worth noting that different from previous GNN-based models [9,10], MinSR
provides flexibility to represent users’ interests via the attentive combination of
CP, IP, and GT.

2 Proposed Method

In this section, we introduce the proposed MinSR, a novel multi-level interests
network for SR. Our model contains three modules: (1) current session module,
(2) global session module, and (3) prediction module. Figure 2 presents the whole
architecture of MinSR.

2.1 Current Session Module

Based on the session graph, we obtain latent feature vectors of nodes (i.e., items)
via gated graph sequence neural networks [5] in accordance with SR-GNN [9].
Note that the session graph is a directed graph on account of the sequential
order between items. Therefore, the adjacency matrix At ∈ R

n×2n consists of
two blocks, outgoing edges matrix Aout

t ∈ R
n×n and incoming edges matrix

Ain
t ∈ R

n×n. The information propagation between different nodes via outgoing
and incoming edges can be formalized as:

xt = At([v1, v2, . . . , vn]Wz + bz) (1)

where Wz ∈ R
d×2d is the learnable parameter matrix and bz ∈ R

d is the bias
vector. Thus xt can obtain the information from edges in both directions. The
same as Gated Recurrent Unit [1], the remaining update operations incorporate
information from the previous time-step and from other nodes to update each
node’s hidden state xti.

Current Preference (CP). After feeding all session graphs into the gated
graph neural network, we can obtain the latent feature vectors of all nodes.
Then a session sequence st = {vt1, vt2, vt3, . . . , vtn} can be represented as
xt = {xt1, xt2, xt3, . . . , xtn} where xti denotes node embedding. Consistent with
previous session-based recommendation methods, we consider the global embed-
ding of a session sequence st by aggregating all node vectors xt as current pref-
erence. To draw global dependency in the current session, we use the attention
mechanism to learn the importance of different items for CP.

hi =
1
n

∑

i∈n

qT tanh(W1xtn + W2xti + b)

βi =
exp(hi)∑p
i=1 exp(hi)

Scp =
t∑

i=1

βixti

(2)
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Interest Point (IP). For a session sequence st, the last clicked-item plays an
important role in predicting the next action. Therefore, we model the crucial
role as the interest point defined as the last clicked-item vector, i.e., xtn.

Sip = xtn (3)

Fig. 2. The overall framework of the proposed MinSR.

2.2 Global Session Module

Considering the information in the global session graph can have an effect on
user behavior, we adopt self-attention graph pooling (SAGPool) [4] to generate
a graph embedding as Global Tendency (GT). In the session graph, we utilize
the widely used graph convolution network [3] to learn node embedding.

h(l)
conv = σ(D̃− 1

2 ÃD̃− 1
2 h(l−1)Θ) (4)

where h(l−1) is the node representation of (l − 1)-th layer, Ã is the adjacency
matrix of session graph G, D̃ =

∑
j Ãij , and Θ is the convolution weight. The

critical point of SAGPool is the graph pooling layer that uses the same graph
convolution network to provide the self-attention score P ∈ R

N×1 in the back of
a graph convolution layer:

Ppool = σ(D̃− 1
2 ÃD̃− 1

2 h(l)
convW ) (5)

Here, W is a layer-specific trainable weight matrix, h
(l)
conv is the input feature

matrix of the graph and σ denotes an action function, such as tanh. Then we
set a hyperparameter, the pooling ratio k ∈ (0, 1] that determines the number
of nodes to stay. The top �kN� nodes are selected based on the value of P .

idx = ftop(P, �kN�) (6)

where ftop is the function that returns the indices of remaining nodes.
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Global Tendency (GT). Like other pooling approaches, a readout layer is used
to aggregate node features. The stack of graph convolution layers, graph pool-
ing layers and readout layers are concatenated to form the hierarchical pooling
architecture. The final output that can serve as global tendency Sgt is as follows:

Sgt = [P̂mean||P̂max] (7)

where P̂ is the output of the self-attention graph pooling network, mean is
the mean-pooling, max is the max-pooling and || denotes the concatenation
operation.

2.3 Prediction Module

To generate a more reliable next item, MinSR represents users’ interests as
a combination of the current preference (CP), interest point (IP), and global
tendency (GT).

hm =
1
n

∑
qT tanh(W1Scp + W2Si + b)

αi =
exp(hm)∑p
i=1 exp(hm)

S =
t∑

i=1

αiSi

(8)

Finally, we predict the next action for a session sequence st by applying a softmax
function, where the score of each candidate item is computed via multiplying its
embedding by users’ interests representation S as follows:

ŷi =
exp(STxi)∑n
i=1 exp(STxi)

(9)

During model training, we can minimize the Cross-Entropy of the ground-truth
and the prediction over training data with the L2-norm. The objective function
is defined as follows:

L = −
m∑

i=1

yilog(ŷi) + (1 − yi)log(1 − ŷi) + η||θ||2 (10)

where yi denotes the ground truth item, η is regularization factor and θ is model
parameters.

3 Experiments

In this section, we compare our proposed algorithm with state-of-the-art tra-
ditional and deep learning based recommendation methods as well as recently
developed graph-based approaches on two benchmark datasets. The Diginetica
dataset is obtained from CIKM Cup 2016, and the Yoochoose dataset comes
from the RecSys Challenge 2015. We report the performance of all models on
frequently used metrics P@K and MRR@K.
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Comparison Against Baselines. Table 1 shows the results of comparing
MinSR with the traditional methods (i.e., POP, S-POP, Item-KNN and BPR-
MF) and the deep learning based approaches (i.e., GRU4Rec, NARM and
STAMP) on the two benchmark datasets in terms of P@20 and MRR@20. We
can see that MinSR performs the best and significantly outperforms the tra-
ditional methods and the deep learning based models on two datasets, which
shows the effectiveness of our proposed method on SR.

Table 1. The performance of comparing MinSR with the traditional and deep learning
based methods on the two benchmark datasets in terms of P@k and MRR@k (k=20).

Datasets Yoochoose1/64 Yoochoose1/4 Diginetica

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

POP 6.71 1.65 1.33 0.30 0.89 0.20

S-POP 30.44 18.35 27.08 17.75 21.06 13.68

Item-KNN 51.60 21.81 52.31 21.70 35.75 11.57

BPR-MF 31.31 12.08 3.40 1.57 5.24 1.98

GRU4Rec 60.64 22.89 59.53 22.60 29.45 8.33

NARM 68.32 28.63 69.73 29.23 49.70 16.17

STAMP 68.74 29.67 70.44 30.00 45.64 14.32

MinSR 70.53 30.06 70.80 31.35 51.85 17.81

Table 2 presents the data of comparing MinSR with the graph neural net-
works based approach on the Diginetica dataset in terms of P@k and MRR@k
(k ∈ [5, 10, 15, 20]). For graph-based methods, we can see that the recent method
SR-GNN and our MinSR perform quite well. This suggests that building session
graphs using session sequences can preserve complex relations among items,
which can provide additional information in predicting process. The main rea-
sons why MinSR works well are three fold: 1) the session graph can represent
complex transitions of items; 2) the model further exploits both current and
global session relationships; 3) most importantly, MinSR captures user interests
via the attentive combination of CP, IP, and GT.

Table 2. The performance of comparing MinSR with the graph neural networks based
method on the Diginetica dataset in terms of P@k and MRR@k (k ∈ [5, 10, 15, 20]).

Datasets Diginetica

P@5 MRR@5 P@10 MRR@10 P@15 MRR@15 P@20 MRR@20

SR-GNN 26.82 15.13 38.41 16.65 45.68 17.20 50.73 17.59

MinSR 27.44 15.40 38.81 16.92 46.07 17.37 51.85 17.81
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Model Analysis. As shown in Table 3, we examine the contributions of two
main components, namely, graph neural network and user interest, using the
best-performing MinSR model on the Diginetica dataset.

Table 3. The performance of comparing MinSR with eight variants on the Diginetica
datasets in terms of P@k and MRR@k (k ∈ [5, 10, 15, 20]).

Datasets Diginetica

P@5 MRR@5 P@10 MRR@10 P@15 MRR@15 P@20 MRR@20

MinSR-IP 25.41 14.27 36.25 15.70 43.61 16.24 48.91 16.51

MinSR-CP 27.00 15.12 38.55 16.65 46.06 17.19 51.54 17.50

MinSR-GT 0.35 0.18 0.54 0.21 0.70 0.22 0.81 0.22

MinSR-IP+CP 26.82 15.13 38.41 16.65 45.68 17.20 50.73 17.59

MinSR-IP+GT 25.41 14.31 36.36 15.78 43.50 16.33 48.61 16.60

MinSR-GT+CP 26.96 15.08 38.40 16.61 45.95 17.19 51.40 17.46

MinSR-GAT 26.58 15.08 37.91 16.57 45.14 17.11 50.57 17.47

MinSR-SAGE 26.80 15.21 37.94 16.47 45.36 17.27 51.85 17.48

MinSR 27.44 15.40 38.81 16.92 46.07 17.37 51.85 17.81

4 Conclusion

In this paper, we propose MinSR, a novel multi-level interests network for
session-based recommendation, which is able to provide a framework for exploit-
ing both current and global session relationships. Especially, our MinSR can
capture users’ interests from multi-level. On the aspect of the current session, we
extract Current Preference (CP) and Interest Point (IP) for each session using
graph neural network and attention mechanism. On the aspect of the global ses-
sion, we generate Global Tendency (GT) via self-attention graph pooling for the
session graph. Finally, by inherently combining them in an attention network,
our method can take into account both current and global session dependen-
cies simultaneously. Different from previous GNN-based models, MinSR pro-
vides flexibility to represent users’ interests via the attentive combination of CP,
IP and GT. Extensive experimental results on two real-world datasets demon-
strate that the proposed MinSR achieves competitive results compared with the
state-of-the-art approaches.
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Abstract. k−core is one type of cohesive subgraphs such that every
vertex has at least k degree within the graph. It is widely used in
many graph mining tasks, including but not limited to community detec-
tion, graph visualization and clique finding. Frequently decomposing a
dynamic graph to get its k−cores brings expensive cost since k−cores
evolve as the dynamic graph changes. To address this problem, previous
studies proposed several maintenance solutions to update k−cores based
on a single inserted (removed) edge. Unlike previous studies, we main-
tain affected k−cores from the sparsest to the densest, so the cost of our
method is determined by the largest core number of a graph. Experi-
mental results show that our approach can significantly outperform the
previous algorithms up to 3 order of magnitude for real graphs tested.

Keywords: k−core · Core maintenance · Dynamic graph

1 Introduction

k−core [10] is defined as the maximal subgraph of a simple graph G such that
every vertex in the subgraph has at least k degree. The problem of finding the
core number of all vertices in G is called core decomposition [4], which is widely
used in many real-world applications, including large graph visualization [1],
community detection [5], and network analysis [2].

Most graphs in our life are highly dynamic, whose edges are inserted into
or removed from the graph over time. The core number of vertices should be
updated to reveal the up-to-date structure of the graph. Clearly, it is uneco-
nomical to recalculate the core number of all vertices while a few edges change.
Instead, core maintenance [6,9] is proposed, whose goal is to update the core
number of influenced vertices rather than decompose the entire graph. Unfortu-
nately, existing solutions can only deal with a single edge each time, which leads
to high cost when a graph with numerous inserted (removed) edges.
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 658–665, 2020.
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To overcome above drawbacks, we provide a novel solution to maintain core
number of vertices with multiple inserted (removed) edges simultaneously. Com-
pared with previous studies, our solution is relevant to the maximum core number
of a graph. We conduct extensive experiments to evaluate the performance of our
method and the existing solution. Experimental results show that our method
can significantly outperform the previous algorithm up to 3 orders of magnitude
for large real graphs tested.

The main contributions of our paper can be summarized as follows:

– With the aid of quasi−k−core, a similar but more loose concept to k−core,
we can estimate the vertices affected by a set of inserted (removed) edges.

– Unlike existing approaches, our maintenance solution can update the core
number of vertices in affected k−cores from the sparsest to the densest.

– Through executing extensive experiments on real graphs, our solution per-
forms better than the existing approach.

The rest of this paper is organized as follows: Sect. 2 provides some prelim-
inaries. The details of our solution are introduced in Sect. 3. Section 4 reports
experimental results and Sect. 5 describes the related work about our paper.
Finally, Sect. 6 concludes the paper.

2 Preliminaries

Usually, G represents a simple graph, which consists of a vertex set V (G) and
an edge set E(G) such that E(G) ⊆ V (G) × V (G). For convenience, |G| =
|V (G)|+ |E(G)| is used to represent the size of |G|, where |V (G)| and |E(G)| are
the size of vertices and edges respectively. Additionally, K0 indicates an empty
graph without vertices or edges.

Given an arbitrary vertex v ∈ V (G), we define N(G, v) = {u : (u, v) ∈ E(G)}
as the set of neighbors of v. Clearly, |N(G, v)| is the degree of v in G, denoted
by d(G, v). For convenience, we also use v ∈ G ((u, v) ∈ G) to replace v ∈
V (G) ((u, v) ∈ E(G)), where u and v are two adjacent vertices of an edge in G.

To clearly illustrate the relation between two graphs G1 and G2, we generalize
four set notations on graphs: G1 ⊆ G2 represents G1 is a subgraph of G2;
G1 ∩ G2 refers to the intersection graph of G1 and G2; G1 ∪ G2 is the union
graph of G1 and G2; G1 \ G2 depicts the difference graph of G1 and G2 such
that E(G1 \ G2) = E(G1) \ E(G2).

k−core [10] is a well-established metric to evaluate the importance of vertices
as well as their connections in the graph. Besides, k−core has two important
properties: uniqueness and nestedness [4,8].

Definition 1. A k−core is the largest subgraph of a graph G, denoted by
C(G, k), such that d(C(G, k), v) ≥ k for an arbitrary vertex v ∈ C(G, k).

Generally, we require k ≥ 1. When k = 0, 0−core is the graph itself. If not
specified, we assume isolated vertices have been removed from G. Besides, we
use C(G, k) = K0 to represent an empty k−core.
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Similar to existing studies [4], we define the core number of vertices in G. If
a vertex v is located in k−core but not contained in (k + 1)−core, then its core
number is k, denoted by φ(G, v) = k. Additionally, the maximum core number
of vertices in G is denoted as φ(G).

3 Solution

Existing methods obey the core update theorem [6,9], while an edge is inserted
into (removed from) a graph, the vertices affected by this edge will change their
core number at most 1. When numerous edges change, existing methods repeat-
edly identify influenced vertices for each edge and some of them may change their
core number many times. If the number of edges is very large, the maintenance
cost will become expensive.

To address the above issues, we propose a novel solution, which updates
core number of influenced vertices from the sparsest k−core to the densest. To
this end, we first propose the quasi−k−core to estimate the candidate vertices
for each influenced k−core. Secondly, we identify the partial−k−core of each
affected k−core and update their core number. Lastly, we increase k until all
affected k−cores are updated.

For convenience, we use Gc to represent the current graph and Gp to indi-
cate the previous graph before changing. Correspondingly, we define Si =
Gc \ Gp (Sr = Gp \ Gc) as the insertion (removal) graph.

3.1 Quasi−k−core

Consider that most graphs are sparse, not all k−cores will be affected by inserted
(removed) edges. To find influenced k−cores, an intuitive idea is to decompose
Si (Sr). Since some vertices of Si (Sr) lack adjacent edge information in Gc (Gp),
we decompose Si (Sr) to a set of quasi−k−cores with the aid of Gc (Gp).

Consider that the steps of quasi core decomposition on Si and Sr are similar,
we use S (e.g. Si or Sr) and G (e.g. Gc or Gp) to represent two arbitrary graphs
for ease of presentation. To supplement extra edge information of vertices in S,
we define the neighborhood graph S on G, which consists of vertices in S and
their adjacent neighbors within one step in G. Similar to k−core, quasi−k−core
is also unique and nested. Otherwise, it contradicts to the maximal property of
quasi−k−core.

Definition 2. S(G) = (V (S(G)), E(S(G))) is the neighborhood graph of S on
G such that V (S(G)) = V (S) ∪ {v : v ∈ N(G, u) ∧ u ∈ V (S)} and E(S(G)) =
E(S) ∪ {(u, v) : u ∈ S ∧ v ∈ N(G, u)}. Specially, if S ∩ G = K0, then S(G) = S.

Definition 3. The quasi−k−core Ĉ(S,G, k) is the largest subgraph of S on G
such that d(Ĉ(G), v) ≥ k for an arbitrary v ∈ Ĉ(S,G, k), where Ĉ(G) is the
neighborhood graph of Ĉ(S,G, k) on G.
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To get a set of quasi−k−cores, we can revise the decomposition method of
k−cores. Through recursively removing unsatisfied vertices from S for each k,
we can get a set of quasi−k−cores. Besides, we can also define quasi core number
for each vertex, which is similar to core number.

3.2 Insertion Case

Our insertion algorithm has four steps: firstly, we decompose Si to a set of
quasi−k−cores with the aid of Gc; secondly, we expand each quasi−k−core to a
candidate graph; thirdly, we get the partial−k−core from the candidate graph;
lastly, we update the core number of vertices in the partial−k−core and continue
the next loop until all affected k−cores are updated.

Note that inserted edges may increase the core number of adjacent vertices
of the quasi−k−core, but they are not contained in the quasi−k−core. To find
all affected vertices, we expand the quasi−k−core to a candidate graph, which
contains all possible affected vertices. Additionally, we terminate the search path
when edges are contained in the previous k−core since they must belong to the
current k−core.

Definition 4. F (k) is a candidate graph whose vertex v ∈ C(Gc, k−1) satisfying
d(C(Gc, k − 1), v) ≥ k is reachable from u ∈ Ĉ(Si, Gc, k) via a path and satisfies
(u′, v′) /∈ C(Gp, k) for an arbitrary edge (u′, v′) ∈ F (k).

We can observe that F (k) contains all vertices that may be contained in
C(Gc, k) \ C(Gp, k). So, C(Gc, k) ⊆ F (k) ∪ C(Gp, k) holds. Since F (k) contains
some redundant vertices, we identify the partial−k−core from F (k), denoted
by P (k) = C(Gc, k) \ C(Gp, k), which is the difference graph of C(Gc, k) and
C(Gp, k). Since Ĉ(P (k), C(Gp, k), k) is a subgraph of P (k) and for any v ∈ P (k),
d(P (C(Gp, k)), v) ≥ k holds, we have Ĉ(P (k), C(Gp, k), k) = P (k).

To get P (k) from F (k), we observe that P (k) = Ĉ(P (k), C(Gp, k), k). Since
P (k) ⊆ F (k), we have P (k) ⊆ Ĉ(F (k), C(Gp, k), k). On the contrary, if a vertex
v ∈ Ĉ(F (k), C(Gp, k), k) \ P (k), there must be a vertex u ∈ C(Gp, k) which can
be reachable from v such that d(F (C(Gp, k)), u) < k via a path. Again, this is a
contradiction. Consider another case (u, v) ∈ Ĉ(F (k), C(Gp, k), k) \ P (k), since
u, v ∈ P (k), P (k) ⊆ P (k) ∪ (u, v). When C(Gp, k) = K0, we can directly get
C(Gc, k) from F (k) since C(Gc, k) ⊆ F (k).

Based on above discussions, we implement Algorithm 1 to maintain k−cores
for the insertion case. In detail, it first decomposes Si to a map of quasi core
numbers and corresponding vertex sets. Then the algorithm updates the core
number of influenced vertices from k = 2 to φ̂(Si, Gc) (the maximal quasi core
number of Si on Gc) according to two cases mentioned above.

Clearly, the time complexity of Algorithm 1 is O(|Si| +
∑φ̂(Si,Gc)

k=1 2|F (k)|),
where O(2|F (k)|) is the cost to get F (k) and the partial−k−core. Note that
φ̂(Si, Gc) is much less than |V (Gc)|, where |V (Gc)| is the number of vertices in
Gc. As for the space complexity, it only costs O(|Gc|) to store the entire graph.
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Algorithm 1: Insertion Case (IC)
Input: Si: the insertion graph, Gc: the current graph, φ: a map of vertices

and their core number.
Output: φ: a map of vertices and their core number.

1 decompose Si to a set of quasi−k−cores;
2 φ(v) ← 1 for v ∈ Si;
3 k ← 2;

4 while k ≤ φ̂(Si, Gc) do
5 expand the quasi−k−core to a candiadte graph;
6 if k ≤ φ(Gp) then

7 get Ĉ(F (k), C(Gp, k), k) from F (k);

8 φ(v) ← k for v ∈ Ĉ(F (k), C(Gp, k), k);
9 k ← k + 1;

10 else
11 execute core decomposition on F (k);
12 for v ∈ F (k) do
13 φ(v) ← φ(F (k), v) if φ(F (k), v) ≥ k;
14 break;

15 return φ;

3.3 Removal Case

Our removal algorithm contains three steps: firstly, we decompose Sr to a set
of quasi−k−cores with the aid of Gp; secondly, we delete the common edges in
Ĉ(Sr, Gp, k) ∩ C(Gp, k) and recursively remove influenced vertices that cannot
be located in C(Gp, k); thirdly, we continue the loop until all affected k−cores
are updated.

The implementation of Algorithm 2 is relatively simple. Firstly, it decomposes
Sr to a map of vertices and their quasi core number (line 1). Secondly, for
each influenced k−core, it deletes common edges in Ĉ(Sr, Gp, k) ∩ C(Gp, k),
recursively removes influenced vertices and updates the core number of affected
vertices. The time complexity of Algorithm 2 is O(|Sr| +

∑φ̂(Sr,Gp)
k=1 |C(Gp, k)|).

Since it at most traverses the entire affected k−core for each k, and the space
complexity is O(|Gp|).

4 Experiments

Our real graphs are downloaded from Koblenz Network Collection1, including
10 real graphs (seen Table 1), where Stanford is a direct graph and Youtube is a
temporal graph. For the directed graph, we ignore the edge direction and regard
it as a simple graph. Then for the temporal graph, we sort their edges by the
timestamp. While for the remainder graphs, we keep the initial order of edges
as the corresponding graph files.
1 http://konect.uni-koblenz.de/.

http://konect.uni-koblenz.de/
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Algorithm 2: Removal Case (RC)
Input: Sr: the removal graph, Gp: the previous graph, φ: a map of vertices

and their core number.
Output: φ: a map of vertices and their core number.

1 decompose Sr to a set of quasi−k−cores;

2 φ̂(Sr, Gp) ← φ(Gp) if φ̂(Sr, Gp) > φ(Gp);
3 k ← 1;

4 while k ≤ φ̂(Sr, Gp) do
5 let Q be an empty queue;

6 for (u, v) ∈ Ĉ(Sr, Gp, k) ∩ C(Gp, k) do
7 remove (u, v) from C(Gp, k);
8 push u (v) into Q if d(C(Gp, k), u) < k (d(C(Gp, k), v) < k);

9 adjust C(Gp, k) by removing vertices in Q;
10 update core number of affected vertices in φ;
11 k ← k + 1;

12 return φ;

All algorithms are implemented in C++ and compiled with GCC 7.4.0 at
-O2 optimization level. All experiments are executed sequentially on the Linux
operating system Ubuntu 18.04, which is running on a machine with two Xeon
E5-2683v4@2.1 GHz CPUs and 128 GB RAM.

Table 1. The detail of graphs

G Amazon Douban Flixster Gowalla Hyves Livemocha Skitter Stanford Wordnet Youtube

|V (G)| 334, 863 154, 908 2, 523, 386 196, 591 1, 402, 673 104, 103 1, 696, 415 281, 903 146, 005 3, 223, 585

|E(G)| 925, 872 327, 162 7, 918, 801 950, 327 2, 777, 419 2, 193, 083 11, 095, 298 1, 992, 636 656, 999 9, 375, 374

|φ(G)| 6 15 68 51 39 92 111 71 31 88

Similar to the most of existing studies, we adopt the execution time is as the
metric of our experiments. In our experiments, we select the traversal approach
[9] as the baseline, which contains Trav-I for the insertion case and Trav-R
for the removal case. To support numerous edges, we recursively execute the
traversal approach multiple times. Before experiments, we set some necessary
parameters. We set the 2-hops for Trav-I and 1-hop for Trav-R in experiments,
the details of these algorithms can be seen in [9].

For the insertion case, the last m edges are used to construct the insertion
graph Si and the remainder are used to construct Gp. As for the removal case,
the first m edges are used to construct removal graph Sr and all edges are used
to construct Gp. Generally, we vary m from 100, 000 to 200, 000 for tracing the
evolution of the performance of two approaches.

Table 2 shows the execution time on all graphs for the insertion case. Com-
pared with Trav-I, IC achieves the best performance on all graphs. Table 3
shows the execution time on all graphs for the removal case. Since both two
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Table 2. The execution time for the insertion case (unit: second)

m 100, 000 120, 000 150, 000 180, 000 200, 000

Methods IC Trav-I IC Trav-I IC Trav-I IC Trav-I IC Trav-I

Amazon 6.02 254.66 6.79 296.50 7.52 344.93 8.34 377.53 8.92 392.49

Douban 3.36 30.22 3.75 33.77 4.79 49.18 5.41 67.17 5.89 90.68

Gowalla 4.72 11.21 5.87 13.00 7.23 14.65 8.75 16.65 10.39 18.22

Stanford 59.79 154.22 62.36 177.53 66.70 220.50 70.94 257.38 72.09 275.71

Wordnet 6.76 14.96 7.68 18.45 8.95 24.78 10.24 29.22 10.97 33.29

Flixster 48.62 1222.00 56.03 1474.87 64.67 1674.03 73.05 2365.18 78.25 2657.49

Hyves 7.43 1715.22 8.42 2070.69 9.32 2616.87 10.41 3164.22 10.93 3419.63

Livemocha 66.84 73.95 73.09 88.01 81.30 104.80 89.32 144.65 94.50 176.27

Skitter 4.27 10.88 5.02 11.53 6.70 12.81 8.69 14.48 10.36 15.57

Youtube 284.04 336.86 297.46 394.72 312.28 488.06 326.43 596.92 334.13 731.56

Table 3. The execution time for the removal case (unit: second)

m 100, 000 120, 000 150, 000 180, 000 200, 000

Methods RC Trav-R RC Trav-R RC Trav-R RC Trav-R RC Trav-R

Amazon 2.51 2.96 3.02 3.54 3.75 4.39 4.58 5.25 5.13 5.79

Douban 3.25 6.08 3.93 7.54 4.55 8.93 5.32 10.29 5.84 10.80

Gowalla 7.88 10.33 9.67 12.38 12.14 16.38 15.05 19.92 16.53 22.79

Stanford 8.37 10.33 10.21 12.34 12.54 14.64 14.93 16.81 16.65 18.87

Wordnet 4.26 5.56 5.18 6.64 6.41 7.90 7.50 8.79 8.30 9.80

Flixster 12.93 27.29 15.71 33.67 19.14 41.27 22.14 49.07 24.35 52.11

Hyves 5.85 12.80 6.59 14.11 7.72 16.12 9.41 19.13 10.35 20.68

Livemocha 20.32 30.18 24.71 38.63 31.25 48.22 37.37 58.04 40.66 63.12

Skitter 8.77 9.94 10.15 11.91 12.74 15.51 15.30 19.21 16.95 21.50

Youtube 9.82 14.18 12.09 17.84 14.24 20.34 16.74 22.53 17.84 24.44

algorithms do not search candidate vertices in the removal case, the execution
time is obviously less than that of the insertion case. Even so, the performance
of RC is still better than Trav-R on all graphs.

