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Abstract. The Multi-Agent Programming Contest, MAPC, is an annual
event organized since 2005 out of Clausthal University of Technology. Its
aim is to investigate the potential of using decentralized, autonomously
acting intelligent agents, by providing a complex scenario to be solved
in a competitive environment. For this we need suitable benchmarks
where agent-based systems can shine. We present previous editions of the
contest and also its current scenario and results from its use in the 2019
MAPCwith a special focus on its suitability. We conclude with lessons
learned over the years.
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1 Introduction

The original aim of our contest, back in the humble beginnings in 2005, was to
provide a platform for comparing and evaluating systems based on computational
logic, mainly developed for knowledge representation purposes.

We wanted to develop an interesting yet simple, but non-trivial, scenario for
testing systems based on different paradigms. At that time, many knowledge-
based approaches were developed as smallish PhD projects: a prototype was
implemented but never seriously compared against other such systems.

Emphasis was put on the evaluation and comparison of systems, not on
finding an optimal solution of a particular scenario. The creation of a scenario
was always driven by the need to determine the features that a system should
possess for successfully solving a complicated task. We never wanted to honor
a smart idea for a solution, but the features and technology that help to tackle
the problem at hand.
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1.1 Structure of This Work

We start with a short introduction on agent programming and the Multi-Agent
Programming Contest in general. In Sect. 2, we introduce the simulation platform,
followed by the history of the Contest in Sect. 3. Afterwards, we present the
newest scenario and the results of the MAPC2019 in Sect. 4. We conclude with
lessons learned during the contest in general and in the latest installment in
particular. Throughout the article, we focus especially on the scenario aspect of
the MAPC.

1.2 Agents

During the years, the systems we compared turned more and more into those
based on agent programming languages [9] or genuine multi-agent systems (MAS)
implemented in classical programming languages. The scenarios became more
complex with an increasing number of agents needed to solve the task.

In contrast to many other contests, several decisions have been taken a priori:

– not to impose any restrictions on the software used;
– not to find or compare tricky algorithms to solve the scenario, rather we

wanted to evaluate the capabilities of the system to express and model suitable
constructs for dealing with the scenario;

– not to consider the perfect implementation or high performance of a system;
in particular, we never considered real-time aspects, which are important for
e.g. computer games.

The last bullet above reflects the situation in agent programming for many
years (still today, but to a lesser extent): agent languages are still not on par with
classical programming languages in terms of their efficient implementation and
their maturity concerning software engineering aspects. We therefore decided to
refrain from this particular aspect.

In our MAPC, each participating team develops a group of agents (during
the 5–7 months between the announcement of the scenario and the contest),
which remotely connect to our MAPCserver where the scenario is being run. The
MAPCserver sends the current game state in the form of percepts to each agent
and expects an executable action in return. The gathered actions are executed
and the game state is advanced. This cycle is repeated until a predefined number
of steps is reached. The remote nature of the contest also keeps the responsibility
of running the agents with the participants.

The available time for each simulation step must include the latency of the
internet and is, intentionally, chosen to be quite high (4 seconds): we do not
consider high performance nor real-time constraints.

In addition, we have no control of the communication within a team (e.g.,
shared memory or not, decentralized or not). Consequently, we could not directly
enforce decentralized approaches—only by designing the scenario in a way that
favors them.
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We also never excluded classical (i.e., non-agent) programming languages and
frameworks from being used. In fact, we almost always had non-agent entries
taking part in our contest and some performed very well. Obviously, one can
use a classical programming language and implement certain agent-techniques
that are suitable for the scenario (or use agent technology without leveraging its
potential, in effect, using it like a conventional programming approach).

1.3 Goals and Purpose of the MAPC

The purpose of the contest is twofold:

1. to find out for which applications agent-oriented features pay off, as opposed
to features available in classical programming languages; and

2. to compare and test the versatility and suitability of agent languages or plat-
forms.

To answer the first question, we are developing and evolving scenarios build-
ing on the experiences from previous editions of the MAPC. By improving the
scenarios, we simultaneously improve our ability to answer the second question.

However, it should be clarified that we do not want to compare problem
solutions, instead we want to compare agent languages among themselves and
against classical programming languages.

The difference between agents and classical, more centralized paradigms is,
to a great deal, autonomy, communication, cooperation and to strike a good
balance between proactiveness and reactiveness. Clearly, any (new) feature can
be implemented in any (Turing-complete) programming language, but one would
hope an agent language to be more versatile and efficient or offering built-in
features for elegantly programming a solution.

Therefore we always try to develop our scenarios in such a way, that no smart
solution will be sufficient, but instead the interplay of various acting entities and
their emerging features counts.

In the end, we are especially interested in:

1. which technologies the teams used;
2. to which degree they were used (i.e., how difficult (or easy) it was to use

agent-based features); and
3. which aspects were especially straightforward or challenging to design and

implement.

To summarize again, the contest is an attempt to shed some light on these
questions: when and to what extent do agent-oriented features pay off? Is there a
particular complexity of the problem that makes these approaches beneficial? Or
not at all? And how are these features supported by existing agent frameworks?
We refer back to all of these questions in Sect. 5.

Last but not least, it almost comes naturally that we aim to support edu-
cational efforts in the design and implementation of agent systems by providing
each year a ready, off-the-shelf package: this is a ready for action tool in the
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classroom and could be (and has been) used in a course on agent systems of
any level. We noticed in our experience that the competition idea is especially
attractive for students and results in a very engaging work atmosphere.

