
An Efficient and Metadata-Aware Big Data
Storage Architecture

Rize Jin1(B), Joon-Young Paik1, and Yenewondim Biadgie2

1 School of Computer Science and Technology, Tiangong University, Tianjin 300160, China
jinrize@tiangong.edu.cn

2 Department of Software and Computer Engineering, Ajou University,
Suwon 16499, Republic of Korea

Abstract. This paper introduces a hash partitioning-based file compaction design
to improve the efficiency of storing and accessing small files in big data storage
systems. The proposed approach consists of a file compaction tool and an access
interface. The compaction tool merges a group (usually a directory) of small files
into a set of “big files” to reduce the metadata required to be maintained in the on-
chipmemory. The data locality and tree structure of those small files are preserved.
The access interface is designed to provide transparent access to the small files in
the big files. Experimental results confirm that the proposed approach lead to a
significantly enhancement in terms of namespace usage and access speed.

Keywords: Big data · Small file · File compaction ·Metadata management

1 Introduction

A file is called small [1] when its size is substantially less than the block size of big data
platforms [2, 3] which typically is 128 KB. Files and blocks are metadata objects and
occupy namespace (mapping space) of the on-chip memory. When there are numerous
small files stored in the system, the massive metadata information can occupy a large
memory space. The storage space may be underutilized because of the namespace limi-
tation. For example, 100million files with an average size of 3K can consume 70%of the
namespace capacity of 256MB RAM, yet occupy only 1% of a 4 TB storage. Moreover,
massive small files generate small and random writes, which incurs an increase of write
amplification [4]. This paper proposes a file compaction method as an effective solution
to the problem of managing massive amounts of small files in big data storage systems.
The proposed approach increases the scalability of the system by reducing the names-
paces usage and decreasing the operation load in the on-chip memory by distributing
namespace management.

Our primary contribution is to explore empirically a hash partitioning-based file
compaction format to organize a group of small files into a compact file consisting of
multiple larger files. The file compaction reduces the amount of file metadata residing
in RAM. The compact file retains data locality and data intact by maintaining a local
index and the metadata information of the original small files. Our second contribution

© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020 Workshops, LNCS 12115, pp. 146–152, 2020.
https://doi.org/10.1007/978-3-030-59413-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59413-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-59413-8_12


An Efficient and Metadata-Aware Big Data Storage Architecture 147

is to provide a set of principles to implement a multi-thread merge tool to improve the
efficiency of creating “big files” frommany small files. Each big file is a self-manageable
key-value document.

The remainder of this paper is organized as follow. Section 2 defines the problem
of managing massive amounts of small files in big data storage. Section 3 presents the
design details of the proposed solution. Section 4 reports the performance evaluation.
Section 4.1 discusses related work and Sect. 5 concludes this paper.

2 Problem Definition

Several studies [5–7] indicate that small and random writes are slower than sequential
writes. Small files tend to incur many small and random writes. We call a write small
when the request size is equal to or less than the block size (i.e.,<128KB). The controller
performs additional work to maintain the metadata necessary for mapping small writes.
Further, an enormous number of small files requires significantly more namespace to
maintain the extremely large amount of metadata and this is clearly not efficient as the
big data storage systems have a relatively limited on-chip memory space [8, 9]. Read
performance is a consequence of the write pattern. When writing a large chunk of data,
it is likely to be stored in locations that are contiguous in the physical space. However,
small fileswhose addresses are contiguous in the logical spacemay refer to addresses that
are not contiguous in the underlying storage system to the dynamic mapping performed
by the buffer management.

The on-chip memory is relatively a limited resource. The OS maintains namespace
information for each file buffered in the on-chip memory. When the number of files
becomes extremely large, the usage of the memory increases sharply. For example,
assume that there are 100 million small files and the metadata of each file occupies 100
bytes of memory space; then, they would consume 1 GB memory space. As user data
increases, it is not difficult to exceed the namespace limit. The actual namespace stores
considerably more information including the metadata of directories and blocks.

3 The Proposed Method

3.1 Design Considerations

Considering the abovementioned issues, the proposed file compaction approach includes
five design principles: 1) Buffer hot files. Files that change frequently are considered
as hot [10]. Hot files and their metadata should be buffered in the on-chip memory as
much as possible and written to the underlying storage infrequently. To address this, the
proposedmethod uses the least recently used (LRU) buffer replacement policy. 2)Collect
small writes. To maximize throughput and minimize write amplification, whenever
possible, small writes should be maintained in the buffer in the on-chip memory and
only written once when the buffer is full. 3) Clean-first buffer management [11]. The
buffer manager should consider not only the buffer hit ratio but also the heavy write cost
of the logging mechanism employed by the majority of big data systems. 4) In-block
update. It uses an in-block update (IBU) strategy that divides one physical block into



148 R. Jin et al.

data blocks and log blocks tomaintain the updates of small files both separately from and
locally to the original files. 5) Prefetching [12]. It is a widely used storage optimization
technique to reduce buffer misses by exploiting access patterns and fetching data into a
buffer before they are requested. We employ a two-level prefetcher, which consists of
local index file prefetching and correlation-based file prefetching.

