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Abstract Rough sets and rule induction in an incomplete and continuous informa-
tion table are investigated under possible world semantics. We show an approach
using possible indiscernibility relations, whereas the traditional approaches use pos-
sible tables. This is because the number of possible indiscernibility relations is finite,
although we have the infinite number of possible tables in an incomplete and contin-
uous information table. First, lower and upper approximations are derived directly
using the indiscernibility relation on a set of attributes in a complete and continu-
ous information table. Second, how these approximations are derived are described
applying possible world semantics to an incomplete and continuous information
table. Lots of possible indiscernibility relations are obtained. The actual indiscerni-
bility relation is one of possible ones. The family of possible indiscernibility relations
is a lattice for inclusion with the minimum and the maximum indiscernibility rela-
tions. Under the minimum and the maximum indiscernibility relations, we obtain
four kinds of approximations: certain lower, certain upper, possible lower, and pos-
sible upper approximations. Therefore, there is no computational complexity for
the number of values with incomplete information. The approximations in possible
world semantics are the same as ones in our extended approach directly using indis-
cernibility relations. We obtain four kinds of single rules: certain and consistent,
certain and inconsistent, possible and consistent, and possible and inconsistent ones
from certain lower, certain upper, possible lower, and possible upper approximations,
respectively. Individual objects in an approximation support single rules. Serial sin-
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gle rules from the approximation are brought into one combined rule. The combined
rule has greater applicability than single rules that individual objects support.

Keywords Neighborhood rough sets · Rule induction · Possible world
semantics · Incomplete information · Indiscernibility relations · Continuous values

1 Introduction

The Information generated in the real world includes various types of data. When we
deal with character string data, the data is broadly classified into discrete data and
continuous data.

Rough sets, constructed by Pawlak [18], are used as an effective method for fea-
ture selection, pattern recognition, data mining and so on. The framework consists
of lower and upper approximations. This is traditionally applied to complete infor-
mation tables with nominal attributes. Fruitful results are reported in various fields.
However, when we are faced with real-world objects, it is often necessary to han-
dle attributes that take a continuous value. Furthermore, objects with incomplete
information ubiquitously exist in the real world. Without processing incomplete and
continuous information, the information generated in the real world cannot be fully
utilized. Therefore, extended versions of the rough sets have been proposed to handle
incomplete information in continuous domains.

An approach handling incomplete information, which is often adopted [7, 20–22],
is to use the way that Kryszkiewicz applied to nominal attributes [8]. This approach
gives in advance the indistinguishability of objects that have incomplete informa-
tion with other objects. However, it is natural that there are two possibilities for
incomplete information objects. One possibility is that an object with incomplete
information may have the same value as another object. That is, the two objects
may be indiscernible. The other possibility is that the object may have a different
value from another object. That is, they may be discernible. Giving in advance the
indiscernibility corresponds to neglecting one of the two possibilities. Therefore, the
approach leads to loss of information and creates poor results [11, 19].

Another approach is to directly use indiscernibility relations extended to handle
incomplete information [14]. Yet another approach is to use possible classes obtained
from the indiscernibility relation on a set of attributes [15]. These two approaches
have no computational complexity for the number of valueswith incomplete informa-
tion. We need to give some justification to these extended approaches. It is known in
discrete data tables that an approach using possible class has some justification from
the viewpoint of possible world semantics [12]. We focus on an approach directly
using indiscernibility relations.1 To give it some justification, we need to develop
an approach that is based on possible world semantics. The previous approaches are
developed under possible tables derived from an incomplete and continuous informa-

1See reference [16] for an approach using possible classes.
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tion table. Unfortunately, an infinite number of possible tables can be generated from
an incomplete and continuous information table. Possible world semantics cannot
be applied to an infinite number of possible tables.

The starting point for a rough set is the indiscernibility relation on a set of
attributes. When an information table contains values with incomplete information,
we obtain lots of possible indiscernibility relations in place of the indiscernibility
relation. The number is finite, even if the number of possible tables is infinite, because
the number of objects is finite. We note this finiteness and develop an approach based
on the possible indiscernibility relations, not the possible tables.

The paper is constructed as follows. Section 2 describes an approach directly using
indiscernibility relations in a complete and continuous information table. Section
3 develops an approach applying possible world semantics to an incomplete and
continuous information table. Section 4 describes rule induction in a complete and
continuous information table. Section 5 address rule induction in an incomplete and
continuous information table. Section 6 mentions the conclusions.

2 Rough Sets by Directly Using Indiscernibility Relations
in Complete and Continuous Information Systems

A continuous data set is represented as a two-dimensional table, called a continuous
information table. In the continuous information table, each row and each column
represent an object and an attribute, respectively. A mathematical model of an infor-
mation table with complete and continuous information is called a complete and
continuous information system. The complete and continuous information system
is a triplet expressed by (U,AT , {D(a) | a ∈ AT }). U is a non-empty finite set of
objects, which is called the universe. AT is a non-empty finite set of attributes such
thata : U → D(a) for everya ∈ AT whereD(a) is the continuous domain of attribute
a.

