
Leveraging Statistic and Semantic
Features for Similar Question Detection

Using Fusion XGBoost

Siyuan Liao1, Leung-Pun Wong2, Lap-Kei Lee2, Oliver Au2,
and Tianyong Hao1(B)

1 School of Computer Science, South China Normal University,
Guangzhou, China

{sean,haoty}@m.scnu.edu.cn
2 School of Science and Technology, The Open University of Hong Kong,

Hong Kong, China
{s1243151,lklee,oau}@ouhk.edu.hk

Abstract. Question text similarity calculation is a fundamental and
essential research problem for community question answering services.
Different question text collections have various characteristics. Some fre-
quently answered questions may have distinct statistical patterns, while
some questions are syntactically different but semantically similar. To
measure question similarity more adaptively to different kinds of ques-
tion text, this paper proposes a method for identifying similar question
utilizing the combination of both statistic and semantic features based
on XGBoost. The method extracts semantic and statistical features from
question text. After that, a feature set generation method is proposed,
along with a model fusion strategy. Based on the standard Yahoo! dataset
containing 25,569 questions with answers, three experiments have been
conducted to evaluate the performance of the method. Results show that
it achieves a precision of 88.65% and a recall of 71.85% outperforming a
list of baseline methods.

Keywords: Similar question detection · Feature set generation ·
XGBoost · Question-answering

1 Introduction

In recent years, Question Answering (QA) has become an important research
field of Natural Language Processing (NLP). Detecting similar question is a fun-
damental problem for Community Question Answering (CQA) systems such as
Yahoo! Answers, Baidu Knows and Quora. These systems serve as a platform
for users to share their knowledge, allowing users to submit questions or answer
questions posted by other users. Due to their popularity, a lot of questions and
answers have been recorded and accumulated. The possibility of reusing exist-
ing frequently asked questions (FAQ) makes QA systems more convenient and
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020 Workshops, LNCS 12115, pp. 106–120, 2020.
https://doi.org/10.1007/978-3-030-59413-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59413-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-59413-8_9

Leveraging Statistic and Semantic Features for Similar Question Detection 107

adaptable. If a question similar to a given new question is identified in the collec-
tion of FAQ, corresponding answers can be easily provided by retrieving existing
answers associated with the question.

However, the major challenge associated with similar question retrieval is
lexico-syntactic gap. Two questions may refer to the same thing but they may
differ lexically and syntactically. Thus, many evaluation tasks have been pro-
posed in academia, e.g., SemEval [14], or industries, e.g., Quora1, where their
solutions can become components of automatic methods for detecting duplicate
questions.

At present, the main research methods are divided into two categories: tradi-
tional machine learning methods and deep learning methods. The performance of
traditional methods mainly depend on text representation and similarity metrics,
e.g. tf-idf [17] and Word2Vec [13]. Deep learning based models, e.g., [4,16,24],
use variants of neural network architectures to model question-question pair sim-
ilarity. Although deep learning based models have shown their strong ability and
convenience in the task, it is hard to achieve the desired accuracy as large train-
ing sets are typically not available. Moreover, effectively exploiting full-syntactic
parse information in Neural Networks is still an open problem. Traditional meth-
ods mainly rely on feature engineering. Based on previous experience, the use
of a single similarity metric is prone to incorrect classification of some question
pairs.

In this paper, we propose an automated method for similar question detection
based on Fusion XGBoost. In order to solve the problem caused by a single fea-
ture model, a feature combination method is used to generate candidate feature
sets from statistical features and semantic features. We use selected candidate
feature sets as input to train the XGBoost model separately, and then adopt a
multi-model fusion method based on voting mechanism to enhance the general-
ization performance of the model. The main contribution of this work lies in two
aspects: (1) A statistical and semantic similarity feature combination method
is proposed, by which the feature sets generated are more effective. (2) A new
model fusion method via XGBoost is proposed, which utilized multiple feature
sets.