1.4 Related Work

Many similar competitions have been and are still being held, while most do
not explicitly focus on multi-agent systems. We discuss some of them that are
related to MAPCand are still active nowadays.

Directly involving agents, the (Power) Trading Agent Competition1 [16] pro-
vides a trading-related scenario in the energy market. However, each team only
consists of a single “broker” agent, requiring no cooperation or coordination. The
goal here is to see how agents can autonomously solve supply-chain problems.

Probably the best-known are the various RoboCup Simulation Leagues2.
RoboCup ranges over a variety of different domains like soccer, disaster response,
and industrial logistics. Each league focuses on a specific problem that must be
addressed by competitors. For instance, in RoboCupRescue two major leagues
are organized on: (i) robots; and (ii) agent simulation. The first centers around
(virtual) robots and less around abstract agents. For example, agents have noisy
virtual sensors or may be subjected to complex physics, focusing on realism.
The agent simulation league provides virtual agents placed on a map of a city
that has been damaged by an earthquake event. Competitors focus on different
self-isolated AI problems (e.g., task allocation) provided by the contest [18]. In
addition, all teams have to give a presentation on their solution, which counts
towards their final score.

There is also a number of challenges targeting specific problem domains, e.g.
the International Planning Competition [17]. Here, of course planning is in the
limelight, while in our contest it is only one possible component of an agent
team. At the other end, the General Game Playing [12] competitions do not
focus on one particular feature but on the ability of general AI systems to play
an arbitrary game upon receiving its rules.

Finally, there are more than a few challenges focusing on finding
(autonomous) solutions for existing commercial games, like the Mario AI Cham-
pionship3 [15] or the Student StarCraft AI tournament4, or specifically designed
games like BattleCode5. The goal here is usually to benchmark game AI tech-
niques and algorithms.

We would also like to mention a new challenge, the Intention Progression
Competition6, which focuses on a specific issue within agent systems: the Inten-
tion Progression Problem, i.e. the decision of agents about how to proceed with

1 www.powertac.org.
2 www.robocup.org.
3 www.marioai.org.
4 www.sscaitournament.com.
5 www.battlecode.org.
6 www.intentionprogression.org.

www.powertac.org
www.robocup.org
www.marioai.org
www.sscaitournament.com
www.battlecode.org
www.intentionprogression.org
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their given intentions and plans in order to reach their goals. Thus, a solution for
the MAPC(e.g. an agent) could be seen as a specific input challenge in the IPC,
while solutions for the IPC could be used in agent platforms that participate in
the MAPC.

Not a competition but definitely worth mentioning is the Blocks World
for Teams (BW4T) [14] environment, which is not quite unlike the current
MAPCscenario. There, agents have to coordinate to deliver sequences of color-
coded blocks.

2 The MASSim Framework

The first edition of the MAPCin 2005 presented a simple scenario description
that had to be implemented in its totality by each participant and delivered as
an executable.

2.1 From 2006: The Early Days

In 2006, the MASSim platform was introduced: an extensible simulation server
written in Java that provides the environment facilities. Agent programs can
connect through the network to a MASSim server while agents run in the com-
petitors’ own computer infrastructure.

Since then, the format of the MAPChas been that of two teams competing
against each other for performance in each simulation, and the overall winner of
the contest defined by summing up the points after all participants have com-
peted in simulations against each other, in a regular sports tournament fashion.

All simulations are run in a discrete step-by-step manner. In each step all
agents execute their actions simultaneously from the point of view of the server,
and there is a time limit within which agents must choose an action (otherwise
they are regarded as a no-op). In the beginning of each step’s cycle, the server
sends each agent their current percepts of the environment, and waits for the
response that specifies the action to execute.

When the responses from all agents are received or when the timeout limit is
reached, all received actions are executed in MASSim. The actions (mostly) have
an immediate effect on the environment and the new state of the simulation is
computed which results in new agent percepts for the next simulation step.

This cycle is repeated for a fixed number of steps, and then a winner is decided
according to scenario-specific criteria (usually having achieved the highest score).

MASSim is fully implemented in Java, and the information exchange with
the agent programs is realized through XML messages. These messages can also
be accessed as ready percept objects through the EISMASSim interface layer,
which is explained later.

2.2 2017 Until Today: Simply Going Forward

In early 2017, MASSim was completely rewritten. XML messages were removed
in favor of the more efficient JSON format.
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We switched from having both a Java RMI based monitor and a web monitor
to a single web-based monitor.

Also, we abandoned the former plug-in architecture in favor of an annual
package, which helped in keeping the package small and freed us of having to
keep MASSim backwards-compatible to all previous scenarios.7

This rewrite also allowed us to create a platform with more than two con-
current teams in mind. While we have not used this yet, it remains a tempting
option for future scenarios.

Figure 1 displays the current architecture. Boxes are components, while reg-
ular arrows depict that a component uses another.

MASSim Platform

connect

Server Protocol

Web Monitor EISMASSim

Team 1

Team 2

Team N

Javaagents

EIS

Fig. 1. The MASSim architecture.

The server package is responsible for running the simulations and handling
connections to all agents. It only uses the facilities of the protocol package to
build percept messages for agents and parse action messages it receives.

