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Preface

Brain Informatics (BI) is an emerging interdisciplinary research field which aims to
apply informatics when studying the brain. This combines efforts from diverse related
disciplines such as computing and cognitive sciences, psychology, neuroscience,
artificial intelligence, etc., to study the brain and its information processing capability.
From the informatics perspective, the efforts concentrate on the development of new
software tools, platforms, and systems to improve our understanding of the brain, its
functionality, disorders, and their possible treatments. The BI conference is a unique
avenue which attracts interdisciplinary researchers, practitioners, scientists, experts,
and industry representatives who are using informatics to address questions pertaining
to brain and cognitive sciences including psychology and neuroscience. Therefore, BI
is more than just a research field, it is rather a global research community aiming to
build improved, inspiring, intelligent and transformative technologies through the use
of machine learning, data science, artificial intelligence (AI), and information and
communication technology (ICT) to facilitate fundamental research and innovative
applications of these technologies on brain-related research. The BI conference series
started with the WICI International Workshop on Web Intelligence Meets Brain
Informatics, held in Beijing, China, in 2006. It was one of the early conferences which
aimed at focusing informatics application to brain sciences. The subsequent editions
of the conference were held in Beijing, China (2009), Toronto, Canada (2010),
Lanzhou, China (2011), and Macau, China (2012). But in 2013, the conference title
was changed to Brain Informatics and Health (BIH) with an emphasis on real-world
applications of brain research in human health and wellbeing. BIH 2013, BIH 2014,
BIH 2015, and BIH 2016 were held in Maebashi, Japan; Warsaw, Poland; London,
UK; and Omaha, USA; respectively. In 2017, the conference went back to its original
design and vision to investigate the brain from an informatics perspective and to
promote a brain-inspired information technology revolution. Thus, the conference
name was changed back to Brain Informatics (BI) in Beijing, China, in 2017. The last
two editions, in 2018 and 2019 were held in Texas, USA, and Haikou, China. The 2020
edition was supposed to be held at Padova, Italy, which was not possible due to the
unexpected circumstances created by the COVID-19 pandemic. This led to the orga-
nization of the 13th edition of the BI conference to be virtual.

Due to the COVID-19 pandemic, the conference was reduced to one day from the
usual three days which has been practiced over the last few editions. The BI 2020
conference solicited high-quality papers and talks with panel discussions, special
sessions, and workshops. However, considering the reduced conference duration, the
workshops, special sessions, panel discussions, and the networking events were post-
poned to the future edition of the conference in 2021. Therefore, the BI 2020 online
conference and was supported by the Web Intelligence Consortium (WIC), the
University of Padova, the Padua Neuroscience Centre, Chinese Association for



Artificial Intelligence, the CAAI Technical Committee on Brain Science and Artificial
Intelligence (CAAI-TCBSAI), and the Nottingham Trent University.

The theme of BI 2020 was “Brain Informatics in the Virtual World.” The goal was
to see how the world-leading BI researchers are coping with this current pandemic and
still continuing to contribute to the knowledge base and disseminate their amazing
work. BI 2020 addressed broad perspectives of BI research that bridges scales that span
from atoms to thoughts and behavior. These papers provide a good sample of state-of-
the-art research advances on BI from methodologies, frameworks, and techniques to
applications and case studies. The selected papers cover five major tracks of BI
including: (1) Cognitive and Computational Foundations of Brain Science, (2) Human
Information Processing Systems, (3) Brain Big Data Analytics, Curation, and
Management, (4) Informatics Paradigms for Brain and Mental Health Research,
(5) Brain–Machine Intelligence and Brain-Inspired Computing.

This edition of the BI 2020 conference attracted 52 submissions including
5 abstracts and 47 full papers from 20 countries belonging to all 5 BI 2020 tracks. The
submitted papers underwent a single-blind review process, soliciting expert opinion
from at least three experts: at least two independent reviewers and the respective track
chair. After the rigorous review reports from the reviewers and the track chairs, 33
high-quality full papers and 4 abstracts from 18 countries were accepted for presen-
tation at the conference. Therefore, this volume of the BI 2020 conference proceedings
contains those 33 full papers which were presented virtually on September 19, 2020.
Despite the COVID-19 pandemic, it was an amazing response from the BI community
during this challenging time.

We would like to express our gratitude to all BI 2020 Conference Committee
members for their instrumental and unwavering support. BI 2020 had a very exciting
program which would not have been possible without the generous dedication of the
Program Committee members in reviewing the conference papers and abstracts. BI
2020 could not have taken place without the great team efforts and the generous
support from our sponsors. We would especially like to express our sincere appreci-
ation to our kind sponsors, including Springer Nature and Springer LNCS/LNAI. Our
gratitude to Springer for sponsoring 12 student first-author registrations, selected based
on the quality of submitted papers and their need for financial support. We are grateful
to Aliaksandr Birukou, Anna Kramer, Celine Chang, Nick Zhu, Alfred Hofmann, and
the LNCS/LNAI team from Springer Nature for their continuous support in coordi-
nating the publication of this volume. Also, special thanks to Hongzhi Kuai, Vicky
Yamamoto, and Yang Yang for their great assistance and support. Last but not least,
we thank all our contributors and volunteers for their support during this challenging
time to make BI 2020 a success.

September 2020 Mufti Mahmud
Stefano Vassanelli
M. Shamim Kaiser

Ning Zhong
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An Adaptive Computational Fear-Avoidance
Model Applied to Genito-Pelvic

Pain/Penetration Disorder

Sophie van’t Hof1, Arja Rydin1, Jan Treur2(&), and Paul Enzlin3,4

1 University of Amsterdam, Brain and Cognitive Sciences/Computational
Science, Amsterdam, The Netherlands

sophievanhethof@gmail.com, arja.rydin@gmail.com
2 VU Amsterdam, Social AI Group, Amsterdam, The Netherlands

j.treur@vu.nl
3 Department of Neurosciences, Institute For Family And Sexuality Studies,

KU Leuven, Leuven, Belgium
paul.enzlin@kuleuven.be

4 Centre for Clinical Sexology and Sex Therapy, UPC KU Leuven,
Leuven, Belgium

Abstract. This paper presents a first study to apply a computational approach
to Genito-Pelvic Pain/Penetration Disorder (GPPPD) using a Fear Avoidance
Model. An adaptive temporal-causal network model for fear avoidance was
designed and therapeutic interventions were incorporated targeting one or two
emotional states. Validation with empirical data shows that for one type of
individual therapeutic intervention targeting two states can reduce pain and other
complaints. For three other types of individuals, targeting two emotional states
was not sufficient to reduce pain and other complaints. The computational model
can address large individual differences and supports the claim that interventions
for GPPPD should be multidisciplinary.

Keywords: Genito-pelvic pain/penetration disorder � Pain disorder � Fear
avoidance model � Computational modelling � Adaptive temporal-causal
network

1 Introduction

Genito-Pelvic Pain/Penetration Disorder (GPPPD) is a prevalent sexual dysfunction
affecting approximately 20% of heterosexual women [18], but underlying mechanisms
are still poorly understood. Studies suggest that treatment should be based on multi-
disciplinary interventions that take into account individual differences [8, 10, 21].
Thomtén and Linton [27] approached GPPPD as a pain disorder by applying the Fear
Avoidance Model of Vlaeyen and Linton [30] to the disorder. This approach might be
helpful to better understand how sexual pain starts and what interventions could be
useful. This is the first study to apply a computational approach to GPPPD using the
Fear Avoidance Model. An adaptive temporal-causal network model was designed and
therapeutic interventions were incorporated targeting one or two emotional states.

© Springer Nature Switzerland AG 2020
M. Mahmud et al. (Eds.): BI 2020, LNAI 12241, pp. 3–15, 2020.
https://doi.org/10.1007/978-3-030-59277-6_1
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Validation with empirical data of Pazmany et al. [20] shows that only for one type of
individual a therapeutic intervention targeting two emotional states reduces pain and
other complaints, although recovery does not go back to baseline. For three other types
of individuals, targeting two states was not sufficient to reduce pain and other com-
plaints. This computational model can address large individual differences and supports
the claim that interventions for GPPPD should be multidisciplinary. The model has the
potential to be expanded to see how many states should be targeted for a specific
individual. First, some background information is presented, after which the compu-
tational model is described. Next, simulation outcomes are reported followed by a
description of how the model was verified and validated.

2 Background

In this section, some background information on GPPPD and the Fear-Avoidance
model is given in order to facilitate a better understanding and interpretation of the
computational model.

Genito-Pelvic Pain/Penetration Disorder and Vulvodynia. GPPPD is a relatively
new diagnostic category of female sexual dysfunction, introduced in the DSM-5 [2]. It
reflects the combination of two previous categories, dyspareunia and vaginismus, in
one entity [10]. One of the following criteria have to be met for diagnosis, with at least
six months duration and presence of clinically significant distress: difficulties during
vaginal penetration during intercourse, marked culcovaginal or pelvic pain during
vaginal intercourse or penetration attempts, marked fear or anxiety about vulvovaginal
or pelvic pain in anticipation of, during, or as a result of vaginal penetration, and
marked tensing or tightening of pelvic floor muscles during attempted vaginal pene-
tration [2].

Implications. Sexual pain disorders have co-morbidity with other disorders and dis-
eases, both physical [14, 21, 24], and mental [1, 5, 17, 20]. In addition, repeated pain
during coitus has a substantial negative impact on quality of life [3, 12, 15, 28], and
altered sexual functioning [6, 19, 20, 22, 23].

Interventions. The etiology of GPPPD is multi-factorial and complex, which means
that biological, psychological and relational factors interact to perpetuate and maintain
a women’s pain response [10]. GPPPD should thus never be viewed as a purely
medical or psychogenic problem but always be evaluated and treated from a biopsy-
chosocial perspective [14, 21]. GPPPD often also impacts the partner relationship and
therapy may benefit from also including the partner [9]. Cognitive and behavioral
interventions – either with the women, with the partners or in group – can be useful in
treating sexual pain disorders, although with varying results [4, 9, 11, 13, 25, 26]. In
sum, there are different therapies but there currently is not one therapy effective for all
individuals. People with sexual pain disorders generally try many different treatment
modalities, often over the course of many years, before experiencing any significant
relief [7].

4 S. van’t Hof et al.



Multidisciplinary treatment in chronic pain has held strong support but is relatively
new for sexual pain specifically. In order to create specific multidisciplinary treatment
programs that fit for individual cases, the underlying mechanisms of vaginal pain
should be better understood. There still is a lack of theoretical models that describe the
psycho-social mechanisms involved in the development of GPPPD.

The Fear Avoidance Model. GPPPD is classified as a sexual dysfunction and is
thereby the only pain disorder outside the category of ‘pain disorders’. Vlaeyen and
Linton [30] introduced the fear-avoidance (FA) model to understand musculo-skeletal
pain disorders in the transition from acute to chronic pain. Thomtén and Linton [27]
have reviewed, adapted and extended the Fear Avoidance Model in the light of pain
during vaginal penetration.

This adapted FA model could thus be helpful in understanding GPPPD as a mul-
tifaceted sexual disorder but also as a pain disorder. Thomtén and Linton [27] state that
the model needs to be further examined by evaluating interventions targeting the
specific concepts (e.g., fear, catastrophizing). Figure 1 shows the adapted version of the
Fear Avoidance Model presented by Thomtén and Linton [27]. This informal model
will be used as a basis for our computational model in order to get more insight in the
mechanisms underlying GPPPD and the possibilities for intervention.

The computational model is similar, though adjusted in a few ways. The nodes
representing a verb have been changed to an emotional state of being. The arrows
represent the actions, and the nodes represent a state of (emotional) being. Furthermore,
the branch ‘exiting’ the fear-avoidance loop (recovering from GPPPD) has been
removed, because in the computational model this occurrence will be represented by
low values of pain, fear et cetera.

Fig. 1. Adjustment of the fear avoidance model to GPPPD. Adapted from [27].

An Adaptive Computational Fear-Avoidance Model 5



3 The Designed Computational Network Model

In this section the adaptive temporal-causal network model is presented; see Fig. 2.

The Modeling Approach Used. The adaptive computational model is based on the
Network-Oriented Modelling approach based on reified temporal-causal networks [29].
The network structure characteristics used are as follows. A full specification of a
network model provides a complete overview of their values in so-called role matrix
format.

• Connectivity: The strength of a connection from state X to Y is represented by
weight xX,Y

• Aggregation: The aggregation of multiple impacts on state Y by combination
function cY(..).

• Timing: The timing of the effect of the impact on state Y by speed factor ηY

Given initial values for the states, these network characteristics fully define the
dynamics of the network. For each state Y, its (real number) value at time point t is
denoted by Y(t). Each of the network structure characteristics can be made adaptive by
adding extra states for them to the network, called reification states [29]: states WX,Y

for xX,Y, states CY for cY(..), and states HY for ηY. Such reification states get their own
network structure characteristics to define their (adaptive) dynamics and are depicted in
a higher level plane, as shown in Fig. 2. For example, using this, the adaptation
principle called Hebbian learning, considered as a form of plasticity of the brain in
cognitive neuroscience (“neurons that fire together, wire together”) can be modeled;
e.g., see [29], Ch 3, Sect. 3.6.1.

A dedicated software environment is available by which the conceptual design of an
adaptive network model is automatically transformed into a numerical representation of
the model that can be used for simulation; this is based on the following type of
(hidden) difference of differential equation defined in terms of the above network
characteristics:

YðtþDtÞ ¼ YðtÞþ gY aggimpactYðtÞ - YðtÞ½ �Dt or dYðtÞ=dt ¼ aggimpactYðtÞ - YðtÞ½ �
with aggimpactY ðtÞ¼ cYðxX1;YX1ðtÞ;. . .;xXk ;YXkðtÞÞ

ð1Þ

where the Xi are all states from which state Y has incoming connections. Different
combination functions are available in a library that can be used to specify the effect of
the impact on a state (see Treur, 2016, 2020). The following two are used here:

• the advanced logistic sum combination function with steepness r and threshold s

alogisticr;s V1; . . .;Vkð Þ ¼ 1
1þ e�r V1 þ ��� þVk�sð Þ -

1
1þ ers

� �
1þ e�rsð Þ ð2Þ
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• the Hebbian learning combination function hebbl(..)

hebbl V1; V2; Wð Þ ¼ V1 V2 1 - Wð Þ þ lW ð3Þ

with l the persistence parameter, where V1 stands for X(t), V2 for Y(t) and W for
WX,Y(t), where X and Y are the two connected states

The Introduced Adaptive Network Model. The specific adaptive network model
introduced here consists of 13 nodes or states and 22 connections; see Fig. 2. The 13
states of the adaptive network model are explained in Table 1. Each node stands for a
physical or emotional (re)action or experience and the connections represent causal
relations. For example, an occurring injury will cause a pain experience, so an arrow
points from the node injury to the node pain experience. In simulations by this model, a
spiral can be found of how an experience of pain can cause a closed loop resulting in a
continuing non-descending pain experience. Note that the dysfunction, disuse and
distress state were simplified. In addition, the link between disuse and increased levels
of pain has been theorized, but not supported with empirical data [27]. The full
specification of the network characteristics of the introduced network model (con-
nection weights xX,Y, speed factors ηY, and combination functions cY(..) and their
parameters r, s, and l) and the initial values can be found in the role matrices in the
Appendix at https://www.researchgate.net/publication/338410102. The states X1 to X8

are also displayed in Fig. 1. The other states X9 to X12 shown in Fig. 2 in addition
address emotion regulation by control states, strengthening of emotion regulation by
learning, and therapy to support that. In this model, there are control states for both the
catastrophized state and the dysfunction/distress state. The graphical representation
shown in Fig. 2 displays the overall connectivity of this network model, also shown in
role matrix mb in the abovementioned Appendix.

Fig. 2. Overview of the reified network architecture for plasticity and meta-plasticity with base
level (lower plane, pink) and first reification level (upper plane, blue) and upward causal
connections (blue) and downward causal connections (red) defining inter-level relations. (Color
figure online)

An Adaptive Computational Fear-Avoidance Model 7
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As can be seen in role matrix mcw in the Appendix, most connection weights are
positive, the only exceptions being the weights of the connections from control states
X10 and X12 to emotion states X3 (catastrophized) and X8 used for emotion regulation.

If one node negatively affects another node, in the picture also an arrow points to the
affected node, but labeled with a negative sign (-). For aggregation, the combination
function hebbl(..) is used for the two W-states X11 and X13 in the upper plane and
alogisticr,s(..) for all other states in the base plane (role matrix mcfw in the Appendix).
The values for parameters r, s and l for these combination functions can be found in
role matrix mcfp; for example, l = 0.99 and steepness r mostly varies from 5 to 7. The
timing of the states is shown in role matrix ms in the Appendix: the experienced pain
has a high speed factor 0.9 and all other states have speed factor 0.1.

The incorporated adaptive emotion regulation can be explained in the following
way. An individual may experience a state of feeling catastrophized (experiencing
thoughts like ‘I am not a real woman’, ‘my partner will leave me’, etc.), but may be
able to consciously think about this by rational reasoning (e.g., ‘I am not the only
woman who experiences problems’, ‘my partner loves me’, etc.). The higher the
activation of feeling catastrophized, normally the higher the activation of the control
state will be. Conversely, the higher the activity of the control state, the lower the
activity of the feeling catastrophized state will become. So, by controlling the emotions
one is experiencing, the emotions may become less intense. The idea is that this process
is adaptive in the sense that the strength of the connection from the catastrophized state
to the control state can be ‘trained’ by interventions such as therapies.

Different types of therapies may target one or more states. However, it is unclear
which specific therapy targets which specific state(s), and we shall thus continue using
the general term ‘therapy’ that targets some specific state(s), instead of e.g., cognitive
behavior therapy that is said to target the catastrophized state. The model is adaptive in
the sense that the weights of the incoming connections for the control states supporting

Table 1. Representation of all states used in the adaptive temporal-causal network

State
number

State
name Description Level

X1 inj injury
X2 pai experienced pain
X3 cat catastrophized
X4 prf pain-related fear
X5 vig vigilant
X6 loa lack of arousal Base level
X7 avo avoidance
X8 dis distressed
X9 the therapy
X10 csc control state for catastrophizing
X12 csd control state for distress
X11 Wcat,csc reified representation state for connection weight cat,csc First reification
X13 Wdis,csd reified representation state for connection weight dis,csd level
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emotion regulation can be adapted by learning. For example, if a healthy individual
starts to catastrophize, normally spoken she will learn to control this state. The adaptive
W-states for these incoming connections are the states portrayed on a higher level in
the model (the upper plane) in Fig. 2. Therapy will positively affect one or more of the
control states. In turn, the activation values of the catastrophized state and control state
together can strengthen (or weaken) the connection from the catastrophizing state to the
control state: i.e., Hebbian learning to control the catastrophizing level. This happens
by the Hebbian combination function (2) applied to the W-states (X11 and X13) in the
upper plane. The Hebbian learning function takes in the values of the two connected
states from the base level and of the connection weight itself, and uses a certain
persistence factor as parameter l: if l = 1, the connection weight keeps its strength for
100%, and if it is, for example, l = 0.99, every time unit the connection loses one
percent of its strength.

4 Simulation Results

Using the computational model, simulations have been performed for different sce-
narios. The first scenario includes no therapy and therefore should show that the pain
experience increases and finally becomes high. In the second scenario, therapy tar-
geting the control state of the catastrophized state, was included. The third scenario also
makes use of a therapy, targeting both the control states catastrophized and distress;
thus two states in the cycle. Both therapies strengthen the control state of the state, with
the idea that therapy helps people control these states, to break to cycle. The simula-
tions were run until an equilibrium is reached to see what the end state will be.

Scenario 1: No Therapy. In Fig. 3 left it is shown that the injury triggers the expe-
rienced pain. This in turns creates a wave of catastrophisation, followed by a pain-
related fear. The pain-related fear triggers both vigilance and avoidance behavior.
These states in turn increase the lack of arousal and the state of distress. The lack of
arousal, combined with dysfunction/distress, feed back into the pain experience, fin-
ishing off the loop. There is no way in this loop to break the cycle.

Scenario 2: Therapy Targeting One State. The model has a control state embedded
for the state of being catastrophized. The idea is that the individual can consciously
think about her emotions and feelings and control these to some extent. The activation
of the control state thus negatively affects the state of being catastrophized.

In the model, the strength by which this happens, is typically variable per person and
situation, and it can be positively affected by therapy. A therapy was incorporated that
targets the strength of the control state, and thus weakens the catastrophized state,
hopefully breaking the cycle. Simulation results of therapy targeting one state is pre-
sented in Fig. 3 middle. What is seen, however, is indeed a dip in the cycle, but the
therapy is not strong enough to actually break the cycle, and eventually the pain and all
other states again get higher values. This suggests that it concerns a system problem,
where the problem cannot be solved by solving only one particle in the system, but the
system as a whole needs to be revised. Therefore, in a following scenario two parts in
the cycle are targeted.

An Adaptive Computational Fear-Avoidance Model 9
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Fig. 3. Results from running the Fear Avoidance model for an individual with GPPPD (a) Left:
without a therapeutic intervention. After the injury, we see how a cycle is increasingly elicited by
an initial increase in pain experience, resulting in high values for all states in the GPPPD cycle.
(b) Middle: with a therapy targeting the control state for the catastrophized state. After the injury,
we now also see therapy becoming active, which lowers the cycle states. However, the therapy
alone is not enough to break the cycle, and when the experienced pain goes down, and therefore
also the therapy, the cycle repeats itself. Even though there is an increase in the connection
between the control state and the emotion, the therapy in this form is not strong enough to keep
the GPPPD under control. (c) with a therapy targeting both the control state for the
catastrophizing state and for the distress state. The therapy is effective: the cycle is stopped and
the pain and other parts of the cycle are controlled after the therapy is discontinued.
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Scenario 3: Therapy Targeting Two States. Another control state was incorporated
for being distressed, and the therapy was targeting both control states in the cycle. The
result of the simulation can be seen in Fig. 3 right. The therapy successfully alters the
nature of the system, suppressing the activity of the reoccurring pain experience, and
thus breaking the cycle of GPPPD.

5 Verification by Mathematical Analysis

The model can be verified per state, by taking a state value at a time point that the
system is in equilibrium, considering the incoming connections, and calculating the
aggregated impact on the state. The difference between the simulation result and the
aggregated impact shows a certain measure of accuracy of the model, as theoretically
they are equal in an equilibrium. The states that have been chosen to verify, are X2, X11,
and X13. Time point t = 498.2 was used as a reference time point. State X2 has three
incoming connections: X1, X6 and X8.The aggregated impact for this state X2 is the
logistic function, as defined above in (1). The values found for the incoming con-
nections of X2 are: X1 = 1.42 � 10−18, X6 = 0.0049, X8 = 0.0037. The steepness and
threshold of the logistic function are r = 5, s = 0.6. This results in the outcomes shown
in Table 2. States X11 and X13 use the Hebbian learning function (2) for aggregation.
Their incoming connections and their values are, respectively: X3 = 0.0013,
X10 = 0.29481, X11 = 0.3673 and X8 = 0.0037, X12 = 0.71057, X13 = 0.3822. Both
persistence parameter values are l = 0.99. The aggregated impacts for these two states
were calculated by:

aggimpactX11
tð Þ ¼ X3X10 1 � X11ð Þ þ lX11

aggimpactX13
tð Þ ¼ X8X12 1 � X13ð Þ þ lX13

The highest deviation that we found was for stat X2, being 0.0417671, which is not
considered to indicate a problem for our model as it is close enough to 0.

Table 2. The values for three states in an equilibrium time point have been extracted from
simulation data and compared with the aggregated impact of the incoming states. These states
have been chosen because they have the highest number of incoming connections (three), and
thus the highest probability of deviating strongly from the theoretical equilibrium point. The
highest deviation is the 0.04 found in X2, but still small enough not to suggest an error in the
model.

State Xi X2 X11 X13

Time point t 498.2 498.2 498.2
Xi(t) 0.0015 0.3673 0.3822
aggimpactXi

tð Þ 0.0417 0.364 0.380

deviation 0.0403 −0.00343 −0.00220
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6 Validation of the Model

The simulations in Sect. 3 were run without using numerical empirical data. In order to
validate the model, data from [20] were used. In this study, data for levels of pain,
sexual arousal and distress were acquired with validated questionnaires in women with
GPPPD. From this data set, data of four different individuals with GPPPD with dif-
ferent levels of pain, arousal, and distress were used. The model will therefore be
validated for four different types of individuals. The numbers are based on the different
questionnaires that the women filled out, giving a score regarding several aspects in
their sexual life. The numbers were scaled to a [0, 1] range for the optimization
program by dividing the score on the questionnaire by the maximum score. The Female
Sexual Function Index questionnaire is used to determine sexual pain and sexual
arousal, with higher scores being more positive. Both scores were subtracted from 1,
since higher scores on pain and lack of arousal indicate higher levels of pain and lower
levels of arousal. Simulated Annealing was used as optimization method, which makes
use of a cooling schedule to find the best fitting parameter values [16]. The empirical
values of the three states for the four individuals can be found in Table 3, including the
indication whether the value is low, medium or high.

The four individuals all experience medium to high levels of pain, but varying
levels of (lack of) arousal and distress. The values have been added to the optimization
program at a time point where the therapy (targeting both catastrophizing and distress)
has not been activated yet, but the symptoms of GPPPD are significantly prevalent
(t = 50). The model was tuned for all connection weights, except for the connection
weight going from pain to therapy. The model was also tuned for all the function
parameter values (threshold and steepness), except for parameter values that belonged
to the therapy. Values for the remaining RMSE (Root Mean Square Error) found were
around 0.04, 0.04, 0.05, 0.25, respectively, for persons 1 to 4.

Table 3. Empirical data of the four individuals are shown in this table. For each individual,
three levels have been used in the parameter tuning optimization procedure: experienced pain,
lack of arousal, and distress.

State Explanation Individual
Number 1 2 3 4

X2 Experienced pain
level

0.667
high

0.400
medium

0.467
medium

1.000
high

X6 Lack of arousal
level

0.750
high

0.050
low

0
low

1.000
high

X8 Distress
level

0.125
low

0.750
high

0.0417
low

1
high
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7 Conclusion and Discussion

In this paper, a computational model for GPPPD has been introduced. This was done
by building a temporal-causal network based on the Network-Oriented Modelling
Approach from [29]. In this model, GPPPD is classified as a sexual disorder and
characteristics of the Fear Avoidance Model are incorporated by adding the cyclic
component. The Fear Avoidance model suggests that GPPPD can also be modelled as a
pain disorder. Perceiving GPPPD not only as a sexual disorder, but also as a pain
disorder opens the doors for new types of interventions. For example, acceptance and
commitment therapy has recently been developed for chronic pain disorders [11]. It
could be useful to apply this type of therapy for GPPPD as well.

Characteristics of GPPPD and interventions targeting one or two states have been
captured, by creating an adaptive temporal-causal network. Different therapeutic
interventions can target different states of the model. For example, catastrophizing is
the primary target of CBT [11]. However, when modeling a therapy that only targets
catastrophizing, the therapy does not seem to be effective. CBT for GPPPD is described
as the reframing and restructuring of basic (irrational) beliefs that interfere with sexual
function [9]. It could thus be hypothesized that CBT does not only target catastro-
phizing, but also distress (e.g., feelings shame and guilt) and maybe even more states.
Which states are targeted, could even differ per psychiatrist, individual and/or couple.

It would be interesting to research which states exactly are being targeted with
different therapies and whether this indeed does differ between psychiatrist, individual
and/or couple. In addition, it would be interesting to collect data of different states
during a therapy over time. This model could be easily extended to incorporate control
states for other states in the model. In this way, a model can be created to see which
states could and should be targeted in different individuals. The obtained results show
that for an individual with low distress and high sexual arousal levels, targeting two
states lowers the values of the states, but do not get the individual back to baseline. For
women with either high distress, low arousal or both therapy that targets two states
does not lower the state levels at all. These results thus show that for most individuals,
targeting two states is not enough to break the cycle. This supports claims that there are
large individual differences between GPPPD patients and that interventions for GPPPD
should be multidisciplinary and tailored to individuals specifically.

This study is the first to apply a computational approach to GPPPD. The parameter
tuning suggests that therapy targeting two states is not sufficient for most individuals
with GPPPD to lower the pain and other complaints. Future research could collect more
empirical data of different states before and after therapy. Adding more control states,
to more states of the model would also create a more elaborate model that would be
able to characterize more kinds of therapies, and thus increasing the effectiveness of the
therapies, specialized for different kinds of individuals. Another future extension of the
model may incorporate metaplasticity by making the learning speeds and the persis-
tence factors adaptive, for example, following [29], Ch. 4, so that a second-order
adaptive network is obtained taking into account the effect that circumstances may have
on a person’s learning capabilities and that even may block learning.
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Abstract. Parental influence plays an important role in the mental development
of a child. In the early years of childhood, a parent acts as a role model to a
child, so most of the children try to mimic their parents. In our work, we address
a complex network model of a child who is influenced by a narcissistic parent
from his/her childhood to his/her adolescence. This concept of mimicking in
childhood is represented by social contagion. Later on, he/she can learn to
develop his/her own personality based on experience and learning. This model
can be used to predict the influence of a parent over the personality of a child.

Keywords: Narcissism � Parental influence � Reified architecture � Social
contagion

1 Introduction

Parents’ behavior contributes significantly to the development of their children’s
mental and psychological health, as they act as a role model to them [1]. During their
childhood, copying is considered to be an important part of learning and, thus depicts
the behaviors and personality of a child [1, 2]. Parental narcissism can also be
responsible for narcissism in a child, as (s)he unconsciously internalizes it [3].

Literature indicates that the self-esteem of a child is positively correlated with
approval/disapproval from parents [4]. However, overvaluation and following a nar-
cissistic parent often result in narcissism, where a child develops a feeling of superi-
ority over others [5]. In the field of computational modeling narcissism has been
addressed along with possible reactions to positive/negative feedbacks [6]. However, it
would be interesting to see how a narcissistic parent influences his/her child, while
being happy.

Causal modeling is a field of artificial intelligence, which is used to address many
biological, cognitive and social phenomena [7, 8]. It is used to study the real-world
processes, and entails how an event can influence the behavior of a process. For
example, how a parent feeling happy or sad can influence behavior of a child, and how
his/her behavior can vary if a parent is narcissistic. Here, we aim to answer a) which
processes can be responsible to develop a narcissistic personality in children and, b)
how maturity can change this behavior, while using social media. The obtained
computational model can be used to predict narcissism and its progression in a child,
especially when this child is interacting over social media. Prediction of such behaviors
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can be helpful to detect narcissistic traits in a child [5], and can be used as a basis to
cope with narcissism.

This paper is organized in five sections. Section 2 discusses the related work,
Sect. 3 discusses the designed network model of the child based on the approach
described in [8]. Section 4 addresses the simulation experiments and Sect. 5 concludes
the paper.

2 Related Work

Much literature is available to address the mental and social development of children
and adolescents under parental influence [2, 9, 10]. This section covers the develop-
ment of a child of a narcissistic parent using three types of input: psychological, social
and neurological sciences.

Psychologically and socially, a clear distinction is to be made between narcissism
and self-esteem. The former is related to self-love/self-rewarding behavior, while the
latter is related to the sense of self-worth [11] without feeling superiority. An outcome
of parental warmth results in high esteem, however overvaluation can result a nar-
cissistic child [9]. The self-inflation hypothesis states that when a child is overly
admired, this leads him or her to be a narcissist, as children use this kind of feedback to
form a view of themselves, like they believe others look at them [5]. Using social
media at childhood is not a new thing, and can be used for entertainment or for self-
expression [12]. A reason to use social media can be novelty, which can be related to:
technology, remaining active over social media/trend setting, or the content itself [13].
Through literature, it has been shown that children use copying behavior from their
surrounding people [1]. Another study indicates, that children mimic the grandiosity of
their mothers by internalizing experiences based on mutual interactions. This inter-
nalization helps to form the image of oneself, which in this way is an unconscious
projection of early care-givers (e.g., parents) [3]. Another study indicates that narcis-
sism may get less with maturity of a child [14].

From a neurological perspective, parental influence is addressed from early age of a
child [15]. Variations in the brain have been explored in different studies, which
indicate changes in the brain volume or the grey matter that are a result of parent-child
interactions [15, 16]. Another study showed that the child and mother have greater
perceptual similarity for a situation [17]. For narcissism and self-exhibition different
brain regions like Prefrontal Cortex (PFC), Anterior Cingulate Cortex (ACC), insula
and temporal lobe are enhanced along with striatum during self-rewarding behavior
[18–20].

Temporal-causal modelling is a branch of causal modeling is used to address
different biological, social, behavioral, cognitive, affective and many other types of
processes in an integrative manner. For example, while being in a social environment,
one person can influence another person. From a social science view, this is called
‘social contagion’, through which behavior of a person influences another person’s
behavior. However multiple inputs can affect this behavior [21], along with the social
contagion. Previously, a narcissist’s vulnerability was modeled, through a reified net-
work architecture. This indicates how different brain parts are causally related to each
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other to dynamically generate a reaction over a positive or negative online feedback [6].
However, the parental influence of a narcissist parent, was not addressed, but should be
addressed to detect and to provide support to a narcissistic child [9].

3 The Designed Complex Network Model

This section presents a multilevel mental network model of a child who is influenced
by his/her parent based on the literature discussed in Sect. 2. The architecture is based
on the reified architecture approach and consists of three levels, each of which signifies
a special role related to the behavior of the model [8]. For instance, level I indicates the
base model, level II and III address the adaptive behavior of the model. Here Fig. 1,
depicts the graphical representation of one of the agents, i.e. a child and, Table 1 and 2
provide the information of each level. For the second agent (on left), i.e. the model of a
narcissistic parent, who influences his/her child, please see here [6].

3.1 Level I: Base Level

The designed network model is a conceptual representation of a real-world scenario.
For example, consider a scenario “He likes ice-cream, so he buys ice-cream”, this can
be represented by a causal relationship between two states X (‘like ice-cream’) and
Y (‘buy ice-cream’), i.e., X!Y. The activation level of Y is determined by the impact of
X on Y at a certain time. A temporal-causal network model is identified by three types
of characteristics of a network:

Connectivity:
Connection weights xX,Y indicate how strong state X influences state Y.
Aggregation of Multiple Impacts:
Combination functions cY(..)determine the aggregated causal impact from the single
impacts xXi,YXi(t) of all incoming states (Xi : i = 1 to N) on state Y.
Timing:
Speed factors ηY indicate the speed of causal influence over state Y.
Level I shows the base level of the model of a child, which consist of 26 states.

Here, three types of arrows can be observed. Black arrows indicate a positive con-
nection between two states with connection weights between [0,1]. Purple arrows
indicate suppression (negative xX,Y) from one state to another, which is indicated by a
negative sign with magnitude of connection weight in [−1, 0]. Green arrows represent
adaptive connections between two states, which can change/learn over the time and
will be discussed in detail in Sect. 3.2.

According to the literature addressed in Sect. 2, parents influence a child’s
behavior. Here, we address that how a narcissist influences his/her child when he is
happy. The parent is shown on the left with only one state eshappy without complex
details of the model, for details of that part we refer to [6]. So eshappy (narcissistic
parent is happy) acts the only input received from the parent. Upon getting the stim-
ulus, the sensory (ssh) and representation (srsh) states get actived and, the child tries to
act in the same way as his/her parent. An example can be ‘being in a crowd and feel
good to be noticed’. This makes him believe positive (child belief state cbs) about
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him/herself and (s)he self exhibits. Moreover, he/she realize that the parent is factual.
Thus, (s)he learns to replicate the parent’s reward seeking behavior (cfslove; cstriatutm;
cinsula; cfsreward) in a conscious way (cPFC). This process models social contagion
behavior.

However, it is quite possible that he/she doesn’t agree with his/her parent with the
passage of time. An example, can be that he/she may realizes with age (evalh) that the
parent is an attention-seeker or a narcissist, so (s)he may react in another way. Here,
learning is shown by the adaptive link (green). An example can be ‘he can sit at a calm
place (cpsact; cesact) where he remains unnoticed’, this action will give him or her inner
satisfaction (fssat). This kind of behavior can be learned from experiences (hipp). This
also reflects that with age/maturity, narcissism might fade away.

Table 1. Categorical explanation of states of the base model (Level I).

Categories References

Stimulus states: Stimulus is sensed and leads to
representation: [21]eshappy Input from a narcissistic parent

wss Using social media
Social contagion related states: “yet familiarity.. infants copy more actions of

a familiar, compared to an unfamiliar
model”[1]
“mothers show high self– child overlap in
perceptual similarity in the FFA regardless of
their relationship quality with their child”
[17]

cbs Belief state of child
cstriatum
Striatum: Brain part of child

cPFC Prefrontal Cortex: Brain part
csfslove Feeling of self-love (Amygdala)
cfsreward Feeling of self-reward

(Amygdala)
ceshappy Execution state of happiness
Non-narcissistic related states: “adolescents was associated with neural

activation in social brain regions required to
put oneself in another’s shoes” [17]

evalh Evaluation state for analyzing
behaviors

cpsact Preparation state
cesact Execution state
hipp Hippocampus: Brain part for

memories
fssat Feeling of satisfaction

(continued)
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Another stimulus to the child is when (s)he starts using the social media. This is
represented by the world state (wss), respective sensory (sss) and representation state
(srss). A child can share the content after evaluating (evals) it, based on three attributes:
novelty (fsnov), some emotional value attached to it (fsem),and the urge to share (fsurge) it.
This can be earned by experience (exp) and learning. Moreover, his action is self-
attributed (ownership state: os). Here the control state (ccs) controls the sharing phe-
nomena based upon beliefs influenced by his/her parent. Similar to his/her parent, when
the child starts using social media, he/she might get pleasure by exhibiting himself.

Table 1. (continued)

Categories References

Social media related states: “Emotion then facilitates behavior that is in
line with our concerns” [22]wss Input from social media (e.g. a

post)
sss Sensory state
srss Representation state
evals Evaluation of the input, based

on belief
os Ownership state
psshare Preparation state
esshare Execution state
exp Experience
fsi Feeling states

i = novelty (nov)/emotion (em) /
urge

ssh

wss sss

srsh
cstriatum

cinsula

cfslove
cfsreward

evalh

ceshappy

cpsact cesact

fssat

hipp

srss evals psshare esshare

os

exp
fsnov
fsem
fsurge

ccs

W1

W2

W8

W6

W3

W4

W9

W5

W10

W11

W12

M1

H1 H2

M2

H3

H4

M3

M4

M6

H7

H6

M7

H8H2

H9

M8

M9

H10H10

M5 M11

H5

M10

H11

H12

M12

W7

I

II

III

Child

Narcissistic 
Parent

Fig. 1. Multi-leveled reified network architecture for a child.
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3.2 Level II: First-Order Adaptation

This level addresses the adaptation principle related to ‘Hebbian Learning’, which is
represented at Level II, by twelve W-states Wi (where i = 1 to 12 representing the
weights of the twelve green colored connections at Level I). The dynamics of these W-
states shows the learning of these connections in terms of persistence and time
addressed in Sect. 3.3. The involved states at level I act as presynaptic and postsynaptic
states for a W-state. For illustration, consider W10 (or Wfsnov ; psshare ), for fsnov and psshare
as presynaptic and postsynaptic states for connection fsnov psshare. This indicates that
the strength of a connection fsnov psshare can change over time according to W10.
Table 2 enlist the W-states for the twelve adaptive connections. See [8] for more details
about modeling the hebbian learning principle.

3.3 Level III: Second-Order Adaptation

The adaptation principles can themselves change over time as well, which is repre-
sented by the notion of meta-plasticity exhibited at this level III [8]. Here, 24 meta-
plasticity-related states are represented by Mi and Hi (Table 2). The former is related to
the persistence while the latter is related to the speed of learning of the states Wi (where
i = 1 to 12). These states have upward (blue) arrows from the presynaptic, postsynaptic
and relevant W-states. The downward causal connections (red) from H- and M-states
influence the related W-states. To illustrate it further, consider M10 and H10, they have
upward arrows from the state fsnov (presynaptic), psshare (postsynaptic) and W10 state
(Wfsnov ; psshare) for connection fsnov psshare. For the downward connection, states M10

and H10 have downward arrows to W10, to control its persistence and speed, respec-
tively. A low value of H10 makes a low speed of learning of W10 and can be used
(together with M10) to control the learning and persistence of the concerning base level
connection ([8], p. 110).

Table 2. Explanation of states in level II and III.

States per Level References

Level II (Plasticity/Hebbian learning for Omega
states):

First-order adaptation level for
plasticity by Hebbian learning [8,
21]W1: Wsrsh ; evalh for srsh ! evalh

W2: Wbs; fslove for cbs ! cfslove
W3: Wfslove ; bs for cfslove ! cbs
W4: Wstriatum,insula for cstraitum ! cinsula
W5: Wfsreward ; striatum for cfsreward ! striatum
W6: Wfslove ; striatum for cfslove ! striatum
W7: Wpssat ; hipp for pssat ! hipp

W8: Wfssat ; psact for fssat ! cpsact
W9: Wpsshare ; exp for psshare ! exp

W10: Wfsnov ; psshare for fsnov ! psshare
(continued)
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We used two type of inputs for the model of a child. One is received from the
parent: eshappy is equal to the value obtained from his/her parent. As we address here
the influence of a happy parent, the value ranges between 0.8–1. The second input is
when the child uses social media, which is indicated by wss = 1 and 0 otherwise. Three
combination functions were used to aggregate causal impact:

a) States ssh, srsh, ceshappy, fssat, sss, srss used the Euclidian function.

eucln;kðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVn
1 þ . . .þVn

k Þ=kn
q

b) For 43 states (cbs; cPFC; cfslove; cfsreward; cinsula; cstiatum; evalh; psact; esact; hipp;
ccs; evals; exp; fsnovel; fsem; fsurge; os; psshare; eshare; Hi; Mi i = 1–12), the function
alogistic (with positive steepness r and threshold s < 1) was used:

alogisticr;sðV1; . . .;VkÞ ¼ 1
1þ e�r V1 þ ...þVk�sð Þ �

1
1þ ersÞ

� �

ð1þ e�rsÞ

where each Vi is the single impact computed by the product of weight and state
value: xX;YXðtÞ:

c) Lastly, for the 12 adaptation states (Wi: i = 1–12) we used Hebbian learning
principle defined by the following combination function:

hebbl V1;V2;Wð Þ ¼ V1V2 1�Wð Þþ lW

Numerically, a reified-network-architecture-based model is represented as fol-
lows [8]:

1. At every time point t, the activation level of state Y at time t is represented by Y(t),
with the values between [0, 1].

2. The single impact of state X on state Y at time t is represented by impactX,Y(t) = xX,

Y X(t); where xX,Y is the weight of connection X!Y.

Table 2. (continued)

States per Level References

W11: Wfsem ; psshare for fsem ! psshare
W12: Wurge; psshare for urge ! psshare
Level III (Meta-Plasticity/Learning rate and
persistence):

Second-order adaptation level for
meta-plasticity to control the
Hebbian learning [8]Mi: Persistence for i = Wj: j = 1,…,12

Hi: Learning rate for i = Wj: j = 1,…,12

22 F. Jabeen et al.



3. Special states are used to model network adaptation based on the notion of network
reification, which means that network characteristic are represented by network
states. For example, state WX,Y represents an adaptive connection weight xX,Y(t) for
the connection X!Y, while HY represents an adaptive speed factor ηY(t) of state Y.
Similarly, Ci,Y and Pi,j,Y represent adaptive combination functions cY(.., t) over time
and its parameters respectively. Combination functions are built as a weighted
average from a number of basic combination functions bcfi(..), which take
parameters Pi,j,Y and values Vi as arguments. The universal combination function
c*Y(..) for any state Y is defined as:

c �Y ðS;C1; . . .;Cm;P1;1;P2;1; . . .;P1;m;P2;m;V1; . . .;Vk;W1; . . .;Wk;WÞ ¼ W þ S½C1bcf1ðP1;1;P2;1;

W1V1; . . .;WkVkÞþ . . .þCmbcfmðP1;m;P2;m;W1V1; . . .;WkVkÞ =ðC1 þ . . .þCmÞ�W� �

where at time t:

• variable S is used for the speed factor reification HY(t)
• variable Ci for the combination function weight reification Ci,Y(t)
• variable Pi,j for the combination function parameter reification Pi,j,Y(t)
• variable Vi for the state value Xi(t) of base state Xi

• variable Wi for the connection weight reification WXi;Y tð Þ
• variable W for the state value Y(t) of base state Y.

4. Based on the above universal combination function, the effect on any state Y after
time Dt is computed by the following universal difference equation as:

YðtþDtÞ ¼ YðtÞþ ½c �Y ðHY tð Þ;C1;Y tð Þ; . . .;Cm;Y tð Þ;P1;1 tð Þ;P2;1 tð Þ; . . .:;P1;mðtÞ;P2;mðtÞ;X1 tð Þ;
. . .;Xk tð Þ;WX1;Y tð Þ; . . .;WXk ;Y tð Þ;YðtÞÞ � YðtÞ�Dt

which also can be written as a universal differential equation:

dY tð Þ=dt ¼ c �Y ðHY tð Þ; C1;Y tð Þ; . . .;Cm;Y tð Þ;P1;1 tð Þ;P2;1 tð Þ; . . .:;P1;mðtÞ;P2;mðtÞ;X1 tð Þ; . . .;Xk tð Þ;
WX1;Y tð Þ; . . .;WXk ;Y tð Þ; YðtÞÞ � YðtÞ

The dedicated software environment used was implemented in MATLAB, which
takes input of the network characteristics represented by role matrices. A role matrix is
a specification indicating the role played by each state. This involves the states of the
base models and the states related to plasticity and meta-plasticity and their roles along
with the related parameters. Detailed information for the model can be found online
[23].

4 Simulation Experiments

Simulation experiments offer insights in the model dynamics reflecting the human
behavior. In this section we present how a narcissistic parent influences his/her child.
Here, we have discussed only the scenarios, when a parent is happy, thus eshappy is high
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for the parent [6]. The simulation scenarios related to a child are when he/she is a)
exhibiting narcissism under parental influence, b) when he/she is learning not to be a
narcissist, and c) exhibition of narcissism while using the social media.

4.1 A Child Displaying Influence of a Parent’s Narcissism

This first scenario addresses a child which is not using social media, but gets parental
influence. An simple example scenario can be: A parent is an actor on a TV-show;
when a child is along his/her parent then he will also like to react in a duplicate/
instructed manner, to make the parent happy.

Figure 2 shows the results of such a scenario, here eshappy (blue) acts as input to the
child (gains value = 0.95 at time point t = 25) [6], and wss = 0, as the child is not using
the social media. The respective sensory (ssh) and representation (srsh: mustard) acti-
vates after eshappy. This activates the belief state (cbs: purple dots) and cortex (cPFC:
green) of the child at the same time t � 11. Reward related states (cstriatum: brown -
bold and ceshappy: mustard - bold) starts to activate around t = 15 but stays till
value = 0.55. At this moment the child’s feeling related to self-reward are not active
indicating that the child is just mimicking his/her parent without being influenced by
his/her own feelings. However, at time point t > 280, feelings of self-love (cfslove: red)
and self-rewarding (cfsreward: brightgreen) start to increase due to activation in the
insula (cinsula: magenta) at time point t = 250. This leads to reflect the narcissistic
behavior (through social contagion), by increasing cstriatum and ceshappy to value = 1
at time point t = 300. This is also reflected by an increase in cbs at t � 280, indicating
the learning of self-view or belief (cbs).

Here, the dotted lines show the dynamics of the involved W-states (i.e.: W2, W3,
W4, W5 and W6), indicating the hebbian learning effect through the involved states of
the base model. It can be seen that learning for the self-rewarding states starts at time
point t > 50 shown by W4, which leads W5 and W6 to learn around time point t � 280
and the child is able to learn this contagion behavior around time point t > 300. Here it
can be noted that W2 and W3 also reflect this at t � 280 thus reflecting learning of
connections cbs cfslove and cfslove cbs (at Level I). This behavior indicate that the
child has learnt how to act in a social environment.
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Fig. 2. Child replicating his parent’s narcissism (eshappy = 1)
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4.2 Influence of Age Over Narcissism

In this second scenario, with the passage of time (age) the child notices that his parent
is a narcissist and he chooses for him/herself not to be a narcissist. An example can be
that the child is in a social gathering along with his/her parent but prefers to sit at a
calm/unnoticed place, rather than replicating the parent’s behavior. So, while the parent
is exhibiting his grandiosity, the child prefers to remain unnoticed.

Figure 3 shows such a scenario, the child gets the stimulus (eshappy = 0.95 at time
point < 25) while not using the social media wss = 0. He/she starts to learn through
hebbian learning that (s)he should not replicate his/her parent. This evaluation is shown
by the corresponding evaluation state (evalh: purple), which is activated around time
point t = 20, after the sensory (sss: brown) and representation state (srss: mustard). It
further activates the states of action with personal satisfaction in the duration of t = 50–
150 (cpsact: green, fssat: blue, hipp: brown and cesact : light blue).

Here, dotted states show the W-states of the model. It can be seen that the learning
starts at time point t � 25 with his/her age (W1) and helps W7 and W8 to learn by
t = 100. This indicates that the child is able to learn by his experience till time point
t = 200 which is also reflected in his behavior/action (cesact). Here, it is interesting to
notice the behavior of W1 and W8, at first he/she un-learns the feeling of satisfaction and
evaluation regarding the grandiosity of parent, by using his memories (hipp), which
doesn’t drop over the time and, the experiences are earned by the action (W1 and W8).

4.3 Child Using Social Media

In this section, we address the dynamics of the adaptive network model, when a child
uses social media (like WhatsApp/Twitter). This is shown in episodes a) when a child
is not using the social media and b) when child is using the social media (Fig. 4).
Initially, when a child doesn’t use social media at all and, (s)he is under the influence of
a parent (eshappy = 1), the self-rewarding states are already active (bold curves -
cstriautm: purple; ceshappy: green; cinsula: cyan) before time point t = 60.