2 Related Work

Different approaches have been proposed to identify similar questions in CQA.
The traditional measures of similarity mainly used metrics based on word fre-
quency calculation and part-of-speech (POS) tagging. Niwattanakul et al. [15]
proposed a similarity measurement between keywords and index terms based on
Jaccard Coefficient. Huang et al. [8] proposed measurement method of similar-
ity based on tf-idf. Hao et al. [6] proposed an automated approach to detecting
similar questions based on the calculation of question topical diversity. Zhou et
al. [23] adopted a phrase-based translation model on Yahoo! Answers and eval-
uated its effectiveness. Wang et al. [21] proposed a model to find semantically
1 https://www.kaggle.com/c/quora-question-pairs.

https://www.kaggle.com/c/quora-question-pairs

108 S. Liao et al.

related questions by computing similarity between the representing syntactic
trees of questions.

There are also a lot of research on measuring semantic similarity of texts.
Jiang et al. [9] devised a semantic similarity metric using WordNet. Li et al. [11]
devised another semantic similarity metric using HowNet. Li and Zhao [12] used
the ontology of domain to calculate semantic similarity. Based on the concept of
distributed word vectors, the Word2Vec technique proposed by Mikolov et al. [13]
has been sucessfully applied in many NLP tasks. After that, pre-training with
large-scale corpora and then tuning on specific tasks has become a mainstream
of obtaining semantic representation. Kusner et al. [10] applied word mover’s dis-
tance to discuss the similarity of two documents. Devlin et al. [5] proposed a new
pre-training language representation method and obtain contextual embeddings
for sentences, which have been applied to sentence similarity calculation.

Some existing work on detecting similar questions is based on deep learning.
Zhou et al. [24] adopt a deep neural network (DNN) based query and answer rep-
resentation model to rank a set of answers for a given query. Qiu and Huang [16]
proposed a convolutional neural tensor network architecture to encode the sen-
tences in semantic space and achieved semantic matching. Das et al. [4] proposed
a deep structure topic model to bridge the lexico-syntactic gap between ques-
tions. Ruan et al. [18] discussed the methods of calculating the similarity of
sentences based on multi-feature fusion. Ye et al. [22] used recurrent neural net-
work (RNN) to measure the semantic similarity between sentences. Chali and
Islam [2] applied Long Short-term memory (LSTM) and bi-direction Long Short-
term memory (biLSTM) to find the semantic similarity between questions. Uva
et al. [20] proposed to inject structural representations in Neural Networks for
solving question similarity.

Each method mentioned above has its advantage, but they deal with only
a few aspects of sentences. Obviously, questions well matched on different sim-
ilarity measures are more likely to be similar. Based on this assumption, Song
et al. [19] proposed to employ both statistic measure and semantic information.
The similarity measure was calculated by combination of dynamically formed
vectors and WordNet. Different from the method of simple feature weighting,
we propose feature set generation and model fusion methods to utilize multiple
different feature sets.

3 Our Approach

The framework of the proposed fusion XGBoost model mainly contains four
parts: data preprocessing, feature extraction, feature set generation and model
fusion. The overall framework is shown in Fig. 1.

In order to effectively obtain the statistic and semantic features of ques-
tions, several data preprocessing strategies are applied. First we remove useless
characters other than letters and numbers, unify some common phrases into the
same form, and then perform word segmentation and spell correction. After that,
statistic and semantic similarity features are extracted from clean question text.

Leveraging Statistic and Semantic Features for Similar Question Detection 109

These two types of features are used to initialize the feature sets. The feature
set generation algorithm traverses the initial feature sets to generate candidate
feature sets. Then, the XGBoost model is trained by selecting feature sets from
the candidate feature sets according to the rules of model fusion. After that, a
voting fusion based on F1 score is adopted. Finally, the final similar question
results are obtained using the fusion model prediction.

Data Preprocess ing

Feature Extraction Feature Set Generation

Voting y

Model Fus ion

XGB1 XGB2 XGBN

Raw
Data

Character
Processing

Unified
Expression

Word
Segmentation

Spell
Correction

Statistic
Similarity

Semantic
Similarity FS1 FS2 FSN

Fig. 1. Overall framework of fusion XGBoost

3.1 Data Preprocessing

For traditional features based on statistical word frequency, the biggest challenge
is word sense disambiguation, that is, the same meaning may have different
expressions, e.g., different tenses of verbs, singular or plural form of nouns, etc.
These differences can be ignored when measuring the similarity of questions.
We first remove all characters except letters, numbers and punctuation in the
dataset, and then unify all the letters into lowercase.

