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Abstract. This paper extends traditional Functional Dependencies (FDs) to
Threshold Functional Dependencies (TFDs) for Time Series Database accord-
ing to the characteristics of attribute values changing rapidly by time from sen-
sors. In contrast to the unique-to-same pattern in relational schema, TFDs allow
determined attribute value within a certain range rather than a clear value when
corresponding to the same deciding party. We find that TFDs capable of not only
detecting errors resulting from attribute value out-of-bounds in one tuple horizon-
tally, but also from a column of single attribute among several tuples vertically.
And we focus more on the former in this article. We draw a clear line between FDs
and TFDs because they have some intersection. And we classify TFDs for conve-
nience of research. We provide an inference system for classified TFDs analogous
to Armstrong’s axioms, prove its soundness and completeness and explain their
differences and connections. We perform some experiments to show effects of
TFDs which make some contributions to data quality for Time Series Database.
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1 Introduction

Time Series Database (TSDB) is mainly applied to industrial monitoring such as electric
power, petroleum, chemical industry, etc. It is adept at processing constantly updated
and rapidly changing data and transaction with time limits. There are inevitable errors
in these sensor readings. Integrity constraints in TSDB differ from relational database
mainly on functional dependencies. If we say attribute values in relational database
are mostly enum types, then attribute values in TSDB are mostly continuous data in
their domain but are recorded discretely. And functional dependency like A → B in the
former is equality because every B value determined by the unique A must equal, while
the latter focus on inequality where B can change within a reasonable range in the same
condition. These differences are enough to give us a motivation to create a new setup
FDs for TSDB.

Variants of FDs have arisen on a small but useful and promising scale which provide
more strict or lighter constraints among attributes in the previous research. Wenfei Fan
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[1] et al. propose conditional functional dependencies (CFDs) aiming at capturing the
consistency of datawith satisfaction of certain attribute’s value as a constant. The formula
is (X → Y, Tp) where Tp is the pattern keeping certain attribute constant. Flip Korn
[2] et al. define FD probabilistic, approximate constraints (FDPACs) for network traffic
database by convertingX →Y to f (x)→ g(x). It achieves by allowing an aggregate f over
a set of attribute values in X to functionally determine the similar aggregate g over those
in Y. R. Haux and U. Eckert [3] introduce non-deterministic functional dependencies
(NFDs) for inherent connections among attributes that can be emphasized by time.
For example, one patient’s weight varies with hormone level at several examination
dates denoting that the patient’s ID determines his non-deterministic and randomweight
variable. It can be expressed as ID→F(Weight). So NFDs can be regarded as stochastic
extensions of traditional FDs. NFDs make some difference among the above state-of-art
because of correlation with time, which relates to TSDB.

Inspired by the above variants of FDs, we bring the concept of our special FDs for
TSDB. When applying FD X → Y to TSDB, we find that each attribute value in Y
can come from a reasonable range as t1, t2 and t3 in Table 1 show with A determining
B’s range. We can see that t2 is correct while t1 and t3 violate the range. These ranges
can depend on single attribute or combined attributes restricted by nature or machinery
(e.g., outdoor temperature in different places), statistic analysis methods (e.g. linear
or polynomial regression), sampling frequency and so on. The range maybe includes
random (discrete) variables, functions or even a constant with zero-range. Regardless
of types of this range, we focus more on logic on the data schema level rather than the
upper statistics methods. We name this kind of FDs Threshold Functional Dependencies
(TFDs). Threshold literally seems to resemble domain integrity but they are different.
We will discuss it later. As shown by the Arrow 1 hinting in Table 1, we say TFDs have
function of horizontal constraints embodying in rows in Table 1.

Table 1. An instance for threshold FD

From other perspectives to see errors in TSDB, outlier (or anomaly) detection [4]
and repairing have been studied well in TSDB. The main ideas are based on techniques
such as AR model [5], Markov models [6], neural network [7] and so on. Clearly, these
statistical techniques reflect the invisible constraints by time on single attribute values
in a column in a table. As shown by the Arrow 2 hinting in Table 1, we name it vertical
constraint. Obviously, time stamp itself is a typical vertical constraint and Shaoxu Song
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[8] et al. have studied the time stamp repairing problem. These statistical techniques
above can detect t4 which is an abrupt change among t1 to t5 in Table 1.

Actually, not only can our TFDs express horizontal but also vertical constraints when
we use statistical techniques above to restrict different values or their ranges of a column
of single attribute changing with time. In this article, we focus more on TFD’s horizontal
constraints rather than its vertical constraints.

