
Migratable Paxos

Low Latency and High Throughput Consensus
Under Geographically Shifting Workloads

Yanzhao Wang, Huiqi Hu(B), Weining Qian, and Aoying Zhou

School of Data Science and Engineering,
East China Normal University, Shanghai, China

51175100009@stu.ecnu.edu.cn, {hqhu,wnqian}@dase.ecnu.edu.cn,
ayzhou@sei.ecnu.edu.cn

Abstract. Global web services or storage systems have to respond to
changes in clients’ access characteristics for lower latency and higher
throughput. As access locality is very common, deploying more servers
in datacenters close to clients or moving related data between datacenters
is the common practice to respond to those changes. Now Paxos-based
protocols are widely used to tolerate failures, but the Reconfiguration
process (i.e., the process to changing working servers) of existing Paxos-
based protocols is slow and costly, thus has a great impact on perfor-
mance. In this paper, we propose Migratable Paxos (MPaxos), a new
Paxos-based consensus protocol that minimizes the duration of recon-
figuration and accelerates the migration of data between datacenters,
without losing low commit latency and high throughput.

Keywords: Global web services · Paxos consensus protocol · Shifting
workloads · Migration

1 Introduction

The access hot spots in global web services usually come from the same geo-
graphical region (e.g., a country, a state, or a time zone). And such hot spots
may move frequently, as a function of local time. For example, a global electronic
trading system will witness the moving of hot spots between countries because of
different stock opening times. If such web services use servers in fixed locations,
the latency will increase significantly as the hot spots migrate to a location far
away from the working servers. Different applications have different tolerances
for delays, but high latency generally leads to a decline in revenue.

Now Paxos-based protocols [1,2] are widely used in web services [3,9] and
database systems [10] to tolerate server failures and provide high availability. But
existing Paxos protocols are not adaptive for the frequent changing workloads,
two problems lie ahead of these protocols:

1. Agreements are reached by a majority. Such that the total number of nodes
(denote N) is related to tolerated failures (denote F ), which satisfies N =
2F +1. Then larger N results in a larger F . This property limits the number
of nodes that can be deployed in a Paxos instance and makes it impossible
to place a server near every possible client.

c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12112, pp. 296–304, 2020.
https://doi.org/10.1007/978-3-030-59410-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59410-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-59410-7_20


Migratable Paxos 297

2. In data migration, usually only a specific part of data needs to be
migrated. But existing reconfiguration mechanisms transferring the entire
state machine, which adds extra cost.

In this paper, we proposed MPaxos to solve these problems. We proposed the
Working Cluster allocation mechanism. A Working Cluster is the set of nodes
explicitly specified for one object, a command can and only can be committed in
a majority of the related Working Cluster. In this way, we decoupled quorum size
(F +1) from the number of nodes in cluster (N) by introducing W (the number
of nodes in a Working Cluster), where W <= N and W = 2F + 1, thus solved
problem 1. Also, the Working Clusters of different objects work independently,
so the migration of one object will not affect the read and write of other objects,
thus alleviate problem 2. Moreover, MPaxos provides a scheduling framework for
automating Working Cluster selection and migration to maintain low latency.

We briefly introduce the relevant background of Paxos and other related
works in Sect. 2. Then the design and implementation of MPaxos are present in
Sect. 3. The scheduling framework is introduced in Sect. 4. Section 5 shows the
performance evaluation. The paper concludes in Sect. 6 with a summary.

2 Related Work

Leader-based Paxos protocols use a master to determine the execution order of all
the command, while the Leaderless Paxos protocols usually don’t care the order
of irrelevant commands and only establish order constraints between commands
for the same object. Egalitarian Paxos [4] is an efficient leaderless Paxos proto-
col and it uses a totally decentralized approach to commit commands and handle
interferes: in the process of choosing a command in a log entry, each participant
attaches ordering constraints to that command, and the agreement is achieved
whenamajority agreewith that constraints, thus irrelevant commands canbe com-
mitted by different replicas. Therefore, EPaxos is born with high throughput.

The commit protocol of EPaxos is divided into 3 phases. When there are no
interferes between commands from different command leaders, these commands
can be committed on the Fast-Path (involves only Phase 1 and 3); otherwise inter-
fered commands will be committed on the Slow-Path (involves Phase 1, 2, and 3).
On the Slow-Path, each command proposed by command leader requires replies
from a majority of replicas, while in the fast path, F + �F+1

2 � replies is needed to
guarantee the correctness, where F = �N

2 � and N is the number of replicas.
There are also numerous works proposed for the migration of services and

workload burst handling. Some early works use the idea of VM live migration, in
which the VMs containing the services are migrated between datacenters. This
method has been widely used in practice [7,8]. These works adopt the shared disk
technology for faster migration but face long latency in accessing a shared disk
image. Then another VM based protocol Supercloud [6] proposed a Data Prop-
agation method that implements the storage layer much like a state machine,
modified blocks are transferred between datacenters to maintain a consistent
storage view.