We have two approaches for handling continuous values. One approach is to dis-
cretize a continuous domain into disjunctive intervals inwhich objects are considered
as indiscernible [4]. How to discretize has a heavy influence over results. The other
approach is to use neighborhood [10]. The indiscernibility of two objects is derived
from the distance of the values that characterize them. A threshold is given, which is
the indiscernibility criterion. When the distance between two objects is less than or
equal to the threshold, they are considered as indiscernible. As the threshold changes,
the results change gradually. Therefore, we take the neighborhood-based approach.

Binary relation RA
2 that represents the indiscernibility between objects on set

A ⊆ AT of attributes is called the indiscernibility relation on A:

RA = {(o, o′) ∈ U ×U | |A(o) − A(o′)| ≤ δA}, (1)

2RA is formally RδA
A . δA is omitted unless confusion.
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where A(o) is the value sequence for A of object o and (|A(o) − A(o′)| ≤ δA) =
(∧a∈A|a(o) − a(o′)| ≤ δa) and δa

3 is a threshold indicating the range of indiscerni-
bility between a(o) and a(o′).

Proposition 1 If δ1A ≤ δ2A, equal to ∧a∈A(δ1a ≤ δ2a), then Rδ1A
A ⊆ Rδ2A

A , where
Rδ1A
A and Rδ2A

A are the indiscernibility relations with thresholds δ1A and δ2A, respec-
tively and Rδ1A

A = ∩a∈ARδ1a
a and Rδ2A

A = ∩a∈ARδ2a
a .

From indiscernibility relation RA, indiscernible class [o]A for object o is obtained:

[o]A = {o′ | (o, o′) ∈ RA}, (2)

where [o]A = ∩a∈A[o]a.
Directly using indiscernibility relation RA, lower approximation apr

A
(O) and

upper approximation aprA(O) for A of set O of objects are:

apr
A
(O) = {o | ∀o′ ∈ U (o, o′) /∈ RA ∨ o′ ∈ O}, (3)

aprA(O) = {o | ∃o′ ∈ U (o, o′) ∈ RA ∧ o′ ∈ O}. (4)

Proposition 2 [14] Let aprδ1A
A

(O) and aprδ1A
A (O) be lower and upper approxima-

tions under threshold δ1A and let aprδ2A
A

(O) and aprδ2A
A (O) be lower and upper

approximations under threshold δ2A. If δ1A ≤ δ2A, then aprδ1A
A

(O) ⊇ aprδ2A
A

(O) and

aprδ1A
A (O) ⊆ aprδ2A

A (O).

For object o in the lower approximation of O, all objects with which o is indis-
cernible are included in O; namely, [o]A ⊆ O. On the other hand, for objects in
the upper approximation of O, some objects indiscernible o are in O. That is,
[o]A ∩ O = ∅. Thus, apr

A
(O) ⊆ aprA(O).

3 Rough Sets from Possible World Semantics in Incomplete
and Continuous Information Systems

An information tablewith incomplete and continuous information is called an incom-
plete and continuous information system. In incomplete and continuous information
systems, a : U → sa for every a ∈ AT where sa is the union of or-sets of values over
domain D(a) of attribute a and sets of intervals on D(a). Note that an or-set is a
disjunctive set [9]. Single value v ∈ a(o) is a possible value that may be the actual
value of attribute a in object o. The possible value is the actual one if a(o) is single;
namely, |a(o)| = 1.

3Subscript a of δa is omitted if no confusion.
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We have lots of possible indiscernibility relations from an incomplete and contin-
uous information table. The smallest possible indiscernibility relation is the certain
one. Certain indiscernibility relation CRA is:

CRA = ∩a∈ACRa, (5)

CRa = {(o, o′) ∈ U ×U | (o = o′) ∨ (∀u ∈ a(o)∀v ∈ a(o′)|u − v| ≤ δa)}. (6)

In this binary relation, which is unique on A, two objects o and o′ of (o, o′) ∈ CRA

are certainly indiscernible on A. Such a pair is called a certain pair. Family F(RA) of
possible indiscernibility relations is:

F(RA) = {e | e = CRA ∪ e′ ∧ e′ ∈ P(MPPRA)}, (7)

where each element is a possible indiscernibility relation andP(MPPRA) is the power
set of MPPRA and MPPRA is:

MPPRA = {{(o′, o), (o, o′)}|(o′, o) ∈ MPRA},
MPRA = ∩a∈AMPRa, (8)

MPRa = {(o, o′) ∈ U ×U | ∃u ∈ a(o)∃v ∈ a(o′)|u − v| ≤ δa)}\CRa. (9)

A pair of objects in MPRA is called a possible one. F(RA) has a lattice structure
for set inclusion. CRA is the minimum possible indiscernibility relation in F(RA)

on A, which is the minimum element, whereas CRA ∪ MPRA is the maximum pos-
sible indiscernibility relation on A, which is the maximum element. One of possible
indiscernibility relations is actual. However, we cannot know it without additional
information.

Example 1 Or-set < 1.25, 1.31 > means 1.25 or 1.31. Let threshold δa1 be 0.05 in
T of Fig. 1. The set of certain pairs of indiscernible objects on a1 is:

{(o1, o1), (o1, o3), (o3, o1), (o1, o5), (o5, o1), (o2, o2), (o3, o3), (o4, o4), (o5, o5)}.