Unified Expression. Certain phrases have different expressions, such as
“what’s” and “what is”. The two expressions with the same meaning do not need
to be distinguished into different phrases when using word frequency based fea-
tures. To this end, we adopt a unified expression approach, using regular expres-
sions to unify phrases such as “what’s”, “can’t” and “world cup”, replaced with
“what is”, “cannot”, “worldcup”. On the other hand, there are Internet catch-
words and special domain names in daily life, such as “4all”, “any1”, “6x”, etc.
The commonality is that they are all combinations of letters and numbers. We
split them and got “4 all”, “any 1”, “6 x” as the result.

Spell Correction. Text data entered by users on web may have various spelling
errors. For example, “guitars” is spelled “guitar”, “perfect” is spelled “perrfect”,

110 S. Liao et al.

etc. We adopt an open source library pyspellchecker2 to correct the spelling
issues. It applies a Levenshtein Distance algorithm [7] to find permutations
within an edit distance of 2 from original word, and then compares all permuta-
tions (insertions, deletions, replacements, and transpositions) to known words in
a word frequency list. Those words that are found more often in the frequency
list are more likely to be the correct results.

3.2 Feature Extraction

The calculation of sentence similarity utilizes a list of similarity metrics. The
metrics focusing on either statistic or semantic aspects are used as features.

I. Statistic Similarity Metrics

1) Jaccard Index (Jac)
The Jaccard Index treats a sentence as a collection of words, and then divides
the number of intersection elements between two sentences by the number of
union elements to get the similarity between the two sentences:

Jac(A,B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A| + |B| − |A ∩ B| , (1)

where A, B are respectively the collections of words for the two questions
without stop words.

2) Word’s Common Rate (CR)
Word’s Common Rate is a kind of basic metric to describe the similarity
between two collections:

CR(A,B) =
|A ∩ B|

|A| + |B| . (2)

3) TF-IDF via Word Match (TWM)
Let Diff(A) denote the word in question A but not in question B, and
Diff(B) denote the word in B but not in A. tfidf(a) denote the TF-IDF
value of word a. The TWM is calculated using Eq. (3):

TWM(A,B) =
∑|C|

i=1 tfidf(Ci)
∑|D|

j=1 tfidf(Di)
, (3)

where C = Diff(A) ∪ Diff(B) and D = A ∪ B.
4) Topical Diversity (TD)

Topical words can be generated with different POS tags for a given question.
Four combinations of POS tabs are defined as: POS1 (nouns), POS2 (nouns
and adjectives), POS3 (nouns and verbs), POS4 (nouns, adjectives and verbs).

2 https://github.com/barrust/pyspellchecker.

https://github.com/barrust/pyspellchecker

Leveraging Statistic and Semantic Features for Similar Question Detection 111

After generating topical words, topical diversity between two questions can
be calculated by:

TD(A,B) = 1 −
∑

ti∈TA∩TB
tfidf(ti)

∑
tj∈TA∪TB

tfidf(tj)
, (4)

where A and B are the two questions, TA and TB are the collections of topic
words in question A and question B, respectively. From this equation, we can
observe that the topical diversity is higher when there are less shared topical
words between the questions.

II. Semantic Similarity Metrics

1) Cosine similarity via BERT Sentence Embedding (CosBERT)
BERT pre-training model is adopted to extract the sentence embedding of a
given question. The pre-training model is provided by Google Research [5],
which gives vector to each word and performs pooling for sentence embedding.
The cosine similarity is calculated as:

Cosine(VA, VB) =
VA ∗ VB

‖VA‖2 ∗ ‖VB‖2
(5)

where VA and VB are vectors for word A and B, respectively. || · || is Euclidean
norm.