The new episode starts at t = 60, when (s)he starts using social media i.e. wss = 1
(shaded region). This activates the corresponding sensory (sss) and representation (srss)
states. After some time, the control state (ccs: purple) and evaluation state (evals:green)
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Fig. 3. Child learns to be non-narcissistic (eshappy = 1)
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activate and increases the preparation (psshare: magenta) and execution states (esshare: red).
The three associated feelings: novelty (fsnov: brown dotted), urge (fsurge: blue dotted) and
emotion (fsem: light blue) associated to the content, tends to grow by every episode along
with the experience (exp). An example of experience can be, the number of likes or
comments obtained from others over certain content. Here, the self-rewarding states are
alleviated during sharing of the content, indicating that sharing gives him/her narcissistic
pleasure. The suppression of self-rewarding states between t = 120–180, indicate that the
child enjoys self-exhibiting on social media with parental influence. However, once
narcissistic pleasure reaches a maximum (value = 1), the self-rewarding states stay high,
indicating that (s)he is always looking for reward and attention or love.

In Fig. 5, it can be seen thatW-states related to self-rewarding behavior (Wi: i = 2–6)
continue to learn with each episode of sharing the content over the social media till
t = 250. This shows that the narcissistic instinct of the child is fulfilled by sharing any
content over social media. The W-states related to sharing the content over social media
(Wi: i = 9–12) slowly increase with time, and after t > 450, they reach their maximum
values. This indicates that the child has learnt about sharing from his/her experiences in
each episode. It would be interesting to see behavior of W12(Wurge,psshare), as it shows
that the urge of sharing content is almost new at the start of each episode (/exposure to
social media) till he is a regular user of social media.
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Fig. 4. Child sharing and self-rewarding states are active (eshappy = wss = 1)
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Fig. 5. W states while child is sharing and self-rewarding states are active (eshappy = 1; wss = 1)
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5 Conclusion

Our work aims to explore computationally how a child can be influenced by her or his
parent’s narcissism through a second-order adaptive network model. The model was
designed based upon social, cognitive and psychological literature. Three simulations
were presented. First we showed a) how a child mimics his/her parent grandiosity, then
we showed b) how she or he learns to act in a non-narcissist way based upon expe-
rience. We also explored c) how a child decides what she or he should share over social
media and how this influences his behavior.

As a future work, we would like to collect and use empirical data related to our
model, to verify the behavior of the model with real-world data.
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Abstract. Multivariate prediction of human behavior from resting state data is
gaining increasing popularity in the neuroimaging community, with far-reaching
translational implications in neurology and psychiatry. However, the high
dimensionality of neuroimaging data increases the risk of overfitting, calling for
the use of dimensionality reduction methods to build robust predictive models.
In this work, we assess the ability of four dimensionality reduction techniques to
extract relevant features from resting state functional connectivity matrices of
stroke patients, which are then used to build a predictive model of the associated
language deficits based on cross-validated regularized regression. Features
extracted by Principal Component Analysis (PCA) were found to be the best
predictors, followed by Independent Component Analysis (ICA), Dictionary
Learning (DL) and Non-Negative Matrix Factorization. However, ICA and DL
led to more parsimonious models. Overall, our findings suggest that the choice
of the dimensionality reduction technique should not only be based on
prediction/regression accuracy, but also on considerations about model com-
plexity and interpretability.

Keywords: Resting state networks � Functional connectivity � Machine
learning � Feature extraction � Dimensionality reduction � Predictive modeling

1 Introduction

Resting State Functional Connectivity (RSFC) represents the correlation in the spon-
taneous fluctuations of the blood oxygen level-dependent signal between brain regions,
measured at rest [1]. In stroke patients, RSFC has been successfully employed to
predict individual deficits in several cognitive domains, such as attention, visuo-spatial
memory, verbal memory and language [2, 3]. Machine learning has been a key
enabling technology in this field, since the analysis of neuroimaging data requires the
adoption of multivariate approaches that can efficiently operate over high-dimensional
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feature spaces [4–6]. At the same time, neuroimaging datasets typically have a much
greater number of features than observations [5, 7], which raises the risk of overfitting,
that is, extracting rules or statistical patterns that specifically describe the training data
but cannot be generalized to new observations [8, 9]. One possible way to mitigate the
overfitting issue is to adopt regularization methods. For example, regularized regression
methods such as ridge regression [3], elastic-net regression [10] and least absolute
shrinkage and selection operator (LASSO) [11] include a penalty term that pushes the
estimated coefficients of irrelevant features toward zero [12]. Besides limiting multi-
collinearity and overfitting, this often also improves model interpretability [10, 13, 14],
making regularized algorithms particularly suitable for the analysis of neuroimaging
data (for a recent review, see [15]). Another useful approach to tackle the “curse of
dimensionality” in neuroimaging data is to first apply unsupervised dimensionality
reduction techniques [5, 7, 16], in order to extract a limited number of features that can
compactly describe the data distribution.

However, both regularized regression methods and feature extraction techniques
can vary in performance, depending on the type of data and the task [7, 15], calling for
a systematic assessment of the differences between these methods on neuroimaging
data. Some recent works have compared the performance of several machine learning
algorithms [15], and their interaction with dimensionality reduction methods [17].
Nonetheless, to the best of our knowledge a similar approach has not yet been applied
to multiple unsupervised feature extraction techniques.

The goal of this work is thus to systematically explore the impact of regularization
in combination with different dimensionality reduction techniques, in order to establish
which method can be more effective to build predictive models of neuropsychological
deficits. In particular, we used RSFC data from stroke patients to predict neuropsy-
chological scores in the language domain using a machine learning framework. In a
first step, the RSFC matrices underwent a feature extraction analysis, implemented
through different dimensionality reduction methods: Principal Component Analysis,
Independent Component Analysis, Dictionary Learning and Non-Negative Matrix
Factorization. In a second step, the extracted features were entered as predictors into a
regularized regression model, which was estimated using different cross validation
schemes.

2 Materials and Methods

2.1 Participants and Data Acquisition

RSFC data was taken from a previously published study [3], in which 132 symptomatic
stroke patients underwent a 30 min long RS-fMRI acquisition, 1–2 weeks after the stroke
occurred. 32 subjects were excluded either for hemodynamic lags or excessive head
motion. For each patient, a symmetric RSFC matrix (324 � 324) was calculated across
324 cortical parcels [18] (Fig. 1). The matrices were then vectorized, resulting in 52,326
FC values per subject. After fMRI acquisition, all participants underwent a behavioral
assessment spanning several cognitive domains. In the present work we focus on the
language scores, which are available for a subset of the participants (n = 95). We used an
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overall “language factor” score [2] which captures the shared variance of several sub-tests
(first principal component accounting for 77.3% of variance). The score was normalized
to represent impaired performance with negative values.

2.2 Unsupervised Feature Extraction

Since the feature extraction process was unsupervised, in this phase the entire dataset
was used (here n = 100 and p = 52,326), regardless of the availability of the language
score. All the employed feature extraction methods aim to find a weight matrix W that
can linearly transform the original n � p data matrix X in a new set of k features, with
k < p and usually k < n, such that:

F ¼ XW ð1Þ

where F is the new feature space, and the parameter k is the number of features to be
extracted. Since choosing the value of k is non-trivial, we systematically varied k from
10 to 95, with step size = 5, which resulted in 18 feature sets for each employed
technique.

The original data can be reconstructed by back-projecting the new feature set in the
original space:

XR ¼ FWT ð2Þ

where XR is the reconstructed data. In order to compare the compression ability of the
feature extraction methods, the reconstruction error was calculated as the mean squared
error (MSE) between X and XR, for each value of k.

Principal Component Analysis (PCA). PCA linearly transforms the original data into
a smaller set of uncorrelated features called principal components, sorted by the data
variance they explain [19]. First, X must be centered [20], so that it has zero-mean.

Fig. 1. Mean RSFC matrix (324 � 324) across all patients. Parcels in the matrix are sorted in
relation to 12 large-scale intrinsic brain networks.
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PCA then searches for the eigenvalues and eigenvectors of the p � p covariance matrix
XTX. Hence, matrix factorization via singular value decomposition is applied, such that:

X ¼ UDWT ð3Þ

where U is an n � n matrix containing the eigenvectors of XXT, D is an n � p matrix
with the square root of the eigenvalues on the diagonal, and W is a p � p matrix
containing the eigenvectors of XTX. However, if p > n, there are only n−1 non-zero
eigenvalues, so only the first n − 1 columns of D and W are kept [20]. Eigenvectors are
sorted in descending order of explained variance. Hence, W contains n − 1 principal
components, expressed as a set of p weights that can map the original variables in a
new compressed space. Since PCA is the only deterministic method we explored, it
was performed only once and the first k features were then iteratively selected. For the
other methods, the procedure had to be run repeatedly for each value of k.

Independent Component Analysis (ICA). ICA assumes that a p-dimensional signal
vector XT

i;� is generated by a linear combination of k sources (with k � p), contained in
vector FT

i;�. The sources are assumed to be latent, independent and non-Gaussian [21].
Therefore:

XT
i;� ¼ AFT

i;� ð4Þ

where A is a p � k unmixing matrix, which maps the signal in the sources. Hence, the
sources are obtained by:

FT
i;� ¼ WXT

i;� ð5Þ

where W is the inverse of the unmixing matrix A. Then, FT
i;� represents k latent inde-

pendent features [21, 22]. In order to simplify the ICA problem, the data distribution is
first centered, and then pre-processed through whitening so that a new vector XT

i;� with
uncorrelated components and unit variance is obtained. In this case, PCA was used for
data whitening [22]. The FastICA function of the scikit-learn library was used.

Dictionary Learning (DL). The DL algorithm, sometimes known as sparse coding,
jointly solves for a p � k dictionary W and the new set of features F that best represent
the data. However, an L1 penalty term is included in the cost function, in order to obtain
only few non-zero entrances. Hence, the cost function becomes:

W ;Fð Þ ¼ min
W ;Fð Þ

1
2

X � FWT
�� ��2

2 þ k Fk k1

subject to Wj

�� ��
2 � 1; 8j ¼ 1; . . .; k ð6Þ

where k is the L1 penalty coefficient, controlling for the sparsity of the compressed
representation [23]. The DicitonaryLearning function of the scikit-learn library was
used.
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Non-negative Matrix Factorization (NNMF). NNMF is a form of matrix factor-
ization into non-negative factors W and H [24, 25], such that the linear combination of
each column of W weighted by the columns of H can approximate the original data X:

X � WH ð7Þ

In order to do that, the NNMF aims to minimize the following loss function:

A�WH2
F

�� ��
subject to W ;H� 0 ð8Þ

The nnmf MATLAB function with the “multiplicative update algorithm” was used.

2.3 Regularized Regression

The feature sets extracted by each method were then used as regressors for the pre-
diction of the language scores. Note that only the subjects with available language
score were kept in this phase (n = 95). The regressors were first standardized, and then
entered into the elastic-net penalized regression [10, 14, 26] (the MATLAB lasso
function was used). The elastic-net regression solves for:

min
b

1
2n

Xn

i¼1
yi � xTi b
� �2 þ kPa bð Þ

� �
ð9Þ

where n is the number of observations, yi is the prediction target at observation i, xi is
the data observation i with p variables, k is the non-negative regularization coefficient,
b are the p regression coefficients and Pa is defined as:

Pa bð Þ ¼
Xp

j¼1

1
2

1� að Þb2j þ a bj
�� ��� �

ð10Þ

Therefore, the elastic-net loss function requires two free parameters to be set,
namely the k and a parameters. The k parameter regulates the penalization strength, so
the larger the k, the more coefficients are shrunk toward zero. The a parameter sets the
regularization type: with a = 1 an L1 penalization (LASSO) is obtained, whereas with
a � 0 the L2 penalty (ridge regression) is approached [27]. The main difference is that
LASSO forces the coefficient estimates to have exactly-zero values, whereas the ridge
regularization shrinks the coefficients to near-zero values [13]. Lastly, the elastic-net
regression combines both the penalization terms [27]. The k was tuned over 100
possible values, logarithmically spaced between 10−5 and 105. The a value ranged
between 0.1 and 1 with step size = 0.1 (10 possible values).
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2.4 Cross Validation Setup and Model Estimation

In order to find optimal hyper-parameters, it is common practice to employ a grid-
search with cross-validation (CV). The complete dataset is split into a training set and a
test set: the training set is used for hyper-parameters tuning, and the resulting model is
then evaluated on the test set. In the “nested” CV setup the training set is further split
into training and validation sets using random permutations: the hyper-parameters are
optimized on each validation set, and the best model is finally evaluated on a com-
pletely left-out test set [5, 16, 26]. A major issue in nested CV is that a different model
is estimated for each test set, and there is no standard practice for choosing the hyper-
parameters of the final model.

Here, combinations for the possible values of all hyper-parameters (k, k and a) were
tested using both a Leave-One-Out (LOO) and a nested LOO (n-LOO) CV. In order to
produce the final model of the n-LOO, three measures of central tendency were used
for choosing the optimal hyperparameters, namely mean (n-average condition), median
(n-median condition) and mode (n-mode condition).

2.5 Model Comparison

In order to compare the models generated by the different feature extraction methods,
both the R2 and the Bayesian information criterion (BIC) [28] were calculated (note
that only the non-zero coefficients were used for BIC calculation). Furthermore,
potential differences in the distributions of the quadratic residuals were statistically
tested through the Wilcoxon signed rank test [29].

3 Results

The feature extraction methods were first assessed based on their reconstruction error.
For all methods, the reconstruction error decreased when increasing the number of
features (Fig. 2, top-left panel), and NNMF showed generally higher reconstruction
error. The regression model using the PCA features reached the best R2 in all CV
setups (Fig. 2). The ICA-based model performed slightly worse, except for the n-
average CV. For the DL-based model the results further decreased in all the CV
variants. The NNMF features led to the worst R2; however, they also resulted in a
smaller decrease in the n-average condition, approaching the DL performance.

Results can be interpreted differently when considering the BIC score (Fig. 2),
which penalizes models with more parameters (i.e., features). The ICA- and DL-based
models obtained a lower BIC compared to the PCA-based model, while the NNMF-
based model still obtained the worst results.

Interestingly, it turns out that the measure of central tendency used for choosing the
final model in the n-LOO can have a relatively large effect on both the R2 and the BIC.
The predictive model is poor when averaging the parameters across subjects, whereas
choosing the median and the mode allows to achieve the same performance of the
LOO. This might be caused by the high susceptibility of the mean to outliers, so that
major departures from the distribution of the selected parameters could drive the choice
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toward the outlier values. In this case, median and mode might represent more stable
measures of central tendency. In light of these results, we only considered LOO models
(which achieved a performance comparable to that of n-median and n-mode n-LOO
models) for further analyses.

Interestingly, different feature extraction methods led to slightly different optimal
hyper-parameters (Table 1). The ICA- and DL-based models were chosen with fewer
features than the PCA- and NNMF-based models. Regarding the regularization type,
both PCA and DL led to the smallest a value, thus approaching the ridge regression,
whereas ICA and NNMF led to an intermediate elastic-net solution, approaching
LASSO in the NNMF case. Despite such variability in model performance and selected
hyper-parameters, Wilcoxon signed rank tests did not highlight any significant differ-
ence across the models’ squared residuals (all p > 0.05).

In the Appendix we report the weights of 6 features ordered by the absolute value
of the associated coefficient. The estimated coefficients of each method were also

Fig. 2. Top left: Reconstruction error as a function of the number of extracted features. Top
right: PCA-model predictions with LOO CV. Bottom: R2 and BIC of the models for each feature
extraction method and CV scheme.

Table 1. Selected hyper-parameters (k, a and k) for each feature extraction method.

k a Features

PCA 0.1385 0.1 35
ICA 0.087 0.3 23
DL 0.1385 0.1 30
NNMF 0.0343 0.7 39
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back-projected in the original space (Fig. 3): the resulting structures look fairly similar,
and the matrices are indeed highly correlated (rPCA-ICA = 0.89; rPCA-DL = 0.91; rICA-DL
= 0.88), except for the coefficients of the NNMF-based model (rNNMF-PCA = 0.58;
rNNMF-ICA = 0.58; rNNMF-DL = 0.54). In particular, connectivity patterns in the auditory,
cingulo-opercular, dorsal attentional and fronto-parietal networks seem to be particu-
larly salient for language scores’ prediction.

4 Discussion

In this work we systematically compared four unsupervised dimensionality reduction
methods in their ability to extract relevant features from RSFC matrices. In particular,
we assessed how different methods influenced a regularized regression model trained
on the RSFC features to predict the cognitive performance of stroke patients.

Overall, in relation to the accuracy of the regression, PCA appeared to be the best
method for extracting robust predictors, followed by ICA, DL and NNMF features.
However, when considering the BIC score for model evaluation and comparison, ICA
and DL obtained the best result, suggesting that these methods can guarantee accept-
able predictive accuracy even relying on a more limited number of features. One
possible interpretation is that ICA and DL extract features that can individually retain
more information, so that fewer features are required to explain the data. A reduced
number of descriptors might also allow to better generalize to out-of-sample predic-
tions; in conclusion, balancing model accuracy and parsimony, the ICA-based seems to
be the preferable method.

Future studies should further extend our results to the prediction of a broader range
of behavioral scores, in order to better assess whether some feature extraction methods
could be more general than others. For example, in our case PCA could have obtained
the best regression performance because it extracts features that are particularly useful
to predict the language scores. Based on model parsimony, one could thus speculate
that ICA and DL might be able to extract more general features, which are less
specifically tuned for language prediction and could thus be used to build predictive
models in other cognitive domains. Note that the impact of the feature extraction
method might also be evaluated for other types of neuroimaging data available for
stroke patients, such as EEG connectivity measures or 3D images of brain lesions [30].

Fig. 3. Back-projected weights for each feature extraction method.
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Despite the differences across methods, we also observed high correlations between
the back-projected coefficient matrices, which suggest that these methods extract
similar structure from the RSFC matrices. Specifically, all methods highlighted key
structures in the intra- and inter-network connectivity in the auditory, cingulo-
opercular, dorsal attentional and fronto-parietal networks. NNMF was less aligned with
the other methods, probably due to the non-negativity constraint applied on the
transformation matrix.
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Appendix

The extracted features are sorted in descending order based on the absolute coefficient
value. Regression coefficients and the first 6 features are displayed for each dimen-
sionality reduction method (Fig. 4, 5, 6, 7 and 8).

Fig. 4. Regression coefficients for each model. Black stars represent coefficients = 0.

Fig. 5. The 6 features associated to the highest regression coefficients in the PCA-based model.
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Fig. 6. The 6 features associated to the highest regression coefficients in the ICA-based model.

Fig. 7. The 6 features associated to the highest regression coefficients in the DL-based model.

Fig. 8. The 6 features associated to the highest regression coefficients in the NNMF-based
model.
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Abstract. Previous Experiments in the field of human behavior and game
theory has shown that loss aversion has a major effect on players’ decisions in
coordination problems. The overarching aim of our study was to model the
effect of loss aversion on individual player behavior in divergent interest tacit
coordination games. Based on a large-scale behavioral data we have designed a
model predicting the total number of points players allocate to themselves as a
result of increased penalty values in cases of non-coordination. Understanding
the effect of loss aversion in case of divergent interest coordination problems on
players’ behavior will allow us to better predict the human decision-making
process and as a result, create more realistic algorithms for human-machine
cooperation’s. Understanding the effect of loss aversion in the context of
divergent interest tacit coordination games may enable the construction of better
algorithms for human-machine interaction that could more accurately predict
human decision behavior under uncertainty.

Keywords: Tacit coordination games � Decision making � Divergent interest �
Loss aversion � Cognitive modeling

1 Introduction

The overarching aim of our study was to model the effect of loss aversion on individual
players’ behavior in divergent interest tacit coordination games. Divergent interest tacit
coordination games constitute a sub-group of tacit coordination games, in which an
agreed-upon solution might yield a different payoff for each player, while communi-
cation between the players is not allowed.

Previous research has demonstrated that loss aversion is a key factor in decision
making in the context of coordination games [1, 2]. Loss aversion is a psychological
phenomenon that describes the tendency of people to prefer avoiding possible losses to
acquiring equivalent gains (e.g. [3, 4]). Research on decision making in the context of
risk and uncertainty has shown that loss aversion is a key factor in deciding between
alternatives [5, 6].
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In this behavioral study, we have conducted a large-scale tacit coordination
experiment in order to model the players’ behavior under different penalty values
charged for non-coordination. We then sought the best fitting polynomial regression
model for the observed data in order to model the relationship between loss aversion
and the absolute individual payoff.

2 Materials and Methods

2.1 “Bargaining Table” Game

In order to explore the effect of loss aversion on strategic behavior of individual players
in the context of diverge interest tacit coordination games we have utilized the “Bar-
gaining Table” Task [7, 8]. The “Bargaining Table” tacit coordination game consists of
a 9 � 9 square board. Discs are scattered around the board, each assigned with a
numeric value. Alongside the discs, there are two squares with two different colors (see
Fig. 1). The blue square denotes player 1 and is located at board position (2, 5); The
orange square denotes player 2 and is located at board position (8, 5). The task of each
player is to assign each of the discs to one of the squares (either blue or orange). The
payoff for each player is the total sum of the numeric values of the discs that are
assigned to their own square. For example, in Fig. 1 the blue player attained a payoff of
[4 + 5] points, while the orange player attained a payoff of [1] point.

The “Bargaining Table” poses a tacit coordination task since the two players must
assign each of the discs to one of the squares tacitly, without knowing what assign-
ments were performed by the other player. In this setting, the value of each disc is
given as payoff only if both players assign it to the same specific player (blue or orange
square). If a given disc was assigned differently by the players (i.e. each player

Fig. 1. “Bargaining Table” board game (Color figure online)
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assigned the disc to a different square), both players received a penalty computed on the
basis of disc value. The “Bargaining Table” game is a divergent interest version of the
“Assign Circles” (e.g. [9–13]) pure tacit coordination games. Previous studies con-
ducted on the latter [9–11, 13] have shown that the most prominent strategy players
utilize to select a focal point is the rule of closeness. By implementing the rule of
closeness the player assigns each disc to the closest available square.

There was a penalty for non-coordination. This penalty value was randomized by
the computer at the beginning of the session and remained constant for all ten games.
The value of the penalty ranged from 0.1 to 0.9 with a resolution of 0.1 for each
step. The penalty value was randomized using a uniform distribution (i.e. with a
probability of 1/9 per each penalty option). The penalty values (e.g. 80%) appeared at
the start of each game on the opening slide as well as during game progression in each
slide’s header (Fig. 1).

The varying penalty values for non-coordination enabled the modeling of the
players’ behavior in different levels of loss aversion.

Specifically, we have examined the effect of loss aversion on the tradeoff between
selecting a prominent focal point solution and a more self-maximizing one, while
taking into account the penalty value which in turn affects the amount of potential gains
and losses.

2.2 “Bargaining Tables” Game Boards Design

To examine players’ loss aversion behavior across different scenarios associated with
different penalty values we have created a set of ten game boards (see Fig. 2), each
presented to all of the players. To avoid a situation where a player might be system-
atically biased by a specific strategic position, we have designed a balanced set of
games. Specifically, each player played the following games: four games in which they
were defined as the dominant player (the dominant player is expected to gain over 50%
of the total game points should a focal point is chosen); four games in which the player
was defined as the weak player (the weak player is expected to gain less than 50% of
the total game points should a focal point solution is chosen); and two games were
considered to be ‘equal division’ games, i.e. in these games the focal point solution
entailed an equal division of the points between the players. In addition, if the player
chose a focal point solution by implementing the closeness rule in all ten games, each
of the two players received an equal payoff of 52 points. Importantly, in all of the ten
games each player was always assigned the role of the ‘blue’ player so that all the
participants will be assigned the same strategic positions across the different games
(either weak, dominant or ‘equal payoff’).

Looking at Fig. 2 it can be observed that from the perspective of the ‘blue’ player,
the dominant-position games are [3, 5, 7, and 9],the weak-position games are [2, 4, 6,
and 8] whereas the equal division games are [1, and 2].
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2.3 Experimental Design

The experiment involved 70 university students that were enrolled in one of the courses
on campus (34 females; mean age = *23.5, SD = 2.74). The study was approved by
the IRB committee of Ariel University. All participants provided written informed
consent for the experiment.

Fig. 2. Diagrams presenting “Bargaining Table” games (1–10). Note the strategic position of the
‘blue’ player in each of the games with no equal division. (Color figure online)
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The study comprised the following stages. First, participants received an expla-
nation regarding the overarching aim of the study and were given instructions regarding
the experimental procedure and the interface of the study application. Participants were
offered a reward incentive according to their level of coordination with their unknown
counterpart that was chosen at random from the entire pool of participants. Next, each
participant performed the ten games that were included in the “Bargaining Table”
application. Finally, the output file comprising the logs was uploaded onto a shared
location for offline analysis. The games were presented for each of the players in a
random sequence to eliminate order effects bias.

3 Results and Discussion

3.1 Characterizing the Distribution of the Total Amount of Points

The main measure of our study was the total number of points gained by each player
before deducting the amount of penalty from the total payoff. This measure was cal-
culated by summing up the values of the discs, which each player has allocated to him-
or herself, across the ten games.

Figure 3 displays the payoff distribution and Table 1 presents five percentile val-
ues. The average payoff was 58.45 with a standard deviation of 10.9 points.

Fig. 3. Probability density function - total numer of points

Table 1. Main percentiles values - total number of points distribution

Percentile 5-th 25-th 50-th 75-th 95-th

Number of points 47 53 58 61 78
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For example, between the 5th percentile player and the 75th percentile player there
is a 14 points gap, which is a 30% increase in the number of points. We have examined
whether this variability in player’s behavior might be linked to the amount of penalty
charged for trials with no coordination.

3.2 Modeling the Effect of Loss Aversion on Players Behavior

To identify the effect of loss-aversion on players’ behavior, we grouped the players by
the amount of penalty charged for non-coordination and averaged the cumulative
individual payoff by the number of players in each of the groups (see Table 2). To
account for the variability in the different group sizes, in Table 2 the standard error of
the mean (SEM) is displayed instead of the standard deviation for each of the groups.

Table 2 demonstrates a negative relationship between the amount of penalty
charged for non-coordination and the average group payoff: the higher the penalty for
non-coordination, the lower is the average group payoff. The data was modeled using
linear regression with a polynomial model. Several polynomials models have been used
ranging from first-order polynomials to 7th-order polynomials.

The model selection criteria were based on two parameters, R-squared (e.g. [14–
16], an F-statistic (e.g. [17, 18]). The optimal value of the polynomial degree was
determined by using the elbow method (e.g. [19–21]) which is often used in clustering

Table 2. Statistics - number of points as a function of loss-aversion

Non coordination penalty 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mean number of points 61.11 61.85 60 60.5 59.42 59.3 55.87 52.66 49.37
Standard error 2.27 1.94 7.63 1.19 4.34 1.96 2.37 0.33 1.90
Sample size (n) 9 14 7 4 7 10 8 3 8

Fig. 4. Model selection process using R-squared and F-statistic
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problems. Figure 4 displays the R-squared and F-statistic values, respectively, as a
function of polynomial degree.

It is evident from Fig. 4 that according to the elbow method the second-order
polynomial modeling is the optimal choice to be used among the other tested degrees.
As can be seen, higher degrees than 2 resulted in a negligible increase in the R-squared,
and in addition the F-statistic has a local maximum at that point. Nevertheless, we have
also tested the third-order polynomial model, which displays similar values for the F-
statistic and the R-squared (Fig. 4). The two models of the second and third degree
turned out to be statistically significant (p < 0.01). Figure 5 shows the two models
fitted on the same data set together with the standard error bars corresponding to each
of the groups associated with a specific amount of penalty (Table 2).

These models clearly demonstrate that a significant relationship exists between loss
aversion (manipulated by the penalty value) and the individual absolute payoff. In
addition, the use of polynomial models has demonstrated that the relationship between
loss aversion and the amount of penalty can be optimally described by using a
quadratic model.

4 Conclusions and Future Work

A quadratic relationship (see Fig. 5) exists between the penalty value and the payoff
that players have accumulated in the divergent interest tacit coordination game. This
relationship demonstrates that the higher the payoff, the fewer points the player has
gained. This result is in accordance with previous research showing that people tend to

Fig. 5. Total number of points as a function of non-coordination penalty
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sacrifice gains in order to avoid losses [22] and resembles the section of the “S-shaped”
function which is concave for gains [23].

Our findings open new avenues of research as follows. Future studies should
examine the impact of personality traits such as the social value orientation (SVO) of
the player on penalty value perception, as the SVO has been shown to affect strategic
decision making ([9, 12, 24, 25]). Thus, it is worthwhile examining, for example,
whether a player with an individualistic orientation (who aims at maximizing their own
profits), would behave differently from a cooperative player (who aims at maximize the
profits of both players). Additionally, it will be interesting to explore the electro-
physiological correlates of loss aversion in the context of divergent interest games as a
function of different penalty values charged for non-coordination. Another interesting
extension of the current study would be to model the effect of loss aversion in the
context of common-interest tacit coordination games, in which the players’ profits are
evenly divided (e.g. [10, 13]). Finally, understanding the effect of loss aversion in the
context of divergent interest tacit coordination games may enable the construction of
better algorithms for human-machine interaction that could more accurately predict
human decision behavior under uncertainty.
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Abstract. This research provides evidence highlighting that through
the use of a gamma 40Hz entrainment frequency, mood, memory and
cognition can be improved with respect to a 10 participant cohort. Partic-
ipants constituted towards three binaural entrainment frequency groups;
the 40 Hz, 25 Hz and 100Hz respectively. Additionally, we asked par-
ticipants to attend entrainment frequency sessions twice a week for a
duration of four weeks. Sessions involved the assessment of a partici-
pants cognitive abilities, mood as well as memory; where the cognitive
and memory assessments occurred before and after a 5 min binaural beat
stimulation. The mood assessment scores were collected from sessions 1,
4 and 8 respectively. Within the gamma 40 Hz entrainment frequency
group, we observed a weak statistical significance (alpha = 0.10, p =
0.076) mean improvement in cognitive scores; elevating from 75% aver-
age to 85% average upon conclusion of the experimentation. Addition-
ally, we observed memory score improvements at a greater significance
(alpha = 0.05, p = 0.0027); elevating from an average of 87% to 95%.
Moreover, we observed a similar trend across the average of all of the fre-
quency groups for the mood results. Finally, correlation analysis revealed
a stronger correlation value (0.9838) within the 40 Hz group between ses-
sions as well as mood score compared across the entire frequency group
cohort.

Keywords: Gamma frequency · Brain entrainment · 40Hz · Cognition
improvements · Memory improvements · Mood improvements

1 Introduction

It is suggested that theta as well as gamma oscillations contribute to episodic
memory regulation [26]. As a result, interest in binaural beat entrainment has
been noted within the recent decades. Moreover, an additional study notes that
binaural beat entrainment has been able to demonstrate the regulation of psy-
chomotor skills as well as mood [16]. Binaural beat entrainment works by utilising
two distinct and coherent tones running at different frequencies to an individ-
ual. This results in a phenomenon, where an additional phantom frequency is
c© Springer Nature Switzerland AG 2020
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40 Hz

80 Hz
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Playback of
Generated Tone
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Fig. 1. Example of binaural beat entrainment at 40 Hz

interpreted by the cerebral cortex. The third frequency can be observed as the
difference between the two coherent tones; hence, a left ear stimulation of 40 Hz
and a right ear stimulation of 80 Hz would propagate the entrainment of a 40 Hz
oscillation in the form of a binaural beat [1,28]. The concept of the experimen-
tation is shown in Fig. 1.

Literature has examined the use of binaural beat entrainment in relation
to human creativity [29]. A study reveals that creativity is highly dependent
on the neurotransmitter dopamine; specifically the interactions between stri-
atal and frontal dopaminergic neuronal pathways [34]. Meta analyses reveal that
striatal D2 and D3 receptor density is, on average, 10–20% higher in those with
Schizophrenia; it is also noted that, this is independent of the anti-psychotic
drug implications [13,17,35]. Additionally, observations highlight that those with
Schizophrenia demonstrate an exaggerated creative ability in comparison to
those without Schizophrenia [25].

The ways in which the brain perceives as well as processes binaural beats is
still not fully understood. It is noted that evidence does suggest that the inferior
colliculus and the reticular activation system aid in this perception [15,20,33].
Moreover, EEG analysis has demonstrated detection of neuronal phase locking
upon exposure to binaural beat entrainment; where the observed neuronal action
potentials are in synchronisation with stimulus frequency [6]. This may then
allow the identification of particular oscillations that contribute to a particular
cognitive function; especially with regards to memory [14].

A more recent meta-analysis has measured the efficacy of binaural beats in
relation to anxiety, cognition as well as pain perception [7]. The analysis con-
sidered multiple factors, including the number of exposures, the frequency of
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exposure as well as the duration. It was highlighted that the effectiveness of
a binaural beat cannot be masked out either by utilising pink or white noise.
Moreover, the findings suggest that the exposure of a binaural beat before a
task vs before and during a task may implicate lower binaural beat entrainment
effectiveness. Additionally, the meta-analysis also highlights that a longer expo-
sure to a binaural beat often results in an increased effect; with this said, it is
advisable to increase the duration of time an individual is exposed to a binaural
beat when carrying out an experiment. Moreover, a further study has analysed
emotion and working memory in pertinence to a gamma 40 Hz binaural beat
stimulation [12]. The study notes that binaural beat stimulation for an average
of 20 min can enhance memory function within a recall task. Beta and gamma
oscillations were induced by a gamma 40 Hz binaural beat and as a result, mood
improvements were observed. Criticism highlights that the measurements per-
formed only occurred once throughout the two experiments, and therefore did
not consider long term results. Moreover, it still remains unclear what the ben-
efits, if any, of psychoacoustic stimulation through the means of 40 Hz binaural
beat entrainment provides.

2 Methods and Experiments

2.1 Entrainment Frequency Generation

To provide the full range of the gamma frequency band, an internal software
was developed to not only generate, but also customise the frequencies being
delivered on separate channels. To prevent any loss of data, frequencies were
generated in a lossless format such as .wav. The idea was to utilise a stereo
headset to deliver independent frequencies to each ear. Additionally, the internal
software allowed the tracking of each participant over the course of the 4 weeks,
including the ability to log each session and its constituent results; moreover
allowing an analysis at a later date.

2.2 Participants

Participants were constituent of individuals who were in a position to lend their
time for a duration of 4 weeks in which the experimentation would take place.
The volunteers were gathered independent of race, gender, or background. Indi-
viduals had no underlying health conditions; particularly any involving the audi-
tory system. Additionally, participants were 18 years or older in age and were
gathered through the means social media advertisement. This allowed individuals
to request the joining of the commencing study. The experimentation phase was
comprised of 10 participants and as a result, three separate frequency groups;
groups of 3, 3 as well as 4; 25 Hz, 100Hz and 40 Hz respectively. The final individ-
ual was included within the 40 Hz cohort due to the interest in the entrainment at
the 40 Hz frequency band. Privacy was protected through the adherence to con-
fidentiality guidelines; participants were additionally allocated unique identifiers
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to prevent the usage of any personal information. Moreover, there were require-
ments of consent form signing to allow data acquisition, processing and further
analysis before the study was to commence. Participants were gathered through
the permission of the Non-Invasive Human Ethics Committee and the protection
of participant data was regulated by the BCS Code of Conduct guidelines. To
further elaborate, the data collected was only stored for duration of the experi-
mentation phase of the research; participant data collected was also stored in a
physical document format. Once processed, these documents were then perma-
nently destroyed via shredding. Moreover, stored data through the participant
tracking application contained no personal information. A SmarterASP.NET
server was temporarily leveraged to store information regarding the experiment;
additionally utilising firewalls, anti-virus protection and following SSAE 18 SOC
2 Type 2 Compliance. Withdrawal of participants as well as all constituent data
was able occur at any point during the experimentation phase; given that the
participant formally requested to do so. Participants were not required to per-
form any particular activities between sessions and instead it was requested that
they carry on with their daily routines regardless of the undergoing research.

2.3 Experiment

The experimental phase of the research ran from the 12th of February 2020 up
until a concluding session occurring on the 8th of March 2020. Participants would
attend scheduled sessions between 10am and 10pm every Wednesday as well as
Sunday. Upon participant arrival, they were asked to complete an initial cognitive
test within a timed routine. The timing of all tests were performed via a stop-
watch. Additionally, once a participant had completed their task, a one second
time unit was removed from their finishing time. This was to minimise human
error implicated by halting and resetting the stopwatch. A custom model was
utilised in order to evaluate cognition; aiming to assess participant using eight
distinct questions; each emphasising an ability to problem solve. This would
involve questions where participants would have to find the next value within
a set of numbers. Additionally, mathematical problems that aimed to assess a
participants understanding mathematical operator precedence. Upon completing
the first cognitive test for that particular session, a completion time was recorded
and the stopwatch was reset. The participant would then be requested to return
the paper; where a memory test would commence. A custom memory evalua-
tion, would be performed and emphasised memory recall abilities. Additionally,
it is noted that the participants would never see these evaluations beforehand.
Participants would be asked to remember a sentence, a word and to solve a
mathematical problem; without aid or the ability to solve the problem. Perfor-
mances were scored from 1 to 5; where 1 would mean no questions were answered
correctly, and 5 would mean all were answered correctly. Completing the task
would result in the exposure to the corresponding binaural beat for the partic-
ipants group. This would be delivered through a Sennheiser HD 400S headset
with a frequency response 18–20,000 Hz (−10 dB), sound pressure level (SPL)
120 dB (1 kHz/1 Vrms), total harmonic distortion (THD) <0.5% (1 kHz/100 dB)
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with an acoustics closed sensitivity of 120 dB SPL @ 1 kHz, 1 V RMS (power).
Given the recommendation from scientific literature, noting that a longer expo-
sure to a binaural beat can contribute to a higher probability of positive results
[7], participants were exposed to the corresponding binaural beat entrainment
for 5 min. No distractions were to implicate the entrainment, this included the
usage of mobile devices as well as exposure to any external noise sources. Upon
listening to the binaural beat, participants would be asked to repeat an addi-
tional cognitive test for that session; again, under timed conditions. Moreover,
the same was true for a new memory test; performed in regards to the method
already outlined. Finally, sessions would conclude upon completion of the final
two cognitive and mood tasks.

Additionally, once every 2 weeks, a mood assessment would occur before
listening to the binaural beat. The mood evaluation was comprised of an already
established Mood and Feelings Questionnaire (MFQ) [11,18]. These evaluations
took place from the initial session, at the halfway point and at the end session;
sessions 1, 4 and 8 respectively. With regards to mood scores, a lower score
generally infers an improvement in mood for that particular individual.

2.4 Data Processing

Data collected was converted in a percentage, with the intention of allowing for
a more accurate comparison between the entrainment frequency groups. Addi-
tionally, MFQ scores remained in integer format due to a lower score correlating
with a lower mood and the converse being true for higher scores; this would
infer that further processing would be required for accurate comparisons to be
established. Upon the completion of result marking, the data was inputted into a
Microsoft Excel work booklet. The data columns went as followed: session num-
ber, participant unique identifier, cognitive score before, cognitive before time,
memory before score, cognitive after score, cognitive after time, memory score
after and finally the MFQ score if applicable to the session. Finally, all of the
inputted data were statistically analysed using Microsoft Excels statistical anal-
ysis tools. All Cognitive, memory and mood scores were calculated as means over
the duration of the 4 week experimentation phase. Additionally, cognitive and
memory scores were statistically analysed utilising homoscedastic T-Tests. Prod-
uct Moment Correlation Coefficient (PMCC) provided the mood score analysis
and aimed to show how strongly mood score changes correlated with exposure
to binaural beat entrainment over the duration of experimentation.

3 Results and Discussion

3.1 Cognition

The intention of the cognitive assessment was to establish whether any significant
changes would be observed with regards to the experimental condition (pre and
post) for the duration of the experimentation phase. All values were given as
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Fig. 2. Above, the cognitive task contextualises each frequency cohort (25 Hz, 40 Hz
and 100Hz) in relation to their respective cognitive scores (y-axis) with respect to
the experimental condition both pre and post exposure to a 5 min long binaural beat.
Below, the memory task contextualises each frequency cohort (25 Hz, 40 Hz and 100 Hz)
in relation to their respective memory scores (y-axis) with respect to the same exper-
imental condition. Additionally, both cognitive scores and memory scores are given
in percentages for ease of comparison. Bar graphs are constituent of the means for
the duration of the 8 sessions over the course of the 4 weeks; error bars are given as
mean ± SEM. Moreover, cognitive and memory scores were statistically analysed using
homoscedastic T-Tests.

means ± SEM from week one until week four; due to literature suggesting that
an increased duration of exposure would potentially correlate with improved
entrainment results [7].

Overall, no significant changes in cognition were observed within the fre-
quency groups 25 Hz and 100 Hz; shown in Fig. 2. Interestingly, statistical analy-
sis using a homoscedastic T-Test revealed a weak significance (p = 0.076188387,
alpha = 0.10) between the mean before and after cognitive scores within the
40 Hz frequency band group; elevating from 75% to 85%. Additionally, it could
be criticised that the results were constituent of a small sample size and therefore
any uncertainties could be eliminated through increasing the size of the sample
population. Further criticism also highlights that the gamma 40 Hz group had a
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lower baseline score than the 25 Hz and 100 Hz groups. This raises further ques-
tions as to whether the effects of such psychoacoustic stimulation only exists
when baseline scores are lower. Additionally, this could equally be argued for
the 25 Hz and 100 Hz group; where if their constituent scores were lower, the
scores may have also increased similarly to the 40 Hz cohort. Moreover, these
results seem to be consistent with the underlying roles of the gamma frequency
band; where the frequency band has been attributed to higher functions per-
sisting throughout regions of the brain [2]. However, it still remains unclear
what exact underlying mechanisms may be leading to the results observed in
the gamma 40 Hz frequency group; and as a result further investigation may be
necessary.

3.2 Memory

The intention of this assessment was to established, as well as acknowledge,
whether exposure to any of the three frequency groups would result in perfor-
mance changes with regards to memory. For both the 25 Hz and 100 Hz fre-
quency groups, observations of overlapping SEM were noted, p values were also
0.1616 and 0.855131824 respectively. Furthermore, this leads to an observation
that these results were insignificant. With the 100 Hz group in particular, this
is contradictory to existing literature that notes the gamma 100 Hz entrainment
frequency improves memory to a statistically significant degree [1]. Moreover, it
may be that such results can be attributed to a smaller sample size when com-
pared to the entire participant contribution towards the overall gamma 100 Hz
frequency mean; which may explain the higher p value observed.

The 40 Hz frequency cohort demonstrated a statistically significant increase
from pre to post scores over the duration of the experimentation (alpha = 0.05,
p = 0.0027). Additionally, this is in line with existing evidence provided by a
2015 meta-analysis [4] as well as other literature on the topic of entrainment and
memory improvements associated with both the gamma and theta frequencies
[26]. It is therefore noted that the results observed add to the ever-growing
research demonstrating memory improvements through exposure to binaural
beat entrainment.

3.3 Mood

With regards to the mood portion of the experimentation, the general trend
across all cohorts was a strong negative correlation between the MFQ score
and the experimental condition (sessions); where a lower MFQ score indicated
an improvement in overall mood. This, when regarded with literature suggest-
ing gamma frequency band attributes to mood improvements during entrain-
ment [4], would highlight that the results observed are indeed consistent. Inter-
estingly, referring to Fig. 3, the data suggests that the coefficient observed
within the gamma 40 Hz group (R-squared = 0.9838) is stronger than the one
observed in the gamma 100 Hz (R-squared = 0.8369) as well as the gamma 25 Hz
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Fig. 3. The first three graphs depict the MFQ score (y-axis) changes over the sessions
(x-axis) where mood questionnaires took place. In this instance, sessions 1, 2, 3 refer
to the study sessions 1, 4 and 8 respectively; where sampling occurred every two weeks
during the 4 weeks, including the start and end points of the study. Additionally, the
final graph contextualises the correlation coefficient in pertinence to each frequency
group; where the correlation efficient value is depicted by the y-axis and the frequency
group is depicted by the x-axis.

(R-squared = 0.8322). This is consistent with the suggested evidence attribut-
ing improvements in mood with respect to the gamma 40 Hz entrainment fre-
quency in particular [4,12]. This also highlights a potential that the gamma
40 Hz entrainment frequency has a greater implication on overall mood when
compared to the other frequency bands. Similarly, when the initial and final
mean results are compared within the MFQ graphs that constitute to Fig. 3,
there is observed overlapping between the SEM values within the gamma 100 Hz
group. With this said, it could be inferred that the gamma 100 Hz cohort mood
improvements observed are likely to be statistically insignificant; even more so
when considering the small sample size.

3.4 Potential Application to Chronic Traumatic Encephalopathy

Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative disease which
has been attributed to prolonged exposure of head injuries. It has therefore
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become highly regarded within the scientific consensus. This is especially true
when considering a case study of a retired National Football League player [27].
CTE was first noted in 1928 by Harrison Martland. He described, what in the
early 1920’s was regarded as a condition known as punch drunk syndrome; a dis-
ease that was implicated by numerous repetitive head injuries (RHI’s) in those
that boxed [19]. The term dementia pugilistica was then eventually attributed
to these neuropathological changes [23]. The name of Progressive Traumatic
Encephalopathy and later, CTE were preferred when activities other than box-
ing were attributed to the neuropathological changes consistent with the disease
pathology [5]. Moreover, it is noted that the diagnosis of CTE in-vivo within
a living individual cannot be achieved. Furthermore, making the neuropatho-
logical symptoms difficult to diagnose and distinguish between other existing
neurodegenerative disease [21].

CTE symptoms are present in a variety of ways such as executive dysfunction,
memory impairment, concentration difficulties, explosivity, depression, impulse
control problems as well as language impairments [3]. The same literature also
identifies the top differential diagnoses of CTE. This is constituent of dementia
with Lewy Bodies, Alzheimer’s Disease (AD), frontotemporal dementia, corti-
cobasal degeneration as well as vascular dementia. This highlights how often
CTE symptoms may be mistaken for other neurodegenerative diseases; which in
turn, may highlight the difficulty of conducting epidemiological studies. More-
over, it has been further identified that the prodromal stage of CTE may not
begin with any particular symptom. As a result, two varieties of CTE have been
noted; one which implicates a higher degree of mood changes, and the other
which implicates a higher degree of cognitive changes [31]. Of 36 subjects, 3
were asymptomatic at the time of death, 22 subjects presented mood as well as
behavioural issues that correlated with earlier RHI exposure, and 11 subjects
presented cognitive impairment which correlated with an older age of RHI expo-
sure. This may suggest that behavioural issues are more common in those with
early RHI exposure. A 2012 evaluation of 85 brains implicated by repetitive mild
traumatic brain injury was performed. With regards to the evaluation, RHI’s are
thought to be a contributing factor to CTE pathogenesis. This is thought to trig-
ger the development of progressive neuropathological changes characterised by
the widespread deposition of p-tau in the form of neurofibrillary tangles [22].
To elaborate, the widespread accumulation of p-tau in neurons and astrocytes is
what defines CTE. Additionally, p-tau aggregates throughout the cortical layers
2 and 3 allow CTE to be distinguished between AD and other neurodegenerative
diseases [8,9,32].

It is still misunderstood whether CTE exhibits any changes in wave power
within regions of the brain; this is mostly due to a low amount of research
regarding the topic. This is highly likely to be a result of the poor ability
to accurately diagnose living individuals with the disease. However, there is
some existing literature to suggest that deficits exist in pertinence to TBI’s; an
established precursor to CTE pathogenesis. A 2017 analysis noted deficits with
regards to overall brain wave power implicated by individuals with mTBI’s [24].
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The analysis was constituent of 40 athletes; comprised of 20 control individuals
as well as 20 concussed individuals. Moreover, all individuals were analysed using
an electroencephalogram (EEG). With regards to the results, evidence was pre-
sented that suggested that the concussed athletes demonstrated increased theta,
delta and alpha power. It was also noted that there was a lowered beta power.
Differences within the gamma frequency band were not noted. However, further
hidden frequency analysis revealed that from 1–40 Hz, major deficits at par-
ticular frequencies occurred. These hidden deficits were identified at the 1–2 Hz,
6–7 Hz, 8–10 Hz, 16–18 Hz, 24–29 Hz and finally the 34–36 Hz band. Interestingly,
this highlights that although deficits were not noted within full bands, hidden
deficits may still occur upon further analysis. This is then consistent with addi-
tional research on those with TBI’s; finding disturbances and delays within the
gamma 40 Hz range [30].

Given the symptoms of CTE and that TBI’s are a potential precursor to the
disease pathology, along with a lacking amount of research associated with this
disease in relation to entrainment. There may be a need to investigate the further
implications of particular frequencies in mice models and those with TBI’s; even
more so in pertinence to the gamma 40 Hz frequency entrainment.

4 Conclusion and Future Work

Given the limited amount of time for the research to be conducted, a much more
robust methodology would have been more favourable. Issues pertaining to the
use of a custom model for measuring cognition and memory were also noted.
Increasing the difficulty of the questionnaires during the course of the study
aimed to reduce the natural increase in performance due to the ability of an
individuals natural learning capabilities. Moreover, adjusting per questionnaire
is difficult due to the need to estimate the difficulty of one questionnaire to
another.

A mitigation to these issues could be achieved by using existing peer reviewed
as well as established cognitive, memory and mood models; a suggested example
would have been the Cambridge Neuropsychological Test Automated Battery
(CANTAB) [10]. An EEG (Electro-Encephalogram) analysis could have also
been performed in parallel with the assessment; which may have also verified
the expected responses from regions of the brain.

In addition to the highlighted limitations, a greater sample size would have
reduced the effects of various factors such as baseline scores observed in the 25 Hz
and 100 Hz cohorts. Additionally, this may highlight the need to perform similar
tests with those with naturally lower baseline scores such as those suffering from
Mild Cognitive Impairment (MCI) to observe if improvements may also be noted.

