
GOAL-DTU: Development of Distributed
Intelligence for the Multi-Agent

Programming Contest

Alexander Birch Jensen and Jørgen Villadsen(B)

Algorithms, Logic and Graphs Section, Department of Applied Mathematics
and Computer Science, Technical University of Denmark, Richard Petersens Plads,

Building 324, 2800 Kongens Lyngby, Denmark
jovi@dtu.dk

Abstract. We provide a brief description of the GOAL-DTU system
for the Multi-Agent Programming Contest, including the overall strategy
and how the system is designed to apply this strategy. Our agents are
implemented using the GOAL programming language. We evaluate the
performance of our agents for the contest, and finally also discuss how to
improve the system based on analysis of its strengths and weaknesses.

1 Introduction

In fall 2019 we participated as the GOAL-DTU team in the annual Multi-Agent
Programming Contest (MAPC). We are using the GOAL agent programming
language [1–3] and we are affiliated with the Technical University of Denmark
(DTU). We participated in the contest in 2009 and 2010 as the Jason-DTU team
[4,5], in 2011 and 2012 as the Python-DTU team [6,7], in 2013 and 2014 as the
GOAL-DTU team [8], in 2015/2016 as the Python-DTU team [9] and in 2017
and 2018 as the Jason-DTU team [10].

In 2019 we had the new Agents Assemble scenario. The paper is organized
as follows:

– Section 2 describes agent programming using the GOAL language.
– Section 3 covers the overall strategy of our agents.
– Section 4 describes the knowledge our agents acquire from the environment.
– Section 5 describes how our agents communicate.
– Section 6 describes the movement of our agents.
– Section 7 covers how our agents complete selected tasks.
– Section 8 evaluates the performance of our agents in the three matchups.
– Section 9 discusses improvements to the system.
– Section 10 is our conclusion.

c© Springer Nature Switzerland AG 2020
T. Ahlbrecht et al. (Eds.): MAPC 2019, LNAI 12381, pp. 79–105, 2020.
https://doi.org/10.1007/978-3-030-59299-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59299-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-59299-8_4

80 A. B. Jensen and J. Villadsen

2 Agent Programming in GOAL

This section introduces the basic concepts of the GOAL agent programming
language that are relevant to the implementation of our system.

Agents in GOAL are to be understood as self-controlled independent entities.
Each agent interacts with the environment and communicates with other agents.
Percepts and messages are treated as events that can be processed. This event
processing then feeds into the knowledge, beliefs and goals (the three components
that comprise an agent’s cognitive state).

The programming philosophy behind GOAL is quite different when compared
to other popular agent programming languages. Beyond the cognitive state, the
core abilities of an agent are the just mentioned event processing capability,
the ability to represent knowledge and reason about it, and finally, rule-based
decision-making which allows an agent to select an action based on its current
cognitive state.

2.1 The GOAL Execution Loop

GOAL features a simple execution loop of each agent. Beyond an initialization
module that can process the initial state of the environment, and set up the
initial cognitive state, GOAL follows the execution loop below:

1. Check new events: If there are no new events, the next step is skipped.
2. Process events: The event module processes new events. Recall that these

events are either percepts from the environment or messages from other
agents. It is the purpose of this module to update the cognitive state of
the agent before selecting the next action.

3. Action selection: The main module defines the rules for decision-making.
Based on the rules, the first valid action is selected. Note that several actions
may be applicable based on the rules in the main module. GOAL allows for
other strategies, but it is essential to our implementation that the first action
is always the one that is selected.

4. Perform action: The selected action is sent to the environment (and com-
munication actions are executed internally).

Technically speaking, there is also a final step that applies the post-conditions
(effects) for the selected action from our action specification. However, it is not
relevant for us since we rely solely on the event module to perceive the effects of
actions.

2.2 Action Selection

GOAL advocates that agents are individual entities that reason about their
environment. They react to changes in their environment rather than executing
predetermined plans. For example, an agent may devise a plan for a goal to be
achieved. At some intermediate step in the plan, the next step may no longer be

GOAL-DTU: Development of Distributed Intelligence 81

applicable due to (unforeseen) changes in the environment. GOAL tries to avoid
the complexity of rebuilding “broken plans” by advocating a reactive model.
We should consider how the agent can select appropriate actions based on the
current state of affairs. However, note that it is still possible for programmers
to represent plans via the cognitive state of agents using Prolog, but it is not
facilitated explicitly by the language. The reactive approach is not flawless either:
it can be difficult for programmers to come up with logical rules that produce
the desired behaviour, but by overcoming this challenge, we often have a more
flexible agent.

3 Strategy

In our current system, we have a universal agent type. By a universal agent
type we mean that all agents share the same logic. While it is possible to have
different kinds of agents in GOAL, i.e. via modules, it is not something we
currently utilize. Some advantages of a universal agent type are that it is faster
to implement, every agent is seamlessly capable of everything and we need not
worry about when to switch the agent’s type. The main disadvantage is that the
code base becomes convoluted as development progresses due to growing array
of logical rules for selecting the appropriate action.

During action selection, the agents apply heuristic measures to determine
movement directions. We describe the different variants of heuristic functions
in Sect. 6. It should also be noted that we currently do not perform any clear
actions. We did not manage to implement use of the action in a meaningful way
for the contest.

The following priority list describes the decision-making process of our agents
(with some simplifications) where the first applicable rule determines the action
to be selected in a given state:

– If the agent is assigned to a task:
• Detach any attached blocks not needed for the task. The agent will only

detach blocks if it considers it non-obstructive to future movement. If not,
it will continue to move (using the detach movement heuristic) until it
considers it safe to detach.

• Rotate the block into the position dictated by the task plan. If rotation is
blocked, move until rotation is possible (using the exploration movement
heuristic).

• If the agent observes part of the pattern to be handed in, or if the agent
is assigned to submit the task (the submitting agent), and is on a goal,
wait for other agents (by performing the skip action).

• If the agent observes the entire pattern, connect with other blocks/agents
as described by the task plan.

• If all blocks in the pattern are connected, the assigned agent submits the
task.

• If the agent finds the submitting agent (waiting in a goal area), move
until the attachment(s) form the (partial) pattern (using the task pattern
movement heuristic).

82 A. B. Jensen and J. Villadsen

• If the agent is the submitting agent, move towards a goal area (using the
go to movement heuristics).

• Else, move towards the position of the submitting agent (using the go to
movement heuristics).

• If a goal area is known, move towards it (using the go to movement
heuristics).

• Move into the most promising direction (based on the exploration move-
ment heuristic).