Proposing a new variant of traditional functional dependencies named TFDs accord-
ing with detecting errors in time series database is our first contribution. The capacity of
detecting TFDs covers horizontal and vertical constraints, which is our second contri-
bution. The third contribution is classifying TFDs and presenting a sound and complete
inference system for classified TFDs analogous to Armstrong’s axioms. The last contri-
bution is that the experiments show the performance of TFDs when detecting errors in
time series database.

2 Threshold Functional Dependencies

Here, we will define TFDs. Consider a Time Series Database T and schema R over a set
of attributes, denoted by attr(R). And we denote attributes in R as A, B, C… and sets of
attributes of X, Y, Z…

2.1 Definition

Definition 1. A Threshold FD over R is the form X → Γ (Y ) where Γ represents the
threshold of every attribute’s values in Y.

We refer to X as the left-hand side, or lhs for short, and to Y as the right-hand side,
or rhs for short. If one tuple t satisfies a TFD Δ in horizontal constraints, that means
attribute values in Y are within the Γ range, denoted by . If every tuple in table T
satisfies each element in TFD set Λ in horizontal constraints, we say .

Threshold Γ represents value ranges for rhs decided by lhs with upper and lower
bounds in one or several intervals. We denote these bounds as threshold functions.
Though we have mentioned we don’t want to care more about the format of thresh-
old functions, we need examples to illustrate TFDs as follows. e.g.1, A, B → Γ (C, D),
Γ = {C ∈ (f 1(A), f 2(A)], D ∈ [f 3(A, B), f 4(A, B)), D ∈ [f 5(A, B), f 6(A, B))}, and f 1 to
f 6 are threshold functions. They can be implicit or explicit functions for some attribute.

Assuming Ae is an expression only containing an arbitrary attribute A from X ∪ Y,
if Ae can be expressed by (X ∪ Y )\A explicitly, we denote A as A-ex. e.g.2, if A → Γ (B),
Γ = {B ∈ [−A − A2, A + A2] (A ≥ 0 and B is integer)}, we have B-ex and A-ex. If Ae is
trapped in the implicit threshold functions, we denote A asA-im. e.g.3, ifA,B→ Γ (A,B),
Γ = {g1(A, B) ≤ 10}, g1 = A3− √

A + A2B3− A
√
B, we have A-im and B-im. Specially

we call the attribute set AB in e.g.3 as AB-ex with A-im and B-im, and call attribute set
CD in e.g.1 as CD-ex with C-ex and D-ex. We can see if an attribute set C is C-ex, then
arbitrary element A of C can be A-ex or A-im. Formally speaking, an attribute set C is
C-ex if and only if C can be expressed by attributes except any element of C or can be
expressed only by C itself as e.g.3 shows. So when a proper subset S of C is S-ex, then
there must exist C\S-ex according to symmetry.
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It is not necessary that everyone of lhs must participate in decision on rhs, as C’s
range in e.g.1 shows, in which case we denote B as C-irre. If some attribute from lhs
is irrelevant to everyone of rhs, we say the attribute is Y-irre. In X → Γ (Y ), we don’t
allow X are all Y-irre. In other words, there at least exists one attribute which is not
Y-irre. Sometimes there is exactly no mathematical formula between lhs and rhs due to
multi-implicit, but they do have some connections. We denote this situation as vague
threshold, and this TFD as false-TFD. We will give an example of vague threshold later.
If X determine Y by vague threshold, we don’t consider them into the following research
in this article.

2.2 Classifying

We classify TFD X → Γ (Y ) into two cases according to the kinds of Γ .

Case 1 Γ does not Function
X → Γ (Y ) naturally becomes X → Y, which is exactly a traditional FD, as hinted by
Fig. 1(a), which is called unique-to-same. And the threshold is zero, denoting as empty-
threshold. Data consistency guarantees that tuples with every attribute in common value
in X must have the same value set of Y where each attribute value in Y has a countably
infinite domain. e.g.4, A → Γ (A), Γ = {A ∈ [A − 0, A + 0]}. We classify the case of
e.g.4 into TFDs.

. . .

. . .

L

. . .

(a)                                      (b)                                  (c)

Fig. 1. Sketch showing patterns of FDs and TFDs

We hereby declare though from the perspective of concept and definition, TFDs
contains part of traditional FDs, we won’t mix them into one Γ in this article for the
convenience of exploiting TFDs. So now our research scope is TFD including the case
of e.g.4.

