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Abstract. Machine learning algorithms have been criticized as diffi-
cult to apply to new tasks or datasets without sufficient annotations.
Domain adaptation is expected to tackle this problem by establishing
knowledge transfer from a labeled source domain to an unlabeled or
sparsely labeled target domain. Most existing domain adaptation mod-
els focus on the single-source-single-target scenario. However, the pair-
wise domain adaptation approaches may lead to suboptimal performance
when there are multiple target domains available, because the informa-
tion from other related target domains is not being utilized. In this work,
we propose a unified semi-supervised multi-target domain adaptation
framework to implement knowledge transfer among multiple domains (a
single source domain and multiple target domains). Specifically, we aim
to learn an embedded space and minimize the marginal probability distri-
bution differences among all domains in the space. Meanwhile, we intro-
duce Prototypical Networks to perform classification, and extend it to
semi-supervised settings. On this basis, we further align the conditional
probability distributions among the domains by generating pseudo-labels
for the unlabeled target data and training the model with bootstrapping
method. Extensive sentiment analysis experiments show that our app-
roach significantly outperforms several state-of-the-art methods.

Keywords: Domain adaptation · Adversarial learning ·
Semi-supervised · Prototypical networks · Self-training · Sentiment
analysis

1 Introduction

Supervised learning algorithms have achieved great success in many fields with
the availability of large quantities of labeled data. However, it is costly and time-
consuming to annotate such large-scale training data for new tasks or datasets.
c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12112, pp. 419–434, 2020.
https://doi.org/10.1007/978-3-030-59410-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59410-7_29&domain=pdf
https://doi.org/10.1007/978-3-030-59410-7_29


420 X. Wu et al.

A naive idea is directly applying the model trained on a labeled source domain
to the related and sparsely labeled target domain. Unfortunately, the model
usually fails to perform well in the target domain due to domain shifts [24].
Domain adaptation (DA) is proposed to address this problem by transferring
knowledge from a labeled source domain to a sparsely labeled target domain.

Existing DA methods can be divided into: supervised DA (SDA) [14,20,26],
semi-supervised DA (SSDA) [11,21,23,31], and unsupervised DA (UDA) [4,5,9,
15]. SDA methods assume that there are some labeled data in the target domain,
and perform DA algorithms only use the labeled data. Conversely, UDA methods
do not need any target data labels, but they require large amounts of unlabeled
target data to align the distributions between domains. Considering that it is
cheap to annotate a small number of samples and a few labeled data often leads
to significant performance improvements, we focus on SSDA which exploits both
labeled and unlabeled data in target domains.

Typical DA methods are designed to embed the data from the source and tar-
get domains into a common embedding space, and align the marginal probability
distributions between the two domains. There are two approaches to achieve this,
adversarial training [4,10,20,27] and directly minimizing the distance between
the two distributions [15,18,28,35]. Both of the methods can generate domain-
invariant feature representations for input data, and the representations from
the source domain are used to train a classifier, which is then generalized to the
target domain. However, only aligning the marginal distributions is not sufficient
to ensure the success of DA [4,5,12,33], because the conditional probability dis-
tributions between the source and target domains may be different.

Most DA algorithms focus on the single-source-single-target setting. How-
ever, in many practical applications, there are multiple sparsely labeled target
domains. For example, in the sentiment analysis task of product reviews, we can
take the reviews of Books, DVDs, Electronics and Kitchen appliances as differ-
ent domains. If we only have access to sufficient labeled data of Book reviews
(source domain), and hope to transfer knowledge to the other domains, then
each of the other domains can be seen as a target domain. In this case, pair-
wise adaptation approaches may be suboptimal, especially when there are shared
features between the source and multiple target domains or the source and the
target domain are associated through another target domain [9]. This is due to
that these methods fail to leverage the knowledge from other relevant target
domains. In addition, considering the distribution differences among multiple
target domains, simply merging multiple target domains into a single one may
not be the optimal solution.