5 Related Work

k−core decomposition, which assigns each vertex v with a core number to reveal
the connected state of v and its neighbors, is strongly related to graph degen-
eracy [10]. Numerous k−core decomposition algorithms are proposed to handle
different cases. To handle (k, h)−core of a temporal graph, which is an exten-
sion of k−core, Wu et al. [11] proposed two distributed algorithms to deal with
massive temporal graphs. Besides, the probabilistic core decomposition was also
studied recently in [3], where (k, η)−cores were proposed.

k−core and its extensions have been extensively used in numerous applica-
tions. To solve the maximal clique problem, Lu et al. [7] devised a randomized
algorithm by utilizing k−core and k−truss. With the aid of k−core, variants of
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community detection problems are addressed such as local communities detec-
tion [5]. Alvarezhamelin et al. [2] used k−core as a tool to analyze large scale
graphs such as social network and Internet graph.

6 Conclusions

In this paper, we propose a novel solution to tackle k−core maintenance of
dynamic graphs, which provides an effective solution to maintain the core num-
ber of vertices affected by multiple inserted (removed) edges simultaneously. We
confirm our approaches by conducting extensive experiments on 10 real graphs.
The results show that our solution can outperform the existing algorithm up to
3 order of magnitude for real graphs tested.
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Abstract. Enumerating cohesive subgraphs is a fundamental problem
for signed network analysis. In this paper, we propose a novel model,
called maximal signed k-clique, which aims to find cohesive subgraphs
in signed networks based on clique property and balance theory. Given
a signed graph G, a set of nodes C is a maximal signed k-clique if (1)
|C| ≥ k and C is a clique without any unbalanced triangle; and (2) C
is maximal. We show the problem of enumerating all maximal signed
k-cliques is NP-hard. Novel pruning techniques are proposed to signifi-
cantly filter the searching space. An efficient algorithm, SKC, is devel-
oped to handle large networks. Comprehensive experiments on four real-
world datasets are conducted to demonstrate the efficiency and effective-
ness of the proposed algorithms.

Keywords: Signed network · Balanced triangle · Signed clique

1 Introduction

Mining cohesive subgraphs is a fundamental task in network analysis and many
cohesive subgraph models are proposed in the literature, such as k-core [10], k-
truss [13] and clique [3]. Most existing research about cohesive subgraph mining
focuses on unsigned graphs, i.e., treating all connections between users as posi-
tive relationships. However, social interactions involve both positive relationship
(e.g., friend) and negative relationship (e.g., enemy). Ignoring the signed edge
information may fail to characterize the cohesiveness of subgraphs.

For signed network analysis, the balance theory is widely adopted, which is
formulated by Heider in the 1940s [6]. In the balance theory, many observations
are based on the concept of balanced triangle, which serves as a fundamental
role for signed network analysis. In a signed network, a triangle is balanced, if
there are odd number of positive edges in the triangle [2]. As shown in Fig. 1,
T1 and T2 are balanced triangles, while T3 and T4 are unbalanced triangles. A
balanced triangle with three positive edges (T1) means that “the friend of my
friend is my friend”, while the one with one positive edge and two negative edges

c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 666–674, 2020.
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Fig. 1. Example of balanced and unbalanced triangles

(T2) indicates “the enemy of my enemy is my friend”. In a real social network,
a community with more balanced triangles tends to be more stable [6].

Intuitively, in a signed graph, a stable cohesive subgraph should be densely-
balanced, i.e., nodes should be densely connected and the subgraph should be
free from unbalanced triangles. Based on this intuition, in this paper, we propose
a novel cohesive subgraph model for signed networks, called the maximal signed
k-clique, which meets three criteria: (1) it is a clique with size no less than k;
(2) it does not contain any unbalanced triangle; and (3) it is maximal, i.e., any
super graph of it cannot meet the first two criteria. The found cliques can be
very important for many applications, such as discovering balanced communities
or cooperative groups in signed social networks.

Recently, there are some works that try to identify cohesive subgraphs from
signed networks. For instance, Giatsidis et al. [5] propose an s-core model, which
requires each node in the subgraph to have sufficient number of positive and
negative neighbors. Our work is closely related to [9]. In [9], Li et al. propose a
signed clique model, called (α, k)-clique, to find cliques with more positive edges
and fewer negative edges. Specifically, each node in the found cliques should
have no more than k negative neighbors and at least αk positive neighbors.
Unfortunately, even though this model sets hard constraints on the number of
positive/negative neighbors, it may still involve a lot of unbalanced triangles
such as T3 and T4 in Fig. 1, which may lead to unstable communities.

The main challenges of the proposed problem lie in the following aspects.
Firstly, our problem is NP-hard, implying it is non-trivial to identify the maximal
signed k-cliques. Secondly, it is challenging to support both clique and balance
constraints simultaneously, since existing methods usually focus on one type of
the constraints. To the best of our knowledge, we are the first to investigate the
maximal signed k-clique problem. Our principal contributions are summarized
as follows.

– We formally define the maximal signed k-clique model and show its hardness.
– Novel pruning methods are developed by leveraging the properties of balanced

triangle to safely skip unpromising nodes and edges.
– Efficient algorithms are developed for the maximal signed k-clique enumera-

tion based on the classic Bron-Kerbosch framework [1].
– To evaluate the proposed techniques, we conduct comprehensive experiments

on 4 real-world datasets.
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2 Preliminaries

We consider a signed network G = (V,E) as an undirected graph, where V
and E are the set of nodes and edges in the graph, respectively. Each edge
e ∈ E in G is associated with a label either “+” or “−”. An edge with label
“+” denotes a positive edge implying these two users are friends, while an edge
with label “−” denotes a negative edge denoting the hostile relationship. Let
NB(u) = {v|(u, v) ∈ E} be the set of neighbor nodes of u. We denote the
degree of u in G as du(G) = |NB(u)|. A triangle Δ is a cycle of length 3. In
signed networks, balanced triangle is very important to keep the stability of a
community, which is defined as follows.

Definition 1 (Balanced triangle). Given a signed graph G, we say a triangle
is balanced, denoted by Δ+, if it has odd number of positive edges.

As shown in Fig. 1, given a signed graph, there exist 4 types of triangles.
T1 and T2 are balanced triangles, while T3 and T4 are unbalanced triangles. To
model the cohesiveness of a subgraph, we employ the clique model.

Definition 2 (Clique). Given a signed graph G, an induced subgraph C is a
clique, if all pairs of nodes in C are mutually connected.

Intuitively, an interesting community or cohesive subgraph in signed networks
should be 1) densely connected, i.e., clique; and 2) free from unbalanced struc-
tures, i.e., unbalanced triangles. In addition, for network analysis, an important
community should have sufficient number of people. Thus, we propose the signed
k-clique model to describe the cohesive subgraphs in signed networks.

Definition 3 (Signed k-clique). Given a signed graph G and a parameter k,
a signed k-clique is an induced subgraph C that satisfies: (i) k-clique constraint:
C is a clique and the number of nodes in C is no less than k, i.e., |C| ≥ k; and
(ii) balance theory constraint: C does not contain any unbalanced triangle.

Definition 4 (Maximal signed k-clique). An induced subgraph C is a max-
imal signed k-clique in G if C is a signed k-clique and there is no super graph
of C that is a signed k-clique.

Problem Statement. Given a signed graph G and a positive integer k, we aim
to develop efficient algorithms to enumerate all the maximal signed k-cliques.

Problem Hardness. When there are only positive edges in the graph, the
maximal signed k-clique problem is reduced to the maximal k-clique problem in
unsigned graphs, which is NP-hard [7]. Therefore, the problem studied in this
paper is also NP-hard.
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3 Enumerating All Maximal Signed k-Cliques

Naively, we can extend the existing methods, such as Bron and Kerbosch frame-
work [1], to enumerate cliques and verify them based on size and balance theory
constraints. However, it will explore a lot of unnecessary searching space. In this
section, novel pruning strategies are firstly proposed to filter the unpromising
nodes and edges that are certainly not contained in any maximal signed k-clique.
Then, the SKC algorithm is developed by integrating all the pruning strategies.

3.1 Pruning Strategies

As we know, k-core is a widely used model, where each node has at least k
neighbors. In the following, we firstly use k-core model to prune the space.

Lemma 1. k-core based pruning rule Given a signed graph G, a subgraph
S ⊆ G cannot be a signed k-clique, if S does not belong to (k − 1)-core.

Proof. Based on the definition of k-clique, any node in a k-clique should have
at least k − 1 neighbors, which meets the definition of (k − 1)-core. Thus, the
lemma holds.

Given a node u (resp. an edge (u, v)), we use Δ+
u (resp. Δ+

(u,v)) and |Δ+
u |

(rep. |Δ+
(u,v)|) to denote balanced triangles that contain u (resp. (u, v)) and the

cardinality of Δ+
u (resp. Δ+

(u,v)), respectively. Then, based on the properties of
triangle and clique, we can safely prune unpromising nodes based on Lemma 2
and filter unsatisfied edges based on Lemma 3 to reduce the searching space.

Lemma 2. Node-based pruning rule. For any node u in a signed k-clique,
the number of the balanced triangles containing u must be no less than (k−1)(k−2)

2 .

Proof. Given a signed k-clique C with size |C| ≥ k, for any node u ∈ C, the
number of neighbors of u (i.e., |C| − 1) is no less than k − 1 according to the
properties of clique. All pairs of nodes in clique are connected, it implies that
there are at least (k−1)(k−2)

2 balanced triangles containing u. Thus, if node u

involves in less than (k−1)(k−2)
2 balanced triangles, it cannot be in any signed

k-clique. Therefore, the lemma holds.

Lemma 3. Edge-based pruning rule. For any edge e in a signed k-clique,
the number of the balanced triangles containing e is no less than k − 2.

Proof. Clearly, there will be |Δ+
(u,v)| common neighbors for both u and v in a

signed k-clique. Suppose an edge e(u, v) is contained in less than k − 2 balanced
triangles (i.e., |Δ+

(u,v)| < k − 2). It implies edge e(u, v) cannot exist in a signed
k-clique, since the subgraph induced has less than k nodes, contradicting the
definition of the signed k-clique. Thus, the lemma holds.
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Algorithm 1: SKC Algorithm
Input : G: signed graph, k: clique constraint
Output : Maximal signed k-cliques
G ← compute (k − 1)-core in G; /* Lemma 1 */1

Δ+
u , Δ+

(u,v) ← Compute balanced triangles for each node u and edge (u, v) in G;2

while ∃u ∈ G with |Δ+
u | < (k−1)(k−2)

2
or (u, v) ∈ G with |Δ+

(u,v)| < k − 2 do3

delete u or (u, v) from G;4

for each Δuvw ∈ Δ+
u or Δ+

(u,v) do5

update the Δ information for the left nodes and edges in Δuvw;6

EnumSKC(�, U, �); /* Lines 8-23 */7

Procedure EnumSKC(C, U, X);8

if U = � then9

if X = � ∧ |C| ≥ k then report C as a maximal signed k-clique;10

return11

u ← arg maxv∈{X∪U} |U ∩ NB(v)|; L ← U\NB(u);12

for each node v ∈ L do13

U ′ ← {U ∩ NB(v)};14

for each u ∈ U ′ do15

if ∃w ∈ C with Δuvw is unbalanced then U ′ = U ′\{u};16

X ′ ← process X similar as U ;17

EnumSKC(C ∪ {v}, U ′, X ′);18

U ← U\{v}; X ← X ∪ {v};19

3.2 SKC Algorithm

In this section, we present the maximal signed k-clique enumeration (SKC) algo-
rithm. Algorithm 1 shows the details of SKC. It first derives the (k − 1)-core
to prune some unpromising nodes based on Lemma 1 (Line 1). In Line 2, we
compute the balanced triangles for each node u and edge (u, v) in G. According
to Lemma 2 and 3, we further filter unsatisfied nodes and edges until none of
them violates these two lemmas (Lines 3–6).

After filtering the searching space, we try to enumerate all the maximal
signed k-cliques by extending the Bron and Kerbosch framework [1] in Line 7.
The details of EnumSKC procedure are shown in Lines 8–19. Note that it admits
three input parameters {C,U,X}, where C is the temporary result, U is the set
of possible candidates and X is the excluded set. To improve the performance,
in Line 12, we first choose the best pivot node u from X ∪U to minimize the size
of L based on the pivoting technique, and remove the neighbors of u from L. In
the loop, we first pick a node v from L and add it to C. In Line 14, we derive
the set U ′ by removing the non-neighbors of v from U . In Lines 15–16, we use
balance theory constraint to remove nodes from U ′. Next we process X following
the similar procedure as that of U in Line 17. Then, we repeat the EnumSKC
procedure for new C, U and X (Line 18) until U is empty (Line 9). If U and X
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are both empty and the size of nodes in C is no less than k, it reports C as a
newly found maximal signed k-clique (Lines 9–11). Otherwise, we backtrack to
the last node picked and move it from U to X in Line 19.

4 Experiments

4.1 Experiment Setup

Algorithms. To the best of our knowledge, there is no existing work on the
problem studied in this paper. Therefore, we add pruning rules one by one to
evaluate the performance of SKC. In the experiments, we implement and evaluate
the following algorithms.

– SKC-C: SKC framework with only the k-core based pruning rule.
– SKC-CN: SKC framework with the k-core and node-based pruning rules.
– SKC: SKC framework with all the pruning techniques, i.e., Algorithm 1.

Datasets. Four real datasets are utilized in our experiments. Table 1 shows the
details of 4 real datasets that are utilized in our experiments. Bitcoin1, Slashdot1

and Wiki2 are all real signed networks. Bitcoin is who-trusts-whom networks,
where each edge represents the reputation, i.e., positive edge represents the trust
while negative edge represents the distrust. The Slashdot dataset, collected from
Slashdot, contains friend and foe links between the users. Wiki contains inter-
preted interactions between the users of the English Wikipedia that have edited
pages about politics, where each interaction is given a positive or negative value.
Youtube1 is a large unsigned social network to evaluate the scalability of algo-
rithms. Following the procedure in [9], we generate the signed labels by randomly
picking 70% of the edges as the positive edges and the remaining edges as neg-
ative edges.

Table 1. Statistics of datasets

Dataset n = |V | m = |E| |E+| |E−| |
+| |
−|
Bitcoin 7,605 14,125 12,973 1,152 19,629 2,524

Slashdot 82,144 500,481 382,915 117,566 499,187 80,378

Wiki 138,593 717,573 631,547 86,026 2,737,424 264,899

Youtube 1,157,828 2,987,625 2,091,338 896,287 1,625,861 1,430,525

Parameters and Workload. To evaluate the performance of the proposed
techniques, we conduct experiments by varying k. The response time and the
1 http://snap.stanford.edu.
2 http://konect.uni-koblenz.de.

http://snap.stanford.edu
http://konect.uni-koblenz.de
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number of maximal signed k-cliques are reported to demonstrate the efficiency
and effectiveness of the methods, respectively. For each setting, we run the algo-
rithm 10 times and report the average value. All the programs are implemented
in standard C++. All the experiments are performed on a PC with an Intel
i5-9600KF 3.7 GHz CPU and 64 GB RAM.

4.2 Efficiency and Effectiveness Evaluation of SKC

Efficiency Evaluation. To evaluate the efficiency, we compare the response
time of SKC-C, SKC-CN and SKC on all the datasets by varying k. The results
are shown in Fig. 2. As can be seen, by adding more pruning techniques, the
algorithm becomes faster. SKC constantly outperforms the others on all datasets.
As shown, when k increases, the response time deceases for all the algorithms.
This is because the number of maximal k-cliques becomes smaller for larger k. In
addition, algorithm becomes faster when more pruning rules are involved, which
verifies the pruning power of the proposed techniques.

Fig. 2. Efficiency evaluation of SKC by varying k

Effectiveness Evaluation. To evaluate the effectiveness of the proposed model,
we report the number of cliques found based on the normal k-clique model and
the proposed signed k-clique model. For the normal k-clique model, we ignore
the labels on the edges and enumerate the k-cliques. Figure. 3 shows the results
conducted on all datasets by varying k. As observed, the number of normal k-
cliques is larger than that of our model, which indicates that there are many
unbalanced k-cliques in the signed networks. The results greatly demonstrate
the effectiveness of the proposed model.

Fig. 3. Effectiveness evaluation of SKC by varying k
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5 Related Work

In graph analysis, clique enumeration serves as an important role in various appli-
cations [3,4,12]. To enumerate all the maximal cliques, Bron and Kerbosch [1]
propose the classic backtracking method, called Bron-Kerbosch algorithm, which
requires only polynomial storage space and escapes recomputing the same clique.
Furthermore, Cheng et al. [4] develop an I/O-efficient maximal clique enumer-
ation algorithm. Balance theory is proposed by Heider [6] and generalized by
Cartwright [2].Balance theory has been widely used to investigate the proper-
ties of networks. In [8], Leskovec et al. use balance theory for link prediction. In
recent years, mining signed networks has attracted a lot of attention. Yang et al.
[11] propose a framework based on agent-based random walk model to extract
communities in signed networks. Giatsidis et al. [5] extend the k-core model for
the signed graphs. Li et al. [9] propose the (α, k)-clique model, which is very
close to our problem. It tries to find cliques with more positive edges and fewer
negative edges. As discussed, this model may still involve a lot of unbalanced
structures. In addition, the proposed techniques cannot be extended to support
the problem studied in this paper.

6 Conclusion

In this paper, we conduct the first research to investigate the maximal signed
k-clique problem based on balance theory in signed graphs. We formalize the
problem and show it is NP-hard. Novel pruning techniques are proposed to
filter the unpromising nodes and edges. Advanced algorithms are developed to
accelerate the enumeration of cliques. We conduct extensive experiments on
four real-world signed networks to evaluate the effectiveness and efficiency of
the proposed techniques.

Acknowledgments. Xiaoyang Wang is supported by NSFC61802345. Chen is sup-
ported by ZJNSF LQ20F020007.
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Abstract. With the pervasiveness of GPS-enabled smart devices and
increased wireless communication technologies, Spatial Crowdsourcing
(SC) has drawn increasing attention in assigning location-sensitive tasks
to moving workers. In real-world scenarios, for the complex tasks, SC is
more likely to assign each task to more than one worker, called Group
Task Assignment (GTA), for the reason that an individual worker cannot
complete the task well by herself. It is a challenging issue to assign worker
groups the tasks that they are interested in and willing to perform. In this
paper, we propose a novel framework for group task assignment based
on worker groups’ preferences, which includes two components: Social
Impact-based Preference Modeling (SIPM) and Preference-aware Group
Task Assignment (PGTA). SIPM employs a Bipartite Graph Embedding
Model (BGEM) and the attention mechanism to learn the social impact-
based preferences of different worker groups on different task categories.
PGTA utilizes an optimal task assignment algorithm based on the tree-
decomposition technology to maximize the overall task assignments, in
which we give higher priorities to the worker groups showing more inter-
ests in the tasks. Our empirical studies based on a real-world dataset
verify the practicability of our proposed framework.

Keywords: Spatial crowdsourcing · Group task assignment · Social
impact-based preference

1 Introduction

With the ubiquitous deployment of wireless networks and mobile devices (e.g.,
smart phones), Spatial Crowdsourcing (SC), an emerging paradigm utilizing the
distributed mobile devices to monitor diverse phenomena about human activ-
ities, has attracted much attention from both academic and industry commu-
nities. The main idea of spatial crowdsourcing is recruiting a set of available
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 677–693, 2020.
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workers to perform the location-specific tasks by physically traveling to these
locations, called task assignment.

Most existing SC researches focus on single task assignment, which assumes
that tasks are simple and each task can only be assigned to a single worker.
For example, Tong et al. [12] design several efficient greedy algorithms to solve
the proposed Global Online Micro-task Allocation (GOMA) problem in spatial
crowdsourcing. [7] considers task assignment and scheduling at the same time,
in which an approximate approach is developed that iteratively improves the
assignment and scheduling to achieve more completed tasks. However, in real-
world scenarios, an individual worker may not be able to perform a complex task
(e.g., monitoring the traffic flow in an area or moving heavy stuff) independently
since completing the task alone exceeds the capability of this worker. In such
scenarios, each task should be assigned to a group of workers, which is named
Group Task Assignment.

Group task assignment requires a group of workers to perform each task by
physically traveling to the location of this task at a particular time. Some previ-
ous studies have explored the group task assignment problem in spatial crowd-
sourcing. For instance, [8] proposes a Team-Oriented Task Planning (TOTP)
problem, which makes feasible plans for workers and satisfies the skill require-
ments of different tasks on workers. Gao et al. [9] develop a Top-k team rec-
ommendation framework in spatial crowdsourcing, in which a team leader is
appointed among each recommended team of workers in order to coordinate dif-
ferent workers conveniently. Cheng et al. [3] consider the collaboration in task
assignment, in which workers are required to cooperate and accomplish the tasks
jointly for achieving high total cooperation quality scores. Nevertheless, they fail
to effectively incorporate the group preference, which is an essential factor for
improving the quality of group task assignment in spatial crowdsourcing as the
group members may not be willing to perform the task assigned to them when
they are not interested in this task. We next illustrate the group task assignment
problem through a motivation example.

Figure 1 shows an example of the group task assignment problem, in which
each task is required to be assigned to two workers. There exist five workers
(w1, ..., w5) and two tasks (s1, s2). Each worker is associated with her current
location and her reachable distance range. Each task is labeled with its location
where it will be performed. In addition, Fig. 1 also depicts the preferences of
different available worker groups for each task. The problem is to assign tasks
to suitable worker groups so as to maximize the total task assignments. In SC,
it is an intuitive move to assign the nearby tasks to workers without violat-
ing the spatio-temporal constraint (i.e., the assigned tasks should be located
in the reachable ranges of the corresponding workers and workers can arrive
in the locations of assigned tasks before the deadlines of tasks). Therefore, we
can obtain a task assignment, {<s1, {w1, w2}>,<s2, {w4, w5}>}, with the over-
all group preference of 0.33. Nevertheless, when we assign the worker group,
{w4, w5}, to task s2, the group is likely to quit performing s2 as they show little
interest in s2 (i.e., the group preference on s2 is only 0.04), which may leave s2
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Fig. 1. Running example

uncompleted. If we assign tasks by giving higher priorities to the worker groups
who are more interested in the tasks, we can get the task assignment result,
{<s1, {w2, w3}>,<s2, {w1, w4}>}, the total group preference of which is 0.78.

In this paper, we develop a group task assignment framework based on worker
groups’ preferences. The framework is comprised of two primary components.
First, we utilize the powerful Bipartite Graph Embedding Model (BGEM) [15]
and the attention mechanism to learn the embedding of task categories and
worker groups in a low-dimensional space from group-task interaction data. In
order to overcome the limitations of data-sparsity problem, we integrate the
worker-task interaction data and social network structure information (which is
used for extracting the social impact of workers) during the process of preference
modeling. Secondly, we apply the tree-decomposition-based algorithm [19] to
assign tasks to worker groups to maximize the task assignments by giving higher
priorities to the worker groups that show more interest in the tasks.

The contributions made by this paper can be summarized as follows:

– We identify a novel task assignment problem in SC, namely Group Task
Assignment (GTA), in which each task needs to be completed by a group of
workers.

– We adopt the Bipartite Graph Embedding Model (BGEM) and the attention
mechanism to learn the social impact-based preferences of different worker
groups on different task categories, in which the worker-task interaction,
group-task interaction and social network structure information are taken
into account in order to address the data sparsity problem.

– A task assignment algorithm based on tree decomposition is introduced, fol-
lowing the optimization strategy by maximizing the overall task assignments
and giving higher priorities to worker groups with higher preferences on tasks.

– As demonstrated by the experiments, our proposed algorithms can efficiently
and effectively form available worker groups for tasks that can achieve an
optimal task assignment.
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2 Problem Statement

In this section, we briefly introduce a set of preliminary concepts, and then give
an overview of our framework. Table 1 summarizes the major notations used in
the rest of the paper.

Table 1. Summary of Notations

Notation Definition

s Spatial task

S A set of tasks

s.l Location of spatial task s

s.p Published time of spatial task s

s.e Expiration time of spatial task s

s.c Category of spatial task s

s.numW Number of workers that s requires to be assigned

w Worker

W A set of workers

w.l Location of worker w

w.r Reachable radius of worker w

w.on Online time of worker w

w.off Offline time of worker w

AWS(s) Available worker set of task s

AWG(s) Available worker group of task s

A A spatial task assignment

2.1 Preliminary Concepts

Definition 1 (Spatial Task). A spatial task, s = <s.l, s.p, s.e, s.c, s.numW>,
is a task to be performed at location s.l, published at time s.p, and will expire at
s.e, where s.l : (x, y) is a point in the 2D space. Each task s is also labelled with
a category s.c (e.g., moving heavy stuff) and s.numW is the number of workers
allowed to be assigned to perform s at the same time instance.

Definition 2 (Worker). A worker, denoted by w = <w.l, w.r, w.on,w.off>,
is a carrier of a mobile device who volunteers to perform spatial tasks. A worker
can be in an either online or offline mode. A worker is online when she is ready
to accept tasks. An online worker is associated with her current location w.l and
her reachable circular range with w.l as the center and w.r as the radius, where
w can accept assignment of spatial tasks. Besides, a worker with her online time,
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w.on, is also associated with her offline time, w.off , before which the worker
can be assigned tasks.

In our model, a worker can handle only one task at a certain time instance,
which is reasonable in practice. Once the server assigns a task to a worker, the
worker is considered being offline until she completes the assigned task.

Definition 3 (Available Worker Set). Given a task s to be assigned and a
set of workers in the vicinity of s, the available worker set for task s, denoted as
AWS(s), should satisfy the following three conditions: ∀w ∈ AWS(s):
1) tnow + t(w.l, s.l) ≤ s.e, and
2) d(w.l, s.l) ≤ w.r, and
3) tnow + t(w.l, s.l) ≤ w.off,

where tnow is the current time, t(w.l, s.l) is the travel time from w.l to s.l,
and d(w.l, s.l) is the travel distance (e.g., Euclidean distance) between w.l and
s.l.

For the sake of simplicity, we assume all the workers share the same veloc-
ity, such that the travel time between two locations can be estimated with their
Euclidean distance, e.g., t(w.l, s.l) = d(w.l, s.l).

Definition 4 (Available Worker Group). Given a task s to be assigned and
its available worker set AWS(s), the available worker group for task s, denoted
as AWG(s), should satisfy the following three conditions:
1) AWG(s) ⊂ AWS(s), and
2) |AWG(s)| = s.numW, and
3) ∀wi, wj ∈ AWG(s), tnow + t(wi.l, s.l) ≤ wj .off,

where |AWG(s)| denotes the number of worker in AWG(s).
In the rest of the paper, we will use worker group and group interchangeably

when the context is clear.

