®

Check for
updates

Low Rank Communication for Federated
Learning

Huachi Zhou®™, Junhong Cheng, Xiangfeng Wang, and Bo Jin

East China Normal University, Shanghai 200062, People’s Republic of China
{hczhou, jhcheng}@stu.ecnu.edu.cn,
{xfwang,bjin}@cs.ecnu.edu.cn

Abstract. Federated learning (FL) aims to learn a model with privacy
protection through a distributed scheme over many clients. In FL, an
important problem is to reduce the transmission quantity between clients
and parameter server during gradient uploading. Because FL environ-
ment is not stable and requires enough client responses to be collected
within a certain period of time, traditional model compression practices
are not entirely suitable for FL setting. For instance, both design of the
low-rank filter and the algorithm used to pursue sparse neural network
generally need to perform more training rounds locally to ensure that
the accuracy of model is not excessively lost. To breakthrough transmis-
sion bottleneck, we propose low rank communication Fedlr to compress
whole neural network in clients reporting phase. Our innovation is to
propose the concept of optimal compression rate. In addition, two mea-
sures are introduced to make up accuracy loss caused by truncation:
training low rank parameter matrix and using iterative averaging. The
algorithm is verified by experimental evaluation on public datasets. In
particular, CNN model parameters training on the MNIST dataset can
be compressed 32 times and lose only 2% of accuracy.

Keywords: Federated learning - Convolutional neural network * Low
rank approximation - Matrix compression + Singluar vaue
decomposition

1 Introduction

The widespread application of deep neural networks has achieved remarkable
success in many computer tasks, such as image processing, speech recognition,
and text translation. However, most of them require people to share their per-
sonal data with service providers, including their daily behaviors, personal pref-
erences, etc., which to some extent is quite private data. Therefore, users hate
or even refuse to upload personal data to the server.

At the same time, mobile phones and tablets with a large amount of users’
sensitive data become more and more powerful. With development of edge com-
puting, the scheme of deploying tasks at the edge of the network rather than the
cloud is becoming more and more mature.

© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020 Workshops, LNCS 12115, pp. 1-16, 2020.
https://doi.org/10.1007/978-3-030-59413-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59413-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-59413-8_1

2 H. Zhou et al.

@ ﬂ@ g %@ Server *ge-" Vodel flow

I S
@ User @ Local data
NS

Fig. 1. The structure of FL

FL is a machine learning framework that aims to build a high-quality learn-
ing model as centralized in which training data remain local. In order to do this,
H. Brendan et al [1] propose Federated Average algorithm. Terminal devices
train a shared model with data stored locally under the coordination of param-
eter server. At each training round, sever randomly selects those volunteering
devices which are qualified to participate in this round. Those chosen clients
upload their own gradients to the central sever within a fixed time. Then server
averages all participants’ gradients and sends it back to the participants. This
iterative training process continues throughout the network until global conver-
gence is reached or some termination condition is met [1]. However, in the learn-
ing process of mass clients, communication efficiency is of the utmost importance
(Fig.1).

On one hand, because of characteristics of asymmetric digital subscriber
line, the upload speed is several times lower than the download speed. Network
communication speeds are even orders of magnitude slower than distributed
environment. In order to solve transmission bottleneck, reducing communication
costs, especially when clients upload their models, helps nodes spend less time
on crowded channels to speed up training round.

On the other hand, existing work trying to cut communication cost mostly
focuses on two schemes. The first is to reduce the amount of information needed
to be exchanged globally by increasing the number of local iteration rounds [2].
However, the size of model parameters needed to be transmitted for a single time
is still very large. The second is to quantify information to reduce the number
of bits [3,4]. But, the problem of quantization is that the accuracy is unstable
and it is easy to cause precision loss.