References

1. Beauchene, C., Abaid, N., Moran, R., Diana, R.A., Leonessa, A.: The effect of
binaural beats on visuospatial working memory and cortical connectivity. PLoS
ONE 11(11), e0166630 (2016)



60 R. Sharpe and M. Mahmud

2. Bosman, C.A., Lansink, C.S., Pennartz, C.M.: Functions of gamma-band synchro-
nization in cognition: from single circuits to functional diversity across cortical and
subcortical systems. Eur. J. Neurosci. 39(11), 1982–1999 (2014)

3. Budson, A.E., McKee, A.C., Cantu, R.C., Stern, R.A.: Chronic Traumatic
Encephalopathy: Proceedings of the Boston University Alzheimer’s Disease Center
Conference. Elsevier Health Sciences, Amsterdam (2017)

4. Chaieb, L., Wilpert, E.C., Reber, T.P., Fell, J.: Auditory beat stimulation and its
effects on cognition and mood states. Front. Psychiatry 6, 70 (2015)

5. Critchley, M.: Medical aspects of boxing, particularly from a neurological stand-
point. Br. Med. J. 1(5015), 357 (1957)

6. Gao, X., et al.: Analysis of EEG activity in response to binaural beats with different
frequencies. Int. J. Psychophysiol. 94(3), 399–406 (2014)

7. Garcia-Argibay, M., Santed, M.A., Reales, J.M.: Efficacy of binaural auditory beats
in cognition, anxiety, and pain perception: a meta-analysis. Psychol. Res. 83(2),
357–372 (2019). https://doi.org/10.1007/s00426-018-1066-8

8. Hof, P.R., Bouras, C., Buee, L., Delacourte, A., Perl, D., Morrison, J.: Differential
distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica
and alzheimer’s disease cases. Acta Neuropathologica 85(1), 23–30 (1992)

9. Hof, P., Knabe, R., Bovier, P., Bouras, C.: Neuropathological observations in a
case of autism presenting with self-injury behavior. Acta Neuropathologica 82(4),
321–326 (1991)

10. Fray, P.J., Robbins, T.W., Sahakian, B.J.: Neuorpsychiatyric applications of
CANTAB. Int. J. Geriatr. Psychiatry 11(4), 329–336 (1996)

11. Jeffreys, M., et al.: Factor structure of the parent-report mood and feelings ques-
tionnaire (MFQ) in an outpatient mental health sample. J. Abnorm. Child Psychol.
44(6), 1111–1120 (2016)

12. Jirakittayakorn, N., Wongsawat, Y.: Brain responses to 40-Hz binaural beat and
effects on emotion and memory. Int. J. Psychophysiol. 120, 96–107 (2017)

13. Kestler, L., Walker, E., Vega, E.: Dopamine receptors in the brains of schizophrenia
patients: a meta-analysis of the findings. Behav. Pharmacol. 12(5), 355–371 (2001)
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Abstract. Human speech function, as an incredible manifestation of
human intelligence, entails intricate spatiotemporal coordination of brain
networks transiently and accurately. Current investigation using neu-
roimaging and electrophysiological techniques laid the foundation of our
understanding regarding the brain activities in the spatial, temporal,
and spectral domains. However, a comprehensive view integrating these
three aspects yet to be achieved by not only adopting multi- modalities
of the data acquisition system but also employing algorithms to inte-
grate them into a systematic framework. Thus, this study conducted
a passive listening task using words and white noises as acoustic stim-
uli and utilized high-density electroencephalography (EEG) system with
effective connectivity analysis to reconstruct the brain network dynamics
with high temporal and spectral resolution. Besides, we introduced the
high-spatial-resolution functional magnetic resonance imaging- (fMRI-
) constraints into a representational similarity analysis to examine the
functional performance of spatially distributed networks over time. Our
results revealed that during speech perception, networks for auditory
and higher cognition functioned along the ventral stream via theta
and gamma oscillations and exhibited hierarchical responsive differences
between word and noise conditions. Speech motor programming networks
participated along the dorsal stream mainly in the beta band during a
later period of speech perception. Alpha band activity served as a medi-
ation for the dual pathway through oscillatory suppression. These func-
tional networks progressed parallelly for the completion of the complex
speech perception.

Keywords: Brain network dynamics · Temporal-spatial-spectral
analysis · Representational similarity analysis · Effective connectivity ·
Speech perception

1 Introduction

How brain networks develop, function, and support cognition is a large and
growing topic in many branches of neuroscience [1,2]. Current theories on brain
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organization suggest that cognitive functions such as language are organized
in widespread, segregated, and overlapping networks [3], and that oscillatory
synchronization over multiple frequency bands is likely the underlying neu-
ral mechanism for the interaction and integration of local and large-scale net-
works [4]. Though theoretically reasonable and physically plausible, to prac-
tically demonstrate these assumptions, we need to not only combine different
modalities of brain imaging and electrophysical techniques that emphasize spa-
tial and temporospectral aspects, respectively but also computational algorithms
to relate these different modalities of brain-activity measurements into a system-
atic framework [5,6]. This motivated the current study to reveal from a temporal-
spatial-spectral view for the illustration of the speech perception mechanism.

Our current understanding of the cortical distribution of speech functions
largely comes from a functional anatomy framework based on functional mag-
netic resonance imaging (fMRI) and positron emission tomography (PET) stud-
ies [7,8]. The representative dual-stream model [9] proposed that early stages of
speech processing occur bilaterally in auditory regions on the superior temporal
gyrus and sulcus (STG and STS), and then diverges into two broad streams:
where a ventral stream (over the superior and middle portions of the temporal
lobe) is involved in linking acoustic input to the conceptual-semantic represen-
tations via hierarchical processing (e.g. acoustic, phonetic and semantic), and a
dorsal stream (over the posterior planum temporal region and posterior frontal
lobe) is involved in translating acoustic speech signals into articulatory repre-
sentations. The involvement of the dorsal stream was also largely documented in
speech perception tasks [10,11], implying a critical role of articulatory simulation
in the facilitation of speech perception [12–14].

Meanwhile, speech as a quasi-rhythmic acoustic signal, though aperiodic,
involve complex spectrotemporal modulations at a millisecond time scale [15].
Such instantaneous activities require temporally precise interactions of neuron
populations, which is presumably via oscillatory synchronization [13]. Also, accu-
mulating acoustic, neurophysiological, and psycholinguistic analyses of speech
demonstrated that there exist organizational principles and perceptual units of
analysis at very different time scales [16]. Generally, slow modulations, typically
peaking in the theta range around 4–8 Hz, correspond roughly to the syllable
structure of speech. High modulations, typically in the gamma range around
30–50 Hz, correlate with attributes of the speech fine structure at the phonetic
scale [13]. Alpha rhythms (8–15 Hz) once associated with working memory and
speech comprehension [17], is now gaining attention in its role of top-down,
inhibitory control processes through selective suppression [18–20]. Beta (15–
30 Hz) activities in speech processing were mainly attributed to the articulatory
planning and execution with a power decrease in the (primary) motor areas, also
known as mu rhythms [21].

To integrate the accumulated knowledge as above mentioned and provide
a comprehensive view, this study was designed to combine EEG acquisition
and network analysis methods with fMRI functional network template for a
systematic spatial-spectral-temporal investigation. To be more specific, we uti-
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lized a high-density (128-channel) EEG equipment to capture the transient brain
oscillation of subjects when they are performing a passive word listening task.
Then, the scalp-recorded EEG signals went through: (i) preprocessing for noise
and artifact reduction; (ii) independent component analysis (ICA) and bound-
ary element modeling (BEM) for cortical source localization; (iii) multivariant
auto-regressive (MVAR) modeling for effective connectivity estimation between
cortical regions; (iv) fMRI-constraint representational analysis for network anal-
ysis of temporal significance; and (v) frequency decomposition for the detailed
revealing of the frequency-specific network properties.

2 Experiment and Methods

2.1 Experimental Paradigm

The experiment performed a speech perception task. The auditory stimuli
consist-ed of (i) 160 Chinese disyllable words (two-character words); (ii) 160
white noise, balanced with words in duration and loudness. The duration of
each auditory item lasted for 900 ms. The auditory task started with a fixation
on the screen for 400 ms, followed by the auditory stimuli pseudo-randomly pre-
sented with E-prime 2.0 soft-ware (PST, USA). After a 500-ms blank interval,
the subject was asked to make a button press between word and white noise
based on what he/she has heard in this trial. Then after a 1000-ms inter-trial
interval comes another trial (320 in total). During the whole process, EEG sig-
nals were recorded from the scalp of the subjects with a 128-channel Quik-Cap
(Neuroscan, USA) at a sampling rate of 1000 Hz. The elec-trode configuration
conformed to the extended 10–5 system [22], and the channel impedance was
maintained below 5 kΩ throughout the acquisition.

Twenty-two subjects (12 males, 10 females) with the mean age of 22.30 years
(SD = 1.14) participated in this experiment. They were all right-handed with
normal hearing and reported no history of neurological deficits. Ethical approval
for this experiment was obtained from the Local Research Ethics Committee.

2.2 EEG Preprocessing and Source Localization

To reduce the noises and artifacts, the scalp-recorded EEG data was firstly
preprocessed with EEGLAB toolbox [23], in which the raw EEG data were
band-passed filtered at the range of 1–50 Hz and down-sampled to 250 Hz. Non-
stationary high variance signals were removed with the artifact subspace recon-
struction (ASR) method [24]. Then, the continuous EEG data were segmented
into epochs of −1000–2000 ms around the stimuli onset. Next, we applied the
adaptive mixture independent component analysis algorithm (AMICA) to trans-
form the scalp-EEG data from a channel basis to a component basis [25] and
separated those maximally independent cortical sources from biological (eyes,
muscles and heart) artifacts and line noises. After that, equivalent current dipole
(ECD) models of the components were computed using the boundary element
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model (BEM) to find out the component cortical sources. Based on the source
locations, the components were further mapped to 76 cerebral cortical areas,
conforming with the standard fMRI template for later connectivity and repre-
sentational similarity analyses.

2.3 EEG Effective Connectivity Analysis

To estimate the effective connectivity between the component time-series. Effec-
tive connectivity methods represented by the granger causality (GC) were
implied. GC is based on the assumption that causes precede their effects in
time. If a signal can be predicted by the past information from a second sig-
nal better than the past information from its own signal then the second signal
can be considered causal to the first signal [26]. GC is a time-domain bivari-
ant approach, but has been applied to the frequency domain which enabled
the analysis of coupling between EEG frequency bands that have a well-known
biomedical significance. GC has also been generalized from bivariate to multi-
variate signals, as recently Partial Directed Coherence (PDC) method [27], which
is able to detect not only direct but also indirect pathways linking interacting
brain regions. In this study, we followed a routine from the source information
flow toolbox (SIFT), and adopted a linear vector adaptive multivariate auto-
regressive (AMVAR) model of order 10 to fit the multi-trial ensemble with a
500-ms sliding window and a step size of 25 ms, using the Vieira-Morf lattice
algorithm. The PDC was estimated from the AMVAR coefficients to quantify
time-varying connectivity for the brain network analysis. After these steps, a
group-level effective connectivity patterns were generated at each time point of
the speech perception process, forming a series of 76 * 76 matrices representing
the average interregional connectivity strengths.

2.4 FMRI-Constraint Network Dynamic Analysis

As one can imagine, at each time point of the continuous speech processing,
there are probably more than one network involved. In most cases, a number of
functional networks are interlaced and paralleled with each other. Facing such
a complex situation, disentangling each line of different functional processes is
needed for deciphering the language system. For this purpose, we introduced
fMRI-based templates into a representational similarity analysis [5]. Each fMRI
template corresponds to a network distribution for a specific function. By cal-
culating the similarity between the fMRI network distribution and each frame
of the previously constructed EEG-based connectivity by means of correlation
coefficient, we could estimate the activity strengths of that fMRI-defined func-
tional network that actually presented in our real-time EEG signal at that time
point. And with the point-by-point time series of such activity strengths, we
could also compare the temporal significance of a specific functional network
along the whole speech perception procedure. The graphical illustration for this
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algorithm is shown in Fig. 1. Five fMRI functional networks were tested, includ-
ing nonverbal sound processing, categorization, speech attention, word memory
retrieval and speech motor programming.

Fig. 1. Graphical illustration of the fMRI-constraint representational similarity anal-
ysis. The bottom left plot shows one functional network distribution on an fMRI tem-
plate and its matrix representation (76 * 76 ROIs). The similarity between the fMRI
functional network templates and the connectivity matrices of EEG network dynamics
were calculated as correlation coefficients frame-by-frame, ranging from 0 (low simi-
larity) to 1 (high similarity) as shown in the color bar at the bottom. (Color figure
online)

3 Results

3.1 Brain Network Dynamics

Figure 2 illustrated the temporal dynamics of the five functional networks during
the auditory stimuli range (0–900 ms) for both word and white noise (shortened
as noise) conditions. In the first panel for the “nonverbal sound processing”,
the fMRI network was distributed over the superior temporal gyrus (STG), the
primary auditory processing area, as well as the parietal lobe (PL), the sensory
integration area. From the color bar, it can be noticed that high similarity val-
ues (shown in red) appeared in both word and white noise conditions recurrently
after onset (0–100 ms, 400–700 ms, and 800–900 ms for the word condition), indi-
cating frequent and active involvement of primary auditory processing regard-
less of noise or speech. In the second “categorization” network, cortical areas of
the STG, the middle (MTG) and inferior temporal (ITG) gyrus as well as the
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PL showed lengthy involvement in two periods (0–400 ms, 600–900 ms) that are
basically consistent with the two-character ranges in the auditory stimuli for the
word condition. While in the noise condition, activation only occurred at the ini-
tial start (0–100 ms), which suggests that after categorizing the stimuli as white
noise, the “category” network stopped further response. Similar activation pat-
tern could also be found in the “speech attention” network, showing a response
bias towards different auditory conditions. In the frontal-parietal “word mem-
ory retrieval” network, the word condition stimulated frequent network response
for exploratory search (200, 400 and 700 ms), while the noise condition once
failed the initial screening (100 ms), has no longer access to the mental lexicon
in the following period. These results indicated that higher level speech cognitive
networks exclusively function for speech words but not for noises. The bottom
“speech motor programming” network showed temporal significance in the range
of 550–650 ms for the word condition and 600–750 ms for the white noise con-
dition, which demonstrated the recruitment of the motor system in perception
tasks. This makes sense considering that evolution facilitated the joint develop-
ment of the neural substrate underlying the speech perception-production circuit
so as to support each other, forming inseparable cell assemblies [13].

Fig. 2. Functional network dynamics. (a) fMRI network templates. (b) correlation coef-
ficients between the fMRI network templates and the EEG network sequences (high
value in red ranges indicates high similarity and thus high temporal significance, in con-
trast, blue ranges indicate low similarity and thus little activation during this period).
(Color figure online)
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3.2 Frequency-Specific Network Dynamics

Considering that the EEG contains oscillatory activity in distinct frequency
bands that are associated with different brain states, we further examined the
frequency-specific network activities in the theta (4–8 Hz), alpha (8–15 Hz), beta
(15–30 Hz) and gamma (30–45 Hz) bands. For each frequency band, the average
connectivity strength differences between word and noise conditions (word-noise)
were depicted in Fig. 3. As shown, network connections in the high gamma band
were mainly distributed in the temporal lobe along the ventral path, which is
conventionally correlated with the processing of the speech fine structure at
the phonetic scale [13,28]. Theta rhythms, closely correlates with the acoustic
envelope of naturalistic speech at the syllabic rate [28,29] was also found with
dominant network activity in the ventral path. This theta-gamma coupling is
also in line with its spatial function in the temporal lobe for the transformation
from phonetic to syllable and lexical perception. Beta band, in close relation
with sensorimotor behavior [30], appeared with stronger connectivity along the
dorsal stream. Alpha oscillation showed up with a wide connection along both
ventral and dorsal streams, consistent with its mediation function for pathway
direction and selective attention.

Fig. 3. Brain connectives in the Theta, Alpha, Beta, and Gamma bands.

Figure 4 unfolded the brain network dynamics onto a time-frequency grid.
Notice that functional network along the ventral stream showed up early in the
gamma the theta bands for the primary auditory processing. Alpha oscillation
also showed an early involvement for pathway direction. Over time, network
connection in the gamma and theta bands flowed from STG to MTG and ITG in
the posterior parts for higher cognition. Whereas dorsal connections in the beta
band appeared much later near the end of the auditory stimuli as articulatory
simulation for speech confirmation.
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Fig. 4. Temporal-spatial-spectral brain network dynamics.

4 Discussion

In this study, we constructed the brain network dynamics involved in speech per-
ception using EEG effective connectivity analysis, examined the performance of 5
functional networks by introducing the fMRI network templates in the represen-
tational similarity analysis, and investigated the network properties in different
frequency bands. Our results of the time-varying and frequency-specific func-
tional network dynamics revealed that brain networks were modulates not only
temporally, but also spectrally and spatially. In addition, our results detailed the
dual steam model with temporal dynamics and the dynamic differences between
noise- and word-elicited network activities. Most intriguing is the frequency char-
acteristics that differentiated between the ventral path that is mediated by the
gamma and theta oscillations, and the dorsal path that is modulated by the beta
oscillation. These two pathways, meanwhile, under the regulation of the alpha
suppression for selective attention and pathway direction.

5 Conclusion

This study explored the temporal-spatial-spectral brain network dynamics for
speech perception by applying dynamic network reconstruction methods on the
EEG signals and spatial similarity analysis method with fMRI network con-
straint in different frequency bands. The results extended the dual stream model
of speech processing with details of the temporal dynamics and frequency char-
acteristics for different functional networks. A functional hierarchy along the
ventral stream between words and white noise conditions was revealed in the
theta and gamma bands, and a perception-production circuit along the dorsal
stream was also found with neural substrate and oscillatory activity in the beta
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band. Pathway direction and selective attention is supposed to be mediated via
alpha suppression. Further investigation extending to other speech tasks such as
sentence processing and oral reading will be continued to push forward our sys-
tematic understanding of the speech functions as well as cognitive mechanisms
in general.
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Abstract. The estimation of functional connectivity from the observed
Blood Oxygen Level-Dependent (BOLD) signal may not be accurate
because it is an indirect measure of neuronal activity or the existing
deconvolution approaches assume that hemodynamic response function
(HRF), which modulates the neuronal activities, is uniform across the
brain regions or across the time course. We propose a novel approach
using empirical mode decomposition (EMD), to reduce the effect of
HRF from estimated neuronal activity signal (NAS) obtained after blind
deconvolution for a BOLD time course. The first two intrinsic mode
functions (IMFs), obtained during EMD of the neuronal activity signal
represent its highest oscillating modes and hence have characteristic of
impulses. The sum of the first two IMFs is computed as a refined repre-
sentation of neuronal activity signal to estimate resting state connectome
using the framework of dictionary learning. Usefulness of the proposed
method has been demonstrated using two resting state datasets (healthy
control and attention deficit hyperactivity disorder) taken from ‘1000
Functional Connectomes’. For quantitative analysis, Jaccard distances
are computed between spatial maps obtained using BOLD signals and
refined activity signals. Results show that maps obtained using NAS
are a subset of that obtained using BOLD signal and hence avoid false
acceptance of active voxels, which illustrates the importance of refined
NAS.

Keywords: Dictionary learning · EMD · fMRI · HRF · Neuronal
activity signal

1 Introduction

Functional connectivity (FC) using blood oxygen level-dependent (BOLD) signal
represents significant temporal correlation between physically distant regions of
the brain at rest [2]. It plays an instrumental role in predicting human behavior
and its alteration with a number of clinical cases including neuro-degenerative
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and psychiatric diseases [1,2]. The sparse behavior of BOLD signal over a dic-
tionary is exploited very well in the framework of dictionary learning (DL) to
effectively estimate the resting state networks (RSNs) [5,11,14]. However, DL
based approaches mostly use the BOLD signal, which is an indirect measure and
may not represent the neuronal information and contaminated by physiological
factors like-cardiac and respiratory cycles [2]. These issues can be addressed by
either suppressing the noise from observed BOLD signal or using the estimated
neuronal activity signal (NAS), which produces reliable FC [13,18]. Several
approaches have been reported in the literature to estimate NAS from the mea-
sured BOLD signal as a source separation problem [8,9,18]. These approaches
could be based on either parametric [3,8,9,18] or non-parametric [16,17] assump-
tion on HRF as well as HRF variability [8,18] or its uniformity across brain [13].
For example, Wu and colleagues [18] proposed a methodology to estimate NAS
from resting-state functional magnetic resonance imaging (rs-fMRI) with a para-
metric blind deconvolution approach by using spontaneous pseudo-events. Here,
the estimated neuronal information is still not completely separated from the
hemodynamic response function (HRF) because the assumption of the prede-
fined basis of HRF and its uniformity across time do not hold true in practice [7].

In this study, a novel approach based on empirical mode decomposition
(EMD) is proposed to minimize the effect of HRF from the NAS estimated using
the method described in [18]. We decompose the NAS obtained from [18] where
HRF with minimum noise variance over different lags, is estimated, followed by
its blind deconvolution. Here, the observation is exploited that neuronal activity
has the highly varying characteristic [8,18]. So, precise neuronal information can
be estimated from the high-frequency region of the spectrum of the NAS and
hence can be represented well using first few intrinsic mode functions (IMFs)
obtained while EMD of the NAS. It has been observed that the HRF, due to
slow in nature, is eliminated in sum of first two IMFs and hence used as refined
NAS for estimation of FC.

The efficacy of the estimated neuronal information, computed using the pro-
posed method, is evaluated in the framework of the DL to estimate RSNs. The
RSNs obtained using the proposed method are tested with two different rest-
ing state datasets taken from ‘1000 Functional Connectomes’ project - healthy
control and attention deficit hyperactivity disorder (ADHD) data. For a quan-
titative comparison, we computed Jaccard distances between functional connec-
tivity map obtained by using preprocessed BOLD and refined NAS. It shows that
maps obtained using NAS are a subset of that using BOLD signal. It should be
noted that fMRI analysis using EMD, in temporal and both spatial and tempo-
ral domain have been reported in [4,15] to study energy/period content of IMFs
and to compute voxel specific global signal respectively. Both the approaches
use the preprocessed BOLD signal and estimated information is not directly
associated with NAS. On the other hand, the proposed work performs the EMD
on deconvolved signal to remove further the effect of HRF so that the resultant
signal is reliable representation of neuronal information.
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The organization of the paper is as follows: Sect. 2 explains the proposed
pipeline, including estimation of neuronal information and DL based approach
for estimation of RSNs. Experimental results are explained in Sect. 3. The sum-
mary is provided in Sect. 4.

2 Proposed Approach

We have proposed an approach to minimize the remaining effect of HRF from
NAS, obtained using blind de-convolution [18] and use the refined NAS in the
framework of DL to estimate the RSNs. The reasons for using the refined neu-
ronal activity is that it encodes the transient behavior of the BOLD signal which
is less susceptible to noise and relates the underlying neuronal activity by reduc-
ing the effect of HRF present in NAS obtained using the blind deconvolution
method. Hence, we hypothesize that the estimation of functional connectivity
will be advantageous with the obtained activity signals compared to the raw
BOLD signals. The block diagram of the proposed method is shown in the Fig. 1.
Deconvolved signal is decomposed using EMD and the sum of the first two IMFs
representing the refined NAS is used to form a time-voxel matrix which is again
decomposed using DL to estimate the RSNs.

Blind deconvolution

Tim
e

EMD

IMF1

Dictionary Learning

Activation map

.
+

IMF2 [   ]
Fig. 1. Block diagram of the estimation of the RSNs using neuronal activity signal
obtained by the EMD

The BOLD signal denoted as m(t), assume to be resulted from the convolu-
tion of the neuronal activity signal with the HRF, can be written as

m(t) = s(t) ∗ h(t) + ε(t), (1)

where s(t) is the NAS, h(t) is the HRF and ε(t) is the noise. Here “∗” denotes
the convolution operator. The estimation ŝ(t) of the NAS (s(t)) is carried out
using Wiener filter based blind deconvolution approach as explained in [18], as

ŝ(t) = FT−1{ H∗(ω)M(ω)
|H(ω)|2 + |ε(ω)|2 } (2)

where H(ω), M(ω) and ε(ω) be the Fourier transforms of the h(t), m(t) and
ε(t) respectively and ′∗′ denotes the complex conjugate. h(t) is estimated by
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fitting general linear model (GLM) at optimal lag of onset where variance of
noise (V ar[ε(t)]) is minimum. However, the estimation of neuronal activity ŝ(t)
may not be fully deconvolved from HRF due to the following two reasons: 1)
HRF is assumed to be the canonical HRF, 2) It is assumed that the HRF is a
stationary signal for a time course. The remaining effect of HRF from ŝ(t) can
be reduced using EMD [10] of NAS. The EMD of NAS is as follows

ŝ(t) =
K∑

k=1

Ik(t) + r(t), (3)

where, ŝ(t) is the estimated NAS, Ik(t) is the kth IMF, r(t) is the residual signal
and K is the total number of IMF.

It has been observed that I1(t) and I2(t) contain more oscillations (high
frequency) of ŝ(t) in comparison to the other IMFs. Hence, the sum of the
first two IMFs, se(t) = I1(t) + I2(t) is considered as a good representation of
neuronal activities as it consists of higher oscillating modes leading to a slightly
wide band signal by capturing the transient behavior of the underlying neuronal
information. Figures 2 (e), (d), and (c) illustrate the first three IMFs computed
from NAS, ŝ(t) (Fig. 2 (b)) estimated from m(t) of a given active voxel taken
from the left lateral parietal cortex of default mode network (DMN). Figure 2 (f)
represents the refined NAS (se(t)). It can be observed that first two IMFs give
the high varying components of NAS and can be used as a refined representation
of neuronal information.

2.1 Estimation of RSN

Data driven based approaches, such as principle component analysis (PCA),
independent component analysis (ICA), DL have been demonstrated to provide
a good estimate of RSNs in rs-fMRI analysis. Moreover, among the data driven
based approaches, DL exploits the inherent sparse behavior of the BOLD time
course over an over-complete dictionary and here used in this work to demon-
strate the effectiveness of refined NAS for precise estimation of RSNs. In DL
based approaches [5,6,11,14], the multi-subject functional connectivity of dif-
ferent brain regions can be estimated by decomposing rs-fMRI data S ∈ R

nm×v

as
S ≈ DA with D ∈ R

nm×d and A ∈ R
d×v . (4)

The data matrix S (refined NAS) is formed by temporally concatenating n num-
ber of consecutive scans (refined NAS) obtained from m number of subjects each
with v number of voxels. Here, dictionary D is learned such that the rows ai of
the matrix A corresponds to RSN and d is the number of RSNs. This decompo-
sition can be performed by using the following objective function:

argminD,A‖ ai‖1 s.t. ‖S − DA‖2F < ε . (5)

Here l1 norm (‖ ‖1) induces the sparsity constraint on ai for effective convergence
of the rows onto distinct RSNs. ‖ ‖F represents the Frobenius norm. (S − DA)
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gives the error resulted due to decomposition of matrix S. Equation 5 is jointly
non-convex in (D, A) and hence becomes an NP-hard problem which can be
optimized using alternative iterations of Dictionary Update (DU) and Sparse
Coding (SC) steps. The initialization of dictionary atom (temporal) is done
by computing time series associated with an initial guess on activation maps
obtained from known networks [14].
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Fig. 2. Representative BOLD time course (voxel is taken from left lateral parietal cor-
tex, Buckner dataset, sub00294) and it’s EMD: (a) preprocessed BOLD time course,
(b) neuronal activity signal, (c) third intrinsic mode function (I3(t)), (d) second intrin-
sic mode function (I2(t)), (e) first intrinsic mode function (I1(t)) and (f) sum of I1(t)
and I2(t)

3 Experimental Results

To carry out the experiments, the datasets used are: 1. Cambridge Buckner
Dataset1(Part 1): contains resting-state scans from 48 healthy subjects
(21M/27F), age: 18–30 years. T1 - weighted images were collected using mprage
with # slices = 192, max size = 256 × 1.2 × 1.0 × 3.0 mm3. T2*-weighted

1 http://fcon 1000.projects.nitrc.orgfcpClassicFcpTable.html.
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Fig. 3. Normal control RSNs: sagittal, coronal and axial views of functional connec-
tivity (from top: CEN, LSMN, Aud, pDMN, DAN and mVis) obtained with DL using
conventionally preprocessed BOLD, NAS, IMF1, IMF2 and the sum of the first two
IMFs obtained by EMD from normal controlled rest data. All connectivity maps are
presented using the same scale

images acquired using EPI with the TR (repetition time) = 3 s, # slices = 47,
#scans =119, voxel resolution = 3 × 3 × 3 mm3. 2. ADHD Dataset2: Resting
state scans from 40 subjects with ADHD (35M/5F) are considered, age: 7–21
years. T2*-weighted images acquired using EPI with the TR = 2 s, # slices
= 47, #scans = 77–261, voxel resolution = ∼3 × 3 × 3 mm3 The datasets
were preprocessed using SPM123 software with MATLAB R2019a. The initial
3 scans of all the subjects were discarded. Reorientation with respect to MNI
space, realignment, slice time correction, co-registration (with the corresponding
anatomical space), segmentation, normalization and smoothing (with Gaussian
kernel, FWHM-6mm × 6mm × 6mm) of the data were done prior to analysis.
Equation 5 was used to obtain the different RSNs using five different representa-

2 http://fcon 1000.projects.nitrc.org/indi/adhd200/.
3 http://www.fil.ion.ucl.ac.uk/spm/.

http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 4. ADHD RSNs: sagittal, coronal and axial views of functional connectivity (from
top: CEN, LSMN, Aud, pDMN, DAN and mVis) obtained with DL using conventionally
preprocessed BOLD, NAS, IMF1, IMF2 and the sum of the first two IMFs obtained
by EMD from ADHD rest data. All connectivity maps are presented using the same
scale

tions of BOLD signals, namely: m(t), ŝ(t), I1(t), I2(t) and se(t). A model order
(d) of 30 was chosen empirically in our experiments to estimate the spatial acti-
vation maps. Here, FSLeyes4 was used to visualize the functional connectivity
maps.

Six exemplary RSNs (central executive network - CEN, lateral sensorimotor
network - LSMN, auditory network - Aud, posterior default mode network -
pDMN, dorsal attention network - DAN and medial visual network - mVis) of
healthy control data has been illustrated in Fig. 3. Again, out of the six presented
RSNs, LSMN, DMN, DAN and mVis network appear well in the connectivity
map for se(t). Other two networks are also showing their symmetrical localiza-
tion. The RSNs are shown for ADHD data where refined activity signal finds
CEN, pDMN, DAN, mVis well and others also get appeared (Fig. 4). In every

4 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
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case, in the estimation of RSNs, results demonstrate that the refined activity sig-
nal, obtained after EMD of NAS from blind deconvolution method [18], where
the neuronal information is not completely deconvolved as the assumption of
HRF (in terms of three basis) to be uniform across time course do not hold true
in practice, also capable of extracting FC well and hence underlying neuronal
activities show a similar pattern for a particular RSN. We can also notice that in
some cases, networks partially appear for individual IMF, but in the combina-
tion (I1(t) + I2(t)) it appears fully (e.g. ADHD, CEN). So, individual IMF may
fails to produce a network entirely, but the proposed combination (I1(t)+ I2(t))
can preserve all nodes of a RSN.

For quantitative comparison, we have measured the Jaccard distance [12]
between the activation maps obtained using preprocessed BOLD and refined
activity signal. Jaccard distance between two maps, is computed as

J(map1,map2) =
Number of common active voxels in both map

Total number of unique active voxels in both map
(6)

In case of healthy control, the distances are 0.70, 0.43, 0.47, 0.68, 0.70, 0.56 for
the given six networks (CEN, LSMN, Aud, pDMN, DAN, mVis) respectively.
While measuring the Jaccard distances, we have noticed that active voxels in
connectivity maps obtained using refined NAS are a subset of active voxels in
the connectivity map obtained by using preprocessed BOLD. Similarly, In the
case of ADHD data, the corresponding Jaccard distances are 0.48, 0.80, 0.64,
0.40, 0.62, 0.45. In this case, we have also observed the same trend that active
voxels obtained by employing the refined NAS is a subset of that of active voxels
obtained by employing the preprocessed BOLD signal except the LSMN map
where 3275 active voxels are common with the connectivity map (PreBOLD)
out of 4072 active voxels (refined NAS).

4 Summary

In this work, a novel method based on EMD is studied to further refine the
NAS, which is highly influenced by varying HRF (spatially and temporally), for
estimation of RSNs. The proposed method exploits that the neuronal activity has
high varying characteristic in comparison to HRF, and hence can be estimated
from the high-frequency region of the spectrum of the BOLD signal. The first two
IMFs after EMD of NAS, provides complimentary RSNs and hence are combined
together to provide a good estimate of the FC in the framework of DL. Moreover,
it has been observed that there are significant similarities and total 11 out of 12
connectivity maps (both healthy control and ADHD) produced by refined NAS,
are a subset of those produced by BOLD signal. So, the refined NAS can avoid
false acceptance of active voxels. In future, spatial (3D) IMFs of NAS, along
with temporal one, can be explored in extracting the neuronal activity for the
estimation of the RSNs with different pathological conditions.
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Abstract. One of the major causes of death in developing nations is
the Alzheimer’s Disease (AD). For the treatment of this illness, is crucial
to early diagnose mild cognitive impairment (MCI) and AD, with the
help of feature extraction from magnetic resonance images (MRI). This
paper proposes a 4-way classification of 3D MRI images using an ensem-
ble implementation of 3D Densely Connected Convolutional Networks
(3D DenseNets) models. The research makes use of dense connections
that improve the movement of data within the model, due to having
each layer linked with all the subsequent layers in a block. Afterwards, a
probability-based fusion method is employed to merge the probabilistic
output of each unique individual classifier model. Available through the
ADNI dataset, preprocessed 3D MR images from four subject groups
(i.e., AD, healthy control, early MCI, and late MCI) were acquired to
perform experiments. In the tests, the proposed approach yields better
results than other state-of-the-art methods dealing with 3D MR images.

Keywords: Convolutional neural network · Deep learning · Magnetic
resonance imaging · Machine learning · Neuroimaging

1 Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disease and the usual cause
of dementia in adult life. It is characterized by the deterioration of neurons,
affecting most of its functions, and producing the loss of immediate memory
[17]. One study has shown that the approximate number of individuals affected
by AD will duplicate in the next two decades, and by 2050, a diagnose of AD is
anticipated to approximately be produced every half minute, forecasting almost
one million new cases every year in the United States [3]. As a result of this, the
cost of treating and taking care of AD patients will be increasing, so it becomes
crucial to build computerized systems that can detect early AD accurately and
slow down its progress.
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Artificial intelligence, in particular, machine learning (ML) has gained
unprecedented attention during the last decade with applications such as
anomaly detection [7,27,28], assay detection [23], biological data mining [14,16],
disease diagnosis [2,18,19,29], education [25], financial prediction [20], natural
language processing [21], trust management [15] and urban services [9]. Several
of these ML methods (e.g., random forest [6], and auto-encoders [11]) have been
employed for this type of research recently. This difficult research can be solved
with Deep learning (DL) models that can be fed with 3D images and learn
features to perform better with enhance detection. Studies done recently have
shown that convolutional neural networks (CNNs) yield better results than the
traditional approaches in computerized prediction of AD from MR images [8].

This paper proposes a novel approach of probability-based fusion of several
CNN models to diagnose AD stages using brain 3D MRI scans. This model is
able to perform a 4-way classification between the healthy brains (CN), brains
with early MCI (EMCI), late MCI (LMCI) and diseased brains with AD (AD),
(CN vs. EMCI vs. LMCI vs. AD) on the ADNI dataset.

In the rest of this paper, Sect. 2 reviews the literature, Sect. 3 describes the
proposed method, Sect. 4 reports and discusses the results, and Sect. 5 concludes
the paper along with some possible future research directions.

2 Related Works

The automatic classification of AD is an issue that has been under research for
more than a decade. In recent years, there has been considerable progress in
the field with DL models achieving near-perfect accuracy scores [4], thanks to
the progress in the robust DL models, more specifically CNN-based models have
been widely used for medical diagnosis research.

When DL was started to be employed in medical imaging classification, Liu
et al. [12] used a stacked auto-encoder, to classify the early stage of AD. Apply-
ing 10-fold cross-validation to measure the model and achieved 47.42% accuracy
in classifying 4 classes. Their dataset was unbalanced which was a limitation for
the approach; thus classifying some groups was more complex than others for the
auto-encoder. Moreover, with the popularity of predesigned CNN architectures
that performed well on the ImageNet Large-Scale Visual Recognition Challenge,
researchers started to focus in the potential that transfer learning has for compu-
tational biology applications. Farooq et al. [8] proposed an approach using pre-
designed CNNs and 2D segments of MRIs. The approach implemented complex
CNN architectures from the ImageNet challenge, in this instance, two residual
networks (Resnet-18 and ResNet-152) and Google’s LeNet achieved astonish-
ing accuracy, 98.01%, 98.14% and 98.88% respectively in a 3-way classification.
Many of the reported AD classification methods were applied on 2D segments
of MRIs, which in nature are 3D, and these approaches usually need multiple
processes for feature extraction that help in future phases of training the model.
Korolev et al. [10] developed powerful and altered adaptations of the VGG and
Residual network architecture to work with 3D images. Additional research using
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3D CNNs was conducted by Tang et al. [22] consisting of 1 ternary and 3 binary
classification problems achieving 91.32% accuracy for the ternary classification,
88.43% for AD/MCI, 92.62% for MCI/NC and 96.81% for AD/NC. A differ-
ent method researched by Wang et al. [24] achieved extraordinary performance
in ternary classification with the application of an 3D ensemble approach. The
approach consisted of merging the more efficient DenseNet classifiers that were
trained individually and produced the probabilistic output through a softmax
layer; lastly, the final classification was obtained by feeding the previous proba-
bility scores to the probability-based fusion approach.

3 Proposed Method

The proposed approach employs distinct 3D DenseNets that vary in their hyper-
parameters and are fed with MR images that pass through the network and the
networks classification probability goes to a probability-based fusion approach
to make the last classification. Traditional network models comprises l layers,
taking zl as the output of the lth layer, and every layer implements a non-linear
transformation Hl(.), where l indexes the layer. To impede vanishing gradient
and improve the information flow during the network training, the DenseNet
employs the connections from a layer to all the following layers. In the approach

Fig. 1. Top: Architecture of a dense unit. Bottom: Composition of dense connectivity
in a 6-layer dense block.
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implemented for this study, the idea of dense connectivity is expanded to the 3D
volumetric image classification task. Specifically, l is defined as:

zl = Hl([z0, z1, z2, ..., zl−1])

where z0, z1, ..., zl−1 are 3D feature volumes produced in previous layers, [...]
refers to the concatenation function. The structure of a dense unit is shown in
Fig. 1 (top). The function Hl(.) has three main actions: a batch normalisation
(BN) layer to decrease internal covariate transform, spatial convolution with k
3 × 3 × 3 convolution kernels to produce 3D feature volumes, and to accelerate
the training phase a rectified linear unit (ReLU). Figure 1 (bottom) shows a
dense unit, that comprises one layer in a dense block, and each layer in the
block connected with all the following layers. With dense connections between
layers, feature utilisation is more efficient, and feature growth for each layer is
lower than that of traditional CNNs. Thus, the models are compact and have
less parameters than other networks.

In previous research it was shown that the hyper-parameters of the 3D
DenseNet affects the performance [24]. Multiple tests were conducted with
diverse hyper-parameter sets to produce individual networks with unique com-
positions, and that were able to extract different features. One sensible hyper-
parameter demonstrated to enhance the outputs of the network was the growth
rate. If each function Hl generates g volume-features, it means that the lth layer
has g0 + g× (l− 1) input volume-features, where g0 is the number of channels in
the input layer. The 3D DenseNet can have compact layers, e.g., g = 12, where g
is the growth rate of the network. Every layer appends g feature-maps of its own
to the state given that every layer has access to all the previous volume-features
in its block.

Probability
based
Fusion

CN

EMCI

LMCI

AD

3D DenseNet - 1

3D DenseNet - 2

3D DenseNet - 33D MRI Scans

3D Convolution

Dense Block ‘n’

Down Sample

Fully Connected Network6Layer 12 24 16

6 12 24 16

6 12 24 16

4-Way Classification of AD using Ensamble Approach

Fig. 2. Architecture of the proposed ensemble 3D DenseNet framework for 4-way AD
classification.
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The proposed method consists in the implementation of a probability-based
fusion ensemble approach [26], having the probabilistic outcome of the last clas-
sification layer from the varying individual networks are combined (see Fig. 2).
Compared to the usual majority voting method that uses as labels, the outcome
that appeared the most in the models, in this ensemble method, every model
is individually trained, thus the error margin among the different classifiers are
insignificant, making the results of the approach superior compared to one sin-
gle classifier. The error margin could rise for simple classifiers if the subject
classification is complicated and there’s incertitude among the distinct classes.
As an example, take three classifiers, the output probabilities of the classifier
layer for CN, EMCI, LMCI, and AD are: (1)0.8, 0.1, 0.1, 0.0 (2)0.4, 0.5, 0.0,
0.1 (3)0.3, 0.5, 0.1, 0.1, respectively. Making use of a majority voting approach,
the classification result is Early MCI. On the other hand, this is not the most
accurate answer, considering that the classification of the prediction model 1
is more certain in the prediction, while 2 and 3 had incertitude in theirs. The
probability-based fusion approach will take the sum of the probabilistic output
for each class of all the classifiers and then make a more certain prediction.
For this research, u individual models were picked, and the probabilities of 3D
DenseNetu assigned to classes on testing set were:

Ωu = (βu
1 , βu

2 , βu
3 , βu

4 )

where βu
n indicates the probabilities of the class n. Then Ωu is normalized by:

Ωk =
Y u

max[βu
1 , βu

2 , βu
3 , βu

4 ]

when outputs of the c-based 3D DenseNets have been calculated, the final pre-
diction label is determined by the probability-based fusion method as:

a = arg max(
c∏

u=1

βu
1 ,

c∏

u=1

βu
2 ,

c∏

u=1

βu
4 ,

c∏

u=1

βu
4 )

3.1 Experimentation

MRI Data. Structural brain MRI scans from the ADNI dataset (http://adni.
loni.usc.edu/) were used (n=600 images) in this study. Preprocessed MRI scans
(e.g., mask, intensity normalisation, reorientation, and spatial normalisation)
were downloaded in NIfTI file format from ADNI2 and ADNIGO. For all the
experiments the dataset was divided into 80% training and 20% validation, hence
the training set consisted of 480 brain scans. With the goal of having an optimal
dataset for the network, both the training and validation sets were balanced.

Parameter Selection. Multiple tests on the 3D DenseNet were carried out and
the network hyper-parameters were optimised to obtain best results on the 4-
way classification task. The following hyper-parameter settings were used during
the training:

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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Fig. 3. Comparison of different growth rates.

– Adam stochastic optimisation algorithm;
– Pytorch’s Cross-Entropy loss function;
– Learning rate = 0.0001;
– Batch size = 4;
– Dropout = 0.5;
– Epochs = 100.

Growth Rate Analysis. The number of new features incremented at each layer
is determined by the hyper-parameter g known as the growth rate of the model.
Figure 3 shows the considerable change in accuracy of the models depending of
the number assigned to g. When g = 28, the model achieved the best perfor-
mance; nonetheless, it can also be observed that with g = 12, the accuracy is
near the result best performance. Previous research [24] shown that 3D DenseNet
with low growth rate was incapable of learning crucial features for prediction and
consequently, did not achieve good performance.

DenseNet Network Depth Selection. Different network depth configura-
tions of DenseNet, specifically, the 121, 169 and 201 were compared for time and
accuracy while making the executing the 4-way classification task. As shown in
Fig. 4, DenseNet-121 was the most efficient network depth in both parameters,
and hence was chosen to be the base classifier for this task.

3.2 Selecting Optimal Number of Models

The combination of different individual classifiers can reduce the error margin.
Principally due to the probability-based fusion approach being able to combine
the probabilistic output of different classifier models and produce a more certain
decision based on more robust and reliable data, instead of producing predictions
based on only one classifier or having a majority voting method (see Sect. 3).
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Fig. 4. Comparison of different network depths of the DenseNet model.

Fig. 5. Comparison of different number of models in the ensemble.

Various tests were carried out to probe the optimal number of models in creating
the ensemble. As shown in Fig. 5, the ensemble with three models achieved the
best accuracy. These experiments suggest that the quality of the models, i.e.,
how good is an individual model in predicting a specific class, is what actually is
going to determine the number of models that produce the optimal performance.

4 Results and Discussion

4.1 Individual Classifier Performance

The test findings for the independent classifier models and their parameters are
shown in Table 1. The best results out of the three was produced when g = 28,
insinuating that 28 is the optimal growth rate to achieve higher results in 4-way
classification with the DenseNet implementation of this study. Figure 6 shows
that although classifier 1 was only 53.33% accurate in this task, it performed
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fine predicting EMCI, while the other two struggled. One justification to why
the classifier 1 could extract features to predict EMCI subjects could be its
growth rate. With g = 32, the classifier 1 was the one with the bigger number
of parameters, and this gave the model some leverage to extract more complex
features. This being said, classifier 1 struggled when it comes to predict more
simple groups like CN, on which the other two performed better; this might
occur when the classifier is too complex for the training data.

Fig. 6. Confusion matrices (a) for classifier-1 (accuracy = 53.33%), (b) for classifier-2
(accuracy = 57.50%), and (c) for classifier-3 (accuracy = 66.67%). Labels: 0 = CN, 1
= AD, 2 = EMCI, 3 = LMCI.

Table 1. Parameter comparison of different network structures.

Model Growth rate Convolutional

kernel size

Parameters(n) Layers Training

duration

Accuracy(%)

Classifier 1 32 3 × 3 × 3 11,226,500 121 3 h:35min 53.33

Classifier 2 22 7 × 7 × 7 5,392,134 121 3 h:03min 57.50

Classifier 3 28 7 × 7 × 7 8,649,224 121 3 h:45 min 66.67

4.2 Comparison with Residual Network

The results of the comparison between the DenseNet-121 and the ResNet-18
are presented in Fig. 7. The experiment demonstrated that DenseNet-18 has
the quality to be trained faster and achieve more accuracy compared to the
ResNet-18. The longer training time is probably due to the ResNet-18 network
having around 108 million parameters to train compared to the 8.6 million of
the DenseNet-121.
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Fig. 7. Comparison of ResNet-18 and DenseNet-121.

Table 2. Test outcome of our approach compared with different methods in 4-way
classification of AD.

Ref. Architecture Dataset (n) Accuracy(%)

CN [s/E]MCI [p/c/L]MCI AD

[12] 3D SAE 52 56 43 51 47.42

[5] RF 60 60 60 60 61.9

[13] MSDNN 360 409 217 238 75.44

[1] 3D ResNet 237 245 189 157 83.01

This work 3D DenseNet En 120 120 120 120 83.33

Legend: s = stable, p = progressive, c = converting, E = early, L = late, RF =
Random Forest, MSDNN = Multi-scale Deep Neural Network, En. = Ensemble

4.3 Comparison with the State-of-the-Art

Test outcomes for this research approach compared to other similar research
are shown in Table 2. While comparing with other models which use 3D MRI
as input, our proposed model achieved the best performance (83.33%) which is
0.32% more than the test outcomes shown in [1]. However it becomes crucial
to note here that this is not comparable in a straightforward fashion given that
the other studies made use of stable MCI and converting or progressive MCI as
two distinct phases of MCI, while in this research early MCI and late MCI were
used, which seems to be different in literature.

Test results in the study show that the ensemble approach can lead to higher
classification performance. Primarily because this approach can accumulate the
probabilistic output of different classifier models and produce better predictions
employing more robust and reliable data, instead of classifying based on only
one classifier model.

Matched against the independent classifiers, a substantial increment in the
accuracy is shown on the classification on both phases of MCI; as a result of
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merging the output from classifier 1 that performed well predicting EMCI and
the other classifier’s predictions that were accurate classifying the other groups.

5 Conclusion

This study presented an ensemble of multiple 3D densely connected convolutional
neural networks to predict AD as well as two critical stages of MCI (known as
early MCI and late MCI) utilising MR images. The prediction and discrimina-
tion between early MCI, late MCI and AD can aid in the recognition of different
dementia’s phases and allow the early treatment inn those early life phases.
With the goal of figuring out the problem of having a limited number of MR
images for the training phase, the proposed approach was implemented. The
3D DenseNet is more simple to train with its lower number of parameters due
to having the type of connections that enhance the flow of gradients and data
throughout the network. Various test were conducted to study the performance
of the model with different parameters. Furthermore, these tests produced indi-
vidual classifier models with diverse parameters and structures that could be
used for the ensemble. A probability-based fusion approach was used to merge
the probabilistic outputs from these models. The model’s accuracy was enhanced
while using the probability-based fusion approach, obtaining a final accuracy of
83.33%, in comparison to the individual member classifiers. This proofs that the
approach of this study is a robust and reliable method in 4-way prediction tasks,
while also outperforming some previous studies. In further research of this work,
we would like to implement an increment in the training dataset, to test the
classifier 1 of this research, and the ensemble approach to enhance the results.
Otherwise further study could include implement less training data and finding
an approach that yields the same or higher accuracy with the goal in mind of
having a real-world environment where the data could be scarce.
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the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.
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Abstract. Recent neuroimaging evidence suggest that there exists a
unique individual-specific functional connectivity (FC) pattern consis-
tent across tasks. The objective of our study is to utilize FC patterns
to identify an individual using a supervised machine learning approach.
To this end, we use two previously published data sets that comprises
resting-state and task-based fMRI responses. We use static FC measures
as input to a linear classifier to evaluate its performance. We additionally
extend this analysis to capture dynamic FC using two approaches: the
common sliding window approach and the more recent phase synchrony-
based measure. We found that the classification models using dynamic
FC patterns as input outperform their static analysis counterpart by a
significant margin for both data sets. Furthermore, sliding window-based
analysis proved to capture more individual-specific brain connectivity
patterns than phase synchrony measures for resting-state data while the
reverse pattern was observed for the task-based data set. Upon investi-
gating the effects of feature reduction, we found that feature elimination
significantly improved results upto a point with near-perfect classifica-
tion accuracy for the task-based data set while a gradual decrease in
the accuracy was observed for resting-state data set. The implications
of these findings are discussed. The results we have are promising and
present a novel direction to investigate further.