Definition 5 (Spatial Task Assignment). Given a set of workers Wi and
a set of tasks Si at time instance ti, a spatial task assignment, denoted by
Ai, consists of a set of <task,AWG> pairs in the form of <s1, AWG(s1)>,
<s2, AWG(s2)>, .... We use |Ai| to denote the number of task assignments.

Problem Statement: Given a set of workers Wi and a set of tasks Si at the
current time instance ti on a SC platform, the Group Task Assignment (GTA)
problem aims to find the optimal assignment with the maximum number of task
assignments (i.e., max{|Ai|}) by considering the preferences of worker groups.
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2.2 Framework Overview

As shown in Fig. 2, our framework consists of two major components: 1) Social
Impact-based Preference Modeling (SIPM) for worker groups; and 2) Preference-
based Group Task Assignment (PGTA) based on worker groups’ preferences.

Fig. 2. Framework of our model

In the SIPM procedure, inspired by the success of [1,14] in learning (user)
group preference based on both user-item and group-item interaction data, we
utilize the Bipartite Graph Embedding Model (BGEM) and attention mecha-
nism to obtain each worker group’s preference on different categories of tasks
by simultaneously leveraging both worker-task and group-task interaction data.
Note that we say a worker interacts with a task if she has performed this
task. More specifically, we utilize BGEM to model the individual interaction
(i.e., worker-task interaction) and group interaction (i.e., group-task interac-
tion) to learn the vector representation of workers and task categories in a low-
dimensional space, respectively. Since the worker groups in spatial crowdsourcing
are often formed in an ad hoc manner (called occasional groups) without any
interaction with tasks, which means the group interaction data is sparse, we can-
not effectively learn the vector representation of groups directly. To solve this
problem, we introduce workers’ social impact that represents workers’ weights in
a group when making decision about task selection. In particular, we integrate
the worker-task interaction data with group-task interaction data to construct
a social network, based on which we extract the social network information. In
order to alleviate the sparsity of group-task interaction data, we employ a joint
optimization approach to combine group-task interaction data with worker-task
interaction data, in which we can obtain the embedding vectors of workers and
task categories as well as workers’ weights (i.e., workers’ social impact). At the
same time, the group vector can be calculated by the attention mechanism, which
assigns different weights to different workers. Finally, we can obtain the group
preference on task categories by taking dot product between group vector and
task category vector.

In the PGTA phrase, given a set of workers and tasks to be assigned, we
first obtain the Available Worker Groups (AWGs) for each task by considering
trip constraints, i.e., workers’ reachable range, workers’ available time and tasks’
expiration time. Then we employ the Optimal Task Assignment (OTA) algorithm
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based on tree decomposition to assign tasks to suitable worker groups in order
to maximize the total task assignments and giving higher priorities to worker
groups showing more preferences to tasks.

3 Social Impact-Based Preference Modeling

In this section, we first elaborate how the Bipartite Graph Embedding Model
(BGEM) [15] learns each worker’s embedding vector (representing her prefer-
ence on different task categories) and each task category’s embedding vector
based on the historical worker-task interaction data (a.k.a. individual interac-
tion data). Then in the group interaction modeling, we extract workers’ social
impact from the social network and employ the attention mechanism [1] to adapt
the social impact to different worker groups. Finally, we design a joint optimiza-
tion strategy, which can obtain the preference of each group on task categories
by simultaneously leveraging both worker-task and group-task interaction data.

3.1 Individual Interaction Modeling

Given the interactions between workers and tasks, i.e., worker-task interaction
data, we first construct a bipartite graph, GWC = (W ∪ C,EWC), where W
denotes the worker set, C denotes all the categories of tasks, W ∪ C is the node
set of GWC , EWC is the set of edges between workers and task categories. An
edge eij (∈ EWC) exists when worker wi (∈ W ) has performed the tasks with

category cj (∈ C). The weight hij of edge eij is set as hij = N
cj
wi

Nwi
, where N

cj
wi

denotes the number of tasks (with category cj) worker wi has performed and
Nwi

=
∑

c∈C N c
wi

denotes the total number of tasks wi has performed.
Due to the success of BGEM [15] in learning the embedding of heterogenous

interaction entities, we employ it to model the individual worker-task interaction.
For the given worker wi, the probability of wi interacting with the tasks with
category cj can be calculated in the following:

p(cj |wi) =
exp(wi · cj )∑
c∈C exp(wi · c)

, (1)

where wi is the embedding vector of worker wi representing her preference, and
cj is the embedding vector of task category cj .

In the sequel, we define the objective function of the BGEM. As we all
know from [10], the target of BGEM is to minimize the KL-divergence between
p̂(·|wi) and p(·|wi), which represent the empirical distribution and the estimated
neighbour probability distribution for each worker wi ∈ W respectively.

We employ di to represent the outdegree of worker node wi, which can be
calculated as di =

∑
cj∈C hij (where hij denotes the weight of the edge eij). We

define the empirical distribution p̂(cj |wi) = hij/di. Thus, the objective function
can be obtained as follows:

OWC = −
∑

eij∈EWC

hij log p(cj |wi) = −
∑

eij∈EWC

N
cj
wi

Nwi

log
exp(wi · cj )∑
c∈C exp(wi · c)

. (2)
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3.2 Group Interaction Modeling

In the similar way, we construct a bipartite graph, i.e., GGC = (G ∪ C,EGC), to
represent the interactions between groups and task categories, where G is a set
of groups, G ∪ C is the node set of GGC , EGC represents a set of edges between
groups and task categories. There exists an edge eij (∈ EGC) between group gi

(∈ G) and task category cj (∈ C) if this group of workers has performed the
tasks with category cj (∈ C). Moreover, the weight hij of the edge eij is simply

set as hij = N
cj
gi

Ngi
, where N

cj
gi denotes the number of tasks (with category cj)

worker group gi has performed and Ngi
denotes the total number of tasks gi has

performed. Let gi be the embedding vector for group gi and cj be the embedding
vector for task category cj . Our target is to obtain an embedding vector for each
worker group to estimate the preference on all the task categories.

The objective function in group-task interaction data, which is similar to the
worker-task interaction data, can be calculated in the following:

OGC = −
∑

eij∈EGC

hij log p(cj |gi) = −
∑

eij∈EGC

N
cj
gi

Ngi

log
exp(gi · cj )∑
c∈C exp(gi · c)

. (3)

Nevertheless, in reality, there are few persistent groups while there are large
amounts of occasional groups forming in an ad hoc manner to perform a task in
spatial crowdsourcing. As a result, the group-task interaction data is over sparse
with the cold-start nature (i.e., there have no or little group-task interaction) of
occasional groups, which leads it difficult to directly learn the embedding vector
of an occasional group. To tackle the sparsity and cold-start issue, we aggregate
the embeddings of all the members in a group from the group-task interaction
data. We observe that in decisions such as task selection, some group members
may out-speak others in expressing their preference (due to prestige, authority,
or other personality factors) and thus are more influential on the group’s choice
on tasks. In addition, the same worker in different groups may have different
contributions on group’s decision-making. Therefore, we introduce a coefficient
α(k, i) to learn the weight of worker wk in group gi, which represents the group-
aware personal social impact of wk in deciding the choice of group gi on tasks.
Specifically, given an occasional group gi, we define the embedding vector gi as
follows:

gi =
∑

wk∈gi

α(k, i)wk , (4)

where α(k, i) is a learnable parameter (where a higher value indicates greater
impact on a group’s decision), and wk denotes the embedding of worker wk.

However, occasional groups temporarily gather together to perform a task
in a time instance. It is difficult to learn the coefficient α(k, i) directly from
the group-task interaction data because of the extreme data sparsity problem.
Therefore, we introduce an additional positive numerical value λk for each worker
wk representing the global personal social impact, which does not depend on
specific groups. We employ exp(λk) to represent the relative impact on deciding
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a group choice on tasks. Thus, α(k, i) can be calculated in Eq. 5, which is inspired
by the attention mechanism [1].

α(k, i) =
exp(λk)

∑
wk∈gi

exp(λk)
. (5)

It is obvious that once we obtain the λk representing the global personal social
impact for each worker wk, we can easily obtain the α(k, i), which represents the
group-aware personal social impact in a group. However, if a worker has only
participated in very few group activities, it may suffer from over-fitting problems.
Moreover, if a worker has never attended any group activities, we are not capable
of learning the global personal social impact. As a result, we cannot learn the
satisfying social impact only from the group-task interaction data.

In order to improve the accuracy of global personal social impact estimation,
we construct a workers’ social network based on both worker-task and group-
task interaction data, based on which we extract the social network information,
which benefits workers’ global social impact estimation. In the social network,
each worker maps to a node and an edge exists if two workers have cooper-
ated with each other in the same group. The weight of the edge is set as the
number of cooperations between the workers. Each worker (node) is associated
with the number of tasks she has completed. Then we extract the social network
structure information by various measures (e.g., degree centrality and between-
ness centrality) and integrate the social network structure information into the
learning process of worker’s global social impact, which effectively alleviates the
cold-start problem in group-task interaction data.

In particular, we can calculate a social network feature vector βk for worker
wk and employ a feature selector vector h to assign different weights to different
structure features [14]. We normalize all the feature values into the range [0,1].
Then, we take dot product between the social network feature vector βk and
the feature selector vector h as the Gaussian prior for the global personal social
impact of worker, i.e., λk ∼ (βk · h + b, ρ2V ) (b is a bias term). Due to the fact
that global personal social impact may be affected by other unknown factors,
we assume that λk follows the normal distribution with the mean βk · h + b to
learn the more robust personal global social impact.

In terms of the objective function, we should add a corresponding regulariza-
tion term RV , i.e., 1

2ρ2
V

∑
wk∈W (λk − (βk · h + b))2, into the objective function

since we introduce a Gaussian prior for the personal social impact parameter λk.
The hyper-parameter ρ2V (i.e., variance) can control the weight of the regular-
ization term. Therefore, the new objective function is as follows:

OV GC = OGC + RV . (6)

Considering the cold-start issue in group-task interaction data, we combine
worker-task interaction data with group-task interaction data during the opti-
mization process. More specifically, we design a joint optimization approach,
which can simultaneously learn the embedding vectors of workers and task cat-
egories from the worker-task interaction data and group-task interaction data.
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Besides, the global social impact of workers can be learned during the optimiza-
tion process. Therefore, we combine OV GC and OWC to form a joint objective
function, which is simply defined as follows:

OGWC = OV GC + OWC . (7)

Here, we adopt the standard Stochastic Gradient Descent (SGD) strategy [2]
to minimize the objective function OGWC in Eq. 7, as a result of which each
worker’s embedding vector w, each task category’s embedding vector c and the
model parameters (i.e., λk,h) can be learned. We can calculate the coefficient
α(k, i) representing the group-aware personal social impact according to Eq. 5.
Then each group’s embedding vector g can be correspondingly obtained based
on Eq. 4. Finally, we take dot product between each group’s embedding vector
and each task category’s embedding vector to achieve the preference of each
group on each task category.

4 Preference-Based Group Task Assignment

In this section, we first generate the available worker groups for each task based
on the trip constraints (i.e., workers’ reachable range, workers’ available time and
tasks’ expiration time), and then a tree-decomposition-based algorithm [16,19]
is employed to achieve the optimal task assignment.

4.1 Available Worker Group Set Generation

Finding the Reachable Workers for Each Task. Due to the constraint of
workers’ reachable distance, workers’ available time and tasks’ expiration time,
each task can be completed by a small subset of workers in a time instance.
Therefore, we firstly find the set of workers that can complete each task without
violating the constraints. The reachable worker subset for a task s, denoted as
RWs, should satisfy the following conditions: ∀w ∈ RWs:

1) tnow + t(w.l, s.l) ≤ s.e, and
2) d(w.l, s.l) ≤ w.r, and
3) tnow + t(w.l, s.l) ≤ w.off,

where tnow denotes the current time, t(w.l, s.l) is the travel time from w.l to
s.l and d(w.l, s.l) denotes the travel distance (e.g., Euclidean distance) between
w.l and s.l. The above three conditions guarantee that a worker w can travel
from her location w.l to a task s (which is located in her reachable range) directly
before task s expires and during worker w’s available time.

Finding the Available Worker Group Sets for Each Task. Given the
reachable workers for each task s, we next find the set of available worker group,
denoted as AWG(s), under the constraints of workers’ available time in a group
and the number of workers allowed to be assigned to perform a task s. Each avail-
able worker group in AWG(s), denoted as AWG(s), should satisfy the following
conditions:
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1) |AWG(s)| = s.numW , and
2) ∀wj , wk ∈ AWG(s), tnow + t(wj .l, s.l) ≤ wk.off,

where |AWG(s)| is the number of worker in AWG(s). The above two con-
ditions guarantee that workers in a group can arrive at the location of task s
without violating the available time of each other.

4.2 Optimal Algorithm

It is easy to know the global optimal result is the union of one possible Avail-
able Worker Group (AWG) of all tasks. We introduce an algorithm, i.e., tree-
decomposition-based strategy [19], to achieve the optimal task assignment with
the maximal preferences. More specifically, we first construct a task dependency
graph according to the dependency relationship among tasks (two tasks are
dependent with each other if they share the available workers; otherwise they
are independent). Subsequently, we utilize a tree-decomposition strategy to sep-
arate all tasks into independent clusters (i.e., tasks in different clusters do not
share the same available workers) and organize them into a balance tree struc-
ture, such that the tasks in sibling nodes of the tree do not share the same
available workers. Facilitated by such a tree structure, we can solve the optimal
assignment sub-problem on each sibling node independently. Then the optimal
assignment can be found by a depth-first search through the tree.

Meanwhile, we assign tasks to the available worker groups with higher pref-
erence (i.e., social impact-based preferences) during the process of search to
maximize the total task assignments by giving higher priorities to the worker
groups with more interests in tasks.

5 Experiment

In this section, we conduct extensive experiments on a real-world dataset to
evaluate the performance of our proposed algorithms. All the algorithms are
implemented on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz with 256 GB
RAM.

5.1 Experiment Setup

Dataset. We conduct our experiments on a check-in dataset from Twitter,
which provides check-in data across USA except Hawaii and Alaska from Septem-
ber 2010 to January 2011 including locations of 62462 venues and 61412 users.
The dataset is used widely in evaluation of SC platform [6]. Due to the lack of
category information of venues in dataset, we generate the category information
(i.e., task category information) associated with each venue from Foursquare
with the aid of its API. When using the dataset in our experimental research,
we assume the users in dataset are the workers of SC platform since users who
check in to different spots may be good candidates to perform spatial tasks in the
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vicinity of those spots, and their locations are those of the most recent check-in
points. We assume the spots are the tasks of SC platform, and employ its loca-
tion and earliest check-in time of the day as the location and publish time of a
task respectively. We extract 20 kinds of check-in categories to simulate the task
categories, i.e., the categories of check-ins. Checking in a spot is equivalent to
accepting a task.

As Twitter does not contain explicit group information, we extract implicit
group task completion activities as follows: we assume if a set of users visit the
same spot or different spots with the same category which are near to each other
(e.g., the distance between any two spots is less 10 km in our experiments) in
one hour, they are regarded as the members of a group.

Evaluation. We compare and evaluate the performance of following methods:

1) OGTA: Optimal Group Task Assignment based on tree-decomposition algo-
rithm without considering worker group’s preference.

2) AVG-OGTA: Optimal Group Task Assignment with average worker group’s
preference, where the average preference of a group g is set as Nc

g

Ng
, where N c

g

denotes the number of tasks (with category c) worker group g has performed
and Ng denotes the total number of tasks g has performed.

3) SIP-GGTA: Greedy Group Task Assignment with Social Impact-based Pref-
erence of worker groups. For the sake of efficiency, a basic Greedy Task Assign-
ment algorithm is introduced to assign each task greedily to the worker groups
with the maximal preferences until all the tasks are assigned or all the worker
groups are exhausted.

4) SIP-OGTA: Optimal Group Task Assignment with Social Impact-based Pref-
erence of worker groups (i.e., our proposed algorithm).

Three metrics are compared among the above algorithms:

1) CPU cost: the CPU time cost for finding a task assignment in a time instance;
2) ASR: Assignment Success Rate is the ratio of successful assignments to the

total assignments for all workers in a time instance. Note that once all the
group members actually perform (check in) the tasks (spots) with the same
category which are near to each other (e.g., the distance between the tasks
is less 10 km in our experiments) in one hour, we regard this task assignment
as a successful assignment.

3) Number of task assignments.

The default values of all parameters used in our experiments are summarized
in Table 2.
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Table 2. Experiment Parameters

Parameter Default value

Valid time of tasks e− p 1.5 h

Number of each group numW 2

Workers’ reachable radius r 2 km

Workers’ available time off − on 3 h

Number of tasks |S| 3000

Fig. 3. Performance of Group Task Assignment: Effect of e− p

Fig. 4. Performance of Group Task Assignment: Effect of off − on

5.2 Experimental Results

Effect of e − p. We first study the effect of the valid time e − p of tasks. As
depicted in Fig. 3(a), longer expiration time will incur more CPU cost for all algo-
rithms since more available worker groups need to be searched. As expected, the
accuracy of all algorithms except OGTA increases as the valid time of task grows
since a worker group has more chance to be assigned her interested tasks with
the growing valid time of tasks (see Fig. 3(b)). SIP-OGTA and SIP-GGTA per-
form better than AVG-OGTA in terms of ASR, which demonstrates the benefit
of considering social impact into worker groups’ preference. OGTA keeps almost
constant as it does not consider worker group’ preference. Although SIP-GGTA
is fastest among all the methods and has the similar ASR with SIP-OGTA, it
assigns less tasks than other methods (i.e., OGTA, AVG-OGTA, SIP-OGTA),
shown in Fig. 3(c).
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Fig. 5. Performance of Group Task Assignment: Effect of r

Effect of off−on. In this part of experiments, we evaluate the effect of workers’
available time. From Fig. 4(a) we can see that, the CPU cost of all algorithms has
an increasing trend when off − on grows since the number of available worker
groups for each task increases. As we can see in Fig. 4(b), the ASR of SIP-OGTA
and SIP-GGTA methods consistently outperforms other methods by a noticeable
margin and SIP-GGTA is slightly lower than SIP-OGTA. The ASR of all the
methods has a similar tendency with e−p when off −on grows with the similar
reason that worker groups have more chance to obtain their interested tasks with
the increasing off − on. The number of task assignments grows quickly, almost
linearly, with off − on gets larger (see Fig. 4(c)). The intrinsic reason lies in
the more available worker groups for each task as workers’ available time gets
longer.

Effect of r. Next, we evaluate the effect of r, the range of workers’ reachable
radius. Obviously, the CPU cost of all the methods gradually increase with r
being enlarged (see Fig. 5(a)). The ASR increases with r for all the approaches
that take worker groups’ preferences into consideration since the larger the work-
ers’ reachable regions are, the more chance worker groups can be assigned their
interested tasks. As illustrated in Fig. 5(c), we can see SIP-GGTA algorithm
performs worse than others, which demonstrates the superiority of optimal task
assignment strategy.

Effect of numW . Figure 6(a) illustrates the CPU cost decreases gradually when
the number of workers for each group (i.e., numW ) gets larger. The reason
behind it is that the available worker groups for each task are less as numW
gets larger, which reduces the search space. When it comes to the assignment
success rate, shown in Fig. 6(b), all algorithms show a decreasing trend. We can-
not assign the tasks to the suitable groups because of the less available worker
groups. However, SIP-OGTA method still shows a higher superiority than other
algorithms. In addition, Fig. 6(c) demonstrates that the number of task assign-
ments of SIP-GGTA has no advantage compared with other methods.

Effect of |S|. In the final set of experiments, we evaluate the scalability of all
the proposed algorithms by changing the number |S| of tasks from 1k to 5k. As
expected, although the CPU cost increases as |S| increases, SIP-OGTA performs
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Fig. 6. Performance of Group Task Assignment: Effect of numW

Fig. 7. Performance of Group Task Assignment: Effect of |S|

well in improving the assignment success rate and the number of task assign-
ments, which is demonstrated in Fig. 7(b) and Fig. 7(c). Figure 7(a) indicates
SIP-GGTA is the least time-consuming algorithm while other algorithms based
on OGTA run much more slower, which is mainly due to the extra time cost
for building the tree to be searched and searching the tree. In terms of assign-
ment success rate, the accuracy of SIP-OGTA is a bit higher than SIP-GGTA
and AVG-OGTA still increases slowly as |S| grows, which is shown in Fig. 7(b).
Similar to the previous results, The OGTA related algorithms outperform the
SIP-GGTA method for all values of |S| in the number of task assignments, which
is depicted in Fig. 7(c).

6 Related Work

Spatial Crowdsourcing (SC) can be deemed as one of the main enablers to com-
plete location-based tasks [5,13,17,18]. SC can be classified into two categories
namely Server Assigned Tasks (SAT) and Worker Selected Tasks (WST) based
on the task publishing modes. In particular, for the SAT mode which is popular
in existing researches, SC server is responsible for directly assigning proper tasks
to nearby workers, which aims to maximize the number of assigned tasks after
collecting all the locations of workers/tasks on the server side [11] or maximize
the reliability-and-diversity score of assignments [4]. For the WST mode, spatial
tasks are published online and then broadcast to all workers, such that workers
can choose any task according to their personal preferences by themselves [6].
Meanwhile, quality assurance is an intractable problem needing to be solved
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during the process of spatial task assignment. Workers are more likely to hon-
estly and promptly complete the assigned tasks if the quality control strategy
is considered, e.g., giving higher priority to workers who are more interested in
tasks.

Most of the previous studies in spatial crowdsourcing mainly focus on assign-
ing tasks to the individual worker. However, a few researches [3,8] are studied for
group task assignment (also called collaborative task assignment), i.e., assigning
tasks to a group of multiple workers. The groups are formed by workers in an
ad-hoc way, also called occasional groups, who have a shared purpose only in
a certain time. Cheng et al. [3] propose a framework called Cooperation-Aware
Spatial Crowdsourcing (CA-SC) to handle group task assignment problem such
that the tasks can be accomplished with high cooperation quality scores. Our
proposed algorithm combines worker groups’ preferences, which is based on work-
ers’ social impact, with group task assignment to maximize the total number of
task assignments by giving higher priorities to worker groups who are more
interested in the tasks.

7 Conclusion

In this paper, we propose a novel task assignment problem, called Group Task
Assignment (GTA), in spatial crowdsourcing. In order to achieve effective task
assignment, we addressed a few challenges by proposing different strategies to
obtain the social impact-based preferences of different worker groups for each
task category, and adopting an optimal algorithm to assign tasks. To the best
of our knowledge, this is the first work in spatial crowdsourcing that considers
the social impact-based preferences of worker groups and performs group task
assignment based on these preferences. Extensive empirical study based on a
real dataset confirms the practicability of our proposed framework.
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Abstract. Proper incentive mechanism design for stimulating workers
is a fundamental challenge in nowadays spatial crowdsourcing (SC) pow-
ered applications like Didi and Uber. Usually, extra monetary rewards
are paid to workers as incentive to enhance their participation in the
SC platform. However, deciding incentives in real-time is non-trivial as
the spatial crowdsourcing market changes fast over time. Existing stud-
ies mostly assume an offline scenario where the incentives are computed
considering a static market condition with the global knowledge of tasks
and workers. Unfortunately, this setting does not fit the reality where the
market itself would evolve gradually. In this paper, to enable online incen-
tive determination, we formulate the problem of Real-time Monetary
Incentive for Tasks in Spatial Crowdsourcing (MIT), which computes
proper reward for each task to maximize the task completion rate at
real time. We propose a unified and efficient approach to the MIT prob-
lem with a theoretical effectiveness guarantee. The experimental results
on real ride-sharing data show that, compared with the state-of-the-art
offline algorithms, our approach decreases the total worker response time
by two orders of magnitude with insignificant utility loss.

Keywords: Real-time spatial crowdsourcing · Competitive analysis ·
Incentive mechanism design

1 Introduction

With the popularization of mobile location based services, applications pow-
ered by Spatial Crowdsourcing (SC), e.g., ride-hailing services like Uber1 and
Didi2, have been deeply influencing our daily lives. As the base of an SC busi-
ness, making proper incentives for workers is of great importance to enhance

1 https://www.uber.com/.
2 http://www.didichuxing.com/.
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the worker participation [12,14]. Due to its usefulness and importance, proper
incentive mechanism design on SC platforms has attracted much attention from
both industry and academia. As an intuitive and easy-to-implement approach,
monetary rewards are adopted by many practical SC platforms. However, as
indicated in [14], it is hard to devise an efficient and effective pricing scheme
for SC platforms since the spatial-temporal factors and the relationship between
supply and demand are changing in real time. Prior researches, based on either
auction models [10,11,16] or constrained utility optimization models [5,13], typ-
ically assume a static (or semi-static) market where both the workers’ arrival
and the task distribution are homogeneous and time-invariant.

Specifically, Faradani et al. [3] and Gao et al. [5] modeled the market dynam-
ics of traditional crowdsourcing platforms like AMT [1] in two modules: (1) the
Non-Homogeneous Poisson Model that depicts workers’ arrival pattern; and (2)
the Discrete Choice Model that captures workers’ task response behaviours. Such
models are reasonable for traditional crowdsourcing platforms as the market is
relatively stable. For example, both requesters and workers of AMT simply inter-
act with a computer for issuing/answering the tasks (e.g., image labeling), which
makes the process reliable and predictable. However, for spatial crowdsourcing,
there are a non-negligible number of factors that can lead to a sudden change of
the market, such as weather condition, traffic condition, cellular network signal
condition, and etc. Note that, other important issues in spatial crowdsourcing like
profit-aware task assignment [15,17] concentrate more on the matching between
workers and tasks instead of SC market modeling.

To demonstrate the data heterogeneity in spatial crowdsourcing applications,
regarding Didi’s open dataset, we plot the drivers’ arrival rate of a certain region
in Chengdu in two time intervals: Nov. 1st 8:00–9:00 and 18:00–19:00, which is
shown in Fig. 1. It is obvious that when both time intervals are in rush-hour, the
worker arrivals differ a lot.

(a) The workers’ arrival sequence be-
tween 8:00 to 9:00.

(b) The workers’ arrival sequence be-
tween 18:00 to 19:00.

Fig. 1. Workers’ arrival sequence of Chengdu on Nov. 1st, 2016.

To solve the dynamic SC market issue, in this paper, we consider the problem
of Real-time Monetary Incentive for Tasks in Spatial Crowdsourcing (MIT). The
core challenges can be summarized as two questions:
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1. How to effectively depict a dynamic SC market? Different from traditional
crowdsourcing platforms where the market is relatively static and could be
well depicted via the statistics of historical data, SC market is dynamic and
much harder to predict due to the spatial-temporal properties (e.g., it is
difficult to predict when and where a traffic collision will occur).

2. How to design a proper incentive mechanism for dynamic SC markets? Intu-
itively, a proper price should be decided by leveraging the relation of demand
against supply. For example, bad weather or poor transportation conditions
will decrease the number of available workers who are willing to provide a
service (i.e., supply < demand). Thus, extra money should be allocated as
an incentive to attract workers to perform current tasks. In another scenario,
where the available workers are more than the total issued tasks (i.e., supply
> demand), less extra reward would be allocated to reduce the cost.