The set of possible pairs of indiscernible objects is:

Fig. 1 Incomplete and
continuous information table
T

T
U a1 a2
o1 0.71 < 1.25, 1.31 >
o2 [0.74, 0.79] [1.47, 1.53]
o3 0.73 1.51
o4 [0.85, 0.94] 1.56
o5 < 0.66, 0.68 > < 1.32, 1.39 >
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{(o1, o2), (o2, o1), (o2, o3), (o3, o2), (o3, o5), (o5, o3)}.

Applying formulae (5)–(7) to these sets, the family of possible indiscernibility
relations and each possible indiscernibility relation pri with i = 1, . . . , 8 are:

F(Ra1) = {pr1, · · · , pr8},
pr1 = {(o1, o1), (o1, o3), (o3, o1), (o1, o5), (o5, o1), (o2, o2), (o3, o3),

(o4, o4), (o5, o5)},
pr2 = {(o1, o1), (o1, o3), (o3, o1), (o1, o5), (o5, o1), (o2, o2), (o3, o3),

(o4, o4), (o5, o5), (o1, o2), (o2, o1)},
pr3 = {(o1, o1), (o1, o3), (o3, o1), (o1, o5), (o5, o1), (o2, o2), (o3, o3),

(o4, o4), (o5, o5), (o2, o3), (o3, o2)},
pr4 = {(o1, o1), (o1, o3), (o3, o1), (o1, o5), (o5, o1), (o2, o2), (o3, o3),

(o4, o4), (o5, o5), (o3, o5), (o5, o3)},
pr5 = {(o1, o1), (o1, o3), (o3, o1), (o1, o5), (o5, o1), (o2, o2), (o3, o3),

(o4, o4), (o5, o5), (o1, o2), (o2, o1), (o2, o3), (o3, o2)},
pr6 = {(o1, o1), (o1, o3), (o3, o1), (o1, o5), (o5, o1), (o2, o2), (o3, o3),

(o4, o4), (o5, o5), (o1, o2), (o2, o1), (o3, o5), (o5, o3)},
pr7 = {(o1, o1), (o1, o3), (o3, o1), (o1, o5), (o5, o1), (o2, o2), (o3, o3),

(o4, o4), (o5, o5), (o2, o3), (o3, o2), (o3, o5), (o5, o3)},
pr8 = {(o1, o1), (o1, o3), (o3, o1), (o1, o5), (o5, o1), (o2, o2), (o3, o3),

(o4, o4), (o5, o5), (o1, o2), (o2, o1), (o2, o3), (o3, o2), (o3, o5), (o5, o3)}.

The family of these possible indiscernibility relations has the lattice structure for
set inclusion like Fig. 2. pr1 is the minimum element, whereas pr8 is the maximum
element.

We develop an approach based on possible indiscernibility relations in an incom-
plete and continuous information table. Applying formulae (3) and (4) to a possible
indiscernibility relation pr, Lower and upper approximations in pr are:

Fig. 2 Lattice structure
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apr
A
(O)pr = {o | ∀o′ ∈ U ((o, o′) /∈ pr ∧ pr ∈ F(RA)) ∨ o′ ∈ O}, (10)

aprA(O)pr = {o | ∃o′ ∈ U ((o, o′) ∈ pr ∧ pr ∈ F(RA)) ∧ o′ ∈ O}. (11)

Proposition 3 If prk ⊆ prl for possible indiscernibility relations prk , prl ∈ F(RA),
then apr

A
(O)prk ⊇ apr

A
(O)prl and aprA(O)prk ⊆ aprA(O)prl .

From this proposition the families of lower and upper approximations in possible
indiscernibility relations also have the same lattice structure for set inclusion as the
family of possible indiscernibility relations.

By aggregating the lower and upper approximations in possible indiscernibil-
ity relations, we obtain four kinds of approximations: certain lower approximation
Capr

A
(O), certain upper approximation Capr

A
(O), possible lower approximation

Papr
A
(O), and possible upper approximation PaprA(O):

Capr
A
(O) = {o | ∀pr ∈ F(RA)o ∈ apr

A
(O)pr}, (12)

CaprA(O) = {o | ∀pr ∈ F(RA)o ∈ aprA(O)pr}, (13)

Papr
A
(O) = {o | ∃pr ∈ F(RA)o ∈ apr

A
(O)pr}, (14)

PaprA(O) = {o | ∃pr ∈ F(RA)o ∈ aprA(O)pr}. (15)

Using Proposition 3,

Capr
A
(O) = apr

A
(O)prmax , (16)

CaprA(O) = aprA(O)prmin , (17)

Papr
A
(O) = apr

A
(O)prmin , (18)

PaprA(O) = aprA(O)prmax , (19)

where prmin and prmax are the minimum and the maximum possible indiscernibility
relations on A.
Using formulae (16)–(19),we can obtain the four approximationswithout the compu-
tational complexity for the number of possible indiscernibility relations, although the
number of possible indiscernibility relations has exponential growth as the number
of values with incomplete information linearly increases.