Keywords: fMRI · Functional connectivity · Classification · Variance
inflation factor · Individual differences

1 Introduction

Neuroscience has progressed by leaps and bounds in the past two decades. A
growing interest to understand the structure and function of the brain has
resulted in significant advancements in both data acquisition and analyses tech-
niques. Central to one of the most common efforts to decipher brain function is
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functional magnetic resonance imaging (fMRI), an indirect measurement of the
neuronal activity.

Recent studies, however, have questioned the effectiveness of fMRI in under-
standing brain function and predicting future brain activity (although these
studies primarily dealt with task based fMRI) [1,2] . Other studies have also
shown that functional networks are dominated by stable individual features inde-
pendent of task [3]. Gratton et al. [3] reported that an individual’s brain network
is dominated by stable group and individual factors while using a static func-
tional connectivity approach(sFC). This would then imply that sFC patterns
would represent an individual’s functional connectivity signature thereby allow-
ing us to identify an individual across tasks. However, it remains to be seen if this
applies in a naturalistic paradigm wherein the participant performs a contiguous
task like movie viewing [7] or music listening [8] thereby emulating real-life expe-
riences. Moreover, Gratton et al. did not investigate individual-specific dynamic
functional connectivity(dFC) patterns. Some of the most common approaches
used are sFC analyses [4], and dFC analyses like Correlation-based Sliding Win-
dow (CSW) analysis [5] and the more recent Instantaneous Phase Synchrony
(IPS) analysis [6].

The sFC analysis approach involves taking an average of the time series for
region of interest (a voxel or parcel) and using this for further analysis with the
primary assumption that networks are temporally stationary. While this leads
to an ease in result interpretability, the primary problem encountered is the loss
of the temporal dimension shifting the focus entirely to the spatial dimension.

Dynamic functional connectivity, on the other hand, incorporates temporal
fluctuations, a clear improvement over it’s static counterpart. In its most basic
version, the CSW dynamic approach uses a sliding window of a fixed length in
order to capture temporally varying functional networks. IPS is a novel approach
introduced quite recently into fMRI based studies [10]. This method compares
the phase angles for each brain voxel or region (depending on the area of inter-
est) at every single time point thus providing the same temporal resolution as
the original fMRI data. Another study has found CSW and IPS to convey com-
parable information [11], where IPS is preferred as it foregoes the need to select
appropriate window length and overlap required for CSW. It remains to be seen
as to which of these techniques captures individual-specific information better.

The main objective of our study is to identify individuals based on their
functional connectivity patterns. To this end, we try to glean a functional sig-
nature from their sFC and the two dFC approaches. Subsequently, we compare
the classification accuracy so as to determine the stronger approach. In order to
assess the external validity of the proposed classification approach, we use two
different datasets. Building on that, we have performed experiments to identify
individuals based on their fMRI scans using 2 different data sets. One, a passive
task based music listening data set (part of “Tunteet” data set), and the other a
resting state data set (part of HCP data set). The passive music listening task is
part of the naturalistic paradigm, so as to emulate real-life listening situations in
addition to being comparable to resting-state while performing the task (music
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listening). This would help us in understanding whether a unique FC signature
exists for a participant and whether it can be replicated over time. As far as we
know, this is the first study to attempt identifying participants based on their
intrinsic static and dynamic functional connectivity signatures.

2 Methods

The study was performed on two different data sets which were previously used
in already published research papers. The first one, part of the data sets uploaded
in the “Human Connectome Project”, is a resting state data set [14] (henceforth
referred to as the “HCP data set”). The second one, part of “Tunteet” data set, is
a passive task based music listening data set [12,13] (henceforth referred to as the
“musical data set”). Both the data sets were chosen for their difference between
each other and their history of being used previously in published studies.

2.1 Data Set Specification

HCP Data Set: This data set consists of resting state fMRIs of 40 random
participants from the much larger HCP1200 Young Adult data set [14] so as to
keep it comparable to the musical data set. Each scan was 15 min long, done
twice for every participant with a gap of 3 weeks. The subjects were asked to be
at rest and think about nothing while undergoing the fMRI scan. The subjects
were processed with the HCP minimal preprocessing pipeline [15]). More details
can be found in the HCP documentation page [20].

Musical Data Set: The first set consisted of 36 participants, that included 18
musicians (9 females, age 28.2 ± 7.8 years) and 18 non-musicians (10 females, age
29.2 ± 10.7 years). All the participants were asked to listen to three instrumental
pieces - Stream of Consciousness by Dream Theater (progressive rock), Adios
Nonino by Astor Piazzolla (tango nuevo), and the first three dances of the Rite
of Spring by Igor Stravinsky (modern classical). Each piece was roughly around
8 min long and belonged to a different genre.

The brain responses of participants were acquired while they listened to the
musical stimuli presented in randomized order. Their only task was to attentively
listen to the music delivered via MR-compatible insert earphones while keeping
their eyes open. The data was preprocessed using well-established preprocessing
methods [7].

2.2 Feature Extraction

The fMRI data from both the data sets were first parcellated using the AAL atlas
which resulted in time-series of 116 regions to ease the computations required in
the tasks ahead.
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Static Functional Connectivity: For correlation-based static Functional
Connectivity matrices (sFC), pair-wise Pearson correlation coefficients were cal-
culated between the brain regions for the time series from each scanning session.
This resulted in a symmetrical correlation matrix of size 116× 116× 2 for every
participant in the HCP data set, and 116 × 116 × 3 for every participant in
the musical data set. These matrices were converted to vectors by linearizing
the lower-triangular matrix without the diagonal, resulting in 116×115

2 = 6670
feature vector for every scanning session. This resulted in a feature set of size
6670 × 80 for the HCP data set, and 6670 × 108 for the musical data set.

Dynamic Functional Connectivity:

Correlation-Based Sliding Window. For this analysis, a rectangular window of
size 10 time points with 50% overlap was employed as shown in Fig. 1. Pair-wise
Pearson correlation was performed between the brain regions with all the time-
points in a single window for every scanning session. The resultant 116 × 116
matrices were then linearized using the same method as used in sFC analysis.
This was done for all the participants in both the data sets, which resulted in
6670× ω1× 40 feature set for every scanning session for the HCP data set, and
6670 × ω2 × 36 feature set for every stimulus in the musical data set, where
ω1 and ω2 are the total number of windows for every participant in the HCP
and musical data set respectively.

Fig. 1. For CSW analysis, every participant’s data goes through the following steps:
(a) Voxel based time series. (b) Parcellation into 116 regions and 50% overlapping
window of 10 time points. (c) Region-wise correlation and generation of CSW matrices
for every time window. (d) Linearization of lower triangular matrix for every time point
to get a 2D matrix per participant per scanning session.

Instantaneous Phase Synchrony. As shown in Fig. 2, Hilbert transform was
applied on the parcellated fMRI time series of every region for every partici-
pant to get the analytical signal, upon which phase angle was calculated. Then
cosine of instantaneous phase angle difference was calculated between every pair
of regions for all the time points which resulted in a 116× 116 symmetrical dis-
tance matrix for every time-point. These IPS matrices were linearized using the
same method as used for sFCs for every participant generating a dynamic IPS,
resulting in 6670 × τ1 × 40 feature set for every scanning session for the HCP
data set, and 6670 × τ2 × 36 feature set for every stimulus in the musical data
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set, where τ1 and τ2 are the total number of time points for every participant
in the HCP and musical data set respectively.

Fig. 2. For IPS analysis, every participant’s data goes through the following steps: (a)
Voxel based time series. (b) Parcellation into 116 regions. (c) Hilbert transform, phase
angle calculation and region-wise angular difference. (d) cosine function on outcome of
c. (e) IPS matrices for every time point. (f) Linearization of lower triangular matrix
for every time point to get a 2D matrix per participant.

2.3 Classification

We used Linear Discriminant Analysis (LDA) from python’s scikit-learn toolbox
[16] for classification as it is a parameter-free method and is a simple model
that is easy to interpret. The classification tasks were performed separately on
both sets of data and both sets of static and dynamic matrices generated from
the data sets. For the HCP data set, the classification accuracy was calculated
using the feature set from the first scanning session for training the model and
from the second scanning session done 3 weeks later for testing. The classifica-
tion accuracy in musical data set was tested using leave-one-stimulus-out cross
validation method for each stimulus, and a 50% cross validation method. For the
first cross validation method, time points from two stimuli were used for train-
ing the classification models and the time points from the remaining stimulus
were used for validation, where the cross validation methods would be denoted
henceforth as S1, S2, and S3 for using Dreamtheater, Piazzolla, and Stravinsky
scans for validation respectively. For 50% cross validation method, half of the
time points from each stimulus were used for training and the other half were
used for testing.

The classification accuracy for dynamic analyses were evaluated using two
different techniques. For the first method, classification accuracy for classifica-
tion of every time window was calculated for CSW (CSW-TW), and accuracy
for classification of every time point in IPS (IPS-TP). For the second method, a
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majority voting method was applied to measure the overall classification accu-
racy of participants. In this technique, we take a majority vote of all the classes
the time windows or time points for each participants are classified in, and the
participants are classified in the class in which maximum number of their time
points are classified. This method will be denoted by CSW-MV and IPS-MV for
both the dynamic analyses.

2.4 Feature Elimination

In order to reduce the dimensionality of the feature set owing to potential mul-
ticollinearity, the Variance Inflation Factor (VIF) technique was used to identify
a unique set of features from the original feature set. Variance Inflation Factor
(VIF) is a technique used to evaluate multicollinearity in a set of regression
variables [17], using which we repetitively eliminated the features with maximal
multicollinearity among all the features at every iteration until we get the desired
size of the feature set. The features identified using VIF feature elimination do
not necessarily guarantee greater classification accuracy since it is purely a data-
driven approach; however, it allows us to identify the contribution of subsets of
the input feature set that provided us with the best classification accuracy for
each data set.

For HCP data set, VIF elimination was performed on the training set of
CSW as it had provided us with the best results. The feature set was reduced to
50%, 30%, 15%, 10%, 5%, and 1% of the original feature set and the remaining
features were used to train and test the LDA classifier and classification accuracy
was calculated. For the musical data set, VIF elimination was performed on the
training set of IPS as it provided the best results. The feature set upon which
VIF was to be performed was the one used for 50% cross validation method as
it included time points from all three stimuli. The feature set was reduced to
the same number of features as for the HCP data set and the resultant features
were used to train and test the LDA classifier for all three of the S1, S2, and S3
cross validation methods.

3 Results

3.1 Classification

Overall, dynamic analyses approaches provided far better accuracy in classifying
individuals than the static ones, as it can be observed in Table 1, which contains
the classification results on the complete feature set. The classification accuracy
on classification using CSW-MV was found to be most significant for the HCP
data set with an accuracy score of 0.775. Whereas for the musical data set,
classification accuracy for IPS-TP provided far better classification accuracy at
an average of 0.8148 across all cross validation methods. This was also the highest
classification accuracy found in classification among all the data sets and types
of analyses.
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Table 1. Overall classification accuracy for both data sets with different feature extrac-
tion techniques using complete feature set.

Data set sFC CSW-TW CSW-MV IPS-TP IPS-MV

HCP 40 0.1625 0.386 0.775 0.2730 0.45

Musical 0.4814 0.2541 0.7129 0.3437 0.8148

For classification using IPS for the musical data set, the classification model
performs varyingly for different cross-validation methods. Table 2 gives a sum-
mary of classification results on the musical data set for all cross validation
methods using the LDA classifier on the IPS data.

Table 2. Cross-validation results using LDA classifier on IPS data of musical data set.

Cross validation method IPS-TP IPS-MV

50% Cross validation 0.335 0.9444

Leave Dreamtheater out 0.344 0.7778

Leave Piazzolla out 0.3508 0.8611

Leave Stravinsky out 0.3365 0.8056

3.2 VIF Feature Elimination

As seen in Fig. 3a, upon implementing VIF elimination for the HCP data set,
the participant classification accuracy reduced as the number of features were
reduced, while the sharpest drop in accuracy was seen on using the feature set
with 2.5% of the original features. The accuracy trend for classification of IPS
data in musical data set with different number of features and using different
cross-validation methods can be seen in Fig. 3b for participant classification
accuracy. Here, the overall participant classification accuracy increased as the
number of features were reduced until it reached a peak on using 10% of the
feature set (667 features from the original 6670 feature set), and the classifica-
tion accuracy started decreasing again on using 2.5% features from the original
feature set.

4 Discussion and Scope

Across both data sets, it was observed that dFC feature-based classification
models outperformed their sFC counterpart. This supports the notion that the
temporal dimension indeed captures nuanced individual-specific signatured brain
organization patterns. The CSW approach exhibited comparable classification
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(a) HCP data set classification scores
trend

(b) Musical data set classification
scores trend

Fig. 3. VIF feature elimination based classification score trend

accuracies of around 70% accuracy in both datasets which is significantly higher
than chance level, that is, 2.5% (1/40) for HCP and 2.8% (1/36) for Music
datasets respectively. This is a notable result in particular for the HCP dataset
since there exists a time lapse of three weeks between the acquisition of both
rsfMRI sessions. This in fact indicates that short time periods, at least limited
to weeks do not engender stark differences in brain functioning which manifest
in fMRI data. CSW-based classification approach outperformed IPS-based clas-
sification for the HCP dataset while the opposite trend was observed for the
musical dataset. Specifically, a 10% increase in accuracy was observed in the
Music dataset as a result of the IPS-based classification. This can be attributed
to the fact a rich stimulus like music requires an individual to process several
elements in parallel such as melody, rhythm, timbre, and tonality in parallel,
which are known to recruit large-scale networks with overlapping regions and
hence would be captured better with a measure such as IPS. Additionally one
could postulate that an external stimulus such as music evokes rapid temporal
changes in brain states that cannot be so accurately captured with a sliding
window approach.

Furthermore, music processing and experienced emotional states have been
found to be modulated by several individual factors such as musical expertise,
personality, empathy [18,19], which further potentially manifests as distinct syn-
chronization between specific brain regions at an individual level. This would
then allow us to postulate that IPS is more representative of dynamic brain
functioning than the CSW approach as it captures minuscule changes owing to
its ability to integrate data from a smaller timescale than CSW. The majority
vote approach turned to be a more accurate approach for classification than the
individual time-point classification approach. This implies that there indeed exist
common dynamic FC patterns/states across individuals and hence a minimum
number of observations per participant is required for successful classification.
This calls for further investigation.

The feature elimination process resulted in differing trends in both datasets.
While reduced number of features resulted in a decrease in classification accu-
racy in the HCP dataset, an increase in the classification accuracy approaching



Dynamic FC Captures Individuals’ Unique Brain Signatures 105

near-perfect classification (with top 5% = 333 features) was observed for the
music dataset before evidencing a declining trend. A similar steep decrease was
observed post 5% of the feature set related to the HCP dataset. The decrease in
accuracy for the HCP dataset might imply that all pair-wise connection patterns
are essential when using the CSW-approach. On the other hand, the increasing
classification accuracy of the classification model for the musical data as a result
of VIF feature elimination can be attributed to the removal of noise from the fea-
ture set thereby improving the overall quality of data. In fact, certain regions in
the brain have been found to consistently process certain musical features across
individuals [18], which, when removed, allows to better find intrinsic functional
networks. However, it remains to be seen which regions con-tribute the most
in correctly classifying the participants with a higher accuracy. This calls for a
focused study in feature importance for classification, which is beyond the scope
of the current study. In fact, identifying specific regions, the phase synchroniza-
tion of which would be important in classifying individuals, would be valuable
in contexts wherein severity of neurological conditions such as autism or mental
health conditions such as depression, post-traumatic stress disorder, need to be
predicted.

This work can be naturally extended to investigate other tasks such as nat-
uralistic viewing, reading and language processing to check whether IPS does
outperform CSW consistently across multiple tasks, especially in the same set of
individuals. Furthermore, dFC-based features may be subjected to other classi-
fication models to compare performance while keeping in mind complexity and
interpretability of the model. A concern with CSW is the lack of consensus on
window length. Shorter windows are likelier to capture noise in the data while
longer windows would generate more accurate results at the cost of temporal
resolution. The effect of band-pass filtering (also based on the frequency range)
of data before IPS also has to be investigated, but our ongoing pilot study using
these steps in the feature extraction part has provided notably similar results.
The AAL atlas used in the current study sacrifices a lot of spatial resolution for
ease of computation, so a higher resolution atlas should also be looked into to
investigate the spatial scales at which the individual brain networks differ. Other
classification models can also be checked for improved classification accuracy.
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Abstract. Previous research has shown that empathy, a fundamental
component of human social functioning, is engaged when listening to
music. Neuroimaging studies of empathy processing in music have, how-
ever, been limited. fMRI analysis methods based on graph theory have
recently gained popularity as they are capable of illustrating global pat-
terns of functional connectivity, which could be very useful in studying
complex traits such as empathy. The current study examines the role of
trait empathy, including cognitive and affective facets, on whole-brain
functional network centrality in 36 participants listening to music in a
naturalistic setting. Voxel-wise eigenvector centrality mapping was cal-
culated as it provides us with an understanding of globally distributed
centres of coordination associated with the processing of empathy. Par-
tial correlation between Eigenvector centrality and measures of empathy
showed that cognitive empathy is associated with higher centrality in
the sensorimotor regions responsible for motor mimicry while affective
empathy showed higher centrality in regions related to auditory affect
processing. Results are discussed in relation to various theoretical mod-
els of empathy and music cognition.

Keywords: Eigenvector centrality · Cognitive empathy · Affective
empathy · Naturalistic paradigm · Music listening

1 Introduction

It is clearly established that the human brain is organised into functional net-
works, acting as independent units [4]. Recent work has shown that these net-
works exhibit stable features and are dominated by individual-specific factors
[13]. That is functional networks of an individual exhibit stable characteristics
across tasks. Personality traits, defined as stable behavioural tendencies in indi-
viduals, have been found to correlate with these individual functional networks
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[1]. Individual differences in the tendency to empathise has particularly inter-
ested social neuroscience over the last few decades [9]. Empathy refers to the
ability to understand and share in the mental experiences of others. One mecha-
nism for this is internal mimicry; a person perceives another’s bodily movements
or facial expressions and grasps their mental state by mentally simulating the
same movements [36]. Empathy is generally agreed to be underpinned by two
distinct subsystems: an affective, involuntary system and a cognitive, voluntary
system [12], which are related but dissociable [26]. Tomasello [32] has suggested
that the ability to understand the mental reality of others by imagining being “in
their shoes,” and subsequent ability to see others as “like me,” represents the cru-
cial step in human evolution that allowed for the development of species-specific
cultural transmission systems. Empathy is vital to social functioning, and its
dysfunction has been implicated in serious disorders such as autism, schizophre-
nia, and Borderline Personality Disorder [8], making the neural underpinnings
of empathy an important area of research from many perspectives.

Multiple tests measuring trait empathy have been developed; the Inter-
personal Reactivity Index (IRI) [6], is particularly useful as it includes sub-
scales which distinguish between several aspects of empathy and has previously
been used in neuroscientific studies of empathy [20]. The IRI’s four subscales–
Perspective-taking (PT), Fantasy-Seeking (FS), Empathic Concern (EC), and
Personal Distress (PD)–have been used as a two-dimensional model comprising
Emotional (EC, PD) and Cognitive (FS, PT) empathy [34]. However, in light
of studies [17] showing PD to be inversely related to the concept of affective
empathy, we limit ourselves to understanding affective empathy through EC.

Music represents a useful stimulus for studying empathy, due to its ability to
evoke a variety of emotional responses in listeners [16]. Empathy is thought to
play a role in these responses; music may express others’ emotions or act as a vir-
tual agent which can evoke empathy [16]. Music’s close association with bodily
movement makes it especially relevant to understanding internal mimicry [21].
Cross [5] has posited music as a mode of communication that privileges inter-
action and emotion, which places empathy as a fundamental aspect of musical
experiences.

Studies have revealed a subnetwork of brain regions involved in process-
ing empathy, referred to by Fan et al. [10] as the Core Empathy Network
(CEmN). It includes the Medial cingulate cortex (MCC), Anterior cingulate
cortex (ACC), Insula and Inferior frontal gyrus (IFG), and the Supplementary
motor area (SMA). To date, only two studies have investigated the neurophys-
iological relationship between empathy and music processing. Wallmark et al.
[34] found significant activation in both the cognitive and affective parts of the
CEmN, related to trait empathy, albeit using very short (<3 s) music segments
as stimuli. Sachs et al.’s [25] found greater synchronisation in individuals scoring
high on FS in auditory, visual and prefrontal regions during listening to a full
piece of sad music. Their study is an example of a recent shift in fMRI research
towards naturalistic paradigms; that is, making use of real-world stimuli such as
films or music, and not asking participants to perform any other tasks during



Differential Effects of Trait Empathy on Functional Network Centrality 109

recording [23]. However, their study was specific to sad music and focused on the
FS subscale. Moreover, their measures comprised inter-subject correlation and
phase synchronisation in addition to intra-subject pairwise (voxel/seed-based)
synchronisation, which do not provide information about the global organisation
of functional networks and their individual-specific properties [13].

The current study addresses this by examining global functional connectivity
in order to clarify how individual differences in empathy modulate whole brain
functional connectivity during music listening. Recent advances in graph theory
provide a strong foundation for modelling whole-brain functional connectivity
[2]. Centrality, a widely used graph metric, is a way of quantifying the relative
importance of the role played by some nodes in a network [18] and have success-
fully been used in the analysis of social networks [14] and the spread of epidemics
[27] in identifying crucial nodes. Specifically, eigenvector centrality helps in iden-
tifying crucial nodes that are responsible in the organisation of brain states and
reflects global properties within the network [37]. To this end, we use an eigen-
vector centrality based approach to examine global functional connectivity and
how individual differences in empathy modulate it thereof.

2 Methods

2.1 Data Acquisition and Pre-processing

The current study utilises a subset of the data used by Toiviainen et al. [31], with
the fMRI scanning and pre-processing pipeline remaining the same. Thirty-six
healthy participants (20 females, mean age = 28.6 yrs, std = 8.9) with no history
of neurological or psychological disorders participated in the fMRI experiment.
Participants’ IRI scores, in addition to Familiarity and Liking, were collected
along with other tests as a part of a larger project (“TUNTEET”). Participants’
brain responses were acquired with fMRI while they listened to an 8-min long
piece of Argentine tango, Adiós Nonino by Astor Piazzolla. This stimulus was
chosen because of its long duration and its acoustic variations. The study proto-
col proceeded on acceptance by the ethics committee of the Coordinating Board
of the Helsinki and Uusimaa Hospital District.

fMRI scanning was performed using a 3T MAGNETOM Skyra whole-
body scanner at the Advanced Magnetic Imaging (AMI) Centre (Aalto Uni-
versity, Finland). Using a single-shot gradient echo-planar imaging (EPI) (33
slices; thickness: 4 mm, interslice skip: 0 mm; voxel size: 2 × 2 × 2 mm3, TR:
2 s). T1-weighted structural images (176 slices; slice thickness: 1 mm; interslice
skip: 0 mm; pulse sequence: MPRAGE) were also collected for individual co-
registration. The scans were then pre-processed on a Matlab platform using
SPM8, VBM5 for SPM, and customised scripts developed by the present authors.
Each participant’s scans were realigned, segmented and normalised to the MNI
template. Signal-to-noise ratio was enhanced by Gaussian spatial smoothing,
and movement-related variance components were regressed out. Following this,
spline interpolation and Gaussian temporal filtering were carried out.
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2.2 Eigenvector Centrality Mapping

Eigenvector centrality of a node is indicative of its central role in coordinating
whole-brain network functioning, which in addition to its parameter-free nature
makes it the appropriate choice for the current study. Voxel-wise eigenvector
centrality was computed for each participant, essentially modelling each voxel as
a separate graph node. This was done by generating each participant’s functional
connectivity (FC) matrix by computing the Pearson correlation of the fMRI time
series between every pair of voxels. This matrix was then made non-negative by
incrementing each entry by 1. A power-iteration method (von Mises, 1929) was
used to compute the first eigenvector for each participant’s FC matrix. The result
was a voxel-wise eigenvector centrality brain map for each participant (Refer to
Eq. 1)(Fig. 1).

xi =
1
λ

∑

k

FCk,i xk (1)

Where, xi is centrality of ith node and k denotes all voxels, FCk,i denotes the
FC matrix value between nodes k and i.

The resultant eigenvector centrality maps were then correlated on a voxel-
wise basis with the participants’ IRI scores, using Spearman’s partial correlation.
We chose partial correlation due to the inherent correlation among the IRI sub-
scales typically reported in studies. To correct for multiple comparisons, we used
cluster size thresholding wherein the respective thresholds were obtained from
a null distribution obtained via a permutation test. Specifically, we performed
1000 iterations, in which the IRI scores were randomised (with replacement)
followed by correlation with EC values and recording the observed cluster sizes
of significant correlations. Cluster sizes were calculated based on the resulting
null distribution.

Fig. 1. Overview of the study
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3 Results

Lilliefors test (as well as Jarque-Bera goodness-of-fit test) for normality showed
that IRI scores were normally distributed across all four subscales (FS, PT, EC,
PD) at a 5% significance level. Pearson’s correlation revealed statistically sig-
nificant correlations between the subscales, supporting our choice to use partial
correlation. Mann-Whitney U test performed between the Liking and Familiarity
scores between low and high empathy participants grouped by means of median-
split of IRI scores revealed no statistically significant differences. The results for
the partial correlation can be seen in Table 1.

Table 1. Summary of partial spearman correlation between eigenvector centrality and
IRI. * denotes negative correlation. p < .01, Cluster size corrected at FWE < 0.05

Left hemisphere Right hemisphere

Region n MNI (mm) z-val BA Region n MNI (mm) z-val BA

FS FS

MTG, ITG* 193 −60, −28, −16 −4.73 20 Precentral gyrus, SFG 100 20, −26, 62 4.07 6

MTG* 158 −62, −46, 8 −4.16 22 ACC extending to MFG 68 24, 34, 22 4.13 46

Crus I, Crus II of
Cerebellum*

290 16, −84, −28 −4.33

PT PT

Pre/Postcentral gyrus 103 −32, −30, 72 4.28 4, 6 SMA, SFG,
Pre/Postcentral gyrus

237 12, −14, 72 4.22 6

Putamen, Thalamus* 45 −16, −6, 10 −3.88 ACC, MCC (R/L), SFG
(R/L)*

381 6, 10, 28 −3.83 24, 32

Basal ganglia around Cau-
date
nucleus, Globus pallidus,
Thalamus*

122 10, 2, 0 −4.18

Insula, IFG* 112 44, 18, −10 −3.87 38

Thalamus* 68 8, −22, −2 −4.30

EC EC

ITG, MTG 86 −60, −28, −18 3.68 20 Inferior occipital gyrus,
Fusiform
gyrus, Crus I of
Cerebellum

181 48, −70, −16 4.44 19, 37

Temporal pole, IFG 72 −42, 18, −16 3.57 38 WM around Precuneus* 315 18, −40, 44 −4.04

Gyrus rectus,
Orbitofrontal
gyrus

61 −8, 58, −8 3.52 11 Superior occipital gyrus,
Precuneus*

200 26, −66, 38 −4.54 7, 40

Precentral gyrus, Para-
central
lobule*

164 −34, −22, 58 −4.74 4 MFG, IFG, Insula* 119 38, 40, 2 −3.51 47

Precuneus extending to
occipital
lobe*

141 −14, −58, 32 −4.49 7 Insula, Hippocampus,
Basal
ganglia*

62 38, −12, −10 −3.55 48, 20

Fusiform gyrus and WM
extending to lingual
gyrus*

99 −40, −44, −4 −4.18 37 Insula, IFG* 59 40, 10, 6 −3.49 48

Postcentral gyrus,
Superior
parietal gyrus,
Precuneus*

90 −18, −34, 68 −3.70 2, 4 Thalamus* 58 24, −24, 6 −3.26

IFG* 52 −34, 24, 14 −3.47 48 Postcentral gyrus* 51 18, −40, 72 −4.53

ACC* 50 −16, 38, 6 −3.24 32

PD PD

IFG, Insula 63 −34, 24, 14 3.37 48 MFG, IFG 65 38, 42, 2 3.24 47
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High centrality in bilateral sensorimotor regions consisting of the Supple-
mentary motor area (SMA), Precentral gyrus (BA 6) and the Postcentral gyrus
(BA 4) was associated with higher scores on the PT subscale while low central-
ity was observed in bilateral clusters around the Basal ganglia and Thalamus,
right Insula and Inferior frontal gyrus (IFG). Another cluster belonging to the
bilateral CEmN, including the Anterior and Medial cingulate and paracingulate
gyri extending to the Superior frontal gyrus also demonstrated low centrality in
high scoring participants (Fig. 2).

Fig. 2. Correlation results for PT. Red - Positive, Blue - Negative correlation. (Color
figure online)

For the FS subscale (Fig. 3), higher centrality was associated with high scores
in the right Premotor cortex (BA 6) as well as the white matter tract between
the ACC and Middle frontal gyrus while low centrality was observed in left
Middle/Inferior temporal gyrus (BA 20, 22) as well as the right cerebellum
(Crus I, II).

Fig. 3. Correlation results for FS. Red - Positive, Blue - Negative correlation (Color
figure online)

For the EC subscale, high scoring participants showed increased centrality
in the left Temporal pole (BA 38) and Orbitofrontal cortex (BA 11) as well as
the right Occipital lobe extending along the Fusiform gyrus to the cerebellum
(BA 19, 37). On the other hand, lower EC scores were associated with increased
centrality in clusters centered bilaterally around the Precuneus, Primary motor
cortex (BA 4) and IFG (BA 48); in the right hemisphere centered around the
Precentral gyrus (BA 6) extending to the paracentral lobule, the left Insula
and parts of the Occipital lobe. Some clusters were also found to extend into
subcortical regions such as the Hippocampus, Thalamus and the Basal ganglia
(Fig. 4).
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Fig. 4. Correlation results for EC. Red - Positive, Blue - Negative correlation (Color
figure online)

Participants’ PD scores were observed to be positively correlated with cen-
trality in clusters around the left IFG extending to the Insula as well as the right
MFG/IFG (BA 47, 48) (Fig. 5).

Fig. 5. Correlation results for PD. Red - Positive, Blue - Negative correlation (Color
figure online)

4 Discussion

Using eigenvector centrality analysis, we unearthed brain nodes modulated by
participants’ IRI scores that are key in the coordination of global functional net-
works. Overall, we found differential trends in centrality between cognitive and
affective IRI sub-scales. The key regions coordinating global brain functioning in
participants with high cognitive empathy included cortical sensorimotor regions,
which are involved in motor mimicry. By contrast, the decrease in centrality of
these regions and the core DMN hub (Precuneus) in those with high affective
empathy, in addition to the concurrent increase in centrality in the auditory and
Orbitofrontal regions is reflective of its central role in higher engagement and
affective coding of the stimulus.

These results seem to support the layered ‘Russian-doll’ model of evolution [7]
in mammalian empathy processing. In this model, different components of empa-
thy are processed by increasingly advanced layers built atop one another, with
motor mimicry at its core observed in most mammals, surrounded by affective
empathy and then by cognitive empathy, which is highly advanced in humans.
Similarly, Panksepp [24] proposed that the human brain is organised into two
systems; an affective, primitive subcortical/limbic system, which processes raw
emotions and feelings across mammals and a more cognitive, neocortical system
that deals with higher-order processes. Our results corroborate this model, as
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evidenced by the increased centrality in the sensorimotor regions of the neocortex
in participants scoring high in cognitive empathy (FS, PT). Wallmark et al. [34]
also found selective activations in the sensorimotor regions in high FS/PT par-
ticipants, albeit using very short stimuli. The low centrality in the affective parts
of the cerebellum [30] further supports the notion that such affective regions do
not play a significant role in how high cognitive empathetic individuals process
a stimulus.

Centrality in the subcortical regions, including the Thalamus, Basal ganglia,
ACC-MCC and the Insula showed a characteristic negative correlation with both
the affective and cognitive empathy. These regions are a part of the CEmN,
integral to the processing of empathy. The decrease in centrality associated with
empathy in these regions, therefore, suggests that they might act as interme-
diaries in the processing of empathy rather than as central coordination hubs.
The Insula has also been shown to work in tandem with the Basal ganglia and
Thalamus in the bottom-up encoding of affect, and to moderate communication
with higher-level processing centres such as sensorimotor and the frontal regions
[28]. Additionally, studies have shown that participants with lesions in the Basal
ganglia scored significantly lower on the PT scale than the control group [35];
Basal ganglia abnormalities are also linked to autism, in which cognitive but not
emotional empathy is deficient [3].

On the other hand, affective empathy was associated with a decrease in
centrality in the sensorimotor regions and a concurrent increase in centrality in
the auditory cortex and medial OFC, a critical region involved in appraising the
hedonic value of a stimulus [22]. This suggests that participants scoring higher on
affective empathy may automatically be coordinated by regions associated with
the processing of affect. Moreover, the high centrality found in the Temporal pole,
which has been termed an association cortex due to its connectivity with the
limbic regions [19] further supports this notion that high EC is indeed associated
with the automatic affective evaluation of any stimulus. Additionally, increased
centrality in visual regions suggests that high EC participants are more prone
to visual imagery, which in turn reflects higher susceptibility to musical affect
[34]. To add to this, decreased centrality in the precuneus, the functional core of
the Default mode network, indicates less mind-wandering and increased affective
engagement in the stimulus [11].

The PD subscale showed positive correlations bilaterally in parts of the
IFG (BA 47, 48) associated with the recognition of negative valence emotions
such as fear, anger or disgust [29,33]. This finding is in line with several stud-
ies that report a negative affect bias in such individuals while processing any
stimulus [15].

The graph-theory based approach employed in the present study offers
insights about global network organisation in the human brain while allow-
ing for greater interpretability of the results than more complex deep-learning-
based models. The present study could be extended by looking at localised mea-
sures of connectivity, such as modularity, to better understand how empathy is
locally processed. Moreover, a multi-modal approach looking into both structural
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(using voxel-wise gray matter densities) and functional measures of centrality
would provide us with a better understanding. However, our results provide sup-
port for several key models of empathy and music processing, and merit further
investigation into the topic.
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Abstract. Classification and prediction of posttraumatic stress disorder (PTSD)
based on brain imaging measures is important because it could aid in PTSD
diagnosis and clinical management of PTSD. The goal of the present study was to
test the effectiveness of using cortical morphological measures (i.e. volume,
thickness, and surface area) to classify PTSD cases and controls on 3571 indi-
viduals from the ENIGMA-Psychiatric Genomics Consortium PTSDWorkgroup,
the largest PTSD neuroimaging dataset to date.We constructed 6 feature sets from
different demographic variables (age and sex) and cortical morphological mea-
sures and used four machine learning algorithms for classification: logistic
regression, random forest, support vector machine, and multi-layer perceptron.
We found that classifiers trained using only cortical morphological measures (any
one of volume, thickness, or surface area) performed better than classifiers trained
using only demographic variables. Among all 6 feature sets, combining demo-
graphic variables and all three cortical morphological measures yielded the best
prediction accuracy, with area under the receiver operating characteristic curve
(ROC AUC) scores ranging from 0.615 for logistic regression to 0.648 for ran-
dom forest. These findings suggest that using cortical morphological measures
only has modest prediction power for PTSD classification. Future studies that
wish to produce clinically and practically significant findings should consider
using whole brain morphological measures, as well as incorporating other neu-
roimaging modalities and relevant clinical and behavioral symptoms.
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1 Introduction

Posttraumatic stress disorder (PTSD) is characterized by intrusive memories of a
traumatic event, avoidance of trauma-related circumstances, hyperarousal, and negative
alterations in mood and cognition. PTSD is a major health concern which produces
negative impacts on both the individual and societal level [1]. Despite extensive
neurobiological research efforts, diagnoses of PTSD still solely rely on behavioral
assessments.

Magnetic resonance imaging (MRI) has been shown as a powerful tool for
researchers to understand the pathophysiology of PTSD in the brain. Indeed, cortical
morphological differences in patients with PTSD as compared to matched controls are
well documented [2]. For example, structural MRI studies have revealed smaller vol-
umes and thinner cortical thickness in cingulate, insula, and select parts of the pre-
frontal, parietal, temporal, and occipital cortices [3–6]. Functional neuroimaging
studies have also reported alterations of brain activation associated with emotion
responses in some of the above-mentioned regions [7–9]. Therefore, it has been
speculated that alterations in cortical structures may associate with functional deficits in
these cortical regions, which could underlie PTSD symptomatology. These findings
suggest that cortical morphological measures may possess classification power to
differentiate individuals with and without PTSD.

Recently, machine learning algorithms have been applied to classify PTSD cases
and controls, which may help to improve the diagnosis of this psychiatric condition.
However, the current PTSD diagnosis relays on the behavioral symptoms solely [10].
Adding other factors may greatly help PTSD classification. For example, demographic
factors such as a combination of sex and age have been associated with the incidence of
PTSD [11], and the inclusion of these demographic factors improve the classification
accuracy of PTSD cases and controls [12, 13]. Studies using brain morphological
measures including cortical volume, thickness, and surface area to classify neurological
and psychiatric disorders such as Alzheimer’s Disease and Bipolar Disorder have been
accumulating rapidly [11–14]. However, to the best of our knowledge, these cortical
morphological measures have not been tested for PTSD classification.

Therefore, the goal of the present study was to evaluate effectiveness of using
cortical morphological measures in classification of PTSD cases and controls.
Specifically, we compared model performance on the following 6 models, each cor-
responding to a different set of features for classification: 1) demographics (combining
sex and age), 2) volume, 3) thickness, 4) surface area, 5) combining all three cortical
morphological measures, and 6) combining demographics and cortical morphological
measures together. Since there is currently no understanding on the relationship
between cortical morphological measures and PTSD diagnosis, this exploratory study
compares the classification accuracies of multiple machine learning algorithms to find
the most effective algorithm for predicting the PTSD diagnosis. Previous studies tested
a variety of classifiers including logistic regression, random forest, support vector
machine (SVM), and multi-layer perceptron (MLP) to classify PTSD and other psy-
chiatric disorders [15, 18–20]. We compare these 4 machine learning algorithms on
each of the 6 feature sets in this study.
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2 Methods

2.1 Samples

The ENIGMA-Psychiatric Genomics Consortium PTSD Workgroup collected data
from 3571 individuals, including 1379 PTSD patients and 2192 controls without
PTSD, from 43 cohorts assessed in 31 laboratories across 7 countries. Depending on
the cohort, current PTSD was diagnosed according to the Diagnostic and Statistical
Manual of Mental Disorders (DSM) IV criteria using the following standard instru-
ments: Clinician-Administered PTSD Scale-IV (CAPS-4), Structured Clinical Inter-
view, Mini International Neuropsychiatric Interview 6.0.0, PTSD Checklist (PCL)-4,
Davidson Trauma Scale, PTSD Symptom Scale, and Anxiety Disorders Interview
Schedule; or according to DSM-V criteria using CAPS-5 and PCL-5. The clinical,
demographic, and brain imaging data were uploaded to the central site for analysis.
Summary statistics from the data are shown in Table 1.

2.2 Imaging Acquisition and Processing

At the participating laboratories, high resolution T1-weighted structural MRI scans
were acquired and processed using a standard automated FreeSurfer (version 5.3 or 6.0)
[21] processing stream to create individual vertex thickness maps. Each hemisphere is
parcellated into 34 anatomical regions of interest (ROIs) using the Desikan–Killiany
atlas [22]. The regional gray matter volume (i.e., product of cortical thickness and
surface area), regional average cortical thickness, and other measures were calculated
for each ROI. The data were visually inspected using ENIGMA imaging quality control
protocols [23]. ROIs with segmentation or parcellation errors were excluded.

2.3 Analytical Approaches

In the present study, we studied four classifiers, logistic regression, random forest,
support vector machine (SVM), and multi-layer perceptron (MLP), to classify PTSD
versus non-PTSD cases. Logistic regression is perhaps the most commonly used linear
classifier, while the other three allow for non-linear classification. We evaluated pre-
diction performance using 6 different sets of features: demographic variables alone,

Table 1. Demographics and symptoms of PTSD and control groups.

PTSD Control Difference

N (%) 1379 (39.5%) 2192 (60.5%)
Female N (%) 554 (40.4%) 923 (42.2%) v2 = 1.02
Age (years) 36.0 ± 14.1 34.3 ± 15.5 t = 3.35*
Age range (years) 6 – 82 6 – 85
PTSD severity 49.8 ± 16.7 10.5 ± 12.8 t = 64.91*
N of cohorts 43 42

Note. Data are reported as mean ± standard deviation.
*indicates statistical significance at p < 0.05 level.
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three cortical morphological measures separately, a combination of all three, and a
combination of demographic variables and all cortical morphological measures toge-
ther. The feature sets contain different numbers of features, as shown in Table 2.

2.4 Machine Learning Algorithms

Logistic regression, random forest, SVM, and MLP classifiers were chosen to predict
whether a patient belongs to the PTSD or non-PTSD group. We used the implemen-
tations in the scikit-learn Python package [24].

The initial dataset was split into a training and testing dataset. 75% of the data was
allocated to training, and the remaining 25% of the data was allocated for testing. These
splits were stratified by diagnosis to ensure that each set had roughly the same pro-
portion of control to confirmed PTSD diagnosis.

Hyperparameter tuning for each model was performed by using 5-fold cross-
validation (CV) on the training data to optimize the area under the receiver operating
characteristic curve (ROC AUC) metric. To ensure consistency across models, the
same cross-validation splits were used for each classifier and feature set, again stratified
on the PTSD diagnosis. The hyperparameters that resulted in the highest 5-fold CV
accuracy were then used to train a model on the entire training data set. The ROC AUC
of predictions on the testing dataset was then used to evaluate each model.

Logistic Regression
Logistic regression is perhaps the most widely used linear classifier. We considered a
logistic regression model with an elastic net (combined ‘1 and ‘2) regularization on the
coefficients [25]. This regularization helps prevent overfitting and promotes sparsity in
the coefficients. This formulation corresponds to:

min
w;cf g

1� q
2

wTwþ q wk k1 þC
XN

i

log exp �yi XT
i wþ c

� �� �þ 1
� �

where Xi and yi denote the features and the class (either þ 1 for PTSD or �1 for
control), respectively, for the i th subject; w denotes the model coefficients; C controls
the regularization strength; and q controls the tradeoff between the ‘1 and ‘2 penalties
[24]. Hyperparameter tuning was performed using cross-validation by a 2-dimensional
grid search on q and C.

Table 2. The number of features used in each model (feature set).

Model Feature count

Demographics (D) 2
Volume (V) 68
Thickness (T) 68
Surface Area (SA) 68
V + T + SA 204
V + T + SA + D 206
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Random Forest
A random forest is an ensemble supervised learning method that fits a number of
decision tree classifiers that have been trained on different random subsets of the
features [26]. Training on subsets of the features helps avoid overfitting, and as the
number of trees increases, the overall variance of the model will decrease.

Random forests allow for learning non-linear decision boundaries. We used 1000
trees with the Gini impurity as the splitting criterion. The maximum number of features
to consider on each split was optimized using cross-validation by a linear grid from 1 to
the feature count (shown in Table 2).

Support Vector Machine
A support vector machine (SVM) is a supervised learning method that attempts to find
an optimal linear decision boundary between the two classes. When used with a non-
linear kernel, SVMs can find non-linear decision boundaries. Common non-linear
kernels include polynomial, sigmoid, and radial basis functions. These kernels can be
included in the search space when performing hyperparameter tuning.

The SVM formulation we consider has the form:

min
w;b;f

1
2
wTwþC

Xn

i¼1

fi

Subject to :yi wT/ Xið Þþ b
� �� 1� fi; fi � 0

where w are the coefficients corresponding to each feature in Xi, / �ð Þ is the non-linear
mapping corresponding to the selected kernel, C is the strength of regularization, and fi
denotes the slack variable for the i th subject, which is used to allow for some mis-
classification on the training data in the case where the two classes (PTSD and control)
are not perfectly separable. In the case of polynormal, radial basis function, and sig-
moid kernels, there is an additional hyperparameter c. c is the scale parameter of these
kernels and interacts with the regularization strength of C.

The kernel, C, and c are optimized using cross-validation by grid search. Addi-
tionally, the degree of the polynomial kernel is optimized in the same manner.

Multi-layer Perceptron
A multi-layer perceptron (MLP) is a type of feedforward neural network that is also
commonly referred to as a fully connected or dense network. It consists of three main
components: (1) an input layer, (2) one or more hidden layers, and (3) an output layer.
By using non-linear activation functions in the hidden layers, MLPs are able to learn
non-linear decision boundaries between classes.

The hyperparameters optimized for in the multi-layer perceptron were the batch size,
the number of nodes in each hidden layer, the number of hidden layers, the validation
fraction used for early stopping, the non-linear activation function, and the amount of
‘2 regularization. These were all optimized using cross-validation by grid search. The
Adam optimizer [27] was used with initial learning rate of 0.001 and exponential decay
rates of b1 ¼ 0:9; b2 ¼ 0:999.
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3 Results

Model performance was evaluated using ROC AUC and is summarized in Table 3. For
the 6 models (feature sets) compared in the present study, using demographics alone
showed the worst model performance with ROC AUC scores in the range of 0.527 to
0.558 on the test set. Models using individual cortical morphological measures showed
better performance than using demographics alone; training a classifier on any of
volume, thickness, or surface area resulted in a higher ROC AUC score than training
that same classifier on demographics. The highest ROC AUC score for any individual
cortical morphological measure was 0.621 achieved by random forest on thickness.

Combining three cortical morphological measures did not improve model perfor-
mance notably except for logistic regression, which is a linear classifier and benefits
from the additional features. Finally, using both demographics and the three cortical
morphological measures resulted in the best model performance for each classifier,
although the classification accuracy was still not very strong. The highest ROC AUC
score of 0.648 was achieved using random forest. The specificity and sensitivity of this
model are 0.868 and 0.275, respectively, for a threshold at probability 0.5 for both
classes. This random forest model was fit by considering a random subset of 69 features
(out of 206 total) at each split.

The ROC curves for logistic regression (the least accurate classifier) and random
forest (the most accurate classifier) when using both demographics and the three cor-
tical morphological measures are shown in Fig. 1. Aside from a small interval between
false positive rate = 0.2 to 0.3, the random forest classifier is superior overall.

Table 3. Classification ROC AUC for all 6 models (feature sets) and 4 classifiers compared in
the present study. Both cross-validation (CV) and test set ROC AUC scores are shown. Most
accurate classifier on the test set shown in bold.

Logistic
regression

Random
forest

Support
vector
machine

Multi-layer
perceptron

Models CV Test CV Test CV Test CV Test

Demographics (D) 0.533 0.534 0.523 0.527 0.546 0.558 0.537 0.550
Volume (V) 0.592 0.573 0.576 0.576 0.569 0.582 0.578 0.514
Thickness (T) 0.609 0.576 0.572 0.621 0.587 0.610 0.585 0.606
Surface Area (SA) 0.619 0.566 0.568 0.592 0.571 0.576 0.569 0.572
V + T + SA 0.655 0.613 0.609 0.614 0.605 0.626 0.606 0.602
V + T + SA + D 0.656 0.615 0.609 0.648 0.609 0.633 0.605 0.626
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4 Discussion

Cortical morphological differences have been reported in individuals with and without
PTSD. The present study aimed to test whether cortical morphological measures are
useful to classify PTSD using machine learning algorithms with more than 3000 PTSD
cases and controls from the ENIGMA-Psychiatry Genomics Consortium PTSD
Workgroup, the largest PTSD neuroimaging dataset to date. The results suggest that
cortical volume, thickness, or surface area separately have modest prediction accuracies
when used as features for logistic regression, random forest, SVM, and multi-layer
perceptron classifiers. On the other hand, the classification using demographics alone is
poor and only slightly better than a random guess. Combining all of the features does
improve the prediction accuracy, but not by a significant amount.

For individual cortical morphological measures, we found that prediction accuracy
on the test dataset is best using cortical thickness as compared to using cortical volume
or surface area. Existing literature suggests that more PTSD-related cortical morpho-
logical differences were reported in cortical volume and in cortical thickness, and less
in surface area [2]. Importantly, these different prediction accuracies may suggest that
cortical thickness possesses more PTSD differences than cortical volume and surface
area.

Despite combining all three cortical morphological measures with demographic
factors yielding the best prediction accuracy, these findings are still lacking clinical and

Fig. 1. ROC curves for logistic regression and random forest classifiers with cortical volume,
thickness, surface area, and demographics as model features. The PTSD group is treated as the
positive group.
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practical meaning. This low accuracy issue has also been reported by studies using
machine learning analyses on brain morphological measures to classify PTSD and
other disorders [15, 28–31]. We provide potential explanations and future suggestions
here. First, PTSD brain morphological abnormalities have also been reported in sub-
cortical regions, such as smaller hippocampus volume [32]. Therefore, we speculate
that models using whole brain morphological measures would improve the prediction
power. Second, previous research using machine learning analyses with behavioral
symptoms obtained from self-reported questionnaires shows great predictive power for
identifying those at risk for developing PTSD [33]. Third, advanced neuroimaging
techniques, such as multimodal data fusion [34, 35], can combine non-redundant brain
imaging data and possibly improve the accuracy of classification. Finally, this study
pooled data from multiple cohorts that vary in inclusion/exclusion criteria, MRI
scanners, and PTSD assessments. These factors may confound the classification. Future
studies using machine learning algorithms to classify PTSD cases and controls should
consider incorporating neuroimaging measures with behavioral symptoms and elimi-
nate the confound factors to produce meaningful findings.
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Abstract. Unmanned segmentation of brain tumors is one of the hard-
est tasks to be solved in Computer Vision. In this work, we focus on
Convolutional Neural Network model to segment tumorous cells in MRI
brain scans. The inputs to the network are multi-channel MR image
intensity information extracted from patches around each point to be
predicted. The pre-processing steps are employed to precise the mag-
netic field bias and then intensity values are normalized using Z-score
technique. The training was done for both HGG and LGG and the net-
work was optimized with SGD in which the gradients are calculated using
Nesterov Accelerated Gradient. The obtained results are promising for
the complete tumor, the core tumor and the enhancing tumor segmenta-
tion. The propounded model achieved a dice score of 0.86, 0.62 and 0.65
for complete, core and enhancing tumor.