The classes used to build valid messages according to the protocol have been
extracted into a self-contained protocol package that helps both with parsing
JSON data into Java objects and transforming Java message objects into their
JSON representation. Thus, it is e.g. used by the server to create messages for all
agents. The protocol is also used by the EISMASSim component, which can be
used by agent platforms to connect to the server. This component handles the
whole login procedure and then translates perception and action messages into
actions and percepts according to the EIS (Environment Interface Standard [7])
and vice versa. In the terms of EIS, EISMASSim is what makes MASSim an
“EIS-enabled” environment. That is, all agent platforms that support EIS can
connect to the MASSim server without any additional effort (though sometimes
there are still some initial difficulties).

We also provide a sample implementation of agents using EISMASSim in the
Javaagents package. Participants using Java-based platforms may connect to
the server by integrating EISMASSim, using the protocol package, or, just as
non-Java-teams, parse and build their own JSON messages according to the
protocol.
7 You can still play the old releases using their respective packages.
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Finally, the web monitor is started by the server if requested and then
retrieves the current game state from the server after each step.

The current MASSim package is fully open-source and openly available
(https://multi-agentcontest.org/2019). It is not only used for the MAPC, but
has also proved useful both for researchers testing their advancements in the
field, and in the classroom, aiding the teaching of the multi-agent programming
paradigm (https://multi-agentcontest.org/massim-in-teaching).

3 History and Evolution of the Contest

We can roughly divide the contest into two phases. In the early phase, there was
not much cooperation among the agents: they acted more or less on their own.
This led us to reconsider our scenario and we ended up with the Agents on Mars
scenario, where we experienced some really interesting games. This then evolved
into the Agents in the City (or simply City) scenario, which was even more real-
istic as it considered agents acting in a real city using actual city maps. We then
adapted the City scenario, removing some of its complexity (regarding imple-
mentation effort for the participants) and incorporating features we think were
interesting from previous scenarios, which led to the Agents Assemble scenario,
which we will present and analyze in detail in Sect. 4.

3.1 Early Phase

The scenario used for the first edition of the MAPC(2005) consisted of a simple
grid in which agents could move to empty adjacent spaces. Food units would
appear randomly through the simulation, and the objective was to collect these
units and carry them to a storage location.

Fig. 2. The Gold Miners scenario.

The idea was refined for the second edition [6]: Gold Miners (Fig. 2). Now the
agents were to collect gold in a competitive environment against another team,

https://multi-agentcontest.org/2019
https://multi-agentcontest.org/massim-in-teaching
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and some obstacles were introduced to the grid to add some navigation complex-
ity. This scenario, which was also used in the third edition of the contest, was
still very simplistic, and in the proposed solutions agents acted independently of
their teammates: no cooperation or coordinated behavior took place.

Fig. 3. The Cows and Cowboys scenario.

For the 2008–2010 editions [6], a new scenario was designed that demands
coordination from agents: Cows and Cowboys, as shown in Fig. 3. Still using a
grid as the underlying map, the goal for this scenario was to lead a group of
cows to a particular area of the map, the team’s own “corral”, while preventing
the opponent team from doing the same. The cows were animated entities that
reacted to the agents’ positions by trying to avoid them. Solving the map required
agents to coordinate their positions in order to lead big groups of cows into the
corrals, whereas a single agent would in most cases disperse the group of cows
and fail to lead them in the desired direction.

Even in this clearly cooperative scenario, one team found a way of letting each
agent work independently, always pushing a single cow. This team promptly won
the contest (though out-of-competition) and we learned that features we want
to see need to be enforced rather than rewarded, since participating teams always
tend to find (and go for) the path of least resistance. Thus, a flocking algorithm
for cows was introduced, which made the cows form groups and avoid agents
more strongly. This allowed good teams to capture entire herds with the right
agent formations, while single agents could not achieve anything anymore. In
addition, fences were added as another cooperative element: agents had to stand
on switches to open them and communicate to get all agents and cows safely
through. In that way we achieved some cooperation among agents and saw even
more interesting games.
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3.2 Agents on Mars

The Agents on Mars scenario [5] was used from 2011–2014. It turned out to
be an important step in the contest’s evolution, as it introduced many innova-
tive features and increased the game’s complexity. The map took the form of
a weighted graph representing the surface of the planet Mars (we always based
the scenario on a fictitious story). The agents represent All Terrain Vehicles of
different kinds, and their goal in the game is to discover the best water wells by
exploring the map and then to keep control of as many wells as possible. This
was done by placing themselves in specific formations that ensure a covering of
an area containing the wells while keeping rival agents outside.

Fig. 4. The “Agents on Mars” scenario. (Color figure online)

In Fig. 4, one can see the basic graph layout, where the node sizes represent
their value. The small circles at some nodes are the agents and the colored parts
of the graph are currently taken by the team of the respective color.
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The new agents were much more complex entities than in the previous sce-
narios: they had a rich set of actions to choose from, in contrast to just mov-
ing around the map. Furthermore, they dealt with a set of internal parameters
that could vary through the simulation—Energy, Visibility Range, Health and
Strength.

The evolution in the complexity of the scenario has remained on par with
the evolution of multi-agent programming technologies used by the participating
teams. A good quality of the teams has been reached and resulted in interesting
games. Unlike previous scenarios, a (simple) strategy that works against each
and every rival has not been discovered. However, it became difficult to further
evolve the scenario. Also, it was a rather abstract problem.

3.3 The City Scenario

Our previous scenario, pictured in Fig. 5, was first used in 2016 [2] and improved
two times for the editions of 2017 [3] and 2018 [4]. We started with two teams
of 16 agents each moving through the streets of a digital city backed by real-
istic street graph data from OpenStreetMap8. The number of agents was then
increased to 28 and 34 per team respectively.