To solve these problems, we propose Federated low rank(Fedlr) algorithm
which reduces the communication cost between server and clients, while keeping
the accuracy. Our work shows that the low-rank representation of a matrix can
optimally achieve a balance in accuracy loss, which brings new ideas to the
design of communication efficiency strategy. Our contributions are summarized
as follows:

Low Rank Communication for Federated Learning 3

— We apply truncated SVD to compress parameter matrix of model convolu-
tional layers and propose a general algorithm for determining the optimal
compression ratio of the parameter matrix.

— In order not to significantly increase model loss caused by rank truncation,
we train low rank convolutional layers. The central node aggregates historical
gradients of each node separately to reduce the variance of current gradient.

— The extensive experiments on public datasets show the effectiveness of the
proposed algorithm.

2 Related Works

In Sects.2.1 and 2.2, we introduce traditional neural network compression
techniques. In Sect. 2.3, we introduce gradient compression techniques. In our
description, readers will find that content in Sect. 2.3 is more suitable for FL.

2.1 Model Pruning

The purpose of neural network pruning is to reduce the amount of model weights
to make model thinner. There are three distinguished mechanisms. The first is
to add different penalty terms to the loss function of neural network during
training process to promote the trained neural network to contain more zero
elements. [5] selects parameter index set whose value range is {0,1} to penalize
the total number of network parameters. [6] sets a scaling factor which multiplies
with a channel output before it goes into next layer. The penalty term chooses
the sum of scaling factors. The second method directly deletes smaller weights
during training. [7] proposes a gentle gradual pruning method, which slowly
prunes from a small sparsity to the desired sparsity. [8] inherits this idea and
proposes one-shot pruning, while each round masking some smaller weights,
resetting remaining weights to initial value and retraining the whole network. In
the forward propagation process, [9] deletes a channel of the i-th layer and see
if the output of the i+1 layer is seriously affected to determine the importance
of the channel weight in i-th layer. The third method is weight sharing: through
weight clustering, channels of the same category share the same weight [10],
which only decreases the memory space occupied by the model and does not
save model reasoning time, compared to the first two methods. Overall, pruning
is not suitable for FL environments. First, it is difficult to agree on whether to
cut off some connectivity between neurons among clients. Second, pruning needs
extra rounds for retraining to restore the performance of the model, which takes
a lot of time.

2.2 Model Low Rank Filter and Model Quantization

Another method of model compression is to use low rank convolutional filters.
[11] designs low rank filters including two processes. First, it classifies input

4 H. Zhou et al.

Train Low Rank
Neural Network

Server

Aggregate the
Models from Clients

Clients Download
the Latest Model

SVD Decomposition

Send Truncated
Parameter Matrix

Average the Model
by Its Historical
Calculate Optimal Parameters
Compression Ratio

Fig. 2. Flow chart of Fedlr algorithm

channels and only allows portion of filters to connect to a specific class to reduce
filters redundancy and projects the input image dimension down to 1D sub-
space using intermediate filters to reduce input size. Then they apply the tensor
decomposition method to all filters to store weights more efficiently. [12] In order
to reduce channel or filter redundancy, horizontal and vertical filters with a rank
of 1 are used to approximate the previous 2d tensor. The aim of model quanti-
zation is to replace floating-point numbers with 8-bit or 16-bit integers or other
low-precision numeric formats. Based on [13], there are two quantization meth-
ods: deterministic quantization and stochastic quantization. For the former, the
popular binary neural network maps model weights to {+1, —1} according to
their positive and negative. For the latter, [14] assumes model weights follow
multinomial distribution and attempts to train neural networks with discrete
weights. But under FL setting, low rank filter design also needs additional local
training rounds to minimize reconstruction errors, which takes a lot of time. For
quantization, decreasing number of bits may cause serious degradation of the
model. According to Deep Compression’s survey, quantized convolutional layer
requires 10 bits to avoid a significant loss of accuracy [15].