Keywords: Gliomas · Convolutional Neural Network · Brain Tumor ·
MRI · SGD

1 Introduction

Malignant primary brain tumors gliomas are one of the most dreadful cancers
on the humanity. Brain tumors not only lead to miserable prognosis but also
decreases the cognitive activity of the patient, which directly influences the well
being of the patient under consideration. The primary brain tumors are termed
as low grade astrocytomas or oligoastrocytomas (Low Grade Gliomas, LGG)
and high grade tumors are anaplastic astrocytomas and glioblastoma multi-
forme (High Grade Gliomas, HGG). Brain tumors are abnormality in healthy
human brain. The healthy brain comprises of white matter, grey matter and
cerbrospinal fluid if instead of these three components the other mass of tissues
(tumor cells) occur in the brain, they can be termed as tumors. Brain tumor
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tissues grow rapidly and get multiplied uncontrollably. The World Health Orga-
nization (WHO) classifies brain tumors into 4 grades. Grade I and Grade II
(astrocytomas and oligoastrocytomas) are low-categorized tumors, and anaplas-
tic astrocytomas and glioblastoma multiforme (GBM) are termed as Grade III
and Grade IV tumors. Grade III and Grade IV tumor are termed as HGG which
are dreadful with a highest mortality rate of 2 years.

The major challenge in the treatment planning and quantitative assessment
of brain tumors is the determination of tumor extent and accurate delineation of
brain tumors from MRI scans is necessary for treatment planning and to mon-
itor the progression of the disease. Manual delineation of these brain tumors
is time consuming and requires an human expert to segment them manually.
Hence, an automated segmentation method is helpful in large clinical facilities.
Gliomas which comprise of different tumor sub-regions with fuzzy and irregular
shapes cannot be detected with a single MRI modality. Hence, four different
MRI modalities are used namely, T1, T2, T1c and Fluid Attenuation Inver-
sion Recovery (FLAIR). These multi-modal MRI images consists complementary
information about different tumor tissues. Segmentation of brain tumors using
automatic methods is of prime importance for assessing the tumor structures.
They often pose a great challenge because of the variability of appearance and
fuzzy structure of the intra-tumorous cells in the brain. Recently, Convolutional
Neural Networks (CNNs) have proven remarkably good results for various image
segmentation and classification problems in different domains. With this moti-
vation, we propose a patch-based fully connected 2D CNN model to categorize
pixels in an MR image by applying the advanced concepts in discipline of neural
networks. The 2D patches are extracted from the tumoral sub-regions to avoid
class imbalance. The remainder of this paper focusses on different researchers
encompassing in the domain of brain tumor image analysis in Sect. 2. In Sect. 3
we discuss about the methodologies used in the proposed work. Section 4 empha-
sizes on the experimental organization for the proposed work. Section 5 we focus
on the Results and Discussion for the proposed work. In Sect. 6 we conclude the
paper discussing on the future enhancement.

2 Related Work

This section discusses about the distinct researchers encompassing in the domain
of automatic brain tumor segmentation. Acclaimed by Menze et al. [1] the work
in the domain of automatic brain tumor categorization has fattened widely in
the recent years.

Ayush Karnawat et al. [3] proposed radiomics based CNN for brain tumor
segmentation in which primarily the radiomic features were extracted and fur-
ther was trained with the Adam optimizer. Yuexiang Li et al. [7] focussed on
multiview Deep Learning framework for multi-modal brain tumor segmentation
in which 3 sub-networks are used for processing multi-modal brain images in
three different axis (x, y, z). Ashish Phoplaia et al. ashish proposed ensemble of
forest method, in which numerous trained decision trees was used for segment-
ing brain tumors. Reza Pourreza et al. [9] investigated on deeply supervised
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neural networks for brain tumor categorization in which holistically-nested edge
detection methods was used.

Mohammad Hamghalam et al. [27] proposed 2D Convolutional Neural Net-
work for prediction of central pixel using 3D to 2D patch conversions. Xiaowei
Xu et al. [28] focussed on attention based network to partition glioma sub-
regions. Xiaochuan Li [29] proposed multistage segmentation for exact delin-
eation of tumor sub-regions based on Cascaded modified U-net. Mingyuan Liu
[31] focussed on two stage model to obtain the overall shape of region-of-interest
and the second one to identify pixel level details. Michal Marcinkiewicz et al.
[32] worked on two stage fully convolutional neural network in which the first
stage detects target region and the second one performs multiclass classification.

The above discussed are some of the different researchers encompassing in
the domain of automatic brain tumor categorization.

3 Methodology

The methodology proposed is based on convolutional neural networks for brain
tumor categorization. The methodology is as follows:

3.1 Pre-processing

The intensity inhomogeneity generated owing to varying magnetic field strengths
is corrected using the non-parametic, non-uniform intensity normalization tech-
nique (N4) [16]. Further, the intensities are normalized using Z-score technique
to settle the data in proportion [30]. The normalization technique applied is
shown in Eq. (1):

Xn =
X − μ

σ
(1)

Here, X is the loaded image, μ and σ constitute mean and the standard deviation
of X respectively and Xn represent the normalized accomplished image.

3.2 Convolutional Neural Network

In this work, we investigate a 2D CNN model comprising of 5 layer architecture
for the categorization of brain tumors. The proposed model takes 2D patches
from 4 MRI modalities T1, T2, T1c and FLAIR for predicting the output for
each pixel in the patch, thus accomplishing categorization of entire brain tumor
region. The patches extracted from MRI modalities are inputs for the first layer
and the successive layers employ feature maps spawned by the previous layer as
input. The feature map Op is obtained by the following relation,

Op = bp +
∑

n

Fpn ∗ In (2)

Where In is the input plane, Fpn is the convolution kernel, bp is the bias and * is
the convolution function. In this method, the input patches are feed-forwarded
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through the network and the output predictions are compared to the ground
truth. The weight updates are backpropogated from the last layer and move
towards the input. The max-pooling layer retains the maximum value in a spec-
ified window. Thus, the max-pooling layer calculates every point in the feature
map I, by picking a max value in the window of length k.

Oa,b = max(Ii+k,j+k) (3)

At the end of the network a softmax function is applied to obtain a distribution
over segmented labels. The probability P of each class c, for n classes is given
by,

P (y = c|x) =
exp(xwc)∑N

n=1 exp(xwn)
(4)

where x and w are feature and weight vectors. The 2D spatial convolution is used
in this convolutional neural network. The two spatial dimensions in the data are
(x, y) and one dimension for each input sequence (T1, T2, T1c, FLAIR). Hence,
3D data (x, y, c) is analysed during the convolution operation.

Firstly, the patches are extracted from the tumoral sub-regions to avoid class
imbalance. Then, the Convolutional Neural Network consists of stack of layers,
in which the inputs are convolved with a set of filters. These filters are optimized
on training data using Stochastic Gradient Descent (SGD). After, the convolu-
tion operation is applied, then ReLu activation is applied. The 3D blocks of the
preceding layer is reduced to filtered 2D blocks. All the filtered 2D block are
combined to serve as 3D input in the successive layer. Finally, the softmax func-
tion is applied, so that the values of the output sum to one, thus enabling the
outputs to be interpreted as probablities.

The scheme of the proposed Convolutional Neural Network is described
below.

– Layer 0: The input patches of size 19 × 19 × 4 are fed into the input layer.
– Layer 1: In the convolutional layer 64 kernels of size 5 × 5 × 4 are convolved

with the inputs.
– Layer 2: The max pooling layer with kernel size 3 and stride of 3 is applied

which results in 5 × 5 × 64 nodes.
– Layer 3: The convolution operation is applied using 64 kernels of size 3 × 3

× 64.
– Layer 4: In this layer the pixels from layer 3 are fully connected with 512

nodes and the weights are determined by Backpropogation.
– Layer 5: Fully connected Softmax layer is implemented with 5 output nodes

(for the 5 intra-tumoral classes).

4 Experimental Setup

4.1 Dataset

The proposed work is accomplished on BRATS 2015 dataset, every subject in
the BRATS dataset consists of 4 MRI modalities T1, T2, T1c and FLAIR.
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Fig. 1. The CNN architecture for the proposed model.

Images are skull stripped and aligned to T1 with 1mm isotropic resolution in each
direction. The BRATS 2015 dataset consists of 220 high grade gliomas (HGG)
and 54 are low grade gliomas (LGG) subjects. The segmentation is performed on
the complete tumor (all tumor classes), enhancing and the core (non-enhancing
+ enhancing + necrosis). The ground truth has a label value 0-healthy tissue,
1-necrotic, 2-edema, 3- non-enhancing and 4-enhancing (Fig. 1).

4.2 Performance Metrics

The dice score, sensitivity and specificity metrics are employed to compute the
performance of the proposed model.

D(P, T ) = 2 × (|P1 ∧ T1|)
(|P1| + |T1|) (5)

Where P1-predicted lesion area, T1-true lesion area. The sensitivity is calcu-
lated enrolling the ensuing equation.

Sensitivity(P, T ) =
|P1 ∧ T1|

T1
(6)

The true negative rate or specificity is computed enrolling the ensuing rela-
tion.

Specificity(P, T ) =
|P0 ∧ T0|

|T0| (7)

Where P0 is the predicted healthy area and T0 is the true healthy area.
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5 Implementation Details

In this work, the implementation is done using the Keras Python library [18],
which has enormous methods and pre-trained models to implement the CNNs.
Theano [12] is enrolled as backend for Keras library. The Theano library uses the
underlying cuDNN [2] library for the computation of mathematical expressions
in n-Dimensional tensors. The model is trained on CUDA [22] enabled GPU
device and Intel Core-i5 machine with 16 GB of RAM.

The ReLu activation function [11] is employed for neuronal activation. The
Batch Normalization [13] technique is used to normalize the input data. The
dropout layer [15] is introduced on feature maps. And, Backpropogation along
with Stochastic Gradient Descent is used as an optimization technique.

The focus of the network training is to minimize the incorrect classifica-
tion while training and increase the chance of accurate classification. The CNN
depicts the probability allotment of all labels with an intent to increase the prob-
ability of forecasting actual label. The Stochastic Gradient Descent (SGD) [21] is
enrolled for training the network. Further, Mini-batch approach is enrolled dur-
ing training wherein it decimates the computation and memory requirements.
The SGD was additionally modified enrolling the Nesterov accelerated gradient
algorithm [17], which computes the variation in the gradient and then forwards
in the control of the gradient. This allows the Nesterov Accelerated Gradient
to calculate the gradient in prior to updating it, making it more active. The
gradient and velocity are calculated using following two equations:

vt+1 = μvt − lr � f(θt + μvt) (8)

θt+1 = θt + vt+1 (9)

6 Results and Discussion

This section focusses on the results acquired for the BRATS 2015 dataset by
using the proposed architecture. The 2D patches extracted from the four MRI
sequences T1, T2, T1c and FLAIR are employed for training and testing. The
dataset is divided randomly into training, validation and testing sets. The train
dataset consists of 70% of the data, the validation dataset consists of 15% of the
data and the testing dataset consists of 15% of the data. The training is done
using 5 fold cross validation repeated 10 times, so that bias can be prevented. The
network is assessed for 3 tumoral sub-regions complete tumor, core tumor and
enhancing. The proposed method has yielded promising results for segmenting
intra-tumoral cells in brain MR images, specifically in complete tumor segmen-
tation the Dice score, specificity and sensitivity results are promising. I The dice
score for complete, core and enhancing tumor is 0.86,0.62 and 0.65 accordingly.
The sensitivity for complete, core and enhancing tumor is 0.73, 0.67 and 0.63
accordingly. The specificity for complete, core and enhancing tumor is 0.74, 0.72
and 0.75 accordingly. The evaluated results are compared with the models of
other researchers and tabulated in Table 1, Table 2 and Table 3 (Fig. 2).
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Table 1. Comparison of dice scores for complete, core & enhancing tumor

Dice score

Method Complete Core Enhancing

Proposed 0.86 0.62 0.65

Pereira [6] 0.87 0.73 0.68

Davy [23] 0.0.72 0.63 0.56

Isensee [24] 0.85 0.74 0.64

Jesson [25] 0.88 0.78 0.68

Li [26] 0.86 0.86 0.77

Table 2. Comparison of sensitivity for complete, core & enhancing tumor

Sensitivity

Method Complete Core Enhancing

Proposed 0.73 0.67 0.63

Pereira [6] 0.86 0.77 0.70

Davy [23] 0.72 0.63 0.56

Isensee [24] 0.91 0.73 0.72

Jesson [25] 0.87 0.78 0.75

Li [26] 0.90 0.80 0.80

Table 3. Comparison of specificity for complete, core & enhancing tumor

Specificity

Method Complete Core Enhancing

Proposed 0.74 0.72 0.75

Pereira 0.89 0.74 0.72

Davy [23] 0.69 0.64 0.50

Isensee [24] 0.83 0.80 0.63

Jesson [25] 0.99 0.99 0.99

Li [26] 0.82 0.85 0.74
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Fig. 2. Segmentation results obtained for HGG & LGG data

7 Conclusion

In this work, we proposed the successful application of Convolutional Neural
Networks for segmenting intra-tumoral regions in brain MR scans yielding bet-
ter results for complete tumor, tumor core and enhancing tumor regions. The
clear benefit of this approach is that it does not depend on the manual feature
extrication. As the convolution kernels learns the features automatically. The
MR scans were pre-processed to remove magnetic field bias and intensity values
are standardized using Z-score normalization. To prevent overfitting Dropout
technique is used. The network is accelerated by enrolling SGD with Nesterov
Accelerated Gradient calculation which helped the network to converge faster.
As a future work, we plan to institute 2 nodes in the output for low and high
grade tumors which help in delineating tumor sub regions accurately.
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Abstract. Neuroscience is a vast field of study, important for its role in
human body and brain disorders. Neuroscientists tend to ask complicated
questions that need a complex set of actions and multiple resources. A
question resolution approach in this field should be able to address these
issues.

This study uses an ontology-based approach and creates codes that
mirror the internal structure of questions, called templates, to trans-
late questions to machine-understandable language. This research uses
ontologies to expand queries, disambiguate terms, integrate resources,
explore brain structures and create templates.

Keywords: Ontologies · Templates · Neuroscience · Question
resolution · Question answering

1 Background

Scientists in neuroscience ask sophisticated questions that need multiple
resources and are time-consuming to answer. Ontologies are one of the tools
that can assist scientists in answering those questions. Template-based question
resolution is also a method for translating questions to machine language.

This chapter reports an approach for resolving neuroscience questions.
Ontologies can be used to characterize and classify neuroscience questions. They
can also be used in disambiguation, query translation and resolving questions.

Ontologies can help resolve neuroscience questions by assisting resources inte-
gration and question-oriented tasks. As [4] states, a problem with answering neu-
roscience questions is that simple questions might need several time consuming
searches on different resources. Resource integration addresses this problem.

In question-oriented tasks, query disambiguation, expansion and translation
capabilities of ontologies are used to disambiguate neuroscience terms and resolve
questions, such as the approach used by [5]. Question resolution systems can
benefit from both resource integration and question-oriented tasks at the same
time, like the system described in [12,13].

Questions should be translated to machine language. A template-based app-
roach [10], is one that reduces and represents a question as a template, mirroring
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the internal structure of questions [32]. Templates include some missing elements
called slots, which are filled according to the question. After filling the slots, the
template is queried against the data. AskHermes [7], papers such as [1] and some
systems trying to reduce questions to templates in a textual entailment process
[18], such as work performed in [25], are examples of such systems.

In the remainder of this paper, Sect. 2 describes how this study was per-
formed, and Sect. 3 shows the outputs. In Sect. 4, results will be further analysed;
also, achievements and future goals will be discussed.

2 Methods

Neuroscience questions can be represented by their features (dimensions) [12,13].
Dimensions, which are selected through a careful question analysis process,
include entities, domain-specific phrases, data references, aggregation and sta-
tistical phrases and conditional phrases. For example, the token ‘hippocampus’
is tagged as an entity. Using dimensions, questions were classified into a hier-
archy. The question hierarchy is created based on the number, formation and
plausibility of different dimensions in a question. Each dimension is represented
by a Resource Description Framework (RDF) triple, which adds to the com-
plexity of the data. With regard to the formation and plausibility, the hierarchy
was informed by definition of a valid question [11], Bloom’s Taxonomy [3], Web
Ontology Language (OWL) definition and classes, and to some extent, Aris-
totelian categories and relationships explained in [28,30]. The hierarchy is as
follows:

– Level 0: Questions with only entities in them.
– Level 1: Level 0 plus domain-specific phrases.
– Level 2: Level 1 plus references to data.
– Level 3: Level 2 plus aggregation/ statistical phrases.
– Level 4: Level 3 plus conditions, changes or comparison.

Once a question was received, it was processed by processes depicted in the
left circle of Fig. 1. There, it was parsed and tokenized, stop-words were removed
and tokens were tagged by dimensions. Then, the question was classified accord-
ing to the question hierarchy. For more details on processes involved in this part,
please refer to [12].

In a question resolution system, following the initial pre-processing and clas-
sification, questions are passed to the processes located inside the right circle of
Fig. 1 to be translated by templates and eventually get resolved.

Templates were made based on the question hierarchy. A general high-level
template was created per each level, accompanied by several specific ones, except
level 4 that included changes, comparisons and conditional questions and needed
three. SPARQL was used for querying ontologies and Python was used for cre-
ating the overall templates and communicating with other applications such as
Freesurfer [14]. The right circle processes were responsible for question-oriented
tasks, such as query expansion and resource integration too.
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Query expansion seeks to remove ambiguities. Moreover, if the user wants
to receive more information, query expansion can help in increasing the recall.
Upon detecting terms such as ‘subparts’ in the questions or having the query
expansion selected by the user, queries were expanded in several aspects such
as synonyms, parent and child nodes of the dimension. Query expansion and
string matching can be performed using various methods and tools such as pro-
gramming languages, libraries, APIs and even standalone applications. Here,
SPARQL functions and filters were used, and then, the information was passed
to templates. Codes are available from https://github.com/Aref-cs/Templates.

To better resolve the questions, different resources, including the NIFSTD
[17] ontology and the Freesurfer application were integrated, using a subsection
of the Foundational Model of Anatomy (FMA) ontology [27], called NeuroFMA,
and according to the directions described in [23,24].

Fig. 1. The process of resolving a question

3 Results

First, a data-set, created from literature and questions posed by expert was gath-
ered and examined by an expert. This data-set, and methods used in gathering
it can be accessed via ~/Dataset-ch4-p3.

Then, templates were created to cover and translate as many questions as
possible. As described in Sect. 2, each template was created based on a level from
the question hierarchy. Table 1 matches questions to hierarchy levels.

For example, a level 0 question had one template, since based on definitions
in question hierarchy levels, a question was located under this group if it included

https://github.com/Aref-cs/Templates
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Table 1. Questions, their dimensions and level

Question number Question contains Level

7 Only 1 dimension 0

1, 6, 8, 9, 10, 13, 14, 22, 28,30 Entity + Domain-specific (attribute) phrase 1

2, 3, 5, 15, 16, 21 Entity + Domain-specific phrase + Data-reference 2

17, 18, 19, 20, 26, 29 Previous formations + Aggregation phrases 3

4, 11, 12, 23, 24, 25, 27, 31, 32 Previous formations + Conditions/Changes/Comparisons 4

only one dimension. “What is the amygdala?” is an example for this level. The
general pseudocode for this template is as follows:

SELECT distinct (?dim as ?Part) (Str(?label) as
?Name) (?def as ?Definition) (?com as ?Additional_Info)

WHERE {
GRAPH <http://localhost:3030/myDataset/data/NeuroFMA> {

dim rdfs:label ?label .
optional {?dim rdfs:comment ?com}
?dim fma:definition (or skos:definition for nif) ?def}

“What are the synonyms of hippocampus?” was a sample of level 1 ques-
tions. This question contained an entity and a domain-specific phrase, with the
dimension searching for, being ‘synonym’, which was a domain-specific phrase.
The general pseudocode for level 1, was as follows:

SELECT DISTINCT (?dim as ?Result) {
{VALUES ?type {ontology1 namespace (nif) :related predicates}.

?subject ?type ?dim.
} UNION {
VALUES ?type {ontology2 namespace (fma):related predicates}.

?subject ?type ?dim. } }

Level 2 was a little bit different from previous levels, since it worked with
data outputs of neuroimaging applications such as the Freesurfer. A sample of
such a file is available via ~/FreesurferDataFile.jpg.

“What is the volume of the insula in the data?” is a sample question for
level 2. This question contains entity, domain-specific phrase and data reference.
Here, ‘insula’ was found in Fressurfer data, using the mapping provided by the
NeuroFMA ontology, with Code 1.1.

Then, the information regarding the Freesurfer IDs was passed to Python
and using the Pandas library, the final result of this question was calcu-
lated and returned to the user. Instructions on pandas library is available via
~/general-panadas.py.

Level 3 codes were based on, and similar to level 2, since it was related to
aggregation and statistical phrases and only needed some extra calculations.
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SPARQL could implement those phrases conventionally with its statistical func-
tions such as Count, Min, Max, Avg and other related functions. Codes related
to this level can be accessed from the Github link, provided above.

Level 4 contained different subgroups including changes, comparisons and
conditions. Since changes in the data usually happen across different experiments
or readings, more than one data-set was needed while resolving such questions.
However, codes shared foundations with previous ones. A sample questions asso-
ciated with level 4 was “What region of the premotor cortex shows atrophy?”.
Atrophy can be measured only by looking at different data-sets from different
times or groups of patients. The same goes with groups of patients.

According to each of these, after the query expansion, the Python code with
the Pandas library will get the information regarding the sizes of the parts in a
loop using the pseudocode below:

# Load Pandas as shown in Github link
# Read data from related files ’file1.csv’, ’file2.csv’
data1 = pd.read_csv("filename.csv")
#one file per subject data (data2 for the second one)
count = 0
while (count < ‘number of loops needed
for reading the data’): count += 1

Read the data from the file as shown in
https://~/general_panadas.py
# Compare and calculate the result
# print out the result

Then the results of the loops were compared together. Please note that each
loop could consist of a number of available data-sets. Also, it is obvious that all
these loading and calculations add to the cost of calculations. Another type of
level 4 questions are the comparison questions, which were very similar to the
one above.

The last template for questions containing conditions was a little bit different,
because in questions containing conditions, the condition had to be resolved first,
since the rest of the question was basically a question from other levels, queried
on the result of the condition.

An example for a conditional question is “Which subjects show more atrophy
in cortical regions that are connected by the superior longitudinal fasciculus?”
In these types of questions, first the condition should be satisfied. Therefore,
regions that are connected by superior longitudinal fasciculus had to be found
as a separate query and stored as a graph first, and then the rest was queried
against it.

Altogether, around 10 main templates and several extra templates were made
in order to cover and resolve different types of questions. Main templates included
four templates for levels 0 to 3, and six different templates for level 4 questions
containing comparison, change and conditions.
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As discussed, resource integration enables users to ask more complex ques-
tions with a wider scope and contributes to richer results. Here, NIFSTD ontol-
ogy and Freesurfer were connected using NeuroFMA ontology, using directions
provided by [24]. The general form for mapping resources was as follows:

Code 1.1. Code for mapping between resources

SELECT DISTINCT ?fmaS ?fmaName ? neuro l ex Id ?nlxName
WHERE {? fmaS fma : pre ferred name ?fmaName ;

fma : Neurolex ? neuro l ex Id .
OPTIONAL {? nlxAnt owl : annotatedTarget ? neuro l ex Id ;

fma : name ?nlxName .} }
The approach presented in this study could resolve 78% of questions in the

data-set. One important outcome of this study, was its success in resolving dif-
ferent types of questions via templates.

4 Discussion

Here are several issues, including related works and a critical reflection on results,
which explores role and effects of different elements in this study such as tem-
plates and ontologies; moreover, limitations and future work is discussed.

Related works to this study included AquaLog [21,22] and later, PowerAqua
[20] and Freebase [9,33], which were systems designed for tackling queries on the
semantic web. They were among the first systems using ontologies. One other
system that was related to this study, was NIF search [2,16,17]. NIF queries
included searching for synonyms; some conjunctive queries; searching hierarchies
and seeking for collection of terms. BioDB [15] is another ontology-based system
in the biological domain.

There are other related studies outside neuroscience field, such as the KA-
SB [26] that integrates resources and performs reasoning in biology, or works
presented in [6,31] towards general question answering.

Critical reflection on results show that a noticeable feature of the approach
discussed here, is its flexibility and ability to be extended as a result of using a
modular design and usage of ontologies. Furthermore, its comprehensiveness is
a result of bringing different resources together.

The approach discussed in this study has the ability to resolve complex free-
text questions containing synonyms, descriptions, hierarchical terms such as par-
ents and children of a term, comparisons, patient related data, changes in the
data, condition and aggregation phrases. Therefore, this study covers a wide
range of questions. It can potentially answer more questions.

Answering more questions needs creating separate templates for unique ques-
tions or using user-interaction. For example, “What are the positive effects of
aspirin on elderly people?” was not resolvable because of abstract terms such as
‘positive’ and ‘elderly’. However, this question might be potentially resolvable
through simple methods like user-interaction, or more sophisticated methods
such as using knowledge graphs according to methods investigated by [8].
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Something that is worth discussing is the resolution of questions containing
temporal phrases. In this study, they were resolved using a mixture of Python
and SPARQL. There are ontologies that contain information on temporal and
other aspects of the neurosience, and can assist in resolving questions, including
the DICOM ontology, which contains information regarding the patient and
imaging procedures; OBO-RO, which contains information regarding relations
in biomedical ontologies and RadLex ontology [19], that includes information
regarding neuroimages. Fortunately, the approach of this study allows adding
other ontologies.

Templates being based on the question hierarchy, inherited its hierarchical
form, which allowed templates on higher levels to be built based on lower-level
templates. This, simplified the implementation by making it a modular one and
decreased coding and debugging. Templates played a significant role in automat-
ing the process of resolving questions. However, correct classification of questions
is also important in its success.

Ontologies worked as sources of data, complementary data and means of
disambiguation and a bridge to other sources. Figure 2 demonstrates a high-level
view on how the model and ontologies assisted in finding answers for questions.
It shows how processes such as query expansion and disambiguation benefited
from ontolgies, apart from the benefit of synonyms and string matching. It shows
what sorts of problems would have been faced if ontologies were not present.
Furthermore, it depicts why answering certain questions was not possible without
ontologies due to the level of MRI image resolution; for example, in “What is
the white matter volume of subparts of the fusiform gyrus in the patient?”,
‘subparts’, which are visible in MRI images can be found using ontologies. The
role of ontology in resource integration was discussed previously. Please note
that, these uses rely on the expressive power, comprehensiveness and quality of
the ontology.

Fig. 2. How ontologies assisted query expansion, disambiguation, and finding new
information

Ontologies are getting more popular and are showing prominent benefits.
However, a standard method of accessing and handling ontologies, also removing
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redundancies, would make ontology-based applications flourish. Innovation such
as the OBO foundry [29] has helped this, but the process is still slow.

Introducing other image modalities such as fMRI, and moving towards a
multi-modal approach can be a future direction for this research. Another future
direction can be to factor issues that arose during implementation of templates
and updating the question hierarchy.

5 Conclusion

A background for answering questions in neuroscience in an automated way,
using ontologies and templates was given. Methods were described, and as a
result, a set of multi-level templates were created according to a question hier-
archy, which was based on ontologies.

The outcome was an approach that could answer 78% of questions in the
data-set successfully. Results were further discussed and related works were
pointed out. Roles of each element and its advantages and disadvantages were
explained. Future directions and ways of continuing the research were mentioned.

Acknowledgements. We would like to thank Dr. Nolan Nichols (Genentech, Inc.),
for providing us with technical information. Support for this work was provided by The
University of Melbourne School of Computing and Information Systems.

References

1. Abacha, A.B., Zweigenbaum, P.: Medical question answering: translating medi-
cal questions into SPARQL queries. In: IHI 2012 - Proceedings of the 2nd ACM
SIGHIT International Health Informatics Symposium, pp. 41–49 (2012). https://
doi.org/10.1145/2110363.2110372

2. Akil, H., Martone, M.E., Van Essen, D.C.: Challenges and opportunities in mining
neuroscience data. Science 331(6018), 708–712 (2011). https://doi.org/10.1126/
science.1199305. (New York, N.Y.)

3. Anderson, L., Krathwohl, D., Bloom, B.: A taxonomy for learning, teaching, and
assessing: a revision of Bloom’s taxonomy of educational objectives (2001). https://
eduq.info/xmlui/handle/11515/18345

4. Ascoli, G.A.G.: Twenty questions for neuroscience metadata. Neuroinformatics
10(2), 115–117 (2012). https://doi.org/10.1007/s12021-012-9143-4

5. Ashish, N., Toga, A.W.: Medical data transformation using rewriting. Front. Neu-
roinform. 9, 1 (2015). https://doi.org/10.3389/fninf.2015.00001

6. Athreya, R.G.: Template-based question answering over linked data using recursive
neural networks. Ph.D. thesis, Arizona State University (2018). https://repository.
asu.edu/attachments/211341/content/Athreya asu 0010N 18407.pdf

7. Cao, Y.G., et al.: AskHERMES: an online question answering system for complex
clinical questions. J. Biomed. Inform. 44(2), 277–288 (2011). https://doi.org/10.
1016/j.jbi.2011.01.004

8. Cimiano, P.: Knowledge graph refinement: a survey of approaches and evaluation
methods. Semantic Web 8(3), 489–508 (2017). https://doi.org/10.3233/sw-160218

https://doi.org/10.1145/2110363.2110372
https://doi.org/10.1145/2110363.2110372
https://doi.org/10.1126/science.1199305
https://doi.org/10.1126/science.1199305
https://eduq.info/xmlui/handle/11515/18345
https://eduq.info/xmlui/handle/11515/18345
https://doi.org/10.1007/s12021-012-9143-4
https://doi.org/10.3389/fninf.2015.00001
https://repository.asu.edu/attachments/211341/content/Athreya_asu_0010N_18407.pdf
https://repository.asu.edu/attachments/211341/content/Athreya_asu_0010N_18407.pdf
https://doi.org/10.1016/j.jbi.2011.01.004
https://doi.org/10.1016/j.jbi.2011.01.004
https://doi.org/10.3233/sw-160218


Resolving Neuroscience Questions Using Ontologies and Templates 149

9. Cui, W., Xiao, Y., Wang, W.: KBQA: an online template based question answering
system over freebase. In: IJCAI International Joint Conference on Artificial Intel-
ligence, January 2016, pp. 4240–4241 (2016). https://www.ijcai.org/Proceedings/
16/Papers/640.pdf

10. Dwivedi, S.K., Singh, V.: Research and reviews in question answering system.
Procedia Technol. 10, 417–424 (2013). https://doi.org/10.1016/j.protcy.2013.12.
378

11. Ely, J.W., et al.: Obstacles to answering doctors’ questions about patient care with
evidence: qualitative study. BMJ 324(7339), 710–710 (2002). https://doi.org/10.
1136/bmj.324.7339.710

12. Eshghishargh, A., Gray, K., Milton, S.K., Kolbe, S.C.: A semantic system for
answering questions in neuroinformatics. In: ACM International Conference Pro-
ceeding Series, pp. 1–5. ACM Press, New York (2018). https://doi.org/10.1145/
3167918.3167960

13. Eshghishargh, A., et al.: An ontology-based semantic question complexity model
and its applications in neuroinformatics. Front. Neurosci. 9, (2015). https://doi.
org/10.3389/conf.fnins.2015.91.00015

14. Fischl, B.: FreeSurfer. Neuroimage (2012). http://www.sciencedirect.com/science/
article/pii/S1053811912000389

15. Gupta, A., Condit, C., Qian, X.: BioDB: an ontology-enhanced information system
for heterogeneous biological information. Data Knowl. Eng. 69(11), 1084–1102
(2010). https://doi.org/10.1016/j.datak.2010.07.003

16. Imam, F.T., Larson, S.D., Bandrowski, A., Grethe, J.S., Gupta, A., Martone, M.E.:
Development and use of ontologies inside the neuroscience information framework:
a practical approach. Frontiers Genet. 3(JUN), 111 (2012). https://doi.org/10.
3389/fgene.2012.00111

17. Imam, F.T., Larson, S.D., Grethe, J.S., Gupta, A., Bandrowski, A., Martone, M.E.:
NIFSTD and NeuroLex: a comprehensive neuroscience ontology development based
on multiple biomedical ontologies and community involvement. In: CEUR Work-
shop Proceedings of the Neuroscience Information Framework, Center for Research
in Biological Systems, ICBO, vol. 833, pp. 349–356, University of California, San
Diego (2011)

18. Kouylekov, M., Negri, M., Magnini, B., Coppola, B.: Towards entailment-based
question answering: ITC-irst at CLEF 2006. In: Peters, C., et al. (eds.) CLEF
2006. LNCS, vol. 4730, pp. 526–536. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74999-8 64

19. Langlotz, C.P.: RadLex: a new method for indexing online educational materials.
Radiographics 26(6), 1595–1597 (2006). https://doi.org/10.1148/rg.266065168

20. Lopez, V., Fernandez, M., Stieler, N., Motta, E.: PowerAqua : supporting users in
querying and exploring the semantic web content. Semant. Web J. (2011). https://
doi.org/10.3233/sw-2011-0030

21. Lopez, V., Pasin, M., Motta, E.: AquaLog: an ontology-portable question answering
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Abstract. Neuronal signals allow us to understand how the brain oper-
ates and this process requires sophisticated processing of the acquired
signals, which is facilitated by machine learning-based methods. How-
ever, these methods require large amount of data to first train them on
the patterns present in the signals and then employ them to identify
patterns from unknown signals. This data acquisition process involves
expensive and complex experimental setups which are often not avail-
able to all – especially to the computational researchers who mainly deal
with the development of the methods. Therefore, there is a basic need for
the availability of open access datasets which can be used as benchmark
towards novel methodological development and performance comparison
across different methods. This would facilitate newcomers in the field to
experiment and develop novel methods and achieve more robust results
through data aggregation. In this scenario, this paper presents a curated
list of available open access datasets of invasive neuronal signals contain-
ing a total of more than 25 datasets.

Keywords: Computational neuroscience · Neuroinformatics ·
Neuronal spikes · Neurophysiological signals

1 Introduction

Neuronal signals are the electrical activity of neurons, which can be recorded
at different depths of the brain. They are key to understand its functioning,
and are used for diagnosis, brain-computer interface (BCI), biofeedback therapy,
rehabilitation and other applications [51].

The non-invasive signals, namely electroencephalography (EEG) and magne-
toencephalography (MEG), are more susceptible to noise but have the advantage
that are easier to acquire than their invasive counterparts [18,19,22]. Because of
it, there is a bigger amount of open datasets of them available for researchers. On
the other hand, the invasively recorded signals, i.e. electrocorticogram (ECoG),
local field potentials (LFP) and neuronal spikes, give us insight into specific
structures of the brain but are less represented [17].
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In the case of BCI applications, the use of invasive signals offers accurate
control, which is a prerequisite for user acceptance, combined with restoration
of somatosensation [53]. In contrast, EEG signals suffer from limited spatial
resolution, susceptibility to artifacts, and low information transfer rate which
makes them too slow for controlling complex devices [26].

The complexity of the spatio-temporal patterns of these signals calls for the
need of computational models to predict, classify and analyze these signals in
order to aid patients and researchers alike. In recent years machine learning has
contributed in many different disciplines including anomaly detection [10,58],
biological data mining [20], medical image analysis [2], natural language process-
ing [40,54], and disease detection [25,31]. These techniques have also helped to
develop powerful tools for neuroscience, but these methods rely on big amounts
of information [21]. A robust model requires ample data from different subjects,
of sufficient length to remove possible artifacts and with enough samples per
categories the study is looking to identify [23].

In the computational field, the use of public datasets to train, improve or
validate a model is a common procedure. However, the acquisition process of
invasive neuronal signal requires costly and complicated experimental setups
that are often not accessible to everyone, especially computational researchers
who are primarily interested in the creation of methods. This raises the need for
open data sources of invasively recorded neuronal signal in order to widen the
possibilities of research and to incorporate newcomers in the field.

On a wider scope, the importance of data availability lies in enhancing sci-
entific progress via reproducibility and self-correction, leading to credible find-
ings [13]. Other benefits are that the aggregation of data from different sources
may lead to new findings, being able to draw out more robust conclusions and
not having to employ resources on collecting similar data. Therefore, scientific
communities should strive to make data available for everyone.

The goal of this paper is to analyze the current state of publicly available data
of invasive neuronal signals, and provide an up to reference for future researches.
In the following sections we will describe the invasive neuronal signals, give an
overview of machine learning methods, detail and compare the data sets, discuss
current challenges of open data sharing and selection of datasets, and finally
draw out conclusive remarks.

2 Neuronal Signals and Analysis

There are several methods for recording invasive neuronal signals, and depending
on which one is used, the signals have different properties, such as frequency and
amplitudes. Their characteristics are described following paragraphs.

The acquisition of electrical activity by the placement of electrodes at the
epidural or subdural level of the brain is denominated ECoG. It has the benefit
of not suffering the distortions generated by the skull and intermediate issue
and possessing more amplitude than EEG. At the epidural level it has a spatial
resolution of 1.4 mm, while at the subdural level of 1.25 mm. It allows for the
acquisition of a wide range of frequencies, between 0 to 500 Hz [42].
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Through the low pass filtering of the extracellular electrical potential to under
100–300 Hz, in deep layers of the brain, LFP are obtained. The recording contains
a mixture of neuronal processes, for instance synchronized synaptic potentials,
after-potentials of somato-dendritic spikes and voltage-gated membrane oscil-
lations. Thus, it is composed of the contribution of several different neuronal
processing pathways and they posses the advantage of providing stable signal
for longer period of time than multi-unit spiking activity [24].

The acquisition of neuronal spikes can be done through different techniques.
The patch clamp technique is used to measure ionic currents with a micropipette
in patches of cell membrane, tissue sections or individual isolated living cells.
When the detection of neuronal activity is performed with a microelectrode it is
referred to as single-unit recording, but if the electrode is of a bigger size than
micrometers then the activity of a group of neurons can be detected, and this is
named multi-unit recording [16].

The interpretation of these signals requires an experienced neurophysiologist
to visually examine them, which is a time consuming and monotonous task, as
well as prone to inter-observer variations. In order to aid the analysis, several
signal analysis techniques such as linear, non-linear, time domain and frequency
domain methods have been developed [1] to extract useful information from the
recorded neural activity. As machine learning techniques can make use of this
information to analyze large volumes of data, and automate the process, they are
increasingly used in many applications, e.g. the detection of noisy segments [10].
Figure 1 illustrates the different steps of manual and automated diagnosis as an
example. In the subsequent section, we will describe these techniques and their
properties.

Signal
Acquisitionon

Filtering Artifact
Removal

Feature
Extraction

Pattern
Recognition

DiagnosisAnalysis

Manual Process

Automated Process

Automated
Diagnosis

Fig. 1. Steps from signal acquisition to diagnosis via manual and automated processes.

3 Machine Learning Techniques

Machine learning techniques are algorithms that learn from patterns in data
and are able to make predictions based on it. There are three main types of
learning problems. First, supervised, is task driven such as a classification or
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regression problem where the data has previously been annotated. Examples
of these algorithms are: linear discriminant analysis, support vector machines,
k-nearest neighbours and random forest.

Second, unsupervised, the algorithm groups unlabeled data so that the prop-
erties of objects within a group are resembling and properties in other groups are
different. This includes partitioning methods (k-means), hierarchical methods,
density based methods, fuzzy clustering and others.

Lastly, reinforcement, an agent learns to interact with an environment. It
is important to point out neural networks, due to their massive success and
popularity, and that they are used across all three learning problems. Neural
networks are composed of multiple layers of neurons for processing of non-linear
information and were inspired by how the human brain works.

In spite of the success of machine learning, the complexity of the problem
increases the amount of information these techniques require. Therefore, in the
following section we present accessible sources of data that can be used to address
this, via their direct use or their incorporation to private datasets.

4 Open-Access Datasets

While datasets found online range from a few kilobytes to several terabytes, we
have included those of intermediate size of 1 to 10 GB. This inclusion criteria
was selected based on the 2018 online poll “Largest Dataset Analyzed/Data
Mined” [15], conducted by a popular site on AI, Analytics, Big Data, Data
Science and Machine Learning. The survey received a total of 1108 votes from
students, members of academia, researchers in the private sector, governmental
or non-profit members, and others; where the majority voted the 1.1 to 10 GB
range, as depicted in Fig. 2. This can be attributed to the fact that datasets of
less than 1 GB may not provide enough information to extract robust models,
and those bigger than 10 GB can prove difficult to handle, store and analyze.

Table 1 contain the selected list the LFP, neuronal spikes and ECoG datasets.
The table includes the type of neuronal signal, the subjects the signals were
acquired from, the format of the data, the size of the dataset, the repository
they were stored in, the complexity of the dataset from an exploratory data
analysis (EDA) perspective, the research area of the study and the corresponding
reference.

Given that the recordings were made for different research topics, different
test subjects were used by researchers. Figure 3(A) shows the ratio of the type of
subjects signals were acquisition from, sorted by each type of signal. The three
most used subjects are rodents in 12 datasets, followed by humans and monkeys
in 7 datasets each. Because of the availability of subjects, ethical approvals, and
the risks damage to the neuronal tissue, the most human datasets are in ECoG,
as they are the least invasive.

The Fig. 3(B), on the other hand, indicates the proportion of the different
data formats used to store neuronal recordings in the surveyed datasets. The
format .mat is an overwhelming majority, suggesting that Matlab software is
the preferred programming language used in the neuroscience field.
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Table 1. Open-Access Invasive Neuronal Datasets

Signal Subjects Type Size

(GB)

Host EDA Research area Ref.

LFP Rodent .mat 3 Dryad Medium Cortical responses to

sensory inputs

[43]

Rodent .mat 10 Dryad Complex Intracellular dynamics

of interneurons and

pyramidal cells during

spontaneous and

visually evoked gamma

activity

[36]

Rodent .mat 2 Dryad Complex Connectivity patterns

underlying replay in a

network model of place

cells

[49]

Rodent .mat 3 Dryad Simple Predicting behavior

across tasks and species

[45]

Rodent .mat 1.3 Zenodo Medium Neocortical inhibitory

neuron function in

awake mice

[34]

Rodent .mat 3.6 Figshare Medium Not specified [56]

Rodent .mat 1.4 Harvard Dataverse Complex Ketamine and walking

induced gamma

oscillations

[12]

Rodent .mat 1.5 CRCNS Complex Auditory cortex

response

[8]

Rodent .mat/.csv 8.3 CRCNS Complex Network Homeostasis

and State Dynamics of

Neocortical Sleep

[55]

Human .h5 3 Dryad Complex Tracking the lead-up to

impulsive choices

[35]

Ferret .csv 2 Dryad Simple Anesthesia effects [57]

Spikes Rodent .mat 2.4 DIR Medium Spike and burst coding

in thalamocortical relay

cells

[59]

Human .mat 6 OSF Complex Memory Task [5]

Simulated .mat 2.2 Zenodo Simple Spike sorting [4]

Monkey .mat 9 Dryad Complex Effects of transcranial

magnetic stimulation

[41]

ECoG Rodent .h5 3.94 Brainliner Simple Visual cortex

stimulation

[50]

Human .mat 6 Kaggle Simple Classification of

graphoelements and

artifactual signals

[27]

Human .mat 3.5 Zenodo Complex Visual episodic

recollection

[32]

Human .mat 1.12 MNI Open iEEG Atlas Simple Sleep study [9]

Human .mat 2.15 MNI Open iEEG Atlas Simple Are high frequency

oscillations biomarkers

for seizure

[7]

Human

and Dog

.mat 10 Kaggle Simple Seizure detection [48]

Monkey .mat 3.3 Neurotycho Simple Artifact removal [33]

Monkey .mat 5.96 Neurotycho Simple BMI decoding [44]

Monkey .mat 1.1 Neurotycho Medium BMI decoding [6]

Monkey .mat 1.76 Neurotycho Medium Visual grating task [30]

Monkey .mat 3.98 Neurotycho Simple Emotional movie task [28]

Monkey .mat 1.9 Neurotycho Simple Fixiation task [29]

www.datadryad.org
www.datadryad.org
www.datadryad.org
www.datadryad.org
www.zenodo.org
www.figshare.com
https://dataverse.harvard.edu
www.crcns.org
www.crcns.org
www.datadryad.org
www.datadryad.org
https://data.donders.ru.nl/
www.osf.io
www.zenodo.org
www.datadryad.org
www.brainliner.jp
www.kaggle.com
www.zenodo.org
https://mni-open-ieegatlas.research.mcgill.ca
https://mni-open-ieegatlas.research.mcgill.ca
www.kaggle.com
www.neurotycho.org
www.neurotycho.org
www.neurotycho.org
www.neurotycho.org
www.neurotycho.org
www.neurotycho.org


156 M. Fabietti et al.

0%

5%

10%

15%

20%

25%

le
ss

 th
an

 1
 M

B

1.
1 

to
 1

0 
M

B

11
 to

 1
00

 M
B

10
1 

M
B 

to
 1

GB

1.
1 

to
 1

0 G
B

11
 to

 1
00

 G
B

10
1 

GB
 to

 1
 T

B

1.
1 

to
 1

0 
TB

11
 to

 1
00

 T
B

10
1 

T B
 to

 1
 P

B

1.
1 

to
 1

0 
PB

11
 to

 1
00

 P
B

ov
er

 1
00

 P
B

Dataset Size

Po
pu

la
rit

y 
(%

) 

Fig. 2. Popularity of dataset size while using them for machine learning based methods.
Modified from [15] .
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When it comes to ECoG records, it is worth mentioning IEEG.ORG, a col-
laborative initiative funded by the National Institutes of Neurological Disorders
and Stroke. It includes 819 public ECoG datasets, however it is currently not
possible to download entire datasets directly. Outside these open access datasets,
there are others which can be accessed upon request to their owners: Henin et
al. [14] and the RAM initiative by the University of Pennsylvania [39]. Lastly, the
European Epilepsy Database [38], consisting of more than 250 patient datasets,
is also available for purchase.

On regards to spikes and LFP data, Buzsáki Labs [37] have shared on their
platform approximately 40 Tb of data of from freely moving rodents recorded
over the course of several years. It was acquired across different brain structures
such as the hippocampus, thalamus, amygdala, post-subiculum, septal region
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and the entorhinal cortex and various neocortical regions. Lastly, other reposi-
tories that host invasive neuronal recordings but were not included in the table
are GigaDB, IEEE DataPort, Standford Digital Repository and SWEC-ETHZ.

5 Discussion

Currently, there are many challenges in both data sharing and in the selection of
open access data sources. In this section we will be discussing them, with inputs
of what has been mentioned in the literature and our findings.

5.1 Data Sharing

The sharing of experimental data has been a topic of discussion in neuroscience.
Wagenaar et al. [52] identified integrating different file formats, de-identifying
protected health information, and adhering to government regulations as obsta-
cles. They argued that the lack of a platform to share data and the enforcement
of sharing data after publishing causes a slower scientific progress.

Ferguson et al. [11] encouraged the sharing of small data sets produced by
individual neuroscientists, so-called long-tail data, for different approaches or
to aggregate them and learn new insights. Furthermore, they raise the need
for a scholarly system for credit attribution for data, equivalent to the system
for literature citations. They discussed as well negative aspects of data sharing,
such as: researchers fearing sharing data may lead to question the validity of the
analysis, the costs associated with managing, hosting and curating data and the
concern that re-analysis of data sets by non-experts will lead to a big amount of
poor contributions in the literature.

Amari et al. [3] have pointed out that the main challenges of shared databases
are publication methods, quality assurance, metadata, tools and ethical and legal
aspects. On the first subject, current publications contain selected parts of the
original data, and limited descriptions of the processes used. Second, quality
control is difficult when there is a lack of heterogeneity of data formats, large
variability of data and differences among data providers. Third, there is a need
for complete and standardized metadata in contrast of the free text format used
in journals. Fourth, it is not common for non-commercial coding to achieve
being generally recognised and used. Lastly, human subject anonymity must be
protected to avoid misuse of sensible information.

Teeter et al. [47] establishes key points of a discussion held on a workshop of
ways to advance public data sharing for computational neuroscience. While sim-
ilar aforementioned challenges and benefits are addressed, they also voiced that
new data sharing initiatives should aim for less represented data types, which
correlates with the aim of this paper. Additionally, they stated that progress in
the field could accelerate through the creation of test beds for improving and
benchmarking methods for analyzing and modeling neuroscience data.

www.gigadb.org
www.ieee-dataport.org
https://library.stanford.edu
https://ieeg-swez.ethz.ch
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On the topic of data format, the Berkeley Institute for Data Science con-
ducted a survey1 of 440 responses from nearly 90 unique universities and insti-
tutions of the EEG, MEG, and ECoG communities. The poll show that the top
80% of responses for which format they used for ECoG signals are: eeglab (.set),
elekta (.fif), european data format (.edf) and fieldtrip (.mat). Results indicate
as well that .mat is the format most respondents would be willing to share files,
followed by .set and .edf, as it is likely the format they’re already utilizing. This
coincides with our findings, as was previously shown in Fig. 3(B).

In the case of researchers aiming to create new public datasets, we encour-
age the use of the Neurodata Without Borders structure formulated by Teeter
et al. [46], made specifically to address the problem of heterogeneous metadata
and format.

5.2 Selecting Neuronal Open Access Data Sources

While a search engine for datasets2 has been recently developed, we identified the
challenge that datasets may be difficult to locate without the correct keywords
or prior knowledge of the available repositories. As there can be many possible
search results regardless of the input, the search through large quantities of
datasets and repositories in hopes to find a useful one can result in newcomers
being put off.

Even after locating datasets that include the information of interest, difficul-
ties arise. Through our research for this article, we found that common quality
problems of open datasets are not having sufficient data, possessing missing or
duplicate values, that the format of the data is not easy to manipulate, having
to match and standardize data when using multiple sources, that the database
is poorly structured and the lack of metadata, which narrows down the list of
possible options substantially.