Fig. 5. The “Agents in the City” scenario.

Each team’s goal was simply to earn as much money as possible by complet-
ing randomly generated jobs. These jobs required the agents to move around the
8 https://www.openstreetmap.org.

https://www.openstreetmap.org


The MAPC: A Résumé 13

city, buy certain kinds of items, cooperatively assemble these items to get new
item types and finally deliver the finished products to a predefined target loca-
tion. Most of these jobs were available for both agent teams simultaneously and
rewarded on a first come, first served basis, allowing for more direct competition.

Each agent had one of four distinct roles, which characterized its movement
type (air- or road-bound) and speed, as well as its maximum battery and carry-
ing capacity. As is tradition, the number of agents was increased for each scenario
to provide a greater challenge of coordination and require some more computa-
tional effort. Different agent roles were first introduced with the Agents-on-Mars
scenario. The roles differed by certain key attributes as well as by which action
was usable by which agent.

Compared to our previous scenarios, this one required more coordination and
planning among agents of the same team. Some jobs are more profitable than
other co-occurring jobs. Once agents are able to identify good jobs, the real
challenge is the coordination of which agent secures which items from where in
order to strike a good balance between time efficiency and money spent.

For the third instance of the scenario, we added a new well facility that teams
could build and opposing teams could dismantle. To build wells, some funds had
to be spent which could again be acquired by completing jobs. The wells would
then generate points for as long as they existed. This change was intended to
increase interaction between the teams and make the agents’ actions more visible
to human observers.

Lessons Learned in the City. The first run in 2016 has shown once again
that participants have to be coerced into using specific features of the scenario:
for example, we had to make cooperative assembly mandatory in 2017.

For the second run in 2017, we noticed a problem with the many parameters
controlling the random generation of simulation instances. Finding good sets of
parameters was not an easy task and required considerable testing. Also, for the
first time we experienced that a scenario should allow for a simple naive (but
far from being optimal) solution to be quickly producible. This scenario instead
required considerable agent programming work before first results could be seen.

Another downside was that the visualization did not (or could not) show
everything that was going on in an easily discernible way. For example, it is very
impractical to display for all agents which items they are currently transporting.
To amend this a little, the wells were added in 2018 to have an element that
plainly shows how well a team is doing aside from the current money value.

Also, interaction between the teams was very limited and only indirectly
given through the availability of shared resources (i.e. items in the shops) and
the competition to get a job done first in order to receive the reward. The wells
were also added to have a new entity that agents of both teams could and needed
to interact with.
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4 2019: Agents Assemble

After having played the City scenario for three consecutive years, it was once
again time to come up with a fresh scenario and apply the lessons learned. We
wanted to address some of the issues with the previous scenario, like visibility
of agent behavior, while keeping many of the factors that made it interesting.

4.1 Scenario

In the new Agents Assemble scenario, as the name suggest, agents again have
to construct complex structures from base objects. We switched from the map-
(or graph-)based environment back to a “simple” grid structure with obstacles
(see Fig. 6), comparable to the Cow scenario. The agents have to explore the
grid to find blocks which also occupy one cell of the grid. Each agent has four
“arms”, one to each side, which can be used to pick up or connect to blocks.
Blocks which are connected to an agent move in the same direction as the agent.
Two adjacent blocks can also be connected to each other by two agents from the
same team, when each agent is holding one of the blocks.

Fig. 6. MAPC2019 environment. Agents possess a local view of it and are required to
assemble complex shapes to be delivered.
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The system then randomly creates tasks, which the agents have to complete
to earn reward points. The team with the most points at the end of the simulation
will be the winner. Each task basically describes a structure or formation of
blocks that the agents have to create. We depict an example of tasks in Fig. 7.
Once the shape is assembled, the agents can deliver it to one of the goal zones
to receive the points.

Fig. 7. Some examples of tasks in which the delivery agent should be carrying the
blocks at the red dot position depicted in the figure. (Color figure online)

Actions. The agents have different actions for moving around in the grid. They
can move one cell in each of the four main directions per step or rotate 90
degrees. This rotation might be handy, if the agents have blocks attached. Fur-
ther, there is an action to retrieve blocks from dispensers, which are placed in
random locations and provide one specific type of block. To work with blocks,
the agents have actions for attaching and detaching things to their sides and
as mentioned before, two agents can use the connect action to join two blocks
together. An agent can also break this connection between two blocks, if the
blocks are attached to the agent (directly or indirectly).

To interact with the environment and other agents, the clear action was
added. It targets a single cell within the agent’s vision radius (up to 5 cells in
Manhattan distance) and has to be “charged”, i.e. executed a certain number
of times for the same target cell before it has an effect. Once it resolves, if the
cell contained an obstacle or block, these will vanish and leave an empty cell. If
instead an agent occupied that cell, it will be disabled. In that case, this agent
will not be able to execute actions for a certain number of steps and also, all of
its attached blocks (if any) will not be attached to the agent anymore. To give
each agent a chance to avoid this, the target cells to be cleared have a perceivable
marker after each clear action, i.e. also while charging.

As always, each action has a number of specific failure codes, indicating the
reason why the action could not be executed.

Perception. One of the novelties of this scenario is that agents only perceive
relative coordinates. That is, at the beginning the agents cannot know where
they are. Due to their limited vision range of five cells in each direction, they
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do not even know where they are relative to each other and have to find their
teammates first.