– If the agent is not assigned to a task:
• If a block or dispenser is in vision, and the agent does not have four

blocks:
∗ Rotate such that a free attachment spot is facing the direction of the
block/dispenser. If rotation is blocked, move (using the exploration
movement heuristic).
∗ If the agent is next to a block, attach it to the agent.
∗ If the agent is next to a dispenser, request a block.
∗ If not next to the block/dispenser, move towards it (using the go to
movement heuristics).

• Move around on the map (based on the safe exploration heuristic).
– Perform skip action.

4 Agent Knowledge

In this section, we cover the design of the knowledge stored in the agents’ mental
states. Generally speaking, the agents store and maintain knowledge about the
map that is assumed be invariable (or alternatively: always perceivable). We
consider invariable knowledge to be: the positions of goal cells, attached blocks,
the agent’s current position (relative to its starting position), positions visited
by the agent, and the position of encountered agents from the team. Some of
these involve communication between agents. The positions of blocks, dispensers
and obstacles are only stored in the agent as long as they are within vision. The
communication of our agents is described in Sect. 5.

The agent does not perceive a global view of the map via the environment, nor
its own position on the map. Furthermore, random events and actions of other
agents can change the structure of the map over time. Due to this complexity, we
do not attempt to build up an internal representation of the map. Unfortunately,
this comes at the cost of efficient and meaningful movement on the map.

4.1 The Current Position

By keeping track of performed move actions, and checking for a potential failed
action, the agent maintains information about its own current position. With the
starting position of the agent as the center of origin, we maintain two values that
represent the agent’s position in a two-dimensional space. Moving in a direction,
either north, east, south or west; results in incrementing or decrementing one of
these values.

GOAL-DTU: Development of Distributed Intelligence 83

4.2 Visited Positions

The bookkeeping of visited positions is essential to avoiding that the agent
repeatedly gets stuck, or does not make progress. When an agent performs a
move action, in the next step the following information about the visited position
is stored: the relative position of the agent, the current step in the simulation,
and a flag for if the position is a goal cell. The position is stored relative to the
initial position of each agent. That is, each agent is initially at (x, y) = (0, 0).
The relative position of each agent is updated based on successful move actions.

As the simulation progresses, the database of visited positions gains addi-
tional entries. Due to the way we utilize this, we are only interested in visited
positions with respect to a specific subtasks. For instance, if the agent is try-
ing to find a goal cell, it is not relevant which positions the agent visited in an
attempt to find blocks. Therefore, we define a number of events that trigger a
clearing of the agent’s knowledge about visited positions:

– The agent has completed a subtask: Attached, detached or requested a block.
– We submitted a task. In our system, once a task is submitted, most agents

will work on different matters.

The visited nodes are useful for steering the agent away from repeating the
same movement patterns when they do not make progress. The idea is that
visited positions are only relevant locally – at later points in time it may be
relevant to visit those positions again. Essentially, this means that the visited
positions are only remembered for the duration of smaller subtasks. Intuitively,
it seems non-optimal to remove knowledge that could help steer the agent away
from dead ends that it has found earlier. However, the ever-changing structure
of the map quickly invalidates this knowledge anyway.

4.3 Positions of Goal Cells

The positions of goal cells are assumed to be invariable throughout the sim-
ulation. Due to this assumption, once the agents store knowledge about the
positions of goal cells, they are never removed.

The position of goal cells are stored relative to the position of the agents and
are thus updated following successful move actions.

The agents learn about positions of goal cells either through perceiving them
within their own vision or via communication with other agents.

4.4 Blocks, Dispensers and Obstacles

The information about blocks, dispensers and obstacles are only perceived when
the agent is within vision. A clear event may remove blocks from the map, or
they may be moved by other agents. Due to this, the positions of blocks is not
maintained when outside of the agent’s vision.

84 A. B. Jensen and J. Villadsen

Obstacle positions could potentially be maintained by perceiving clear events
and remove information about affected obstacles. The position of obstacles cur-
rently plays no part in any sort of route finding algorithm and we do not maintain
this knowledge when outside of the agent’s vision.

Dispensers are different from blocks and obstacles as their positions do not
change during the simulation. In the current implementation, agents always go
towards an available dispenser, if they do not have a block on each side, and
if they are not trying to solve a task. Our agents will always prefer to go to
the nearest known position of a block or dispenser. Thus to avoid the agent
always going back to the same dispenser, we currently do not keep information
of dispenser positions outside of the agent’s vision.

Neither the position of blocks, dispenser or obstacles are shared between
agents via communication. Since we do not keep and maintain their positions,
it does not make sense to share the information between agents – it should only
be part of an agent’s mental state when within vision.

4.5 Attached Blocks

Each agent keeps track of its own attached blocks with coordinates relative
to its own position. The environment makes available any attached blocks in
vision, but it is not immediately visible which agents the blocks are attached
to. To make sure that the agent only keeps stored knowledge about the blocks
attached to itself, we check for successful attach actions to insert the knowledge
of a block being attached. Successful rotations update the stored coordinates
accordingly. We always make sure that any knowledge about attached blocks
is also perceivable in the environment – if not, the knowledge is removed. This
is due to the fact that submitting tasks and clear events may invalidate the
knowledge.

We will also briefly mention that current attached blocks are communicated
between agents. This is used for devising plans to submit tasks. The details are
covered in Sects. 5.3 and 7.2.

5 Agent Communication and Shared Knowledge

Sharing knowledge between agents by means of communication is essential for
efficiently exploiting the multiple agents available. The environment presents
a number of challenges in enabling effective agent communication. Also, the
volatility of the scenario map does not suggest an easy way of building up a
shared representation. Our current implementation could utilize more shared
knowledge and communication, and it is something we hope to improve in the
future.

Specifically for agent programming using GOAL, communication between
agents are part of the core loop. One important aspect is that any messages sent
in one step will only be available for processing by the receiving agent in the
following step. This requires some deliberate implementation to make sure that

GOAL-DTU: Development of Distributed Intelligence 85

the information received is up to date – in our implementation this is extremely
relevant as we often share information that is relative to the current position of
agents.

5.1 Encountering Other Agents

The environment only gives information to agents about the position of other
agents when within their vision. The agent is able to perceive which team an
encountered agent belongs to, but no further identification is provided (i.e. the
name of the encountered agent). To be able to identify which pair of agents that
have encountered each other we apply the following: when two of our agents meet,
they exchange information about what other objects they are able to identify
within their vision. Only if they agree on everything in their shared vision, they
acknowledge that they did in fact encounter each other. A check is performed
to prevent two agents from mistakenly concluding that they encountered each
other. We do this by checking that the given pair of agents agree on objects in
their shared vision. Our initial implementation was solely based on the agents’
relative position to each other, with no additional conditions, which yielded
occasional false positives.