Definability on set A of attributes is defined as follows:
Set O of objects is certainly definable if and only if ∀pr ∈ F(RA)∃S ⊆ U O =
∪o∈S [o]prA .
Set O of objects is possibly definable if and only if ∃pr ∈ F(RA)∃S ⊆ U O =
∪o∈S [o]prA .
These definition is equivalent to:
Set O of objects is certainly definable if and only if ∀pr ∈ F(RA) apr

A
(O)pr =

aprA(O)pr .
Set O of objects is possibly definable if and only if ∃pr ∈ F(RA) apr

A
(O)pr =

aprA(O)pr .
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Example 2 We use the possible indiscernibility relations in Example 1. Let set
O of objects be {o2, o4}. Applying formulae (10) and (11) to O, lower and upper
approximations from each possible indiscernibility relation are:

apr
a1

(O)pr1 = {o2, o4}, apra1(O)pr1 = {o2, o4},
apr

a1
(O)pr2 = {o4}, apra1(O)pr2 = {o1, o2, o4},

apr
a1

(O)pr3 = {o4}, apra1(O)pr3 = {o2, o3, o4},
apr

a1
(O)pr4 = {o2, o4}, apra1(O)pr4 = {o2, o4},

apr
a1

(O)pr5 = {o4}, apra1(O)pr5 = {o1, o2, o3, o4},
apr

a1
(O)pr6 = {o4}, apra1(O)pr6 = {o1, o2, o4},

apr
a1

(O)pr7 = {o4}, apra1(O)pr7 = {o2, o3, o4},
apr

a1
(O)pr8 = {o4}, apra1(O)pr8 = {o1, o2, o3, o4}.

By using formulae (16)–(19),

Capr
a1

(O) = {o4},
Capra1(O) = {o2, o4},
Papr

a1
(O) = {o2, o4},

Papra1(O) = {o1, o2, o3, o4}.

O is possibly definable on a1.

As with the case of nominal attributes [12], the following proposition holds.

Proposition 4 Capr
A
(O) ⊆ Papr

A
(O) ⊆ O ⊆ CaprA(O) ⊆ PaprA(O).

Using the four approximations denoted by formulae (16)–(19), lower approxima-
tion apr•

A
(O) and upper approximation apr•

A(O) are expressed in interval sets, as is

described in [13]4:

apr•
A
(O) = [Capr

A
(O),Papr

A
(O)], (20)

apr•
A(O) = [CaprA(O),PaprA(O)]. (21)

The two approximations apr•
A
(O) and apr•

A(O) are dependent through the comple-
mentarity property apr•

A
(O) = U − apr•

A(U − O).

Example 3 Applying four approximations in Example 2 to formulae (20) and (21),

4Hu and Yao also say that approximations are described by using an interval set in information
tables with incomplete information [5].
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apr•
a1

(O) = [{o4}, {o2, o4}],
apr•

a1(O) = [{o2, o4}, {o1, o2, o3, o4}].

Furthermore, the following proposition is valid from formulae (16)–(19).

Proposition 5

Capr
A
(O) = {o | ∀o′ ∈ U (o, o′) /∈ (CRA ∪ MPRA) ∨ o′ ∈ O},

CaprA(O) = {o | ∃o′ ∈ U (o, o′) ∈ CRA ∧ o′ ∈ O},
Papr

A
(O) = {o | ∀o′ ∈ U (o, o′) /∈ CRA ∨ o′ ∈ O},

PaprA(O) = {o | ∃o′ ∈ U (o, o′) ∈ (CRA ∪ MPRA) ∧ o′ ∈ O}.

Our extended approach directly using indiscernibility relations [14] is justified from
this proposition. That is, approximations from the extended approach using two
indiscernibility relations are the same as the ones obtained under possible world
semantics. A correctness criterion for justification is formulated as

q(RA) =
⊙

q′(F(RA)),

where q′ is the approach for complete and continuous information, which is described
in Sect. 2, and q is an extended approach of q′, which directly handleswith incomplete
and continuous information, and

⊙
is an aggregate operator. This is represented in

Fig. 3.
This kind of correctness criterion is usually used in the field of databases handling

incomplete information [1–3, 6, 17, 23].
When objects in O are specified by a restriction containing set B of nominal

attribute with incomplete information, elements in domain D(B)(= ∪b∈BD(b)) are
used. For example, O is specified by restriction B = X (= ∧b∈B(b = xb)) with B ∈
AT and xb ∈ D(b). Four approximations: certain lower, certain upper, possible lower,
and possible upper ones are:

Fig. 3 Correctness criterion
of extended method q
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Capr
A
(O) = apr

A
(COB=X )prmax , (22)

CaprA(O) = aprA(COB=X )prmin , (23)

Papr
A
(O) = apr

A
(POB=X )prmin , (24)

PaprA(O) = aprA(POB=X )prmax . (25)

where

COB=X = {o ∈ O | B(o) = X }, (26)

POB=X = {o ∈ O | B(o) ∩ X = ∅}. (27)

WhenO is specified by a restriction containing set B of numerical attributes with
incomplete information, set O is specified by an interval where precise values of
b ∈ B are used.