To address these problems, we propose semi-supervised multi-target domain
adaptation networks (MTDAN). Specifically, we use a shared encoder to extract
the common features shared by all domains, and a private encoder to extract
the domain-specific features of each domain. For feature representations gener-
ated by the two encoders, we train a domain discriminator to distinguish which
domain they come from. To ensure that the shared representation is domain-
invariant, the shared encoder is encouraged to generate the representation
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cannot be correctly distinguished by the domain discriminator. Given that there
are only a few labeled data in each target domain, we introduce Prototypical
Networks to perform classification, which is more superior than deep classifiers
in few-shot scenarios [25]. We further leverage unlabeled data to refine proto-
types, and extend Prototypical Networks to semi-supervised scenarios. Moreover,
we utilize the self-training algorithm to exploit unlabeled target data, and we
show that it can also align the class-conditional probability distributions among
multiple domains.

Contributions. Our contributions are: a) We propose a unified adversarial
learning framework for semi-supervised multi-target DA. b) We show that the
prototype-based classifier can achieve better performance than the deep classi-
fier when target domains have only a few labeled data and large amounts of
unlabeled data. c) We show that the self-training algorithm can effectively align
the class-conditional probability distributions among multiple domains. d) Our
method outperforms several state-of-the-art DA approaches on sentiment anal-
ysis dataset.

2 Related Work

Domain Adaptation. Numerous domain adaptation approaches have been
proposed to solve domain shift [29]. Most of them seek to learn a shared embed-
ded space, in which the representations of source domain and target domain
cannot be distinguished [27]. Based on that, the classifier trained with labeled
source data can be generalized to the target domain. There are two typical ways
to learn cross-domain representations: directly minimizing the distance between
two distributions [15,17,18] and adversarial learning [6,7,26,27].

For the first method, several distance metrics have been proposed to measure
the distance between source and target distributions. One common distance met-
ric is the Maximum Mean Discrepancy (MMD) [2], which computes the norm
of the difference between two domain means in the reproducing Kernel Hilbert
Space (RKHS). Specifically, the DDC method [28] used both MMD and regular
classification loss on the source to learn representations that are discriminative
and domain invariant. The Deep Adaptation Network (DAN) [15] applied MMD
to the last full connected layers to match higher order statistics of the two distri-
butions. Most recently, [18] proposed to reduce domain shift in joint distributions
of the network activation of multiple task-specific layers. Besides, Zellinger et al.
proposed Center Moment Discrepancy (CMD) [32] to diminish the domain shift
by aligning the central moment of each order across domains.

The other method is to optimize the source and target mappings using adver-
sarial training. The idea is to train a domain discriminator to distinguish whether
input features come from the source or target, whereas the feature encoder is
trained to deceive the domain discriminator by generating representations that
cannot be distinguished. [6] proposed the gradient reversal algorithm (ReverseG-
rad), which directly maximizes the loss of the domain discriminator by reversing
its gradients. DRCN in [8] takes a similar approach in addition to learning to
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reconstruct target domain images. [3] enforced these adversarial losses in a shared
feature space, while learned a private feature space for each domain to avoid the
contamination of shared representations.

[4,27,33] argued that only aligning the marginal probability distributions
between the source and target is not enough to guarantee successful domain
adaptation. [16] proposed to align the marginal distributions and conditional
distributions between the source and target simultaneously. [20] extended the
domain discriminator to predict the domain and category of the embedded repre-
sentation at the same time to align the joint probability distributions of input and
output, and achieved a leading effect in the supervised domain adaptive scene.
[5] proposed to align the class-conditional probability distributions between the
source and target.

Recently, Zhao et al. [34] introduced an adversarial framework called MDAN,
which is used for multi-source-single-target domain adaption. They utilized a
multi-class domain discriminator to align the distributions between multiple
source and a target domain. [9] proposed an information theoretic approach to
solve unsupervised multi-target domain adaptation problem, which maximizes
the mutual information between the domain labels and domain-specific features,
while minimizes the mutual information between the the domain labels and the
domain-invariant features. Unlike their approach, we base our method on self-
training rather than entropy regularization. Moreover, we introduce prototypical
networks to perform classification, which is more effective than deep classifiers
in SSDA scenarios.