5.2 Goal Cells and Agent Positions

When two agents agree that they encountered each other, they exchange infor-
mation about the positions of goal cells and other agents from the team. Each
agent adds the shared information to its belief base relative to its belief about
its own current position. Currently, the agents do not continue to share new
information after encountering other agents.

When an agent successfully moves in a given direction, it informs other agents
about which directed it moved in. This information is used by each agent to
maintain the knowledge about positions of other agents.

5.3 Attached Blocks

We assign one of our agents as the planning agent. At each step of the simulation,
each agent, that is not currently assigned to solve a task, sends a message to
the planning agent containing a list of its currently attached blocks. The plan-
ning agent uses the received messages to (possibly) assign a task to a subset of
the agents that sent messages. The details of the task planning assignment are
covered in Sect. 7.2.

6 Agent Movement

The Agents Assemble scenario provides only partial vision of the map to agents,
limited to a small area around each agent. Combining the knowledge of agents
over time will provide more and more knowledge of the map. However, random

86 A. B. Jensen and J. Villadsen

clear events happen over time around the map that remove and randomly add
new obstacles on part of the map. Other agents also have the ability to remove
obstacles. As such, a usual route finding algorithm requires substantial alter-
ations to be usable for the scenario. Due to the volatility of the map, such a
route finding algorithm will necessarily have to support re-planning when the
planned route is invalidated.

The above mentioned challenges for a route finding algorithm means that
we have opted for a more naive implementation of agent movement. The overall
strategy is to evaluate each of the (up to four) possible directions: north, east,
south and west; and then select the direction which has the optimal heuristic
value. When multiple directions share the same optimal value, a direction is
selected pseudo-randomly (the current simulation step is used as seed). Our
agent movement algorithm has five different variations:

– Exploration favors directions towards positions the agent has not visited
recently.

– Safe exploration is similar to the above, but further favors directions that
increase the distance to goal areas and other agents.

– Go to favors directions towards a given relative position and penalizes move-
ment to recently visited positions on the map.

– Task pattern favors directions that realize a given task pattern and penalizes
movement to recently visited positions on the map.

– Detach favors directions away from obstacles.

The choice of movement algorithm depends on the current strategy of the
agent.

6.1 Evaluation Functions

As described above, each variation of the movement algorithm is distinguished
by its heuristic function h. We will use h+ to denote that a higher value is
better and h− when lower is better. Neither of the mathematical formulations
are perfect in any sense, but give some approximation of the optimal choice.

Exploration

h+
exp(d) =

∑

visited

{ |Δx(d)|+|Δy(d)|
ΔS2 if |Δx(d)| + |Δy(d)| ≤ 30 and ΔS > 0

0 else

where Δx(d) and Δy(d) are the differences in x and y coordinates between the
visited position and the agent’s position after performing move in direction d.
ΔS is the number of steps since the position was visited.

Safe Exploration

h+
s−exp(d) = h+

exp(d) +
∑

(xt,yt)∈P

c(xt, yt) ∗ (|xt| + |yt|)

GOAL-DTU: Development of Distributed Intelligence 87

where P is a set of coordinates of goal cells and nearby agents in the team.
xt and yt are coordinates relative to the agent’s current position. c(xt, yt) is a
constant factor used for heavily favoring moving away from nearby agents.

Go To
h−

go−to(d) = |Δx(d)| + |Δy(d)| + size(Vpd
)

where Δx(d) and Δy(d) are the differences in x and y coordinates between the
goal position and pd is the agent’s position after performing move in direction
d. size(Vpd

) is the number of times position pd has been visited recently.

Task Pattern

h−
pat(d) = size(Vpd

) +
∑

(x,y,t)∈(pat/att)

min {|Δx| + |Δy|, |Ψ(d, x, y, t,Δx,Δy)|}

where size(Vpd
) is the number of times pd has been visited recently (pd is the

agent’s position after performing move in direction d). The set pat/att contains
the relative position and type of every block in the pattern excluding the blocks
the agent itself is providing (has attached). The predicate Ψ(d, x, y, t,Δx,Δy)
gives the difference in x and y coordinates to every observed non-attached block
of type t assuming a move in direction d.

Detach
h+

det(d) = h+
exp(d) +

∑

(x,y)∈obstacles

|Δx(d)| + |Δy(d)|

where obstacles is the set of the positions of observable obstacles. |Δx(d)| and
|Δy(d)| are the relative differences in x and y coordinates between the agent and
the obstacle following a move in direction d.

7 Solving Tasks

This section describes how the agents solve tasks. We consider solving a task
to consist of four parts: Collecting blocks, planning tasks to complete based on
the collected blocks, executing task plans (assembling the pattern) and finally
submitting the pattern.

7.1 Collecting Blocks

One core aspect of our strategy is to collect blocks before committing to any of
the available tasks, and to only commit to tasks for which we already have the
blocks to solve.

If an agent, that is not assigned to a task, and does not hold a block on each
side, encounters a block or dispenser, it will generally try to go towards it. It will

88 A. B. Jensen and J. Villadsen

only ignore the possibility to collect the block(s) in case another from the same
team is adjacent to it. This is to avoid race conditions for the same resource and
improve efficiency. Dealing with this issue via communication would likely be a
better approach, however.

In case the agent sees a dispenser or block, that is not occupied by another
agent from the same team, the agent will rotate if necessary to ensure that
a free attachment spot is available in the direction of the block or dispenser.
Attaching blocks takes priority over requesting blocks from dispensers. The agent
will repeatedly attach blocks on each of the four spots until they are all used.

In some cases the position of the block or dispenser may not allow the agent
to attach from that angle due to its current attachments. This is not currently
checked and avoided. In such a case, the agent is likely to enter a state of not
making progress – unless it is assigned to a task, or if it moves outside of vision
of the block due to being penalized for going to similar positions repeatedly.

7.2 Task Planning

If the combined attachments of all agents are sufficient to solve a task the plan-
ning agent will compute a task plan for it. The task with the lowest reward (and
thus, likely the easiest to complete) is selected. We select the easiest task based
on the observed performance of the agents, and we only ever try to complete
one task at a time. The logic for task planning supports computing multiple
non-overlapping task plans, but we observed that the agents would be likely to
obstruct each other. We only ever commit to a task that has some amount of
steps available to complete the task before the deadline. For the contest, we set
this to a minimum of 50 steps to complete the task. Later experimentation has
yielded better results with a higher number. Due to the abundance of available
tasks, the improved results seem logical. So far we have not conducted tests of
the distribution of task completion times for our agents.