298 Y. Wang et al.

3 The Design of MPaxos

MPaxos is proposed to achieve lower latency and higher throughput than existing
Paxos based protocols in wide-area deployment. High throughput is reached by
implementing a decentralized command committing method similar to EPaxos,
as the read and write requests can be distributed across different nodes. But a
Fast-Path in EPaxos consisting of roughly 3

4 of nodes makes the commit latency
even higher. So MPaxos made the following changes to EPaxos: 1. Introduce
the concept of Working Cluster. 2. Introduce the concept of Reorganization that
changes the Working Cluster. 3. Let each object has its own Working Cluster.

Below we describe the components in MPaxos in more detail.

3.1 Working Cluster

The Working Cluster is a subset of the overall cluster. A replica inside the
Working Cluster is called Working Replica . The committing of the commands
need to be performed by a Working Replica. The replica outside of the Working
Cluster on receiving a command from the client should redirect it to a Working
Replica.

Through the Working Cluster mechanism, we can reduce the Fast-quorum
size to FW + �FW+1

2 �, slow-quorum size to FW + 1 (where FW = �W/2�, so FW

is the actual number of tolerated failures under Working Cluster with size W ).
Thus we can deploy more idle machines in the cluster, while keeping a small
quorum size.

3.2 Reconfiguration and Reorganization Algorithm

The process of changing the Working Cluster (i.e. Reorganization) is essen-
tially a reconfigure process for the Working Cluster, except that the migration
does not involve the startup and shut down of replicas. The process of reconfigu-
ration can be divided into three steps: 1. Stop the old state machine, 2. Transfer
the state, 3. Start the new state machine. Below we present a detailed descrip-
tion of steps 1 and 2. As the third step is simple and trivial, we don’t discuss it
here.

The general way to stop the old state machine is to submit a stop command
(it is usually done by committing a RECONFIG command), and there can be
no other valid commands in old state machines after the stop command (only
NOP commands are permitted) [5]. Due to the multileader style of MPaxos,
it is possible to have multiple RECONFIG commands committed at the same
time, and their contents may be different. One solution is to modify the commit
protocol to refusing the old RECONFIG and using another round of commu-
nication to confirm this RECONFIG. But this could cause a livelock (different
replicas alternately send new RECONFIG and no RECONFIG command can be
confirmed successfully). Thus we chose another way: allow multiple potentially
different reconfig commands to be committed, but only the earlier one will take
effect. To do this, two settings need to be introduced:



Migratable Paxos 299

Definition 1. RECONFIG commands conflict with each other.

Definition 2. RECONFIG commands conflict with read/write commands.

With Definition 1, the concurrent RECONFIG commands will establish an
execution order. Definition 2 establishes an execution order between the read/
write commands and the RECONFIG commands. The read/write commands
have to be set to NOP when there is a RECONFIG command in its dependencies,
this guarantees no valid command after RECONFIG.

We abstract the reconfiguration process of MPaxos into three states: NOR-
MAL, RECONFIGURING, and TRANSFERING. RECONFIGURING implies
that some replica has sent a RECONFIG command, and the command is not
yet committed; TRANSFERRING state means that the RECONFIG command
has been committed and the transfer of states is in progress. To know when
transfer finishes, TRANSFER-FINISH command is defined and commit it in a
majority of the new config. A receiver confirms this log after its transfer process
is completed. Upon this command is committed successfully, the transfer state
ends. The replica cannot submit normal commands in the RECONFIGURING
and TRANSFERING states, while the RECONFIG command can be submitted
at any time.

The reorganization process inherits the 3 steps and the 3 replica state from
reconfiguration, and introduce 1 extra log type REORGANIZE. But reorgani-
zation conceptually just alter the roles some set of replicas plays. Hence it has
less impact on the performance. Figure 1 shows the pseudocode of the protocol
for choosing commands in MPaxos, and Fig. 2 shows the Execution logic of the
REORGANIZE command.

4 Scheduling Framework

In this chapter, we present the scheduling framework of MPaxos which is respon-
sible for making migration decisions. Suppose there are N replicas deployed in
MPaxos: {d1, d2, ..., dn}. A Working Cluster placement plan for some object θ
with k nodes is denoted as P = {p1, p2, ...pk}, where dpi

is a replica in the
Working Cluster. Periodically, MPaxos measures end-to-end latency between
different replicas and stores the results in matrix L, where L(i, j) is the
round-trip-time (RTT) from di to dj . The workload statistics is denoted as
S = {(r1, w1), (r2, w2), ..., (rn, wn)}, (ri, wi) is the read and write workload on
replica di.