To tackle the aforementioned challenges, we propose a generalized worker
arrival model to depict the dynamics of an SC market. Depending on how much
we know about the future, the SC market model is categorized into three cases,
oblivious case (no prior knowledge about the future workers’ arrival), omniscient
case (full knowledge about the future market), and predictable case where the
worker’s arrival can be modeled by some random process. Based on the mar-
ket model, we formulate the generalized real-time monetary incentive allocation
problem that finds an incentive allocation plan for a pool of SC tasks such that
the expected utility is maximized and the expected cost is no larger than a total
budget. Note that, the utility and cost functions can be customized and thus
our formulation applies to a wide variety of spatial crowdsourcing applications,
e.g., ride-hailing, food/parcel delivery, geographic data collection, and etc.

However, solving such a utility optimization problem is non-trivial, especially
when we lack any prior knowledge towards the SC market. We first introduce
an exact solution based on dynamic programming for the static case (i.e., omni-
scient case). For the fully dynamic market (i.e., oblivious case), we propose an
online algorithm called the Dynamic Threshold Algorithm which has a
logarithm-scale competitive ratio and a polynomial time complexity. We also
propose a heuristic called k-Step Watch Ahead, which combines the merits
of both offline and online solutions for a more effective incentive allocation. To
demonstrate both efficiency and effectiveness of our proposed algorithms, we
conduct experiments on a real-world SC dataset from Didi, the most popular
shared mobile service provider in China. The results show that, compared with
the state-of-the-art offline algorithms, our approach decreases the total worker
response time by two orders of magnitude with insignificant utility loss.

The contributions and organization of this paper are as summarized below.

– We formally propose a dynamic SC market model and formulate the gener-
alized incentive allocation problem (the MIT problem). (� See Sect. 2)

– We propose novel algorithms with rigorous competitive analysis to solve the
MIT problem efficiently. (� See Sect. 3 and Sect. 4)

– We conduct experimental studies on a real dataset to demonstrate the per-
formance of our proposed algorithms. (� See Sect. 5)
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2 SC Market Modeling and Problem Definition

In this section, we formulate the Real-time Monetary Incentive for Tasks in Spa-
tial Crowdsourcing (MIT) problem. We describe the nature of a spatial crowd-
sourcing platform, and then introduce our models for workers and tasks, respec-
tively. Finally, we define the MIT problem and show that our MIT problem is
highly extensible, which generalizes the existing studies on the incentive mech-
anism design.

2.1 SC Platform

The spatial crowdsourcing market is highly dynamic, where the demand and
supply change dramatically in both spatial and temporal dimensions. To pre-
cisely depict an SC market, we partition the whole region (e.g., a city) into a set
of grids {g1, g2, · · · , gG}. Generally, a spatial task, a.k.a. task, can be any type
of request issued to the SC platform (e.g., a pick-up and delivery request in a
ride-hailing service or food/parcel delivery services, a data collection request in
geographical applications like Gigwalk, or a sensing task for network systems like
[4]). We use st to represent a spatial task and denote �st and tst as its location
and issued time. Tasks with similar location and time compete with one another
for the same pool of workers. Thus, we group the tasks falling into the same grid
g and time interval (e.g., 8 : 00 ± 10min) as a batch, which is denoted by T g,t.

2.2 SC Market Modeling

In our paper, we propose a generalized SC market model, which works with any
degree of prior knowledge about the market. We follow the taxonomy shown in
the previous literature [5] which profiles the SC market with two sub-models:
price response model and worker arrival model. The price response model depicts
workers’ sensitivity toward monetary reward in a given region and at a given
time, and the worker arrival model dynamically depicts the spatial-temporal
distribution of available workers.

Price Response Model. We first define the task acceptance ratio.

Definition 1 (Task Acceptance Ratio). For a spatial task st issued in grid
g at time t with additional monetary incentive p, the task acceptance ratio w.r.t.
p, denoted by ARg,t(p), is defined as the probability that a worker in g at time t
accepts this task.

We assume that workers make their decisions independently. Let W g,t denote
the number of available workers and Ng,t denote the number of accepted tasks
in g at time t. Then Ng,t follows a binomial distribution B(W g,t, ARg,t(p)). In
economic studies, the Discrete Choice Model is commonly used to model the
probability that a customer will choose a specific product [9], which is also used
by Gao et al. [5] to model the the task acceptance ratio in crowdsourcing. We fol-
low these works to model the task acceptance ratio, i.e., ARg,t(p) = exp( p

α −β)

exp( p
α −β)+γ
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where the parameters α, β and γ can be estimated from the historical data by
using maximal likelihood estimation.

Worker Arrival Model. The Worker Arrival Model captures the workers’
arrival dynamics. Based on the prediction level, worker arrival models can be cat-
egorized into the three types: Oblivious Case, Omniscient Case and Predictable
Case. We consider a sequence of time stamps, t = 0, 1, · · · , T , and model the
number of available workers W 0,W 1, · · · ,WT as follows.

1. Oblivious Case (a.k.a. online case): W t is known only at and after time t,
which means we cannot make any assumption of W t at time t′ < t. This case
is sometimes also called the online scenario.

2. Omniscient Case (a.k.a. static/offline case): All W t’s are known since the
first time stamp t = 0.

3. Predictable Case: In this case, we do not exactly know W t at time t′ < t, but
we can model its distribution as Pr(W t = k) = f(k,θ(t)) where θ(t) denotes
some specific random process regarding t.

Intuitively, the oblivious/online case has the least knowledge of the future,
whereas the omniscient/static case knows everything about the future, and the
predictable case can be regarded as a compromise between the above two cases.
Note that, the predictable case can also be regarded as static since the distri-
bution that depicts the workers’ arrival is also known in advance, which we will
discuss in detail in Sect. 3.

2.3 Problem Statement

In this section, we formally define the dynamic incentive determination problem
that applies to all the three cases discussed above. We first give the defini-
tions of state and state transition probability of a local market, which refers to
tasks/workers in the same grid g and time interval.

Definition 2 (Market State). The state of a SC market in grid g at the time
stamp t refers to the number of unfinished tasks at t, which is denoted by Ng,t

(N t if g is given clearly). Then, a local market is described by a state sequence
N0, · · · , NT , where N0 is the initial number of tasks issued to the SC platform.

Definition 3 (State Transition Probability). Given two states in suc-
cessive time stamps N t and N t+1, the state transition process is denoted by
N t → N t+1, with the transition probability Pr(N t → N t+1).

Intuitively, the value of state N t+1 is jointly determined by N t and workers’
engagement at time t. Workers’ engagement is further influenced by the addi-
tional rewards, i.e., incentives. We give two examples below to describe the state
transition under different worker arrival models.

Example 1 (State Transition for Oblivious and Omniscient Cases). For both
the oblivious/online case and omniscient/static case, the number of workers at
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the time stamp t is known as W t. The difference lies in that in the static case all
W t’s are known in advance, whereas for the online case W t is observed exactly
at the time t. According to the price response model, with the reward value pt,
the state transition probability is calculated as follows:

Pr(N t → N t+1|pt) =

⎧
⎪⎨

⎪⎩

0, if W t < N t − N t+1

Pr(B(W t, AR(pt)) ≥ N t), if N t+1 = 0

Pr(B(W t, AR(pt)) = N t − N t+1), otherwise

(1)

where B(W t, AR(pt)) denotes the Binomial distributed random variable associ-
ated with W t and AR(pt).

Example 2 (State Transition for the Predictable Case). As for the predictable
case, we assume that the workers’ arrival follows a Non-Homogeneous Poisson
process, i.e., W t ∼ Poisson(λ(t)), and λ(t) is the arrival rate in time interval
[t, t+1]. Thus, the task completion rate in this time interval is λ(t) ·AR(pt) and
the state transition probability of the predictable case is:

Pr(N t → N t+1|pt) =

{
Pois(N t − N t+1|λ(t)AR(pt)), if N t+1 �= 0

Pois(k ≥ N t|λ(t)AR(pt)), otherwise
(2)

where Pois(k|λ(t)) represents the probability that a Poisson distributed ran-
dom variable with the arrival rate λ(t) taking the value k, i.e., Pois(k|λ(t)) =
e−λ(t) λ(t)k

k! .

The state transition probabilities depend on how much incentive we give to
the workers. Intuitively, a high incentive increases the state transition probabil-
ity, but introduces more monetary cost. To measure the benefit and cost of the
state transitions, we define the utility and cost function as follows.

Definition 4 (State Transition Utility and Cost). The state transition util-
ity and cost are defined as function U : (N t → N t+1) → R

+ and C : (N t →
N t+1) → R

+, respectively. Note that, both U(·) and C(·) can be any user-defined
functions which is monotonically non-decreasing w.r.t. N t − N t+1.

Definition 5 (Conditional Utility and Cost). At the time stamp t, if the
incentive value is pt and the current state N t = n, the conditional utility, denoted
by CU t(pt|N t = n), is defined as the expected utility gain, i.e.,

CU t(pt|N t = n) = E[U(N t → N t+1)|N t = n] =
∑

0≤k≤n

U(n → k) · Pr(n → k|pt), (3)

where the state transition probability Pr(n → k|pt) is computed regarding Eq. (1)
and Eq. (2). Similarly, the conditional cost CCt(pt|N t = n) is defined as,

CCt(pt|N t = n) = E[C(N t → N t+1)|N t = n] =
∑

0≤k≤n

C(n → k) · Pr(n → k|pt). (4)
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Definition 6 (Expected Utility and Cost). At the time stamp t, the expected
utility and expected cost, denoted by EU t(pt) and ECt(pt) respectively, are com-
puted via examining all the possible states and their probabilities, i.e.,

EU t(pt) =
∑

0≤n≤|T |

CU t(pt|N t = n) · Pr(N t = n|pt) and (5)

ECt(pt) =
∑

0≤n≤|T |

CCt(pt|N t = n) · Pr(N t = n|pt). (6)

The probability Pr(N t = n|pt) can be computed as follows,

Pr(N t = n|pt) =

|T |∑

i=n

Pr(N t−1 = i) · Pr(i → n|pt), (7)

where |T | is the initial (i.e., t = 0) number of tasks. We now formulate the Real-
time Monetary Incentive for Tasks in Spatial Crowdsourcing (MIT) problem as
follows.

Definition 7 (MIT Problem). Considering a batch of issued tasks T , the
task acceptance ratio function ARg,t(·) (AR(·), in short), and the worker arrival
model, the objective of the MIT problem is to find a reward/incentive sequence,
denoted by p0, · · · , pT−1, such that the expected total utility is maximized and the
expected cost is not larger than a total cost budget B, i.e.,

max
p0,p1,··· ,pT−1

T−1∑

t=0

EU t(pt) s.t.

T−1∑

t=0

ECt(pt) ≤ B. (8)

We further discuss several issues about the MIT problem.

Problem Input. For the input worker arrival model, if we focus on the oblivi-
ous case or omniscient case, the input should be the worker number sequence
W 0,W 1, · · · ,WT , otherwise (i.e., the predictable case), the input should be the
distribution of W t, i.e., Pr(W t = k). In the subsequent sections, we would pro-
pose a unified algorithm that applies to all the aforementioned cases.

Generality. U(·) and C(·) are user-defined functions, which are usually related
to the number of accomplished tasks. In this paper, w.l.o.g., we choose the
throughput for U(·), i,e., U(N t → N t+1) = N t+1 − N t, and the requester’s
expenditure for C(·), i.e., C(N t → N t+1) = ct · (N t+1 −N t) where ct equals the
sum of base price and monetary incentive (i.e., pt).

Hardness. The generalized MIT problem can be demonstrated as NP-hard by
using a straightforward reduction from the KNAPSACK problem. However, the
hardness still differ for different worker arrival models. Intuitively, for the MIT
problem under the omniscient case or predictable case, the hardness is similar to
that of the classical KNAPSACK problem where an (1+ε)-approximation exists
and there is a dynamic programming based pseudo polynomial time solution. On
the other hand, for the MIT problem under the online case, the hardness inherits
the hardness of online KNAPSACK [7,8,18] where no online algorithm yields a
constant competitive ratio. We will further discuss the computation complexity
in detail in Sect. 3 and Sect. 4, respectively.
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3 DP-Based Optimal Solution

Before entering the first algorithm, we revisit and clarify some details of the SC
market discussed in Sect. 2.2. We have already categorized the worker arrival
model as three cases: oblivious case, omniscient case and predictable case. In
contrast to the online case, the workers’ arrival in the future under both the
omniscient and predictable cases are known at t = 0. Specifically, for the pre-
dictable case, the future SC market information can be captured by a distribu-
tion that is also known in advance, e.g., the Non-Homogeneous Poisson Process.
The only difference between the omniscient case and the predictable case is the
way we calculate the state transition probability (see Example 1 and Example 2).
Thus, we use static case to represent both omniscient case and predictable case
hereafter.

We then introduce our first algorithm called Opt to solve the static case,
which extends the dynamic programming algorithm of Multi-Choice Knapsack
problem (MCKP) [6]. Note that the possible incentive value pt belongs to a dis-
crete space P = {P1, · · · , PM} which contains M possible choices. Similarly, for
a budget limit B, we construct another discrete price space B = {bg1, · · · , bgB}.
Define opt[m, b] as the optimal total expected utility value of the MIT problem
with the first m incentive choices and budget constraint b where b ∈ B. Then,
for the static cases, since the market information are known in advance, we have
the following recursion,

opt[m, b] =

⎧
⎨

⎩

max
0≤t≤T−1

(
opt[m − 1, b − ECt(Pm)] + EU t(Pm), 0

)
, if ECt(Pm) ≤ b

−∞, otherwise.

(9)
Note that the initial condition of the recursion is opt[0, b] = 0 for ∀b ∈ B. The
maximal total expected utility is stored in opt[M,B] and opt[M,B] = 0 if there
is no feasible incentive allocation plan that can satisfy the budget constraint.

With the recursion in Eq. (9) and the initial condition, we can enumerate
and fill the DP array opt in a “bottom-up” fashion. After the enumeration of
the DP table, the optimal incentive values allocation plan, which corresponds to
the maximum total utility opt[M ][B], can be obtained by looking back to the
DP table opt[·][·]. Note that, the way we calculate ECt and EU t differs from the
input workers’ arrival model, i.e., the omniscient case where W 0, · · · ,WT−1 are
given or the predictable case where the distribution Pr(W t = k) is known.

Complexity Analysis. Apparently, the DP table opt[·][·] takes space O(MB)
where M is the total number of possible choices of incentive values and B is
the value of the total budget. For the time complexity, enumerating the DP
table takes O(MB) times calculation of Eq. (9), which involves O(T ) times cal-
culation of EU t and ECt. The evaluation of EU t and ECt based on Eq. (3) and
Eq. (5), takes time O(|T |2) where |T | is the total number of the issued tasks at
t = 0. Thus, the total time complexity of algorithm Opt is O(MBT |T |2).
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4 Approximate Online Algorithm

In Sect. 3, we propose algorithm Opt to handle the static cases including the
omniscient case and the predictable case. Opt finds an optimal solution when the
input workers’ arrival model is static if there does exist a feasible solution (i.e.,
opt[M,B] �= 0). The major drawbacks of this algorithm are twofold: (1) the static
assumption on workers’ arrival model is not practical enough; and (2) the high
time complexity prevents the SC platform responding to task requests in real-
time. To alleviate the first drawback, we introduce the online case in Sect. 2.2
where the workers’ arrival sequence is totally unknown unless it is observed.
However, solving the MIT problem under this case is nontrivial since very little
information is provided as input, which might make the result obtained by an
algorithm very far from the optimum value.

Algorithm 1: Dynamic-Threshold Algorithm

Input: the number of available workers: W 0, W 1, · · · , W T−1, the task
acceptance ratio: AR(p), the total budget: B, and maximum and
minimum ratio of value and cost: U, L.

Output: incentive values: p0, p1, · · · , pT−1.
1 define function Φ(x) as Eq. (10);
2 spent ← 0;
3 for t = 0, 1, · · · , T − 1 do
4 q ← empty priority queue;
5 for i = 1, · · · , M do
6 gain[i] ← expected utility by taking price pi;
7 cost[i] ← expected cost by taking price pi;
8 q.enqueue(Tuple (i, gain[i]/cost[i]));

9 (i, max util) ← q.dequeue();
10 if max util < Φ(spent/B) then pt ← 0 ;
11 else pt ← pi; spent ← spent + ECt(pt) ;
12 yield pt;

4.1 Dynamic Threshold Algorithm

In this section, we propose an algorithm called Dynamic-Threshold Algo-

rithm for the fully online SC market. Compared with Opt, this algorithm
obtains a true polynomial time complexity with a logarithm-scale competitive
ratio.

The Dynamic-Threshold Algorithm extends the online knapsack algo-
rithm which has been investigated in [7,8,18]. The core idea of this algorithm
borrows the idea of the greedy algorithm for the classic 0/1 KNAPSACK prob-
lem. At each timestamp t, we try to select the incentive value pt maximizing the
utility density, which is defined as the ratio of expected utility and expected cost,
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that is, pt = arg maxp∈P
EUt(p)
ECt(p) where P denotes the set that contains all pos-

sible selections of incentive/reward values. However, the simple greedy strategy
is not a wise idea since we do not know the future SC market, i.e., the workers’
arrival in the future, which will make the greedy-based strategy short-sighted.
That is to say, we might use up the total budget too early and fail to allocate
incentives at some more appropriate timestamp in the future. To handle this,
the idea of “dynamic threshold” is adopted where a threshold function, denoted
by Φ(x), is used to trace the remaining budget value, and we reject allocating
any incentive if the maximum utility density is less than the dynamic threshold.

The details of the Dynamic Threshold Algorithm are shown in Algo-
rithm1. In line 1, we first define the dynamic threshold function as

Φ(x) =

{
L, x ≤ 1

1+log(U/L)(
Ue
L

)x (
U
L

)
, otherwise,

(10)

where x ∈ [0, 1] which denotes the percentage of the total budget we have spent,
and U , L are assumed as the upper-bound and lower-bound of the utility density,
which are regarded as input parameters. That is to say, L ≤ EU t/ECt ≤ U for
∀t = 0, · · · , T − 1. Note that the reason we select Φ(x) as Eq. (10) and the
properties of Eq. (10) are discussed in Sect. 4.2. In line 2, a variable spent is
initialized to trace the value of spent budget up to the current time. Lines 3–12
apply the idea of a greedy strategy combined with the dynamic threshold. Line
4 initializes an empty priority queue at each timestamp t which is used to keep
the maximum utility density. In lines 5–8, the algorithm calculates the utility
densities for all possible incentive values, i.e., any p ∈ P, and add them to the
priority queue q (specifically, we insert a tuple containing both utility density
value and its corresponding index i in P into the priority queue q). Line 9 takes
out the maximum utility density, denoted by max util, and its corresponding
price index i from q. Lines 10–11 allocate the incentive/reward based on the
dynamic threshold function. If the max util ≤ Φ(spent/B), we set pt to 0,
otherwise, pt is set to pi and spent is updated to spent + ECt(pi). Finally, line
12 outputs the current incentive value, pt, in an online fashion.

Complexity Analysis. The space complexity of Algorithm 1 is determined by the
size of the priority queue q, i.e., O(M), where M is the number of possible
incentive values. Then we move to the time complexity. Line 3 yields O(T )
loops. For the inner loop shown in lines 5–8, there are M times calculation of
EU t and ECt and M times heap-based priority queue operations, which take
time O(M · |T |2) and O(M log M), respectively. Thus, the total time complexity
of Algorithm 1 is O(M ·T · (|T |2 + log M)). Note that, compared with algorithm
Opt, the time complexity of Algorithm 1 is true polynomial since it does not
depend on the input budget B.

4.2 Algorithm Analysis

To analyze the effectiveness of algorithms in an online fashion, we adopt the
competitive analysis framework [2]. To conduct a competitive analysis, we first
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assume an omniscient adversary who knows the entire workers’ arrival sequence
W 0,W 1, · · · ,WT . Regard the result from an optimal static solution as the opti-
mal solution, and then compare it with the result outputted by an online algo-
rithm. The worst ratio is known as the competitive ratio, which is used as the
measurement for analyzing online algorithms. Note that, the competitive ratio
can be regarded as the approximation ratio under an online input setting. The
formal definition of the competitive ratio is shown as follows.

For an input sequence σ, denote ALG(σ) as the objective value (for a maxi-
mization problem) obtained by an online algorithm A and OPT (σ) as the objec-
tive value obtained by a optimal solution who knows the entire input sequence
σ in advance. The competitive ratio of A, denoted by CR(A), is defined as3:

CR(A) = sup
σ

OPT (σ)
ALG(σ)

. (11)

An online algorithm with competitive ratio O(f(n)) is called O(f(n))-
competitive.

In the remaining part of this section, we conduct competitive analysis for our
Dynamic Threshold Algorithm, denoted by DT , to show the effectiveness
of this algorithm. The major theoretical results are shown as follows.

Theorem 1. Denote the workers’ arrival sequence W 0, · · · ,WT as σ,
ALG(σ|DT ) as the total expected utility value of our algorithm DT , and OPT (σ)
as the optimal utility value obtained by an omniscient adversary who knows the
entire σ. Then, we have,

CR(DT ) = sup
σ

OPT (σ)

ALG(σ|DT )
= O

(

log
U

L

)

, (12)

where U and L are the upper-bound and lower-bound of the utility density in
Algorithm1 respectively. That is to say, Algorithm1 is O(log U/L)-competitive.

Proof. Before showing the proof, we first introduce some symbols: 1) P : the
incentive value sequence obtained by Algorithm 1; 2) P ∗: the optimal incentive
value sequence; 3) u(·): the total utility of a subset of incentive value sequence;
and 4) c(·): the total cost of a subset of incentive value sequence. We first have
Lemma 1, which is trivial to prove, to show a decomposition of the total expected
utility value outputted by Algorithm1.

Lemma 1. For any input sequence σ, it always holds for the output total utility
value ALG(σ|DT ),

ALG(σ|DT ) = u(P ∩ P ∗) + u(P − P ∗). (13)

Then, we bound the optimal total utility value OPT for any input sequence σ.

Lemma 2. For any input sequence σ, assume that Algorithm1 terminates with
the remainder of budget X ·B, then an upper bound of the maximum total utility,
i.e., OPT (σ), is given by,

OPT (σ) ≤ u(P ∩ P ∗) + Φ(X) · (B − c(P ∩ P ∗)). (14)
3 If the problem is a minimization problem, change “sup” to “inf”.
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Combining Lemma 1 and Lemma 2, we then have Lemma 3.

Lemma 3. For any input sequence σ, it always holds that,

OPT (σ)

ALG(σ|DT )
≤ u(P ∩ P ∗) + Φ(X) · (B − c(P ∩ P ∗))

u(P ∩ P ∗) + u(P − P ∗)
≤ Φ(X)

∑
i∈P Φ(xi) · (xi+1 − xi)

,

(15)
where xi denotes the fraction of total spent budget at the moment i ∈ P is picked.

Then, in Lemma 4, we introduce a lower bound for the denominator term in
Eq. (15), i.e.,

∑
i∈P Φ(xi) · (xi+1 − xi).

Lemma 4.
∑

i∈P Φ(xi) · (xi+1 − xi) ≥ Φ(X)
log U/L+1 .

Combining Lemma 3 and Lemma 4, we can derive that, for any input sequence
σ, it always holds that,

OPT (σ)

ALG(σ|DT )
≤ Φ(X)

∑
i∈P Φ(xi) · (xi+1 − xi)

≤ Φ(X)

Φ(X)/(log U/L + 1)
≤ O

(

log
U

L

)

,

(16)
which proves Theorem 1.

4.3 k-Step Watch Ahead Heuristic

In Sect. 4.1 and Sect. 4.2, we introduce and analyze the Dynamic Thresh-

old Algorithm for the online spatial crowdsourcing market, which assumes
no knowledge is available for workers’ arrival in the future. Though much faster
than the DP-based Optimal Algorithm, since the input information is much
more limited, the Dynamic Threshold Algorithm may lose some total ben-
efit. To balance efficiency (running time) and effectiveness (total utility value),
in this subsection, we introduce an intuitive heuristic strategy, called k-Step

Watch Ahead Heuristic, which combines the merits of the DP-based Opti-

mal Algorithm, which focuses on the static cases, and the Dynamic Thresh-

old Algorithm, which focuses on the online scenario.
The intuition is straightforward. Instead of knowing or predicting the work-

ers’ whole arrival sequence, we predict only k steps ahead each time, which is
the reason we name it “k-Step Watch Ahead”. That is to say, at time t, we
predict the future arrival sequence in [t + 1, · · · , t + k]. Then, the DP-based

Optimal Algorithm is invoked on this k-size sequence. After that, we apply
the dynamic threshold function to reject any incentive allocation p violating the
constraint that p’s utility density is less than the dynamic threshold. Such a
heuristic strategy works well in practice since the short-term prediction of the
SC market is usually better than the long-term prediction.



706 Q. Liu et al.

Algorithm 2: k-Step Watch Ahead Heuristic

Input: the number of steps that we watch ahead: k, the task acceptance ratio:
AR(p), the total budget: B, and maximum and minimum ratio of
value and cost: U, L.

Output: incentive values: p0, p1, · · · , pT−1.
1 define function Φ(x) as Eq. (10) ;
2 spent ← 0 ;

3 for t = 0, 1, · · · , 	T
k

 − 1 do

4 predict workers’ arrival sequence σt = W t, W t+1, · · · , W t+k−1;
5 invoke DP-based Optimal Algorithm on sequence σt to obtain the

incentive sequence pt, pt+1, · · · , pt+k−1;

6 apply the dynamic threshold function Φ(x) on pt, pt+1, · · · , pt+k−1 and

reject any p if EU(p)
EC(p)

< Φ
(

spent
B

)
;

7 update spent;

8 return p0, p1, · · · , pT−1;

The k-Step Watch Ahead Heuristic is shown in Algorithm 2. In line 1
and line 2, we define the threshold function Φ(·) and initialize the variable spent,
which are the same as those in Algorithm 1. Then, in line 3, we divide the whole
time interval into 
T

k � sub-intervals. In line 4, at timestamp t = 0, 1, · · · , 
T
k �−1,

we predict the SC market information for the next k timestamps, which returns a
predicted workers’ arrival sequence σt = W t,W t+1, · · · ,W t+k−1. Line 5 invokes
the DP-based Optimal Algorithm on sequence σt and get the incentive
value sequence pt, pt+1, · · · , pt+k−1. Note that, such result is optimal w.r.t. k-
length workers’ arrival sequence σt. In line 6, for any incentive allocation pt in
the incentive sequence obtained by dynamic programming, we test whether the
utility density EUt(pt)

ECt(pt) is less than the dynamic threshold Φ
(

spent
B

)
. If yes, we

reject the corresponding incentive allocation, i.e., set pt = 0. Line 7 updates
spent and line 8 returns the final incentive sequence p0, p1, · · · , pT−1.