The task plan specifies how each agent provides part of the pattern including
how it should be rotated. The expected completed pattern is computed for each
agent relative to its own position in the aligned pattern. This is used to ensure
that the agents align their attachments correctly. The task plan also specifies
how agents should connect to each other once the pattern alignment step is
complete. For each task, one of the selected agents is assigned to submit the
task.

The task plans are rigid in the sense that two agents that provide the same
block type cannot swap their respective sub-patterns. While there potentially
could be some benefit in supporting this behaviour, we do not consider it worth
the effort to implement when considering other potential improvements to the
agents.

7.3 Executing Task Plans

When a task plan is sent to the agents, the agents not involved will keep on
moving around the map, but their heuristics for movement will penalize moving

GOAL-DTU: Development of Distributed Intelligence 89

close to other agents. This is done in an attempt to avoid obstructing agents that
are working on completing a task. Each of the involved agents will immediately
detach any of the blocks that are no longer needed and rotate the remaining
attachments to align with their part of the pattern for the task. The agent
responsible for submitting the task will move towards the nearest goal cell if its
position is known (or scout for a goal cell if not). Once positioned at a goal cell,
the agent will wait for the other agents to show up. If the other agents assigned
to the task know the position of the agent responsible to submitting the task,
they will move towards that agent. If not, they will methodically visit each of the
known goal areas. If this fails, they will scout around the map. In most practical
cases, the agents eventually learn of the position of the agent responsible for
submitting the task.

We are not currently able to resolve situations where assigned agents are
stuck. However, the task plan is discarded if an assigned agent is disabled due to
a clear event. The idea is that if an agent is stuck the task plan is to be discarded,
but our implementation does not work properly. As previously mentioned, we
also do not utilize the clear action in any way currently, which could solve
potential pathing problems. At any time, if the task deadline is exceeded, the
task plan is deleted.

In case an agent assigned to the task finds its way to the agent responsible
for submitting the task, waiting at a goal area, the agent will start to align
itself to complete the pattern. This is achieved by the task pattern heuristic
that favors directions that minimize the expected deviance from the pattern to
submit. It should be noted that the agent responsible for submitting the task will
try to position itself such that the other agents have room to align themselves
to complete the pattern.

Once the pattern is complete, the agents connect their attachments and the
task is submitted.

8 Evaluation of Matches

With a total of four participants, we played three matches against each of the
three opponents. In the following, we evaluate the performance of our agents in
each matchup. See Figs. 1–45 for key statistics over the 500 steps of each match.

GOAL-DTU vs. TRG

In two of the simulations, we manage to complete a single task early on (Figs. 10,
11, 12). Team TRG completes a single task in the first simulation, but are unable
to do so in the other simulations. TRG has a strategy where some of their agents
defend goal areas by attempting to perform clear actions on our agents trying to
complete tasks. Since part of our task execution plan is to assemble the pattern
in the goal area, the strategy of team TRG denies a fair number of submits from
our agents.

90 A. B. Jensen and J. Villadsen

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Steps

Sc
or
e

GOAL-DTU
TRG

Fig. 1. Score: GOAL-DTU vs. TRG (1)

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Steps

Sc
or
e

GOAL-DTU
TRG

Fig. 2. Score: GOAL-DTU vs. TRG (2)

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Steps

Sc
or
e

GOAL-DTU
TRG

Fig. 3. Score: GOAL-DTU vs. TRG (3)

0 100 200 300 400 500
0

25

50

75

100

125

150

Steps

T
ot
al

bl
oc
ks

at
ta
ch

ed

GOAL-DTU
TRG

Fig. 4. Blocks: GOAL-DTU vs. TRG (1)

0 100 200 300 400 500
0

25

50

75

100

125

150

Steps

T
ot
al

bl
oc
ks

at
ta
ch

ed

GOAL-DTU
TRG

Fig. 5. Blocks: GOAL-DTU vs. TRG (2)

0 100 200 300 400 500
0

25

50

75

100

125

150

Steps

T
ot
al

bl
oc
ks

at
ta
ch

ed

GOAL-DTU
TRG

Fig. 6. Blocks: GOAL-DTU vs. TRG (3)

GOAL-DTU: Development of Distributed Intelligence 91

0 100 200 300 400 500
0

1

2

3

4

5

Steps

T
ot
al

su
bm

it
s
at
te
m
pt
ed

GOAL-DTU
TRG

Fig. 7. Submit: GOAL-DTU vs. TRG (1)

0 100 200 300 400 500
0

1

2

3

4

5

Steps

T
ot
al

su
bm

it
s
at
te
m
pt
ed

GOAL-DTU
TRG

Fig. 8. Submit: GOAL-DTU vs. TRG
(2)

0 100 200 300 400 500
0

1

2

3

4

5

Steps

T
ot
al

su
bm

it
s
at
te
m
pt
ed

GOAL-DTU
TRG

Fig. 9. Submit: GOAL-DTU vs. TRG (3)

0 100 200 300 400 500
0

1

2

3

4

5

Steps

T
ot
al

ta
sk
s
co
m
pl
et
ed

GOAL-DTU
TRG

Fig. 10. Tasks: GOAL-DTU vs. TRG (1)

0 100 200 300 400 500
0

1

2

3

4

5

Steps

T
ot
al

ta
sk
s
co
m
pl
et
ed

GOAL-DTU
TRG

Fig. 11. Tasks: GOAL-DTU vs. TRG (2)

0 100 200 300 400 500
0

1

2

3

4

5

Steps

T
ot
al

ta
sk
s
co
m
pl
et
ed

GOAL-DTU
TRG

Fig. 12. Tasks: GOAL-DTU vs. TRG (3)

92 A. B. Jensen and J. Villadsen

0 100 200 300 400 500
0

10

20

30

40

50

Steps

C
le
ar

ev
en

ts

Fig. 13. Clear: GOAL-DTU vs. TRG (1)

0 100 200 300 400 500
0

10

20

30

40

50

Steps

C
le
ar

ev
en

ts

Fig. 14. Clear: GOAL-DTU vs. TRG (2)

0 100 200 300 400 500
0

10

20

30

40

50

Steps

C
le
ar

ev
en

ts

Fig. 15. Clear: GOAL-DTU vs. TRG (3)