2.3 Gradient Quantization

Gradient quantization, just as its name suggests, is applied to the output gra-
dient to be transmitted by each node, which follows a common principle. The
mathematical expectation of quantified variable is an unbiased estimate of the

Low Rank Communication for Federated Learning 5

original variable mathematical expectation [16-18]. Unlike model quantization,
which recovers the accuracy of pruned model by increasing training round, gra-
dient quantization uses other strategies to bridge the gap between quantized
values and true values of gradients. [19] Each node accumulates its own quan-
tization error for each round. Before each round starts quantization, decayed
quantization error is added to current local gradient to compensate it. [20] uses
stochastic rotated quantization to limit quantization range to [0, 1] to reduce
mean squared error. Due to its wide application in distributed learning, gradient
quantization is also widely used in FL. It is worth noting that our work does not
include any distributed quantization and the subsampling techniques contained
in [21]. Future work will try to make them compatible with our work to provide
greater compression rates (Fig. 3).

-0 000 0O (s

%D@@
MxM MxN

<£:17 Selecet top k
 HEE
MxK

MxN

NxN

Layer 2

Layer 1

KxK KxN

Fig. 3. The left part is n fully connected layers and we assume top layer has shape
M x N. Right part illustrates the compression process of SVD

3 Federated Low Rank Algorithm

3.1 Overview

In this section, we will describe our method. The algorithm has four main com-
ponents: training low rank parameter matrix, determining optimal compression
ratio, compressing model using SVD and reducing noise. The complete proce-
dures at the server and each client node are presented in Algorithms 1 and 2,
respectively. In order to explain our Fedlr strategy more clearly, we provide a
flow chart (shown in Fig.2) of the algorithm. In left part, clients download lat-
est model, train low rank model locally and upload their model using truncated
SVD. In right part, server receives each client model, averages with its historical
model and aggregates all averaged models.

6 H. Zhou et al.

Algorithm 1: Fedlr strategy for server:

Input : specified minimum receiving client gradient number T, Specified
communication round N, Model selected for training W, volunteering
edge nodes set C'

Output: ,s\l}ared model parameter Wo,+

1 Initialize W randomly ;

2 Initialize history-gradients «— || ;

3 Initialize aggregated_gradients «— [| ;

4 for each communication round r = 1,2... N do

5 Randomly select S; clients from C;

6

7

8

9

send W to St clients;
fort=1,2..T do

listening clients m in S and receiving message [};Eme;
Wi = Unn S Vin;

10 history_gradients[m].append (W,,) ;
11 W = 2, history_gradients[m]][il;
12 aggregated,gradients.append(ﬁ/;);
13 end

14 W= XL aggregated_gradients]i];
15 end

16 return W as Wy

3.2 Model Compression Using SVD

Low-rank decomposition has a wide range of applications in image restora-
tion, matrix filling, and collaborative filtering. Projecting matrices to lower-
dimensional linear subspaces greatly reduces costs of federal learning commu-
nication [22]. The adversarial training of Peter Langenberg and others on the
fully-convolutional neural network shows that low-rankness of neural network
weights can further improve robustness [23]. Low rank characteristic also helps
model from overfitting. Compared to other popular matrix factorization tech-
niques, such as CUR matrix factorization, which maintains sparsity within the
decomposed matrix, we adopt a more popular truncated SVD matrix technique.
There are two advantages. First, according to Eckart-Young theorem, truncated
SVD has the smallest low-rank approximation error, which lets us not worry
about excessive decline in accuracy. Second, according to extensive experiments,
only around 1% of singular values contain 97% of energy, which also explains
from another perspective why the SVD low rank approximation still maintains
excellent accuracy even if a large number of singular vectors are discarded. This
feature of focusing energy on a few singular values allows us to compress the
parameter matrix as much as possible. In this paper, we only focus on param-
eter matrix of convolutional layer and do not consider structure or weight of a
single filter in particular. In results analysis section, we will discuss connection
between our strategy and single convolution filter. The weight of CNN layer

Low Rank Communication for Federated Learning 7

Algorithm 2: Fedlr strategy for clients:

Input : shared model parameter from server W, local datasets D,
minibatchsize b, learning rate r, epoch size T', hyperparameter A\ «,
loss function [, Frobenius norm constraint F’, clients C
Output: model parameter UXV
training phase;
for each client ¢ € C in parallel do
Initialize Wy, . «— W;
for m = 1,2...T do
for n = 1,2..‘% do
‘ Wn,c = n—1l,c — T(Vl + OZVF),
end

end
YUYV =SVD(W.);
10 Estimate k < optimal_ratio(X) from equation (14);

© 0 N O A WN -

11 Sending UXV to server;
12 end

is in the form of 4d tensor WX4Xmxn(q is kernel size, m is the number of
input channel and n is the number of output feature map). We convert W into
d? x m x n shape. So each element in 3d array is W € R™*". According to the
definition of SVD [24], W = UXV, where U is a left singular matrix with the
size of m X min (m, n), V is a right singular matrix with the size min (m,n) x n
and Y is a diagonal matrix of singular values like diag(oq,o...... ,0n) where
o1 > 09...... > Omin (m,n)- According to the definition of SVD, W can be written

min (m,n)
W= > oUV. (1)
i=1
Assuming that only k ranks are retained, the optimal rank k approximation of
the parameter matrix W is:

k
W=> ol . (2)
1=1

The size of original parameter matrix B = m x n. After the parameter matrix is
compressed, message sent by a client to the server equals to B (We don’t count
the packet header and tail added for network transmission):

B=USV=mxk+k+nxk=km+n+1). (3)
In order to achieve message compression, the reserved rank number k needs to

satisfy 0 < B < B, which means

mn

0<k< ——m— .
- T m4+n—+1

(4)

8 H. Zhou et al.

We operate each element in 3d array of all convolutional layers in same way.
When the channel is congested and packet loss occurs frequently, mobile phone
detects that network layer is in a bad condition with high delay. Instead of
sending entire low rank matrix at once, the client sends one singular value and
the corresponding left and right singular vector each time.

3.3 Optimal Compression Ratio

In order to reduce redundancy between filters, it is really effective to replace
them with a linear combination of fewer filters or low-rank filters. In practical
applications, it is very difficult to decide how many filters to be left in order to
achieve the maximum compression ratio while a small performance degradation.
Researchers face the same problem when compressing neural parameters to be
transmitted. In the past, model compression often selects fixed-rank intercep-
tion [25]. We supppose that different machine learning tasks and corresponding
datasets demand different parameter space. The result is that the number of
ranks worth retaining for different task or different layer is also different. The
results analysis section verifies our assumption. When fixed compression ratio
is large, information originally contained in the parameter matrix is excessively
deleted. When the compression ratio is too small, the potential for deeper com-
pression of a matrix is ignored. Considering this problem, we propose a formula
to decide optimal compression rate of a parameter matrix. Suppose g(k) repre-
sents the compression ratio of a parameter matrix, and f(k) represents the loss
rate of a matrix information. Based on Sect. 3.1, the optimal k needs to satisfy

(5)

mn

max f(k) 4+ ag(k) , where 0<k< e

We use Frobenius norm to measure the retention rate of matrix information:

= (6)

Now (5) becomes to

Based on definition of Frobenius norm,

iz": a?j = y/trace(W x W)

i=1 j=1

Wlp=

Low Rank Communication for Federated Learning 9

and

(10)

For the purpose of optimizing this formula more easily, we square f(k) and g(k).
So we get

k 2 2

. - —k
max E;(:ni:; 2+a(r) . (11)
k Z¢=1 o r

We set f(k) first-order increment symbol to

Vi) = — b 12
first-order increment of g(k)
a2k —2r—1
Vy(k) = % . (13)

We can easily see that f(k) is a monotonically increasing function, and the
increment is gradually decreasing. g(k) is a monotonically decreasing function
and absolute value of the increment is gradually decreasing. Judging from the
second-order increment of f(k) and g(k), the change rate of first-order increment
of f(k) goes from large to small and the change rate of first-order increment of
g(k) is constant. And because front singular values concentrate most of energy,
when k is small, the first-order increment of f(k) should be greater than the
first-order increment of g(k). Moreover, we assume that k should not reach the
optimal value near the upper and lower bounds of the domain. So, when the
first-order increment of f(k) is equal to the first-order increment of g(k), the
whole formula reaches maximum. So optimal k satisfies

min(m,n) min(m,n)

a(2r+1) Z o? =ro} 4+ 2a Z ok . (14)