To evaluate a placement plan, we provide a function f(P, S, L) that evaluates
a placement plan under a certain workload:

f(P, S, L) = −
∑n

i=0(α · C(P, i) · ri + β · C(P, i) · wi)
n

where C(P, i) is replica di’s commit latency under the placement plan P . α
and β are weights indicated the importance of read and write latency.



300 Y. Wang et al.

Fig. 1. The basic migratable Paxos protocol for choosing commands



Migratable Paxos 301

Fig. 2. The execution and transfer phase of migratable paxos

The evaluation of C(P, i) is split into 2 steps:

1. Send a command from di to the closest replica in P (denoted pL), the latency
is:

C1 =

{
L(i, pL), if i not in P

0, if i in P

2. Commit latency. The command could be committed in the Fast-Path or the
Slow-Path, we specify a parameter e to represent the possibility of going
through Fast-Path, then the latency is:

C2 = e · Fast(P, pL) + (1 − e) · Slow(P, pL)

The Fast-Path only involves one round-trip between a Fast-quorum of working
replicas. As a Fast-quorum contains FW + �FW+1

2 � replicas (FW = �W/2�,
with W indicates the cardinality of P ), the network latency of commit in
Fast-Path is roughly the same as the third quartile of latencies between pl
and other replicas in P , that is:

Fast(P, pL) = 3rd Quartile({L(pl, pi) | pi inP})

The Slow-Path involves two round-trips between a Slow-Quorum (i.e. a major-
ity). So the network latency is 2-times the median of the latencies from pl to
replicas in P .

Slow(pl) = 2 · Median({L(pl, pi) | pi inP})



302 Y. Wang et al.

5 Evaluation

We implement MPaxos on Paxi, a framework that implements EPaxos and other
Paxos protocols, to evaluate and compare their performance. The implementa-
tion is in Go, version 1.11.2, and we release it as an open-source project on
GitHub at https://github.com/dante159753/MPaxos.

We evaluated MPaxos on Amazon EC2, using small instances (two 64-bit
virtual cores with 2 GB of memory) for both state machine replicas and clients,
running Ubuntu Linux 18.04.2.

5.1 Workloads

We specify two types of workloads: (1) hot spots are static and from one or two
continents; (2) a workload with a request peak at 9:00 am local time, and the
relationship between the number of requests and local time is subject to normal
distribution.

Our tests also capture conflicts, an important workload characteristic – con-
flict is a situation when potentially interfering commands reach replicas in dif-
ferent orders. Conflicts affect EPaxos and MPaxos. As write requests usually
occupy no more than 2% of all requests, we believe that 0% and 2% command
interference rates are the most realistic [4].

A
ve

ra
ge

 C
om

m
it 

La
te

nc
y(

m
s)

0

150

300

450

600

Hot Spot Position

EU AS NA NA & EU NA & AS AS & EU RANDOM

MPaxos(2%)
WPaxos
EPaxos(2%)
Multi-Paxos Best
Multi-Paxos Worst

Fig. 3. Commit latency under static
workloads

A
ve

ra
ge

 C
om

m
it 

La
te

nc
y(

m
s)

0

50

100

150

200

250

300

350

400

450

500

Time of Day

GMT 1:00(AS) GMT 4:00 GMT 8:00(EU) GMT 12:00 GMT 14:00(NA) GMT 20:00

MPaxos EPaxos
Multi-Paxos(CA) WPaxos

Fig. 4. Latency under regularly shifting
workloads

5.2 Latency in Wide Area

We evaluate MPaxos with nine replicas (tolerating one failure, so the minimal
size of Working Cluster is 3). The replicas are located in Amazon EC2 data-
centers in California (CA), Virginia (VA) , Oregon (OR) , Japan (JP), Korea
(KR), Singapore (SG), London (LON), Paris (PAR), and Sweden (SE). We set
FW = 1 for MPaxos and F = 0, f = 1 for WPaxos [11].

Figure 3 shows the average client latency for MPaxos, EPaxos, Multi-Paxos
and WPaxos under static workloads, where WPaxos is a recent leader-based

https://github.com/dante159753/MPaxos


Migratable Paxos 303

Paxos protocol optimized for migration scenario. The X-Axis indicates the posi-
tions of clients. With nine replicas, protocols with static clusters – such as EPaxos
and Multi-Paxos with static clusters – produce high latency, while protocols with
migratable clusters – such as MPaxos and WPaxos – achieve lower latency, and
MPaxos outperforms WPaxos because of the leaderless command committing
fashion. And the last group of the test (RANDOM), in which requests come
from a random client of the world, shows that MPaxos also works well under
irregular workloads.