0 100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

Steps

Sc
or
e

GOAL-DTU
FIT BUT

Fig. 16. Score: GOAL-DTU vs. FIT
BUT (1)

0 100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

Steps

Sc
or
e

GOAL-DTU
FIT BUT

Fig. 17. Score: GOAL-DTU vs. FIT BUT
(2)

0 100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

Steps

Sc
or
e

GOAL-DTU
FIT BUT

Fig. 18. Score: GOAL-DTU vs. FIT
BUT (3)

GOAL-DTU: Development of Distributed Intelligence 93

0 100 200 300 400 500
0

25

50

75

100

125

150

Steps

T
ot
al

bl
oc
ks

at
ta
ch

ed

GOAL-DTU
FIT BUT

Fig. 19. Blocks: GOAL-DTU vs. FIT
BUT (1)

0 100 200 300 400 500
0

25

50

75

100

125

150

Steps

T
ot
al

bl
oc
ks

at
ta
ch

ed

GOAL-DTU
FIT BUT

Fig. 20. Blocks: GOAL-DTU vs. FIT
BUT (2)

0 100 200 300 400 500
0

25

50

75

100

125

150

Steps

T
ot
al

bl
oc
ks

at
ta
ch

ed

GOAL-DTU
FIT BUT

Fig. 21. Blocks: GOAL-DTU vs. FIT
BUT (3)

0 100 200 300 400 500
0

10

20

30

40

50

Steps

T
ot
al

su
bm

it
s
at
te
m
pt
ed

GOAL-DTU
FIT BUT

Fig. 22. Submit: GOAL-DTU vs. FIT
BUT (1)

0 100 200 300 400 500
0

10

20

30

40

50

Steps

T
ot
al

su
bm

it
s
at
te
m
pt
ed

GOAL-DTU
FIT BUT

Fig. 23. Submit: GOAL-DTU vs. FIT
BUT (2)

0 100 200 300 400 500
0

10

20

30

40

50

Steps

T
ot
al

su
bm

it
s
at
te
m
pt
ed

GOAL-DTU
FIT BUT

Fig. 24. Submit: GOAL-DTU vs. FIT
BUT (3)

94 A. B. Jensen and J. Villadsen

0 100 200 300 400 500
0

5

10

15

20

Steps

T
ot
al

ta
sk
s
co
m
pl
et
ed

GOAL-DTU
FIT BUT

Fig. 25. Tasks: GOAL-DTU vs. FIT BUT
(1)

0 100 200 300 400 500
0

5

10

15

20

Steps

T
ot
al

ta
sk
s
co
m
pl
et
ed

GOAL-DTU
FIT BUT

Fig. 26. Tasks: GOAL-DTU vs. FIT
BUT (2)

0 100 200 300 400 500
0

5

10

15

20

Steps

T
ot
al

ta
sk
s
co
m
pl
et
ed

GOAL-DTU
FIT BUT

Fig. 27. Tasks: GOAL-DTU vs. FIT BUT
(3)

0 100 200 300 400 500
0

10

20

30

40

50

Steps

C
le
ar

ev
en

ts

Fig. 28. Clear: GOAL-DTU vs. FIT
BUT (1)

0 100 200 300 400 500
0

10

20

30

40

50

Steps

C
le
ar

ev
en

ts

Fig. 29. Clear: GOAL-DTU vs. FIT BUT
(2)

0 100 200 300 400 500
0

10

20

30

40

50

Steps

C
le
ar

ev
en

ts

Fig. 30. Clear: GOAL-DTU vs. FIT
BUT (3)

GOAL-DTU: Development of Distributed Intelligence 95

0 100 200 300 400 500
0

100

200

300

400

500

Steps

Sc
or
e

GOAL-DTU
LFC

Fig. 31. Score: GOAL-DTU vs. LFC (1)

0 100 200 300 400 500
0

100

200

300

400

500

Steps

Sc
or
e

GOAL-DTU
LFC

Fig. 32. Score: GOAL-DTU vs. LFC (2)

0 100 200 300 400 500
0

100

200

300

400

500

Steps

Sc
or
e

GOAL-DTU
LFC

Fig. 33. Score: GOAL-DTU vs. LFC (3)

0 100 200 300 400 500
0

25

50

75

100

125

150

Steps

T
ot
al

bl
oc
ks

at
ta
ch

ed

GOAL-DTU
LFC

Fig. 34. Blocks: GOAL-DTU vs. LFC
(1)

0 100 200 300 400 500
0

25

50

75

100

125

150

Steps

T
ot
al

bl
oc
ks

at
ta
ch

ed

GOAL-DTU
LFC

Fig. 35. Blocks: GOAL-DTU vs. LFC (2)

0 100 200 300 400 500
0

25

50

75

100

125

150

Steps

T
ot
al

bl
oc
ks

at
ta
ch

ed

GOAL-DTU
LFC

Fig. 36. Blocks: GOAL-DTU vs. LFC
(3)

96 A. B. Jensen and J. Villadsen

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

Steps

T
ot
al

su
bm

it
s
at
te
m
pt
ed

GOAL-DTU
LFC

Fig. 37. Submit: GOAL-DTU vs. LFC (1)

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

Steps

T
ot
al

su
bm

it
s
at
te
m
pt
ed

GOAL-DTU
LFC

Fig. 38. Submit: GOAL-DTU vs. LFC
(2)

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

Steps

T
ot
al

su
bm

it
s
at
te
m
pt
ed

GOAL-DTU
LFC

Fig. 39. Submit: GOAL-DTU vs. LFC (3)

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

Steps

T
ot
al

ta
sk
s
co
m
pl
et
ed

GOAL-DTU
LFC

Fig. 40. Tasks: GOAL-DTU vs. LFC (1)

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

Steps

T
ot
al

ta
sk
s
co
m
pl
et
ed

GOAL-DTU
LFC

Fig. 41. Tasks: GOAL-DTU vs. LFC (2)

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

Steps

T
ot
al

ta
sk
s
co
m
pl
et
ed

GOAL-DTU
LFC

Fig. 42. Tasks: GOAL-DTU vs. LFC (3)

GOAL-DTU: Development of Distributed Intelligence 97

0 100 200 300 400 500
0

10

20

30

40

50

Steps

C
le
ar

ev
en

ts

Fig. 43. Clear: GOAL-DTU vs. LFC (1)

0 100 200 300 400 500
0

10

20

30

40

50

Steps

C
le
ar

ev
en

ts

Fig. 44. Clear: GOAL-DTU vs. LFC (2)

0 100 200 300 400 500
0

10

20

30

40

50

Steps

C
le
ar

ev
en

ts

Fig. 45. Clear: GOAL-DTU vs. LFC (3)

We experience problems with many agent getting stuck in every simulation.
Around halfway through, we can usually observe that half of our agents are now
stuck. This is especially detrimental if one of those agents is assigned to complete
a task.