Case 2 Γ Maps More Values for Everyone in Y in the Same lhs Situation
The dependency becomes more slack relative to case 1. Tuples with every attribute in
commonvalue inX which have different value sets ofY remain existingwhen performing
data cleaning. The value domain of every attribute inY maybe countably infinite or finite,
as hinted by Fig. 1(b), and as B’s threshold in e.g.2 shows. It may be non-countably
continuous, as hinted by Fig. 1(c) where the nodes can slide along the straight line L if
we allow B not must be integrity in e.g.2. Specially, when A = 0 in e.g.2, though B can
only be zero, it is different from case 1 because of dynamic variability of A.
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2.3 Properties of TFDs

Here, we describe the special characteristics of TFDs. At the same time we explain the
differences and connections between TFDs and traditional FDs, also between TFDs and
domain constraints.

• The consistency restricted by traditional FDsmust be reflected inmore than two tuples.
But one single tuple can accord with or violate a TFD in horizontal constraints.

• Every traditional FD set can have its corresponding consistent table before or after
repairing. So data schema over traditional FDs is always worth repairing but it is not
the case over TFDs. Not every TFDs set Λ can make sense due to the range of rhs.
e.g.5, A→ Γ 1(C),Γ 1= {C ∈ [1/A,+ ∞] (A> 0)} and B→ Γ 2(C),Γ 2= {C ∈ [−∞,
−1/B](B > 0)}. We can see there doesn’t exist one correct C value at all.

• As mentioned earlier, TFDs appear literally to be like domain constraints but they are
totally different. The former imposes restrictions to certain column data determined
by other attributes while the latter limits every column data and has nothing to do with
other attributes.

3 An Inference System for TFDs

3.1 TFD Rules

There is an inference system for TFD analogous to Armstrong’s Axioms.

Lemma 1. A → Γ (A)
This TFD always holds with empty-threshold Γ = {A ∈ [A − 0, A + 0]}. A → Γ (A)

makes sense in both traditional FDs and TFDs. In case 1, A → Γ (A) has been classified
into TFD. Specially, assuming X = {A, B}, X → Γ (X) holds not necessarily due to A
→ Γ (A) and B → Γ (B). X → Γ (X) holds may due to Γ = {A ∈ [−B, B], B ∈ [−A,
A]}. Moreover, e.g.3 also belongs to this case with AB-ex. So we can conclude that A →
�(A) is not necessity and substitute for the validity of X → Γ (X).

TFD1. If Y ⊆ X ⊆ R, then X → Γ (Y ).
TFD1 corresponds to Armstrong’s reflexivity.
TFD2. If X → Γ 1(Y ) and Z ⊆ R, then XZ → Γ 1(Y ) and XZ → Γ 2(YZ).
TFD2 extends Armstrong’s augmentation. This rule emphasizes not every one of lhs
must determine rhs. Actually these redundant items are encouraged to be cleaned.
TFD3. If X → Γ 1(Y ) and Z → Γ 2(W ), then XZ → Γ 3(YW ).
TFD3 also extends Armstrong’s augmentation.
TFD4. If X → Γ 1(Y ), and Z ⊆ Y with Z-ex, then X → Γ 2(Z).
TFD4 is similar to the decomposition corollary in Armstrong’s axioms.
TFD5. If XY → Γ (Z), X and Y affect Z respectively, then X → Γ 1(Z) and Y → Γ 2(Z).
TFD6. If XY → Γ (Z) with W ⊆ XY, and W doesn’t work on Z range, then XY\W →
Γ (Z).
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For TFD5 and TFD6, there are no counterpart axioms for Armstrong’s traditional
FDs. And they are complementary to TFD2. If we apply TFD5 and TFD6 to a TFD,
e.g.1, A, B → Γ (C, D), Γ = {C ∈ (f 1(A), f 2(A)], D ∈ [f 3(A, B), f 4(A, B)), D ∈ [f 5(A,
B), f 6(A, B))}, then we can obtain by TFD5 A, B → Γ 1(C), Γ 1= {C ∈ (f 1(A), f 2(A)]}
and A, B → Γ 2(D), Γ 2= {D ∈ [f 3(A, B), f 4(A, B)), D ∈ [f 5(A, B), f 6(A, B))}. And by
TFD6, the former one becomes A → Γ 3(C), Γ 3= {C ∈ (f 1(A), f 2(A)]}.

Specially, TFD2, TFD5 and TFD6 are contrary to Armstrong’s merger and
decomposition corollaries, servicing for lhs and rhs respectively.