This might favor solutions, where a local agent perspective is taken, rather
than centralized approaches.

Dynamic Environment. To give the agents an even greater challenge, the
environment dynamically changes during the matches. This makes harder for
the agents to remember if they have already been at a place and requires more
adaptability.

During each game, a number of clear events will occur. These work almost
exactly like the clear action, only they affect a bigger region of the grid and
after each event, new obstacles will appear randomly distributed around the
center of the event.

Blocks and Visibility. One drawback of the City scenario was that it was
not very interesting to watch, because most of the action did not happen in the
environment. When agents bought items, these just went to their inventories. The
current possessions of an agent could be displayed in a list, but it was rather
difficult to keep track of multiple agents at once, not to mention all of them.
Thus, in the new scenario, items (i.e., blocks) have received a more tangible
representation, taking up considerable space in the environment. This leads to
more interaction between agents and items and all of it is easily observable by
human bystanders. What’s more, carrying assembled shapes around becomes
even more of a challenge, as the number of available routes possibly decreases.

4.2 Participants

This year, we had four teams participating in the Contest.

FIT BUT. The team from Czech Brno University of Technology consists of
three people and participated in the Contest for the first time. The agents are
implemented in plain Java.

GOAL-DTU. The team from Technical University of Denmark has already
participated in the MAPCin one form or another for many, many years and
has never missed a Contest since. As the name suggests, the agents were
implemented using the GOAL [13] agent language.

LFC. The team LFC, from University of Liverpool, used JaCaMo [8] to imple-
ment its agent team. An additional fast downward planning component was
developed to support the agents.

TRG. The single-person team TRG from the Canadian Carleton University also
participated in the Contest for the first time. The agents were implemented
with the Jason [10] framework.

An overview of the teams is listed in Table 1.
As we can see, this year, all approaches involve Java at some level. FIT BUT

uses Java directly, while TRGuses Jason, which is implemented in Java. JaCaMo,
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Table 1. Team overview

FIT BUT GOAL-DTU LFC TRG

System Java GOAL JaCaMo Jason

Team size 3 3 3 1

Time invested
(in h)

300–400 200 200 500–600

Previously
participated

No Partly Partly No

Lines of Code
(LOC)

5500–6300 1000 6800 9700

Started August (29th) August May/September May/mid-July

Total Score 1760 330 1790 590

Points 15 10 22 5

Win/Draw/Lose 5/-/4 3/1/5 7/1/1 1/2/6

Ranking 2 3 1 4

as used by LFC, in turn leverages Jason for implementing the agent reasoning.
Lastly, GOAL-DTU uses GOAL, which is also implemented in Java.

Additionally, all teams are using an approach based on or at least somehow
related to the BDI model [11], where agents’ knowledge is represented in terms of
beliefs, agents have some desires, or goals they want to achieve, and intentions,
representing what an agent has elected to do. Jason, also as part of JaCaMo, is
a platform for creating BDI agents. FIT BUT on the other hand used Java to
implement their own system inspired by the BDI model. Lastly, cognitive agents
implemented in GOAL also have beliefs and desires and the concept of intention
also finds (informal) representation.

The teams are of similar size, except for TRG. Notably though, the single-
person team has invested the most time. Of the four teams, TRGand FIT BUT
are completely new to the Contest, while some members of GOAL-DTU and
LFChad already participated before. We also note that the GOAL solution is
particularly small in terms of LOC, while the Jason-based solution is a bit larger
than the average.9

LFCand TRGstarted their initial work in May, than letting it rest until
starting for real in September and July respectively. FIT BUT and GOAL-DTU
both started to work in August.

4.3 Tournament and Results

In the final tournament, each team plays one match against each other team,
where one match consists of three simulations with different parameters. Thus,
with four teams, each team had to play 9 games. Winning a simulation is awarded

9 This does not necessarily tell us anything about GOAL or Jason though.
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with three tournament points, while a draw means one point for each team. The
best result a team can achieve is 27 points.

We had the teams play simulations with three different sets of parameters, so
that they were less likely to optimize their systems to one particular setting. Each
simulation ran for 500 steps and 10 agents per team. In the second simulation,
more complex tasks, with up to 5 required blocks instead of 3, were offered. In the
third simulation, we increased the chance of a random clear event happening
from 4% to 8%, leading to a more uncertain environment.

The results are also listed in Table 1. The Contest was won by the JaCaMo-
based solution from Liverpool’s LFC, with only one loss against GOAL-DTU
and one draw against TRGout of 9 games, resulting in 22 tournament points.
Runner-up is FIT BUT with 15 points, while GOAL-DTU achieved 10 and
TRG5 points. We note that each team won at least one simulation, and never
only because the other team failed completely. All teams presented a workable
solution.

Strategies. No team found a strategic advantage over the others. That is, we
did not see a particular strategy being used to great effect. While the agent teams
approached the problem in different ways, none of these were clearly superior to
all others.

The Contest winner, LFC, implemented a strategy, where one agent was
always waiting in a goal zone for its team members to deliver exactly the blocks
needed for a particular task. We saw each agent always carry at most one block at
a time. The shape required for the task was always assembled together with the
agent waiting in the goal zone, who then submitted the task upon its completion.
One advantage of LFCwas clearly the capability to “dig” straight lines through
obstacles with repeated clear actions. This technique was also used by the
agents at the start of each simulation, probably to find the actual boundaries
of the grid environment (which was always surrounded by a wall of obstacles).
LFC implemented dynamic roles, where agents would start as explorers and later
switch to specializations, e.g. assembling agents waiting in the goal zones.