Semi-supervised Learning. Recently, some works treat domain adaptation
as a semi-supervised learning task. [11] proposed a Domain Adaptive Semi-
supervised learning framework (DAS) to jointly perform feature adaptation
and semi-supervised learning. [21] applied a co-training framework for semi-
supervised domain adaptation, in which the shared classifier and the private
classifier boost each other to achieve better performance. [22] re-evaluated clas-
sic general-purpose bootstrapping approaches under domain shift, and proved
that the classic bootstrapping algorithms make strong baselines on domain adap-
tation tasks.

3 Preliminaries

In this section, we introduce the notations and definitions related to single-
source-multi-target DA.

Notations. We use D to denote a domain, which consists of an m-dimensional
feature space X and a marginal probability distribution P (x), i.e., D =
{X , P (x)}, where x ∈ X . We use T to denote a task which consists of a C-
cardinality label set Y and a conditional probability distribution P (y|x), i.e.,
T = {Y, P (y|x)}, where y ∈ Y.

Problem Formulation (Single-Source-Multi-target Domain Adapta-
tion). Let Ds = {(xs

l , y
s
l )}ns

l=1 be a labeled source domain where ns is the
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Fig. 1. The network structure of the proposed framework. The shared encoder Es

captures the common features shared among domains, while the private encoder Ep

captures the domain-specific features. The shared decoder F reconstruct the input
samples by using both the shared and private representations. The domain classifier D
learns to distinguish which domain the input representations come from. The orthog-
onality constraint loss Ldiff encourages Es and Ep to encode different aspects of the
inputs. The prototype-based classifier is computed on-the-fly, and the classification loss
Lc is only used to optimize Es.

number of labeled samples and let Dt = {Dti}Ki=1 be multiple sparsely labeled
target domains where Dti = {(xti

l , yti
l )}nli

l=1

⋃
{xti

u }nui
u=1, K is the number of target

domains, and nli(nli � ns) and nui
(nui

� nli) refer to the number of labeled
and unlabeled samples of i-th target domain respectively. We assume that all
domains share the same feature space X and label space Y, but the marginal
probability distributions and the conditional probability distributions of source
domain and multiple target domains are different from each other. The goal is
to learn a classifier using the labeled source data and a few labeled target data,
that generalizes well to the target domain.

4 Methodology

In this section, we describe each component and the corresponding loss function
of the proposed framework in detail.

4.1 Proposed Approach

Our model consists of four components as shown in Fig. 1. A shared encoder
Es is trained to learn cross-domain representations, a private encoder Ep is
trained to learn domain-specific representations, a shared decoder F is trained
to reconstruct the input sample, and a discriminator D is trained to distinguish
which domain the input sample comes from. Task classification is performed by
calculating the distance from the domain-invariant representations to prototype
representations of each label class.

Domain-Invariant and Domain-Specific Representations. We seek to
extract domain-invariant (shared) and domain-specific (private) representations



424 X. Wu et al.

for each input x simultaneously. In our model, the shared encoder Es and the
private encoder Ep learn to generate the above two representations respectively:

zs = Es(x,θs)
zp = Ep(x,θp)

(1)

Here, θs and θp refer to the parameters of Es and Ep respectively, zs and zp
refer to the shared and private representations of the input x respectively. Note
that Es and Ep can be MLP, CNN or LSTM encoders, depending on different
tasks and datasets.

Reconstruction. In order to avoid information loss during the encoding, we
reconstruct input samples with both shared and private representations. We use
x̂ to denote the reconstruction of the input x, which is generated by decoder F :

x̂ = F (zs + zp,θf ), (2)

where θf are the parameters of F . We use mean square error to define the
reconstruction loss LRecon, which is applied to all domains:

LRecon =
λr

N

N∑

i=1

1
C

‖xi − x̂i‖22, (3)

where C is the dimension of the input x, N is the total number of samples in all
domains, xi refers to the i-th sample, λr is the hyper-parameter controlling the
weight of the loss function, and ‖ · ‖22 is the squared L2-norm.

Orthogonality Constraints. To minimize the redundancy between shared and
private representations, we introduce orthogonality constraints to encourage the
shared and private encoders to encode different aspects of inputs. Specifically,
we use Hs to denote a matrix, each row of which corresponds to the shared
representation of each input x. Similarly, let Hp be a matrix, each row of which
corresponds to the private representation of each input x. The corresponding
loss function is:

LDiff = λdiff‖H�
s Hp‖2F , (4)

where λdiff is the scale factor, ‖ · ‖2F is the squared Frobenius norm.