TFD7. IfX → Γ (Y ) withRam⊆X ∪Y, andRam isRam-ex, thenX ∪Y → Γ i(Ram).
There is not an issue for traditional FDs corresponding toTFD7.Actually TFDsmean

inequalities, so some attributes can become independent variables in threshold functions
with others becoming dependent variables. The dependent variables are exactly the rhs.
It seems like pulling one hair and moving the whole body.

In TFDs, we don’t have Armstrong’s transitivity counterpart. Without loss of gen-
erality, transitivity in TFDs will bring vague threshold. The illustration is as follows. If
one tuple t satisfies X → Γ 1(Y ) and Y → Γ 2(Z), then we know that t[Z] is within the
Γ 2 range decided by t[Y ] which is decided by t[X]. So in the same tuple, t[X] affects
t[Z]’s value.

But there doesn’t always exist a non-false-TFD between X and Z due to implicit
bridge Y. e.g.6, A → Γ 1(B), Γ 1= {B ∈ [A − 10, A 10]}, B → Γ 2(C), Γ 2= {C ∈ [B,
+ ∞]}, so we can deduce A → Γ 3(C), Γ 3= {C ∈ [A + 10, + ∞]}. And e.g.7, if we
change the first TFD above into A → Γ 1(B), Γ 1= {B * lnB + 1/B ∈ [A − 10, A +
10]}, then the last TFD above comes to A → Γ 3(C) with vague threshold Γ 3, and this
is the case of false-TFD. Sometimes we attain a TFD by transitivity as e.g.6 shows, but
the result is false-TFD more often as e.g.7 shows. For convenience and unity, we don’t
accept transitivity of TFDs.

3.2 Sound and Complete

Here we prove soundness and completeness of the inference system.

Definition 2. Let Λ be a set of TFDs. If X → Γ (Y ) is deduced from Λ using TFD rules
above, then we say Λ � X → Γ (Y ).

Definition 3. Let Φ be a set of inference rules {TFD1 to TFD7}. Then Φ is sound for
logical implication of TFDs if X → Γ (Y ) is deduced from Λ using Φ, and X → Γ (Y )
is true in any relation in which the TFDs of Λ are true.

Lemma 2. Φ is sound for logical implication of TFDs.

Proof. In order to prove the soundness ofΦ we have to prove that each of the TFD rules
is sound. The processes are Proof 1 to Proof 7.

Proof 1. If Y ⊆ X ⊆ R, then X → Γ (Y ).

For each attribute in Y, denoted as Ram, Ram → Γ (Ram) holds according to Lemma
1. Ram → Γ (Ram) guarantees that when X\Ram don’t determine Ram, there at least
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exists one threshold function for Ram to hold for Γ . e.g.8, AB → Γ (AB), Γ = {A ∈ [A
− 0, A + 0], B ∈ [B − 0, B + 0]}. When X\Ram decide Ram’s values by some threshold
functions, Ram → Γ (Ram) is right but doesn’t work in Γ as we discuss in Lemma 1.
e.g.9, AB → Γ (AB), Γ = {A ∈ [B − 1, B + 1], B ∈ [A − 1, A + 1]}.

Proof 2. If X → Γ 1(Y ) and Z ⊆ R, then XZ → Γ 1(Y ) and XZ → Γ 2(YZ).

If one tuple t satisfies X → Γ (Y ), then t[Y ] is within the Γ range decided by t[X],
also by t[XZ] considering Z as Y-irre. So XZ → Γ (Y ) holds with threshold functions
unchanged. In the same tuple, t[Z]’s value range also can be determined by t[Z] exactly
as Lemma 1 shows, consideringX as Z-irre. SoXZ → Γ (YZ) holds with added threshold
functions like in e.g.8.

Proof 3. If X → Γ 1(Y ) and Z → Γ 2(W ), then XZ → Γ 3(YW ).

If one tuple t satisfies X → Γ 1(Y ) and Z → Γ 2(W ), then t[Y ] is within the Γ 1 range
decided by t[X] and t[W ] is within the Γ 2 range decided by t[Z]. In the same tuple, we
can say t[Y ] and t[W ] are within respective ranges decided by t[X] and t[Z] combined
in Γ 3. So XZ → Γ 3(YW ) holds.

Proof 4. If X → Γ 1(Y ), and Z ⊆ Y with Z-ex, then X → Γ 2(Z).