Figure 4 shows the average client latency for these protocols under the shifting
workload. MPaxos also achieves the lowest commit latency by timely responding
to the shifting workload. WPaxos performs very close to MPaxos. Nevertheless,
as shown in Fig. 5, MPaxos outperforms WPaxos in migration cost. Although
WPaxos only need 1 round of communication during migration instead of 2 round
in MPaxos, it suffers from a larger Phase-1 quorum size (at least 6 replicas),
where MPaxos only need to communicate with 2 replicas twice.

M
ig

ra
tio

n 
C

os
t(s

)

0

55

110

165

220

Migration Situation

EU->NA NA->EU NA->AS EU->AS AS->NA AS->EU

MPaxos WPaxos

Fig. 5. Migration cost between different
continents

A
gg

re
ga

te
 T

hr
ou

gh
p

ut
 (r

eq
/s

)

0

1125

2250

3375

4500

5625

6750

7875

9000

A
ve

ra
ge

 C
om

m
it 

La
te

nc
y(

m
s)

0

25

50

75

100

125

150

175

200

Time(s)

0 5 10 15 20

MPaxos(2%) Throughput EPaxos(2%) Throughput
WPaxos Throughput MPaxos Latency
EPaxos Latency WPaxos Latency

Fig. 6. Latency and workload when an
emergency occurred in the 3rd second.

To evaluate how MPaxos and other protocols perform under emergency, we
initialize a workload by deploy 300 clients in NA, then simulate the emergency
by shutting down all clients in NA and starting 300 new clients in AS in the
3rd second. Figure 6 shows how latency and throughput change. It shows that
MPaxos consistently retain the lowest latency and highest throughput by timely
responding to the changes in client characteristics. The latency of WPaxos is
roughly as good as MPaxos, but the single-leader-per-object style limits the
throughput.

6 Conclusion

In this paper, we propose MPaxos, a Paxos-based protocol for shifting work-
loads. We show that designing specifically for the client characteristics yields
significant performance rewards. MPaxos includes two main proposals: (1) use
Working Clusters to make Replication quorums small and close to users, (2)
Reorganization that enables Working Clusters timely responding to workload



304 Y. Wang et al.

shifting with low migration cost. These proposals improve performance signifi-
cantly as we show on a real deployment across 9 datacenters.

Acknowledgement. This work is supported by National Key R&D Program of
China (2018YFB 1003404), National Science Foundation of China under grant number
61672232 and Youth Program of National Science Foundation of China under grant
number 61702189.

References

1. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. (TOCS) 16(2),
133–169 (1998)

2. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)
3. Hunt, P., Konar, M., Junqueira, F.P., et al.: ZooKeeper: Wait-free coordination for

internet-scale systems. In: USENIX Annual Technical Conference, vol. 8(9) (2010)
4. Moraru, I., Andersen, D.G., Kaminsky, M.: Egalitarian paxos. In: ACM Symposium

on Operating Systems Principles (2012)
5. Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. SIGACT News

41(1), 63–73 (2010)
6. Shen, Z., Jia, Q., Sela, G.E., et al.: Follow the sun through the clouds: application

migration for geographically shifting workloads. In: Proceedings of the Seventh
ACM Symposium on Cloud Computing, pp. 141–154. ACM (2016)

7. Bryant, R., Tumanov, A., Irzak, O., et al.: Kaleidoscope: cloud micro-elasticity via
VM state coloring. In: Proceedings of the Sixth Conference on Computer Systems,
pp. 273–286. ACM (2011)

8. Hines, M.R., Gopalan, K.: Post-copy based live virtual machine migration using
adaptive pre-paging and dynamic self-ballooning. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,
pp. 51–60. ACM (2009)

9. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation, pp. 335–350 (2006)

10. Guo, J., Chu, J., Cai, P., Zhou, M., Zhou, A.: Low-overhead Paxos replication.
Data Sci. Eng. 2(2), 169–177 (2017). https://doi.org/10.1007/s41019-017-0039-z

11. Ailijiang, A., Charapko, A., Demirbas, M., et al.: WPaxos: wide area network
flexible consensus. IEEE Trans. Parallel Distrib. Syst. 31(1), 211–223 (2019)

https://doi.org/10.1007/s41019-017-0039-z

	Migratable Paxos
	1 Introduction
	2 Related Work
	3 The Design of MPaxos
	3.1 Working Cluster
	3.2 Reconfiguration and Reorganization Algorithm

	4 Scheduling Framework
	5 Evaluation
	5.1 Workloads
	5.2 Latency in Wide Area

	6 Conclusion
	References