It is easy to show that the space complexity and time complexity of the
k-Step Watch Ahead Heuristic are the same as those of the DP-based

Optimal Algorithm, which are O(MB) and O(MBT |T |2), respectively. How-
ever, the response time of Algorithm 2 is much better than that of algorithm
Opt. The reason is that Algorithm 2 applies dynamic programming on a very
short sequence and then makes progress, whereas, Opt invokes DP on the entire
sequence.

5 Experimental Study

In this section, we conduct experiments on real datasets to demonstrate the
effectiveness and efficiency of our proposed algorithms. All the experiments were
run on a Linux server with Intel(R) Xeon(R) CPU X5675 @ 3.07 GHz and 16 GB
memory, and all the algorithms were implemented in Java with JDK 10.
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5.1 Experiment Setup

Data Preparation. We use Didi’s open ride data4 for our experimental study.
For each ride, the data contains attributes like its issue time, arrival time, origin
location, transaction states, and etc. The coordinate range of the tested region is
[30.727, 104.043], [30.726, 104.129], [30.655, 104.129] and [30.653, 104.042], which
specifies Chengdu city, one of the largest cities in China. The time frame of the
data is from 1st to 30th, Nov. 2016. In our experiments, we focus on taxi trans-
actions falling on November 1st, which contains 209,423 records. Nevertheless,
it yields similar results to test the methods on other dates.

Parameter Setting. There are mainly three parameters for the experiments.

1. M : the number of incentive choices. The maximum incentive in our exper-
iments is set to 50 RMB, which is divided by M to form a spectrum of
incentives. For example, for M = 50 and M = 100, the gap between two
adjacent incentives is 50/50 = 1 and 50/100 = 0.5 RMB, respectively. The
range of M is set to [5, 10, 25, 50, 100].

2. T : the time frame of a batch of orders, whose values are {5, 10, 15, 20, 25}
minutes.

3. B: the initial total budget. The unit of B is RMB. B ∈ [2, 4, 6, 8, 10] (× 2k
RMB).

Fig. 2. Experimental results w.r.t. M , B and T .

4 The data is available at https://outreach.didichuxing.com/research/opendata/.

https://outreach.didichuxing.com/research/opendata/
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In our experiments, we vary one parameter to test its effect, with other param-
eters fixed to their default values (marked with underlines).

Compared Algorithms. We compare our proposed three incentive allocation
strategies: (1) offline optimal algorithm Opt (“DP” in short), (2) Dynamic

Threshold Algorithm in Algorithm 1 (“online” in short), and (3) k-Step

Watch Ahead Heuristic in Algorithm 2 (“k-watch” in short). In our experi-
ment, we run DP on the omniscient case where the total input sequence is known
in advance. Then, the optimal solution obtained by DP can be used to measure
the effectiveness of the other two algorithms. Note that, for the k-Step Watch

Ahead Algorithm, the value of k is fixed to T/5, i.e., k ∈ [1, 2, 3, 4, 5]. For
the predicting method in Line 4 of Algorithm2, we use Auto Regressive Moving
Average model (ARMA) to predict the k-length workers’ arrival in the future.

5.2 Main Results

Measurements. We evaluate the algorithms in terms of the following aspects.

1. Expected utility value (“utility” in short), which is the objective function of
the MIT problem;

2. Longest response time (“time” in short), which is equal to the maximum
difference between the task issue time and the incentive allocated time. Note
that, we choose the longest response time rather than the algorithm running
time, as the former is much larger than the latter and accounts for workers’
waiting.

3. Memory cost (“memory” for short), which is the usage of main memory during
the execution of the algorithm.

We report the utility values, the longest response times and the memory costs
for the three evaluated algorithms in Fig. 2.

Effect of M. As M increases, the utility values of all three algorithms increase.
The reason is that, M specifies the “granularity” of the incentive values. A larger
M leads to a larger solution space. For the response time and memory cost, as
M increases, both of them increase dramatically for DP and k-watch, which is
consistent with their time complexities. In contrast, the time and space costs of
the algorithm “online” grow more smoothly.

It always shows that, the response time of “DP” is approximately ∼10 times
of that of “k-watch”, which is in turn approximately ∼10 times of that of
“online”. The reason is that, the algorithm “DP” needs to perform dynamic
programming for the entire input sequence, while the algorithm “k-watch” eval-
uates only sequences of length k. As a result, their time costs differ by a factor of
T/k, which is exactly 10. For the algorithm “online”, it does not rely on dynamic
programming and can return a solution immediately.

Effect of B. As B increases, the utility values obtained by the algorithms all
increase since as budget means more incentives, which will engage more workers.
Both the time and space cost of algorithms “DP” and “k-watch” increase as B
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increases, since their time complexities are linear to B. In contrast, the time and
space costs of the algorithm “online” remain stable over different values of B.

Effect of T. As T increases, the utility of the algorithms all increase as well.
The reason is straightforward: a larger time frame indicates a larger number
of tasks, and thus a higher utility. The response time of “DP” and “k-watch”
become larger as T increases, while it almost keeps unchanged for the algorithm
“online”. For the memory cost, all three algorithms remain stable over different
T since neither the DP array of algorithm “DP” and “k-watch” nor the priority
queue of the algorithm “online” is dependent on T .

6 Conclusion

In this paper, we formulate a problem called Real-time Monetary Incentive for
Tasks in Spatial Crowdsourcing (MIT), which determines incentives for tasks in
real time, aiming to maximize the number of completed tasks. We show that our
MIT problem generalizes a spectrum of spatial crowdsourcing applications, To
solve the problem, we propose three algorithms under different levels of future
knowledge. We further show that they are efficient (true polynomial time solv-
able) and effective (logarithm-scale competitive) both theoretically and experi-
mentally.
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Abstract. Applications such as Uber, Yelp, and Tinder rely on spa-
tial data or locations from their users. These applications and services
either build their own spatial data management systems or rely on exist-
ing solutions. The JTS Topology Suite (JTS), its C++ port GEOS,
Google S2, ESRI Geometry API, and Java Spatial Index (JSI) are among
the spatial processing libraries that these systems build upon. Applica-
tions and services depend on the indexing capabilities available in such
libraries for high-performance spatial query processing. However, limited
prior work has empirically compared these libraries. Herein, we compare
these libraries qualitatively and quantitatively based on four popular
spatial queries and using two real-world datasets. We also compare a
lesser known library (jvptree) which utilizes Vantage Point Trees. In
addition to performance evaluation, we also analyzed the construction
time, and space overhead, and identified the strengths and weaknesses of
each libraries and their underlying index structures. Our results demon-
strate that there are vast differences in space consumption (up to 9.8 x),
construction time (up to 5 x), and query runtime (up to 54 x) between
the libraries evaluated.

1 Introduction

Recent years, have seen an exponential growth in location-enabled data fueled
by services, such as: recommendations for nearby social events, businesses, or
restaurants as well as navigation, location-based mobile advertising, and social
media platforms. Google, Facebook, Uber, Foursquare, and Yelp are among the
companies that provide such services. To handle location data from their users,
these companies either build their own spatial data management systems from
scratch or rely on existing solutions. The rise of location-based services has also
encouraged the research community to develop systems that can efficiently han-
dle, process, and analyze spatial data. HadoopGIS [1] and SpatialHadoop [2] were
one of the first research efforts to focus on handling and processing spatial data at
scale. Apache Spark and Impala saw a similar trend with a plethora of research
introducing spatial support in the form of SpatialSpark [27], GeoSpark [28],
Simba [25], STARK [6], LocationSpark [21], Sphinx [3], and SRX [23]. Popular
database systems have also undergone a similar trend, e.g., Oracle Spatial [16],
MemSQL [4], MongoDB [15], and HyPer [19]. Many of these systems or services
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12113, pp. 711–727, 2020.
https://doi.org/10.1007/978-3-030-59416-9_46
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use open source libraries to implement the basic geometry types, indexes, and
algorithms for spatial processing. Some of the most popular libraries for these
purposes are JTS Topology Suite (JTS), its C++ port Geometry Engine Open
Source (GEOS), Google S2 (S2), ESRI Geometry API, and Java Spatial Index
(JSI). Today, these libraries are used in a variety of services and research projects.
We highlight the major services and research projects using these libraries in
Sect. 3. Given the prevalence and the relevance of these libraries in present day
services and systems, we argue that it is necessary to evaluate them.

The paper is structured as follows: Sect. 2 formally defines the spatial queries
evaluated and presents practical examples of these queries; Sect. 3 introduces
modern spatial libraries; Sect. 4 presents the experimental setup used for eval-
uation, which is followed by the evaluation in Sect. 5; Sect. 6 discusses related
work and Sect. 7 presents the conclusions.

2 Queries

2.1 Range Query

A range query takes a range r (i.e., the minimum and maximum for dimensions
D) and a set of geometric objects S. It returns all objects in S that are contained
within the range r. Formally,

Range(r, S) = {s|s ∈ S ∧ ∀d ∈ D :
r [d] .min ≤ s [d] ≤ r [d] .max}.

Practical Example: Retrieve all objects at the current zoom level in a map
application (e.g., Google Maps) for a browser window.

2.2 Distance Query

A distance query takes a query point q, a distance d, and a set of geometric
objects S. It returns all objects in S that lie within the distance d of query point
q. Formally,

Distance(q, d, S) = {s|s ∈ S ∧ dist(q, s) ≤ d}.

Practical Example: Retrieve all dating profiles within 5 km of a user’s location.

2.3 k Nearest Neighbors (kNN) Query

A kNN query takes a set of points S, a query point q, and an integer k ≥ 1 as
input, and determines the k nearest points in S to q. Formally,

kNN(q, k, S) = {s|s ∈ T ⊆ S ∧ |T | = k ∧ ∀t ∈ T,

∀r ∈ S − T : d(q, t) ≤ d(q, r)}.

Practical Example: Find the five Greek restaurants closest to a user’s location.
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Table 1. Selected features of the libraries

Features S2 GEOS ESRI JTS JSI jvptree

Language C++ C++ Java Java Java Java

Indexes ShapeIndex,

PointIndex,

RegionTermIn-

dexer

STRtree,

Quadtree

Quadtree STRtree,

Quadtree,

KD-tree

R-Tree Vantage

Point Tree

Geometry

Type

Spherical Planar Planar Planar Planar Metric space

Geometry

Model

Point, Line,

Area, Geometry

Collections

Point, Line,

Area,

Geometry

Collections

Point, Line,

Area,

Geometry

Collections

Point, Line,

Area,

Geometry

Collections

Point, Area Point

License Apache v2.0 LGPL Apache v2.0 Dual license

(EPL 1.0,

BSD)

LGPL MIT

2.4 Spatial Join

A spatial join takes two input sets of spatial records R and S and a join predicate
θ (e.g., overlap, intersect, contains, within, or withindistance) and returns a set
of all pairs (r, s) in which r ∈ R, s ∈ S, and the join predicate θ is fulfilled.
Formally,

R ��θ S = {(r, s) | r ∈ R, s ∈ S, θ(r, s) holds}.

Practical Example: Find the average cost of all taxi rides that originate from
each neighborhood in New York City.

3 Libraries

In the following section, we describe the major features of the libraries evaluated.
We also highlight major services, applications, and systems using these libraries.
Table 1 summarizes the features of each library, and Table 2 summarizes the
features of the indexes found in these libraries.

3.1 ESRI Geometry API

ESRI Geometry API1 is a planar geometry library written in Java. It comes with
a rich support for multiple geometry datatypes, such as point, multipoint, line,
polyline, polygon, and envelope and OGC variants of these datatypes. It supports
various topological operations, such as cut, difference, intersection, symmetric,
union and various relational operations using a DE-9IM matrix such as con-
tains, crosses, overlaps etc. ESRI Geometry API also supports a variety of I/O
formats, WKT, WKB, GeoJSON, ESRI shape, and REST JSON. It also comes
equipped with a Quadtree index which cannot be classified into a particular
type in Quadtree family. The key property of any Quadtree is its decomposition

1 https://github.com/Esri/geometry-api-java.

https://github.com/Esri/geometry-api-java


714 V. Pandey et al.

rule; in ESRI Quadtree a leaf node splits into four when the node element count
reaches 5 elements, and these are pushed into the child quadrants if possible.

ESRI Geometry API is used in a variety of ESRI products such as ArcGIS,
the ESRI GIS tools for Hadoop, and various ArcGIS APIs. It is also used by
the Hive UDFs and by developers building geometry functions for third-party
applications including Cassandra, HBase, Storm, and many other Java-based
“big data” applications.

3.2 Java Spatial Index (JSI)

The Java Spatial Index (JSI)2 is the main memory optimized implementation of
the R-tree [5]. JSI relies heavily on trove4j3 library to optimize its performance
and reduce its memory footprint. The code is open source, and is released under
the GNU Lesser General Public License, version 2.1 or later. The JSI spatial
index is limited in features, and supports only a few operations. It is a lightweight
R-tree implementation, specifically designed for the following features (in order of
importance): fast intersection performance by using only main memory to store
entries, low memory footprint, and fast updates. JSI’s R-tree implementation
avoids the creation of unnecessary objects through its use of primitive collections
from the trove4j library. JSI supports rectangle and point datatypes, and has
support for only two predicates for refinement, intersects, and contains. The
R-tree index can be queried natively for ranges, and for kNN.

We found no reference of JSI being used in a major system or service, which
we believe is primarily due to its limited capabilities. In spite of this, JSI is still
regularly utilized in diverse research areas [9,10,13,14,22].

3.3 JTS Topology Suite and Geometry Engine Open Source

The JTS Topology Suite (JTS) is an open source Java library that provides an
object model for planar geometry together with a set of fundamental geometric
functions. JTS conforms to the Simple Features Specification for SQL published
by the Open GIS Consortium4. GEOS (Geometry Engine Open Source)5 is a
C++ port of the JTS Topology Suite (JTS). Both JTS and GEOS provide
support for basic spatial datatypes such as points, linestrings, and polygons as
well as for indexes such as STR packed R-tree and MX-CIF Quadtree [11]. They
also support a variety of geometric operations such as area, distance between
geometries, length/perimeter, spatial predicates, overlay functions, and buffer
computations. They also support a number of input/output formats including
Well-Known Text (WKT), Well-Known Binary (WKB).

JTS is used in a large number of modern distributed spatial analytics sys-
tems including Hadoop-GIS [1], SpatialHadoop [2], GeoSpark [28], and Spa-
tialSpark [27] and other research areas [20]. GEOS on the other hand is used in
2 https://github.com/aled/jsi.
3 http://trove4j.sourceforge.net/html/overview.html.
4 https://www.opengeospatial.org/standards/sfa.
5 https://trac.osgeo.org/geos/.

https://github.com/aled/jsi
http://trove4j.sourceforge.net/html/overview.html
https://www.opengeospatial.org/standards/sfa
https://trac.osgeo.org/geos/
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Table 2. Selected features of all indexes

Feature S2 ESRI JTS JSI jvptree

PointIndex Quadtree k-d tree Quadtree STRtree R-tree jvptree

Implementation Linear

Quadtree

Quadtree k-d tree MX-CIF

Quadtree

STR

packed

R-tree

R-tree VPTree

Geometry Point Rectangle Point Rectangle Rectangle Rectangle Point

Native queries Range,

Distance,

kNN

Range Range Range Range,

kNN

Range,

kNN

Distance,

kNN

Updateable? Yes Yes Insert:

Yes

Delete:

No

Yes No

insertion

after

build

Yes No

Fanout 32 4 2 4 10 20–50 2

a number of database systems and their spatial extensions such as MonetDB,
PostGIS, SpatiaLite, Ingres, and it is also used by other frameworks, applica-
tions, and proprietary packages.

3.4 Google S2 Geometry

S26 library is primarily designed to work with spherical geometry, i.e., shapes
drawn on a sphere rather than on a planar 2D map, making it especially suitable
for working with geographic data. S2 supports a variety of spatial datatypes
including points, polylines, and polygons. It has two index structures, namely
(i) S2PointIndex, which indexes collections of points in memory and is a variant
of Linear Quadtree [11], and (ii) S2ShapeIndex which is used to index arbitrary
collections of shapes, i.e., points, polylines, and polygons in memory. S2 also
defines a number of queries that can be issued against these indexes. Indexes
also define iterators that allow more fine-grained access. S2 also accepts input
in latitude-longitude (GPS) format.

In recent years, S2 has become a popular choice among various location-based
services. It is used by Foursquare7, on-demand ride hail services such as Uber8,
the location-based dating application Tinder9, numerous database systems, such
as MongoDB [15], HyPer [19], MemSQL [4], and in other research areas [7,8].

6 https://github.com/google/s2geometry.
7 https://www.fastcompany.com/3007394/how-foursquare-building-humane-map-

framework-rival-googles/.
8 https://www.infoq.com/presentations/uber-market-platform/.
9 https://tech.gotinder.com/geosharded-recommendations-part-1-sharding-

approach-2/.

https://github.com/google/s2geometry
https://www.fastcompany.com/3007394/how-foursquare-building-humane-map-framework-rival-googles/
https://www.fastcompany.com/3007394/how-foursquare-building-humane-map-framework-rival-googles/
https://www.infoq.com/presentations/uber-market-platform/
https://tech.gotinder.com/geosharded-recommendations-part-1-sharding-approach-2/
https://tech.gotinder.com/geosharded-recommendations-part-1-sharding-approach-2/
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3.5 Vantage Point Tree

We use the library jvptree10 for an implementation of Vantage Point Tree. Van-
tage Point Trees [26] are based on metric space and have been extensively studied
in image retrieval and nearest neighbor search algorithms for high dimensional
data. Metric space is defined by a set, and a distance function to measure the
distance between points in that set. Formally, metric space is defined as follows:
Let X be a set and let d: X × X → [0,∞). The function d is a metric on X if
for all x, y, z ∈ X:

1. d(x, y) ≥ 0; and d(x, y) = 0 iff x = y;
2. d(x, y) = d(y, x);
3. d(x, z) ≤ d(x, y) + d(y, z);

The ordered pair (X, d) is referred to as a metric space. Vantage Point Trees
divide data by choosing a point in the input space, the vantage point p, before
partitioning data points into two parts: those that are closer to the p than
distance r, which go to the left child, and those further away than r, which
become part of the right child. This process is done recursively at every level
of the treeand the tree can then be traversed efficiently for distance and kNN
queries. We refer readers to [26] for further detail on Vantage Point Trees.

4 Methodology

To benchmark libraries and measure memory costs we use language specific
open-source tools. For Java-based libraries we use the Java Microbenchmark
Harness (JMH)11, which is a framework for building, running, and analyzing
benchmarks. To measure the memory consumption in Java we use the JOL
(Java Object Layout) tool12 which is a toolbox to analyze object layout schemes
in JVMs. To benchmark C++ based libraries we used Google Benchmark13, and
to measure the memory consumption of the indexes in C++ we used the Heap
Profiler in TCMalloc14.

For evaluation, we used two datasets, the New York City Taxi Rides dataset15

(NYC Taxi Rides), and geo-tagged Tweets in the New York City area (NYC
Tweets). Using the shuf command in Linux, we sampled a subset of 50 million
rides (for the year 2015) and geo-tagged tweets from the two datasets. Figure 1
shows the distribution of the rides and tweets in the NYC region. It can be
seen that the taxi rides are mostly centered around central New York while the
tweets are distributed across the whole city. We further generated query datasets
consisting of ranges (bounding boxes) for range query, query points and distances

10 https://github.com/jchambers/jvptree.
11 https://openjdk.java.net/projects/code-tools/jmh/.
12 https://openjdk.java.net/projects/code-tools/jol/.
13 https://github.com/google/benchmark.
14 https://github.com/gperftools/gperftools.
15 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

https://github.com/jchambers/jvptree
https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jol/
https://github.com/google/benchmark
https://github.com/gperftools/gperftools
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Fig. 1. Datasets: NYC Taxi trips are clustered in central New York whereas Tweets
are spread across the city

in case of the distance query, and query points in the case of the kNN query. For
range queries and distance queries we created seven different query datasets for
seven different selectivities, ranging from 0.0001% to 100%. For the kNN query
dataset, we uniformly generated points within the NYC bounding box. Each of
these query datasets consists of one million queries. For the point in polygon
spatial join query, we used 289 polygons of neighborhood boundaries in NYC.

For the planar geometry libraries we projected the datasets to EPSG:32118
using ogr2ogr tool in GDAL. We used the ogr2ogr tool in GDAL to transform
the latitude-longitude coordinates in the datasets. NYC Taxi datasets (both
projected and non-projected), and its query datasets (both projected and non-
projected) are available on our website16, and the benchmark code used in the
experiments is available on GitHub17. Twitter data was collected using Twitter’s
Developer API; the usage policy prohibits us from sharing the dataset.

5 Evaluation

All experiments were run single-threaded on a two-socket Ubuntu 18.04 machine
equipped with an Intel Xeon E5-2660 v2 CPU (2.20 GHz, 3.00 GHz turbo)18 and
256 GB DDR3 RAM. We use the numactl command to bind the thread and
memory to one node to avoid NUMA effects. CPU scaling was also disabled
during benchmarking using the cpupower command.

To evaluate queries we performed two experiments for each query. In the first
experiment, we fixed the selectivity of the query to 0.1% (we fixed k to 10 in case
of the kNN query) and varied the cardinality of the points dataset from 10 M to
50 M tuples. In the second experiment, we fixed the number of points to 50 M

16 http://spatial-libs.db.in.tum.de.
17 https://github.com/varpande/spatial-libs.
18 CPU: https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-

processor-e5-2660-v2-25m-cache-2-20-ghz.html.

http://spatial-libs.db.in.tum.de
https://github.com/varpande/spatial-libs
https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html
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Fig. 2. Index sizes and construction times in various libraries for Taxi and Twitter
Dataset

and varied the selectivity of the query from 0.0001% to 100%. (we varied k from
1 to 10,000 in case of the kNN query). For all these experiments we measure
the throughput for each library in queries/s. In the case of point in polygon join
query, we used 289 neighborhood polygons and varied number of points from
10 M to 50 M in the first experiment, whereas, in the second experiment we fixed
the number of points to 50 M and varied the number of polygons. We report
the join time (seconds) for the join query. The implementation of every query
is covered under the respective section. If a particular index did not support
a query natively, the query was implemented using the filter and refine [17]
approach.

5.1 Indexing Costs

ESRI Quadtree and JSI R-tree accept the rectangular range to index, and an
identifier for the rectangular range, whereas other index structures are more
liberal and allow users to put any user data along with the rectangular range. To
ensure experimental equality with respect to all index structures, we only stored
the rectangular range to index and an identifier in each case and measured the
size of these indexes in memory.

It is important at this point to categorize indexes in the libraries in order
to better understand their behavior. Indexes in the libraries can be classified
into two types: Point Access Methods (PAMs) and Spatial Access Methods
(SAMs) [11]. PAMs are indexing methods that index point data, whereas SAMs
index extended spatial objects such as rectangles, polygons etc. S2PointIndex,
k-d tree, and vptree are PAMs and the rest are SAMs. Indexes can also be
categorized as space-driven (following the embedding space hierarchy), or data-
driven (following the data space hierarchy). Quadtrees are space-driven struc-
tures, whereas the other indexes are data-driven.

Figure 2 shows the sizes of indexes in various libraries and the time takes to
construct them. S2PointIndex, k-d tree, and vptree are PAMs which store only
points (at least two doubles) and hence their memory consumption is minimal.
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S2PointIndex is a B-tree which stores 64-bit integers (cell ids), and the overhead
in the inner nodes is minimal. The k-d tree in JTS stores only points, and
moreover snaps duplicate points (points are considered duplicates if they satisfy a
distance tolerance threshold19) instead of creating a new node. jvptree stores only
a vantage point and radius at every node hence the intermediate nodes consume
minimal memory. Other indexes are SAMs and store rectangles, thus consuming
more memory than PAMs. This is expected since the trees store rectangles20,
each of which requires the storage of at least four doubles. It can also be seen
from Fig. 2 that the R-tree in JSI consumes very little memory even though
it stores rectangles. This is because JSI heavily relies on trove4j21 collections
which are generally faster to access, and consumes considerably less memory
than Java’s Util collections. There are two specific reasons for the low memory
consumption: firstly (any) primitive collections store data directly in an array of
primitives (int, long, double, char) and thus only a single reference to an array of
primitives is needed instead of an array of references to data objects. Secondly,
each primitive data element consumes less memory than the Object (e.g. type int
only requires 4 bytes instead of a 16 byte object Integer). The reason for better
performance is that trove4j avoids the boxing and unboxing of elements every
time a primitive value is queried to/from the collection. Furthermore, space-
driven indexes, i.e. Quadtrees, consume more memory for the Twitter dataset.
Since space-driven structures divide the space they index more internal nodes
are formed if the space is larger. Since the Twitter dataset covers more space
than the Taxi dataset, more internal nodes are generated (e.g. the JTS/GEOS
Quadtree generates 4 million nodes for 50 million data points for Twitter dataset
vs. 1.5 million for Taxi dataset), and the quadtrees are commensurately larger.

Index construction times have been measured using the benchmarking frame-
works, and are averaged over several runs until the runtime is statistically stable.
For both Taxi and Twitter datasets, jvptree is the fastest to construct, closely
followed by S2PointIndex, whereas Quadtree in ESRI geometry API and R-tree
in JSI are among the slowest to construct for all datasets.

5.2 Range Query

Implementation: All indexes, except for jvptree, provide a native interface for
range queries. To implement range queries in jvptree we first compute the cen-
troid q of the query rectangle. Following this, we determine the distance of the
centroid q to one of the rectangle’s corner vertices. The resulting circle (q, d)
is always larger than the range query rectangle and can therefore be used as a
filter to retrieve a list with qualifying points. This list is then refined to deter-
mine which points are actually contained within the range query rectangle. As

19 We kept the tolerance value to 0.0 which means if the point coordinates are exactly
the same only then they are snapped to the same node: https://locationtech.github.
io/jts/javadoc/org/locationtech/jts/index/kdtree/KdTree.html.

20 We store points from the datasets as degerate rectangles in SAMs.
21 http://trove4j.sourceforge.net/html/benchmarks.shtml.

https://locationtech.github.io/jts/javadoc/org/locationtech/jts/index/kdtree/KdTree.html
https://locationtech.github.io/jts/javadoc/org/locationtech/jts/index/kdtree/KdTree.html
http://trove4j.sourceforge.net/html/benchmarks.shtml
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Fig. 3. Range query performance varying the number of points and selectivity of the
query rectangle for NYC Taxi and Twitter Datasets

mentioned earlier, the k-d tree in JTS keeps a count of points; in the case of
duplicate points (up to a certain distance of tolerance), rather than creating
a new node for each duplicate point. We ensure that we materialize all such
points for the range query, but we do use them as an optimization in distance
and join query to reduce the refinement costs (i.e. skip refinement for duplicate
points if one point qualifies the refinement check). Another point to mention
here is Quadtree implementation in ESRI geometry API requires tuning. The
implementation expects a height parameter for the index. We extensively exper-
imented with heights varying from 1 to 32 for both datasets. We found that the
Quadtree performed best with heights 18 and 9 for the Taxi and Tweets datasets
respectively.