=1 i=1

Among them, « is a hyperparameter, which measures the importance of
matrix compression ratio. When the channel is extremely congested and packet
loss occurs seriously, clients increase o value appropriately. When network con-
nection is smooth, clients decrease a value. More importantly, it is worth noting
that parameters needed for getting k totally depend on singular values of matrix
W € Ry, x»n mentioned in Sect. 3.1 and do not require additional calculations to
occupy computing time of edge nodes. So it does not bring burden to hardware
devices and saves cell phone battery power.

3.4 Train Low Rank Parameter Matrix

During truncation, although redundancy and unimportant information are
deleted, it is still harmful to neural network powerful expression ability. We

10 H. Zhou et al.

hope to minimize the accuracy loss caused by the truncation of singular val-
ues. So we train neural network parameters into a rank compact matrix whose
energy is more focused on previous singular values. The benefit of the parameter
matrix to be low rank for neural network is twofold. First, it brings greater gen-
eralization performance. Second, truncation of decomposed matrix sent in the
reporting stage will not cause too much loss of accuracy. Generally, we assume
neural network loss function [. So our training task is:

minl(x;w) . (15)

In order to ensure that the trained matrix is a low-rank matrix, we add the
nuclear norm to constrain the parameter matrix W. Now our task is

minl(z;w) + X ||W, . (16)

The hyperparameter A measures the influence of nuclear norm on the entire
formula. One strategy is to use subgradient descent to solve this problem. First
W = UXV is SVD of W, then the sub-gradient of the above formula is VI+UVT.
The sub-gradient method can be used for non-differentiable objective functions
and can be applied to a wider range of problems. However, sub-gradient method
is much slower than stochastic gradient descent method, which will cause the
problem of slow convergence. Another way is to use proximity operator [26]:

Wit = prozyxa). (Wi —yVI(Wy)) (17)

to solve the problem. Later, it applies soft-thresholding operator to W. However,
it still involves singular value decomposition of the parameter matrix W in each
mini batch gradient descent round, which is not time-efficient. So we replace the
nuclear norm with Frobrenius norm which has the advantages of being smooth
and differentiable to constrain parameter matrix rank. Now our task is:

minl(z;w) + X |W||p . (18)

3.5 Noise Reduction Method

Because common machine cannot store gradients of all training samples in its
memory, SGD feeds a fraction of samples to models to complete this training
round. The direction of the gradient descent completely depends on gradient cal-
culation results of current mini batch, resulting in a large variance. When model
gets to around local optimal point, the noise will make it oscillate back and forth
around destination and cannot shrink immediately. We treat low-rank trunca-
tion of model weight matrix as a kind of noise applied to the gradient. According
to Jorge Nocedal et al, there are three ways to reduce variance [27]. The first
type is the dynamic sampling method, which reduces the variance of gradient
estimation by gradually increasing sample size when calculating gradient. The
second type is iterative averaging method which averages the parameter matrix
W obtained after each training round with historically stored parameter matrix

Low Rank Communication for Federated Learning 11

to reduce its variance; The third type is gradient aggregation method, which
stores historical gradient of each sample and directly or indirectly uses historical
or current gradients of all samples to make corrections during each mini-batch
estimation of gradient. Compared to the second method, both first and third
methods require edge nodes to store many gradients locally. We are more willing
to transfer this workload to the parameter server which performs only gradient
aggregation task before. Let the server store the historical parameter matrix sent
by each client at each round. The method is described as follows. Before server
applying weight aggregation, the parameter server first uses the tail averaging
method [28]:

N 1

W41 < 2“11@ (19)

k—s+1 77°

to reduce its variance for each client. Compared to complicated explanations
given in [28], it is very easy to understand why (20) only averages the nearest
k — s 4+ 1 historical gradients. According to the definition of model’s expected
generalization error:

2 — 2 F())\2
Emoder(f; D) = Ep|[(f(x; D) —y)”] = Ep[(f(x) —y)] + Ep|(f(z; D) — f(x))],
(20)
the initial model has a poor ability to fit the data set, so its variance is large
and the bias is small. As the number of training rounds increases, the model
becomes more complex, characterized by small bias and large variances. Only
recent models can help maintain a low-bias feature while reducing variances.

