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Abstract. In recent years, deep generative models have achieved
remarkable success in unsupervised learning tasks. Generative Adversar-
ial Network (GAN) is one of the most popular generative models, which
learns powerful latent representations, and hence is potential to improve
clustering performance. We propose a new method termed CD2GAN for
latent space Clustering via dual discriminator GAN (D2GAN) with an
inverse network. In the proposed method, the continuous vector sampled
from a Gaussian distribution is cascaded with the one-hot vector and
then fed into the generator to better capture the categorical informa-
tion. An inverse network is also introduced to map data into the separa-
ble latent space and a semi-supervised strategy is adopted to accelerate
and stabilize the training process. What’s more, the final clustering labels
can be obtained by the cross-entropy minimization operation rather than
by applying the traditional clustering methods like K-means. Extensive
experiments are conducted on several real-world datasets. And the results
demonstrate that our method outperforms both the GAN-based cluster-
ing methods and the traditional clustering methods.
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1 Introduction

Data clustering aims at deciphering the inherent relationship of data points and
obtaining reasonable clusters [1,2]. Also, as an unsupervised learning problem,
data clustering has been explored through deep generative models [3–5] and the
two most prominent models are Variational Autoencoder (VAE) [6] and Gen-
erative Adversarial Network (GAN) [7]. Owing to the belief that the ability to
synthesize, or “create” the observed data entails some form of understanding,
generative models are popular for the potential to automatically learn disentan-
gled representations [8]. A WGAN-GP framework with an encoder for clustering
is proposed in [9]. It makes the latent space of GAN feasible for clustering by
carefully designing input vectors of the generator. Specifically, Mukherjee et al.
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proposed to sample from a prior that consists of normal random variables cas-
caded with one-hot encoded vectors with the constraint that each mode only
generates samples from a corresponding class in the original data (i.e., clusters
in the latent space are separated). This insight is key to clustering in GAN’s
latent space. During the training process, the noise input vector of the generator
is recovered by optimizing the following loss function:

J = ||E(G(zn)) − zn||22 + L(E(G(zc)), zc) (1)

where zn and zc are Gaussian and one-hot categorical components of the input
vector of the generator respectively and L(·) denotes the cross-entropy loss
function.

However, as pointed in [10], one can not take it for granted that pretty small
recovery loss means pretty good features. So we propose a CD2GAN method
for latent space clustering via dual discriminator GAN. The problem of mode
collapse can be largely eliminated by introducing the dual discriminators. Then
by focusing on recovering the one-hot vector we can obtain the final clustering
result by the cross-entropy minimization operation rather than by applying the
traditional clustering techniques like K-means.

2 The Proposed Method

First of all, we will give key definitions and notational conventions. In what
follows, K represents the number of clusters. D1 and D2 denote two discrimina-
tors respectively, where D1 favors real samples while D2 prefers fake samples. G
denotes the generator that generates fake samples and E stands for the encoder
or the inverse network that serves to reduce dimensionality and get the latent
code of the input sample. Let z ∈ R

1×d̃ denote the input of the generator, which
consists of two components, i.e., z = (zn, zc). zn is sampled from a Gaussian
distribution, i.e., zn ∼ N (μ, σ2Idn

). In particular, we set μ = 0, σ = 0.1 in our
experiments and it is typical to set σ to be a small value to ensure that clusters
in the latent space are separated. And zc ∈ R

1×K is a one-hot categorical vector.
Specifically, zc = ek, k ∼ U{1, 2, · · · ,K}, ek is the k-th elementary vector.

2.1 Latent Space Clustering via Dual Discriminator GAN

From Eq. (1) we know that in [9], in order to get the latent code corresponding
to the real sample, it recovers the vector zn which is sampled from a Gaus-
sian distribution and offers no useful information for clustering. In addition, as
pointed in [10], small recovery loss does not necessarily mean good features. So
here comes the question, what are good features? Intuitively, they should contain
the unique information of the latent vector. The above two aspects show that
the latent vector corresponding to the real sample should not contain the impu-
rity (i.e., zn). In other words, the degree of dimension reduction is not enough.
Motivated by this observation, our method only needs to perfectly recover the
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Fig. 1. The CD2GAN framework.

most unique information (i.e., zc) of the latent vector corresponding to the real
sample, and utilizes only this part for clustering.