Table 3. CPU Counters - Range query datasize = 50M
tweets, selectivity = 0.1 %, 1 thread, normalized by
the number of range queries. All values are in millions
except IPC.

cycles ipc instr L1
miss

LLC
miss

branch
miss

esri-quadtree 116 0.84 98 1.34 0.54 0.08

geos-quadtree 105 0.75 79 0.97 0.75 0.09

geos-strtree 236 0.37 88 4.04 2.68 0.51

geos-cfstrtree 91 0.87 80 1.21 0.57 0.46

jsi-rtree 8 1.25 10 0.13 0.06 0.03

jts-kdtree 8 1.12 9 0.14 0.02 0.04

jts-quadtree 68 1.17 80 0.82 0.27 0.19

jts-strtree 31 0.81 25 0.42 0.22 0.01

s2-pointindex 44 1.34 59 0.42 0.05 0.36

vptree 30 0.70 21 0.68 0.21 0.05

Analysis: Figure 3 shows
the range query per-
formance of the vari-
ous libraries on the Taxi
and Twitter datasets. For
both datasets, JTS k-d
tree and JSI R-tree show
the best throughput num-
bers (336 and 514 queries
per second, respectively,
in the Taxi dataset for
50 M points and 0.1%
selectivity). The k-d tree
are tailor made for range
searches on points and
thus exhibit among the
best performances for both datasets. The JSI R-tree is optimized for main mem-
ory usage and has the smallest height of all indexes (5 in both datasets). Many
nodes of the tree are cached, and it thus suffers from the least number of cache
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Fig. 4. Distance query performance varying the number of points and selectivity of the
query rectangle for NYC Taxi Dataset and Twitter Datasets

misses (see Table 3). An interesting case in the results is the low query through-
put of the GEOS STRtree (28.5 queries per second in the Taxi dataset for 50
M points and 0.1% selectivity). The GEOS STRtree is much slower than the
JTS STRtree. Upon investigation, we found that the reason for this is an imple-
mentation artifact. Table 3 shows that the GEOS STRtree suffers from a large
number of LLC misses: 2.68 million in Twitter dataset and 1.28 million in Taxi
dataset (data not shown in table). R-trees store multiple rectangles at every
node. When the tree is queried, the decision to explore its branches from each
node is based on whether the query range overlaps with any of these rectangles.
In both JTS and GEOS, every node in the STRtree contains a maximum of 10
such rectangles by default. The GEOS STRtree stores a vector of pointers to
these rectangles at every node. At each node, the algorithm in the range query
iterates over these pointers, retrieves these rectangles from memory and checks
if there is any overlap with the query range. Then, based on the overlap, it
explores the various branches from the node. Retrieving these rectangles from
memory causes many cache misses in the GEOS STRtree during the query exe-
cution. To validate this, we implemented a cache-friendly STRtree (designated
as cfstrtree in Table 3) in GEOS on top of the existing tree. Essentially, another
vector was introduced at every node in the tree, storing the objects of these
rectangles in contiguous memory. We replaced the logic to check for overlap to
use these rectangle objects rather than the pointers to them. This reduced the
number of LLC misses in CFSTRtree, relative to STRtree, by a large number as
shown in Table 3.

5.3 Distance Query

Implementation: S2PointIndex and jvptree provide native support for distance
queries, so we directly issue the query point and the distance to these two indexes.
The other indexes do not natively support distance queries. To implement dis-
tance queries in these indexes we again used the filter and refine paradigm. We
first filtered using a rectangle, with each corner vertex at a distance of d from
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Fig. 5. kNN query performance varying the number of points and k for NYC Taxi and
Twitter Datasets

the query point q. We issued a range query to the various range-based indexes
using this rectangle. We then refined the resulting candidate set of points using
a withinDistance predicate (available in ESRI Geometry API, JTS, and GEOS).
For JSI, we implemented our own predicate which computes the Euclidean dis-
tance for all candidate points from the query point and checks if the candidate
point is within distance d * d rather than d from the query point. This allowed
us to skip the square root operation when calculating the Euclidean distance.

Analysis: Figure 4 shows the distance query performance on Taxi and Twit-
ter datasets. The performance for distance query is dominated by range query
lookup for most indexes, apart from S2PointIndex and jvptree. These indexes
support distance queries natively For the other indexes we deploy the filter and
refine scheme. The performance of these indexes thus follow directly from the
range query performance. JSI R-tree shows a slightly better performance than
the JTS k-d tree, stemming from the fact that we optimized the Euclidean dis-
tance computation by skipping the square root operation. We also advice readers
to use this approach for refinement in GEOS as well. The isWithinDistance func-
tion in GEOS returns whether two geometries are within a certain distance of
each other. By profiling the function we noticed that this function makes six
malloc() calls, for every candidate point, degrading the performance. Using our
own predicate distance function we were able to speed up the distance query by
up to 2x in GEOS. In many geometric operations, GEOS frequently allocates
and frees memory, which is an overhead. This was similary observed by [27],
where the authors used GEOS to introduce spatial processing in Impala.

5.4 kNN Query

Implementation: Of all the available indexes, only S2PointIndex, JTS
STRtree, JSI R-tree, and jvptree support kNN queries natively. We directly
issued the query point to these indexes and measured their performance. We
did not implement any tree traversal algorithms for any other available tree
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Fig. 6. Join query performance varying the number of points and neighborhoods for
NYC Taxi and Twitter Datasets

because we wanted to measure the performance of the libraries without making
any changes to their source codes.

Analysis: Figure 5 shows kNN query performance of various indexes on the Taxi
and Twitter datasets. jvptree again took the crown as the best performing index
for kNN queries, with S2PointIndex closely behind. It can be observed that for
the Twitter dataset the performance of JSI R-tree fluctuates significantly. This
can be explained by the manner in which the nearest neighbor algorithm works
in JSI R-tree (and also in JTS STRtree) which is known as branch-and-bound
traversal. The algorithm starts with the addition of the root node to a priority
queue of size k. The algorithm then iterates over the tree continuously adding
nodes until the priority queue is full. The algorithm then continues traversing
the tree observing nodes and replacing the current farthest node in the queue
with the node being observed, if it is closer. The JSI R-trees for different sized
datasets are vastly different since the JSI R-tree is a dynamic R-tree, the nodes
are split at various times during insertion based on multiple factors, and is
also unbalanced, for different sized dataset. Thus during the tree traversal for
kNN query, sometimes a large number of branches from a node can be dropped
since they are not closer than the current farthest node in priority queue and
sometimes they cannot be dropped. This can lead to multiple search paths to
be evaluated and hence the fluctuation in performance. JTS STRtree packed
R-tree does not suffer from this because it is a type of static and bulk-loaded
R-tree and is at most times balanced. It is built once, and then more elements
cannot be added to it. STRtree is built by first sorting the leaf node in the x
dimension, dividing the nodes into splices after sorting, and then sorting each
splice in y dimension. The tree is then built on top of these sorted nodes. The
difference in tree node boundaries is still retained in JTS STRtree but is more
profound in lower levels of the tree, rather than at various levels as in the case of
the JSI R-tree. Thus, the JSI R-tree can sometimes quickly discard branches at
the top of the tree and other times it cannot, and this is reflected in the query
throughput.
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5.5 Point-In-Polygon Join Query

Implementation: In S2, we used S2ShapeIndex, instead of S2PointIndex, which
provides a native interface for the contains predicate. S2ShapeIndex22 stores a
map from S2CellId to the set of shapes that intersect that cell. The shapes are
identified by a shape id. As shapes are added to the index, their cell ids are
computed and added together with the shape id to the index. When a query
point is issued against the index it retrieves the cells that contain the query
point and identifies the shape(s) that this containing cell belongs to using the
shape ids. For the other indexes, we again used the filter and refine approach.
For GEOS and JTS we used PreparedGeometry23 to index the line segments
of all individual polygons, which helps in accelerating the refinement check. In
JTS, we also used the k-d tree’s points snapping technique to skip refinement for
duplicate points in case one point qualifies or disqualifies the predicate check. In
ESRI implementation, we used AcceleratedGeometry and set its accelDegree to
enumHot24 for the fastest containment performance.

Analysis: Figure 6 shows the join query performance on the Taxi and the Twit-
ter datasets. Spatial join queries are notoriously expensive and this is reflected
in the figure. The kd-tree and S2ShapeIndex exhibit the best performance. The
kd-tree, as in the case for range query, can quickly identify the points that lie
in the bounding box of a polygon. This candidate set of points is then refined
using PreparedGeometry. As mentioned above, we skipped the refinement check
for duplicate points if one such point qualified (or disqualified) the refinement
check. The S2ShapeIndex natively supports the containment query and traverses
the index appropriately and does not have to deal with refining many candidate
sets of points. The performance of the other indexes followed directly from the
range query performance. JTS/GEOS STRtree and Quadtree performed better
than ESRI Quadtree because the refinement using PreparedGeometry is faster
than AcceleratedGeometry in ESRI.

6 Related Work

To the best of our knowledge, no previous work has empirically evaluated the
spatial libraries studied herein. [27] implemented spatial query processing in
Apache Spark, and Apache Impala using JTS and GEOS, respectively. They
did observe some of the differences in implementation between JTS and GEOS,
but the work was largely a comparative study of spatial processing in Spark
and Impala. [18] compared five Spark based spatial analytics systems, some
of which used the JTS library for spatial query processing, while [12] compared
two database systems which use Google S2 and GEOS for spatial processing. [24]
evaluated various parallel in-memory spatial joins.
22 http://s2geometry.io/devguide/s2shapeindex.html.
23 https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/prep/

PreparedGeometry.html.
24 https://esri.github.io/geometry-api-java/javadoc/com/esri/core/geometry/

Geometry.GeometryAccelerationDegree.html.

http://s2geometry.io/devguide/s2shapeindex.html
https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/prep/PreparedGeometry.html
https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/prep/PreparedGeometry.html
https://esri.github.io/geometry-api-java/javadoc/com/esri/core/geometry/Geometry.GeometryAccelerationDegree.html
https://esri.github.io/geometry-api-java/javadoc/com/esri/core/geometry/Geometry.GeometryAccelerationDegree.html
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Table 4. Strengths/Weaknesses of the Libraries

Library Strengths Weaknesses

ESRI (1) Active development and
support

(1) Quadtree requires tuning

(2) Full geometric types,
refinements, and operations

JSI (1) R-tree performance as a filter (1) No active development

(2) No geometric refinements

GEOS and JTS (1) Active development and
support

(1) Memory management in
GEOS requires improvement

(2) Full geometric types,
refinements, and operations

jvptree (1) Best distance and kNN
performance

(1) No geometric refinements

S2 (1) Best suited for geographic data

(2) Active development and
support

(3) Many practical queries natively
supported

7 Conclusions

In this work we empirically compared popular spatial libraries using four different
queries: range query, distance query, kNN query, and a point in polygon join
query. We performed an experimental evaluation of these libraries using two
real-world datasets. Table 4 summarizes the strengths and weaknesses of the
spatial libraries. There is no clear winner for each of the considered queries, and
this is mostly because all the indexes available in the libraries do not support all
these queries natively (i.e. do not have specialized tree traversal algorithms for
each query). ESRI geometry API and JTS/GEOS are complete planar geometry
libraries, and are rich in features. They support multiple datatypes, and have
a variety of topological and geometry operations. They are also under active
development and has a community for support. They do, however, come with
some drawbacks. ESRI Quadtree has to be tuned for the dataset that it indexes,
and memory management in GEOS could be improved. The kd-tree in JTS is
one of the best performing index in many queries, but does not support the kNN
query. There are algorithms available to traverse the kd-tree efficiently in order
to answer the kNN queries and implementing the algorithm in the index would
be a welcome addition. The R-tree in JSI exhibited the best performance for
range lookups, however, JSI is very limited in features, and is also not under
active development. Google S2 is a spherical geometry library and is best suited
to work with geographic data. It is active under development and is used in
many multimillion-dollar industries. It also has many practically used queries
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that are implemented natively on various indexes. Finally, jvptree, is a library
that implements the Vantage Point Tree, and exhibited the best performance
for distance and kNN queries since it was specifically designed to answer these
queries. The index can only be used as a filter for other queries, and users have
to implement their own refinement operations for such queries.
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Abstract. In this paper, we study a new type of Spatial Crowdsourc-
ing (SC), namely Distributed SC (DSC), which can support a variety
of location-relative services demanded by different requesters with low
latency and bandwidth costs. In DSC, requesters need to compete for lim-
ited resources so as to deploy their desired SC services, and the requested
resources must be allocated together to meet the demand of the service.
We model this competitive resource allocation problem as a combinato-
rial auction process. Since this problem is NP-hard, we design an approxi-
mation algorithm to solve it. Besides, the leakage of sensitive information
such as bids may incur severe economic damage, and there is a lack of
works that can provide efficient protection without a trustworthy third-
party. Based on this, we propose a novel Differentially private Resource
Auction (DRA) mechanism. A bid confusion strategy based on differen-
tial privacy is designed against the untrusted third-party. Moreover, we
prove that DRA offers ε-differential privacy, γ-truthfulness, individual
rationality and computational efficiency. Finally, extensive simulations
on a real trace confirm the efficacy of DRA and indicate good perfor-
mance in accordance with the design expectations.

Keywords: Distributed spatial crowdsourcing · Auction mechanism ·
Differentially private

1 Introduction

The dramatic proliferation of smart mobile devices enable a newly-emerged
crowdsourcing paradigm, namely Spatial Crowdsourcing (SC). A typical SC sys-
tem contains some task requesters, mobile users, and a server on the cloud.
Through the SC server, requesters can crowdsource their tasks to mobile users
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to be accomplished. So far, a lot of efforts have been devoted to designing diverse
SC systems and the corresponding user recruitment, task assignment, incentive
mechanisms, or privacy-preserving protocols, etc [5,17,21–23]. However, most of
these existing SC systems only involve a single server platform, which can be
categorized as centralized crowdsourcing paradigm. All user recruitment or task
assignment would need to be conducted via the centralized SC server. As the
number and types of SC services increase, these simple centralized systems are
more and more unable to meet the experience demand of users. Distributed SC
systems, which provide efficient and diverse services, are becoming popular.

In this paper, we investigate resource allocation in a Distributed Spatial
Crowdsourcing (DSC) system with the help of edge computing. In general, a
DSC system can support a variety of location-relative services demanded by dif-
ferent requesters. By the aid of edge computing, the DSC system can dynamically
deploy these services to specified decentralized Edge Clouds (ECs) according to
requesters’ demand. The ECs can be formed of a number of small-scale com-
puting and storage servers which are placed at network edges. Consequently,
the services are more closer to mobile users which can reduce time latency and
high bandwidth costs significantly. Figure 1 shows an example of a DSC system.
Three requesters want to provide their SC services, each of which corresponds to
one or more locations. On the basis of the demands, the DSC system can deploy
these three services to nearby ECs which cover the related locations and recruit
mobile users to perform their SC tasks.

Fig. 1. The DSC system model

Different from traditional SC systems which mainly depend on a central
cloud, the DSC system needs to deploy services on distributed ECs where the
computing and communication resources are generally limited. Thus, requesters
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need to compete for the limited EC resources so as to deploy their desired SC
services. As we know, auction is one of the most efficient and fair manners to deal
with resource competition issues, and thus, it is also adopted in this paper. There
are two challenges in the auction mechanism design. Firstly, the resources that
each requester applies for might be distributed among multiple ECs and must
be allocated together to support the corresponding SC service. For example, a
requester in Fig. 1 needs to deploy service s1 to collect the traffic congestion
information among three locations {d1, d2, d3} within a certain period of time.
Since it is meaningless to only collect partial data under the time constraint,
s1 is either successfully deployed on an EC bundle {e1, e2, e3} simultaneously or
fails. Thus, it actually involves a distributed combinatorial resource allocation
issue. Secondly, bids play an essential role in auctions, which generally imply
the valuation of SC services, requesters’ interests, and so on. Such information is
sensitive to each requester. If it is revealed, potential adversaries might utilize the
information to manipulate the auction, resulting in unfair resource competition.
Hence, we need to protect requesters’ bids from being revealed [10,13].

Although many combinatorial auction-based resource allocation mechanisms
have been proposed [12,15,16], most of them pay more attention to achieving
critical economic properties without taking bid privacy into account. So far,
only a handful of works take the privacy issues into consideration which usually
can be divided into two classes. One class is to utilize cryptography techniques
to encrypt bids [1,2,18–20]. This class of approaches can strongly protect bid
privacy but will lead to huge computation and communication overheads. The
other is to provide puzzle of bids using differential privacy [7–9,13,14]. However,
most of the solutions need to depend on a trusted third-party.

In response to these intractable problems, we propose a Differentially private
Resource Auction (DRA) in a DSC system. More specifically, we formalize each
round of resource allocation as a combinatorial auction process, which includes
a secure winning bid selection problem and a secure payment determination
problem. Since winning bid selection is NP-hard, we propose an approximation
algorithm. Faced with rivalry requesters and the semi-honest [6] third-party auc-
tioneer, we harness differential privacy to achieve bid protection. To the best of
our knowledge, this is the first work to exploit the bid-privacy preservation and
combinatorial resource allocation in a DSC system. Our multi-fold contributions
in this paper can be summarized as follows:

1. We first present a novel DSC system which can support a variety of location-
relative services demanded by different requesters. To address the resource
allocation problem in the DSC system, we design a Differentially private
Resource Auction (DRA) mechanism in which requesters can compete for
the resources of ECs so as to deploy their desired SC services.

2. We transform the competitive resource allocation problem with the indivisi-
ble requested resources into a secure combinatorial auction, including secure
winning bid selection and secure payment determination. And we prove that
the secure winning selection problem is NP-hard, so we propose a greedy
algorithm which can achieve an acceptable approximation ratio.
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3. To shield bid privacy from rivalry requesters and the untrusted third-party, we
design a bid confusion strategy in a differentially privacy-preserving manner.
The strategy allows each requester to upload confused bids without disclosing
sensitive information.

4. We prove that the DRA mechanism not only satisfies differential privacy,
but also guarantees γ-truthfulness, individual rationality and computational
efficiency. And then we conduct extensive experiments on a real trace to verify
the significant performances of the DRA mechanism.

The remainder of the paper is organized as follows. Section 2 introduces our
model and problem. We present the design of the DRA mechanism in Sect. 3. The
theoretical analysis is showcased in Sect. 4. In Sect. 5, we implement our mecha-
nism and evaluate its performances. Section 6 reviews related works. Finally, we
make a conclusion in Sect. 7.

2 Model and Problem Formulation

2.1 System Model

The model consists of three major entities: services, many ECs and the auction-
eer. Services proposed by requesters need resources from the ECs, denoted by
S = {s1, s2, ..., sn}. The ECs possess certain resources which are used to deploy
services, denoted as E = {e1, e2, ..., em}. Therefore, the services can be seemed
as buyers, and the ECs play the role of sellers. The auction results contain the
set of winning bids and the corresponding payments decided by the semi-honest
auctioneer, which are denoted by W and P , respectively.

For each EC ej , we use <Aj , cj> to denote the state information where Aj

denotes resource capacity and cj denotes the unit cost of resources. For each
service si, the state information is denoted by a triple <Di, Qi, bi>. Requesters
bid on a bundle instead of an individual EC. We assume that a requester who

Fig. 2. The DRA system model
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demands si is li-minded, which means that the requester can submit at most
li bundles Di = {Di,1,Di,2, ...,Di,li} along with a set of the unit bids bi =
{bi,1, bi,2, ..., bi,li} and a set of requested resources Qi = {Qi,1, Qi,2, ..., Qi,li},
where Di,k ⊆ E (∀k ∈ [1, li]) is a bundle and Qi,k is the set of the corresponding
requested resource quantities {qi,j |∀ej ∈ Di,k}. B denotes the set of all true bids.

Architecturally, the interactions among the various entities are depicted in
Fig. 2. Now we would like to shed some light on how to fulfill the process.

Step 1: According to the preference for different bundles, the requester who
demands si (∀i ∈ [1, n]) determines the unit bid for each preferred bundle, form-
ing a bundle-bid pair (Di,k, bi,k). For sake of preventing the bids from being
revealed during the transmission process, requesters encrypt bids with a pub-
lic key kp which is broadcasted by the auctioneer. Then, all requesters upload
encrypted bids to different ECs with anonymous communication technology [3].
It is noteworthy that each requester could upload different encrypted bids to
different ECs but one encrypted bid can be uploaded to at most one EC.
Step 2: Each EC will transfer all encrypted and disordered bids to the auctioneer.
Thanks to anonymous transmission, the auctioneer cannot know which bundle
a bid belongs to.
Step 3: The auctioneer decrypts all encrypted bids by using its private key ks.
Then, it can know the distribution of true bids and generate a differential privacy
confusion function based on exponential mechanism. Afterwards, the auctioneer
publishes the designed confusion function to requesters.
Step 4: After knowing the bid confusion function, the requester who demands
service si (∀i ∈ [1, n]) replaces a true bid bi,k with a confused bid ˜bi,k and reports
the bundle-confused bid pairs to the auctioneer.
Step 5: Receiving the confused bids from each requester, the auctioneer exe-
cutes the combinatorial auction algorithm to seek out the winning bids set and
determine the corresponding payments, and then publishes the auction results.
Step 6: Finally, the DSC system deploys the winning services on requested
ECs and recruits mobile users to perform their SC tasks, and then the related
requesters pay the corresponding rewards to the DSC system.

2.2 Problem Formulation

In this paper, the design objective is maximizing the social welfare on the premise
of guaranteeing bid privacy. Some basic definitions are as follows.

Definition 1. The Social Welfare (SW) is the total valuations of the winning
services minus the total costs.

Then, the DRA problem can be formulated as follows.

Definition 2 (The DRA Problem).
Maximize:

SW =
∑

bi,k∈W

∑

qi,j∈Qi,k

(vi,k − cj) ∗ qi,j (1)
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Subject to:
∑

i:(bi,k∈W∩qi,j∈Qi,k)
qi,j ≤ Aj ,∀ej ∈ E (2)

∑li

k=1
1{bi,k∈W} ≤ 1,∀si ∈ S (3)

where vi,k denotes the true unit valuation that the requester evaluates if it run
its demanded service si on bundle Di,k.

Here, Eq. 2 claims that the total requested resources of services cannot exceed
the capacity of each EC. Equation 3 indicates that a service can be only deployed
on a bundle at most.

In addition to protecting bid privacy, we are not willing to sacrifice some crit-
ical economic properties, such as truthfulness, individual rationality and com-
putational efficiency.

Definition 3 (Individual Rationality). Each requester with the winning bid
bi,k has a nonnegative utility, i.e., ui = vi,k − pi,k ≥ 0.

Definition 4 (γ-truthfulness [11]). An auction is γ-truthful in expectation iff
E[ui(b

′
i, b−i)] ≥ E[ui(bi, b−i)] − γ holds for any bid bi �= b

′
i and any bid profile

of other services b−i, where γ is a small positive constant.

Definition 5 (Computational Efficiency [20]). If an auction mechanism can
terminate in polynomial time, it has the property of computational efficiency.

2.3 Preliminary

Differential privacy, which provides privacy for statistics publishing with strong
theoretical guarantee, has emerged as the standard in data privacy. And the
exponential mechanism is often used to design privacy-preserving mechanisms.

Definition 6 (Differential Privacy [4]). A randomized mechanism M has ε-
differential privacy if for any two input sets D1 and D2 differing on at most one
element, and for any set of outcomes O ⊆ Range(M), we have Pr[M(D1) ∈
O] ≤ exp(ε) × Pr[M(D2) ∈ O]. ε > 0 is the privacy budget—the smaller ε, the
stricter protection and lower data availability.

Definition 7 (Exponential Mechanism). Given an outcome space O, an
input set A, a score function f and a small constant ε, a random mechanism
M satisfies ε-differential privacy, if M(A, o) = {o : |Pr[o ∈ O] ∝ exp( εf(A,o)

2Δf )},
where Δf is the sensitivity of the score function f(A, o).
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For ease of reference, we list the main notations of this paper in Table 1.

Table 1. Description of major notations

Variable Description

si, S The i-th service, the set of all services

ej , E The j-th EC, the set of all ECs

<Aj , cj> Resource capacity, the unit cost of resources

<Di, Qi, bi> The set of preferred bundles, the set of requested resources,
the set of the claimed unit bids

Di,k, Qi,k A bundle and the set of corresponding requested resource
quantities

qi,j Requested resource quantities for the EC ej

bi,k, vi,k The claimed bid and true valuation for bundle Di,k

˜bi,k The confused bid from bi,k

B, W, P The set of all bids, all winning bids, all payments

3 Design of the DRA Mechanism

3.1 Problem Hardness Analysis

Firstly, we analyze the complexity of the DRA problem.

Theorem 1. The DRA problem is NP-hard.

Proof. We consider a special case of the DRA problem without privacy protec-
tion, where there is only one EC and each requester submits a bid for the EC
at most. Then, the problem is reducible to determine a subset B

′ ⊆ B so as to
maximize

∑

bi,1∈B′ (vi,1 − c1) ∗ qi,1, while meeting
∑

i:bi,1∈B′ qi,1 ≤ A1. This is
equivalent to the 0–1 knapsack problem: maximize the total value

∑n
i=1 vi ∗ xi

while ensuring
∑n

i=1 wi ∗ xi ≤ C, xi ∈ {0, 1}. As we all know, the 0–1 knapsack
problem is NP-hard, so the special DRA problem is NP-hard. Certainly, the
general DRA problem with privacy protection is also NP-hard.

3.2 Basic Idea

We propose a full-fledged DRA mechanism in a DSC system which integrates the
combinatorial auction with exponential mechanism. The goal of our mechanism
design is to maximize the social welfare while achieving bid privacy, truthfulness,
individual rationality and computational efficiency.

To address the issue of bid privacy, we design a global bid confusion function
which confuses bids of requesters via exponential mechanism. Different from
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general designs for bid protection which need to depend on a trusted third-party,
our design provides a stronger privacy assurance to requesters. Specifically, we
make use of asymmetric encryption and anonymous communication technology
to obtain encrypted bids, which can protect true bids from the ECs and generate
the bid confusion function. Then, we use local differential privacy to shield bids
from the untrusted third-party.

Given the bundle-confused bid pairs, we model the competitive resource allo-
cation problem as a secure combinatorial auction, which includes secure winning
bid selection and secure payment determination. Without true bids, we take
the expectation of bids based on the bid confusion function as the input of the
auction algorithm. Since the DRA problem is NP-hard, we propose a greedy
algorithm to select winning bids to maximize the social welfare and design the
corresponding payments without violating individual rationality.

3.3 Bid Confusion

In our paper, we take the advantage of exponential mechanism to design a bid
confusion function, which maps a true bid b to a confused bid b̃. On the basis of
the Definition 7, we can define the confusion function as follows.

Pr(b̃|b) ∝ exp(
εf(b, b̃)
2Δf

) (4)

Here, Pr(b̃|b) is the probability of mapping the true bid b to the confused bid b̃.
f(b, b̃) is the score function measuring the closeness of the confused bid b̃ to the
true bid b. The higher the score is, the closer the two are.