Capr
A
(O) = apr

A
(CO∧b∈B[b(omb ),b(onb )])

prmax , (28)

CaprA(O) = aprA(CO∧b∈B[b(omb ),b(onb )])
prmin , (29)

Papr
A
(O) = apr

A
(PO∧b∈B[b(omb ),b(onb )])

prmin , (30)

PaprA(O) = aprA(PO∧b∈B[b(omb ),b(onb )])
prmax , (31)

where

CO∧b∈B[b(omb ),b(onb )] = {o ∈ O | ∀b ∈ B b(o) ⊆ [b(omb), b(onb)]}, (32)

PO∧b∈B[b(omb ),b(onb )] = {o ∈ O | ∀b ∈ B b(o) ∩ [b(omb), b(onb)] = ∅}, (33)

where b(omb) and b(onb) are precise and ∀b ∈ B b(omb) ≤ b(onb).

Example 4 In incomplete information table T of Example 1, let O be specified by
values a2(o3) and a2(o4). Using formulae (32) and (33),

CO[a2(o3),a2(o4)] = {o3, o4},
PO[a2(o3),a2(o4)] = {o2, o3, o4}.

Possible indiscernibility relations prmin and prmax on a1 is pr1 and pr8 in Example 1.
Using formulae (28)–(31),

Capr
a1

(O) = {o4},
Capra1(O) = {o3, o4},
Papr

a1
(O) = {o2, o3, o4},

Papra1(O) = {o1, o2, o3, o4}.
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4 Rule Induction in Complete and Continuous Information
Systems

Let single rules that are supported by objects be derived from the lower and upper
approximations of O specified by restriction B = X .

• Object o ∈ apr
A
(O) supports rule A = A(o) → B = X consistently.

• Object o ∈ aprA(O) supports rule A = A(o) → B = X inconsistently.

The accuracy, which means the degree of consistency, is |[o]A ∩ O|/|[o]A|. This
degree is equal to 1 for o ∈ apr

A
(O).

In the case where a set of attributes that characterize objects has continuous
domains, single rules supported by individual objects in an approximation usually
have different antecedent parts. So, we obtain lots of single rules. The disadvantage
of the single rule is that it lacks applicability. For example, let two values a(o)
and a(o′) be 4.53 and 4.65 for objects o and o′ in apr

a
(O). When O is specified

by restriction b = x, o and o′ consistently support single rules a = 4.53 → b = x
and a = 4.65 → b = x, respectively. By using these single rules, we can say that an
objectwith value 4.57 ofa,which is indiscerniblewith 4.53 under δa = 0.05, supports
a = 4.57 → b = x. However, we cannot at all say anything for a rule consistently
supported by an object with value 4.59 discernible with 4.53 and 4.65 under δa =
0.05. This shows that the single rule has low applicability.

To improve applicability, we bring serial single rules into one combined rule.
Let o ∈ U be arranged in ascending order of a(o) and be given a serial superscript
from 1 to |U |. apr

A
(O) and aprA(O) consist of collections of serially superscripted

objects. For instance, apr
A
(O) = {· · · , ohih , o

h+1
ih+1

, · · · , ok−1
ik−1

, okik , · · · } (h ≤ k). The

following processing is done to each attribute in A. A single rule that ol ∈ apr
A
(O)

has antecedent part a = a(ol) for attribute a. Then, antecedent parts of serial sin-
gle rules induced from collection (ohih , o

h+1
ih+1

, · · · , ok−1
ik−1

, okik ) can be brought into one
combined antecedent part a = [a(ohih), a(okik )]. Finally, a combined rule is expressed
in ∧a∈A(a = [a(ohih), a(okik )] → B = X ). The combined rule has accuracy

min
h≤j≤k

|[ojij ]A ∩ O|/|[ojij ]A|. (34)

Proposition 7 Let r be the set of combined rules obtained from apr
A
(O) and

r be the set from aprA(O). If (A = [lA, uA] → B = X ) ∈ r, then ∃l′A ≤ lA, ∃u′
A ≥

uA (A = [l′A, u′
A] → B = X ) ∈ r, where O is specified by restriction B = X and

(A = [lA, uA]) = ∧a∈A(a = [la, ua]).
Proof Asingle rule obtained from apr

A
(O) is also derived from aprA(O). Thismeans

that the proposition holds.

Example 7 Let continuous information table T0 in Fig. 3 be obtained, where U
consists of {o1, o2, · · · , o19, o20}. Tables T1, T2, and T3 in Fig. 4 are created from
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Fig. 4 T0 is an incomplete and continuous information table. T1, T2, and T3 are derived from T0

T0. T1 where set {a1, a4} of attributes is projected from T0, T2 where {a2, a3} is
projected, andT3where {a3} is projected. In addition, objects included inT1,T2, and
T3 are arranged in ascending order of values of attributes a1, a2, and a3, respectively.

Indiscernible classes on a1 of each object under δa1 = 0.05 are:

[o1]a1 = {o1, o10, o14}, [o2]a1 = {o2, o11, o16, o17},
[o3]a1 = {o3}, [o4]a1 = {o4}, [o5]a1 = {o5, o20},
[o6]a1 = {o6, o10, o15}, [o7]a1 = {o7}, [o8]a1 = {o8},
[o9]a1 = {o9}, [o10]a1 = {o1, o6, o10, o14, o15},
[o11]a1 = {o2, o11, o16}, [o12]a1 = {o12}, [o13]a1 = {o13, o19},
[o14]a = {o1, o10, o14}, [o15]a = {o6, o10, o15},
[o16]a1 = {o2, o11, o16}, [o17]a1 = {o2, o17}, [o18]a1 = {o18},
[o19]a1 = {o13, o19}, [o20]a1 = {o5, o20}.