Regarding metadata, in a few of the datasets we inspected it was only found
within published papers which laid behind paywalls. So while the data is accessi-
ble, the process of acquisition and its explanation are not. This restricts the use
of the data by limiting its comprehension, which may lead to data being used
for something that it is not intended for.

6 Conclusion

Invasive neuronal recording show promise for understanding the underlying cir-
cuits of brain disorders and the development of a broad number of neural inter-
face technologies. This being said, research employing invasive recordings are
often limited by the number of subjects and resources available to implement
complex experimental protocols. Because of this, open datasets are necessary to
advance neuroscience.

1 https://bids.berkeley.edu/news/bids-megeegieeg-data-format-survey.
2 https://datasetsearch.research.google.com/.

https://bids.berkeley.edu/news/bids-megeegieeg-data-format-survey
https://datasetsearch.research.google.com/
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Given the success of machine learning tools in the analysis of neuronal sig-
nals, shared data can be used for the validation of published methodologies,
creating a testbed to find a new state-of-the-art, or by means of breakthrough
findings rendered possible by combined resources that outweigh the capacities of
independent labs or even institutional projects. However, the datasets may suffer
from poor quality, lack standardized structure and contents, provide no direct
benefit to the proprietary researchers, and other difficulties that may hinder
their use.

In this paper we have presented a curated list of open invasive neuronal
signals datasets, given their under-representation. We have outlined the many
challenges that have risen with this modality, which have also been pointed out
by other authors in the field. We expect this work to function as a practical
reference for those interested to access this type of data to develop an approach
via machine learning.
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activity recorded from rat frontal cortex (brain regions mPFC, OFC, ACC, and
M2) during wake-sleep episode wherein at least 7 minutes of wake are followed by
20 minutes of sleep. CRCNS.org (2016). https://doi.org/10.6080/K02N506Q

56. Whittington, M., Adams, N., Hawkins, K., Hall, S.: 32 channel field array recording
of V1 alpha rhythm in vitro (2020). https://doi.org/10.6084/m9.figshare.11762508.
v1

57. Wollstadt, P., et al.: Data from: breakdown of local information processing may
underlie isoflurane anesthesia effects (2018). https://doi.org/10.5061/DRYAD.
KK40S

58. Yahaya, S.W., Lotfi, A., Mahmud, M.: A consensus novelty detection ensemble
approach for anomaly detection in activities of daily living. Appl. Soft Comput.
83, 105613 (2019)

59. Zeldenrust, F., Chameau, P., Wadman, W.J.: Spike and burst coding in thalam-
ocortical relay cells. PLoS Comput. Biol. 14(2), e1005960 (2018). https://data.
donders.ru.nl/collections/di/dcn/DSC 626840 0002 144?4. Accessed 14 June 2020

https://doi.org/10.1007/s12021-008-9009-y
https://www.kaggle.com/c/seizure-detection
https://doi.org/10.5061/DRYAD.N9C1RB0
http://brainliner.jp/data/brainliner/Rat_Eye_Stimulation
http://brainliner.jp/data/brainliner/Rat_Eye_Stimulation
https://doi.org/10.6080/K02N506Q
https://doi.org/10.6084/m9.figshare.11762508.v1
https://doi.org/10.6084/m9.figshare.11762508.v1
https://doi.org/10.5061/DRYAD.KK40S
https://doi.org/10.5061/DRYAD.KK40S
https://data.donders.ru.nl/collections/di/dcn/DSC_626840_0002_144?4
https://data.donders.ru.nl/collections/di/dcn/DSC_626840_0002_144?4


Automatic Detection of Epileptic Waves
in Electroencephalograms Using Bag of Visual

Words and Machine Learning

Marlen Sofía Muñoz1 , Camilo Ernesto Sarmiento Torres1 ,
Diego M. López2(&) , Ricardo Salazar-Cabrera2 ,

and Rubiel Vargas-Cañas1

1 Physics Department, Universidad del Cauca, Calle 5 #4-70, 190003 Popayán,
Cauca, Colombia

{marlensm,csarmiento,rubiel}@unicauca.edu.co
2 Telematics Department, Universidad del Cauca, Calle 5 #4-70,

190003 Popayán, Cauca, Colombia
{dmlopez,ricardosalazarc}@unicauca.edu.co

Abstract. Epilepsy is one of the most recurrent brain disorders worldwide and
mainly affects children. As a diagnostic support, the electroencephalogram is
used, which is relatively easy to apply but requires a long time to analyze.
Automatic EEG analysis presents difficulties both in the construction of the
database and in the extracted characteristics used to build models. This article a
machine learning-based methodology that uses a visual word bag of raw EEG
images as input to identify images with abnormal signals. The performance
introduces of the algorithms was tested using a proprietary pediatric EEG
database. Accuracy greater than 95% was achieved, with calculation times less
than 0.01 s per image. Therefore, the paper demonstrates the feasibility of using
machine learning algorithms to directly analyze EEG images.

Keywords: Childhood epilepsy � Feature extraction and selection � Supervised
classification � Visual categorization � Semantic categorization

1 Introduction

Epilepsy is one of the most recurrent chronic brain diseases worldwide [1]. It has an
idiopathic origin, although it is believed to be caused by one of many causes, such as
genetic origins, perinatal or prenatal injuries, brain, and congenital malformations
and/or brain infections [2]. Epilepsy is characterized by abnormalities in brain electrical
activity, generating unexpected, irregular, or involuntary movements of the muscles or
other manifestations such as increases in body temperature above 38 °C. In children, it
generally manifests for a first time from one month to six years [3] and can lead to loss
of consciousness. Depending on the period of each convolution, abnormalities can have
serious consequences, such as brain injuries, alterations in the neural network or even
deaths [3]. Epilepsy is a disease that mainly affects the child population: 10.5 million
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children in the world suffer epilepsy [4] with negatively involvement in the emotional,
behavioral, and social aspects of their lives [5].

Approximately 75% of the population suffering the disease live a healthy life, as it
can be controlled with early administration of antiepileptic drugs [3], or through
pediatric epilepsy surgery [5]. Therefore, early detection is critical in children to
improve their quality of life. Diagnosis of the disease is mainly based on clinical
records and, when more than two unprovoked seizures appear [1], the neurologist
confirms the case with the help of the electroencephalogram (EEG). The EEG shows
brain activity through electrodes placed in the scalp’s area, using the protocol of the
international system 10–20 [6]. However, neurologists or specialized healthcare pro-
fessional require a great deal of time reading the EEG. This affects the early detection
of the disease, mainly in developing countries, where there is a lack of trained
healthcare specialist [2].

Although EEG is relatively easy to implement and at affordable cost solution, it has
drawbacks when reading and analyzing it, because interpretation is performed by direct
visual inspection, which is a slow and time-consuming task [7]. In this regard, there are
proposals for EEG automatic analysis, most of which are adaptations of techniques
used in cardiology [8]. However, EEG signals represent a challenge, due to the large
number of channels that are used, the low amplitude per channel, and the non-
stationarity of each channel in the signal [9]. Because of these problems, many of the
analytical tools used in EEG studies have used machine learning to discover relevant
information in neuronal analysis, classification, and neuroimaging. The studies carried
out, according to the input data, can be classified into three types of categories: those
that use the signal values for each channel (39%), those that use characteristics cal-
culated from the channel to compute descriptors and properties for a specific event
(41%) and those which use images, mathematical transformations are applied to the
signal to convert it into an image (20%) [10].

A restriction on the use of machine learning methods, regardless of the type of data
used for the analysis, is the limited availability of a large volume of EEG records. To
solve this, many proposals have tried to apply these techniques with publicly available
databases [9]. However, these databases mostly contain adult EEGs recorded in
intensive care units [11]. Besides, their annotations correspond to the complete record,
and do not include annotations of specific segments. Regarding the type of data, almost
half of the proposals extract characteristics of each signal/channel such as spectral
density or statistical measurements, often analyzed in the frequency domain [10].
Proposals that use images generally transform the signal, or one of its attributes, into an
image such as a spectrogram that is then used in the analysis [12]. This paper reports a
methodology based on machine learning that uses the image of an EEG page as input.
A bag of visual words, extracted from this image, feeds a classification algorithm to
identify images (pages) with abnormal signals. The methodology was tested using a
pediatric EEG database collected and annotated in the development of the project
“NeuroMoTIC: system for the diagnostic support of epilepsy” [13, 16].

The rest of this paper is divided into three more sections: section two shows the
details of collecting EEGs, obtaining the visual word bag, and the algorithm perfor-
mance evaluation protocol. Section three presents the results obtained in each stage of
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the methodology. Finally, section four discusses the results, concludes this article, and
presents some guidelines for future work.

2 Materials and Methods

The implemented methodology consists of four stages (Fig. 1). In the first one, the data
set was collected and annotated. Then, in a preprocessing stage, each EEG page (the
images) was segmented, and the visual characteristics were extracted from them. Later,
in the modeling stage, several classification models were trained, and the model with
the best performance in the training stage was selected. Finally, in the evaluation stage,
the performance of the model was estimated with images of new patients.

2.1 Acquisition of Encephalograms

The dataset was constructed from EEG tests performed on 100 children, aged between
one month and 17 years old, with suspected epilepsy. This compilation was carried out
as part of the NeuroMoTIC project. The project’s objective was to propose and create a
system that allows the collection, management, and classification of clinical informa-
tion and EEG signals to support the diagnosis of epilepsy [13].

Data collection was carried out in compliance with the Declaration of Helsinki,
with bioethical standards, obtaining informed consent for each EEG record, which were
approved by the Ethics Committee of the University of Cauca, Colombia.

The device used in the acquisition was the BWII EEG with Neurovirtual BWII
Analysis software (https://neurovirtual.com/). The EEG was recorded following the
10–20 standard and a sampling frequency of 200 Hz, with a 50/60 Hz filter and digital
filter provided by the manufacturer’s software. The exams were taken at the premises
of the healthcare provider AXON PED S.A.S by a specialized technician. The duration
of each exam was 30 min and was interpreted and annotated by a pediatric neurologist,
who read it page by page and made different annotations that describe the observed
events, i.e. the name of the event, the duration, and the channel where it was recorded
(Table 1).

Fig. 1. Block diagram of the methodology used.

Table 1. Sample annotations for an electroencephalography exam.

Exam 1
Event Channel Time Observation

Poly-pikes FP1-F7 3 s Abnormality
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The events were divided into normal and abnormal. The normal exams contained
signs of patients without epilepsy, both in wakefulness and in sleep. The abnormal
signals presented four different types of patterns (Fig. 2): sharp waves, spikes, poly-
pikes, and spikes with slow-wave spikes.

2.2 Image Pre-processing

In this stage, we adapted and standardized the set of collected signals to implement it in
the modeling stage. First, all EEGs were converted to the edf format (European Data
Format) and stored using the device configuration of AXON PED S.A.S. according to
the 10–20 standard. Subsequently, we selected the exam visualization tool, which was
the software named EDFBrowser (https://www.teuniz.net/edfbrowser/). This tool is a
free, open-source, multiplatform, universal viewer, capable of displaying time series
such as EEG, EMG, ECG, among others. Besides, it has a set of different tools to
interact and modify the display parameters in a user-friendly manner (Table 2).

Dataset Partition. The data set was divided into two parts. First, a training dataset
with the EEG images of 70% of the patients. Second, a test dataset with the EEG
images of the 30% of the remaining patients. Data partition was randomly performed.

Feature Extraction and Selection. To extract the visual vocabulary from each image
package, we used the visual categorization technique of key points bag proposed in
[14]. To do this, we create a visual vocabulary of 500 words. This method was based

Fig. 2. Set of abnormalities considered in the study, a) spikes, b) poly-pikes, c) spikes with
slow-waves, and d) normal.
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on the construction of a vector of semantic descriptors invariant to rotation and
translation, taken from different parts of the images. We performed a semantic clas-
sification using two classifiers, Naïve Bayes and a Vector Support Machine (SVM),
which, according to the authors, is robust for disorganized backgrounds without
making use of geometric information.

2.3 Modeling

In the modeling stage, we tested 24 supervised classification algorithms for which we
adjusted and varied their different parameters. We select the model with the best
performance in the training stage, in terms of average accuracy. Some of the varied
settings were:

• Cross-validation: the value of the folds varied between 5 and 15.
• K-nearest neighbor (KNN): the Euclidean distance was applied, and k varied from 3

to 10.
• Support Vector Machine: two types of kernel were applied, linear and polynomial

with the degree of the polynomial varied from 2 to 5.
• Assembly of Classifiers: the size of the subspaces varied from 1 to 4.

2.4 Performance Evaluation

In this stage, we evaluated the best model from different performance indices, using the
k-fold method with cross-validation, because this test guarantees that the results are
independent of the partitions between training and testing datasets [15].

Using the test set, we calculated the confusion matrix, and later the following
indices were derived: Accuracy, Sensitivity, Specificity, Precision, F1-Score and
Matthews Correlation Coefficient (CCM).

Table 2. Display parameters for capturing each image.

Parameters Description

Timeline 10 s/page
Amplitude 100 µV
Background White
Axes Hidden
Channels 19
Channel nomenclature Visible
Electrooculogram Visible
Electrocardiogram Visible
Tonality Blue
Edges and software interface Hidden
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3 Results and Discussion

This section presents the results obtained in each of the stages proposed in the
methodology.

3.1 Dataset

A total of 100 EEG tests were collected with a duration of 30 min each. Besides,
interpretation and annotations were performed with the follow-up of a pediatric neu-
rologist, and the main characteristics of the patients contained in the dataset were
identified. The data was divided into demographic data and the conclusion of the
diagnostic test, i.e., abnormal, or normal (Table 3).

3.2 Pre-processing

In total, 401 images were obtained in jpg format with 1920 � 906 pixels, where the
acquired signals were grouped into normal and abnormal (Fig. 3).

Likewise, the abnormal category consisted of sharp waves, spikes, poly-pikes, and
spikes with slow-waves, 166 images of abnormalities were collected in total (Table 4).

Table 3. Patient Demographics

Number of
patients

Min. age Max. age Mean age Gender Conclusion
M F

34 24 days 14 years 5, 86 years 21 13 Abnormal
66 22 days 17 years 6, 6 years 39 27 Normal

Fig. 3. Example of an EEG page annotated as abnormal.
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Each EEG page was represented with a vector containing a bag of 500 visual words
(Fig. 4). The visual word vector set was used as input for the classification stage.

Table 4. Dataset composition according to diagnosis.

EEG No. patients EEG pages

Normal 66 235
Abnormal 34 166

Fig. 4. Examples of the occurrence of visual words for an EEG page with abnormalities (a) and
a normal one (b).
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3.3 Modeling

At this stage, 24 classifiers were compared and to assure the best performance, their
parameters were varied as stated in Sect. 2.3. Table 5 shows the results of the top five,
according to their performance in the training stage.

For the assembly of classifiers, the cross-validation method with k = 10 was used in
their training, because this method guarantees that the results are independent of the
partition of the data and got higher performance. On the other hand, the cubic kernel
vector support machine (SVM) ranked third having the same classification performance
as the KNN. However, the SVM’s computational cost was less than the KNN,
0.0007 s/page vs. 0.0014 s/page, respectively.

3.4 Evaluation

According to the data in Table 5, the best classifier was the assembly of classifiers with
the k-folds method. With this model, the performance was estimated thought test data
set, the confusion matrix (Table 6) was obtained and the indices derived from it
(Table 7).

This data set allowed determining that the model is capable of generalizing and
estimating its good performance against new data that was not implemented in the
training stage.

Table 5. Training results of the five best classifiers.

Classifier Configuration Accuracy (%) Precision (%) Recall (%)

Assemble Two KNN subspaces. 96.8 96.8 95.2
SVM Quadratic Kernel 92.0 91.8 87.7
SVM Cubic Kernel 91.2 91.2 87.0
KNN k = 3 91.2 91.2 87.0
SVM Linear Kernel 90.0 90.4 85.6

Table 6. Confusion matrix for test data.

Prediction
Abnormal Normal

True class Abnormal 40 1
Normal 3 38
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4 Conclusions

This work’s main contribution is a methodology capable of detecting and identifying
EEG pages with different abnormalities that are useful for diagnosing epilepsy. These
abnormalities include sharp waves, spikes, poly-pikes, and spikes with slow-waves.
Also, a novel approach based on digital image processing and machine vision was
introduced, which has a methodological advantage as it is an alternative to classic
signal processing. It also saves the feature engineering process that was applied in other
approaches to EEG signals. The methodology’s performance reached an average
accuracy of over 95%, demonstrating the feasibility of analyzing electroencephalo-
grams using the images directly.

The direct use of EEG images with complex algorithms such as deep learning
algorithms is proposed as future work. Moreover, this methodology needs to be tested
in other databases with which comparisons can be made. Finally, after complying with
the previous steps, this methodology can be adapted to be implemented in a clinical
setting for the semi-automatic detection of epilepsy. Furthermore, the proposed method
is expected to have a major impact on the diagnosis and treatment of epilepsy patients,
for example, in low-income countries with high patient volumes and regions with
limitations in the provision of neurology services.
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Abstract. The study of the characteristics of hand tremors of the
patients suffering from Parkinson’s disease (PD) offers an effective way
to detect and assess the stage of the disease’s progression. During the
semi-quantitative evaluation, neurologists label the PD patients with any
of the (0–4) Unified Parkinson’s Diseases Rating Scale (UPDRS) score
based on the intensity and prevalence of these tremors. This score can
be bolstered by some other modes of assessment as like gait analysis to
increase the reliability of PD detection. With the availability of conven-
tional smartphones with a built-in accelerometer sensor, it is possible to
acquire the 3-axes tremor and gait data very easily and analyze them by
a trained algorithm. Thus we can remotely examine the PD patients from
their homes and connect them to trained neurologists if required. The
objective of this study was to investigate the usability of smartphones for
assessing motor impairments (i.e. tremors and gait) that can be analyzed
from accelerometer sensor data. We obtained 98.5% detection accuracy
and 91% UPDRS labeling accuracy for 52 PD patients and 20 healthy
subjects. The result of this study indicates a great promise for develop-
ing a remote system to detect, monitor, and prescribe PD patients over
long distances. It will be a tremendous help for the older population in
developing countries where access to a trained neurologist is very limited.
Also, in a pandemic situation like COVID-19, patients from developed
countries can be benefited from such a home-oriented PD detection and
monitoring system.
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1 Introduction

Parkinson’s disease (PD) is one of the most concerning neurological disorders
after Alzheimer’s disease for the elderly population around the world [1]. People
aging over 65 years are more likely to fall victim to PD that does not have
any permanent remedy yet. While global statistics show that the number of PD
patients is increasing rapidly every year, authentic data are not available for
an underdeveloped country like Bangladesh [2]. However, it has been roughly
estimated that around 1600 people in Bangladesh die while many more suffer
from this illness every year [3]. Still, we do not have adequate resources to detect
and support these patients with continuous monitoring.

The most obvious symptoms of PD are tremor, rigidity, slowness of move-
ment, difficulty with walking, and gait impairments caused by the loss of nerve
cells that produce a chemical call dopamine [4]. Among all of these symptoms,
tremor significantly affects the activities of daily life and the mainstay of treat-
ment for it is medication [5]. However, the dose of the medicine prescribed for
the patients needs to be adjusted based on the disease’s progression for which a
patient might need to be routinely checked which might not be possible for the
people of an underdeveloped country like Bangladesh.

Telemonitoring could be an effective alternative to remotely assess the symp-
toms of PD patients for detecting and monitoring the progression of this dis-
ease in underdeveloped countries. Especially in the time of pandemic situations
like in COVID-19, in-person health checks might not be accessible even in the
well-developed countries as well. To develop a home-oriented assessment sys-
tem, many researchers have studied and proposed different frameworks in the
past decade. Among these works, tremor and gait impairment analysis gained
significant interest. However, some of the data collection devices or setups are
not feasible to be accessed by the rural population both in the developed and
underdeveloped countries.

Therefore, in this study, we have focused on tremor and gait data collection
by the accelerometer sensor which is very common in today’s conventional smart-
phones. We have developed a mobile application that records the data from a
suspected PD patient and uploads it to the cloud where the feature extraction
and analysis is performed. After the result generation, the patient is notified
about his/her disease status according to the Unified Parkinson’s Diseases Rat-
ing Scale (UPDRS) revised by Movement Disorder Society (MDS) [6]. Also, the
patient is connected to a neurologist for a proper recommendation via the same
smartphone.

2 Related Works

Almost 75% of PD patients exhibit tremors during rest or action [7]. Classically,
PD tremor is reported as an asymmetric resting tremor (RT) within a frequency
range of 4–7 Hz that ceases with volitional movement [8]. However, the author
in [5] showed that the frequency of the tremors experienced in Parkinson’s disease
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lies between a slightly broader range of 3–8 Hz. Therefore, most of the studies
on tremor analysis focused on this range for feature extraction. Although rest-
ing tremor is a positive diagnostic criterion for PD, postural tremor (PT) is
also found to be mixed with it in almost 90% cases [9]. Recent work by Baz-
gir [10] has considered both types of tremors in classifying PD patients with
different UPDRS levels for developing a home-monitoring system. There have
been other studies on hand tremor acquisition using accelerometer sensors and
analysis with computers for remote detection of PD and development of sup-
pressor devices [11–13], however, most of these works did not include any other
assessment along with tremor.

Along with the tremor assessment, gait impairments are also evaluated in
MDS-UPDRS sub-scales. However, in most cases, gait analysis is performed as
a subjective measure. For quantitative measures, researchers looked into differ-
ent gait impairments throughout the disease’s progression such as the reduced
amplitude of arm swing and smoothness of locomotion [14], the decrease in speed
and step length, increased cadence [15], de-fragmentation of turn and problems
with gait initiation [16], freezing of gait and reduced balance [15], etc. To assess
these symptoms, non-wearable technologies have been used in many studies [17–
19], however, those systems are not feasible to be implemented in the rural
house-hold setup and can be costly for most of the people. Even some wearable
technologies [20–22] could be expensive though they can generate reliable data
for higher accuracy PD detection. Gait analysis from accelerometer sensor data
was presented in [23,24] with extensive study. The accelerometer sensors used
in these works were worn by the patients during data recording.

A combination of tremor and gait data for PD detection is found in sev-
eral works as in [25,26]. However, they have used data from different sensors
(accelerometer and pressure) for tremor and gait. Therefore, we were interested
to use accelerometer sensor data for tremor and gait impairment analysis in a
smartphone-based recording framework to make it a feasible and widely acces-
sible system for telemonitoring PD patients.

3 Materials and Methods

We have been actively working for the last five years to develop a telemonitoring
system for the people of Bangladesh [27]. As a part of our study, this paper
presents a framework on the analysis of accelerometer sensor data collected by
conventional smartphones to investigate different motor impairments such as
rest tremor, postural tremor, and gait of the suspected PD patients. To collect
the data, a smartphone is to be attached to the hand and the leg, respectively,
using a moderately tight band for capturing the tremor and gait (see Fig. 1 for
data collection procedure).

3.1 Data Collection, Storing and Transfer

During the rest tremor recording, the patient has to sit quietly in a chair and
place the arms on a comfortable place (the arms of the chair or on their thighs)
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Fig. 1. Data collection procedure: (a–b) rest tremor, (c–d) postural tremor, and (e–k)
gait data collection. Data collection protocol was adopted from the guidelines set by
International Parkinson and Movement Disorder Society [6]

with a smartphone attached to the arm being examined. The feet should be
comfortably supported on the floor for the whole 20 s of data collection (see
Fig. 1 (a–b)). Rest tremor can be assessed separately for both hands and both
legs, however, the name of the limb has to be mentioned in the data file.

For recording the postural tremor, the patients have to stretch both arms
in front of them keeping the smartphone attached to one of the arms under
examination (see Fig. 1 (c–d)) and hold this position for 20 s. In case of difficulty,
data can be collected for at least 10 s as well.

The same smartphone can be strapped on the leg to collect the gait data of
the patient. In this case, the patient is to walk for at least 30 m at a natural
pace. For severe walking difficulty, this length can be reduced to 15 m as well.
The sensor data will be used to get an insight of the gait characteristics. However,
the data collector has to add notes on whether the patient needed any assistance
(i.e. walking stick) during data recording. Figure 1 (e–k) shows different stages
of the gait cycle which will be assessed from the accelerometer data to predict
the presence of PD.

We used HUAWEI Y6 pro which is a very lightweight smartphone (150
g/5.29 oz) with a built-in 3-axes accelerometer sensor for data collection from 20
healthy subjects during development of the system. The sensor has a resolution
of 0.0012 m/s2 with a recording range of 78.4532 m/s2. The sampling frequency
of the mobile application used for data collection was 100 Hz. The acceleration
data were recorded in absolute unit (m/s2) and saved in a .txt files which were
later transferred to a laptop for signal processing and analysis using MATLAB
2019b. However, for the purpose of comparison of the proposed system, we used
tremor dataset of 52 PD patients collected by [10] using Sony Xperia SP Android
smartphone 100 Hz sampling frequency and UPDRS label assigned by the expert
neurologists of Hazrat Rasoul Akram Hospital of Tehran. The data collection
protocol followed the instructions mentioned in the MDS-UPDRS guideline [6].
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3.2 Signal Processing and Feature Extraction

Data Trimming, Detrending, and Filtering. As the beginning and the
end of each recorded session might be contaminated by sudden limb movements
from the patient (i.e. failing to maintain the posture) or intervention of the data
collector (for turning on/off the data recording application), we truncated the
first 2 s and the last 3 s from each sample files for increasing the data reliability.

These trimmed signals are usually biased by the orientation of the phone (i.e.
acceleration due to gravity in z-axis data) unless data is collected using alternate
coupling (AC) mode. Therefore, the raw data is passed through a detrend filter
during pre-processing. The detrending is done by eliminating the DC component
from the Fourier co-efficient by windowing the total duration of tremor in 200
samples per window without any overlap.

Finally, we used a wavelet filter bank to isolate the region-of-interest (ROIs)
frequency bands (0–12.5 Hz for gait analysis, RT & PT) and discarded the noise
(high-frequency bands). Debauchies mother wavelet of order 10 was used for
a 3 level wavelet decomposition since the sampling frequency was 100 Hz. The
approximation and the detailed signal at level 3 were used for feature extraction
for gait impairment-rest tremor and postural tremor respectively.

Table 1. UPDRS label based on tremor characteristics and primary features

Label Amplitude Ampl. Features Consistency (%time) Freq. Features

0 Low Avg. Energy Inconsistent Rate change of F

(almost 0) (almost none) Max. energy F

1 Medium Avg. amplitude Intermittent Trigger percent*

(<1 cm) Variance of P* (<25%)

2 Medium or High Mean of P Intermittent

(>1 cm, <3 cm) Rate change of P* (>25%, <50%)

3 Medium or High Max. amplitude Continuous Mode of F

(> 3 cm, <10 cm) (>50%, <75%) Skewness of F

4 Very High Continuous Range of F

(>10 cm) (>75%) Variance of F

Choice of Features and Feature Selection. As per the MDS-UPDRS label-
ing scheme, neurologists assess the quantitative measures of tremor mentioned
in Table 1 for assigning scores. Therefore we have chosen the mentioned fea-
tures primarily (some were used by other researchers while *marked features
were introduced by us) for differentiating between different UPDRS levels. The
amplitude features were chosen to separate 0, 1/2, and 3/4 as labels 1 and 2, and
labels 3 and 4 can pose very subtle distinction during discrimination. Frequency
features were chosen for discriminating between 1 and 2, and 3 and 4. Here, F
= the dominating frequency in each data window, P = maximum peak value in
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each window. trigger percent = the rate of recurrence of tremors to detect the
intermittent nature of it.

After extraction of these primary features, most informative ones were
selected using Minimum Redundancy Maximum Relevance (MRMR) algorithms
[28]. Table 1 shows the selected top 6 features (in bold) based on the ranks gen-
erated by the algorithm.

Since MDS-UPDRS has prescribed only subjective evaluation for gait and
freezing of gait assessment, we adopted the conventional temporal gait features
to keep the proposed system computationally simpler (and also because of the
fact that we are using accelerometer sensor data only) and implementable using
smartphone sensor data (Table 2).

Table 2. Temporal features for gait impairment analysis

Name of the feature Short definition for the time duration

Gait cycle Initial contact to initial contact on the same foot

Stance phase The foot is in contact with the support surface

Swing phase The foot is airborne

Step duration 2 successive events of the same type on opposite limbs

3.3 Models Training, Optimization and Extraction

Using different supervised machine learning algorithms we primarily selected top
three best performing classifiers for PD vs Non-PD detection from the tremor
data. Later, the PD positive patients were again classified using new models for
3 levels UPDRS label assignment where label 1 and 2 were merged together and
label 3 and 4 were merged together as they had subtle distinction threshold.
Finally, another training was performed on the PD positive patients for 5 levels
classification for UPDRS labels 0 to 4. All these models were trained using 5-Fold
classification and the model parameters were optimized by the machine learning
toolbox of MATLAB.

As for the gait analysis, we extracted the feature values from the time domain
analysis of the acceleration signal in each of the three axes. Gait cycle = the
time difference from Heel Strike (HS) to Heal Strike, Stance Phase = the time
difference from HS to Toe-off (TO). Swing phase = the time difference from TO
to next HS. Step duration = time difference between HS and Heel off (HO).
These are the typical temporal features for assessing different gait phases (see
Fig. 1 and the nominal values can be compared with the feature values obtained
from the suspected PD patient.

We could have used ML on the temporal feature values from gait analysis,
however, we kept this assessment as an alternative to the subjective evaluation



UPDRS Label Assignment by Analyzing Accelerometer Sensor Data 179

of gait according to the guidelines of MDS-UPDRS. Figure 2 shows the differ-
ent phases of gait on the acceleration sensor data. These phases can be easily
identified from the abrupt changes in the acceleration values in the 3-axes.

4 Results

Table 3. Classification accuracy, specificity and sensitivity from the tremor analysis

Used PD vs Non-PD 3 levels 5 levels

Classifier Accu. Spec. Sens. Acc. Spec. Sens. Accu. Spec Sens.

kNN 98.5 100 94.0 96.7 99.5 92.5 90.5 96.0 87.5

SVM 96.8 98.0 92.0 94.3 96.5 90.0 87.0 91.0 86.5

Naive Bayes 91.6 95.5 89.5 88.4 92.0 85.5 77.0 72.0 81.5

From the tremor data analysis, we got a maximum of 98.5% accuracy in
determining PD vs non-PD (or healthy) using kNN. For SVM and Naive Bayes,
the accuracy was 96.8% and 91.6%, respectively as shown in Table 3. The highest
specificity and sensitivity were found to be 100% and 94.0%, respectively for
kNN. However, when we moved on to 3 levels classification by joining UPDRS
levels 1 and 2 together and also joining UPDRS levels 3 and 4 together, the
accuracy dropped a little for all the classifiers. The results are shown under the
columns of ‘3 levels’ in Table 3. Also, in this case, kNN performed better than
SVM and NB with the highest accuracy, specificity, and sensitivity of 96.7%,
99.5%, and 92.5%, respectively.

Finally, for 5 level classifications (UPDRS labels 0 to 4), the accuracy was
found to be 90% using kNN while others exhibit below 90% (see Table 3 for
details). This time kNN provided the highest specificity and sensitivity of 96.0%
and 87.5%, respectively. The subtle difference between UPDRS levels 1 and 2
can be misdiagnosed very easily as in differentiating between levels 3 and 4.

As for the gait analysis, we adopted a very simple approach of temporal
features calculation from the gait events on the acceleration sensor data. The
gait events are shown in Fig. 2 which can be easily detected from the remarkable
changes in the value of acceleration in one or two axes. From the figure, we see
that the acceleration in the z-axis was not very prominent since the position of
the smartphone aligned the z-axis along the lateral direction (from side to side).
During straight walking, this direction does not observe much of an acceleration.
The calculated feature values can be compared with the pre-defined ranges for
PD and Non-PD patients to support the result (PD positive/negative or severe
stage of disease progression) obtained from the hand tremor analysis.
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Fig. 2. Different phases and events of gait cycle: the toe-down and heel-down take
place in between Toe-off and Heel Strike which is not shown in the figure

5 Discussion

Tremor data collected by smartphones might vary for different hand-sets that
vary widely in weights. Also, the elastic band used to attach the phone to the
hand might cause irritation or discomfort for some patients if fastened too tightly.
This might also cause a variation in the tremor data for those patients. Therefore,
an extensive study has to be performed on the same group of patients using
mobile phones from various vendors so that detection accuracy variation due to
phone/sensor model variation can be measured reliably. Besides, the accuracy
might degrade in particular patients who might consciously or subconsciously
try to suppress their tremor during data recording.

Although it is unlikely that the tremor data after ends-trimming will have
unwanted fluctuations in it, the data collectors have to carefully monitor the
patient’s limbs to notice whether any disruption or sudden movement had taken
place during the whole period of data recording. If necessary, new data has to
be recorded after discarding the contaminated one for reliable detection and
assessment of PD.

As for the gait data collection, the smartphone could be attached to the
hands as well to collect the hand-swing patterns during walking. However, the
patients have to be instructed to try and maintain the rhythm of hand-swing with
maximum possible amplitude so that the impairment becomes well pronounced
in the accelerometer sensor data. Although advanced gait analysis consists of
complex signal processing on the simultaneously collected data from different
body parts, the simplified approach of analyzing gait impairment from the lower
leg can effectively corroborate the result generated from the tremor data analysis.

6 Conclusion

Hand tremors from 52 PD patients with 20 healthy persons have been studied in
both time and frequency domains. Features were extracted and analyzed to dis-
tinguish among different UPDRS levels of PD. Based on the limitations observed,
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further analysis incorporating reliable features from amplitude information is
believed to improve labeling accuracy. However, the obtained accuracy is high
enough to launch a pilot application for further improvement of this project in
the rural setup of a developing country like Bangladesh. The incorporation of
gait analysis has increased the reliability of PD detection. As for future develop-
ment, incorporation of finger-tapping and leg-kicking is now under investigation.
The data could be collected using the same accelerometer sensor to provide more
information about the condition of the suspected PD patient.
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Abstract. Neurophysiological recordings, particularly neuronal signals
recorded using multi-site neuronal probes or multielectrode arrays, are
often contaminated with unwanted signals or artifacts from external or
internal sources. Almost all types of neuronal signals including electroen-
cephalogram (EEG), electrocorticogram (ECoG), local field potentials
(LFP), and spikes very often suffer greatly from these artifacts and
require extensive amount of processing to get rid of them. Despite consid-
erable efforts in developing sophisticated methods to detect and remove
these artifacts, it often appears a challenging task due to the inher-
ent similar spatio-temporal properties of the artifacts and the recorded
signals. In such cases, the incorporation of another modality can facili-
tate and improve the detection of these artifacts, and remove them. This
paper focuses on the EEG signal and empirically analyses the role played
by the addition of a new modality (e.g., cardiac signals, muscular sig-
nals, ocular signals, and motion signals) in detecting artifacts from EEG
signals.

Keywords: Computational neuroscience · Neuroinformatics ·
Electroencephalogram · Neurophysiological signals

1 Introduction

Neuronal signals have been extensively used in a large range of applications
including brain function decoding, brain-machine interfacing (BMI), rehabili-
tation, and so on. Among these signals there are invasive (electrocorticogram
or ECoG, local field potentials or LFPs and neuronal spikes) and non-invasive
(electroencephalogram or EEG) signals [25,46]. The EEG is a commonly used for
monitoring brain activities non-invasively. It functions through the placements
of conductive electrodes on the scalp, that record the electrical potentials that
occur outside the head due to neuronal activity inside the brain [13]. One of its
advantages is that it can be used in a variety of situations where other neuronal-
activity acquiring systems can not, such as ambulatory neuromonitoring and
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wearable BMI [19,21–23,36]. The downside lies in that it is susceptible to noise,
and there is a limit to how much the improvement of electrodes and hardware
can do to solve it. Not only EEG, all the neuronal signals when recorded are
susceptible to external and internal noises [17,18,20]. Many times these signals
and the noises have similar spatio-temporal characteristics which make them
difficult to remove using conventional methods [24]. This means that a lot of
processing must be done to the signal in order to obtain useful data.

There are many sources of noise, referred to as artifacts, which can be of
physiological or environmental and methodological origin. In the first category
we find ocular, cardiac, muscular, skin potentials or respiration sources. In the
second one, transmission lines, cellphone signals,light stimulation, movement,
electrode’s poor contact, popping and lead movements. Each artifact has dis-
tinct amplitudes and frequency bands that overlap with the desired neuronal
information [5].

A way to address this issue is incorporating another source of information
to the system that allows to identify the abnormal activity. The combination of
different formats of information is called multi-modality and is widely used in
other neuroscience areas such as neuroimaging, where multi-modality provides
clinicians with a metric of the relative health or dysfunction of the brain.

In this paper we evaluate the pros and cons of adding a second data source
to detect artifacts. Specifically, those where the multi-modal data are a required
input for the detection, not when it is only used to label data, train a model or
adjust a filter. The remainder of the article is structured in the following manner:
Sect. 2 reviews the approaches, Sect. 3 discusses the overall picture and Sect. 4
concludes the paper.

2 Multimodal Approaches

Each of the following sections first describes an artifact source (see Fig. 1), fol-
lowed by the review of the multi-modal approaches to address it and finishes
with an evaluation of the benefits of employing them.

2.1 Cardiac Artifacts

The electrical pulse from the heart has a strong signal intensity which can be
picked up in various locations across the body. This electrical artefact appears
as electrocardiogram (ECG) waveform recorded from scalp and forms the QRS
complex. The majority of the cardiac artefact frequencies are 1 Hz and amplitude
is in several millivolts. In addition, the expansion and contraction of the vessels
produced by the beating of the heart generates voltage changes into the record-
ings. These are called ballistogardiogram (BCG) artifacts, and have a frequency
range of around 0.5–40 Hz [43].

A reference channel of the ECG signal can be used to detect both QRS
and BCG artifacts. Lanquart et al. [15] developed an QRS removal technique
consisting of variance minimization, independent component analysis (ICA) and
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Fig. 1. Artifact sources.

morphological filters applied to the reference channel. Dora et al. [4] applied a
Continuous Wavelet Transform to the ECG in order to detect the R peaks, and
an estimated model of the QRS waves was generated with zero lines in between.
Subsequently, A linear regression of the model and the contaminated EEG was
applied to remove the artifacts.

Regarding BCG artifacts, Wang et al. [47] proposed using a clustering algo-
rithm to the ECG channel to capture the BCG artifacts features and combining
it with the constrained ICA algorithm to remove them from the EEG. McInstosh
et al. [28] trained a recurrent neural network to create the nonlinear mappings
between ECG and the BCG, which were later subtracted from the artifactual
EEG for real-time analysis.

Modern computational methods have proven to be effectively remove both
QRS [9] and BCG [14] artifacts, eliminating the need of an extra channel to
monitor ECG activity. This is beneficial as fewer channels means lower expenses,
shorter planning and simpler maintenance.

2.2 Muscular Artifacts

The frequency bandwidth of muscle contractions measured via electromyography
(EMG), is of 20–300 Hz, with the majority of the power in the lower end of this
range. When recorded in temporal EEG, the amplitude of muscle activity can be
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100µV, compared to less than 1µV originating from high-frequency neuronal
activity [29]. This calls for the need of an EMG artifact removal method.

Schwabedal et al. [40] utilized a CNN to predict the presence of artifacts in
different states of consciousness (Wake, Non-REM, REM) in mice. Four-second-
long sequences were sampled from signals extracted from the parieto-occipital
lobes (EEG1), frontal lobe (EEG2) and neck muscles (EMG). The authors varied
the number of recorded channels fed to the model, and the resulting F-1 score
obtained in the respective validation sets are depicted in Table 1. The incorpo-
ration of the EMG channel noticeably improved the detection scores.

Table 1. Results obtained by different input channels of [40].

Condition EEG1 EEG1+EEG2 EEG1+EEG2+EMG

Non-Rem 0.68 0.68 0.81

Rem 0.68 0.65 0.73

Wake 0.79 0.80 0.87

This suggests that the inclusion of additional EMG electrodes over key mus-
cle groups may be useful. Nonetheless, it can prove to be too complicated due
to the fact that the rich musculature of the head would need a large number
of bipolar EMG electrodes. The effectiveness of computational techniques that
don’t depend on reference channels such as ICA, is debated in the literature as
the processed data may still contain residual EMG [29].

2.3 Ocular Artifacts

Eye movement-related artifacts have the largest detrimental effect on EEG. As
the eye alters position, the resting potential of the retina changes and can be
measured using an electrooculogram (EOG). Blinking also causes involuntary
movement of the retina as well as muscle movements of the eye lid. Due to the
eyes’ close proximity to the brain, as the signal propagates over the scalp, it
can appear in the EEG as an artifact that can present serious complications in
EEG analysis. The amplitude of these signals can be many times greater than
the EEG signals of interest. This ocular signal can easily be measured using
electrodes placed above and below the eye [43].

Instead, various authors have proposed the use of an eye tracker, in combi-
nation with processing algorithms to remove EOG artifacts. Mannan et al. [26]
presented a system that utilized composite multi-scale entropy and eye tracker
events to automatically identify blink and eye movement artifacts related inde-
pendent components. Rivet et al. proposed [38] the estimation of EOG artifacts
on EEG recordings by a coupled tensor factorization approach using an eye-
tracker which was synchronously recorded. Maurandi et al.’s [27] contribution
consists in de-noising the EEG data via the estimation of the common temporal
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structure between gaze signals and the EOG artifacts using Multiple Measure-
ment Vectors.

In addition, Plochl et al. [34] developed an algorithm which classifies an
independent component as an artifact if it displayed a higher activation during
saccades than during fixation, using monocular pupil tracking. Samadi et al.
[39] introduced an enhanced ICA algorithm that classifies an independent com-
ponents as artifactual if, the cross-correlation of its first order derivative with
the first order derivative of a boolean valued blink trigger, exceeds a threshold.

It is important to outline that these methods rely on high temporal resolution
eye tracking devices, which in standard EEG experiments might not be available.
In those situations, there are other single channel applications which do not
require external sources, such as Ghosh et al.’s [6] which achieved a RMSE
of 0.024 between the cleaned signal and the original noise free EEG, using a
combination of an autoencoder and support vector machines.

2.4 Motion Artifacts

Motion can cause the position of the electrode on the skin to alter. This move-
ment can cause a variation in the distance between the recording electrode and
the skin, which results in a corresponding change in the electrical coupling, caus-
ing signal distortion [43]. The removal of these artifacts are of great importance
as EEG is the only noninvasive brain imaging modality that uses sensors that
are light enough to wear during mobility and possesses enough time resolution
to record brain activity on the time scale of natural motor behavior. First we
describe techniques that focus only on the movement of the head followed by
those on the motion of the whole body.

Head Movement Artifacts. The main approaches to detect head movement
artifacts is through the use of a sensor such as gyroscope or accelerometer.
O’regan et al. extracted features from the signals of the former, and in con-
junction with features of the EEG, trained the a linear discriminant analysis
[32] and a support vector machine [33] classifier to detect artifactual segments.

Several authors approached it via the application of an accelerometer.
Onikura et al. [31] and Daly et al. [3] removed the EEG’s independent com-
ponents whose Pearson’s correlation coefficient between them and values of the
accelerometer exceeded a threshold.

In a similar fashion, Tavildar et al. [44] used canonical correlation analysis
to find the correlation between the orthogonal components of the EEG signal
and of each of the accelerometer signals. Those above a threshold values were
considered as artifacts and removed. Also, Sweeney et al.[42] used an empirically
determined threshold to identify movement from accelerometer data, through a
quality of signal metric.

Bang et al. [1] however utilized a motion capture camera instead of a move-
ment sensor. Through the use of motion features captured by the frontal viewing
camera and the frequency features of the EEG the best support vector machine
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classifier was obtained. They claim that their procedure is more flexible than
the gyroscope-based and the accelerometer-based methods, because it can distin-
guish the many types of head movements. Having said that, the method discards
the classified artifactual segments, generating a big loss of information.

Dynamic Motion Artifacts. Three distinct modalities to dynamic motion
artifacts are found on the literature. First, Looney et al. [16] developed a sensor
that records both electrical and mechanical activity, which allows to detect local
skin-electrode motion. They used it in combination with the empirical mode
decomposition algorithm to effectively remove motion artifacts.

Second, Kim et al. [11] employed an accelerometer and a gyroscope, to mea-
sure 3-axis acceleration and angular velocity, respectively. They removed the arti-
facts by separating motion-related independent components from EEG record-
ings based on the similarities with components from inertial measurement units.
They were able to recover the contaminated EEG in motion comparably to the
one obtained in a seated condition.

Lastly, Gwin et al. [8] incorporated the data from motion capture cameras
and dual-belt in-ground force measuring treadmill to remove movement arti-
facts from EEG signals recorded during walking and running. In order for heel
strike events to happen at the same adjusted latencies in each epoch, the sig-
nals were epoched, time-locked to single gait cycles and linearly time-warped.
Subsequently, a channel-based artifact template regression procedure followed
by spatial filtering was used to remove the artifacts.

The use of motion capture camera restricts the recording to laboratory set-
tings, while the use of accelerometers and gyroscopes can be implemented in
ambulatory scenarios, due to their ease of use. The latter’s limitation lies in that
the six degree of freedom motion of the head influences individual EEG channels
differently, therefore head accelerometry is not correlated uniformly to all EEG
channels [12]. As an alternative, Oliveira et al. [30] successfully presented a tem-
plate correlation rejection of independent components for whole-body movement
artifacts.

3 Discussion

Having commented the multi-modal approaches on the previous section, Table 2
shows the evaluation of the usefulness of each modality signal per artifact. We
have dimmed that the use of small sensors do not interfere with the recording
process and have a positive effect on the detection of artifacts. Other method-
ologies are able to aid detection but at the cost of expensive hardware or the
use of more electrodes which maybe counterproductive outside laboratory set-
tings. Overall, advanced computational techniques have diminished the need
of multi-modal approaches in many artifacts. This is beneficial as they can be
implemented through software, which is already a mandatory step in EEG usage.

Despite the fact that ICA has shown to be efficient to remove artifacts, it
requires a large number of electrodes and the removed components may still
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contain some brain activities, leading thus to possibly misinterpretations of the
brain waves. In this scenario, single channel techniques come in useful. A lot
of progress has been done using machine learning techniques, which are able to
learn the relationships between artifacts and neuronal recordings. As a negative,
time must be spent labeling the recordings to train models or tune them to
specific patients, which is still a time-consuming task.

Table 2. Multi-modal approaches evaluation

Artifact Multi-modal Signal Usefulness

QRS ECG Low: the data may not be available and fewer
channels means lower expenses, shorter planning and
simpler maintenance [9]

BCG ECG Low: the reference signals are not identical to the
BCG, requires specialized hardware, and robust
recording of reference signals [14]

EMG EMG Low: the extensive musculature of the head would
need many bipolar EMG electrodes [29]

EOG Eye tracker Low: requires expensive hardware, not all are
compatible with glasses or portable, which limits
applications

Movement Gyroscope High: already integrated in some devices [3], no
application restriction

Accelerometer

Multi-modal sensor

Motion capture cameras Situational: limits study to laboratory settings

As authors have used different metrics to report their results, comparing
them is a difficult task. However it is clear that in present time, there is no uni-
versal method for artifact removal. Despite the fact that each discussed approach
referrers mainly to specific artifacts, the combination of algorithms in sequence
to improve the signal’s quality through the use of multiple processing stages in
which each step removes each artifact remains a possibility [45].

The recording complexity of multi-modal approaches lowers the availability
of open datasets, as a bigger amount data of different formats need to be curated.
In order to aid those looking for it, we would like to point towards the following
datasets with reference data from: ECG [2], EMG [7], motion [41], EOG [35],
and both EOG and EMG [10,37].

4 Conclusion

We have described the individual artifacts which obstruct EEG analysis,
reviewed the different multi modal approaches across the literature and eval-
uated their viability. In the majority of cases, incorporating an element to an
already complicated set up is unrewarding, as modern algorithms have achieved
successful results without them.

Many of these algorithms are machine learning applications, methods which
are able to draw out the complex patterns in data. Despite their utility, they
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require big amounts of information, therefore a list of open datasets has been
listed for readers looking to use multi-modality in artifact removal to bench-
mark a new algorithm or prove the effectiveness of them. In the future, we will
develop a tool to help compare the results between artifact detection and removal
methodologies.
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MICAI 2013. LNCS (LNAI), vol. 8266, pp. 413–422. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45111-9 36

24. Mahmud, M., Travalin, D., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.:
An automated classification method for single sweep local field potentials recorded
from rat barrel cortex under mechanical whisker stimulation. J. Med. Biol. Eng.
32(6), 397–404 (2012)

25. Mahmud, M., Vassanelli, S.: Processing and analysis of multichannel extracellular
neuronal signals: state-of-the-art and challenges. Front. Neurosci. 10, 248 (2016)

26. Mannan, M.M.N., Kim, S., Jeong, M.Y., Kamran, M.A.: Hybrid EEG–eye tracker:
automatic identification and removal of eye movement and blink artifacts from
electroencephalographic signal. Sensors 16(2), 241 (2016)

27. Maurandi, V., Rivet, B., Phlypo, R., Guérin–Dugué, A., Jutten, C.: Multimodal
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Abstract. Fall is one of the most serious clinical problems faced by
the elderly people. Elder people with neurodegenerative disorders like
Parkinson disease often fall. This leads to the damage of physical condi-
tion and also mental condition. Therefore, elderly people should be taken
care of all the time. However, it is not possible to take care of them
every moment. Therefore, an automatic fall detection system is required
to track elderly at any time. An automated fall detection system will
provide timely assistance and hence, it will reduce medical care costs sig-
nificantly. The recent developments in motion- sensor technologies have
allowed the efficient use of wearable sensors in the overall treatment of
the elderly. The paper presents a machine learning framework consisting
of data collection, preprocessing of data, feature extraction and machine
learning classifiers. They comprise C4.5, Random Forest, RepTree, and
LMT (Logistic Model Tree). Dataset used in this research has been col-
lected by using 3-axis accelerometer sensors which are mounted on a
person’s waist. Features have been extracted from this dataset which are
used by these classifiers. C4.5 gives the highest accuracy which is 97.36%
in comparison to other classifiers.