Motivated by all above facts, we propose a dual discriminator GAN frame-
work [11] with an inverse network architecture for latent space clustering, which
is shown in Fig. 1. From [11], the Kullback-Leibler (KL) and reverse KL diver-
gences are integrated into a unified objective function for the D2GAN framework
as follows:

min
G

max
D1,D2

L1(G,D1,D2) =αEx∼Pdata
[log(D1(x))] + Ez∼Pnoise

[−D1(G(z))] (2)

+ Ex∼Pdata
[−D2(x)] + βEz∼Pnoise

[log(D2(G(z))]

where Pdata and Pnoise denote the unknown real data distribution and the prior
noise distribution respectively. α and β are two hyperparameters, which control
the effect of KL and reverse KL divergences on the optimization problem. It is
worth mentioning that the problem of mode collapse encountered in GAN can be
largely eliminated since the complementary statistical properties from KL and
reverse KL divergences can be exploited to effectively diversify the estimated
density in capturing multi-modes.

In addition, the input noise vector (i.e., z) of the generator is zn (sampled
from a Gaussian distribution without any cluster information) concatenated with
a one-hot vector zc ∈ R

1×K (K is the number of clusters). To be more precise,
z = (zn, zc). It is worth noting that each one-hot vector zc corresponds to one
type of mode provided zn is well recovered [9]. The inverse network, i.e., the
encoder, has exactly opposite structure to the generator and serves to map data
into the separable latent space. The overall loss function is:

min
E,G

max
D1,D2

L1(G,D1,D2) + L2(E,G) + L3(E,G) (3)

where
L2(E,G) = λ||E(G(zc)) − zc||22 (4)

L3(E,G) = εLCE(zc, E(G(zc))) (5)

and E(G(zc)) denotes the last K dimensions of E(G(z)), LCE(·) is the cross-
entropy loss. Similar to GAN [7], the D2GAN with an inverse network model
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Algorithm 1. CD2GAN
Input: Dataset X, Parameters α, β, ε, λ, K

1: for t = 1, 2, · · · , number of training epochs do
2: Sample m real samples {x1, ..., xm} from X
3: Sample m one-hot vectors {z1

c , ..., zm
c }

4: Sample m continuous vectors {z1
n, ..., zm

n } from a Gaussian distribution (μ =
0, σ = 0.1)

5: Update discriminator D1 by ascending along its gradient:
�parameterD1

1
m

∑m
i=1[α log D1(x

i) − D1(G(zi))]
6: Update discriminator D2 by ascending along its gradient:

�parameterD2
1
m

∑m
i=1[β log D2(G(zi)) − D2(x

i)]
7: Sample m one-hot vectors {z1

c , ..., zm
c }

8: Sample m continuous vectors {z1
n, ..., zm

n } from a Gaussian distribution (μ =
0, σ = 0.1)

9: Update generator G and the inverse network E by descending along their gradi-
ent:
�parameterG,E

1
m

∑m
i=1[β log D2(G(zi)) − D1(G(zi)) + L2(E, G) + L3(E, G)]

10: end for
11: for i = 1, 2, · · · , number of real samples do
12: Get the label set Y of all xi by equation (6)
13: end for

Output: Label set Y

can be trained by alternatively updating D1, D2, G and E, where Adam [12] is
adopted for optimization. It is worth noting that the one-hot vector, i.e., zc ∈
R

1×K can be regarded as the cluster label indicator of the fake sample generated
from G since each one-hot vector corresponds to one mode. In addition, through
adequate training, data distribution of samples generated from G will become
much more identical to the real data distribution Pdata. From this perspective,
the inverse network (i.e., the encoder E) can be regarded as a muti-class classifier,
which is the key reason why we introduce the cross-entropy loss L3(E,G) to the
overall loss function.