It seems that our greedy approach for collecting blocks, which causes the
map to become even more convoluted, also causes serious issues for the agents
of team TRG.

In the third simulation, the number of blocks we manage to collect stagnates
(Fig. 6). This could be correlated with the number of clear events that is signifi-
cantly higher (Fig. 15). While this presumably has no direct impact our score, it
could be an indication towards our agents’ ability to move around on the map.

See Figs. 1–15 for all of the collected statistics in matches vs. TRG.

GOAL-DTU vs. FIT BUT

For this matchup we experienced issues with the agents. In the first simulation,
our agents manage to assemble two patterns for tasks, but in one instance they
seem to have a wrong pattern, and in the other instance they try to submit

98 A. B. Jensen and J. Villadsen

outside of a goal area (Fig. 22). At this point, we try to restart our agents, but
they do not mange to make meaningful progress since our implementation is not
robust in case of crashes (Fig. 19).

Also in the second simulation we have to attempt a restart, but to no avail.
It seems our agents obstruct the map so severely that team FIT BUT has issues
(Fig. 26). Before our agents crash, they are relatively close to assembling a pat-
tern.

The story repeats itself in the third simulation, although team FIT BUT
successfully complete multiple tasks (Fig. 27).

While we do not expect us to have been able to beat the agents of team FIT
BUT, we would likely have been able to complete a few tasks if the agents did
not crash.

See Figs. 16–30 for all of the collected statistics in matches vs. FIT BUT.

LFC vs. GOAL-DTU

We managed to complete tasks in each of the three simulations (Figs. 40, 41, 42).
Yet, as for other simulations, as the simulation progresses, the agents’ ability
to move around the map degrades (Figs. 34, 35, 36). In comparison, it seems
that the agents of team LFC make steady progress throughout the simulation
(Figs. 40, 41, 42). Another note about the agents of team LFC is there seems to
be a correlation between the tasks they submit and the number of blocks they
collect which suggest a different strategy (Figs. 34, 35, 36).

We manage to complete more tasks in the second simulation (Fig. 41). By
inspection of the map layout, there are two goal areas in the middle of map, not
close to any obstacles. This is a lucky coincidence for our agents, as they often
experience more problems when close to obstacles (maneuverability in confined
spaces is more likely to degrade over time).

See Figs. 31–45 for all of the collected statistics in matches vs. LFC.

9 Discussion

While our implementation achieved satisfying results, it can still be improved
on several fronts. During the contest, we learned that the performance of the
agents could be improved by tinkering with parameters, while other issues were
due to technical difficulties.

9.1 Changes Since the Contest

After analysis of the replays of our matches in the contest, we realized two pos-
sible improvements to the implementation. The first improvement is concerned
with the assumed time our agents need to complete a task. Through experimen-
tation, we have learned that increasing the minimum amount of steps needed to
complete a task improved the performance of the agents significantly. The value
used for the matches in the contest often lead to agents missing task deadlines

GOAL-DTU: Development of Distributed Intelligence 99

resulting in a lower score, when considering that a task with a later deadline
could have been chosen instead.

Another issue occurs when agents detach blocks (for getting rid of blocks
not needed for completing the assigned task). The agents will try to detach
the unneeded blocks away from goal areas and obstacles. This is done to avoid
that the agent potentially obstructs itself and other agents. By increasing the
minimum distance there should be to goal cells and obstacles when detaching a
block, we observed improved performance.

9.2 Technical Issues During the Contest

During the contest, we experienced a number of issues during the simulations
that we had not encountered before. Unfortunately, for some of the matches this
made our agents break down completely, practically leaving us with no way to
continue. Since we did not experience this before, our agents are not very robust
in the sense that they are not well-suited for restarts during the simulation in
case of crashes.

One of the issues we experienced occurs when the steps are performed very
rapidly, at which point it seems as if the GOAL execution and the server get out
of sync. We did not experience this problem earlier since in our testing, there
were always agents not performing actions, thus using the full server timeout for
each step. Experimentation following the contest shows that the problem is not
related to connection issues and will have to be investigated further. We find
that two seconds for each step prevents the issue.

9.3 Known Problems and Bugs

In our implementation, we have discovered a number of problems over time, and
there are still some unresolved bugs to fix.

One problem is related to agents getting stuck. Often in simulations, we will
experience that one or more of our agents end up getting stuck. This could be
due to a number of random clear events, or potentially the map has discon-
nected parts. One of the major issues with this is that we have not been able to
implement a way for agents to deduce that they are in fact stuck, or that some
agents are unable to reach each other. Another problem is that we do not utilize
the clear action to help the agents become unstuck.

Lastly, we have experienced problems when agents assigned to a task visit
goal areas in search for the agent responsible for submitting the task. Due to an
unresolved bug, the agents will not properly scout all the goal areas, but tend to
always stay in the same area. This obviously means that we will never be able
to submit unless the problematic agents learn about the position of the agent
responsible for submitting the task.

100 A. B. Jensen and J. Villadsen

9.4 Improvements

There are a number of directions to take in terms of improving the implementa-
tion. We will consider some of our high-level ideas to improve the performance
of the system by targeting some of our weaknesses.

Our agents are universal in the sense that every agent is based on exactly the
same logic rules. One way to improve the performance, could be to assign differ-
ent roles to agents, or to assign agents into smaller teams that move together.
Examples of roles could be agents that explore the map, some that request and
collect blocks and some that complete tasks using the collected blocks.

Another weakness of our agents is poor movement. Since we do not build an
internal representation of the map during the simulation, our agents often move
blindly. We expect substantially improved performance if we are able to make
the agents better at moving around the map, for example by building up such
an internal map representation (which could then be shared among agents). The
initial reason not to attempt building up a map representation, is the complexity
of the map being dynamic.

Another problem arises from our greedy approach to collecting blocks. Since
each agent always tries to collect one block on each side, movement around
the map becomes much harder afterwards. Furthermore, we do not consider the
possibility that an agent may be able to move past narrow corridors by rotating
its attachments, or potentially even moving the blocks past corridors a few at a
time.

The last obvious improvement is to implement some logic to perform clear
actions. Multiple clear events are likely to make it difficult to move around the
map. Getting rid of obstructions is exactly one of the purposes of the clear
action. It can be used to reconnect parts of the map that has been disconnected
completely, and to save valuable time by creating shortcuts through obstacles.