Table 1. Model

3 x 3 conv. 96 ReLLU

3 x 3 conv. 96 ReLU

3 x 3 conv. 96 ReLLU stride 2
3 % 3 conv. 192 ReLLU

3 x 3 conv. 192 ReLLU

3 % 3 conv. 192 ReLU stride 2
3 % 3 conv. 192 ReLU

1 x 1 conv. 192 ReLU

1x 1 conv. 10 ReLU

Global averaging layer

10 or 100-way softmax

4 Experiment

4.1 Datasets

We evaluate the performance of our algorithm on 3 datasets: MNIST [29],
CIFAR-10 and CIFAR-100 [30]. MNIST is a large handwritten digit datasets

12 H. Zhou et al.

with a training set of 60,000 examples and a test set of 10,000 examples. The
CIFAR-10 data set consists of 10 types of 32 x 32 color pictures, which contains a
total of 60,000 pictures, and each type contains 6000 pictures. 50000 pictures are
used as the training set, and 10,000 pictures are used as the test set. The CIFAR-
100 dataset has 100 categories, and the number of pictures in each category is
one tenth of CIFAR-10.

1.0

o
©
)

o
©
)

°©
N
)

accuracy
o
o
|

0.5 1
—— mnist acc prune
0.4 —— cifarl0 acc prune
—— cifarl00 acc prune
—— mnist acc not prune
0.3 1 —— cifarl0 acc not prune
—— cifarl00 acc not prune
0.2

[o] 10 20 30 40
communication round

Fig. 4. It shows changes in accuracy on test set and convergence of three datasets after
adopting our strategy. Not prune means not adopted.

4.2 Parameter Setting

For us, training a high accuracy model is not our goal. We only care about
whether the accuracy can be maintained while hugely improving communica~
tion efficiency after using our Fedlr strategy. The learning rate, decay rate,
momentum, a, A is set to 0.01, 1075, 0.9, 1, 0.01. For Sect. 3.4, sever keeps
each client 3 historical gradients. We set 5 clients, each of which gets 10,000
pictures after training dataset has been shuffled. The aggregation algorithm we
adopt is Mcmahan federated averaging algorithm [1]. The epoch size of each
client training round is 10 and the communication round is 45.

4.3 Model

We use All-CNN-C model (shown in Table 1) in [31] which implementes a convo-
lutional neural network with all convolutional layers. More convolutional layers
mean that we have more chances to compress our model, which makes our strat-
egy effects more convincing. This CNN model has a total of eleven layers. The
first seven layers are in the form of 4d tensor and can be processed by our strat-
egy. The other layers have much fewer parameters than them. So they are not
worth being compressed by our method.

Low Rank Communication for Federated Learning 13

50 A

40
—— mnist rank number A=0.05
—— mnist rank number A=0.01
—— cifarl0 rank number A=0.01
—— cifarl00 rank number A=0.01

10 1

[o] 10 20

30 40
communication round

rank number
w
o
!

N
o
L

Fig. 5. We show the effect of our strategy by average optimal k drop in the model fifth
layer. Initial rank is 192.

1.0

0.9 A

0.8 A

°
N
!

accuracy
=]
o
L

0.5

0.4 —— cifar 10 prune a=1.2
——— cifar 10 prune a=1.1
—— cifar 10 prune a=1.0

0.3 A —— cifar 10 prune «=0.9
—— cifar 10 prune a=0.8

0.2

[0} 10 20 30 40
communication round

Fig. 6. We show CIFAR-10 datasets test accracy among different « in Sect. 3.2 to see
the effect of hyperparameters on the final accuracy of our model.