If one tuple t satisfies X → Γ 1(Y ) and Z ⊆ Y with Z-ex, we can convert it into X
→ Γ 1(Z ∪ (Y\Z)). In tuple t, we can say t[Z] and t[Y\Z] are both within the Γ 1 range
decided by t[X]. We divide threshold functions in Γ 1 into Γ 2 and Γ 3 for Z and Y\Z
respectively. So we can say in the same tuple t, t[Z] is within the Γ 2 range decided by
t[X] while t[Y\Z] is within Γ 3. So X → Γ 2(Z) and X → Γ 3(Y\Z) hold.

Proof 5. If XY → Γ (Z), X and Y affect Z respectively, then X → Γ 1(Z) and Y →
Γ 2(Z).

If one tuple t satisfies XY → Γ (Z), X and Y affect Z range respectively, then t[Z] is
within the Γ range decided by t[X] and by t[Y ] respectively. So we can say X → Γ 1(Z)
and Y → Γ 2(Z) hold. e.g.10, if A, B → Γ (C), Γ = {C ∈ [f 1(A), f 2(A)], C ∈ [f 3(B),
f 4(B)]}, thenA→ Γ 1(C),Γ 1= {C ∈ [f 1(A), f 2(A)]} andB→ Γ 2(C),Γ 2= {C ∈ [f 3(B),
f 4(B)]} hold.

Proof 6 If XY → Γ (Z) with W ⊆ XY, and W doesn’t work on Z range, then XY\W →
Γ (Z).

If one tuple t satisfies XY → Γ (Z) with W ⊆ XY, and W doesn’t work on Z range,
then t[Z] is within the Γ range decided by t[XY\W ]. So XY\W → Γ (Z) holds. e.g.11, if
A, B → Γ (C), Γ = {C ∈ [f 1(A), f 2(A)]}, then we have A → Γ (C), Γ = {C ∈ [f 1(A),
f 2(A)]}.

Proof 7. If X → Γ (Y ) with Ram ⊆ X ∪ Y, and Ram is Ram-ex, then X ∪ Y → Γ i(Ram).

If one tuple t satisfies X → Γ (Y ), then t[Y ] is within the Γ range decided by t[X].
Denoting some elements in X ∪ Y as Ram, if Ram is Ram-ex, then t[Ram]’s value is
affected by attributes X ∪ Y\Ram or Ram itself like in Lemma 1. So we have X ∪ Y →
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Γ i(Ram) due to permissible redundant of lhs implemented by TFD2. e.g.12, A, B →
Γ 1(C), Γ 1= {C ∈ [A + B − 10, A + B + 10]}, so A, C → Γ 2(B), Γ 2= {B ∈ [C − A−10,
C − A + 10]} and B, C → Γ 3(A), Γ 3= {A ∈ [C−B−10, C − B + 10]}. Or we have
e.g.3 as example. But when Ram is not Ram-ex, e.g.13, A, B → Γ 1(C), Γ 1= {C ∈ [B +
eAB+ A − 10, B + eAB+ A + 10]}, then we cannot get A, C → Γ 2(B) or B, C → Γ 3(A)
but A, B → Γ (C) is correct.

Definition 4. Let Φ be a set of inference rules {TFD1 to TFD7}. Let Λ + be all TFDs
which can be deduced by Λ using Φ and Λ itself. Φ is complete if every element of Λ

+ can be deduced by starting from Λ and reasoning from Φ.

It is NP-hard to find out all TFDs in Λ+ as in Armstrong’s axioms for traditional
FDs. So we prove TFD rules’ completeness by contrapositive way.

Proposition 1. If X → Γ (Y ) can never be deduced fromΛ by usingΦ, then X → Γ (Y )
can never be implicated in Λ+.

Lemma 3. The inference rules TFD1 to TFD7 are complete.

Proof. Contrapositive of TFDs rules’ completeness, that is Proposition 1, provesLemma
3.

Theorem 1. The inference system is sound and complete.

4 Experiments

In this section, we present results of detecting TFDs horizontal violations over climate
data by algorithm shown in Fig. 2.