2) Cosine similarity via Word2Vec (CosW2V)
The pre-trained word2vec model gives word embedding V (w) for each word
in sentence. The sentence embedding for a sentence containing N words w1,
w2, ..., wN is calculated as:

V =
∑N

i=1 V (wi)
√∑N

i=1 V (wi)2
(6)

After that, cosine similarity between two questions can be obtained through
formula (5).

3) Cosine similarity via Smooth Inverse Frequency weighted Word2Vec
(CosSIF)
In order to extract semantic information, the word vector in a sentence is
usually averaged as a sentence vector. Averaging gives too much weight to
irrelevant words. Arora et al. [1] proposed an algorithm for embedding sen-
tence using word embedding, which uses the smooth inverse frequency feature
of the term to weight the word embedding and then average it. After gen-
erating all questions’ sentence embeddings, PCA/SVD is applied to modify
them slightly.

4) Word Mover’s Distance (WMD)
The WMD distance measures the dissimilarity between two text documents as
the minimum amount of distance that the embedded words of one document
need to “travel” to reach the embedded words of another document. The
distance between word i and word j becomes c(i, j) = ||V (i) − V (j)||2.

112 S. Liao et al.

3.3 The Feature Combination Method

Each feature set used in the paper is a combination of similarity metrics. Find-
ing effective feature combinations is the key to improve the performance of the
model. Traversing all feature combinations to find the optimal feature combina-
tion has a high time complexity. Therefore, a feature set generation algorithm
based on pruning strategy is proposed. The detail is shown in Algorithm1.

Algorithm 1. Feature set generation

Input:
Two feature sets S1 and S2;

Output:
Candidate feature sets Candidates and corresponding F1-scores Fscores;

1: V isited ← ∅
2: Candidates ← ∅
3: Fscores ← ∅
4: for each feature1 ∈ S1 do
5: for each feature2 ∈ S2 do
6: feature set ← {feature1, feature2}
7: fscore ← evaluate(feature set)
8: Candidates ← Candidates ∩ {feature set}
9: Fscores ← Fscores ∩ {fscore}

10: V isited ← V isited ∩ {feature set}
11: end for
12: end for
13: all features ← S1 ∩ S2

14: for i = 0 to |all features| − 2 do
15: for each feature set, fscore ∈ Candidates and Fscores do
16: if |feature set| �= 2 + i then
17: Continue
18: end if
19: left features ← all features − feature set
20: for each feature ∈ left features do
21: new set ← feature set ∩ feature
22: if new set ∈ V isited then
23: Continue
24: end if
25: V isited ← V isited ∩ {new set}
26: new fscore ← evaluate(new set)
27: if new fscore ≥ fscore then
28: Candidates ← Candidates ∩ {new set}
29: Fscores ← Fscores ∩ {new fscore}
30: end if
31: end for
32: end for
33: end for

Since containing more features does not ensure the improvement of perfor-
mance, we propose a method to find the optimal combination of features. The
feature set generation algorithm mainly contains two steps: initial feature set

Leveraging Statistic and Semantic Features for Similar Question Detection 113

generation and feature set growth. The initial feature set is considered as candi-
date feature set. Growth is performed on these candidate feature sets based on
a total of eight features obtained. If a new feature set obtained achieves better
evaluation result, then the new feature set and corresponding evaluation result
is added to the candidate feature set. In order to avoid duplication or useless
attempts, each new feature set needs to be marked so that the growth of the
candidate feature set can be pruned when the algorithm iterates.

The initial feature sets are obtained by cross-combining two types of simi-
larity metrics. After that, their performances on the training set are evaluated,
which are shown as lines 1–12. Improved feature sets can be found iteratively
based on F-score. The loop statement on line 14 is used to iterate through all
possible combinations of features. The statement on line 15 attempts to grow
all candidate feature sets. If a new feature set achieves higher F-score, then the
feature set is added to the candidate feature sets, otherwise it is discarded and
will not be evaluated again, as shown in lines 22–30. Lines 22–25 implement a
pruning strategy, ensuring that a feature set without improved F-score will not
be tested again.