Keywords: Neurodegenerative · Fall detection · Accelerometer
sensor · Machine learning · Parkinson disease

1 Introduction

Regular natural processes sometimes place older people at an increased risk of
falling [15]. Falls are a typical and often neglected reason for injuries in old age.
Heart disease, hypotension, poor vision, muscle weakness etc. are the important
reasons of the fall of elderly people. Beside these reasons, neurodegenerative
diseases are another root cause of the fall of elder people which includes Parkin-
son’s, Alzheimer’s, and motor neuron disease. Progressive degeneration or death
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of nerve cells of elderly people results in Neurodegenerative diseases which are
almost incurable and makes the person in devastating health conditions. In a
country especially in a developing nation, these diseases have a significant impact
on the economy due to cost involved in treatment. Moreover, Neurodegenera-
tive diseases have a distressing impact in our society. Ageing people who are
affected by this disease face problems in movement, or mental functioning. One
of the most important neurodegenerative diseases is Parkinson’s disease that
affects predominantly dopamine-producing (“dopaminergic”) neurons in a spe-
cific area of the brain called substantia nigra. This disease is commonly known
as older person’s disease and is a combination of genetic and external factors.
Tremor of the hands or legs, impaired balance, lack of coordination, sleep prob-
lem, changes of vision, increased sweating are main symptoms of the disease
which are mainly seen at older age and these factors lead to fall that means
make the chance of falling at surface. Therefore, a quick response from a con-
cerned person is necessary when a fall of elderly people happens. But, the quick
response is difficult when an ageing person lives alone or in remote zones. Taking
into account the above reason, plenty of research interests have been seen to build
up a fall detection framework. The fall identification frameworks can basically
be separated into two groups: wearable device and context-aware device [8,17].
Context-aware devices are working in the area appliance for example floor sen-
sors, mouthpieces, pressure sensors, PIR sensors, and infrared sensors, cameras
[8]. The main advantage of these devices is that an individual doesn’t require
putting on any equipment. Anyway, there are some limitations in camera-based
frameworks. It can’t ensure the clients’ privacy and security, and it can’t distin-
guish if clients fall where they do not introduce cameras or around dark areas.
Moreover, dependent on 3D picture framework typically have certain delays. The
limitation of a pressure sensor is that we can’t recognize if pressure is from the
client’s weight, which might lead to the low accuracy. Approaches dependent on
wearable devices rely upon clothing with embedded sensors to catch the direction
and places of the subject’s body. In view of wearable and cheap, the wearable-
device based framework is the most generally utilized for fall identification. The
wearable-device based framework is that clients wear a few devices with embed-
ded sensors to get available data like acceleration, at that point the framework
procedure information by algorithms to perceive the client if fall or not. In addi-
tion, the device is cheap, convenient to carry and operation of the device is easy
to set up. This paper uses a tri-axial accelerometer sensor to detect fall of ageing
people which is placed on a person’s waist. The fall-features are calculated from
a 3- axis accelerometer sensor followed by a supervised machine learning-based
approach to capture fall events. This system is developed by training a learning
algorithm of various kinds of fall and activities of daily living (ADL) patterns.
After that an assessment algorithm marks various types of occurrence of fall
or ADL. A classic fall identification framework is represented in Fig. 1. The fall
recognition framework gathers information from the sensors and sends the infor-
mation into the processing unit. Numerous attributes are separated from the
sensor data by the processing unit. Fall is distinguished from the attributes by
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the suitable algorithms. At the point when the algorithms catch the occasions of
fall, an alert is activated. The alert made an impression on the families or caring
individuals or transmitting a sound admonition to pull in the consideration of
concerned people. Such a framework is perfect for fall identification that can
consequently recognize falls and give a warning mechanism. Using this system
we can protect neurodegenerative diseases patient’s from major loss by taking
proper steps. The distinguishing feature of this paper is that an assessment of

Fig. 1. A fall detection system.

the time-domain characteristics for the determination of the most discriminatory
features of fall by using supervised machine learning methods. The remainder of
the paper is categorized into different sections. Section two specified the litera-
ture review of the study and section three shows the methodology. Section four
analyzes the experimental results while section five concludes and presents the
future work.

2 Related Work

A variety of automated methods were recently introduced for fall detection.
Automatic fall detection systems may be focused on the vision, sound, or the
wearable device. Wearable fall detection sensors typically use the accelerometer,
gyroscopes, or several modes of sensing devices. Srinivasan et al. [22] investi-
gated the usual recognition of fall found on tri-axial accelerometer and Passive
Infrared sensors (PIRs). The vestment of three-axis accelerometer was installed
to capture falling events on the waist of the subject while PIRs were mounted to
provide longitudinal information. PIR sensor has used motionless signals to val-
idate fall events. Almeida et al. [4] introduced a walking cane with an integrated
gyroscope founded to its base to detect falls and assess walking speed. Fall events
were observed along sideward and forward axes depending on the amplitude of
the resulting angular velocity. The speed was determined by the total angular
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velocity of two neighboring peaks, separated between the two peaks by the time
interval. Warnings have been provided when a client is going quicker than his
normal movement. Lin et al. [18] conducted an optical sensor-based fall detec-
tion, and nine micro-mercury switches were installed into a smart suit. In the left
waist, the optical sensor was employed for detection of falls, while the fall fea-
tures (i.e., backward and forward) and user’s behaviors were detected with Micro
mercury switches. Grassi et al. [9] have integrated a 3D time-of-flight, a wearable
accelerometer (MEMS), and a microphone for fall detection. Three integrated
sensors were processed and tested with the appropriate algorithms separately on
a custom broad. For identification of fall detection floor image sensors is intro-
duced by Rimminen et al. [21]. The fall classification has been carried out using
a Markov two-state chain and Bayesian filtering approximation. Fall detection
system using a three-axial accelerometer mounted on the waist of the subject
along with a barometric pressure sensor is developed by Bianchi et al. [5]. They
developed a fall detection system by using the concept of difference between the
waist and the ground regarding ambient pressures. The experimental findings
show that the sensor data are helpful for detecting fall events. In a study of
fall detection Hou et al. [12] proposed a Smartphone device by using embedded
acceleration sensors to record human motion. In their study they found that
the accuracy of the SVM can reach 96.072%. Commodity based Smart watch
sensor can reach 93.33% accuracy in a real world setting of fall detection by
adjusting screaming data, sliding window and a Näıve machine learning method
[20]. The smart watch sensor can give a competitive score than that of other
expensive sensors. In this paper, we have used an accelerometer sensor for fall
detection, which is mounted on a person’s waist. Because the wearable sensor is
the cheapest and it is also chosen for its high accuracy.

3 Methodology

For the detection of fall, a machine learning based methodology is proposed in
this research. A publicly available dataset known as UR fall Detection dataset is
used for the proposed algorithm. Proposed methodology consists of four major
steps i.e. dataset collection, data preprocessing, feature extraction of the raw
data and detection of fall using machine learning classifier, as shown in Fig. 2.

3.1 Data Collection

The first step of the methodology is the collection of data that will be used in fur-
ther stages. In this research, a publicly available dataset is used for fall detection
known as UR fall detection dataset. This dataset is developed by University of
Rzeszow [16]. One IMU (Inertial Measurement Unit) with an accelerometer sen-
sor was used for the data collection. The IMU device was connected by Bluetooth.
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Fig. 2. Proposed methodology

This device was positioned at the waist of the volunteer’s (near the pelvis). The
data set includes 70 falls and ADL (Daily Livings Activities) sequences which
were captured by six volunteers. There are two types of fall in the dataset: fall
from standing and sitting on a chair. This dataset also comprises some normal
activities, such as lying on the floor, lying on the couch, sitting down, walking
and picking items from the ground. Each activity and trail has a single CSV file.
Data set description is illustrated Table 1.

3.2 Feature Extraction

Feature extraction plays an important role in a classification system for fall
detection, because the selected features can assess the system’s accuracy. Five
features are extracted from the sensor data. Each feature is extracted from the
accelerometer sensor along with three x-axis, y-axis and z-axis. These features
along with their mathematical expression are described in the below

The Magnitude of the Standard Deviation: The magnitude of the standard devi-
ation (SDM) represents the change in the magnitude of the acceleration for each
axis.

αxyz
=

√
α2
x + α2

y + α2
z (1)

This feature is sensitive to rotations without any change in magnitude, which
enables abrupt tilt changes to be identified.
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Table 1. Description of the dataset.

UR fall detection dataset

Scenario of the environment Office and home environment

Video clips Yes

Spontaneity of the movements Predefined

Number of types (ADLs/Fall) 5/4

Number of samples(ADLS/Fall) 70(40/30)

Duration of the sample (2.11–13.57) s

Number of sensing point 1

Types of sensor 1 external IMU

Sensor position Subjects Waist

Activities of daily livings Lying on the floor

Falls Forwards while seating

The Standard Deviation of Vector Magnitude. The standard deviation of vector
magnitude can be calculated by using the following function.

αa = α
√

x2 + y2 + z2 (2)

This feature has been selected to track sudden acceleration change, which is not
necessarily combined with body angle, for example, when someone falls on knees.
This feature, therefore, recognizes sudden changes in signal amplitude (peaks),
representing an impact resulting from a fall.

The Polar Angle Ratio: The polar angle is calculated with successive 20 samples.
The polar angle is calculated using the following equations from raw accelerom-
eter data.

arccos(z/
√

x2 + y2 + z2) (3)
This angle represents the body-angle and sudden change, which will indicate a
fall has occurred. The angles apply to a sensor-associated coordinate system.
Moreover, the ratio of its instant angle and its earlier values within a short time
span represents a sudden change in the angle of inclination.

The Difference of Polar Angle: The difference between polar angles is also deter-
mined in successive windows δθ. δθ also helps to cover large tilt angle variations.

The Difference of Polar Angle: Velocity can be calculated using the following
equation:

V2 =

√
(
∫

ax(t)2) + (
∫

ay(t)2) + (
∫

az(t)2) (4)

After the feature extraction, some machine learning algorithms were used for
classifying the fall activities. The classification algorithm works on a selected
feature.
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3.3 Fall Detection

After the extraction of the feature, the next step is to determine whether it falls
or not. The problem of fall detection is a binary classification problem. This
means that we will classify it as fall or non-fall operation (i.e. ADL). Therefore,
the entire dataset was divided into 2 classes. Class 1 on falling activities and
class 2 on non-fall activities. All the feature vectors extracted from the data col-
lected by the falling samples have been labeled Class 1. Feature vectors extracted
from the ADL samples have been labeled as Class-2. After labeling the sample
feature vector, we then used the 10-fold cross-validation technique to build bet-
ter prediction models for the machine learning classifier and to minimize the
bias. After that, four machine learning classifiers have been used to determine
the efficiency of the proposed system. These classifiers include C4.5, Logistics
Model Tree (LMT), RepTree and Random Tree. For evaluation and training,
we split the dataset into two parts.70% of the data in the dataset are used for
training and 30% for testing. Ten cross-validations have been conducted using
various random sample partitions of each of the selected classification methods.
Lastly, the test set, which the model never before saw, used to deter-mine the
generalization of the model.

4 Result and Discussion

Once model training has been completed, the learned models are used to predict
all classification problems. We have also demonstrated the results of 10 itera-
tions of cross-validation throughout the training set so that the model did not
overfit the training set. In this research, Weka [10] was used to evaluate classifi-
cation algorithms’ success rates. Our main aim is to identify the best model to
distinguish accurately between fall and normal activities. For this purpose, we
have used four well-known classifiers known as C4.5, LMT, RepTree and Ran-
dom Tree. To evaluate the efficiency of the algorithm, we used accuracy, MAE
and RMSE for the experiment. We have also measured the performance of the
classification models using four metrics: sensitivity, specificity and F1-Measure.
Table 2 shows the accuracy, MAE, and RMSE of the proposed classifier. From
Table 2, it is evident that the C4.5 has the highest accuracy because it uses a
random subspace method and using the bagging concept, the Multilayer Per-
ceptron algorithm has the lowest accuracy. And also the C4.5agorithm has the

Table 2. Accuracy, MAE and RMSE of the Algorithm.

Classifier name Accuracy (%) MAE RMSE

LMT 96.49% 0.118 0.216

C4.5 97.36% 0.039 0.162

RepTree 96.31% 0.052 0.182

Random Forest 95.61% 0.044 0.209
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lowest MAE and RMSE value because the random forest algorithm has low bias
and moderate variance. Random forest gives the result by averaging all trees
which are present in the subspace. Figure 3 shows the graphical representation
of the proposed classifier accuracy. Table 3 depicts the sensitivity, specificity, and
F-measure of the proposed model. From Table 3, it can be shown that the C4.5

Fig. 3. Accuracy of the proposed classifier

Table 3. Performance metrics of the proposed classifier

Classifier name Sensitivity Specificity F-measure

LMT 0.9677 0.9615 0.968

C4.5 0.9836 0.9622 0.976

RepTree 0.9578 0.9615 0.958

Random Forest 0.9521 0.9607 0.960

algorithm gives better precision, sensitivity, specificity, and F1-score, whereas
Random Tree gives the lowest value of these performance matrices. The perfor-
mance of the proposed C4.5-based scheme is also compared to the state-of-the-art
techniques as shown in Table 4.

Table 4. Result comparison of the proposed algorithm with the State-of Art
Techniques

Research study Approach Accuracy

A H Ngu [11] SVM 93.8

A H Ngu [11] Näıve Bayes 90

M Hoq [10] SVM 92

The Proposed Approach C4.5 97.36
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5 Conclusion and Future Work

In this research, a very simple and computationally efficient machine learning
based fall detection system has been proposed. For this purpose, publicly avail-
able UR fall detection dataset has been analyzed. The dataset comprises 70 types
of fall and normal activities. One of the important aspects of this paper is the use
of the statistical feature. Features are extracted from the raw accelerometer sen-
sor which reflects the characteristics of fall and normal activities. The extracted
feature is used for the training and testing of four machine classification. Among
these classifier, C4.5 shows the highest accuracy, i.e., 97.36% which is better than
the state-of-art techniques as shown in Table 4. Therefore, the C4.5 classifier can
be effectively used to monitor the elder people with neurodegenerative diseases
like Parkinson disease. This is one of the limitations of our research. In future, a
dataset using an accelerometer sensor will be collected elderly people with neu-
rodegenerative disease. A deep Artificial Neural Network can be implemented in
advance of achieving better performance [1–3,7,13,19]. More data can be used
to train the learning model. Finally, extract more features that will certainly
help in the training of the learning model. In future, a knowledge-driven app-
roach can be used to remove the uncertainty like belief rule based expert system
[6,11,14].
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Abstract. Fall is deemed to be one of the critical problems for the
elderly patient having neurological disorders as it may cause injury or
death. It turns to be a public health concern and attracts researchers
to detect fall using sensing devices wearable, portable, and imaging.
With the availability of low cost pervasive sensing elements, advance-
ment of ubiquitous computing and better understanding of machine
learning approaches, researchers have employing various machine learn-
ing approaches in detecting fall from the sensor data. In this paper, we
have proposed a recurrent neural network (RNN)-based framework for
detecting fall/daily activity of a patient having a neurological disorder
using Internet of things and then manage the patient by referring to
doctor. If an anomaly is detected in the daily activity and notify care-
giver/family member if fall is detected. The RNN based fall detection
model fused knowledge from both the smartphone/wearable and cam-
era installed on the wall and ceiling. The proposed RNN is trained with
open-labeled and UR data-sets and is compared with the support vec-
tor machine and random forest for these two data-sets. The performance
evaluation shows the proposed method is effecting and outperforms its
counterparts.

Keywords: LSTM · Mobile phone

1 Introduction

Neurodegenerative disease (NDD) is a term which results in death of neurons
by blocking of the nervous system which includes brain and spinal cord and this
is often incurable as neurons do not reproduce [1], NDDs are the main cause
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of the breakdown of communications among human brain cells. It can change
balance, movement (called ataxias), speech, breathing, memory (called demen-
tias), intelligence, and much more in human body [2,3]. Parkinson’s, Alzheimer’s,
Huntington’s, etc. are the most frequently diagnosed NDDs. NDDs are mostly
considered incurable to disease progression without successful treatments, effi-
cient therapies; patients could even die. A report generated by World Health
Organization (WHO) represents that minimum 1 billion people across the world
have been affected by neurological disorders such as multiple sclerosis, neuroin-
fections, headache, Parkinson diseases etc. [1]. It also shows that more than 50
million people are suffering form Alzheimer and other dementias which will be
double in next 5 years. After the heart diseases it is the second leading cause of
death with minimum 9 million deaths and 16.5% of global deaths [4]. A research
show that 6% of total diseases are NDDs and these rate is high in developed
and developing countries [5]. Due to the extensive popularity, Machine Learning
(ML) methods have been used in biological data mining [6,7] image analysis
[8], decision support system [9–13]. In the arena of management Of NDD, deep
learning approaches are powerful tools that enable systems to learn from the
measured data in order to develop ways of making smarter decisions that can
lead to better management of these types of patients. It can help to process
medical data with multi-layer neural networks which results in improved predic-
tion capabilities for several specific applications in management of NDDs [6,7].
On the other hand, Internet of Things (IoT) devices are being used to monitor,
manage and motivate a new generation of health care with the concept of smart
home appliances for aged patients [14–16]. Recent IoT studies focus primarily
on smart homes and communication technologies that support remote control of
electrical, heating and lighting devices [17].

In this paper a RNN based fall detection framework for patient with NDD
has been designed. The activity data from patient with NDD is collected using
IoT sensor nodes (such as wearable, smartphone and camera), these information
is pre-processed, and analysed in cloud and thereby differentiate fall and normal
routine activities. The system can also be used for detecting an anomaly in the
patient activity data and send the anomaly information to the doctor at the
hospital and fall event to the caregiver/family member.

The rest of the paper is arranged as below: Sect. 2 outlined the related articles;
Sect. 3 discussed system model, the methodology and results are explained in
Sect. 4 and Sect. 5 respectively. Finally the paper concluded in Sect. 6.

2 Literature Review

This section discuss existing literature related to fall/activity detection and
patient management. Sase et al. [18] proposed a method to detect fall using
depth videos. By substracting background from extracted frames and doing some
preprocessing like filter and analysis of connected components, Region of Inter-
ested (ROI) is calculated which helps to detect fall by comparing it to calculated
threshold. Mostarac et al. [19] describes a system which can detect fall by using
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three axis accelerometric data. In this system at least two sensors are needed
to collect personal data which contains information about treatment efficiency,
mobility of patients which will be sent to the server by local receivers. System
will alert the caregiver if fall is detected. Not only early detection of fall but also
patient monitoring in real time will be served. Ali et al. [20] proposed a quick
and precised system to detect fall by videos captured by surveillance camera.
This system is represented on the basis of spatial based features and novel tem-
poral which includes discriminatory prejudicial movement, individual location
and geometric orientation. Doulamis et al. [21] proposed a system to detect fall
by a single camera which is independent of direction of fall which using the back-
ground subtraction approach using hierarchical motion estimation and Gaussian
Mixtures. The accuracy of this system to differentiate between fall and normal
activities like sitting, bending is very high. Tzallas et al. [22] proposed a model
called PERFORM for the real-times remote monitoring, assessment and manage-
ment of patient’s with PD which can be used for personalized treatment (such as
therapeutic treatment) and motor status for PD based on recorded data. Pereira
et al. [23] has developed a mobile application design for the assistance of people
suffering from PD. The main focus of this application is to provide knowledge
and professional support for both patients and care givers to improve healthcare
assistance. Baga et al. [24] proposed a system which can minimize the wearable
sensors for monitoring and develop quantification algorithm and detect symp-
toms to help the clinical and caregivers for taking decisions. Punin et al. [25] has
developed non-invasive hardware-based wireless system to collect data from PD
patients with FOG to induce progress of walking, avoid falling which will be col-
lected by a processor and transferred to mobile through bluetooth and enhance
the lifestyles of patients. Magariño et al. [26] has introduced a novel technology
that could potentially support and monitor people with NDDs and focuses on
the application of Fog computing to ease the bandwidth uses. LeMoyne et al.
[27] aims to incorporate a Smartphone as a platform for wireless accelerometers
Machine learning to identify deep brain characteristics Stimulator for the ulti-
mate tremor. Three mature systems like a smartphone and machine learning has
been successfully to improve the efficiency of deep brain stimulation treatment.

3 System Model

Figure 1 shows the proposed framework for the management of Neurodegener-
ative disease using machine learning and IoT. The NDD management is a vast
process and due to the page limitation, we have considered the fall detection
module and the pre/post-fall management using ML and IoT. The expected
data can be collected via camera sensors and wearable devices such as mobile,
portable devices, smartwatch etc. Accelerometer or Gyroscope is being used to
collect data of action like shaking and spinning and camera sensor is being used
for detecting the person’s position. A smart home system is also connected to
the mobile phone for giving immediate comfort such as turning on/off the light
or fan etc for the patient’s emergency. These acceleration, orientation data and
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Fig. 1. A function model for Neurodegerative disease management using machine learn-
ing and IoT. The physiological, voice and video data collected from the patient using
IoT system are sent the collected information to a cloud based platform. The ML algo-
rithm in the cloud convert the data into actionable insight or detect anomaly from the
data. The knowledge extracted from data can be sent to personal doctor, caregiver or
even the family members.

the data from the camera sensor are being sent to the cloud and e-health records
via wifi or cellular net or Ethernet for local access for the specified caretaker and
doctors of the patients in the time of emergency. The data is being received
and stored in the cloud. Due to page limit, we are not discussing about the
processes how the computational cost will be managed in real time detection
though cloud. The sent data is being pre-processed such as labeling the data set
and feature selection. Then it trains and tests the data set as it expected and
applies machine learning algorithms on the collected medical data for analyzing
the data and processing patient’s clinical assessment, assisting Decision support
system and anomaly detection. By this, we can decide which data we should be
stored and which not and make a decision. Here, repetitive data is not being
saved. It helps to reduce storage size. Thus, the memory will be efficiently used.
If an anomaly is detected that means the patient is fallen from chair or standing
or any other way and it will automatically notify the caregiver/family mem-
ber about patient’s fall. The flow chart of the proposed fall detection process is
illustrated in Fig. 2.

4 Methodology

In this section, we represent our ML framework which includes data collection,
data preprocessing feature extraction and ML algorithm to detect a fall. We have
used two dataset named UR dataset and Open labeled dataset. These datasets
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Fig. 2. Flowchart for proposed fall detection system.

have been preprocessed to extract features. From them test set and training
set have been divided where train data have been classified by ML classifiers.
Figure 3 shows Fall detection architecture and datasets used to train the model.
We used two datasets named UR dataset and open labelled dataset in our model.
Firstly batch normalization is applied in both datasets. Batch Normalization is
a technique to improve the speed at which the network trains, allows higher
learning rate by re-scaling and re-centering the input layer. Then RNN layer is
applied on both datasets. Then Fully Connected layer applied on both dataset
which converts RNN outputs to our desired shape. Softmax is implemented just
before the output layer which assign decimal probabilities that must sum to 1. At
last knowledge fusion from both datasets are used to detect the fall appropriately.

4.1 Dataset Description

Two datasets named UR dataset and Open labeled dataset have been used in our
system (see Table 1). UR fall detection dataset are developed by kepski et al. [28]
used seventy sequences where thirty are falls and fourty are activities of daily
living (ADL). Two camera are used. One is front facing and other is from ceiling
which provides the top views of the scene. Kinect cameras and corresponding
accelerometric data are used to record fall and one device(camera 0) are used
to record ADL. IMU and PS Move devices are used to collect sensor data. Two
types of falls, one from standing and other while sitting on a chair are described
here. Besides picking object from ground, lying on the sofa and floor, normal
walking, sitting down are the ADL. Data needed to extract features of UR are

– Height/Width- Bounding box height to width ratio
– l/w - Major to minor axis ratio
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– H/Hmax - A proportion expressing the height of the person’s surrounding
box in the current frame to the physical height of the person, projected onto
the depth map and

– Area - A ratio expressing the person’s area in the image to the area at
assumed distance to the camera.

Wertner et al. [29] has created a labelled dataset which can be used for mobile
phone with the data of accelerometer and gyroscope sensor. An orientation soft-
ware based sensor is used to derive data from the accelerometer and geomagnetic
field sensor which is attached to the mobile phone and the data is recorded by
the mobile phone. Data needed to extract features of Open labelled are:

– Acceleration of devices: Acceleration is stored as 3D vector indicating
acceleration along each device axis, not including gravity. It can be calculated
as

axyz =
√

x2 + y2 + z2 (1)

– Orientation of devices: Orientation is stored as 3D vector of angles
azimuth, pitch and roll.

Height/Width
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Fig. 3. Proposed Fall Detection Architecture and datasets used to train the model.
(A) shows features used in the proposed RNN model and (B) illustrate the RNN
architecture
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Table 1. Information about the dataset used in this study.

Dataset Sensor used No of record Training Testing

Open Labelled Smart phone 159300 records of acceleration
and 159300 records of
orientation

223020 95580

UR Camera 70 (30 falls and 40 activities of
daily living) sequences

49 21

4.2 Feature Extraction

A feature extraction module performs a significant role in the fall detection
system. To enhance the fall detection rate, our focus was on the generation and
selection of features. In this research we have extracted five features from UR
and open labeled dataset.

It represents the variety of change of the magnitude of acceleration in x, y
and z axis.

Variance of CV Acceleration:If we divide the standard deviation of accel-
eration by it’s mean (μ) we can get the coefficient of variation.

σxyz =

√
σ2
x + σ2

y + σ2
z

μ
(2)

Variation in Motion Vector:During the fall the body is in a motion and
magnitude of the motion variation will be high when fall occur. The variation
will be 0 when fall occur. We can calculate the magnitude of motion by:

mxyz =
√

(m2
x + m2

y + m2
z) (3)

Polar Angle Ratio:Polar angle ratio from accelerometer data can be calculated
as follows:

cos−1

(
z

√
x2 + y2 + z2

)

(4)

This polar angle reflects the sudden transition and body angle, suggesting a
fall. In addition, sudden change is represented by the ratio of instant angle and
it’s previous values within a short period of time.

Difference Between Polar Angle: It is represented by Δθ which helps to
cover large tilt angle variations.

4.3 ML Algorithm

Recurrent Neural Network (RNN): RNN mainly used for supervised time series
analysis is a machine learning algorithm where outputs of the previous step are
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used for the inputs of next step. Hidden state are the most important feature
of RNN. RNN with convolutionary layers are used to expand the successful
neighborhood of pixels.

Random Forest (RF): Random forest is a supervised learning algorithm which
is a combination of decision trees where the forest is build by an assemble of
decision trees to increase the overall result by combining learning models. Here
the input is evaluated by the decision tree forest and the output class is measured
as the tree’s response class.

Support Vector Machine (SVM): SVM which is mostly used for classification is a
machine learning algorithm which helps to solve pattern recognition. Coordinates
of individual observations are represented by support vector. It is a frontier that
separates both classes at its best. Each data item is ploted in an n-dimensional
space where n indicates the number of features we have and the value of each
feature represent the value of a particular coordinates.

4.4 Model Training

For training purpose both the datasets are splitted into two parts: 70% data
from each dataset is used for training and the remaining 30% is used for testing.
For the 5-fold cross validation, we used random partition from the datasets.

5 Numerical Results

This section discussed the numerical results obtained using state-of-the-art clas-
sifiers. We have utilized Weka for evaluating the performance of the classification
algorithms (RF, SVM, and RNN) which can be used to detect falls as well as
the normal daily activities of the people with neurological diseases. For each
classifier, we use precision, sensitivity, specificity, and F-1 score.

The proposed RNN based fall detection architecture contains two parallel
structure, each consists of a batch normalization layer, an RNN layer and a
fully-connected layer followed by softmax output layers. The model was trained
using Adam optimizer and for 30 epochs with a learning rate of 0.001, batch
size of 32 and RNN dropout of zero on the training dataset. After training, the
model was tested using the separated test dataset.

Table 2 shows the classification performance of RF, SVM and RNN.
From the table (see Table 2), we can depicted that RNN and SVM have better

accuracy, Precision, specificity and F1-Score than the RF. But the sensitivity is
better in RF then the SVM and RNN. From overall analysis, we can see that
the Fused algorithm gives better Accuracy, precision, sensitivity, specificity, and
F1-score, whereas Open labelled gives the lowest value of these performance
matrices.
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Table 2. Performance comparison of RNN with RF and SVM

Dataset Classifier Accuracy Precision Sensitivity Specificity F1-Score

Open Labelled RF 0.96801 0.95979 0.98411 0.94749 0.97179

SVM 0.98101 0.9754 0.99139 0.96752 0.98333

RNN 0.97226 0.96369 0.98711 0.95257 0.97555

URRF RF 0.95652 0.96296 0.96296 0.94737 0.96296

SVM 0.97778 0.96296 1 0.94737 0.98113

RNN 0.95652 0.96428 0.96429 0.94444 0.96429

Fused RF 0.9680 0.9598 0.9841 0.9475 0.9718

SVM 0.9808 0.97506 0.9913 0.9675 0.9831

RNN 0.9723 0.9637 0.9877 0.9526 0.9756

6 Conclusion

Management of neurodegenerative diseases is a vast and condemnatory process.
As falls are the second leading cause of accidental or unintentional injury deaths
worldwide among elderly people having a neurological disorder, in our proposed
model, we have worked on designing a recurrent neural network-based framework
which can detect any occurrence of fall/daily activity of a patient using IoT and
then send this data to the specified doctor and also notify caregivers/family
members about the fall events through the available communication line eas-
ily. In our RNN based fall detection Architecture, fused knowledge from wear-
able/portable and imaging devices (camera) has been used for the fall detection.
Open-labeled and UR data-sets are used to train the preferred ML method,
RNN and the performance is compared with two classifier like RF and SVM for
these two data-sets. The comparison of the performance evaluation shows that
the proposed RNN based fall detection framework is worthwhile and excels its
counterparts. In future, we will integrate other management features with this
model to extend the scope and enhance the quality of experiences.
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Abstract. Emotion regulation plays a major role in everyday life, as
it enables individuals to modulate their emotions. Several strategies, for
regulating emotions, can be used individually or simultaneously, such as
suppression, rumination, acceptance, problem-solving, self-criticism, and
experiential avoidance. This paper presents a temporal causal network
model that simulates the employment of these seven emotion regulation
strategies by a person experiencing varying intensity of anxiety. Simula-
tion results are reported for both, the high and low, emotional intensity
where the level of activation of these strategies vary with the intensity
of negative emotions.

Keywords: Emotion regulation · Cognitive reappraisal · Expressive
suppression · Rumination · Acceptance · Problem-solving ·
Self-criticism · Experiential avoidance · Temporal causal network
modeling

1 Introduction

People continually deal with a large variety of stimuli that has to be processed
in one way or another. The fact that their reactions to such stimuli are mostly
tempered versus causing unceasing outbursts of emotional behavior suggests that
some form of emotion regulation is employed [1]. These forms of emotion regula-
tion can entail active and deliberate ways to override or redirect one’s emotional
response, however, it can also consist of relatively autonomous and effortless
actions to divert the flow of emotions [2]. These attempts to manage one’s emo-
tional states, such as moods, stress and positive or negative affect are essential
as individuals with poorly regulated emotions are exposed to, including but not
limited to, higher risks of severe periods of distress that may, later on, evolve
into diagnosable depression or anxiety [3]. Emotion regulation strategies such as
suppression and avoidance are viewed as maladaptive responses to a plurality of
stressors. Employing these strategies brings about not only risk factors such as
the aforementioned depression and anxiety but also maladaptive behaviors such
as substance abuse. Different theoretical models have disaggregated the set of
c© Springer Nature Switzerland AG 2020
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emotion regulation strategies into two types: adaptive and maladaptive strategies
[3]. Maladaptive strategies are strategies that fail to modulate the intensity of an
emotional experience, despite the individual’s intention to achieve the contrary,
whereas adaptive strategies succeed in this endeavor [4].

This paper considers the dynamical interplay between different emotion reg-
ulation strategies within a temporal-causal network. These strategies are either
putatively adaptive (acceptance, cognitive reappraisal, problem-solving) or mal-
adaptive (experiential avoidance, expressive suppression, self-criticism, rumina-
tion) and are adopted from [5]. A computational model has been proposed
wherein all the aforementioned seven emotion regulation strategies are simul-
taneously employed to some degree as found out in [5]. The rest of the paper
is organized as follows. Section 2 of the paper provides a general scenario for
the model which has been explained by the background studies from social sci-
ences. Section 3 presents the computational model. Section 4 provides simulation
results and finally, Sect. 5 concludes this paper.

2 Background

To guide further endeavors we defined a scenario in which the simulation will
operate. By defining the boundaries of our simulation, ambiguity is stripped
away, and we can proceed with a clear common focus. We will then place each
emotion regulation strategy within this scenario, explaining how it operates, and
how it will intuitively function within a model. The scenario is as follows:

“At a company party, an employee has a conversation with the head of the
HR department. After a few drinks, the employee starts talking about a colleague
with whom he is friends, which, in retrospect, puts him in a bad light. The next
day the employee wakes up with a feeling of anxiety, what if his colleague friend
gets in trouble because of this?”

At this point in the scenario, the employee has a total of seven emotion regula-
tion strategies in his repertoire to determine an action. Each regulation strategy
will have a different effect on the employee’s behavior if they obtained a domi-
nant role in the narrative. The temporal aspect of emotion regulation is also of
importance as they can be conscious or unconscious, automatic or controlled. The
strategies employed in this research are categorized as antecedent-focused, these
occur before an emotion has become completely active, and response-focused,
taking place after the emotion is already activated [6]. In light of the above sce-
nario, the courses of actions a person can opt for, form the given repertoire, are
elaborated one by one. Starting from acceptance, the employee slowly accepts
that there was a mistake, but that is now out of his hands. This reduces his anxi-
ety, and he moves on with his day. Acceptance is an adaptive emotion regulation
strategy where the person allows or accepts his/her feelings without attempts to
alter or suppress the emotions. This entails a willingness to remain in contact
with these experiences causing the emotion, even if they are unpleasant [5,7].
It alters the feeling state that one experiences [8]. In terms of timing, accep-
tance is categorized as a response focused strategy [9]. In problem-Solving, the
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employee decides to approach the head of the HR department and explains that
he was just joking, therefore negating what he said the day before and defus-
ing the situation. This strategy is adaptive and is a conscious attempt to alter
stressful situations or contain its consequences and is, therefore, directly address-
ing the problem itself [10]. In terms of timing problem-solving is categorized as
an antecedent focused strategy [11]. In self-criticism the employee blames and
criticizes himself that he cannot do anything right. This strategy is said to be
maladaptive and is tightly bound to feelings of shame [5]. The devaluation of
self threatens the need to feel valued and queues additional negative affective
states [12]. It is, therefore, not linked to decreasing emotion but is adding more
layers on top of the already existing system. The regulation of this extra layer
is, however, beyond the scope of this paper. In terms of timing, self-criticism is
categorized as an antecedent focused strategy [13]. Moving on to the experiential
avoidance, where the employee pinches himself every time he thinks about what
had happened, to focus on other things. This strategy is also termed as maladap-
tive and is mediated by two emotion regulation strategies (i.e. suppression and
reappraisal), it is an act of introducing another stimulus to avoid experiencing
the initial stressor [14]. In terms of timing, experiential avoidance is categorized
as an antecedent focused emotion regulation strategy [15].

Similarly, if the employee pretends like nothing has happened and tries to
prevent others from seeing how bad he is feeling then it’s called suppression.
This strategy is response focused maladaptive strategy [15]. For how suppres-
sion can be modeled, please refer to [16,17]. Rumination is also referred to as
worry and in the above scenario, if the employee keeps thinking about what
had happened and keeps reiterating over what he has said, will be referred to
as rumination. This is an antecedent focused maladaptive emotion regulation
strategy [18]. For how to model rumination as a strategy, please refer to [19].
Reappraisal is when the employee convinces himself that it is for the good, as
it was his colleague that made a mistake. This strategy is antecedent focused
adaptive emotion regulation strategy [15]. Reappraisal has already been modeled
by various studies, for instance [16,20,21]. These emotion-regulation strategies
culminate into a dynamical model that is represented in the following section.

3 Conceptual Representation of the Model

This section gives an overview of the proposed computational model, which is
designed using the Network-Oriented Modeling approach [22] see also [23]. This
modeling approach is based on temporal-causal networks, in which each node
represents a state or state variable, and each link represents a causal relation that
defines how one state influences the other state over time. This paper presents a
temporal causal network model that simulates the aforementioned seven emotion
regulation over time. The conceptual representation of the introduced computa-
tional model is depicted in Fig. 1, and the states are explained in Table 1.

This model depicted in Fig. 1 models simultaneous employment of the seven
emotion regulation strategies for coping with anxiety. Firstly, the emotion regula-
tion strategy problem-solving modifies or eliminates stressors, which is depicted
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Table 1. Nomenclature of the states in the model.

States Description
X1 wsp World state for the problem
X2 wss World state for the stimulus s
X3 sss Sensor state for the stimulus s
X4 srss Sensory representation state for the stimulus s
X5 psa Preparation state for action a
X6 esa Execution state for action a
X7 bs− Positive belief state about the stimulus s
X8 bs+ Negative belief state about the stimulus s
X9 psb Preparation state for body state b
X10 esb Execution state for body state b
X11 csrumin Control state for rumination
X12 cspr.solv Control state for problem-solving
X13 csself−cri Control state for self-criticism
X14 csreapp Control state for reappraisal
X15 csaccep Control state for acceptance
X16 cssup Control state for suppression
X17 csexp.av Control state for experiential avoidance
X18 msl.int Monitoring state for low intensity
X19 msh.int Monitoring state for high intensity
X20 psshame Preparation state for shame
X21 esshame Execution state for shame
X22 ssshame Sensory state for shame
X23 srsshame Sensory representation state for shame
X24 fsshame Feeling state for shame
X25 ssb Sensory state for body state b
X26 srsb Sensory representation state for body state b
X27 fsb Feeling state for body state b
X28 psact Preparation state for ‘action’ experiential avoidance
X29 esact Execution state for ‘action’ experiential avoidance
X30 ssact Sensory state for ‘action’ experiential avoidance
X31 srsact Sensory representation state for ‘action’ experiential avoidance
X32 fsact Feeling state for ‘action’ experiential avoidance

in the model as a negative connection from the control state for problem-solving
cspr.sol to the problem in the world wsp. Secondly, in case of rumination, an
individual worry about the situation and keeps thinking about it. This is repre-
sented in the model by a positive connection from the control state for rumina-
tion csrumin to the sensory representation state of the stimulus srss. Thirdly, in
self-criticism, no efforts are made to alter the emotions. Moreover, self-criticism
relates to shame proneness, and therefore, the control state for self-criticism
csself−cri activates an entire loop which keeps increasing feeling of shame as the
person criticizes him/herself. Fourthly, when employing reappraisal, the control
state for reappraisal csreapp diminishes the negative belief bs− about the stimu-
lus, i.e. thinking differently about the stimuli.
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The negative belief about the stimulus influences, in its turn, the body states
b. At fifth comes acceptance, wherein the person accepts the consequences of the
stimuli, i.e. not altering his emotions but this automatically reduces the intensity
of negative emotions indicated by the negative connection to the feeling state of
the body fsb from the control state for acceptance csaccep.

Fig. 1. Representation of the computational model.

As a penultimate strategy, if someone is employing experiential avoidance,
the person performs some action, represented by the action states act in the
model, to put the emotions out of his mind. The feeling state for this action fsact
suppresses the feeling state for the body fsb. Finally, suppression, here the corre-
sponding control state cssup suppresses the expression of emotions, indicated by
the negative connection to preparation psb for body state b, while the negative
belief of the stimulus remains unchanged.

The computational model presented above uses advanced logistic sum com-
bination function for the aggregation of multiple incoming casual impacts. On
contrary, [23] provides a library of over 36 combination functions which can also
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mb connectivity: 1 2 3 mcw connectivity: 1 2 3
base connectivity connection weights
X1 wsp X1 X12 X1 wsp 0.8 -1
X2 wss X1 X2 wss 1
X3 sss X2 X3 sss 1
X4 srss X3 X11 X4 srss 1 0.1
X5 psa X4 X10 X5 psa 1 1
X6 esa X5 X6 esa 1
X7 bs− X4 X8 X14 X7 bs− 0.7 -0.4 -1
X8 bs+ X4 X7 X8 bs+ 0.3 -0.4
X9 psb X7 X16 X27 X9 psb 0.8 -0.8 0.8

X10 esb X9 X10 esb 1
X11 csrumin X18 X19 X11 csrumin 0.48 0.27
X12 cspr.solv X18 X19 X12 cspr.solv 0.18 0.39
X13 csself−cri X18 X19 X13 csself−cri 0.41 0.12
X14 csreapp X7 X18 X19 X14 csreapp 0.1 0.1 0.35
X15 csaccep X18 X19 X15 csaccep 0.15 0.25
X16 cssup X18 X19 X16 cssup 0.28 0.25
X17 csexp.av X18 X19 X17 csexp.av 0.4 0.25
X18 msl.int X27 X19 X18 msl.int 0.8 -1
X19 msh.int X27 X19 msh.int 0.8
X20 psshame X24 X20 psshame 0.8
X21 esshame X20 X21 esshame .06
X22 ssshame X21 X13 X22 ssshame 0.4 0.4
X23 srsshame X22 X20 X23 srsshame 0.4 0.6
X24 fsshame X23 X24 fsshame 0.8
X25 ssb X10 X25 ssb 0.8
X26 srsb X9 X25 X26 srsb 0.5 0.5
X27 fsb X15 X26 X32 X27 fsb -0.8 1 -1
X28 psact X17 X32 X28 psact 0.4 0.2
X29 esact X28 X29 esact 0.9
X30 ssact X29 X30 ssact 0.8
X31 srsact X30 X28 X31 srsact 0.5 0.4
X32 fsact X31 X32 fsact 0.6

Box-1. Role matrices for connectivity

be updated by adding own defined combination functions. Box-1 and 2 below,
display the whole network in terms of role matrices. The parameter values in the
boxes help in achieving the pattern as found in the relevant literature. So, the
parameter values can be chosen as per scenario under consideration. Detailed
explanation of the role matrices can be found in [23].

4 Scenario and Simulation Results

Employing the strategies described above for the given scenario, two different
sub-scenarios are simulated. One where the employee has committed a minor
transgression, such as gossiping to the HR-manager that his friend/colleague had
done something foolish which causes a minor intensity of anxiety. Furthermore,
we will explore what would happen if the employee has committed something
more serious (i.e. something that could get his friend fired), causing a higher
intensity of anxiety. These strategies and the intensity of their activation has
been adopted from [5] and a test subject has been selected who experienced
different levels of anxiety to match that to the described scenario. Results of
the simulations for low and high intensity of anxiety can be consulted below in
Fig. 2 and Fig. 3, respectively.

The results for the emotion regulation strategies of the person experiencing
anxiety at low emotional intensity are presented in Fig. 2. The figure represents
only the most essential states out of the thirty-two states involved in the process.
In the figure the world state for problem wsp indicates that the problem i.e.
stimulus has happened and therefore all the states on the casual path to feeling
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mcfw aggregation: 2 21 mcfp aggregation: 2 21 ms timing:
combination func- combination func- speed factor η

tion weights alog id tion parameters σ τ id
X1 wsp 1 X1 wsp 5 0.1 X1 wsp 0.08
X2 wss 1 X2 wss 1 X2 wss 0.5
X3 sss 1 X3 sss 1 X3 sss 0.5
X4 srss 1 X4 srss 1 X4 srss 0.5
X5 psa 1 X5 psa 1 X5 psa 0.5
X6 esa 1 X6 esa 1 X6 esa 0.5
X7 bs− 1 X7 bs− 5 0.2 X7 bs− 0.2
X8 bs+ 1 X8 bs+ 5 0.1 X8 bs+ 0.2
X9 psb 1 X9 psb 5 0.2 X9 psb 0.5

X10 esb 1 X10 esb 1 X10 esb 0.5
X11 csrumin 1 X11 csrumin 5 0.2 X11 csrumin 0.1
X12 cspr.solv 1 X12 cspr.solv 5 0.2 X12 cspr.solv 0.1
X13 csself−cri 1 X13 csself−cri 5 0.1 X13 csself−cri 0.1
X14 csreapp 1 X14 csreapp 5 0.2 X14 csreapp 0.1
X15 csaccep 1 X15 csaccep 5 0.1 X15 csaccep 0.05
X16 cssup 1 X16 cssup 7 0.1 X16 cssup 0.05
X17 csexp.av 1 X17 csexp.av 5 0.1 X17 csexp.av 0.05
X18 msl.int 1 X18 msl.int 5 0.1 X18 msl.int 0.4
X19 msh.int 1 X19 msh.int 60 0.3 X19 msh.int 0.4
X20 psshame 1 X20 psshame 5 0.3 X20 psshame 0.1
X21 esshame 1 X21 esshame 5 0.3 X21 esshame 0.1
X22 ssshame 1 X22 ssshame 5 0.3 X22 ssshame 0.1
X23 srsshame 1 X23 srsshame 5 0.3 X23 srsshame 0.1
X24 fsshame 1 X24 fsshame 5 0.3 X24 fsshame 0.1
X25 ssb 1 X25 ssb 5 0.3 X25 ssb 0.5
X26 srsb 1 X26 srsb 5 0.3 X26 srsb 0.5
X27 fsb 1 X27 fsb 5 0.25 X27 fsb 0.5
X28 psact 1 X28 psact 5 0.3 X28 psact 0.1
X29 esact 1 X29 esact 5 0.3 X29 esact 0.1
X30 ssact 1 X30 ssact 5 0.3 X30 ssact 0.1
X31 srsact 1 X31 srsact 5 0.3 X31 srsact 0.1
X32 fsact 1 X32 fsact 5 0.3 X32 fsact 0.1

Box-2. Role matrices for aggregation and timing

state fsb has gotten activated (not shown in the figure to make the figure readable
except fsb). The feeling state fsb activates the respective monitoring state on the
basis of the intensity of emotions i.e. monitoring state for low intensity msl.int,
in this case. The monitoring state activates the control states for the emotion
regulation strategies. The antecedent focused strategies (reappraisal, problem-
solving, rumination, and self-criticism) are activated earlier than the response-
focused strategies (suppression, acceptance, experiential avoidance).

Fig. 2. Simulation results for a person experiencing anxiety with emotion regulation
at low emotional intensity.
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Fig. 3. Simulation results for a person experiencing anxiety with emotion regulation
at high emotional intensity.

When the control states for the emotion regulation strategies are activated,
first, problem in the world wsp starts decreasing due to the control state for
problem solving cspr.solv which means the problem is tried to be solved. Similarly,
all the other strategies try to influence their respective states either positively or
negatively as indicated in the model in Fig. 1. When the individual experiences
high emotional intensity, the activation level of the emotion regulation strategies
is different from the activation level of the strategies when the person experiences
emotions with relatively low intensity [5]. Figure 3 Shows the activation level of
the various emotion regulation strategies in case of high intensity of negative
emotions.

5 Conclusion

Several emotion regulation strategies can be used to manage emotions, such as
suppression, rumination, acceptance, problem-solving, self-criticism, and experi-
ential avoidance. The introduced model in this paper computes the employment
of these emotion regulation strategies for an individual dealing with anxiety. In
this paper, results are provided for high and low emotional intensity. The results
for these scenarios correspond to literature. In future work, and adaptive model
can be developed on top of the existing model for regulation of the shame devel-
oped as a result of self-criticism, thus adding another layer of complexity to the
model.
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Abstract. Anxiety is common in youth with autism spectrum disorder
(ASD), causing unique lifelong challenges that severely limit everyday
opportunities and reduce quality of life. Given the detrimental conse-
quences and long-term effects of pervasive anxiety for childhood devel-
opment and the covert nature of mental states, brain-computer interfaces
(BCIs) represent a promising method to identify maladaptive states and
allow for individualized and real-time mitigatory action to alleviate anxi-
ety. Here we investigated the effects of slow paced breathing entrainment
during stress induction on the perceived levels of anxiety in neurotypical
adolescents and adolescents with autism, and propose a multi-class long
short-term recurrent neural net (LSTM RNN) deep learning classifier
capable of identifying anxious states from ongoing electroencephalogra-
phy (EEG) signals. The deep learning classifier used was able to dis-
criminate between anxious and non-anxious classes with an accuracy of
90.82% and yielded an average accuracy of 93.27% across all classes. Our
study is the first to successfully apply an LSTM RNN classifier to iden-
tify anxious states from EEG. This LSTM RNN classifier holds promise
for the development of neuroadaptive systems and individualized inter-
vention methods capable of detecting and alleviating anxious states in
both neurotypical adolescents and adolescents with autism.

Keywords: Anxiety · Autism · EEG · Deep learning · Breathing
entrainment

1 Introduction

Anxiety, a common psychological and physiological state, is adaptive in response
to danger and in the preparation of an appropriate coping strategy, but can also
arise as, or develop into, serious mental health disorders. Anxiety-related dis-
orders are especially prevalent amongst children and adolescents, accounting
for a third of all mental health issues afflicting youth [1], and is found to be
c© Springer Nature Switzerland AG 2020
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comorbid with other neurological disorders such as autism spectrum disorder
(ASD) [2], ADHD and depression as well as a predictor of substance abuse,
suicide attempts, long-term use of psychiatric and medical services, and sub-
stantial functional impairment [3]. Amongst people on the spectrum, one in two
are suffering from at least one form of co-occurring anxiety or depression [4–6].
A meta-analysis of studies involving anxiety in children and adolescents with
autism found that as many as 40% of children and adolescents with autism meet
the criteria for an anxiety disorder [7]. For individuals on the spectrum, comor-
bid issues such as anxiety confer unique impairments that have been associated
with increased caregiver burden and reduced quality of life [8–10]. Importantly,
anxiety has been identified as a significant hurdle in education for students [11],
in particular for students with autism [12]. Moreover, anxiety and the design of
appropriate intervention methods have been identified by the autism commu-
nity and clinicians as a key priority [13]. Given the ubiquity of anxiety and its
prevalence as a chronic mental disorder in children and adolescents with and
without autism, it is of great importance to develop tools that can recognize
anxious states and allow for tailored and targeted mitigation. As a first step
to this end, we propose a deep learning-based classifier capable of identifying
anxious states from ongoing electroencephalography (EEG) in youth with ASD
and in neurotypical youth.