3.2 Compaction File Format

Figure 1 illustrates a method to locate a small file in the proposed method. The small file
is stored in a compact file that consists of multiple big files. Small files within big files
are indexed by a hash index to maintain the original separation of data. In detail, small
files are stored as a set of <key, value> pairs, the file name (or the path of the file in a
host system) is the key and the content is the value. A metadata file records the original
directory tree structure.

Big File Big File Big File

Big File

Big FileBig File

Index data

Big file data

Hash index

Fig. 1. Locate small files using hash index.

3.3 Transparent Access

The proposed method is designed to fit into the underlying file system and hence, can
provide transparent access to the upper applications. When accessing a directory, the
user can expose small files and the directory tree structure. Individual small files can
also be accessed directly without being extracted from the big file. Accessing a file is
slower than a usual access. We first must locate the index of the small file and then read
the data from the big file. The application or host uses the absolute path of the small file
as the identifier (sID) when accessing. The hash function calculates a bID value, which
is the identifier of its corresponding big file, from sID and the system can then locate the
local index file by finding a record that associates with bID in the namespace. Figure 2
presents the process.

3.4 File Compaction Tool

To create a big file efficiently, this paper implements a file compaction tool in a multi-
thread fashion: a list of small files is generated by traversing the source directories



An Efficient and Metadata-Aware Big Data Storage Architecture 149

C:\dir1\dir1.1\dir1.1.1\smallFile01

Identifier for BigFile

Identifier for SmallFile

Fig. 2. Resolve sID to bID.

recursively and then the list is divided into several ranges using a hash function. The small
files within each range are stored into a big file (approximately 8 MB, configurable).
Finally, index and metadata files are generated. In detail, each big file consists of a
metadata file and a local index file, which records the offset and length for each original
small file it includes, and a set of <key, value> pairs, where key is the file name and
value is the content of that file. The reason the index and the metadata file are maintained
within the big file is that we want these data stored physically close together to facilitate
prefetching.

Compared to maintaining numerous metadata objects as a global index in the names-
pace, the proposed solution does not result in additional overhead to the on-chipmemory.
If the sum of the small files to be compacted exceeds the predefined size for a big file,
the list of small files is divided into multiple big files. In Fig. 3, a directory containing
many small files is combined as a directory with several big files and indexes.

Compaction Tool

f

small/

F

big.hfc/

f f f f f

…

…

index metadata F

File Access Interface

F

f Small file

Big file

Fig. 3. Compact small files into a big file.

As mentioned earlier, the big data storage functions well for a sequential access
pattern. However, small files usually do not provide sequential accessing, even for a batch
processing requested to them. The reason is that they are likely to lose data locality in the
presence of out-of-place updates. Consequently, the host cannot provide a prefetching



150 R. Jin et al.

function. File compaction ensures that related small files are stored sequentially and
in-block updates preserve the maximum possible data locality.

4 Performance Evaluation

4.1 Experiment Settings

The test platform was built on a Core i5–2500 machine (3.30 GHz, 16 GB DDR3 RAM)
running Ubuntu 16.04 with Hadoop version 2.7.

Figure 4 compares thememory usage of the proposedmethod (HFC) and the original
approach when the system stored multiple file sets. We varied the number of small
files, #ofSmallFiles, along with the sizes of the big files, sizeOfBigFile. As expected,
the proposed approach achieved considerably improved efficiency storing small files
compared to the original method, increasing approximately 510 times for sizeOfBigFile
= 1.75 MB and approximately 3,800 times for sizeOfBigFile = 14 MB. The proposed
approach required less namespace because of its local index file design.

Fig. 4. Comparison of memory usage varying the number of small files and the size of big files.

4.2 Varying Read/Write Ratio

HFC was evaluated by varying the read/write ratio, RWR, of a workload made of a mix
of interleaved reads and writes (the update ratio: 50%). The test assumed a namespace of
32 MB and buffer size of 64 MB. At the beginning of this test, the system was populated
with two million small files. The performance decreased with an increase in the write
ratio. The performance degradation of HFC was relatively less than that of the other
approach, as indicated in Fig. 5. The reason is that the in-block update of HFC reserves
the data locality of the original file and its logs and therefore, HFC performs fewer disk
writes. Conversely, the existing approach can suffer performance degradation owing to
the increased garbage collection ratio. In particular, the execution time of the original
approach increased 100 times as the RWR increased from 100/0 to 0/100; HFC had an
increase of 36%.