3.4 XGBoost Model

We used the XGBoost model proposed by Chen [3], which has been widely
applied in different kinds of data mining tasks. XGBoost classifier is a boosting
classifier which combines hundreds of tree models with lower classification accu-
racy into a stronger learner in an iterative fashion. At each iteration of gradient
boosting, the residual is used to correct previous predictor such that the specified
loss function can be optimized. Different from other Gradient Boosting Decision
Tree (GBDT) model, regularization is added to the loss function to establish the
objective function in XGBoost, which is given by:

J(Θ) = L(Θ) + Ω(Θ),

L(Θ) =

n∑

i=1

l(ŷi, yi),

Ω(Θ) =
t∑

k=1

τT +
1

2
λ||w||2

(7)

Here, Θ refers to the various parameters in the formula. J(Θ) is the objective
function. L(Θ) is the training loss function that measures the difference between
the prediction ŷi and the target yi. Commonly used convex loss function such
as square loss or logistic loss can be used in the above equation. Ω(Θ) is a
regularized term that penalizes complex models. In the definition of Ω(Θ), T
is the number of leaves in the tree, τ is the learning rate, λ is a regularized
parameter to scale the penalty, and w is the weight of the leaves. Since the base
model is decision tree, the result of prediction ŷi is the sum of scores predicted
by K trees:

ŷi =
t∑

k=1

fk(xi), fk ∈ F (8)

114 S. Liao et al.

where xi is the i-th training sample, F is the space of functions containing all
regression trees and fk(xi) is the score for the k-th tree. The optimization goal is
to construct a tree structure that minimizes the target function in each iteration.
The tree structure learns from conclusions and residuals of previous trees, fitting
a current residual regression tree.

3.5 The Multi-model Fusion Method

In order to acquire better performance, a multi-model fusion method is proposed.
Model fusion is an effective way to improve the accuracy of model, and voting
weighted fusion is a fast and direct method. After feature sets are generated,
the models obtained by different feature sets can be used for model fusion. The
basic element of model fusion is to ensure that the correlation between individual
models is small, and the performance difference between different models is not
significant. Therefore, models obtained by different feature sets are used for
model fusion.

The candidate feature sets are obtained through the feature set generation
algorithm. After that, the first step is to generate multiple XGBoost models with
different feature sets as input, and then calculate the value of F1 for each model
respectively. Let si represents a collection of feature sets consisting of i features,
pi is the selected feature set. Then

pi = arg maxj∈si fscore(j) (9)

The second step is the selection of the models. Each of these models is an
XGBoost model trained by an optimal feature set of a specific number of features.
The model fusion method is to conduct weighted voting according to the F1 score
of the selected model. Assume that N ′ models are selected, the final prediction
of sample i is:

ŷi =
N ′
∑

j=1

ŷi(j)wj (10)

In this formula, ŷi(j) is prediction for sample i given by model j, wj is the
voting weight of the model j. Models with higher F1 scores usually have better
classification performance, so w is calculated based on the F1 score of the model
on the training set. For j ∈ [1, N ′]:

wj =
fscore(j)

∑N ′
i=1 fscore(i)

(11)

4 Evaluation and Results

4.1 Datasets

We applied the same QA dataset as used in existing baseline methods, e.g., [6].
The dataset was generated from 25569 questions groups that shared the same

Leveraging Statistic and Semantic Features for Similar Question Detection 115

answer extracted in Yahoo! Answers. We filtered the answers that were too short,
e.g, “Yeah”, and obtained a total of 624 question groups. Eventually, the dataset
contained questions with a maximum length of 25 words, a minimum length of
2 words, an average length of 10 words, and a standard deviation of 4.50.

We divided the dataset into a training set containing 524 question groups and
a testing set containing 100 question groups randomly, similar to the baseline
method. Since the number of samples in the dataset was relatively small, the
training results fluctuated greatly by different division methods. The experiment
were randomly repeated 100 times and the average of the evaluation results was
considered.