When O is specified by a4 = x, O = {o1, o2, o5, o9, o11, o14, o16, o19, o20}. Let O be
approximated by objects characterized by attribute a1 whose values are continuous.
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Using formulae (3) and (4), two approximations are:

apr
a1

(O) = {o5, o9, o11, o16, o20},
apra1(O) = {o1, o2, o5, o9, o10, o11, o13, o14, o16, o17, o19, o20}.

In continuous information table T1, which is created from T0, objects are arranged in
ascending order of values of attribute a1 and each object is given a serial superscript
from 1 to 20. Using the serial superscript, the two approximations are rewritten:

apr
a1

(O) = {o716, o811, o149 , o155 , o1620},
apra1(O) = {o517, o62, o716, o811, o1110, o121 , o1314, o

14
9 , o155 , o1620, o

17
19, o

18
13},

The lower approximation creates consistent combined rules:

a1 = [3.96, 3.98] → a4 = x, a1 = [4.23, 4.43] → a4 = x,

from collections {o716, o811} and {o149 , o155 , o1620}, respectively, where a1(o716) = 3.96,
a1(o811) = 3.98, a1(o149 ) = 4.23, and a1(o1620) = 4.43. The upper approximation cre-
ates inconsistent combined rules:

a1 = [3.90, 3.98] → a4 = x, a1 = [4.08, 4.92] → a4 = x,

from collections {o517, o62, o716, o811} and {o1110, o121 , o1314, o
14
9 , o155 , o1620, o

17
19, o

18
13}, respec-

tively, where a1(o517) = 3.90, a1(o1110) = 4.08, and a1(o1813) = 4.92.
Next, let O be specified by a3 that takes continuous values. In information

table T3 projected from T0 the objects are arranged in ascending order of val-
ues of a3 and each object is given a serial superscript from 1 to 20. Let lower
and upper bounds be a3(o615) = 4.23 and a3(o118 ) = 4.50, respectively. Then, O =
{o615, o73, o817, o92, o1016, o118 }. We approximate O by objects restricted by attribute a2.
Under δa2 = 0.05, indiscernible classes of objects o1, . . . o20 are:

[o1]a2 = {o1, o4, o7, o8}, [o2]a2 = {o2, o3, o16},
[o3]a2 = {o2, o3, o13, o16}, [o4]a2 = {o1, o4, o7, o8},
[o5]a2 = {o5, o20}, [o6]a2 = {o6}, [o7]a2 = {o1, o4, o7},
[o8]a2 = {o8}, [o9]a2 = {o9}, [o10]a2 = {o10},
[o11]a2 = {o11, o18}, [o12]a2 = {o12}, [o13]a2 = {o3, o13},
[o14]a2 = {o14}, [o15]a2 = {o15}, [o16]a2 = {o2, o3, o16},
[o17]a2 = {o17}, [o18]a2 = {o11, o18}, [o19]a2 = {o19}, [o20]a2 = {o5, o20}.

Formulae (3) and (4) derives the following approximations:
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apr
a2

(O) = {o2, o8, o15, o16, o17},
apra2(O) = {o1, o2, o3, o4, o8, o13, o15, o16, o17}.

In continuous information table T2, objects are arranged in ascending order of values
of attribute a2 and each object is given a serial superscript from 1 to 20. Using objects
with superscripts, the two approximations are rewritten:

apr
a2

(O) = {o78, o815, o1017, o112 , o1216},
apra2(O) = {o51, o64, o78, o815, o1017, o112 , o1216, o

13
3 , o1413},

Consistent combined rules from collections {o78, o815} and {o1017, o112 , o1216} are

a2 = [2.10, 2.28] → a3 = [4.23, 4.50],
a2 = [2.50, 2.64] → a3 = [4.23, 4.50],

where a2(o78) = 2.10, a2(o815) = 2.28, a2(o1017) = 2.50, and a2(o1216) = 2.64. Incon-
sistent combined rules from collections (o51, o

6
4, o

7
8, o

8
15} and {o1017, o112 , o1216, o

13
3 , o1413)

are

a2 = [1.97, 2.28] → a3 = [4.23, 4.50],
a2 = [2.50, 2.70] → a3 = [4.23, 4.50],

where a2(o51) = 1.97 and a2(o1413) = 2.70.
Example 7 shows that a combined rule has higher applicability than single

rules. For example, by using the consistent combined rule a2 = [2.10, 2.28] → a3 =
[4.23, 4.50], we can say that an object with attribute a2 value 2.16 supports this rule,
because 2.16 is included in [2.10, 2.28]. On the other hand, by using single rules
a2 = 2.10 → a3 = [4.23, 4.50] and a2 = 2.28 → a3 = [4.23, 4.50], we cannot say
what rule the object supports, because 2.16 is discernible with both 2.10 and 2.28
under threshold 0.05.

5 Rule Induction in Incomplete and Continuous
Information Tables

WhenO is specified by restriction B = X , we can say for rules induced from objects
in approximations as follows:

• Object o ∈ Capr
A
(O) certainly supports rule A = A(o) → B = X consistently.