Adversarial Training. The goal of adversarial training is to regularize the
learning of the shared encoder Es, so as to minimize the distance of distribu-
tions among source and multiple target domains. After that, we can apply the
source classification model directly to the target representations. Therefore, we
first train a domain discriminator D with the domain labels of the shared and
private representations (since we know which domain each sample comes from,
it is obvious that we can generate a domain label for each sample). The dis-
criminator D is a multi-class classifier designed to distinguish which domain the
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Algorithm 1. MTDAN Algorithm
Input: labeled source domain examples Ls, labeled multi-target domain examples

Lt = {Lti}Ki=1, unlabeled multi-target domain examples Ut = {Uti}Ki=1

Hyper-parameters: coefficients for different losses: λr, λd, λc, λdiff , mini-batch size
b, learning rate η

1: initialize θs, θp, θf , θd

2: repeat
3: repeat
4: Sample a mini-batch from {Ls, Lt}
5: Train F by minimizing LRecon

6: Train D by minimizing LD

7: Train Ep by minimizing LP

8: Train Es by minimizing LS

9: until Convergence
10: Apply Eq.(9) to label Ut

11: Select the most confident p positive and n negative predicted examples U l
t

from Ut

12: Remove U l
t from Ut

13: Add examples U l
t and their corresponding labels to Lt

14: until obtain best performance on the developing dataset

input representation comes from. Thus, D is optimized according to a standard
supervised loss, defined below:

LD = LDp
+ LDs

, (5)

LDp
= −λd

N

N∑

i=1

d�
i log D(Ep(xi,θp),θd), (6)

LDs
= −λd

N

N∑

i=1

d�
i log D(Es(xi,θs),θd), (7)

where di is the one-hot encoding of the i-th sample’s domain label, θd is the
parameter of D, and λd is the scale factor.

Second, we train the shared encoder Es to fool the discriminator D by gen-
erating cross-domain representations. We guarantee this by adding −LDs

to the
loss function of the shared encoder Es. On the other hand, we hope the private
encoder only extracts domain-specific features. Thus, we add LDp

to the loss
function of Ep to generate representations that can be distinguished by D.

Prototypical Networks for Task Classification. The simplest way to clas-
sify the target samples is to train a deep classifier, however, it may only achieve
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suboptimal performance as we can see in Table 1. The reason is that there are
only a few labeled samples in each target domain, which is not enough to fine-
tune a deep classifier with many parameters, so that the classifier is easy to over
fit the source labeled data. Although we could generate pseudo-labeled data for
target domains, the correctness of the pseudo-labels can not be guaranteed due
to the poor performance of the deep classifier.

To efficiently utilize the labeled samples in target domains, we refer to the
idea of prototypical networks [25]. Prototypical networks assume that there is
a prototype in the latent space for each class, and the projections of samples
belonging to this class cluster around the prototype. The classification is then
performed by computing the distances to prototype representations of each class
in the latent space. By reducing parameters of the model, the prototype-based
classifier can achieve better performance than the deep classifier when labeled
samples are insufficient. Note that we refine prototypes during self-training by
allowing unlabeled samples with pseudo-labels to update the prototypes. Specif-
ically, we compute the average of shared representations belonging to each class
in a batch as prototypes:

ck =
1
nk

nk∑

i=1

Es(xi,θs), (8)

where nk is the number of samples belonging to class k in a batch. Then we
calculate a distribution by applying softmax function to distances between a
shared representation with a prototype:

p(y = k|x) =
exp(−d(zs, ck))∑
k′ exp(−d(zs, c′

k))
, (9)

where d(·) is a distance measure function. We use the squared Euclidean distance
in this work. The classification loss is defined as:

LC = −λc log p(y = k|x), (10)

where λc is the scale factor.

Self-training for Conditional Distribution Adaptation. As described in
[5,19], only aligning the marginal probability distributions between source and
target is not enough to guarantee successful domain adaptation. Because this
only enforces alignment of the global domain statistics with no class specific
transfer. Formally, we can achieve Ps(Es(xs)) ≈ Pti(Es(xti)) by introducing
adversarial training, but Ps(ys|Es(xs)) �= Pti(yti |Es(xti)) may still hold, where
Ps(ys|Es(xs)) can be regarded as the classifier trained with source data.