4.2 Baselines

The baseline methods for comparison were widely used text similarity calculation
measures as follows:

1) Topical Diversity: We used TD+POS4 method described in Sect. 3.2.
2) Jaccard: Described in Sect. 3.2.
3) CosBERT: Single question similarity detection model using feature described

in Sect. 3.2.
4) WMD: Unsupervised method to calculated the semantic distance between

two questions using Word2Vec model. Described in Sect. 3.2.
5) CosSIF: Described in Sect. 3.2.
6) CosW2V: Described in Sect. 3.2.
7) Metric Longest Common Subsequence: The ratio of the number of words

in the longest subsequence of two questions to the number of words in the
longest question.

8) NN: A multi-feature fusion method based on neural network proposed by
Ruan et al. [18].

Feature extraction involves two pre-training models with training parameters
and sources as follows. Word2Vec [13] was trained on Google News dataset, which
contains 300-dimensional vectors for 3 million words and phrases. The resulting
vectors have been made publicly available3. BERT [5] was multilingual uncased
BERT-Base model4. The model gives 768-dimensional vectors for each word.

In the experiments, we used the same model configuration for model training
of each feature set. The learning rate and was set to 0.05. The maximum depth
of tree in each booster and was set to 3. Evaluation metric was a logarithmic
loss function. These parameters were set empirically.

4.3 Results

Four experiments were conducted to evaluate the effectiveness of the proposed
method for similar question detection. The evaluation metrics were precision,
recall, and F1 score, which were commonly used in information retrieval area.
3 see https://code.google.com/archive/p/word2vec/.
4 see https://github.com/google-research/bert.

https://code.google.com/archive/p/word2vec/
https://github.com/google-research/bert

116 S. Liao et al.

Table 1. The performance comparison with the different feature sets (%)

Features Methods Avg precision Avg recall Avg F1

TWM, Jac, CosSIF Random Forest 84.52 70.98 76.43

CosBERT, TD, Jac, CosSIF 83.61 71.31 76.32

Jac, CosSIF 82.89 71.88 76.34

TWM, Jac, CosSIF SVM 93.20 53.63 67.42

CosBERT, TD, Jac, CosSIF 94.28 53.50 67.56

Jac, CosSIF 91.94 55.59 68.67

TWM, Jac, CosSIF XGBoost 85.37 72.64 77.99

CosBERT, TD, Jac, CosSIF 85.30 72.74 77.97

Jac, CosSIF 83.34 72.22 76.77

First, an experiment to evaluate the performance of feature combinations
was conducted. According to the feature set generation algorithm, candidate
feature sets sorted according to F1 score can be obtained. Then the feature sets
with the highest F1 score of two, three and four features were selected, namely
FS1(Jac + CosSIF), FS2(TWM + Jac + CosSIF) and FS3(CosBERT + TD
+ Jac + CosSIF). These three feature sets were then used to train different
classifiers, including SVM, Random Forest, and XGBoost, and compare their
performances. The result showed that the feature set FS2 achieved the highest
F1 in the XGBoost classifier. The feature set with the largest number of features
in candidate sets has five features, but the F1 score is lower than that of the
feature set with only two features in SVM and Random Forest. The result is
shown as Table 1. From the result, the XGBoost model with TWM, Jac and
CosSIF as feature set achieves the highest average F1.

Fig. 2. The performance of fusion XGBoost training using different sizes of data

Leveraging Statistic and Semantic Features for Similar Question Detection 117

Fig. 3. The performance in datasets using different types of features

The second experiment evaluates how question similarity calculation perfor-
mance was affected by the size of training datasets to test the scalability of our
model. The used datasets were the same as used in the first experiment.

As shown in Fig. 2, when the number of samples in the training set was more
than 225, the performance of the model became stable. When the number of
samples was less than 225, the performance of the model fluctuated significantly.
This demonstrated that the model was effective when the number of training set
samples was more than 225.