In order to satisfy the properties of the score function, we resort to a mono-
tonically non-increasing function. In this end, the score function can be

f(b, b̃) = − ln(|b − b̃| + 1) (5)

It is desirable that the smaller the gap between a true bid b and a confused
bid b̃, the higher the probability Pr(b̃|b). At this time, the sensitivity of the score
function is ln(|bmax − bmin| + 1) = ln(Δb + 1), where bmax and bmin denote the
maximum value and minimum value in B, and Δb equals bmax − bmin.

After designing the score function, the confusion function is

Pr(b̃|b) ∝ exp(−ε ∗ ln(|b − b̃| + 1)
2 ln(Δb + 1)

) =
exp(− ε∗ln(|b−b̃|+1)

2 ln(Δb+1) )
∑

b′ ∈B exp(− ε∗ln(|b−b′ |+1)
2 ln(Δb+1) )

(6)

Finally, the auctioneer publishes the designed confusion function to
requesters. Each requester can utilize the confusion function and the true bid
bi,k to calculate the probability Pr(˜bi,k|bi,k), and then select a confused bid ˜bi,k

judiciously based on different perception about privacy and the urgent need level.
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3.4 Auction Mechanism Design

Secure Winning Bid Selection. The objective of our mechanism is maximiz-
ing the social welfare, but the paramount difficulty of selecting winners is that
the auctioneer only holds the confused bids without the ability of inferring the
true bids. Faced with the challenge, we employ the expected bids to approximate
the true bids. Given the confusion function and the confused bid ˜bi,k, we can
calculate the expected bid E[bi,k] as

Algorithm 1. Secure Winning Bid Selection
Require: S, E, B
Ensure: W
1: Initialize G = ∅, W = ∅;
2: //Compute Grade:
3: for si ∈ S do
4: Initialize Gi = ∅;
5: for Di,k ∈ Di do
6: Initialize gi,k = 0, count = 0;
7: for ej ∈ Di,k do
8: gi,k = gi,k + cj , count = count + 1;
9: end for
10: gi,k = E[bi,k] − gi,k

count
; Gi = Gi + {gi,k};

11: end for
12: G = G + {Gi};
13: end for
14: //Greedy Selection:
15: while S �= ∅ and E �= ∅ and B �= ∅ do
16: Record the index with the maximum grade gi,k as (i∗, k∗);
17: Initialize flag = 1;
18: for qi∗,j ∈ Qi∗,k∗ do
19: if qi∗,j > Aj then
20: flag = 0 and break;
21: end if
22: end for
23: if flag = 1 then
24: for qi∗,j ∈ Qi∗,k∗ do
25: Aj = Aj − qi∗,j;
26: end for
27: W = W + {E[bi∗,k∗ ]}; S = S − {si∗}; G = G − {Gi∗};
28: else
29: Gi = Gi − {gi∗,k∗} and Update G;
30: if Gi = ∅ then
31: S = S − {si∗};
32: end if
33: end if
34: end while
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E[bi,k] =

∑

bi,k∈B Pr(˜bi,k|bi,k)Pr(bi,k)Pre(bi,k) ∗ bi,k
∑

bi,k∈B Pr(˜bi,k|bi,k)Pr(bi,k)Pre(bi,k)
(7)

where Pr(bi,k) = num(bi,k)/|B| means the probability of bi,k in the set B. The
function num(bi,k) is used for counting the frequency of bi,k in the set B and | · |
means the cardinality of the set. Let Pre(bi,k) denote the probability that a true
bid bi,k exists in the bundle-bid pairs for bundle Di,k, which can be calculated
as

Pre(bi,k) =

∑

˜bi,k∈Bk
Pr(˜bi,k|bi,k)

∑

bi,k∈B

∑

˜bi,k∈Bk
Pr(˜bi,k|bi,k)

(8)

where Bk denotes the set of the confused bids of the requesters who desire to
purchase resources from the bundle Di,k.

Based on the above policy, the process of selecting the winning bids can be
divided into the following steps.

Step 1: (Compute Grade) Firstly, We give a grade vector for each service. Grad-
ing rule is as the following formula. gi,k denotes the grade for the bundle Di,k.

Gi = {gi,k = E[bi,k] −
∑

ej∈Di,k
cj

|Di,k| |∀k ∈ [1, li]},∀si ∈ S (9)

Step 2: (Greedy Algorithm) Due to the NP-hardness of the DRA problem, we
design a greedy algorithm to determine the winning bids. More concretely, we
greedily select an expected bid with the largest grade in each round. The detail
is illustrated in Algorithm1. In the first part, we compute a grade vector for
each service in Lines 1–13. In the second part, we design a greedy winning bid
selection strategy in Lines 14–34. In each round, we select the bundle with largest
grade and record the index as (i∗, k∗) in Line 16. Next, we need to judge whether
the selected bundle is eligible. If eligible, we hit a winning bid and update the
related sets in Lines 23–27; otherwise, we delete the bundle grade in Lines 28–33.

Secure Payment Determination. Although the true bundle-bid pairs are
privacy-preserving, the true bids must fall within the interval between bmin and
bmax. For sake of individual rationality, we design the payment of each requester
who demands the corresponding winning service as follows.

pi,k = min{|E[bi,k] − (bmax − bmin)|, bmin} (10)

4 Theoretical Analysis

In this section, we prove how DRA achieves the desired design objectives: differ-
ential privacy, individual rationality, γ-truthfulness and computational efficiency.
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Theorem 2. The DRA mechanism satisfies ε-differential privacy.

Proof. To facilitate the proof, we assume that there are two different true bids
b1 and b2, and they are both obfuscated to b̃. The probability of mapping the
bid b1 (resp. b2) to the confused bid b̃ is Pr(b̃|b1) (resp. Pr(b̃|b2)). Then, we can
derive an exponential upper-bound for Pr(b̃|b1)/Pr(b̃|b2). The specific derivation
process is as follows.

Pr(b̃|b1)
Pr(b̃|b2)

=

exp(− ε∗ln(|b1−b̃|+1)
2 ln(Δb+1) )

∑

b
′ ∈B

exp(− ε∗ln(|b1−b
′ |+1)

2 ln(Δb+1) )

exp(− ε∗ln(|b2−b̃|+1)
2 ln(Δb+1) )

∑

b
′ ∈B

exp(− ε∗ln(|b2−b
′ |+1)

2 ln(Δb+1) )

=
exp(− ε∗ln(|b1−b̃|+1)

2 ln(Δb+1) )

exp(− ε∗ln(|b2−b̃|+1)
2 ln(Δb+1) )

∗
∑

b′ ∈B exp(− ε∗ln(|b2−b
′ |+1)

2 ln(Δb+1) )
∑

b′ ∈B exp(− ε∗ln(|b1−b′ |+1)
2 ln(Δb+1) )

(11)

As for the first half of the expression, denoted by left, we have

left =
exp(− ε∗ln(|b1−b̃|+1)

2 ln(Δb+1) )

exp(− ε∗ln(|b2−b̃|+1)
2 ln(Δb+1) )

= exp(ε ∗ ln(|b2 − b̃| + 1) − ln(|b1 − b̃| + 1)
2 ln(Δb + 1)

)

= exp(ε ∗
ln |b2−b̃|+1

|b1−b̃|+1

2 ln(Δb + 1)
) ≤ exp(ε ∗ ln(Δb + 1)

2 ln(Δb + 1)
) = exp(

ε

2
) (12)

Then, the last half of the expression is denoted by right. Since 1
Δb+1 ≤

|b2−b̃|+1

|b1−b̃|+1
≤ Δb + 1, we have ln 1

Δb+1 ≤ ln |b2−b̃|+1

|b1−b̃|+1
≤ ln (Δb + 1). Thus, we have

right =

∑

b′ ∈B exp(− ε∗ln(|b2−b
′ |+1)

2 ln(Δb+1) )
∑

b′ ∈B exp(− ε∗ln(|b1−b′ |+1)
2 ln(Δb+1) )

≤
∑

b′ ∈B exp(− ε∗ln(|b2−b
′ |+1)

2 ln(Δb+1) )
∑

b′ ∈B exp( ε∗[− ln(|b2−b′ |+1)−ln(Δb+1)]
2 ln(Δb+1) )

=

∑

b′ ∈B exp(− ε∗ln(|b2−b
′ |+1)

2 ln(Δb+1) )
∑

b′ ∈B exp(− ε∗ln(|b2−b′ |+1)
2 ln(Δb+1) ) ∗ exp(− ε

2 )
= exp(

ε

2
) (13)

Finally, based on the above induction of left and right, we have

Pr(b̃|b1)/Pr(b̃|b2) = left ∗ right ≤ exp(
ε

2
) ∗ exp(

ε

2
) = exp(ε) (14)

According to Definition 6, the theorem holds.

Theorem 3. The DRA mechanism meets the condition of individual rationality.

Proof. We consider an arbitrary confused bid ˜bi,k and calculate the correspond-
ing expected bid E[bi,k] according to the Eq. 7. Then, the expected bid would
encounter two conditions: E[bi,k] ∈ W and E[bi,k] /∈ W . If E[bi,k] /∈ W ,
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the payment pi,k = 0. Otherwise, the requester who demands si should pay
pi,k = min{|E[bi,k] − (bmax − bmin)|, bmin}. Obviously, there is pi,k ≤ bmin.
Hence, given that vi,k ∈ [bmin, bmax], the utility of the requester is vi,k −pi,k ≥ 0.
According to Definition 3, the theorem holds.

Theorem 4. The DRA mechanism satisfies 2εΔb-truthful.

Proof. Let b1 and b2 be two different true bids for the same bundle Di,k of
service si. Using the Theorem 2, we have Pr(b̃|b1) ≤ exp(ε)Pr(b̃|b2). Therefore,
the utility expectation of the requester who demands si is

E[ui(b1)] =
∑

b̃∈B
[ui(b̃)Pr(b̃|b1)]

≤
∑

b̃∈B
[ui(b̃)exp(ε)Pr(b̃|b2)] = exp(ε)E[ui(b2)] (15)

Due to ui = vi,k − pi,k ≤ bmax − (E[bi,k] − (bmax − bmin)) = (bmax − bmin)
+ (bmax − E[bi,k]) ≤ 2Δb, we have

E[ui(b2)] ≥ exp(−ε) ∗ E[ui(b1)] ≥ (1 − ε) ∗ E[ui(b1)]
≥ E[ui(b1)] − εE[ui(b1)] ≥ E[ui(b1)] − 2εΔb (16)

According to Definition 4, we have completed the proof.

Theorem 5. The DRA mechanism is computationally efficient.

Proof. The DRA mechanism mainly is composed by the bid confusion and the
secure winning bid selection. For the former, each requester can bid for at most
lmax = max{li|i ∈ [1, n]} bundles for each service, and there are at most n
services in a certain period of time, so the computational overhead is O(nlmax).
Next, the computational overhead of Algorithm1 is O(mn2l2max). Based on Def-
inition 5, the DRA mechanism is computationally efficient.

5 Evaluations

5.1 Algorithms in Comparison

Since DRA is the first solution for the combinatorial auction and bid protection
in a DSC system against the untrusted third-party, we compare it with the
state-of-the-art bid protection algorithms with a trustworthy third-party [14]
[8]. However, the model and problems in these works are different from ours so
that we cannot compare them directly. Therefore, we tailor the basic idea in these
algorithms for our model and carefully design three secure resource allocation
algorithms for comparison: LIN-M [14], LOG-M [14] and DPS [8].
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5.2 Simulation Setup

We artificially generate some ECs in the simulations, each of which has a limited
resource capacity and a unit cost. The resource capacity and the unit cost are
uniformly distributed over [10, 20] and [1, 5], respectively. For simplicity, we
assume that bundles are determined, but the generation of bundles in each round
of simulations is random. Then, we generate some services demanded by different
requesters, and these requesters can bid for determined bundles. The bids and
requested resource quantities are generated randomly from [10, 20] and [1, 5],
respectively. The number of ECs is selected from 20 to 60 and the number of
services ranges from 50 to 250. The differential privacy budget ranges from 0.1 to
1.1 and we set ε = 0.5 as default. Moreover, all simulation parameters are listed
in Table 2, where default values are in bold fonts. All experimental results are
averaged on 100 random repetitions under the same setting.

We use three metrics to evaluate the performance of our mechanism:

– Social Welfare: as defined in Sect. 2.
– Total Payment: the payments paid by the requesters to the DSC system.
– Privacy Leakage: we use the Kullback-Leibler divergence [14] to evaluate the

privacy leakage of DRA. Let b and b̃ be the true bid and the confused bid,
respectively. Pr(b = b̃) means the probability when b equals b̃. In this paper,
the privacy leakage is defined as PL = 1

∑

b∈B Pre(b) ln(
1

P r(b=b̃)
)
.

Table 2. Evaluation setting

Parameter name Values

Number of services 50, 100, 150, 200, 250

Number of edge clouds 20, 30, 40, 50, 60

Privacy budget 0.1, 0.3, 0.5, 0.7, 0.9, 1.1

Range of resource capacity and the unit cost [10, 20], [1, 5]

Range of requested resource quantity and the unit bid [1, 5], [10, 20]

5.3 Simulation Results

Evaluation of Social Welfare. We first compare the social welfare of DRA
with that of LIN-M, LOG-M and DPS, and show the results in Fig. 3. Note
that DPS can be considered optimal when selecting winners. The impact of
the number of services on the social welfare when there are 20 ECs is shown in
Fig. 3(a). We can see that the social welfare of all mechanisms increases slightly as
the number of services grows. This is because with more services, the auctioneer
may select more suitable services to allocate resources. We also observe that the
social welfare of DPS is lower than those of DRA, LIN-M and LOG-M. This
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is because, DPS has a trusted third-party who knows all true bids so that it
can select services with the highest grade. Moreover, our mechanism has higher
social welfare compared to the LIN-M and LOG-M. This is because although our
mechanism confuses true bids, we select winners by their expected bids rather
than select them randomly with a certain probability in the LIN-M and LOG-M.

Figure 3(b) depicts the performance of four mechanisms on the social welfare
against the number of ECs when there are 100 services. We find that the social
welfare of four mechanisms increases when the number of ECs grows. The reason
is that with more ECs, each requester will have more choices of the ECs for their
desired services, and then the auctioneer can select more services as winners. Our
mechanism has higher social welfare compared to the LIN-M and LOG-M with
the same reason above.

Figure 3(c) reports the social welfare obtained by four mechanisms with dif-
ferent privacy budget when there are 20 ECs and 50 services. It is shown that
there is a slight increase in the social welfare, because the larger the privacy bud-
get is, the worse the differential privacy is achieved. But the influence is barely
perceptible.

Fig. 3. Evaluation of Social Welfare. (a) Impact of the number of services. (b) Impact
of the number of ECs. (c) Impact of privacy budget.

Evaluation of Total Payment. In Fig. 4(a), Fig. 4(b) and Fig. 4(c), we plot
the impact of the number of services, the number of ECs and privacy budget
on the total payment of four mechanisms, respectively. The results show that
the total payment follows the same pattern as the social welfare. The reasons
are similar to that discussed for Fig. 3. We also observe that the total payment
of DRA is lower than that of LIN-M, LOG-M and DPS. This is because each
payment of DRA is less than bmin to guarantee individual rationality. With less
payment, requesters are more willing to deploy services on the DSC system,
which will finally bring a lot of advantages to the DSC system.

Evaluation of Privacy Leakage. Figure 5 illustrates the impact of privacy
budget on the privacy leakage. Along with the increase of privacy budget, the
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privacy leakage of DRA increases. This is because when the privacy budget is
smaller, the probability of obfuscating any bid to other is higher, and then bid
privacy is less likely to be compromised. Note that the privacy leakage values of
LIN-M, LOG-M and DPS are positive infinity, because these mechanisms assume
that there exists a trusted third-party and all bidders would submit true bids
to it.

Evaluation of Computational Efficiency. Finally, we verify the computa-
tional efficiency of the DRA mechanism. We find that the running time of the
DRA mechanism increases slowly when the number of services and ECs increase,
as shown in Fig. 6. When the number of ECs is 60 and the number of services is
250, the execution time of DRA is less than 6s, which is much smaller than the
auction cycle. This means that the DRA can work efficiently in real applications.
These simulation results remain consistent with our theoretical analysis.

6 Related Work

Auction-Based Resource Allocation Mechanisms: Auction, a popular
trading form that can efficiently allocate resources, has been widely used in
various systems. Shi et al. [15] presented the first online combinatorial auc-
tion in which VMs of heterogeneous types are allocated in multiple consecutive
time-slots. [12] proposed a truthful combinatorial double auction mechanism for
allocation and pricing of computing resources in cloud, which can achieve a series
of excellent properties. Our work differs from the above studies in that we take
into account both competition and security requirements.

Privacy-Preserving Mechanisms: As for the security of bid information,
some efforts have been made to protect the bid privacy with few methods such
as cryptography techniques and differential privacy. Xiao et al. [20] proposed a
secure reverse auction protocol for a novel spatial crowdsourcing, which protects
the quotations of workers using homomorphic encryption. Although providing

Fig. 4. Evaluation of Total Payment. (a) Impact of the number of services. (b) Impact
of the number of ECs. (c) Impact of privacy budget.
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Fig. 5. Evaluation of Privacy Leakage Fig. 6. Evaluation of Computational
Efficiency

good performance in privacy preservation, the mechanisms like [1,2,18,19] are
based on cryptography techniques and may bring about a large quantity of
calculations. To bypass the drawback, the research [14] designed two frameworks
for privacy-preserving auction-based incentive mechanisms based on differential
privacy. However, it relies on a trusted platform so that only the bid information
would not be revealed to other bidders. Hence, once the platform is semi-honest
or vulnerable, the bid information would be leaked with a great probability.

7 Conclusion

In this paper, we study the resource allocation problem in a DSC system where
requesters need to compete for the limited EC resources so as to deploy their
desired SC services. We have formalized this competitive problem with the indi-
visible requested resources as a secure combinatorial auction, and we have pro-
posed a mechanism named DRA to solve the problem. To shield bid privacy
from rivalry requesters and the untrusted third-party, a bid confusion strat-
egy based on differential privacy has been proposed to allow each requester to
upload confused bids without disclosing sensitive information. We have proved
that DRA ensures the properties of ε-differential bid privacy, γ-truthfulness,
individual rationality and computational efficiency. Extensive simulations verify
the performance of the DRA mechanism.
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Abstract. Nowadays, spatial search services bring unprecedented con-
venience in people’s daily life (e.g., location-based services, social net-
working) and are becoming more and more popular. To protect the pri-
vacy of outsourcing data, several schemes have been proposed to achieve
secure search over encrypted spatial databases. However, most existing
schemes cannot support dynamic updates, which seriously hinders the
practical application of spatial databases. To address this issue, in this
paper, we propose two novel Spatial Dynamic Searchable Encryption
(SDSE) constructions for outsourcing spatial databases, which achieve
various security guarantees. First, we present a basic construction sup-
porting dynamic update with sub-linear search complexity based on the
order-revealing encryption and Quadtree. Then, to ensure that updates
do not reveal any information underlying the prior modifications beyond
some explicit leakage (i.e., forward security), we further give an improved
construction according to constrained pseudo-random functions. Both
the nearest neighbor search and geometric search are supported in our
constructions, which meet almost all spatial search needs. The experi-
ments using real-world dataset demonstrate that our constructions are
efficient and feasible in practice.

Keywords: Searchable encryption · Spatial search · Dynamic
updates · Forward security.

1 Introduction

With the increasing popularity of location-based services and social networking,
spatial search has drawn great interest from both industrial and academic fields
in recent years. Nearest Neighbor (NN) search and geometric search are two
major spatial search queries in practice. For example, a user can find his/her
closest friend by running NN search over a location check-in dataset in a social
network. To find all the stores in a certain geometric area, a user can run a
geometric search over a spatial database. For cost savings and great flexibility,
more and more data owners are motivated to outsource their spatial search ser-
vices to the cloud. However, directly outsourcing such services to an untrusted
c© Springer Nature Switzerland AG 2020
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cloud may raise serious privacy concerns [27]. Searchable Symmetric Encryp-
tion (SSE) [5,17,22,23], which allows clients to outsource databases to a server
and directly search over encrypted data, is an ideal primitive to solve the above
problem. With SSE, a client can obtain correct search results from a honest-
but-curious server without revealing queries or data stored on it. In addition,
the database has to be updated frequently to cope with practical application
requirements. In the traditional SSE schemes, the client has to re-upload all
the data to update the database, which incurs huge communication and com-
putational overhead. To address this issue, Dynamic SSE (DSSE) [10] schemes
were proposed to allow the client to update data without losing data confiden-
tiality and searchability. However, the attacker can reveal the content of a past
query by inserting a few new documents since the server can learn that the
newly inserted document matches a previous search query [28]. To resist such
attack, some forward security schemes [2,3] were proposed, which do not leak any
information about previous search queries and new document when inserting a
new document. Unfortunately, existing DSSE schemes are mainly focus on key-
word database, most spatial search schemes, including NN search [6,19,25] and
geometric search [18,20,21,26], cannot support dynamic updates, which greatly
limits the application of spatial data. An ideal DSSE scheme for spatial data
should meet the following requirements: (1) minimizing the number of commu-
nications, and it is best to achieve a single-roundtrip; (2) search complexity
should be sub-linear to cope with large-scale data; (3) ensuring both efficiency
and security. This means that heavy cryptographic primitives such as homomor-
phic encryption cannot be used. Finally, supporting dynamic updates should not
incur privacy leakage, that is, to achieve forward security.

1.1 Our Contributions

In this paper, we propose two practical Spatial Dynamic Searchable Encryption
(SDSE) constructions, which offer efficient spatial search and dynamic updates
over encrypted databases. The main contributions of this paper are as follows.

1. After introducing formal definitions of SDSE, we propose Secure Quadtree
(SQ-tree), a basic SDSE construction based on the Order-Revealing Encryp-
tion (ORE) [12] and Quadtree [7]. Using SQ-tree, a client can dynamically
update an encrypted spatial database stored on a server and perform both
NN search and geometric search over it with sub-linear search complexity.

2. We further improve the SQ-tree by leveraging the Constrained Pseudo-
Random Functions (CPRF) [1,11] to construct a forward-secure SDSE,
namely SQ-treefw. In SQ-treefw, when a new data object is inserted, the
encrypted data object is salted with CPRF and directly inserted into a cache
database instead of the SQ-tree. The salt of the newly inserted data will be
taken off during the next search process, and the data is inserted into the
SQ-tree after the search to maintain sub-liner search complexity.
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3. We implement our proposed constructions in C/C++ and evaluate its per-
formance over a real-world dataset. The experimental results show that our
constructions are practical, which only requires less than 50 ms among 1
million data objects.

Table 1. Comparison with prior works. “FS” stands for forward security, “Geo” stands
for geometric search. N is the dataset size, M is the maximum number of children in
the deepest non-leaf node, nnew is the number of newly inserted data objects. |v| is
size of a search vector, |x| is the query range of one-dimensional data in dataset, τ is
the number of instances the server needs to evaluate, τ ′ is the size of the link list that
the update applies to.

Schemes Round-trip Search cost Query size Update cost FS Search method

ASPE [25] 1 O(N) O(1) – – NN

[9] O(logM N) O(M) + O(M logM N) O(1) – – NN

[6] O(N) O(N) O(1) – – NN

NNSE [19] 2 O(M) + O(M logM N) O(1) – – NN

FastGeo [18] 1 O(|v| · τ) O(|x|) O(|v| · τ ′) � Geo

SQ-tree 2 or 1 O(M) + O(4 log4 N) O(1) O(4 log4 N) � NN or Geo

SQ-treefw 2 or 1 O(M + nnew) + O(4 log4 N) O(1) O(1) � NN or Geo

To the best of our knowledge, our constructions are the first to achieve both
dynamic update and forward security on the encrypted spatial database. A com-
parison of our constructions with prior work is shown in Table 1.

1.2 Related Work

Dynamic Symmetric Searchable Encryption. At the first time, Song
et al. [17] proposed the notion of Symmetric Searchable Encryption (SSE). Fol-
lowing this work, Curtmola et al. [5] introduced the idea of leakage to develop the
security model of SSE and designed the first reversed-index-based SSE construc-
tion. However, these two schemes still cannot support dynamic deployments.
Hence, Kamara et al. [10] presented a formal security definition for Dynamic
SSE (DSSE) that supports data addition and deletion, and described a DSSE
based on the inverted index. With trade-offs between security and practicality,
almost all of the practical DSSE schemes leak information about documents.
Recent researches on the real-world impact of this leakage, however, show that
even small leakage can be used to break the privacy of search queries [15,28]. In
particular, the file-injection attacks proposed by Zhang et al. [28] pointed that it
is possible to reveal the contents of past search queries of DSSE schemes with a
few injections of documents. This attack underlines the need for DSSE schemes
with forward security. Therefore, to resist the above attack exploiting leakage in
dynamic operations, some schemes [2,3] have been proposed to support forward-
secure addition. Unfortunately, almost all of the above schemes only consider the
textual keyword database rather than the spatial database.
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Secure Spatial Data Search. Most existing works regarding spatial data
focus on rich query capabilities, including NN search [6,9,19,25] and geomet-
ric search [18,20,26]. Specifically, Wong et al. [25] first proposed a secure k-
NN scheme by introducing Asymmetric Scalar Product Preserving Encryption
(ASPE), but their scheme is too weak to resist even Ciphertext-only Attack
(CoA) [13]. Hu et al. [9] designed a new scheme using R-tree and private homo-
morphism, which has sub-linear search complexity. Unfortunately, using their
scheme, the client needs to store a local index, and one-round communica-
tion has to be performed per layer of the tree. Elmehdwi et al. [6] presented
a scheme for secure k-NN search based on the assumption of two non-colluding
server model, while this scheme only achieves linear search complexity. Besides,
the heavy cryptographic and blinding operations between the two servers in [6]
significantly degrade the entire search process. To achieve practical secure NN
search, Wang et al. [19] introduced Order-Preserving Encryption (OPE) [16]
and R-tree. However, the ciphertexts of OPE leaks the order of the underly-
ingnplaintexts, which makes it weak against inference attack [14], and leakage-
abuse attack [8]. Recently, Wang et al. [24] recovered most of OPE’s ciphertext
through file-injection attacks and pointed out that only forward security OPE
schemes can resist such attacks. In addition, geometric search on encrypted spa-
tial database [18,20,26] has also attracted widespread interest. To support arbi-
trary geometric range query, Wang et al. [20] presented a model actualizing range
query for any geometric drawing over encrypted cloud data. Then, to improve
the efficiency of [20] and support update, they designed another geometric range
query method [18] using hash table and a set of link lists to construct two-
level search structure. Recently, Xu et al. [26] achieve geometer range queries
according to the polynomial fitting technique and the ASPE, and improve the
search efficiency by introducing OPE-based R-tree. However, most of the above
schemes cannot support dynamic updates, which greatly reduces the usability
of the encrypted spatial database.