FIT BUT in contrast had their agents meet somewhere on their routes to
connect their blocks. Thus we saw FIT BUT agents walking around with com-
plex shapes attached, which also worked very well.

GOAL-DTU agents could always be recognized by them proactively request-
ing as much as four blocks at a time and subsequently moving with four blocks
of one type attached. While this ensured that they always had enough blocks at
their disposal, it made it more difficult to navigate the map, especially during
the late game when clear events could have already created narrow paths.

TRGalone tried a hybrid strategy. While some agents were coordinating to
complete tasks, the other agents were trying to “defend” each goal zone by
using clear actions on approaching opponent agents. This was an interesting
decision, which unfortunately did not pay off so well, as the agents from the other
teams were mostly able to circumvent these interventions. These roles were also
statically assigned and did not depend on the current situation.
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While we always try to build and configure the scenario in such a way, that
no single best (and maybe even simple) strategy exists, we can never be sure that
we succeed in this. Generally, the more features and interactions among them a
scenario has, the harder it becomes to balance all of these features “correctly”,
so that no single feature can be used in an unforeseen way. Thus, in the new
scenario, the rules governing the simulations were kept as simple as possible.

4.4 Interesting Simulations

In this section, we want to take a look at some interesting simulations10 to see
how the teams compare to each other under similar circumstances. All replays
are also accessible from the contest overview page11.

2nd Simulation of GOAL-DTU vs. LFC. Of course this simulation12 might
be interesting since it was the only one that LFC lost. The final score was 130 to
40 for GOAL-DTU . If we look at the completed tasks, we see that GOAL-DTU
was already able to submit a task in step 78, which yielded 90 points, since the
required shape consisted of three blocks. After this however, for more than 200
steps “nothing” happens. The next task is completed, again by GOAL-DTU , in
step 317, netting 40 points for a two-block shape. LFConly completes one task,
in step 351, receiving the 40 points. After this, no further tasks are completed.
So, one question is surely what did LFCdo before step 351. Reviewing all other
simulations of LFC, the agents were always able to complete their first task
around step 200. In step 191, we find instead the situation depicted in Fig. 8.

Fig. 8. Step 191: LFC clearing their blocks. (Color figure online)

10 Not saying that some of the simulations were not interesting!.
11 https://multiagentcontest.org/2019/.
12 https://multiagentcontest.org/replays 2019/?2019-10-16-17-22-57-1571239377138

GOAL-DTU LFC.

https://multiagentcontest.org/2019/
https://multiagentcontest.org/replays_2019/?2019-10-16-17-22-57-1571239377138_GOAL-DTU_LFC
https://multiagentcontest.org/replays_2019/?2019-10-16-17-22-57-1571239377138_GOAL-DTU_LFC
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The green LFCagents (diamond-shaped, labels start with an “L”, located
at the top and right of this clipping), are all charging a clear action (red dia-
mond markers on the grid) to remove the block they have currently attached.
From their usual strategy, we conclude that their plan was to attach blocks
to agent L7, who was already waiting in the goal zone (the red filled diamond
shaped area near the center of the image; the smaller red diamond outline marks
the clear action). If we go back in time, we see that the GOAL-DTU agents are
and have been very active in this region, carrying lots of blocks, as always. First,
this makes it very difficult for LFC to get their blocks to the L7 agent. Secondly,
the LFCagents decide to abandon their whole plan, even clearing all blocks they
have already gathered. If we assume that LFChas to start anew (minus some
initial discovery and exploration), we might indeed expect the next task to be
completed after another 100 to 150 steps, which proved to be the case.

2nd Simulation of LFC vs. TRG. In this simulation13 both teams were not
able to score. This is quite surprising since LFC scored in all simulations but this
one. Moreover, LFCwas the team that scored most in the contest: 1790 points.
Considering only simulations against TRG, it scored 180 in the first, and 210
points in the third. The question is: why did LFCperform much better in those
other simulations?

To understand that, we need to look at TRG ’s strategy. They always seek
to position agents in the goal zone to disable any agent that enters that place.
Nevertheless, it does not always work. At some times, some goal zone receives no
TRGagents. As LFC ’s strategy is to always choose a single goal zone to be used,
at the second simulation, both strategies have collided. Every time LFC ’s agents
tried to deliver a task, a TRGagent was there to disable them. An example of
this event is depicted in Fig. 9.

Fig. 9. The exact moment (step 174) when a TRGagent disables LFC ’s agents.

13 https://multiagentcontest.org/replays 2019/?2019-10-16-15-39-17-
1571233157086 LFC TRG.

https://multiagentcontest.org/replays_2019/?2019-10-16-15-39-17-1571233157086_LFC_TRG
https://multiagentcontest.org/replays_2019/?2019-10-16-15-39-17-1571233157086_LFC_TRG
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This strategy seems to break the LFC team, because once their delivery agent
is disabled, the whole team restarts to clear blocks and search for the grid’s
boundaries again. Whilst LFC is unable to deliver tasks, so is TRG. TRG ’s
strategy for preventing a team to score works pretty well, on the other hand,
their agents were not able to coordinate themselves to form shapes required by
tasks. At the end of the second simulation, no team scored a single point.