An Efficient and Metadata-Aware Big Data Storage Architecture 151

Fig. 5. Comparison of execution times by varying read/write ratio.

5 Conclusions

The increasing capacity of big data storage systems has resulted in significant over-
head for managing the in-RAM metadata of massive amounts of small files. To ensure
the scalability and efficiency of accessing these small files, this paper proposed a hash
partitioning-based file compaction: a novel file compaction interface that provides trans-
parent access to individual small files within a large file using a local index design. In
detail, massive amounts of small files are compacted into a small number of big files;
each big file consists of a local index file that records the offset and length for each
original small file included and a set of <key, value> pairs, where key is the file name
and value is the content of that file. Compared to maintaining many metadata objects as
a global index in the namespace, the proposed solution reduces significantly the lookup
and access overhead to big data storage systems.

Acknowledgments. This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grant 61806142, in part by the Natural Science Foundation of Tianjin
under Grant 18JCYBJC44000.

References

1. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. ACM SIGARCH Comput. Architect. News 18, 364–
373 (1990)

2. McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J., Barton, D.: Big data: the
management revolution. Harvard Bus. Rev. 90(10), 60–68 (2012)

3. Labrinidis, A., Jagadish, H.V.: Challenges and opportunities with big data. Proc. VLDB
Endowment 5(12), 2032–2033 (2012)



152 R. Jin et al.

4. Hu, X.Y., Eleftheriou, E., Haas, R., Iliadis, I., Pletka, R.: Write amplification analysis in
flash-based solid state drives. In: Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference, p. 10 (2009)

5. Lee, S.W., Moon, B.: Design of flash-based DBMS: an in-page logging approach. In: Pro-
ceedings of the 2007 ACM SIGMOD International Conference on Management of Data,
pp. 55–66 (2007). https://doi.org/10.1145/1247480.1247488

6. Chen, F., Koufaty, D.A., Zhang, X.: Understanding intrinsic characteristics and system impli-
cations of flash memory based solid state drives. In: Proceedings of ACM SIGMETRICS
Performance Evaluation Review, pp. 181–192 (2009). https://doi.org/10.1145/2492101.155
5371

7. Kang, J.U., Jo, H., Kim, J.S., Lee, J.: A superblock-based flash translation layer for NAND
flashmemory. In: Proceedings of the 6thACM&IEEE InternationalConference onEmbedded
Software, pp. 161–170 (2006). https://doi.org/10.1145/1176887.1176911

8. Bende, S., Shedge, R.: Dealing with small files problem in hadoop distributed file system.
Procedia Comput. Sci. 79, 1001–1012 (2016)

9. ElKafrawy, P.M., Sauber, A.M., Hafez, M.M.: HDFSX: big data distributed file system with
small files support. In: 2016 12th International Computer EngineeringConference (ICENCO),
pp. 131–135. IEEE, 28 December 2016

10. Park, D., Du, D.H.: Hot data identification for flash-based storage systems using multiple
bloom filters. In: 2011 IEEE 27th Symposium on Proceedings of Mass Storage Systems and
Technologies (MSST), pp. 1–11 (2011). https://doi.org/10.1109/msst.2011.5937216

11. Jin, R., Cho, H.J., Chung, T.S.: LS-LRU: a lazy-split LRU buffer replacement policy for
flash-based B+-tree index. J. Inf. Sci. Eng. 31(3), 1113–1132 (2015)

12. Joseph, D., Grunwald, D.: Prefetching using Markov predictors. In: Proceedings of ACM
SIGARCH Computer Architecture News, pp. 252–263 (1997). https://doi.org/10.1109/12.
752653

https://doi.org/10.1145/1247480.1247488
https://doi.org/10.1145/2492101.1555371
https://doi.org/10.1145/1176887.1176911
https://doi.org/10.1109/msst.2011.5937216
https://doi.org/10.1109/12.752653

	An Efficient and Metadata-Aware Big Data Storage Architecture
	1 Introduction
	2 Problem Definition
	3 The Proposed Method
	3.1 Design Considerations
	3.2 Compaction File Format
	3.3 Transparent Access
	3.4 File Compaction Tool

	4 Performance Evaluation
	4.1 Experiment Settings
	4.2 Varying Read/Write Ratio

	5 Conclusions
	References