2 Perliminaries

2.1 Order-Revealing Encryption

In order to overcome the weakness of Order-Preserving Encryption (OPE) [16]
which directly exposes the order from the ciphertext, Order-Revealing Encryp-
tion (ORE) [12] was proposed. ORE only allows ciphertext with corresponding
tokens to compare their numerical order, which significantly reduces the dis-
closed knowledge. In this paper, we use a state-of-the-art ORE [12] scheme with
left/right ciphertexts. Using this ORE, each plaintext m is encrypted to left
ciphertext ctL(m) and right ciphertxet ctR(m). For two plaintexts m1,m2, only
the (ctL(m1), ctR(m2)) or (ctR(m1), ctL(m2)) can be used to compare. If only
the right ciphertexts of two messages are exposed to the server or an adver-
sary, they are semantically secure [12]. The ORE scheme is a tuple of four
algorithms (ORE.Setup,ORE.EncL,ORE.EncR,ORE.Compare) defined over a well-
ordered domain D with the following properties:



750 X. Wang et al.

– ORE.Setup(1λ) → sk: Given a security parameter λ, this algorithm outputs a
secret key sk.

– ORE.EncL(sk,m) → ctL(m): Given a secret key sk and a message m ∈ D, this
algorithm outputs a left ciphertext ctL(m).

– ORE.EncR(sk,m) → ctR(m): Given a secret key sk and a message m ∈ D, this
algorithm outputs a right ciphertext ctR(m).

– ORE.Compare(ctL(m1), ctR(m2)) → b: Given two ciphertext ctL(m1), ctR(m2),
this algorithm outputs a bit b ∈ {−1, 0, 1}, where b ← 1 if m1 < m2; b ← −1
if m1 > m2; otherwise, b ← 0.

2.2 Trapdoor Permutations and Constrained Pseudorandom
Functions

A TrapDoor Permutation (TDP) [2] π is a one-way permutation over a domain
X such that, it is easy to compute π for any value of the domain with the
public key TPK, but the inverse π−1 for any value of a co-domain Y only can be
calculated with the secret key TSK (i.e., π−1

TSK(πTPK(x)) → x, πTPK(π−1
TSK(x)) →

x). A Constrained PRF (CPRF) [1,11], which is associated with a family of
boolean circuits C, is a TDP. In CPRF, the master key holder who has secret
key K is able to produce a constrained key KC corresponding to a circuit C ∈ C.
The constrained key KC allows evaluation of the PRF only on inputs x for which
C(x) = 1. A CPRF F̃ : {0, 1}λ × X → Y consists two algorithms (F̃ .Constrain,
F̃ .Eval) are defined as:

– F̃ .Constrain(K,C): Given a key K ∈ {0, 1}λ and a circuit C ∈ C, this
algorithm outputs a constrained key KC .

– F̃ .Eval(KC , x): Given a constrained key KC for circuit C, and x ∈ X , this
algorithm outputs y ∈ Y.

Let F̃ .Eval((TSK, ST0), c) = π−c
TSK(ST0), where π−c is the c-fold iteration

of π−1. We identify the circuit constraining to the range {0, ..., n} with the
integer n. The constrain algorithm will be F̃ .Constrain((TSK, ST0), n) =
(TPK, π−n

TSK(ST0), n) = (TPK, STn, n). The constrained evaluation function is
F̃ .Eval((TPK, STn, n), c) = πn−c

TPK(STc). In the rest of this paper, we write
F̃ .Eval(KC , x) as F̃ (KC , x).

3 Spatial Dynamic Searchable Encryption (SDSE)

In SDSE, a client outsources a spatial database DB to a server and then performs
search queries over it. Each data object p or search query q is a point of data
space {0, 1}d

T , where d is the dimensions of data objects and T is the message
space of each dimension. The database model in SDSE is a collection of (spatial
data, document index) pairs denoted as DB = (pi, indi)N

i=1, where pi ∈ {0, 1}d
T ,

indi ∈ {0, 1}λ, and N is the size of database. A SDSE scheme Σ contains one
algorithms and three protocols between a client and a server as follows:
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– (KΣ , σ,EDB) ← Setup(1λ,DB): Given a security parameter λ and a spatial
database DB, this algorithms outputs the secret keys set KΣ , the client’s state
σ, and the encrypted database EDB.

– R ← GeoSearch(KΣ , Q, σ;EDB): The client inputs (KΣ , Q, σ), where Q is a
geometric query, and the server inputs EDB to match results inside Q. After
the protocol, the results R is returned to the client.

– R ← NNSearch(KΣ , q, σ;EDB): The client inputs (KΣ , q, σ), where q is a
location point, and the server inputs EDB to match the nearest neighbor of
q. After the protocol, the results R is returned to the client.

– Update(KΣ , σ, op, in;EDB): The client inputs (KΣ , σ, op,in), where in is a set
of spatial/document pairs and op ∈ {add,del} denotes a addition or deletion
operations, and server inputs EDB. After the protocol, the input in is inserted
into or deleted from the EDB.

Security. In SDSE scheme, an adversary should not learn any information
about the content of the spatial database and the queries beyond some explicit
leakage. Following the security definition of the DSSE [10], the notion of SDSE
security is also captured using the real-world versus ideal-world game. A leakage
function L = (LStp,LSrch,LUpdt) is used to capture the information learned by the
adversary and its components express the information leaked by Setup, Search1

and Update, respectively. The adversary’s task is to distinguish between the
experiments Real and Ideal.

Definition 1 (Adaptive Security of SDSE). Let L be a leakage function, a
SDSE scheme Σ = (Setup,Search,Update) is said to be Σ-adaptively-secure, if
for all PPT adversary A that make a polynomial q(λ) of quires, there exists an
efficient simulator S such that:

|Pr[Real
Σ
A(λ) = 1] − Pr[IdealΣ

A,S,L(λ) = 1]| ≤ negl(λ),

where Real
Σ
A and Ideal

Σ
A,S,Lare defined as:

– Real
Σ
A: A chooses a database DB, EDB ← Setup(1λ,DB). After that, A adap-

tively performs Search or Update queries, and receives transcript generated
from Search or Update. Finally, A observes real transcripts of all operations
and outputs a bit b.

– Ideal
Σ
A,S,L: A chooses a database DB, and receives EDB generated by the sim-

ulator S(LStp(DB)). Then A adaptively performs Search or Update queries,
and gets a transcript generated from S(LSrch) or S(LUpdt). Eventually, A
observes all simulated transcripts and outputs a bit b.

Forward security of DSSE was firstly defined in [4], and then formalized by Bost
et al. [2]. Following their work, the forward security of SDSE can be defined as:

1 Here, Search denotes both NNSearch and GeoSearch.
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Fig. 1. Examples of search over Quadtree and SQ-tree

Definition 2 (Forward Security of SDSE). Let LUpdt be a update leakage
function defined as:

LUpdt(op,in) = L′(op,(ind,c)),

where c is the counter of updated document index ind, L′ is a stateless function
An L-adaptively secure SDSE scheme is forward secure.

4 Our Constructions

In this section, we first introduce a basic SDSE construction, Secure-Quadtree
(SQ-tree), which is constructed on the basis of ORE and Quadtree. Then,
we improve the SQ-tree to achieve forward security. For the convenience of
description, in the rest of this paper we assume that the spatial data in DB is
2-dimensional. Note that our constructions can be extended to support any
dimensions.

4.1 SQ-Tree: Basic SDSE Construction

Overview. Quadtree [7] is a dynamic tree construct which can improve the
search efficiency of spatial queries. In a Quadtree, each deepest none-leaf node
has a maximum capacity and the other none-leaf nodes have exactly four chil-
dren. When the maximum capacity is reached and a new object should be
inserted, the deepest none-leaf node splits. Figure 2(a) is an example Quadtree
contains 10 data objects, where maximum capacity M = 2. To find the nearest
neighbor of a query point q from the Quadtree, the server: (1) finds the deep-
est none-leaf node contains q; (2) takes the closest object (i.e., p2) to q among
all the data objects contained in the node; (3) generates a temporary circle,
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where the center is q and the radius is the distance between the q and the clos-
est objects (i.e., p2); (4) finds points inside the circle, and obtains the closest
objects (i.e., p7). The original nearest neighbor search in a Quadtree requires
both order compare operation (e.g., whether a point is inside a rectangle) and
compute-then-compare operations (e.g., whether a point is inside a circle and
whether a circle intersects with a rectangle). However, there are currently no
efficient encryption primitives that can satisfy both requirements at the same
time. The ORE schemes can only support order compare operation and the
homomorphic encryption based schemes are computation and communication
expensive. Therefore, we follow the idea of [19] which replace the temporary cir-
cle with a circumscribed rectangle of the temporary circle, so that only the ORE
is needed to search over the encrypted data. As shown in Fig. 2(b), after the
first-round search, the server returns all data objects contained in the same node
of q, and the client submits a new query that is a circumscribed rectangle of the
temporary circle as described above. Then, the server returns all data objects
contained in the circumscribed rectangle so that the client can find the nearest
neighbor of q. In addition, we can achieve geometric search by translating the
geometric to rectangles as shown in Fig. 2(c), the geometric is replaced by a
rectangle so that the client can return all data objects inside the geometric.

Before describing the SQ-tree in detail, we first present two basic algo-
rithms used in search process, namely InRec and Overlap. Given an encrypted
query point ctL(q) = {ctL(x), ctL(y)} and an encrypted rectangle ctR(R∗) =
{ctR(xmin), ctR(xmax), ctR(ymin), ctR(ymax)}, InRec is used to determine whether
q is inside of R∗, where

InRec(ctL(q), ctR(R∗)) =

{
1 ← q inside of R∗

0 ← q outside of R∗ .

Given two encrypted rectangles ctL(R∗
1), ctR(R∗

2), Overlap is used to determine
the overlap relationship of these two rectangles, where

Overlap(ctL(R∗
1), ctR(R∗

2)) =

⎧⎪⎨
⎪⎩

0 ← R∗
1 outside of R∗

2

1 ← R∗
1 inside of R∗

2

2 ← R∗
1 overlap with R∗

2

.

Since the order of the messages can be revealed from their ORE ciphertexts, we
can use the same method as used in plaintext to achieve InRec and Overlap. If
xmax ≥ x ≥ xmin and ymax ≥ y ≥ ymin, then q is inside of R∗; otherwise, q is
outside of R∗. Similarly, if all points of R∗

1 are inside of R∗
2, R∗

1 is inside of R∗
2; if

all points of R∗
1 are outside of R∗

2, R∗
1 is outside of R∗

2; otherwise, R∗
1 is overlap

with R∗
2. Note that in the above algorithms the left and right ciphertexts are

interchangeable, as long as the query and data are encrypted in different ways.

Details of the SQ-Tree. Our SQ-Tree contains one algorithm Setup and three
protocols NNSearch, GeoSearch, Update between a client and a server such that:
Setup(1λ,DB) → (KΣ , σ,EDB): Given a security parameter λ and a database
DB, the client generates a secret key ski ← ORE.Setup(1λ) for each dimen-
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Algorithm 1: GeoSearch(KΣ , σ,Q;EDB)→ R:
@ Client: Send ctL(Q) = { ctL(xmax), ctL(xmin), ctL(ymax), ctL(ymin)} to
server.
@ Server:

From root node of the EDB, evaluate Flag ← Overlap(ctL(Q), ctR(Rnode));
if Flag == 0 then Stop search on this node;
else if Flag == 1 then

Continue to search its children;
if Reach the leaf-node {ctR(p), ind} then

Iflag ← InRec(ctR(p), ctL(Q));
if Iflag == 1 then R.Append(ind);

else if Flag == 2 then R.Append(inds belong to the current node);

return R.

Algorithm 2: NNSearch(KΣ , σ, q;EDB)→ R :
@ Client: Send ctL(q) = {ctL(x), ctL(y)} to the server.
@ Server:

From root node of the EDB, evaluate Flag ← InRec(ctL(q), ctR(Rnode));
if Flag == 0 then Stop search on this node;
else if Flag == 1 then

Continue to search its children;
if Reach the deepest non-leaf node then

Return all data objects contained in current node;

@ Client: Obtain the nearest object of q from all returned objects, and
generates a square query sq = {x1, x2, y1, y2};
@ Client & Server: R ← GeoSearch(KΣ , σ, sq;EDB).

sion of the data objects, the secret key set for a 2-dimensional database is
KΣ = {skx, sky}. Then, the client builds the Quadtree according to DB and
encrypts every nodes and spatial data objects in the Quadtree. It is worth not-
ing that the non-leaf nodes are encrypted by both ORE.EncR and ORE.EncL, and
the data objects are only encrypted by ORE.EncR. Each dimension of the data
objects/nodes is encrypted by its corresponding key (i.e., a data object p = (x, y)
is encrypted to ctR(x) ← ORE.EncR(skx, x), ctR(y) ← ORE.EncR(sky, y)). Finally,
the client outsources the EDB to the server.

GeoSearch(KΣ , Q, σ;EDB): As described in Algorithm 1, given a geometric query,
the client first translates the geometric into a rectangle Q = {xmin, xmax, ymin,
ymax}, and generates the search query using KΣ and ORE.EncL. Then, the client
sends the search query to the server. The server responses all objects inside the
query rectangle, and the client can find all objects inside the geometric.

NNSearch(KΣ , q, σ;EDB): As shown in Algorithm 2, given a point q = (x, y), the
client generates a search query using KΣ and ORE.EncL, and sends the search
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query to the server. After receiving the search query, the server finds the deepest
non-leaf node contains q and returns all objects contained in the current node.
In the second round query, the client generates a new circumscribed rectangle
as described in overview, encrypts it using ORE.EncL, and sends the encrypted
query rectangle to the server. The server responses all objects inside the query
rectangle, and the client can find the nearest neighbor from the returned objects.

Update(KΣ , σ, op, in;EDB): Given a new object in, the client generates the cipher-
texts according to ORE.EncR. The server finds the deepest non-leaf node contains
in according to the ciphertexts. If the operator op == add, and the current node
contains less than M objects, the ciphertexts of in is inserted into this node;
otherwise, the server and client split the current node through a new round
of communication and insert the data objects into the corresponding node. If
the operator op == del, the in is encrypted by ORE.EncL, and the data object
matching in is removed from the EDB.

4.2 SQ-Treefw: Forward Security SDSE Construction

In a forward security SDSE, an adversary A should not distinguish newly inserted
data objects and the ciphertexts encrypted by a perfect encryption scheme, when
they are just inserted into the database before performing any search operations.
To achieve this goal, we add salt on the ciphertexts generated by the client, the
salt is a hash value of an order counter OC. Since the salt causes the newly
inserted data objects cannot be directly inserted into the index tree, the server
uses a set EDB.Cash to temporarily store the newly inserted data. These data
can be inserted into the index tree after the next search to ensure sub-linear
search complexity. We use the CPRF F̃ : {0, 1}λ × {0, ..., nmax} → {0, 1}λ with
respect to the class of range circuits C defined in Sect. 2.2 as the seed of salt.
Since the principles of NN search and geometry search are similar, in the rest
of this paper, the search query is a rectangular Q, and we will not repeat the
specific search details, but focus on the forward security details.

As described in Algorithm 3, in Setup, besides the SQ-tree and ORE encryp-
tion keys SK as described above, two keys K,K ′ are generated by the client.
To insert a new data object p into EDB (i.e., the (c + 1)-th addition, c ≥ 0),
client generates an order token OTc+1 based on F̃ , its secret key K, and the new
counter c + 1. The ind and ciphertexts of spatial data are salted by a hash func-
tion H(K ′, OTc+1). As for search process, the client generates ciphertexts ctL(Q)
of the search query Q and search token ST ← F̃ .Constrain(K,Cc), where Cc is
the circuit evaluating to 1 on {0, ..., c}. Then, the client sends {K ′, c, ctL(Q), ST}
to the server. The server can then calculate all the order tokens OTc with K ′,
and gets the original ciphertexts of data objects by desalting operations. At
last, the client receives the correct comparison result which is calculated with
the comparison algorithm of the ORE by the server. As shown in the black
box, to maintain sub-linear search complexity, our SQ-treefw uses search-then-
insert mechanism. At the first time that the client submits a search query to
the server, the server lookups both in SQ-tree and EDB.Cash. Thus, the newly
added objects are desalted and can be inserted into the index tree as described
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Algorithm 3: SQ-treefw: Forward-secure SDSE

Setup(1λ):

SK = {skx, sky} ← ORE.Setup(1λ), K||K′ ← {0, 1}2λ, OC ← 0;
Generate EDB as described in SQ-tree;
return (KΣ = {SK, K, K′}, σ;EDB).

Search(SK, KΣ , Q, σ;EDB):
@ Client:

c ← OC, ctL(Q) ← ORE.EncL(SK,Q);

ST ← F̃ .Constrain(K, Cc);
Send {K′, c, ctL(Q), ST} to the server.

@ Server:
for each data object (i, e) in the current node and EDB.Cash do

OTi ← F̃ (ST, i);
ctR(pi), indi ← e ⊕ H(K′, OTi);

@ Client & Server:
Find the result R in the same way as described in SQ-tree;

Insert the objects from the EDB.Cash into the index tree as described in
SQ-tree, the new node parameters are also salted;

return (R, σ;EDB).

Update(KΣ , op, in, σ;EDB):
@ Client:

c ← OC;

OTc+1 ← F̃ (K, c + 1),OC ← c + 1, ctR(p) ← ORE.EncR(SK, p);
e ← (ctR(p), ind) ⊕ H(K′, OTc+1);
Send (c + 1, e) to the server.

@ Server: EDB.Cash ← (c + 1, e).

in SQ-tree. When the client submits a query next time, the server can find all the
search results through the index tree. In this way, although the search complex-
ity of the first search after a new addition operation is slightly higher than that
of SQ-tree, the second and subsequent search will maintain the ideal complexity.

5 Security Analysis

Security of the SQ-tree. In our SQ-tree, each non-leaf node is encrypted by
both ORE.EncL and ORE.EncR, each data object is encrypted only by ORE.EncR,
and each query is encrypted only by ORE.EncL. Non-leaf nodes can compare
with data objects, queries, and each others. The tree construct and the search
path of queries are leaked. According to the properties of ORE used in SQ-tree,
data objects are semantically secure with each other [12]. They only reveal their
comparison with the search query during the search process.
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Theorem 1 (Adaptive Security of SQ-tree). Let Q = (x, y) or Q =
(xmin, xmax, ymin, ymax) be a search query, we define LSQ

Q as

LSQ
Q = {CMP(x, x′

i)
N
i=1,CMP(y, y′

i)
N
i=1,CMP(xmin, x′

i)
N
i=1,

CMP(xmax, x′
N )N

i=1,CMP(ymin, y′
i)

N
i=1,CMP(ymax, y′

i)
N
i=1, sp(Q), |EDB|},

where (x′
i, y

′
i) is the spatial data stored in DB, CMP is the order pattern of two

numbers, sp(Q) is the search path of the Q, |EDB| is the index tree structure.
SQ-tree is secure with leakage function LSQ

Q .

Proof. Since each dimension of the data objects is encrypted by ORE with a
different key ski. Hence, for a database DB and any sequence of queries q1, ..., q�,
we just need to invoke the simulator in the proof of ORE as described in [12]
for each dimension of the data objects stored in EDB. This completes the proof.
Due to space limitations, we skip further details.

Security of Our SQ-treefw. During the search process, the adversary can
only see the CPRF keys for ranges corresponding to the inserted data objects,
but cannot predict the evaluation of the PRF for inputs that outside of these
ranges. Hence, before the first search for a newly inserted object, update leak no
information. After first search for a newly inserted object p, p is inserted into
EDB, which leaks the search path of p.

Theorem 2 (Forward Security of SQ-treefw). Let LUpdt1th

forw be the update leak-
age for a object just inserted into the database before performing any search
operation, LUpdt

forw be the update leakage after search operation. Define LFS =

(LSrch
forw,LUpdt1th

forw ,LUpdt
forw) as

LSrch
forw(Q) = (LSQ

Q ,UpHist),LUpdt1th

forw (add, p, ind) = ⊥,LUpdt
forw(add, p, ind) = sp(p),

where sp(p) is the search path of p, and UpHist contains all the data-updating
histories. SQ-treefw is LFS-adaptively-secure.

Proof. The proof proceeds using a hybrid argument, we are going to derive
several games from the real-world game Real

SDSEfs

A (λ).
Game G0: is the real world SDSE security game RealA

Pr[Real
SDSEfs

A (λ) = 1] = Pr[G0 = 1].

Game G1: stores all the order tokens generated by CPRF F̃ (·) in a map OT.
Instead of calling the hash function H to generate the salts, the game picks
random strings as salts and stores them in a map H. A function H ′ is used
to ensure that two different salts for the inputs of the same tuple (K ′, OTi)
never be generated. If the map H does not include the tuple (K ′, OTi), H ′ will
randomly generate the result. But if the order token OTi gets a collision with
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another order token, a flag Error will be set to be 1, and the function will return
the corresponding salt of the equivalent token. Thus, according to the difference
between G0 and G1 described above, we have: the advantage of distinguishing
between G0 and G1 is smaller than the probability that the flag Error is set to
be 1 in G1: |Pr[G0 = 1] − Pr[G1 = 1]| ≤ Pr[Error is set to 1 in G1].

Note that, the flag Error is set to be 1 in G1, only if an efficient adversary
A1 breaks the one-wayness of CPRF F̃ . The error occurs only when the collision
of at least two order tokens happens. In other words, the error occurs when the
values generated by F̃ form a token without one-wayness. Thus, the advantage
of distinguishing G0 and G1 can be reduced to that of breaking the one-wayness
of CPRF. Also, if A1 makes m queries to the random oracle (apart from the
ones already needed by the execution of the game), as OTc is uniformly random,
the probability H was called on (K ′, OTi) is m · 2−λ. Hence,

Pr[Error is set to 1 in G1] ≤ Advcprf

F̃ ,A1
(λ) +

m

2λ
.

Let N be the data number in EDB, we have

|Pr[G0 = 1] − Pr[G1 = 1]| ≤ N · Advcprf

F̃ ,A1
(λ) +

Nm

2λ
.

Simulator. We use simulator S and the leakage function LFS to describe the
ideal forward security of SDSE scheme, where LFS is defined in Theorem 2. The
simulator uses the set C to store ciphertexts, the leakage of the order information
is only revealed when the ciphertexts are going to execute the Search algorithm.
We show that the simulator S and the game G1 are indistinguishable. For data
encryption, it is immediate as the scheme is outputting a fresh random bit string
for each update in G1. For data searching, using the adding history UpHist,
the simulator constructs the oracle H ′′ which is subject to revealing the order
correctly with the corresponding order token generated from OT0. Hence,

|Pr[G1 = 1] − Pr[IdealSDSEfs

A,S,LFS
(λ)] = 1| = 0.

Conclusion. By combining all the contributions from all the games, there exists
an adversary A1 such that

|Pr[Real
SDSEfs

A (λ) = 1] − Pr[IdealSDSEfs

A,S,LFS
(λ)] = 1| ≤ N · Advcprf

F̃ ,A1
(λ) +

Nm

2λ
.

The right part of the reduction is negligible, our SQ-treefw are forward security.

6 Performance Evaluation

Setup. We implement and evaluate the proposed schemes in this paper. The
code is written in C/C++. We use opensource code of ORE from [12] and the
opensource code of CPRF F̃ from [3]. We use the AES-ECB as the keyed hash
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Table 2. Performance of Setup in average (test 10 times for average)

Dataset Size Setup time Storage cost

32-bits 64-bits 32-bits 64-bits

210 0.119 s 1.123 s 0.425 MB 0.687 MB

212 0.478 s 4.945 s 1.789 MB 2.833 MB

214 1.911 s 18.582 s 7.162 MB 11.367 MB

216 7.596 s 81.853 s 28.655 MB 45.477 MB

218 30.583 s 289.496 s 114.623 MB 181.914 MB

220 122.336 s 1195.725 s 458.498 MB 727.644 MB

function, the security parameter λ is set as 128. For comparison, we also imple-
ment the NNSE [19] in C/C++. We ran our experiments on a computer running
Ubuntu 14.04 with 16 Intel Xeon v2 CPU, 30 GB RAM. We use the Gowalla
dataset2, which has 6,442,890 location check-in collected from 196,591 users.
We test our schemes over this dataset with different data size. For each size of
the dataset, we set the plaintext length to 32-bits and 64-bits, respectively. The
maximum capacity of deepest non-leaf nodes in SQ-tree is set as M = 4.
Experimental Results. The performance of Setup is presented in Table 2. As
we can observe from Table 2, the setup time increases rapidly with the increase
of the dataset size, because as the dataset size increases, the number of nodes
needed to be encrypted is increasing. The running time of Setup in 32-bits setting
is almost 10× faster than that in 64-bits setting, that is determined by the
characteristics of the ORE. We can also see that the storage cost of the encrypted
database grows slightly faster than the dataset size, because the database stores
the Quadtree nodes in addition to storing the data objects. It is worth noting
that the storage cost of a database in 32-bits setting is not half of that in 64-bits
setting, this is because the ciphertext length of ORE is sub-linear increases with
increasing bit-length of plaintext and the storage cost of ind is const.

In Fig. 2, we plot the performance of SQ-tree and SQ-treefw in different
settings. Since GeoSearch is also used in NNSearch, we only test the performance
of NNSearch. We randomly select 100 data objects for NN search. The running
time is the average of 100 queries. It is efficient to perform a spatial search among
large-scale encrypted datasets with our SQ-tree. As we can see from Fig. 2(a),
the running time of our SQ-tree and NNSE are sub-linear increase via increasing
dataset size. The running time of our SQ-tree is faster than that of NNSE since
the Quadtree will return more accurate neighbors than R-tree in the first round
query, which makes the area of the second round query smaller, and the order
compare of ORE is faster than that of the OPE used in NNSE.

2 http://snap.stanford.edu/data/loc-gowalla.html.

http://snap.stanford.edu/data/loc-gowalla.html
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Fig. 2. Performance of Search.

In SQ-treefw, new data object is salted before insertion and is not inserted
into the Quadtree. When the newly inserted data is searched, the salt is tem-
porarily removed and the data can be inserted into the Quadtree. To fully test
the performance of search, for a 212 dataset, we insert 210∼212 new data objects
and then search them twice. In the first search, we show the performance of
search the new data objects which haven’t been searched before (i.e., the data
objects added salt but without inserted into the Quadtree). And the second
search test shows that the performance of search the new data objects which
have been searched before (i.e., the data objects added salt and inserted into
the Quadtree). The performance of SQ-treefw in different settings is shown in
Fig. 2(b). As shown in Fig. 2(b), the second search test runs significantly faster
than the first search test. In the first search process, besides searching the data
objects in the Quadtree, the server also needs to search all newly inserted data
objects in the EDB.Cash that are not inserted into the Quadtree. In the sec-
ond search process, the server can find out the data objects according to the
Quadtree with sub-linear search complexity.

7 Conclusion

In this paper, we presented a formal definition of the Spatial Dynamic Searchable
Encryption (SDSE) and proposed a secure SDSE scheme that supports dynamic
update and sub-linear search complexity, called SQ-tree. When executing SQ-
tree, it only leaks the order of numbers and the search path. To prevent file-
injection attack [24], we also presented SQ-treefw, a forward-secure scheme that
newly updated objects cannot be related to previous search results. Finally, we
evaluated the practicality of our proposed schemes in a application environment.
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