• Object o ∈ CaprA(O) certainly supports rule A = A(o) → B = X inconsistently.
• Object o ∈ Papr

A
(O) possibly supports A = A(o) → B = X consistently.

• Object o ∈ PaprA(O) possibly supports A = A(o) → B = X inconsistently.
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We create combined rules from these single rules. Let UC
a be the set of objects with

complete and continuous information for attribute a and UI
a be one with incomplete

and continuous information.

UC
A = ∩a∈AUC

a , (35)

UI
A = ∪a∈AUI

a . (36)

A combined rule is represented by:

(A = [lA, uA] → B = X ) = (∧a∈A(a = [la, ua]) → B = X ). (37)

The following treatment is done for each attribute a ∈ A. o ∈ UC
a is arranged in

ascending order of a(o) and is given a serial superscript from 1 to |UC
a |. Objects in

(Capr
A
(O) ∩UC

a ), in (CaprA(O) ∩UC
a ), in (Papr

A
(O) ∩UC

a ), and in (PaprA(O) ∩
UC

a ) are arranged in ascending order of attribute a values, respectively. And then
the objects are expressed by collections of objects with serial superscripts like
{· · · , ohih , o

h+1
ih+1

, · · · , ok−1
ik−1

, okik , · · · } (h ≤ k). From collection (ohih , o
h+1
ii+1

, · · · , ok−1
ik−1

,

okik ), the antecedent part for a of the combined rule expressed by A = [lA, uA] →
B = X is created. For a certain and consistent combined rule,

la = min(a(ohih),min
Y

e) and ua = max(a(okik ),max
Y

e),

Y =

⎧
⎪⎨

⎪⎩

e < a(ok+1
ik+1

), for h = 1 ∧ k = |UC
a |

a(oh−1
ih−1

) < e < a(ok+1
ik+1

), for h = 1 ∧ k = |UC
a |

a(oh−1
ih−1

) < e, for h = 1 ∧ k = |UC
a |

with e ∈ a(o′) ∧ o′ ∈ Z, (38)

where Z is (Capr
A
(O) ∩UI

a ).
In the case of certain and inconsistent, possible and consistent, possible and incon-
sistent combined rules, Z is (CaprA(O) ∩UI

a ), (PaprA(O) ∩UI
a ), and (PaprA(O) ∩

UI
a ), respectively.

Proposition 8 Let Cr be the set of combined rules induced from Capr
A
(O) and Pr

the set from Papr
A
(O). When O is specified by restriction B = X , if (A = [lA, uA] →

B = X ) ∈ Cr, then ∃l′A ≤ lA, ∃u′
A ≥ uA (A = [l′A, u′

A] → B = X ) ∈ Pr.

Proof A single rule created from Capr
A
(O) is also derived from Papr

A
(O) because

of Capr
A
(O) ⊆ Papr

A
(O). This means that the proposition holds.

Proposition 9 Let Cr be the set of combined rules induced from CaprA(O)and Pr
the set from PaprA(O). When O is specified by restriction B = X , if (A = [lA, uA] →
B = X ) ∈ Cr, then ∃l′A ≤ lA, ∃u′

A ≥ uA (A = [l′A, u′
A] → B = X ) ∈ Pr.

Proof The proof is similar to one for Proposition 8.
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Fig. 5 Information table IT2 containing incomplete information

Proposition 10 Let Cr be the set of combined rules induced from Capr
A
(O) and Cr

the set from CaprA(O). When O is specified by restriction B = X , if (A = [lA, uA] →
B = X ) ∈ Cr, then ∃l′A ≤ lA, ∃u′

A ≥ uA (A = [l′A, u′
A] → B = X ) ∈ Cr.

Proof The proof is similar to one for Proposition 8.

Proposition 11 Let Pr be the set of combined rules induced from Papr
A
(O) and Pr

the set from PaprA(O). When O is specified by restriction B = X , if (A = [lA, uA] →
B = X ) ∈ Pr, then ∃l′A ≤ lA, ∃u′

A ≥ uA (A = [l′A, u′
A] → B = X ) ∈ Pr.

Proof The proof is similar to one for Proposition 8.

Example 8 Let O be specified by restriction a4 = x in IT2 of Fig. 5.

COa4=x = {o2, o5, o9, o11, o14, o16, o20},
POa4=x = {o1, o2, o5, o9, o11, o14, o16, o17, o19, o20}.

Each C[oi]a1 with i = 1, . . . , 20 is, respectively,
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C[o1]a1 = {o1, o10},C[o2]a1 = {o2, o11, o16, o17},
C[o3]a1 = {o3},C[o4]a1 = {o4},C[o5]a1 = {o5, o20},
C[o6]a1 = {o6, o10, o15},C[o7]a1 = {o7},
C[o8]a1 = {o8},C[o9]a1 = {o9},
C[o10]a1 = {o1, o6, o10, o14, o15},
C[o11]a1 = {o2, o11, o16},C[o12]a1 = {o12},
C[o13]a1 = {o13, o19},C[o14]a1 = {o10, o14},
C[o15]a1 = {o6, o10, o15},C[o16]a1 = {o2, o11, o16},
C[o17]a1 = {o2, o17},C[o18]a1 = {o18},
C[o19]a1 = {o13, o19},C[o20]a1 = {o5, o20}.