We compared the performance obtained by single XGBoost model using two
different types of features as input. The XG (Statistic features) model using all
features described in our statistic similarity metrics, and XG (Semantic features)
using all semantic similarity metrics. The Fusion model using our proposed fea-

Table 2. The performance comparison with baselines (%)

Methods Avg accuracy Avg precision Avg recall Avg F1

CosSIF 87.17 60.72 70.91 64.95

Metric Longest Common Subsequence 89.64 70.45 67.58 68.49

WMD 90.41 74.89 70.57 70.89

CosW2V 90.65 75.02 69.17 71.02

CosBERT 90.37 71.79 72.13 71.49

Jaccard 91.05 77.39 67.68 71.63

Topical Diversity (TD) 91.33 82.07 65.10 71.49

NN 62.15 48.75 76.68 51.40

XG (TWM+Jaccard+CosSIF) 93.17 85.37 72.64 77.99

XG (CosBERT+TD+Jaccard+CosSIF) 93.14 85.30 72.74 77.97

XG (Jaccard+CosSIF) 92.74 83.34 72.22 76.77

Fusion (FS1+FS2) 92.80 89.56 69.49 77.42

Fusion (FS1+FS2+FS3) 94.60 88.65 71.85 78.54

118 S. Liao et al.

ture combination and multi-model fusion method. According to Fig. 3, the Fusion
model achieved highest F1, which demonstrated the effectiveness of our proposed
feature combination and multi-model fusion method.

We then compared our method with baseline methods. The result was shown
in Table 2. Compared with the TD+POS4 algorithm, our approach of XGBoost
single model using the feature group TWM+Jaccard+CosSIF achieves 4.02%
precision improvement, 11.58% recall improvement and 9.09% F1 improvement.
The fusion model of the three different length feature sets reached the highest
precision and F1, and F1 is increased by 9.86% compared with TD+POS4.

4.4 Error Analysis

The result errors including undetected and incorrectly identified similar ques-
tions in the experiments were collected and systematically analyzed. Since the
models were evaluated by randomly dividing the data set 100 times, we calcu-
lated the cases of prediction errors in 100 tests using the fusion model FS1 +
FS2 + FS3.

16 groups of questions were predicted to be incorrect more than 10 times,
and a total of 5 groups of questions were detected by our method. We found it
is difficult for our model to detect similar question pairs with uncommon words,
non-generic words, and abbreviations, e.g., PSP and SUV. Two samples of this
type of error are shown in Table 3.

Table 3. Examples of undetected error by our method

Group ID Questions Answer

G1 Where can i find free downloads for my PSP? www.yourpsp.com

I saw an advert for a psp related site for
downloads it had 2 dust balls or something like
that whats the site

G2 What is SUV? Sports utilize vehicle

SUV meaning?

11 groups of questions that were incorrectly judged to be similar by our
model. There was a common denominator of this type of error, where one ques-
tion was much longer than the other and the longer one contained the same or
related words of the short questions. For instance, the question “Does anyone
know this logo?” and the question “anybody know what the company logo is with
the singing parrot?” were marked as similar questions but were annotated dis-
similar by human annotators. By analyzing this type of errors, we found that
some question pairs had a high proportion of identical or related words, resulting
in close semantic features. Therefore, the question target or answer type may be
a key factor for eliminating the effect of the word overlap.

Leveraging Statistic and Semantic Features for Similar Question Detection 119

5 Conclusion

In this paper, we have applied a fusion XGBoost model to detect similar ques-
tions. A feature set generation and a voting method based on F1 score of each
model are proposed. Experiments on Yahoo! dataset have showed that the pro-
posed method is feasible in improving the performance of similar question detec-
tion. In the future, we plan to evaluate the proposed method on more datasets
and consider more features of questions.

Acknowledgement. This work was supported by National Natural Science Foun-
dation of China (No.61772146), Natural Science Foundation of Guangdong Province
(2018A030310051), and the Katie Shu Sui Pui Charitable Trust – Research and Pub-
lication Fund (KS 2018/2.8).