Lastly, there are number of technical improvements that we would like to
implement. Since it was impossible to monitor the agents live during the simu-
lations of the contest, it would have been helpful to have better output (in the
console) about the behaviour and progress of the agents. Furthermore, we would
like to increase the robustness of the agents in case of crashes such that they can
be restarted and still make progress.

10 Conclusion

We have provided an overview of the multi-agent system that the GOAL-
DTU team developed for the Multi-Agent Programming Contest 2019. We have
explained our choice of the GOAL programming language; we have also described
the main strategy of our agents and how they execute that strategy. This year
was the first iteration using the Agents Assemble scenario, and we have developed
our implementation from scratch using GOAL. Our implementation features a
universal agent type in which each agent is based on the same set of logical rules.

The strengths of our system are the flexible nature of our agents. Our agents
always react to the current state of affairs and do not rely heavily on predefined

GOAL-DTU: Development of Distributed Intelligence 101

plans to reach their goal of completing tasks. The weaknesses are primarily
the agents’ poor movement around the map and rigidity in the way tasks are
assigned and submitted where stuck agents have a severe negative impact on the
performance of the system.

Finally, we have described how to improve the system by coming up with
ideas that target its weaknesses. Some of these potential improvements are
related to minor issues and bug fixes while other potential improvements require
designing and refactoring large parts of the system.

In conclusion, we are satisfied with the performance of our system, ending at
a 3rd place in the final rankings, when considering that we have built the system
from scratch. We consider our current implementation a good platform to built
on for future iterations of the Agents Assemble scenario.

Further details about the previous DTU teams are available here:
https://people.compute.dtu.dk/jovi/MAS/

Acknowledgement. We thank Tobias Ahlbrecht, Asta Halkjær From, Benjamin
Simon Stenbjerg Jepsen, John Bruntse Larsen and Simon Rumle Tarnow for discus-
sions.

A Team Overview: Short Answers

A.1 Participants and Their Background

• What was your motivation to participate in the contest? To work
on implementing a multi-agent system capable of competing in a realistic,
albeit simulated, scenario.

• What is the history of your group? (course project, thesis, . . .)
The name of our team is GOAL-DTU. We participated in the contest in 2009
and 2010 as the Jason-DTU team [4,5], in 2011 and 2012 as the Python-DTU
team [6,7], in 2013 and 2014 as the GOAL-DTU team [8], in 2015/2016 as
the Python-DTU team [9] and in 2017 and 2018 as the Jason-DTU team [10].
The members of the team are as follows:
– Jørgen Villadsen, PhD
– Alexander Birch Jensen, PhD student

Asta Halkjær From, MSc student and now PhD student, was a consultant
until the tournament started.
We are affiliated with the Algorithms, Logic and Graphs section at DTU
Compute, Department of Applied Mathematics and Computer Science, Tech-
nical University of Denmark (DTU). DTU Compute is located in the greater
Copenhagen area. The main contact is associate professor Jørgen Villadsen,
email: jovi@dtu.dk

• What is your field of research? Which work therein is related? We
are responsible for the Artificial Intelligence and Algorithms study line of the
MSc in Computer Science and Engineering programme.

https://people.compute.dtu.dk/jovi/MAS/

102 A. B. Jensen and J. Villadsen

A.2 Statistics

How much time did you invest in the contest (for programming, orga-
nizing your group, other)? Approximately 200 man hours

How many lines of code did you produce for your final agent team?
Approximately 1000 lines

How many people were involved? 3 (1 programming)
When did you start working on your agents? August 2019

A.3 Agent system details

How does the team work together? (i.e. coordination, information
sharing, ...) How decentralised is your approach? A task is delegated
to a set of agents that are attached to the needed blocks. One agent is assigned
as the so-called submit agent and the other agents follow/search for this sub-
mit agent before aligning the pattern in a goal area. Beyond this, each agent
keeps track of the position of other agents. This information is exchanged
when two agents are within vision range. The agents confirm their identify
by agreeing on the part of the environment they both are able to perceive
based on vision.

Do your agents make use of the following features: Planning, Learning,
Organisations, Norms? If so, please elaborate briefly. Planning is
used when delegating tasks. Agents have set positions in the final pattern for
submission.

Can your agents change their behavior during runtime? If so, what
triggers the changes? The agent’s behavior changes if they are delegated a
submission task. Furthermore, other agents will try to avoid blocking agents
with a task.

Did you have to make changes to the team (e.g. fix critical bugs) dur-
ing the contest? We encountered timeout problems when the simulations
ran too fast. We did not manage to resolve this beyond putting artificial
limit. Furthermore, we did not manage to handle the automatic transition
between simulations in each matchup.

How did you go about debugging your system? Partly using the debugger
and partly using console output.

During the contest you were not allowed to watch the matches. How
did you understand what your team of agents was doing? Did this
understanding help you to improve your team’s performance? We
tracked them using console output although this feature could be vastly
improved. It did not help towards performance beyond discovering timeout
problems in fast simulations.

Did you invest time in making your agents more robust? How? Some
robustness comes almost for free using GOAL as we never deeply commit
to a plan. We also considered tracking if an agent ending being stuck, but
ultimately the feature was not completed.

GOAL-DTU: Development of Distributed Intelligence 103

A.4 Scenario and Strategy

What is the main strategy of your agent team?
– If the agent is selected to hand in blocks for a task (part of a task plan):

• Detach any attached blocks not needed for the task. The agent will
only detach blocks if it considers it non-obstructive to future move-
ment. If not, it will move until it reaches a position where it considers
it safe to detach.

• Rotate the block into the position dictated by the task plan. If rota-
tion is blocked, move until rotation is possible.

• If the agent observes part of the pattern to be handed in, or if the
agent is the one to submit the task and is on a goal, wait for other
agents (skip action).

• If the agent observes the entire pattern, connect with other agents
as described by the task plan and then submit (the submit action is
performed by the submit agent).

• If the agent finds the submit agent (waiting in a goal area), move to
place the attachment(s) as described by the task plan to form the
final pattern.

• If the agent is the submit agent, move towards a goal area.
• If not the submit agent and believe that submit agent is in a goal

area, move towards the position of the submit agent.
• If a goal area is known, move towards it (to see if we can find the

submit agent there).
• Move into the most promising direction based on the exploration

heuristics.
– If the agent is not selected to hand in any task (not part of the current

task plan)
• If a block or dispenser is in vision:

∗ Rotate such that a free attachment spot is facing the direction
of the block/dispenser. If rotation is blocked, move.
∗ If it is a block, attach it to the agent.
∗ If it is a dispenser, request a block.
∗ If not next to the block, move towards it.