Each P[oi]a1 with i = 1, . . . , 20 is, respectively,

P[o1]a1 = {o1, o6, o10, o14, o15},
P[o2]a1 = {o2, o9, o11, o16, o17},
P[o3]a1 = {o3},P[o4]a1 = {o4},P[o5]a1 = {o5, o20}
P[o6]a1 = {o1, o6, o10, o15},P[o7]a1 = {o7},P[o8]a1 = {o8},
P[o9]a1 = {o2, o9, o11, o16, o17},
P[o10]a1 = {o1, o6, o10, o14, o15},
P[o11]a1 = {o2, o9, o11, o16, o17},P[o12]a1 = {o12},
P[o13]a1 = {o13, o19},P[o14]a1 = {o1, o10, o14},
P[o15]a1 = {o1, o6, o10, o15},
P[o16]a1 = {o2, o9, o11, o16, o17},
P[o17]a1 = {o1, o2, o9, o11, o16, o17},P[o18]a1 = {o18},
P[o19]a1 = {o13, o19},P[o20]a1 = {o5, o20}.

Four approximations are:

Capr
a1

(O) = {o5, o20},
Papr

a1
(O) = {o2, o5, o9, o11, o16, o17, o20},

Capra1(O) = {o2, o5, o9, o10, o11, o14, o16, o17, o20},
Papra1(O) = {o1, o2, o5, o6, o9, o10, o11, o13, o14, o15, o16, o17, o19, o20}.

UC
a1 = {o2, o3, o4, o5, o6, o7, o8, o10, o12, o13, o14, o15, o16, o20},

UI
a1 = {o1, o9, o11, o17, o18, o19}
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Objects in UC
a1 are arranged in ascending order of a1(o) like this:

o3, o12, o7, o2, o16, o6, o15, o10, o14, o5, o20, o13, o8, o4

Giving serial superscripts to these objects,

o13, o
2
12, o

3
7, o

4
2, o

5
16, o

6
6, o

7
15, o

8
10, o

9
14, o

10
5 , o1120, o

12
13, o

13
8 , o144 .

And then, the four approximations are rewritten like these:

Capr
a1

(O) = {o105 , o1120},
Papr

a1
(O) = {o42, o516, o105 , o1120, o9, o11, o17},

Capra1(O) = {o42, o516, o810, o914, o105 , o1120, o9, o11, o17},
Papra1(O) = {o42, o516, o66, o715, o810, o914, o105 , o1120, o

12
13, o1, o9, o11, o17, o19}.

Objects are separated into two parts: ones with a superscript and ones with only a
subscript; namely, ones having complete information and ones having incomplete
information for attribute a1, respectively. That is,

Capr
a1

(O) ∩UC
a1 = {o105 , o1120},

Capr
a1

(O) ∩UI
a1 = ∅,

Papr
a1

(O) ∩UC
a1 = {o42, o516, o105 , o1120},

Papr
a1

(O) ∩UI
a1 = {o9, o11, o17},

Capra1(O) ∩UC
a1 = {o42, o516, o810, o914, o105 , o1120},

Capra1(O) ∩UI
a1 = {o9, o11, o17},

Papra1(O) ∩UC
a1 = {o42, o516, o66, o715, o810, o914, o105 , o1120, o

12
13},

Papra1(O) ∩UI
a1 = {o1, o9, o11, o17, o19}.

From these expressions and formula (38), four kinds of combined rules are created.
A certain and consistent rule is:

a1 = 4.43 → a4 = x.

Possible and consistent rules are:

a1 = [3.90, 3.98] → a4 = x,

a1 = [4.23, 4.43] → a4 = x.
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Certain and inconsistent rules are:

a1 = [3.90, 3.98] → a4 = x,

a1 = [4.08, 4.43] → a4 = x.

A possible and inconsistent rule is:

a1 = [3.90, 4.93] → a4 = x.

6 Conclusions

We have described rough sets that consist of lower and upper approximations and
rule induction from the rough sets in continuous information tables.

First, we have handled complete and continuous information tables. Rough sets
are derived directly using the indiscernibility relation on a set of attributes.

Second, we have coped with incomplete and continuous information tables under
possible world semantics. We use a possible indiscernibility relation as a possible
world. This is because the number of possible indiscernibility relations is finite,
although the number of possible tables, which is traditionally used under possible
world semantics, is infinite. The family of possible indiscernibility relations has a
lattice structure with theminimum and themaximum elements. The families of lower
and upper approximations that are derived from each possible indiscernibility rela-
tion also have a lattice structure for set inclusion. The approximations are obtained by
using the minimum and the maximum possible indiscernibility relations. Therefore,
we have no difficulty of computational complexity for the number of attribute values
with incomplete information, although the number of possible indiscernibility rela-
tions increases exponentially as the number of values with incomplete information
grows linearly.

Consequently, we derive four kinds of approximations. These approximations are
the same as those obtained from an extended approach directly using indiscernibility
relations. Therefore, this justifies the extended approach in our previous work.

From these approximations, we derive four kinds of single rules that are sup-
ported by individual objects. These single rules have weak applicability. To improve
the applicability, we have brought serial single rules into one combined rule. The
combined rule has greater applicability than the single ones that are used to create it.
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