References

1. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence
embeddings (2016)

2. Chali, Y., Islam, R.: Question-question similarity in online forums. In: The 10th
Annual Meeting of the Forum for Information Retrieval Evaluation, pp. 21–28.
ACM (2018)

3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: The 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 785–794. ACM (2016)

4. Das, A., Shrivastava, M., Chinnakotla, M.: Mirror on the wall: finding similar
questions with deep structured topic modeling. In: Bailey, J., Khan, L., Washio,
T., Dobbie, G., Huang, J., Wang, R. (eds.) PAKDD 2016. LNCS, vol. 9652, pp.
454–465. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31750-2 36

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding. arXiv:1810.04805 (2018)

6. Hao, T., Li, C., Liang, W., Qu, Y.: A topical diversity-based approach to detecting
similar question groups from collaborative question-answering archives. In: Web
Intelligence, vol. 14, pp. 301–308. IOS Press (2016)

7. Heeringa, W.J.: Measuring dialect pronunciation differences using Levenshtein dis-
tance. Ph.D. thesis. Citeseer (2004)

8. Huang, C.H., Yin, J., Hou, F.: A text similarity measurement combining word
semantic information with TF-IDF method. Chin. J. Comput. 34(5), 856–864
(2011)

9. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and
lexical taxonomy. arXiv preprint cmp-lg/9709008 (1997)

10. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to doc-
ument distances. In: ICML, pp. 957–966 (2015)

11. Li, S., Zhang, J., Huang, X., Bai, S., Liu, Q.: Semantic computation in a Chinese
question-answering system. J. Comput. Sci. Technol. 17(6), 933–939 (2002)

12. Li, W., Zhao, Y.: Semantic similarity between concepts algorithm based on ontol-
ogy structure. Jisuanji Gongcheng/ Comput. Eng. 36(23) (2010)

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

https://doi.org/10.1007/978-3-319-31750-2_36
http://arxiv.org/abs/1810.04805

120 S. Liao et al.

14. Nakov, P., et al.: SemEval-2017 task 3: community question answering. arXiv
preprint arXiv:1912.00730 (2019)

15. Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using of Jac-
card coefficient for keywords similarity. In: The International Multiconference of
Engineers and Computer Scientists, vol. 1, pp. 380–384 (2013)

16. Qiu, X., Huang, X.: Convolutional neural tensor network architecture for
community-based question answering. In: IJCAI (2015)

17. Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries.
In: The First Instructional Conference on Machine Learning, Piscataway, NJ, vol.
242, pp. 133–142 (2003)

18. Ruan, H., Li, Y., Wang, Q., Liu, Y.: A research on sentence similarity for ques-
tion answering system based on multi-feature fusion. In: 2016 IEEE/WIC/ACM
International Conference on Web Intelligence (WI), pp. 507–510. IEEE (2016)

19. Song, W., Feng, M., Gu, N., Wenyin, L.: Question similarity calculation for FAQ
answering. In: SKG, pp. 298–301. IEEE (2007)

20. Uva, A., Bonadiman, D., Moschitti, A.: Injecting relational structural representa-
tion in neural networks for question similarity. In: ACL, pp. 285–291 (2018)

21. Wang, K., Ming, Z., Chua, T.S.: A syntactic tree matching approach to finding
similar questions in community-based QA services. In: The 32nd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 187–194. ACM (2009)

22. Ye, B., Feng, G., Cui, A., Li, M.: Learning question similarity with recurrent neural
networks. In: 2017 IEEE ICBK, pp. 111–118. IEEE (2017)

23. Zhou, G., Cai, L., Zhao, J., Liu, K.: Phrase-based translation model for question
retrieval in community question answer archives. In: ACL, pp. 653–662 (2011)

24. Zhou, G., Zhou, Y., He, T., Wu, W.: Learning semantic representation with neural
networks for community question answering retrieval. Knowl.-Based Syst. 93, 75–
83 (2016)

http://arxiv.org/abs/1912.00730

	Leveraging Statistic and Semantic Features for Similar Question Detection Using Fusion XGBoost
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Data Preprocessing
	3.2 Feature Extraction
	3.3 The Feature Combination Method
	3.4 XGBoost Model
	3.5 The Multi-model Fusion Method

	4 Evaluation and Results
	4.1 Datasets
	4.2 Baselines
	4.3 Results
	4.4 Error Analysis

	5 Conclusion
	References