Here, we tackle this problem by further reducing the difference of condi-
tional probability distributions among source domain and target domains. In
practice, we replace conditional probability distributions with class-conditional
probability distributions, because the posterior probability is quite involved [16].
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However, it is nontrivial to adapt class-conditional distributions, as most of the
target samples are unlabeled. We address this problem by producing pseudo-
labels for unlabeled target samples, and train the whole model in a bootstrap-
ping way. As we perform more learning iterations, the number of target samples
with correct pseudo-labels grows and progressively enforces distributions to align
class-conditionally.

To be specific, we first train our model on labeled source and target samples.
Then, we use the model to generate a probability distribution over classes for
each unlabeled target sample. If the probability of a sample on a certain class
is higher than a predetermined threshold τ , the sample would be added to the
training set with the class as its pseudo-label.

Loss Function and Model Training. We alternately optimize the four mod-
ules of our model.

For Ep, the goal of training is to minimize the following loss:

LP = LRecon + LDiff + LDp
(11)

For Es, the goal of training is to minimize the following loss:

LS = LRecon + LDiff − LDs
+ LC (12)

For F and D, the losses are LRecon and LD, respectively. The detailed training
process is shown in algorithm 1.

5 Experiments

5.1 Dataset

We evaluate our proposed model on the Amazon benchmark dataset [1]. It is a
sentiment classification dataset1, which contains Amazon product reviews from
four different domains: Books (B), DVD (D), Electronics (E), and Kitchen appli-
ances (K). We remove reviews with neutral labels and encode the remaining
reviews into 5000 dimensional feature vectors of unigrams and bigrams with
binary labels indicating sentiment.

We pick two product as the source domain and the target domain in turn,
and the other two domains as the auxiliary target domains, so that we con-
struct 12 single-source-three-target domain adaptation tasks. For each task, the
source domain contains 2,000 labeled examples, and each target domain con-
tains 50 labeled examples and 2,000 unlabeled examples. To fine-tune the hyper-
parameters, we randomly select 500 labeled examples from the target domain as
the developing dataset.

1 https://www.cs.jhu.edu/mdredze/datasets/sentiment/.

https://www.cs.jhu.edu/ mdredze/datasets/sentiment/
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5.2 Compared Method

We compare MTDAN with the following baselines:

(1) ST: The basic neural network classifier without any domain adaptation
trained on the labeled data of the source domain and the target domain.

(2) CoCMD: This is the state-of-the-art pairwise SSDA method on the Ama-
zon benchmark dataset [21]. The shared encoder, private encoder and recon-
struction decoder used in this model are the same as ours.

(3) MTDA-ITA: This is the state-of-the-art single-source-multi-target UDA
method on three benchmark datasets for image classification [9]. We imple-
mented the framework and extend it to semi-supervised DA method. The
shared encoder, private encoder, reconstruction decoder and domain classi-
fier used in this model are the same as ours.

(4) c-MTDAN: We combine all the target domains into a single one, and train
it using MTDAN. Similarly, we also report the performance of c-CoCMD
and c-MTDA-ITA.

(5) s-MTDAN: We do not use any auxiliary target domains, and train
MTDAN on each source-target pair.

5.3 Implementation Details

Considering that each input sample in the dataset is a tf-idf feature vector with-
out word ordering information, we use a multilayer perceptron (MLP) with an
input layer (5000 units) and one hidden layer (50 units) and sigmoid activation
functions to implement both shared and private encoders. The reconstruction
decoder consists of one dense hidden layer (2525 units), tanh activation func-
tions, and relu output functions. The domain discriminator is composed of a
softmax layer with n-dimensional outputs, where n is the number of the source
and target domains. For MTDA-ITA, we follow the framework proposed by [9],
and use the above modules to replace the original modules in the framework.
Besides, the task classifier for MTDA-ITA is a fully connected layer with softmax
activation functions.