4.4 Results Analysis

As shown in Fig.4, the experimental results show that our Fedlr strategy
performs very well on three datasets MNIST, CIFAR-10 and CIFAR-100. On
MNIST datasets, by sacrificing only 2% accuracy, optimal rank k reduces from
192 to 3 (Fig. 5), achieving 64 x parameter matrix rank compression rate. In fact,
because the left singular matrix and the right singular matrix are transmitted
at the same time, model compression rate is actually only half of rank compres-
sion rate, 32x. And model only loses 4% accuracy on CIFAR-10 datasets and
convergence rate does not change much compared with normal FL. without any
compression strategy. Although rank compression rate in the first few rounds is
only 4x for three datasets, it improves very fast. Only in a dozen rounds optimal
rank k could converge to a fixed value. In hundreds of rounds of FL, these times

14 H. Zhou et al.

can be omitted. At the same time, we notice the abnormal performance of rank
descent on the MNIST dataset. We think that CNN is very easy to learn the
characteristics of digital pictures. So model convergence rate is very fast. The
regularization term does not bring constraints to model weights. We need to
adjust hyperparameter A\ in Sect. 3.3 from 0.01 to 0.05. The result proves our
opinion. The CIFAR datasets do not have such problems, so we do not make
this adjustment for them. As shown in Fig. 6, We find that final accuracy of the
model is not sensitive to the hyperparameter a. We think there are two pos-
sible reasons. The first point is that the number of clients is small and owing
training set is large, they are very easy to learn core knowledge. The second
point is that we train a low-rank parameter matrix, which causes the previous
singular values to be large. It is difficult to decrease the optimal k even with a
larger hyperparameter «. These two reasons inspire our future work to explore
the correlation between the value of « and the accuracy of the model when there
are a large number of clients with a small training set. We hope this research
will provide a minimum bound for the number of needed filters to reconstruct
original convolutional layers and guide the design of low-rank filters.

5 Conclusions

Under FL setting, we use a low-rank communication to compress model param-
eter matrix. In a communication network, parameter server can quickly receive
clients responses without worrying about the obvious loss of accuracy. Our algo-
rithm is verified by extensive experimental evaluation on public datasets.

Acknowledgement. This work was supported by National Key R&D Program of
China (No. 2017YFC0803700), NSFC grants (No. 61532021 and 61972155), Shang-
hai Knowledge Service Platform Project (No. ZF1213) and Zhejiang Lab (No.
2019KBOABO4).

References

1. McMahan, H.B., Moore, E., Ramage, D., Hampson, S.: Communication-efficient
learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629
(2016)

2. Liu, Y., et al.: A communication efficient vertical federated learning framework.
arXiv preprint arXiv:1912.11187 (2019)

3. Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., Pedarsani, R.: FedPAQ:
a communication-efficient federated learning method with periodic averaging and
quantization. arXiv preprint arXiv:1909.13014 (2019)

4. Sattler, F., Wiedemann, S., Miiller, K.R., et al.: Robust and communication-
efficient federated learning from non-IID data. arXiv preprint arXiv:1903.02891
(2019)

5. Srinivas, S., Subramanya, A., Venkatesh Babu, R.: Training sparse neural net-
works. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 138-145 (2017)

http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1912.11187
http://arxiv.org/abs/1909.13014
http://arxiv.org/abs/1903.02891

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Low Rank Communication for Federated Learning 15

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 27362744 (2017)

Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv preprint arXiv:1710.01878 (2017)

Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635 (2018)

Luo, J.H., Wu, J., Lin, W.: Thinet: a filter level pruning method for deep neural
network compression. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 5058-5066 (2017)

Ullrich, K., Meeds, E., Welling, M.: Soft weight-sharing for neural network com-
pression. arXiv preprint arXiv:1702.04008 (2017)

Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: Advances in
Neural Information Processing Systems, pp. 12691277 (2014)

Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. arXiv preprint arXiv:1405.3866 (2014)

Guo, Y.: A survey on methods and theories of quantized neural networks. arXiv
preprint arXiv:1808.04752 (2018)

Shayer, O., Levi, D., Fetaya, E.: Learning discrete weights using the local repa-
rameterization trick. arXiv preprint arXiv:1710.07739 (2017)

Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

Konecny, J., Richtéarik, P.: Randomized distributed mean estimation: accuracy vs.
communication. Front. Appl. Math. Stat. 4, 62 (2018)

Alistarh, D., Grubic, D., Li, J., Tomioka, R., Vojnovic, M.: QSGD: communication-
efficient SGD via gradient quantization and encoding. In: Advances in Neural Infor-
mation Processing Systems, pp. 1709-1720 (2017)

Horvath, S., Ho, C.Y., Horvath, L., Sahu, A.N., Canini, M., Richtarik, P.: Natural
compression for distributed deep learning. arXiv preprint arXiv:1905.10988 (2019)
Wu, J., Huang, W., Huang, J., Zhang, T.: Error compensated quantized SGD
and its applications to large-scale distributed optimization. arXiv preprint
arXiv:1806.08054 (2018)

Suresh, A.T., Yu, F.X., Kumar, S., McMahan, H.B.: Distributed mean estimation
with limited communication. In: Proceedings of the 34th International Conference
on Machine Learning, vol. 70, pp. 3329-3337. JMLR. org (2017)

Caldas, S., Kone¢ny, J., McMahan, H.B., Talwalkar, A.: Expanding the reach
of federated learning by reducing client resource requirements. arXiv preprint
arXiv:1812.07210 (2018)

Prabhavalkar, R., Alsharif, O., Bruguier, A., McGraw, L.: On the compression of
recurrent neural networks with an application to LVCSR acoustic modeling for
embedded speech recognition. In: 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 5970-5974. IEEE (2016)
Langeberg, P., Balda, E.R., Behboodi, A., Mathar, R.: On the effect of low-
rank weights on adversarial robustness of neural networks. arXiv preprint
arXiv:1901.10371 (2019)

Kalman, D.: A singularly valuable decomposition: the SVD of a matrix. Coll. Math.
J. 27(1), 2-23 (1996)

http://arxiv.org/abs/1710.01878
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1702.04008
http://arxiv.org/abs/1405.3866
http://arxiv.org/abs/1808.04752
http://arxiv.org/abs/1710.07739
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1905.10988
http://arxiv.org/abs/1806.08054
http://arxiv.org/abs/1812.07210
http://arxiv.org/abs/1901.10371

16

25.

26.

27.

28.

29.

30.

31.

H. Zhou et al.

Konegny, J., McMahan, H.B., Yu, F.X., Richtarik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016)

Ciliberto, C., Stamos, D., Pontil, M.: Reexamining low rank matrix factorization
for trace norm regularization. arXiv preprint arXiv:1706.08934 (2017)

Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine
learning. STAM Rev. 60(2), 223-311 (2018)

Jain, P., Kakade, S.M., Kidambi, R., Netrapalli, P., Sidford, A.: Parallelizing
stochastic approximation through mini-batching and tail-averaging. STAT 1050,
12 (2016)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278-2324 (1998)

Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images
(2009)

Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1706.08934
http://arxiv.org/abs/1412.6806

	Low Rank Communication for Federated Learning
	1 Introduction
	2 Related Works
	2.1 Model Pruning
	2.2 Model Low Rank Filter and Model Quantization
	2.3 Gradient Quantization

	3 Federated Low Rank Algorithm
	3.1 Overview
	3.2 Model Compression Using SVD
	3.3 Optimal Compression Ratio
	3.4 Train Low Rank Parameter Matrix
	3.5 Noise Reduction Method

	4 Experiment
	4.1 Datasets
	4.2 Parameter Setting
	4.3 Model
	4.4 Results Analysis

	5 Conclusions
	References