4.5 Survey Results

Traditionally, we conclude the Contest with a questionnaire that we ask each
team to answer14. At this point, we give a brief summary of the answers from
all teams. Parts of the survey results have already been used to create Table 1.

Regarding the motivation, practicing MAS development and in general learn-
ing more about agent technology were given as the main reasons for participating
in the MAPC. This is aligned with MAPC’s goal, in which in order to stimulate
research in MAS, we need more people to learn and practice it.

We noticed that many teams mentioned that debugging capabilities were
quite limited. Thus, they often resorted to “print(.)” as a debugging tool, i.e.
adding logging statements and reading or searching the traces afterwards. Some
teams stated that debugging was the most time-consuming task and some even
developed their own (scenario-specific) tools that helped them to understand
what was going on. Other time-consuming tasks include map navigation and
merging the local views of the agents.

The most challenging aspects of the scenario according to the teams were:

– the dynamic environment;
– the local perspective of the agents; and
– coordinating agents to perform the synchronous actions.

From the survey, we also know that the teams barely added additional AI
techniques to improve their solution (aside from LFCusing a fast downward
planner). This is probably due to the additional time investments required to
add features to systems that are already quite complex within a limited time-
span.

The main advantages of using agent technology were seen as flexibility and
modularity of the system. From an agent programming perspective, agents
should consider constantly the current state to select a proper action which may
be a useful feature in dynamic environments. As the main drawbacks, teams cited
the difficulty in debugging, a lack of portability and that it was very challenging
to keep the system simple and easy to maintain.

Finally, if teams were to attend another time, they would like to improve
error handling, reliability, coordination of their agents and their own debugging
means.

14 The reader will find these answers at the end of each team description paper.
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5 Lessons Learned

The organization of our MAPCturned out to be quite work-intensive at times.
Its technical implementation has been mainly done or supervised by (to this day
seven) PhD students of the second author, in addition to a number of Bachelor
and Master theses. However, the students also played a major role in crafting
the scenarios and coming up with fresh and innovative ideas.

In the first phase of the MAPC, no real cooperation among agents was
achieved. In fact every man for himself was a common strategy, completely
against the paradigm of agent programming. Often the teams with the best
working A∗ path-finding algorithm won. Due to the fact that the participating
agent languages were not yet mature enough, the main benefit of the contest in
the early days was to serve as a debugging tool for the participating systems.

Indeed, low-level technical problems with the implementations of the agent
languages often played a major role. This is in contrast to the second phase,
where attention shifted to the scenario and higher-level concerns.

5.1 Agents Assemble Scenario

In the new scenario, we saw that forcing agents to work solely off their local
perspectives and integrate their knowledge with other agents is a challenging
task.

We once again note that it’s desirable to have a problem that is easy to solve,
but very difficult to solve well. In other words, it should be easy to come up with
some agents that can play the game, while mastering it should require a lot of
effort.

Aside from TRGtrying to defend goal zones, we only saw limited conscious
interaction between the teams. Unfortunately, our options to elicit interaction
are also limited, because there is little motivation to cooperate in a zero-sum
game. As such, it would only work if both teams are deceived to varying degrees.
Another way would be some form of attacking, though we try to keep our scenar-
ios as peaceful as possible. In this scenario, we had indirect interaction through
presence in and modification of a shared environment, similar to the Cow sce-
nario. In the City scenario, we had very limited interaction followed by the
well-building attempt. In the Mars scenario, we had interaction through attack-
ing agents, though the extent (duration and complexity) of these interactions
also remained expandable. A challenge for the future is surely to design complex
interactions which are interesting to realize and see in action.

5.2 General

A lesson of the early phase was the awareness that normally neglected engi-
neering issues (as opposed to scientific ones) are of utmost importance. For
example, collecting statistical data or providing visualizations turned out to be
as important as the choice and the tuning of the scenarios. Without them it was
extremely difficult to analyze why a team behaved as it did.
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Using automatically generated statistical data, we can easily retrace a whole
simulation’s progress by looking at the generated charts instead of watching
the whole replay. The charts mainly focused on scenario-specific data, like the
development of the score or stability of dominated zones. Furthermore, we were
finally able to directly and easily compare different simulation runs without
having to keep a lot of details in mind. Such tools cannot only be used for
debugging the teams’ agents, but also for analysis of the scenario and improving
it for the next round.

These insights went into the Agents-on-Mars scenario, where we noted an
increasing number of multi-agent platforms. Since then, our scenarios have
always been won by dedicated agent platforms—they seem to outperform “ad-
hoc” solutions. This might be attributed to some teams taking part repeatedly,
but it also points to an increasing maturity and ease of use concerning multi-
agent platforms.

If you followed the years in which each scenario was used closely, you may
have noticed that 2015 was missing. That particular year should have been the
start of the “City Scenario”. We introduced it in 2015, though we might have
underestimated its complexity and readiness. As the contest date neared, the
participants asked us to postpone the competition, which we did. It moved to
early 2016 first and finally to the regular 2016 Contest slot. If we say complexity
here, we mean the effort that was required to get a simple agent team running
and dealing with all important stages of the game. We learned that, as often
requested in the earlier years, we need to publish a completely new scenario as
early in the year as possible. We also saw a relative core base of teams that
participated in each of the three City contests. While this might tell us that
teams who have made the big time investment once are likely to stick around,
it is also off-putting for new teams if they have to put in a lot of work to only
see some basic results. For the next scenario (Agents Assemble), we always had
the concept of easy to start, hard to master at the back of our minds.