The network is trained with Adam optimizer [13] and with learning rate
10−4. The mini-batch size is 50. The hyper-parameters λr, λd, λc and λdiff are
empirically set to 1.0, 0.5, 0.1 and 1.0 respectively. The threshold τ for produc-
ing pseudo-labels is set to 0.8. Following previous studies, we use classification
accuracy metric to evaluate the performances of all approaches.

5.4 Results

The performances of the proposed model and other state-of-the-art methods
are shown in Table 1. Key observations are summarized as follows. (1) The pro-
posed model MTDAN achieves the best results in almost all tasks, which proves
the effectiveness of our approach. (2) c-CoCMD has worse performance in all
tasks compared with CoCMD, although c-CoCMD exploits labeled and unla-
beled data from auxiliary target domains for training. Similar observation can



A Unified Adversarial Learning Framework for Domain Adaptation 429

also be observed by comparing MTDA-ITA with c-MTDA-ITA and MTDAN
with c-MTDAN. This demonstrates that simply combine all target domains into
a single one is not an effective method to solve the multi-target DA problem. (3)
Our model outperforms CoCMD by an average of nearly 2.0%, which indicates
that our model can effectively leverage the labeled and unlabeled data from
multiple target domains. Similarly, our model performs better than its variant,
s-MTDAN, which does not leverage the data from auxiliary target domains. This
also shows that it is helpful to mine knowledge from auxiliary target domains.
(4) Although MTDA-ITA is also a multi-target domain adaptation method, its
performance is worse than that of MTDAN. This can be due to (i) self-training
is a superior method than entropy regularization to exploit unlabeled target
data, (ii) the prototype-based classifier is more efficient than the deep classi-
fier in semi-supervised scenarios, (iii) we introduce orthogonality constraints to
further reduce the redundancy between shared and private representations. (5)
In the K→E task, MTDAN performs slightly worse than s-MTDAN. This can
be explained that domain K is closer to domain E than the other domains as
shown in Fig. 2 (a), and MTDAN leads to negative transfer when using relevant
target domains to help domain adaptation. (6) s-MTDAN outperforms CoCMD
in 9 of the 12 tasks, note that both of them do not use the auxiliary domains.
This indicates that our model is more effective than CoCMD in pairwise domain
adaptation task. (7) All models achieve better performance than the basic ST
model, which demonstrates that domain adaptation methods are crucial when
there exist a domain gap between the source domain and the target domain.

Table 1. Average classification accuracy with 5 runs on target domain testing dataset.
The best is shown in bold. c-X: combining all target domains into a single one and
performing pairwise domain adaptation with model X. s-X: performing pairwise domain
adaptation between the original source and target domains with model X

Method B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E

ST 81.6 75.8 78.2 80.0 77.0 80.4 74.7 75.4 85.7 73.8 76.6 85.3

CoCMD 83.1 83.0 85.3 81.8 83.4 85.5 76.9 78.3 87.3 77.2 79.6 87.2

c-CoCMD 82.7 82.2 84.5 80.6 83.0 84.8 76.3 77.6 87.1 75.9 79.4 86.1

MTDA-ITA 83.8 83.2 83.7 81.8 83.6 85.4 76.6 78.9 87.7 77.0 78.8 86.8

c-MTDA-ITA 83.3 82.3 83.2 81.4 83.0 85.0 76.0 79.3 87.6 76.7 78.5 87.0

s-MTDAN 83.3 83.9 84.7 81.6 83.7 84.7 78.0 80.2 87.9 78.6 79.9 87.8

c-MTDAN 84.0 84.0 85.5 81.7 84.3 85.9 80.2 80.7 88.1 79.8 80.5 87.0

MTDAN 84.5 84.3 86.0 82.3 85.3 87.2 80.5 81.2 88.9 80.0 80.9 87.4

5.5 Ablation Studies

We performed ablation experiments to verify the importance of each compo-
nent of our proposed model. We report the results of removing orthogonality
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constraints loss (set λdiff=0), self-training process, the prototype-based classi-
fier (replaced by the deep classifier) respectively.