Input:    a set of TFDs Λ,a TSDB table T
Output: tuples err[n] with error data
1.for each TFD Δ in Λ do 
2.      Remove irrelevant attributes to rhs in lhs by TFD6.
3.end for  
4.for each tuple t in T do
5.      for each TFD Δ in Λ do
6.            for each formula Γ in Δ do
7. attr[R] attributes in  Γ.
 8. if attr[R] does not satisfy  Γ then
 9. err[n] t.
10.                   end if
11.           end for
12. end for
13.end for

Algorithm Detecting_horizon

Fig. 2. Algorithm detecting horizontal errors
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We find a TFD between Sea Level Pressure (SLP) and elevation in climate series
data based on (1) where p represents SLP/Pa and h represents elevation/m.

p = e5.25885×1n(288.15−0.0065h)−18.2573 (1)

So from (1) we obtain a TFD h → Γ (p), Γ = {p ∈ [(1) − δ, (1)+ δ}. Though
the above equality is deduced in the condition of considering influence of atmosphere
and temperature, there must exist a confidence interval in natural circumstances. In our
experiments, we let δ be 35 and intuitive detecting-errors results are as Fig. 3(a), (b), (c)
show.

(c) elevation in 996 to 997hPa SLP in different dates  (d) SLP and elevation in different dates 

(a) SLP changing with elevation               (b) SLP in 9-meter elevation in different dates 

Fig. 3. Experimental results

It is worth mentioning that we execute the algorithm in [9] which can detect abrupt
changes with time to obtain errors among tuples while performing detecting_horizon
algorithm, for which Fig. 3(d) shows horizontal and vertical constraints at the same time.
Time node P1 doesn’t satisfy both constraints while P2 satisfies the latter but not the
former and P3, P4 are exactly opposite to P2.

From the above results, we can see that there are several types of errors occurred in
TSDB, those satisfy or don’t satisfy TFDswith orwithout abrupt changes. If one attribute
A is an abrupt change in a column data, then other attributes in TFD including A are
greatly possibly abrupt changes because of value bindings in TFD.In this case, we just
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need to check vertical constraints only in the column of attribute A and its corresponding
TFDs to save time and energy. So TFDs reduce the burden of vertical detection of every
column data, as Fig. 4 shows, and TFDs can detect errors between attributes in one tuple
that cannot achieved in vertical detection.

Fig. 4. Detecting errors in different settings of techniques

If we classify types of errors in TSDB with the same probability of each error type
by satisfying or not satisfying with or without abrupt changes, we can obtain 2n+1−1
errors when there are n attributes in one TFD. Under the condition of implementation of
the single TFD with n attributes, the rates of error types that can be detected by arbitrary
number of attributes’ vertical detection are shown as Table 2.

Table 2. The rates of error types that can be detected

Error types Only detecting
TFD

Detecting TFD and
vertical constraints
in one attribute

Detecting TFD and
vertical constraints
in two attributes

Detecting TFD and
vertical constraints
in k attributes (k ≤
n)

2n+1 − 1 2n/2n+1 − 1 ≥
50%

2n + 2n−1/2n+1 −
1 ≥ 75%

2n + 2n−1 +
2n−2/2n+1 − 1 ≥
87.5%

2n + 2n−1 +
…+ 2n−k /2n+1 −
1

Actually, numbers of errors satisfying TFD with abrupt changes such as P3 an P4 in
Fig. 3(d) are less than other types, so rates in the above table will be arose in practice.

5 Conclusions

We propose a new variant of traditional Functional Dependencies in this article and
provide classified TFDs with some rules for its logical operation. But the theoretical
system is not that perfect. We have mentioned the most different content contrasting to
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traditional FD’s system is the correctness of TFDs set. So next we will focus on this
problem and find effective algorithm to judge correctness of a TFD set. In addition, the
vertical constraint hidden in TFDs has been still unsolved though we simply show its
capacity to detect errors in the experiments. It will be a key point of our future work.
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6. El Chamie, M., Janak, D., Açıkmeşe, B.: Markov decision processes with sequential sensor
measurements. Automatica 103, 450–460 (2019)

7. Kolanowski, K., Swietlicka, A., Kapela, R., Pochmara, J., Rybarczyk, A.: Multisensor data
fusion using Elman neural networks. Appl. Math. Comput. 319, 236–244 (2018)

8. Song, S., Gao, Y., Wang, J.: Cleaning timestamps with temporal constraints. PVLDB 9(10),
708–719 (2016)

9. Jordan, H., Owen, S.V., Arun, K.: Automatic anomaly detection in the cloud via statistical
learning. CoRR abs/1704.07706 (2017)


	Threshold Functional Dependencies for Time Series Data
	1 Introduction
	2 Threshold Functional Dependencies
	2.1 Definition
	2.2 Classifying
	2.3 Properties of TFDs

	3 An Inference System for TFDs
	3.1 TFD Rules
	3.2 Sound and Complete

	4 Experiments
	5 Conclusions
	References