When it comes to clustering, we can utilize the well trained encoder E. For-
mally, given a real sample x, the corresponding cluster label ỹ can be calculated
as follows:

ỹ = arg min
t

εLCE(one hot(t), E(x)[d̃ − K :])+λ||one hot(t) − E(x)[d̃ − K :]||22 (6)

where t = 0, 1, · · · ,K − 1, one hot(t) ∈ R
1×K is the t-th elementary vector and

E(x)[d̃ − K :] returns a slice of E(x) consisting of the last K elements. λ and
ε remain the same as in the model training phase. For clarity, the proposed
CD2GAN method is summarized in Algorithm 1.

2.2 Semi-supervised Strategy

In this section, we propose a semi-supervised strategy to accelerate and stabilize
the training process of our model.
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Table 1. Summary of the five datasets in the experiments.

Datasets #Data point Dimension #Cluster

MNIST 70000 28 × 28 10

Fashion 70000 28 × 28 10

Pendigit 10992 1 × 16 10

10 x73k 73233 1 × 720 8

Pubmed 19717 1 × 500 3

From [9] we know that the one-hot component can be viewed as the label
indicator of the fake samples. With the training going on, we get lots of real
samples with their labels, and the encoder can be seen as a multi-class classifier.
Like semi-supervised classification problem. Specifically, given a dataset with
ground-truth cluster labels, a small portion (1%–2% or so) of it will be sampled
along with the corresponding ground-truth cluster labels. Let x̃ = (x, y) denote
one of the real samples for semi-supervised training, where x ∈ R

1×d represents
the observation while y is the corresponding cluster label. During the training
process, y is encoded to a one-hot vector just like zc, which will then be con-
catenated with one noise vector zn to serve as the input of the generator G.
Afterwards, the latent code of G(z), i.e. E(G(z)), can be obtained through the
encoder. Subsequently, the corresponding x will be fed into the encoder E to
get another latent code E(x). As mentioned above, the last K dimensions of the
latent code offer the clustering information, and intuitively, one could expect
better clustering performance if the the last K dimensions of E(G(z)) and E(x)
are more consistent. In light of this, a loss function can be designed accordingly:

L4(E,G) = γ||(E(xr) − E(G(zn, one hot(xl))))[d̃ − K :]||22) (7)

where γ is a hyperparameter. In essence, we compute the Euclidean distance
between the last K dimensions of E(G(z)) and E(x), which is easy to be opti-
mized. In this way, the overall objective function for the semi-supervised training
can be defined as follows:

min
E,G

max
D1,D2

L1(G,D1,D2) + L2(E,G) + L3(E,G) + L4(E,G) (8)

From the perspective of semi-supervised learning, we should sample a fixed small
number of real samples when updating the parameters of E and G. In prac-
tice, faster convergence and less bad-training can be achieved when the semi-
supervised training strategy is adopted.
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Table 2. Comparison results for unsupervised clustering. The best result in each mea-
sure is highlighted in bold.