As we can see from Table 2, removing each of the above components causes
performance degradation. To be specific, disabling self-training degrades the per-
formance to the greatest extent, with an average decrease of 5.1%, which shows
the importance of mining information from the unlabeled data of target domains.
Similarly, replacing prototype-based classifiers with deep classifiers also leads to
performance degradation, with an average decrease of 1.4%, which shows that
the prototype-based classifiers is more effective than deep classifiers in semi-
supervised scenarios. Besides, disabling the orthogonality constraints loss leads
to a performance degradation of 0.7%, which indicates that encouraging the dis-
joint of shared and private representations can make the shared feature space
more common among all domains.

We did not test the performance degradation caused by disabling recon-
struction loss and multi-class adversarial training loss, because they have been
proved in previous work [3,9]. To summarize, each of the proposed components
helps improve classification performance, and using all of them brings the best
performance.

Table 2. Ablations. Performance of the proposed model when one component is
removed or replaced. woDiff means without orthogonality constraints loss, woSelf
means without self-training procedures, woProto means replace the prototype-based
classifier with the deep classifier.

Method B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E

MTDAN-woDiff 84.1 83.6 85.9 81.5 85.0 86.7 79.7 80.5 88.3 79.6 80.0 87.0

MTDAN-woSelf 82.8 77.6 80.0 81.6 78.8 81.5 74.8 75.6 86.7 74.5 77.3 86.7

MTDAN-woProto 83.3 83.8 84.1 81.8 83.8 86.9 79.2 78.9 87.9 78.0 80.3 86.4

MTDAN 84.5 84.3 86.0 82.3 85.3 87.2 80.5 81.2 88.9 80.0 80.9 87.4

5.6 Feature Visualization

In order to understand the behavior of the proposed model intuitively, we project
the shared and private encoder outputs into two-dimensional space with principle
component analysis (PCA) [30] and visualize them. For comparison, we also show
the visualization result of the basic ST model. Due to space constraints, we only
show the visualization results of MTDAN with B as the source domain, E as the
target domain, D and K as the auxiliary target domains. The results are shown
in Fig. 2.

Figure 2 (a) shows the encoder output distribution of the ST model. As we
can see, the distributions of domain B and domain D (called group 1) are similar
and the distributions of domain E and domain D (called group 2) are similar,
while the distributions of cross-group domains are relatively different. That’s
why the ST model gets worse classification performance when the source domain
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(a) ST

(b) MTDAN-shared

(c) MTDAN-private

Fig. 2. Feature visualization for the embedding of source and target data. The red,
blue, yellow and green symbols denote the samples from B, D, E and K respectively.
The symbol ‘x’ is used for positive samples and ‘.’ is for negative samples. (a) the
distribution of the encoder output of ST, (b) the distribution of shared representations
of MTDAN, (c) the distribution of private representations of MTDAN. For ST and
MTDAN, we take B as the source domain and D, E and K as the target domains.
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and the target domain belong to different groups. Besides, there is no obvious
boundary between positive and negative samples, which is consistent with the
poor performance of the ST model.

Figure 2 (b) shows the distribution of the shared encoder output of the
MTDAN model. We can see that the shared representations of the source and
target domains are very close, which demonstrates that our model can effec-
tively align the marginal distributions among the source and multiple target
domains. Meanwhile, for each class of samples, the shared representations of
the source and target domains are also very close, which demonstrates that our
model can effectively align the class-conditional distributions among multiple
domains. Comparing (a) and (b), we can find that the boundary of positive and
negative samples in (b) is more obvious than that in (a), which means the shared
representations of MTDAN model have superior class separability.

Figure 2 (c) shows the distribution of the private encoder output of the
MTDAN model. We can see that the private representations have good domain
separability, partially because the domain discriminator D encourages the pri-
vate encoder Ep to generate domain-specific feature representations.

6 Conclusion

In this paper, we propose MTDAN, a unified framework for semi-supervised
multi-target domain adaptation. We utilize multi-class adversarial training to
align the marginal probability distributions among source domain and multiple
target domains. Meanwhile, we perform self-training on target unlabeled data to
align the conditional probability distributions among the domains. We further
introduce Prototypical Networks to replace the deep classifiers, and extend it
to semi-supervised scenarios. The experimental results on sentiment analysis
dataset demonstrate that our method can effectively leverage the labeled and
unlabeled data of multiple target domains to help the source model achieve
generalization, and is superior to the existing methods. The proposed framework
could be used for other domain adaptation tasks, and we leave this as our future
work.
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