In order to better understand the underlying strategies of the teams, we
worked out a standardized questionnaire [1] (which was further improved over
the years). This did not only help to learn about the systems and the results they
produced, but also to understand the whole development process. Additionally,
it serves for newcomers to avoid mistakes from previous iterations.

The motivation to enter the MAPCwas for some teams simply to learn about
multi-agent systems or to refine programming skills. Furthermore, most teams
shared our goal of evaluating multi-agent frameworks and platforms. Regarding
their structure, teams were composed of students as well as researchers with
their background mostly in MAS or at least in artificial intelligence in general.
This reinforced our motivation to always come up with new scenarios, rather
than optimizing a particular one over the years, which only favors teams that
attend each and every year (it seems this happened in the simulation league of
the soccer competition).

We also asked the teams how difficult it was and how much effort had to
be put into getting to a point where their system behaved as it finally did. We
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got very diverse results, ranging from only a hundred to over a thousand hours
and 1000 to many thousands of lines of code that had to be written, tested and
debugged. This clearly hints at varying levels of usability concerning different
agent platforms.

Furthermore, teams noted that they not only debugged their agents but found
and fixed bugs in the agent framework or platform they used as well, which shows
that the MAPCcan play a major role concerning the development and evaluation
of different platforms. Nevertheless, the teams are still not satisfied with available
state-of-the-art debugging tools, since it requires a lot of effort to debug even 20
agents, each with its own individual mindset.

We realized that the visualization and playability of the respective scenario
is a key to reaching a broader audience, especially students, e.g. when MASSim
is used in teaching in various courses all over the world. The competitive nature
is fun for the students and this feature should never be underestimated. To this
day, we cannot make out a clear correlation between the specific scenario and
the number of participants. A more important factor is usually whether the
interested teams are able to invest the necessary time. Similarly, the scenario
doesn’t seem to have a big impact on the choice of programming language or
framework. Most teams either choose a framework they are already familiar
with or one they want to learn, but have already heard about (from colleagues
or supervisors).

Finally, coming back to our questions raised at the beginning of this
paper, namely about the situations where using agent technology pays off and
the strengths of agent platforms. For one, we note that the top-performing
approaches are usually agent-based. Nonetheless, we have also seen conventional
approaches achieve remarkable results. In situations where it is easier to take a
global perspective (e.g. the City scenario), conventional approaches or even cen-
tralized solutions in general, usually seem to have it easier compared to situations
where agents have to base their decisions mostly on their local information. Over
the years, there has been no clear indication of whether agent-based solutions
take less time to create or are smaller in nature. The teams that have used an
agent-based approach tend to report their overall satisfaction with their chosen
technology though. In the end, it may even be a surprising result that both
paradigms almost see eye to eye in our test cases, as the conventional paradigms
have been developed over much more time, by vastly more people and see usage
that isn’t even comparable to agent-oriented programming. If agent program-
ming had a comparable maturity and similarly sophisticated tools, and if people
were trained in its use as they are in traditional programming, we might see way
shorter development times and in turn even better results.

6 Challenges and Outlook

While the agent paradigm plays an important role in computer science, its uptake
in industry still remains small. We believe that the MAPCplays some role in
determining under which conditions agent languages can be used in practice.
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The ideal scenario we were (and still are) looking for, should be easily testable
and not be based on difficult rules (only the solutions should be difficult), so that
beginners in the area of agent programming can easily take on the challenge. A
good solution should use cooperation among autonomous agents and be flexible
enough so that different groups of agents evolve and work together to solve
intermediate tasks.

After almost 15 years of research and experience, we still have not found such
a convincing scenario. Nor have we yet proved that agent-based approaches are
clearly superior to other, sometimes even ad-hoc, approaches using traditional
programming languages. In many areas of computer science, one is often looking
for a killer application. However, it may well be that such killer applications
do not exist. In defense of MAS, there are many potential advantages that the
contest is not evaluating at all, because it does not seem feasible in the context of
the competition: reusability, maintenance, correctness, the possibility to model-
check agents, code running on different platforms, etc.

Regardless, there are good reasons to be optimistic, because there is progress
on two sides. First, multi-agent programming technologies are becoming more
and more capable. Secondly, there are many lessons learned throughout the
history of the contest and we are getting better at encouraging the cooperative
behaviors we want to see in agents.

So what are possible ways to improve our MAPC? We are considering the
idea to let more than two teams participate in the same simulation. The current
scenario would provide for this naturally, however, we need to address better
visualization (too many things happening at the same time) and evaluation (to
easily find interesting situations and emergent behavior) first.

Our ultimate vision is an agent platform that allows to deploy agents written
in very different agent languages, using the specific features of them. For exam-
ple, it might be beneficial for BDI agents to solve very efficiently certain tasks,
whereas planning agents based on some form of hierarchical task nets could do
the planning for them. Being able to re-use agents already developed (and based
on different paradigms) would certainly push the envelope for applications of
multi-agent systems in general.

Agents running on a local platform (rather than participating over the Inter-
net) would also allow more fine-grained control over communication and real-
time aspects. We could then consider many agents, not just a few, but hundreds
or thousands of sophisticated agents — traditional approaches do not seem to
perform well in such a situation. Moreover, with many interacting agents we
might see some interesting behavior evolve.

However, the price to pay is to standardize the communication and set up
common protocols and interfaces for such agents. That would change our contest
drastically.
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