MNIST Fashion Pendigit 10 x73k Pubmed

NMI ClusterGAN 0.885 0.611 0.729 0.731 0.125

GAN with bp 0.873 0.488 0.683 0.544 0.061

AAE 0.895 0.554 0.654 0.617 0.132

GAN-EM 0.905 0.577 0.722 0.734 0.157

InfoGAN 0.844 0.541 0.709 0.563 0.127

SC - - 0.701 - 0.104

AGGLO 0.677 0.565 0.681 0.599 0.112

NMF 0.411 0.491 0.554 0.695 0.061

CD2GAN 0.911 0.638 0.773 0.783 0.210

ARI ClusterGAN 0.893 0.487 0.651 0.677 0.117

GAN with bp 0.884 0.332 0.602 0.398 0.072

AAE 0.906 0.425 0.590 0.546 0.112

GAN-EM 0.902 0.399 0.642 0.659 0.132

InfoGAN 0.825 0.398 0.632 0.401 0.102

SC - - 0.598 - 0.097

AGGLO 0.502 0.460 0.563 0.452 0.096

NMF 0.344 0.322 0.421 0.557 0.076

CD2GAN 0.924 0.501 0.709 0.701 0.187

3 Experiments

3.1 Experimental Setting

Datasets and Evaluation Measures. We adopt five well-known datasets
(i.e. MNIST [13], Fashion [14], Pendigit [15], 10 x73k [9] and Pubmed [16]) in the
experiments and the basic information are listed in Table 1. Two commonly used
evaluation measures, i.e., normalized mutual information (NMI) and adjusted
Rand index (ARI) are utilized to evaluate the clustering performance [17].

Baseline Methods and Parameter Setting. We adopt 8 clustering meth-
ods as our baseline methods including both GAN-based methods and tradi-
tional clustering methods. They are ClusterGAN [9], GAN with bp [9], adver-
sarial autoencoder (AAE) [18], GAN-EM [19], InfoGAN [8], spectral clustering
(SC) [20], Agglomerative Clustering (AGGLO) [21] and Non-negative Matrix
Factorization (NMF) [22].

We set α = 0.1, β = 0.1, ε = 1, γ = 1 for all the datasets. As for λ, we set
λ = 0 for 10 x73k and MNIST and set λ = 0.1 for the other datasets. When it
comes to the network architecture, we adopt some techniques as recommended
in [23] for image datasets, and for the other datasets we use the full connected
networks. The learning rate of Pubmed is set to be 0.0001 while 0.0002 for the
other datasets.
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Table 3. Comparison results with adopting the semi-supervised strategy for model
training. The best result in each measure is highlighted in bold.

MNIST Fashion Pendigit 10 x73k Pubmed

NMI AAE-Semi 0.943 0.721 0.810 0.823 0.299

GAN-EM-Semi 0.951 0.726 0.804 0.794 0.297

CD2GAN-Semi 0.945 0.741 0.860 0.895 0.371

ARI AAE-Semi 0.944 0.661 0.789 0.804 0.304

GAN-EM-Semi 0.955 0.653 0.754 0.788 0.311

CD2GAN-Semi 0.955 0.690 0.831 0.880 0.411

3.2 Comparison Results

Comparison results are reported in Table 2 for unsupervised clustering, where
the values are averaged over 5 normal training (GAN-based methods typically
suffer from bad-training). As can be seen, the proposed CD2GAN method beats
all the baseline methods on all the datasets in terms of the two measures. Partic-
ularly, CD2GAN is endowed with the powerful ability of representation learning,
which accounts for the superiority over traditional clustering methods, i.e., SC,
AGGLO and NMF. What’s more, we also conduct experiments to validate the
effectiveness of the semi-supervised training strategy and the results are reported
in Table 3. As shown in the table, the proposed CD2GAN-Semi (CD2GAN with
semi-supervised training strategy) beats AAE-Semi (AAE with semi-supervised
training strategy) and GAN-EM-Semi (GAN-EM with semi-supervised training
strategy) on almost all the datasets except MNIST.

4 Conclusion

In this paper, we propose a method termed CD2GAN for latent space clustering
via D2GAN with an inverse network. Specifically, to make sure that the conti-
nuity in latent space can be preserved while different clusters in latent space can
be separated, the input of the generator is carefully designed by sampling from
a prior that consists of normal random variables cascaded with one-hot encoded
vectors. In addition, the mode collapse problem is largely eliminated by intro-
ducing the dual discriminators and the final cluster labels can be obtained by the
cross-entropy minimization operation rather than by applying traditional clus-
tering method like K-means. What’s more, a novel semi-supervised strategy is
proposed to accelerate and stabilize the training process. Extensive experiments
are conducted to confirm the effectiveness of the proposed methods.
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