• Move into the most promising direction based on the safe exploration
heuristics.

– Perform skip action.

Your agents only got local perceptions of the whole scenario. Did
your agents try to build a global view of the scenario for a specific
purpose? If so, describe it briefly. No global view is attempted beyond
the position of other agents in the team.

How do your agents decide which tasks to complete? Based on the
currently collected blocks.

Do your agents form ad-hoc teams to complete a task? Yes, see above.
Which aspect(s) of the scenario did you find particularly challeng-

ing? The random map change events and deciding which blocks to clear
(ultimately, we avoided trying to clear blocked paths).

104 A. B. Jensen and J. Villadsen

If another developer needs to integrate your techniques into their
code (i.e., same programming language tools), how easy is it to
make that integration work? That entirely depends on the programming
language. Prolog is deeply integrated into much of the code.

A.5 And the moral of it is . . .

What did you learn from participating in the contest? We learned about
using GOAL and general training in solving complex problems with no obvi-
ous solution.

What are the strong and weak points of your team? Our agents are
rather flexible and rarely idle. Weak points are that we are possibly too
greedy collecting blocks which makes it harder to navigate the map as the
simulation progresses.

Where did you benefit from your chosen programming language,
methodology, tools, and algorithms? GOAL helps our agents become
flexible. We are forced to think in moment-to-moment reasoning and not just
plans.

Which problems did you encounter because of your chosen technolo-
gies? The freedom can make it harder to keep things simple as the complexity
grows. Furthermore, GOAL had some integration issues with the provided
EIS interface. We have to attempt changes to the source code to run.

Did you encounter new problems during the contest? We were unaware
of the feature that allows for multiple simulations without restarting. Fur-
thermore, we had not tested GOAL with very fast simulations (the fact that
we did not sent idle actions in our testing created an artificial slowdown).

Did playing against other agent teams bring about new insights on
your own agents? We learned that with another team playing the map
became even harder to navigate based on our approach. However, we proba-
bly also won some matches by creating the same problem for the opponent.

What would you improve (wrt. your agents) if you wanted to partici-
pate in the same contest a week from now (or next year)? Less rigid
task submission plans and a less greedy approach to mindlessly collecting all
blocks possible.

Which aspect of your team cost you the most time? Navigating the map
and trying to make the agents find each other for submission.

What can be improved regarding the contest/scenario for next year?
Set up test matches early using the contest setup to discover technical diffi-
culties.

Why did your team perform as it did? Why did the other teams
perform better/worse than you did? We did not use roles for agents to
help with different tasks. We saw other teams using interesting strategies to
solve the tasks. Ultimately, we also had some false assumptions about the
scenario which created artificial problems that could have been avoided. In
the end, some parts of the design should be completely redone.

GOAL-DTU: Development of Distributed Intelligence 105

References

1. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent program-
ming with declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL
2000. LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44631-1 16

2. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-89299-3 4

3. Hindriks, K.V., Dix, J.: GOAL: a multi-agent programming language applied to
an exploration game. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software
Engineering, pp. 235–258. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54432-3 12

4. Boss, N.S., Jensen, A.S., Villadsen, J.: Building multi-agent systems using Jason.
Ann. Math. Artif. Intell. 59, 373–388 (2010)

5. Vester, S., Boss, N.S., Jensen, A.S., Villadsen, J.: Improving multi-agent systems
using Jason. Ann. Math. Artif. Intell. 61, 297–307 (2011)

6. Ettienne, M.B., Vester, S., Villadsen, J.: Implementing a multi-agent system in
python with an auction-based agreement approach. In: Dennis, L., Boissier, O.,
Bordini, R.H. (eds.) ProMAS 2011. LNCS (LNAI), vol. 7217, pp. 185–196. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31915-0 11

7. Villadsen, J., Jensen, A.S., Ettienne, M.B., Vester, S., Andersen, K.B., Frøsig, A.:
Reimplementing a multi-agent system in Python. In: Dastani, M., Hübner, J.F.,
Logan, B. (eds.) ProMAS 2012. LNCS (LNAI), vol. 7837, pp. 205–216. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38700-5 13

8. Villadsen, J., et al.: Engineering a multi-agent system in GOAL. In: Cossentino,
M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI),
vol. 8245, pp. 329–338. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-45343-4 18

9. Villadsen, J., From, A.H., Jacobi, S., Larsen, N.N.: Multi-agent programming con-
test 2016 - the Python-DTU team. Int. J. Agent-Orient. Softw. Eng. 6(1), 86–100
(2018)

10. Villadsen, J., Fleckenstein, O., Hatteland, H., Larsen, J.B.: Engineering a multi-
agent system in Jason and CArtAgO. Ann. Mathe. Artif. Intell. 84, 57–74 (2018)

https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1007/978-3-642-54432-3_12
https://doi.org/10.1007/978-3-642-54432-3_12
https://doi.org/10.1007/978-3-642-31915-0_11
https://doi.org/10.1007/978-3-642-38700-5_13
https://doi.org/10.1007/978-3-642-45343-4_18
https://doi.org/10.1007/978-3-642-45343-4_18

	GOAL-DTU: Development of Distributed Intelligence for the Multi-Agent Programming Contest
	1 Introduction
	2 Agent Programming in GOAL
	2.1 The GOAL Execution Loop
	2.2 Action Selection

	3 Strategy
	4 Agent Knowledge
	4.1 The Current Position
	4.2 Visited Positions
	4.3 Positions of Goal Cells
	4.4 Blocks, Dispensers and Obstacles
	4.5 Attached Blocks

	5 Agent Communication and Shared Knowledge
	5.1 Encountering Other Agents
	5.2 Goal Cells and Agent Positions
	5.3 Attached Blocks

	6 Agent Movement
	6.1 Evaluation Functions

	7 Solving Tasks
	7.1 Collecting Blocks
	7.2 Task Planning
	7.3 Executing Task Plans

	8 Evaluation of Matches
	9 Discussion
	9.1 Changes Since the Contest
	9.2 Technical Issues During the Contest
	9.3 Known Problems and Bugs
	9.4 Improvements

	10 Conclusion
	A Team Overview: Short Answers
	A.1 Participants and Their Background
	A.2 Statistics
	A.3 Agent system details
	A.4 Scenario and Strategy
	A.5 And the moral of it is …

	References