EEG is a noninvasive, mobile and low-cost method to measure brain activity
that is widely used in neurological research and clinical diagnosis. Research has
been conducted to assess EEG biomarkers of both transient anxiety and chronic
anxiety disorders. Pavlenko et al. [14] demonstrated positive correlation between
power spectral density of beta1 and beta2 EEG rhythms and state anxiety. Lewis
et al. [15] observed a shift from greater left frontal activity to greater right frontal
activity as test anxiety increased, and Blackhart et al. [16] showed that this
right frontal asymmetry may predict future development of anxiety disorders.
Oathes et al. [17] demonstrated that feelings of stress and worry induced gamma
band activation in people with and without generalized anxiety disorder (GAD).
However, as studies examining specific biomarkers of anxiety in EEG are few and
far between [18] and often inconsistent [19], the analysis of particular biomarkers
as proxies for anxiety is unreliable. This dilemma highlights the necessity of
broader, data-driven approaches to detect anxiety within EEG data.

EEG analysis with machine learning has been shown to be a promising
method to detect a wide range of covert cognitive and emotional states, includ-
ing anxiety. One such machine learning algorithm, the support vector machine
(SVM), has seen extensive use in EEG analysis [20] and has been shown to be
effective to detect anxious states. Gaikwad and Pathane [21] designed a three-tier
hierarchical SVM classifier that determined the stress level with 72.3% accuracy
of 12 adults with no history of mental disorder or brain damage. Al-shargie et
al. [22] developed a multilevel stress SVM classifier that was able to discriminate
between anxious states induced by mental arithmetic with an accuracy of 94.7%.

Although SVM classifiers are conventional for EEG analysis and have been
successfully applied to mental stress detection [22,23], a significant limitation lies
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in their inability to process many extracted features from EEG simultaneously.
As a result, SVMs are constrained to a small number of features [24] and cannot
consider a robust set of EEG timepoints, rendering them unable to examine the
EEG time domain, a critical dimension for analysis. Deep learning methods have
recently emerged as methods of analysis that can consider neurophysiological
data in its entirety, including the time domain, and indeed these methods have
been shown to be superior to classical methods, e.g. SVMs, in most areas of EEG
analysis [25]. In addition, unlike SVMs, deep learning networks can automatically
adjust and optimize their parameters, essentially alleviating the need for feature
extraction and requiring far less processing and prior knowledge regarding the
dataset [26,27].

Convolutional neural networks are the most widely used deep learning algo-
rithms in EEG analysis [27], and have been shown to be effective in emotion
detection [28,29] and anxiety classification [30,31] in particular. Moreover, deep
learning with convolutional neural networks (CNNs) have recently been shown
to outperform the widely-used filter bank common spatial pattern algorithm
by extracting increasingly more complex features of the data [32]. Accordingly,
we applied EEGNet, a recently developed compact CNN for EEG-based BCIs
[33], for the classification of different states of anxiety in ASD and neurotypical
adolescents.

Long short-term memory recurrent neural networks (LSTM RNNs) are a type
of neural net with the ability to “remember” long-term dependencies far bet-
ter than traditional RNNs without the loss of short-term memory [34], enabling
robust analysis of temporal trends in EEG data [35]. LSTM RNNs have also
shown high accuracy in emotion detection [36], with RNN architectures per-
forming better than the more conventional CNN and hybrid CNN-RNNs on
DEAP, a major EEG emotion analysis dataset [27]. Building upon these recent
advancements, we implemented a LSTM RNN to classify anxious states from
EEG obtained from ASD and neurotypical adolescents. To our knowledge, ours
is the first study to examine the efficacy of deep learning-based EEG anxiety
classifiers for both adolescents with autism and neurotypical adolescents.

2 Methods

2.1 Participants and Data Acquisition

Eight students (1 female M: 15.13 SD: 1.45) with ASD from Learning Farm Edu-
cational Resources based in Menlo Park, (California), and five students (1 female
M: 16.6 SD: 0.55) with no known mental or neurological disorders from The
Nueva School in San Mateo, (California), voluntarily enrolled in the study. Par-
ticipants and their parents or legal guardians were informed extensively about
the experiment and all gave written consent. The study was approved by an
Institutional Review Board composed of an educator from Learning Farm Edu-
cational Resources, an administrator from The Nueva School, and a licensed
mental health professional at The Nueva School.
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Participants were seated in an isolated and dimly lit room at a viewing dis-
tance of 70 cm of a 16” LCD monitor with a refresh rate of 60 Hz. 16-channel
EEG data was acquired at 125 Hz using an OpenBCI system (Ag/AgCl coated
electrodes + Cyton Board; https://openbci.com) placed according to the inter-
national 10–20 system (channels: ‘Fp1’, ‘Fp2’, ‘C3’, ‘C4’, ‘P7’, ‘P8’, ‘O1’, ‘O2’,
‘F7’, ‘F8’, ‘F3’, ‘F4’, ‘T7’, ‘T8’, ‘P3’, ‘P4’). Participants were fitted with passive
noise-canceling headphones to isolate them from ambient noise and to interact
with the stress and breath modulating interface. The audio-visual stimuli was
designed in close collaboration with Muvik Labs (https://muviklabs.io). The
stimuli featured sequential trials of stressor, guided breathing, and unguided
breathing sections (Fig. 1). The stimuli were procedurally generated by Muvik
Labs’ Augmented SoundTM engine to ensure timing precision and effectiveness
through evidence-backed breathing interventions driven by principles of psychoa-
coustics and behavioral psychology [37].

Prior to the main procedure, participants were asked to complete the trait
anxiety component of Spielberger’s State-Trait Anxiety Inventory for Children
(STAI-C) [38], a well-validated state and trait anxiety screen used for typically
developing youth that can also be accurately used to assess trait anxiety in
children and adolescents with autism [39].

2.2 Stress Induction and Alleviation

Following an initial EEG baseline recording for 120 s, participants performed a
25-min session featuring stress induction and breath modulation tasks consisting
of four main blocks. Each block began with a stressor featuring an augmented
arithmetic number task, intensified by bright contrasting colors displaying num-
bers appearing sequentially, coupled with audible sonified timers mapped to
rising pitches similar to Shepard tones (powered by Muvik Labs Augmented
SoundTM) [37], with a 90 s time constraint. Timed mental arithmetic has been
widely used to induce stress [40,41]. The stress induction was followed by a
period of breathing for 200 s. The first and third breathing periods had par-
ticipants breathe at their own pace (unguided breathing) while the second and
fourth breathing periods presented participants with a custom-generated breath-
ing entrainment system, guiding breath airflow in and out of lungs at a relaxing
pace of 6 breaths per minute [42] with both visual (i.e. growing/shrinking circle
outlining the air flow volume of target respiration speed) and auditory guides
(musical patterns featuring nature sounds that mimic the sound of inhalation and
exhalation; Muvik Labs Augmented SoundTM). Although the baseline, unguided
breathing and guided breathing periods had participants in a similarly relaxed,
non-anxious state, for the purposes of this study we assigned distinct labels to
these three conditions, amounting to a total of four classes including the stress
induction condition.

https://openbci.com
https://muviklabs.io
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Fig. 1. Stress induction and alleviation procedure.

2.3 EEG Signal Processing and Training Data Selection

MNE [43], an open-source Python tool for EEG analysis, was employed to fil-
ter EEG data from all 16 channels. In preparation for classification analysis,
EEG time-courses were high-pass filtered at 1 Hz to remove slow trends and
subsequently low-pass filtered at 50 Hz to remove line noise. The routine clinical
bandwidth for EEG is from 0.5 Hz to 50 Hz [44]. However, significant sinusoidal
drift was observed on the 0.5 Hz–1 Hz interval and therefore the interval was
excluded in the selected bandpass filter range. The data of two participants
were rejected from all analyses due to unusually high impedances at the time of
recording, which was confirmed offline by visual inspection: participant L1 from
the ASD group, and participant T3 from the neurotypical group. Preprocessing
of the EEG data was kept to a minimum in order to mimic online conditions
found in a real-time BCI scenario.

For training sample preparation, a cropped training strategy was employed.
A total of 243 samples with a length of 5s were extracted per participant from
the EEG recorded during the ‘Stressor’, ‘Guided Breathing’, ‘Unguided Breath-
ing’, and ‘Baseline’ periods of the procedure and were assigned corresponding
labels. We may designate ‘Stressor’ samples as positive samples, and ‘Guided
Breathing’, ‘Unguided Breathing’, and ‘Baseline’ samples as negative samples,
as we have considered a participant to be in a relaxed state during the latter
three periods.

2.4 Neural Signal Classification

We performed classification analysis on the selected EEG training samples using
a two-layer LSTM RNN deep learning model, alongside a one-layer LSTM RNN
architecture and the EEGNet CNN architecture [34] (Fig. 2). Wang et al. [45]
found that LSTM RNN architectures with more than two LSTM layers did not
significantly improve EEG classification accuracy over a two-layer LSTM RNN
architecture, informing our decision to solely consider one-layer and two-layer
LSTM models. We opted to avoid using calculated features as inputs in favor of
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Fig. 2. A) One-layer and two-layer LSTM RNN classifier architectures. B) EEGNet
CNN classifier architecture.

an end-to-end learning method with filtered EEG signal value inputs from all 16
channels. In addition, as different EEG channels represent neural signals from
different areas of the brain, we elected not to combine channel data in order to
preserve a spatial dimension of EEG analysis.

The EEGNet architecture is composed of 8 2D convolutional filters of size
(1, 64), each with a temporal kernel length of 64, a Depthwise Convolution
layer of size (16, 1) to learn multiple spatial filters for each temporal filter, a
Separable Convolution layer of size (1, 16), and a 4 neuron dense layer with
softmax activation to produce the output (for detail see Fig. 2A). The EEGNet
model was trained over 1000 epochs with a batch size of 200.

The two-layer LSTM RNN model consists of two LSTM layers, two dense
hidden layers, and a dense output layer. The first LSTM layer, containing 50
neurons, receives the input. The second LSTM layer contains 40 neurons. The
number of neurons in both LSTM layers was informed by the amount used
by Alhagry et al. [36] and adjusted to prevent underfitting and overfitting to
our EEG data. Following the second LSTM layer, we include a dropout layer
with a dropout rate of 0.5 to prevent overfitting. The first dense layer contains
20 neurons and uses a sigmoid activation function. Following the first dense
layer, we include a dropout layer with a dropout rate of 0.5. The second dense
layer consisted of 10 neurons and used a rectified linear unit (ReLU) as an
activation function. The dense output layer of 4 neurons used softmax activation.
While training, we implemented the Adam optimization algorithm [46] with a
learning rate of 0.001 in place of the standard stochastic gradient descent (SGD)
algorithm. The model was trained over 1000 epochs with a batch size of 200.
The one-layer LSTM architecture is identical to the two-layer LSTM architecture
excepting the 40 neuron LSTM layer (Fig. 2B).
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We implemented Keras machine learning library in Python to build the clas-
sifiers. The models were trained on an Intel Core i9-9900X processor with 128 GB
RAM supplemented by a 24 GB GDDR6 VRAM NVIDIA Titan RTX graphics
processing unit (GPU) with 4608 CUDA cores and an auxiliary 8 GB GDDR6
VRAM NVIDIA GeForce RTX 2070 SUPER GPU with 2560 CUDA cores.

3 Results

During validation, samples were apportioned at a ratio of 70:30 to the train
dataset and test dataset, respectively. The two-layer LSTM RNN classifier
yielded an average accuracy of 93.27% on the test data across all four classes,
outperforming the 70.12% average accuracy of the one-layer LSTM RNN and
the 60.21% average accuracy of the EEGNet classifier. In addition, since we have
designated the ‘Stressor’ class as our positive class, we may also note that the
two-layer LSTM classifier was able to discriminate between anxious and non-
anxious states with an accuracy of 90.82%, significantly higher than the 63.95%
accuracy of the one-layer LSTM model and the 59.31% accuracy of the EEGNet
(see Table 1).

Table 1. Class-wise and overall validation results.

Average accuracy EEGNet 1-Layer LSTM 2-Layer LSTM

Stressor (%) 59.31 63.95 90.82

Unguided breathing (%) 60.38 62.89 91.19

Guided breathing (%) 59.99 80.09 94.57

Baseline (%) 61.18 73.53 96.50

Average (%) 60.21 70.12 93.27

Moreover, it is important to note that due to the longer length of the unguided
and guided breathing periods compared to the stressor and the baseline periods,
more samples were extracted from the unguided and guided breathing periods,
creating an unbalanced dataset. Although this can lead to issues since an unbal-
anced dataset can artificially inflate the accuracy metric, the two-layer LSTM
RNN model used here demonstrated high precision and class-wise sensitivity and
specificity during validation (see Fig. 3), leading us to the conclusion that the
unbalanced dataset was not a cause for concern.

3.1 LSTM RNN Performance with Individual Variation

We were interested in investigating the relationship between the two-layer LSTM
model performance and preexisting mental conditions. First, we wished to see if
there was a significant difference between model accuracy for participants with
autism and neurotypical participants. On average, the two-layer LSTM model
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Fig. 3. A) Two-layer LSTM RNN model confusion matrix. B) Two-layer LSTM RNN
model precision-recall curve.

Table 2. Classification accuracy and trait anxiety per participant.

Participant Classification accuracy (%) STAI-C trait anxiety score

L2 92.83 37

L3 92.83 32

L4 93.72 24

L5 93.69 30

L6 92.57 33

L7 93.72 32

L8 93.97 46

T1 92.83 25

T2 93.08 37

T4 93.47 42

T5 93.24 28

accuracy for a participant with autism was 93.33%, while the model accuracy for
a neurotypical participant was 93.15%. A Mann-Whitney U test was conducted
to compare model accuracy for the participants with autism and neurotypical
participants and found no significant difference between model accuracy for the
two groups (p = 0.566), indicating that the two-layer LSTM model performed
similarly regardless of whether the participant had autism. We also wished to
understand whether an individual’s persistent (trait) anxiety can influence the
performance of the two-layer LSTM RNN. We employed Spearman correlation
to compare model accuracy and individual STAI-C trait anxiety scores (see
Table 2); higher STAI-C scores indicate higher trait anxiety. The analysis yielded
a Spearman’s rho of 0.0393, indicating virtually no correlation between trait
anxiety and the two-layer LSTM RNN performance.
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4 Discussion

In this study, three different deep learning architectures were used to detect
mental stress from the EEG of ASD and neurotypical adolescents performing a
mental arithmetic task. The multiclass EEGNet CNN and LSTM deep learning
models were employed to classify the EEG recorded from ASD and neurotypical
adolescents into four distinct classes, three “relaxed” classes and one “anxious”
class. The EEGNet CNN, one-layer LSTM and two-layer LSTM performed with
an overall accuracy of 60.21%, 70.12% and 93.27%, respectively. Furthermore,
we were able to train the latter LSTM RNN classifier to discriminate between
anxious and non-anxious states with an accuracy of 90.82%, far higher than the
one-layer LSTM accuracy of 63.95% and the EEGNet accuracy of 59.31%. To
our knowledge, our study provides the first demonstration that an LSTM RNN
architecture can be used to accurately assess stress-induced anxiety, a complex
and covert mental state, from ongoing EEG data in adolescents with and without
autism as well as in adolescents with varying levels of baseline anxiety.

There are some caveats to consider in the interpretation of our results. First,
given that anxiety varies significantly with context and individual, and cannot
therefore be induced reliably and equivalently across participants, we utilized
mental stress induction via timed mental arithmetic as a proxy for anxiety. Sec-
ond, our experiment was designed to minimize the time under stress to avoid
any undue strain on the participants; conversely, more time was required for
relaxation to set in and the breathing rate to normalize. As a result, the time for
the mental arithmetic task and the guided or unguided breathing differed. Thus,
the models were trained on an unbalanced dataset, with more unguided and
guided breathing samples than stressor and baseline samples, with the potential
for artificial inflation of model accuracy. However, this is unlikely to be a con-
cern for the two-layer LSTM RNN model, which exhibited high sensitivity and
specificity metrics across all classes. Lastly, it should be noted that a potential
drawback of deep learning algorithms such as LSTM RNNs is over-reliance upon
large datasets. For example, we performed the same classifications with smaller
datasets including only 2 or 3 conditions, which lead to poor performance (data
not shown).

To address this issue, we are currently setting up an extension of the current
experiment that will include a much larger set of participants, both neurotypical
and ASD, with the aim of refining and validating the two-layer LSTM RNN deep
learning model for prospective implementation in an individualized neuroadap-
tive system. Such a system would be capable of detecting periods of mental stress
and anxiety, opening new avenues of decoding covert mental states for BCI-based
applications to benefit youth with autism. The ability for the model to discrimi-
nate between different breathing classes would allow for the implementation of a
closed-loop breathing entrainment system that can detect anxious states in real-
time, feedback this information to the user, and entrain an optimized breathing
pattern to alleviate anxiety. A BCI-based neuroadaptive system would provide
an effective and personalized intervention method to mitigate anxiety, with the
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potential of facilitating learning of adaptive behavioural strategies (e.g. slower
breathing) in response to anxiety-inducing stimuli in daily life.
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Abstract. Alcoholism involves psychological and biological components
where multiple risk factors come into play. Assessment of the psychiatric
emergency is a challenging issue for clinicians working with alcohol-
dependent patients. Identifying alcoholics from healthy controls from
their EEG signals can be effective in this scenario. In this research,
we have applied two instance-based classifiers and three neural network
classifier to classify Electroencephalogram data of alcoholics and nor-
mal person. For data preprocessing, we have applied discrete wavelet
transform, Principal component analysis and Independent component
analysis. After successful implementation of the classifiers, an accuracy
of 95% is received with Bidirectional Long Short-Term Memory. Finally,
comparing the performance of the two categories of algorithms, we have
found that neural networks have higher potentiality against instance-
based classifiers in the classification of EEG signals of alcoholics.

Keywords: Alcoholism · EEG signal · Machine learning · Instance
based classifier · Neural networks

1 Introduction

Alcoholism can be the cause of depression, anxiety, domestic violence, psychosis,
and antisocial behavior and in extreme cases, psychiatric disorders. Brains are
one of the commonly affected organs in alcoholism causing cognitive, emotional
and behavioral disorders. Our brain is a complex system comprised of millions
of interconnected neurons that controls our functional and cognitive activity
by passing electrical signals among themselves. Alcoholism can damage brain
cells consequently changing the electrical activity responsible for brain func-
tion. Electroencephalogram (EEG) is a popular medical test and can be used
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to detect the abnormalities caused due to alcoholism by analyzing the electric
signals recorded. EEG signals are very small non-stationary, nonlinear electrical
signals measured only in micro-volts (μV) also tends to change from subject
to subject. For a naked eye observation, EEG signals from both alcoholic and
healthy control may look nothing different. The small variations are hard to
detect for a physician just by looking at it. When a stimulus is presented to test
subject, his/her brain might produce some neural responses against the stimu-
lus. In EEG this neural response from a number of similar neurons are recorded
in μV. These responses can differ from brain regions to regions. Machine learn-
ing (ML) algorithms can be useful for EEG processing to represent underlying
frequency structure with its’ mathematical models and classification models of
neural response values. These models use neural response recordings as attributes
to predict if a subject is different from another one. ML models uses mathemati-
cal and statistical approaches which enables classification procedure to be faster
and more accurate to predict if a subject is alcoholic or not. This analysis can
be helpful to build brain computer interface (BCI) for physicians for faster and
accurate identification of alcoholic patients.

The aim of our research is two folds. In this research we will observe how
well the ML algorithms can predict alcoholism. In addition, we compare the per-
formance two different types of algorithms: Instance based learning and Neural
Network. The reason for categorizing the algorithms is EEG signals are mainly
time series data and we aim to observe if any particular category of ML has
better performance than other one in analysing them. In most researches, new
classification models have been proposed or used to predict alcoholism. However,
in this study we observe the classification credibility of two different groups of
algorithms as well as compare them in regards of time series EEG data. BCI is a
great medium for building interpretive models to study behavior of our brains.
Determining the best ML for designing a BCI is challenging. With the increase
in alcohol consumption rate alcoholism is becoming a serious health and social
issue. However, alcoholism is different from a typical drinking habit. Therefore,
an early and accurate prediction is highly anticipated. Analysing EEG signals
by ML algorithms, this work puts forward such prediction to facilitate the detec-
tion of minor abnormality in the brain signals which is nearly impossible for a
physician just with naked eye observation.

The rest of the paper is organized as follows– Section 2 talks about the back-
ground of the work, and Sect. 3 discusses materials and methods. Section 4 pro-
vides experiment results including comparison among results of ML algorithms.
Finally, concluding remarks and possible future works are depicted in Sect. 5.

2 Background

Alcoholism, also known as alcohol consumption disorder (AUD) refers to a con-
dition of alcohol abuse where brain is one of the commonly affected organs.
Alcoholics are reported to have less cortical grey, white matter volumes as well
as reduced volumes of sulcal and ventricular CSF (cerebrospinal fluid) when com-
pared to non-alcoholics [6]. The disturbance in the functional connectivity can be
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detected by recording the electrical signals in the brain. EEG records electrical
activities in brain using electrodes. Contrast to the commonly questionnaire-
based alcoholism identification methods, EEG represents changes of biophysical
response in the cerebral cortex offering more accurate diagnosis of alcoholism.
However, EEG signal itself is very random in nature and computation complex.
ML algorithms provides mathematical models that automatically identifies the
underlying structure in the EEG signal to identify the distinct frequency level
responsible for different brain activity thus differentiating abnormal brain con-
dition from healthy controls.

Numerous studies have been conducted regarding classification of abnormal
subjects from healthy ones using ML on EEG data. ML provides an automated
method with adaptability and generalization capability [11,12] enabling anal-
ysis of complex EEG signals offering less human intervention. Some promising
examples are CNN (convolutional neural network) for detection of Parkinson’s
disease from EEG data [14,16]; experiment on emotion recognition [10] using K-
nearest neighbor (KNN)classifier from EEG data. Automatic seizure detection
from EEG data using ML has proven to be very successful in previous study [17].
Similar to these abnormal brain conditions, ML is tend to be used on EEG data
for alcoholism detection. Utilization of perceptron-back propagation (MLP-BP)
and probabilistic neural network (PNN) for alcoholic identification [19] suggest
that though in a normal case the gamma band of EEG signal lies below 30 Hz,
it can generate frequency between 30–50 Hz in case of an alcoholics. Support
vector machine and neural networks were applied in [9] for alcoholism detection
along with principal component analysis (PCA) for feature extraction. Recur-
rent neural network (RNN) is also reported to be used in EEG classification in
numerous research [20,21]. An automated diagnosis of alcoholics using numerous
correlation function and support vector machine (SVM) was performed by [2].
The correlation functions identified the relation between different parts of the
brain and if it changes in alcoholic condition. They have fond that certain parts
of the brain communicate in normal decision-making process and in an alcoholic
condition the communication reduces significantly.

In this research, we have considered an open source dataset [3] of EEG signals.
In a previous study by Ruslan Klymentiev1 on the same dataset showed that
among all the electrodes the most significant correlation is seen between FPZ &
FP1 and FP1 & FP2 around 90% [3]. Rather than finding the correlation, we
have applied ML algorithms directly on the response value received from these
electrodes and see if they are significant enough to distinguish between alcoholics
and healthy control.

3 Materials and Methods

3.1 Overall System

In this experiment we have applied ML methods for prediction of alcoholism
based on EEG signals. To classify alcoholics from healthy control and com-
1 https://www.kaggle.com/ruslankl/eeg-data-analysis. Accessed on March 23th, 2020.

https://www.kaggle.com/ruslankl/eeg-data-analysis
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pare the performance of instance based learning and neural networks, we have
designed a step by step system. A snapshot of the overall methodology of the
system is provided in Fig. 1.

Preprocessing

DWT

PCA

ICA

Instance-based
Learning

Neural Network
based Learning

Yes

No

Yes

No

IBL/
NN?

DWT: Discrete Wavelet Transform, PCA: Principal Component Analysis, ICA: Independent Component Analysis
IBL: Instance Based Learning, NN: Neural Network Based Learning

Fig. 1. Block diagram of the implemented pipeline showing different steps and execu-
tion sequence.

3.2 Dataset Description

For our experiment, we considered EEG dataset which was gathered to examine
EEG correlates of genetic predisposition to alcoholism [3]. The characteristics
of this dataset is multivariate, time series which has attributes with categori-
cal, integer and real valued properties. The EEG was collected while the two
groups of subjects were shown a set pictures from the 1980s Snodgrass and Van-
derwart picture set [3]. The EEG were recorded from 64 electrode placement
(10–20 standard EEG placement) on each subject. Each subject was exposed
to either a single stimulus (S1) or to two stimuli (S1 and S2) and were asked
to identify either a matched condition where S1and S2 were identical or in a
non-matched condition where S1and S2 are different. The EEG recorded was
sampled at 256 Hz (3.9 ms epoch) per second. The original dataset contains
EEG of 20 subjects where each subject completed 120 trials for each stimulus.
For our experiment we have randomly selected 5 alcoholics and 5 healthy con-
trols among them. Then the response values of FPz, FP1 and FP2 are collected
for all 120 trials of each given stimulus. The training and test data were prepared
using stratified 10-fold cross validation.

3.3 Data Preprocessing

Data preprocessing is an important concepts in EEG data. In our case, EEG
data shows high variance which required noise cleaning to get closer values. The
high level idea is to enhance the likelihood for producing a cut above result. Our
objective of research is to compare instance-based classifiers with NN to demon-
strate variance of result in respect to alcoholism diagnosis. Hence cleaner data
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can potentially aid in experiment for making informed decision on model accu-
racy. Our inclusion criteria for choosing DWT, PCA and ICA were: first review-
ing the evidence of efficacy from literature and the efficiency of their underlying
mathematical model for computation. There are particular distribution based
on different data source which are respectively Gaussian with different kurto-
sis. EEG data has a distribution of super-Gaussian which needs application of
transformation that pass distribution of non-linearity to calculate entropy. ICA
and PCA are quite similar based on their functionality. PCA is applied to the
training data set to indicate transformation matrix which are used for measuring
the final feature. For example, if transformation matrix is m with the dimension
of K ×N , the outcome y will be: y = mT x; where x is original vector by orthog-
onal basis where PCA help in feature reduction for our EEG dataset [7]. DWT
offers a compressed approximation of the data that can be retained in a reduced
representation of the original data. DWT can be also used for noise reduction
by filtering out any particular order coefficients using a threshold.

DWT. Wavelet Transformation [18] is used for decomposition and summarizing
a time-domain signal into a multidimensional representation comprised of a set
of basis functions called wavelets. The wavelets are generated by scaling and
shifting a mother wavelet. If transformation includes a discrete set of wavelets
which are orthogonal to its translation and scaling, they are known as DWT.
The DWT coefficient (Λϕ[i, P ]) of a signal x[n] is defined as:

Λϕ[i, P ] =
1√
k

∑

n

(x[n]Πi,P [n]) (1)

Here, K is the number of samples and Λ is a wavelet function.

PCA. PCA [1] converts a set of observations of correlated variables into a set
of values using an orthogonal transformation. The newly generated values are
linearly uncorrelated and called principal components (PCs). Each PC must be
orthogonal to its preceding components. If we have a matrix T of p × q then
covariance matrix can be calculated as:

CT =
1

n − 1
(T − T )(T − T )γ , T γ is the transpose matrix of T (2)

From the covariance matrix C the eigenvalues and orthogonal eigenvector matrix
P is calculated. Because the covariance matrix is positively semi-defined and
symmetric in nature, the diagonal matrix Π is defined as CT = PΠP γ The
eigenvalues are contained in Π successively corresponds to the values contained
in eigenvector P .

ICA. ICA [7] is a popular blind source separation method that finds a linear
representation of non-Gaussian data in a signal statistically independent compo-
nents (ICs). ICA can identify the original signal from noise at least to a certain
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level if some information about the origin of the signal is known [7]. To under-
stand the concept of ICA lets consider an observed signal xi(t) represents a
mixture of n signals. xi(t) can be modeled as:

xi(t) =
m∑

j=1

δijSj(t) (3)

where, δij is a constant parameter called mixing matrix sj(t) represents an IC at
time point t. s is the source signal to be separated from its mixed component δij .
Denoting the elements δij as T , it’s inverse matrix W is calculated to obtained
the ICs as s = Wx. The ICs generated must have non-Gaussian distribution and
their number is equal to the number of observed sources.

3.4 Machine Learning Algorithms

Two types of ML models are used in this study: instance-based (IBL) and neural
networks (NN)-based. IBL algorithms do not create any learning model before
the actual classification process, thus, without separating the training and test-
ing phases and creating a model local to certain test tuple or instance. This
study applies two IBL models: K-Nearest Neighbor (KNN) and Learning Vector
Quantization (LVQ). The reason to choose KNN and LVQ is that they are most
commonly used IBLs and have been reportedly used in time series data clas-
sification. On the other hand, NN is brain-inspired, where in each layer of the
network, the neurons learn from a training dataset. Later this model predicts
classes for given queries. Here three well known NNs will be applied Recurrent
Neural Network (RNN), Bidirectional Long-Short Term Memory (B-LSTM) and
Convolutional Neural Network (CNN).

Instance-Based Methods

KNN. KNN is one of the popular ML models. KNN does not necessarily create a
classifier model from the input space. When a query is fed into the classifier, KNN
algorithm chooses its k nearest neighbors by calculating the distance between the
query and other instances. From the number of methods for distance calculation,
commonly used distance metric calculation method is the Euclidean distance.
Euclidean distance is the rooted sum of squared distance between two values of
the same attribute. For two instances X and Y with I attribute the Euclidean
distance between them can be calculated as:

E =

√√√√
n∑

i=1

(Xi − Yi)2 (4)

After selecting the k nearest neighbor the class label of the instance with which
the query has the lowest distance will be assigned to the query.
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LVQ. LVQ allows to determine exactly how many instances from the training
set is needed to learn generating a more optimized classification model [8]. This
particular set of instances is called the “window”. The window is determined
around the mid-plane of two variables mx and my. mx and my are two nearest
neighbors of the query q such that if mx and q belong to the same class, my and
q will have different class label and vice-versa. The relation between mx, my and
q can be defined with the following equation:

mx(i + 1) = mx(i) − α(i)[qi − mx(i)] (5)

my(i + 1) = my(i) − α(i)[qi − my(i)] (6)

Here, α(i) is individual learning rate factor. The value of mx and my is updated
at each step i until the closest instance mx is found. Finally, the class label of mx

is assigned to the query q. In this experiment we have applied LVQ3 as it is more
robust comparing to LVQ1 and LVQ2. It provides both binary and multi-modal
classification.

Neural Network Based Methods

RNN. RNN is a modified feed-forward neural network which has an internal
memory that contains information about previously learned data. At a certain
hidden layer it makes decision from the current input and outputs from previous
layer. Traditionally, the state of a hidden layer neuron of RNN is computed as:

Λi = A(Λi−1, xt) = WΛΛi−1 + Wxxi + b (7)

Here, W represents a weight parameter. At each hidden step Λt, the output is
calculated using an activation function that is applied on input xi of the current
layer and output Λi−1 of the previous layer. In this experiment we have used
the modified version of RNN called long-short term memory (LSTM) [5] that
can easily model time sequenced data such as EEG. RNN shows two long term
dependency problem, the vanishing gradient problem and the exploding gradient
problem. These problems can be handled by using LSTM. It uses designated
hidden states called cell that stores information for long period of time so that
particular information is accessible to both immediate subsequent steps and
later nodes. It’s special gates can control removing or adding information to a
cell state. It has three specialized gates called the forget gate (Fi), input gate
(Ii), and output gate (Oi). Each gate produces an output using similar equation
to a RNN hidden gate. The final Output of an LSTM cell with these gates can
be defined by:

Λi = Oi ⊗ tanh (Li) (8)

Here, Li represents recurrent state of the LSTM node and has following form

Lt = Li−1 ⊗ Fi ⊕ L̃i ⊗ It (9)
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Our designed LSTM network The second layer uses activation function sig-
moid that returns a number between 0 and 1 depending on the cell state.

B-LSTM. Bidirectional LSTM is an advanced LSTM that learns not only from
the previous layer but also from the future elements. Therefore, instead of one
recurrent network it trains two, respectively for previous and future outcomes.
The input sequence is fed to one network in normal time order and the in-reversal
time order for the other one. Both outputs are concatenated or summed at each
time step to generate the current state. B-LSTM might use similar activation
functions as LSTM.

CNN. CNN uses layers of convolution that convolve a filter also called window
over an input dataset and generates a feature map where some activation func-
tion is applied. In convolution network, Convolution layer calculates the output
of neurons, connected to local regions in the input by applying a dot product
between their weights and values of the input volume in the local region. It
is followed by a pooling layer that uses some aggregation function to create a
pooled map along the spatial dimensions to reducing the size of the connected
layer. Finally, the fully connected layer computes the classification score. In
CNN multiple convolution and pooling layer is applied alternatively to create
a more accurate classification model or network. In our study, we have applied
1-dimensional convolution layer where each instance acts as a input vector. A
pooling layer of pooling size 2 is applied.

3.5 Evaluation Metrics

The classification result is evaluated using confusion matrix which represents the
number of correct and wrong prediction for each ML algorithm. Based on the
confusion matrix different performance metrics are calculated (Table 1).

Table 1. Performance evaluation metrics

Measurement Formula

Accuracy TP+TN
TP+TN+FP+FN

F-measure 2TP
2TP+FP+FN

G-mean TP√
(TP+FP )∗(TP+FN)

Sensitivity TP
TP+FN

Specificity TN
TN+FP

Type I Error 1 − TN
TN+FP

Type II Error 1 − TP
TP+FN
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Table 2. Comparison of Instance-based and Neural Network Models

Type Model Acc ROC F-M G-M Sens Spec T1E T2E

IBL KNN 0.731 0.731 0.733 0.733 0.737 0.725 0.242 0.274

LVQ 0.728 0.728 0.732 0.732 0.742 0.714 0.257 0.285

NN LSTM 0.898 0.898 0.899 0.899 0.908 0.873 0.091 0.112

B LSTM 0.950 0.950 0.950 0.950 0.945 0.955 0.054 0.044

CNN 0.850 0.850 0.855 0.855 0.882 0.819 0.117 0.180

Legend: Acc.: Accuracy; ROC: Receiver Operating Characteristics; F-M: F-
Measure; G-M: Geometric Mean; Sens.: Sensitivity; Spec.: Specificity; T[1/2]E:
Type [I/II] error; bold faced values denote the best performance.

4 Results and Discussion

The ML methods as well as the preprocessing techniques were implemented using
the scikit library with Python. The evaluation metrics were measured separately
for raw dataset and each preprocessing technique. The training and test dataset
were prepared using stratified 10-fold cross validation.

4.1 Overall Comparison of the Algorithms

The performance of the considered algorithms against different evaluation met-
rics is shown in Table 2. We see that, in case of IBL, KNN achieved an accuracy
of 73% and LVQ’s accuracy was only 72%. On the other hand, in case of NN,
LSTM, B-LSTM and CNN received accuracy of 89%, 95% and 85%, respectively.
In terms of accuracy the NNs offer more accurate classification result than IBLs.
Though both the IBL algorithms have moderate accuracy rate, they lag behind
the NNs notably. In addition, if we observe the other performance metrics, LSTM
and B-LSTM has the lowest error rate (both type I and type II error), around
9% and 5% of type I, and 11% and 4% of type II for LSTM and B-LSTM consec-
utively. The other NN algorithm CNN also has a low error rate of only 11% for
type I and 18% for type II. However, both IBLs has higher error rate compared
to all NNs applied. 24% of type I and 27% of type II error received for KNN
and 25% of type I and 28% of type II error received for LVQ. The NNs shows
better performance for other evaluation metrics as well (Table 2). Among the
five algorithms from both IBL and NN, we can see that the best performance
is received from B-LSTM which achieved an accuracy around 95% and highest
result in other performance metrics. Between the two IBL methods the highest
accuracy is obtained by KNN and it also shows better result in other metrics
against LVQ.

4.2 Effect of Preprocessing on Model Performance

In this section, we take into account the best model from two type of models and
discuss their performance after applying numerous data preprocessing techniques
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and also for the raw data. KNN is observed to be the best IBL classifier and
B-LSTM is observed to be the best NN classifier (Table 3). In case of KNN the
highest accuracy (88%) is received when the dataset is transformed using ICA.
For DWT, PCA transformed data and raw data, accuracies obtained respectively
are around 72%, 73%, 74%. As for B-LSTM, the highest accuracy achieved is
for PCA transformed data (95%). DWT (accuracy 88%) and ICA (82%) did not
necessarily improve the classification performance of B-LSTM, as the accuracy
they achieved are lower than the accuracy received from B-LSTM when applied
to raw data. The performance is similar for other evaluation metrics also.

B-LSTM outperforms KNN in case of raw data and other preprocessed data
except for ICA (Table 3). When the dataset is preprocessed with ICA, KNN
receives an accuracy of nearly 89% which is quite higher than B-LSTM who
receives an accuracy of 82%. Based on the discussion above, we find that neu-
ral networks show better classification compared to instance based learning for
alcoholism prediction with time series EEG data and B-LSTM is observed to be
the best classifier in this experiment. However, there is one drawback observed
of NNs which is each of them requires higher run-time than IBL algorithms.

4.3 Discussion

In this study we applied two groups of ML algorithms (KNN & LVQ for IBL
and RNN, B-LSTM & CNN for NN) on EEG data to distinguish alcoholics from
healthy controls. In addition, we compared the performance of these two groups
using different performance metrics. There have been a number of previous stud-
ies analyzing EEG signals with ML for alcoholism detection. In this section we
compare our study with some previous works regarding EEG analyzing with
ML. In a study of automatic diagnosis of alcohol abuse [13] has shown signif-
icant difference between alcoholics and healthy controls in their EEG specially

Table 3. Effect of transformation on the performance of IBL and NN models

Model PPM Acc AUC F-M G-M Sens Spec T1E T2E

IBL best model,
KNN

DWT 0.720 0.720 0.721 0.721 0.724 0.715 0.275 0.284

PCA 0.731 0.731 0.733 0.733 0.737 0.725 0.242 0.274

ICA 0.889 0.889 0.888 0.888 0.888 0.890 0.111 0.109

Raw 0.747 0.747 0.745 0.745 0.739 0.754 0.260 0.245

NN best model,
B-LSTM

DWT 0.885 0.885 0.887 0.887 0.898 0.872 0.101 0.127

PCA 0.950 0.950 0.950 0.950 0.945 0.955 0.054 0.044

ICA 0.827 0.827 0.828 0.828 0.835 0.818 0.164 0.181

Raw 0.920 0.920 0.919 0.919 0.910 0.930 0.089 0.069

Legend: PPM: Preprocessing Method; Acc.: Accuracy; ROC: Receiver Operating
characteristics; F-M: F-Measure; G-M: Geometric Mean; Sens.: Sensitivity; Spec.:
Specificity; T[1/2]E: Type [I/II] error; Bold are best performance.
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in the left hemisphere. Besides discriminating EEG of alcoholics and healthy
controls, they have also differentiated the EEG of alcoholics and alcohol abuser
though there was no seemingly significant difference between the alcoholics and
alcohol abusers. However, EEG of alcoholics and healthy controls have high dif-
ference in the delta and theta band. They have received an accuracy of 96%
using SVM. In another study [15], wavelet transformation methods is applied to
find non-linear correlation called correntrophy in EEG signals of alcoholics and
normal. The correlation is then used with Squared SVM for classification which
received an accuracy of 97%. However, their study does not provide any detail
discussion on if EEG of any certain part of the brain carries any differentiating
features between the alcoholics and the controls. In our study, We have con-
sidered response values of electrodes FPZ, FP1 and FP2 which collects neural
activity in the prefrontal cortex of the brain. The prefrontal cortex is the part of
the cortical region responsible for decision making as well as reasoning [4] based
on past events. Therefore, we have considered the fact that neural response of
alcoholics and the controls can have significant difference in their prefrontal cor-
tex. In case of accuracy, both the papers [15] and [13] have marginally higher
performance than ours where our best classifier B-LSTM have received an accu-
racy of 95%. However, the aim of this study was not only classify the EEG data,
also compare the performance of IBL and NN algorithms. We have applied dif-
ferent preprocessing methods to both groups of methods and found that NN
outperforms IBL in classifying non-linear EEG data, except when ICA is used.

5 Conclusion

Alcoholism is a psychological phenotype harmful to an individual as well as
to society. The negative physical effects of its’ can be transmitted genetically
to the offspring. Therefore, identification of alcohol abusers from healthy peo-
ple is becoming an important research topic to data scientists. Our experiment
successfully implemented ML algorithms for classifying EEG data of alcoholics
and healthy control. Neural networks outperformed instance based algorithms,
however if the time-series EEG data is converted to linear data using ICA, the
instance based networks significantly improve in classifying EEG of alcoholics,
even outperform the neural networks. B-LSTM is proven to be the best classi-
fier in this experiment receiving accuracy of at most 95%. Our experiment of
comparing two different classifiers’ performance with EEG signal suggest the
best possible method for Alcoholism automated detection and therefore, reduce
the diagnosis error. In the future we want to use the response values of all the
patients that participated in the EEG data collection and see if the algorithms
show scalability.
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Abstract. When the world is suffering from the deadliest consequences
of COVID-19, people with autism find themselves in the worst possible
situation. The patients of autism lack social skills, and in many cases,
show repetitive behavior. Many of them need outside support through-
out their life. During the COVID-19 pandemic, as many of the places
are in lockdown conditions, it is very tough for them to find help from
their doctors and therapists. Suddenly, the caregivers and parents of the
ASD patients find themselves in a strange situation. Therefore, we are
proposing an artificial intelligence-based system that uses sensor data
to monitor the patient’s condition, and based on the emotion and facial
expression of the patient, adjusts the learning method through exciting
games and tasks. Whenever something goes wrong with the patient’s
behavior, the caregivers and the parents are alerted about it. We then
presented how this AI-based system can help them during COVID-19
pandemic. This system can help the parents to adjust to the new situa-
tion and continue the mental growth of the patients.

Keywords: COVID-19 · Autism · Emotion Detection · Artificial
intelligence

1 Introduction

The COVID-19 global pandemic is keeping its impact on every sector, taking
away millions of lives. The world economy is collapsing, and healthcare providers
face immense pressure to ensure health support to the help-seekers. People with
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autism spectrum disorder (ASD) need more attention during a regular period
than anyone else. They follow strict routines, which keep their health in stable
condition. Due to the COVID-19 pandemic, these routines are violated. This
disruption leaves ASD patients in a more vulnerable position. Since the institu-
tional help is not available, a new support system is needed to meet the demand
for help.

ASD refers to the condition, where the patients face difficulties in social inter-
actions and communication, show repetitive behavior, lack language skills, and
perform a limited range of activities. Some patients do not understand pain, and
therefore, when they are angry, they get involved in self-destructive activities.
Worldwide 0.625% of the children are affected with ASD [10]. This situation is
much worse in developing and underdeveloped countries. They usually face more
domination and violence in the domestic environment than a healthy person [14].
During a lockdown, this situation worsens with an increase in these incidents [34].
The health condition of an ASD patient can be improved by providing constant
care and appropriate therapies. These therapies involve some reinforcements to
the patient, which can be some praising words or some privileges. Unfortunately,
during the COVID-19 pandemic, since most of the places are in lockdown con-
ditions, help from the clinicians and the therapist are challenging to get. The
educational institutions are also closed because of the pandemic. Therefore, an
alternative way needs to be created to solve these problems.

Artificial Intelligence (AI) is a technology that mimics the functionality of
the human brain and is used in many applications as biological data mining
[19,20], image analysis [5,22,23], anomaly detection [11,36] and expert system
[15,21,25,31,33,39]. In the healthcare sector, AI is getting more popular and
used for diagnosis purposes [6,7]. During the global pandemic, as the number of
clinicians is small, and they cannot personally interact with the patient directly,
an AI monitoring and response system can help. This AI system should take
environmental parameters, patient’s current situation, and uncommon situations
as input to provide responses analyzing the data. This will help the parents and
caregivers as an assistant and take better care of the patient.

Courtenay et al. [8] investigated how COVID-19 pandemic can impact on
people with intellectual disabilities. He mentioned that these people have a weak
immune system, which makes them vulnerable to this disease. He also mentioned
that if anyone with intellectual disabilities is affected by COVID-19, they can
face serious consequences. Lima et al. [27] assessed the risk factors of ASD during
COVID-19. They said that ASD patients have cytokine dysregulation abnormal
factors, and the COVID patients who faced complications also showed raise
in cytokine. Therefore, they proposed to take special care for the ASD patients
during this pandemic. Yarımkaya and Esentürk [38] emphasized exercise for ASD
patients during COVID-19 as they tend to get weights quickly and show signs of
obesity. They also described the exercise set, time duration, and the frequency
in their study.

There were some researches, where the emotion of the ASD patients was
detected using sensors. Heni and Hamam [13] proposed a facial emotion
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detection system and an automatic speech recognition system for emotion detec-
tion of ASD patients. They followed the rapid object detection system proposed
by Viola and Jones [32]. Krysko and Rutherford [17] experimented with the abil-
ity of ASD patients to detect angry behavior. They found that the patients can
successfully detect angry and happy faces but show difficulty in understanding
discrepant images. Smitha and Vinod [26] proposed a real-time emotion detec-
tion procedure using principal component analysis (PCA). They extracted the
face from the background and detected happy, sad, surprise, neutral, and angry
expressions with reasonable accuracy. Afrin [1] et al. proposed an AI-based app-
roach to recognize facial expression recognition of autism individuals. They at
first, took the image as an input and removed noise from the image using a
median filter. They segmented the filtered image. Then a simple CNN was intro-
duced to classify the image [4]. They simulated the whole architecture and found
that the architecture was successful in classifying facial expression.

Sumi et al. [28] proposed an assistance system for caregivers of ASD patients
in the form of a smart wearable device that can detect position, heartbeat, sound,
and movement of the patient. These sensors use wireless interface to transmit
data to the parents, caregivers, and in an external repository. GPS sensor was
used for location, and an accelerometer sensor was used for finding repetitive
patterns in the patients. [2,3,6,16] proposed an assistive system for caregivers
dealing with ASD patients in the form of a playing element [23,37].

In this research, we have proposed a system that can work as a substitute
for the caregivers of ASD patients. We have proposed a wearable sensor-based
device along with a camera-based monitoring system. Then we introduced a
transfer learning-based CNN model for emotion recognition, which will be used
to interact with ASD patients. To the best of the author’s knowledge, no research
has been done, which detects emotion of ASD patient using transfer learning
and use that to maintain and teach them. This system can monitor the ASD
patients without any contact of the caregivers. Therefore, when some of the
family member is affected with COVID-19, this monitoring system can help a
lot. Finally, we have discussed how this model can help the patients and their
caregivers during this pandemic. We hope that this research will help take care
of the ASD patients in this pandemic and relief their parents.

In the next section, we will discuss the world health organization’s (WHO)
guidelines for maintaining ASD patients. In Sect. 3, we will discuss our method-
ology. Section 4 will cover the results of this research. Section 5 will cover the
usage of the proposed model during COVID-19, and in Sect. 6, the conclusion
and future works will be discussed.

2 WHO on Autism

The symptoms of ASD are visible within ages 1 to 5, which continues to ado-
lescence and adulthood [35]. In most cases, ASD is accompanied by attention
deficit hyperactivity disorder, anxiety, and depression, making the situation
much worse. The number of ASD patients is ever on the rise, possibly because of
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more reliable diagnostic tools and people being more conscious about the diag-
nosis. Although, they say that 0.625% of the world’s population is suffering from
this disease, the numbers from underdeveloped and developing countries are not
available. The causes of ASD are environmental and genetic. Though many think
that childhood vaccination is a cause of ASD, there was no evidence supporting
it. To overcome the problem of communication and social behavior, skill training
can help a lot. In many cases, they need consistent help from others throughout
their life which can be a burden for their family. Therefore, rehabilitation pro-
grams should be arranged for them, and social, employment, and educational
discrimination should be eradicated. This is not a stigma, and during situations
like a pandemic, they should not be deprived of the health services just because
the caregivers do not know how to handle them.

3 Methodology

3.1 Proposed System

In this work, we are proposing a system consisting of a smart wrist band (SWB),
an interactive monitor, and a camera device attached to the monitor for mon-
itoring ASD patients. These devices will be connected to a mobile application
to continuously monitor and keep them in a learning environment all day long
without caregivers.

The SWB consists of accelerometer, gyroscope, magnetometer, GPS tracker,
heart rate sensor, pedometer, and temperature sensor. Accelerometer senses
vibration to detect acceleration. Gyroscope is used for measuring angular move-
ment, and a magnetometer is used to locate the position about the north pole.
GPS is widely used to track a person by providing geological coordinates.

These sensors will be attached with a microcontroller, esp8266, and a sim card
module. When wi-fi is available, esp8266’s built-in wi-fi module will send sensor
data to the mobile server. In the case of non availability of wi-fi, the GSM module
will be used to transfer data to the mobile application. This device collects data
from its inbuilt heart rate sensor, pedometer, and temperature sensor and will
send the patient’s condition to the mobile server. An ambient temperature sensor
will be set up in the corner of the room for continuous monitoring of the room.
There will be some toys and counting objects in the room. RFID will be attached
to them to detect its touching.

The output device will be a sound box and a computer screen, which will
contain a camera to take the images of the patient for emotion analysis in every
5 min. All the devices described in this system will send data to the mobile server,
and data will be stored for around 20 days. The processed data will be sent to the
server from the mobile device. Our AI models will analyze the health condition
of the autistic individual and operate through some visuals and sounds. Figure 1
depicts the proposed AI-based system for the ASD patients.

The children will have a routine for playing, learning, and sleeping. The
AI-powered application will be installed on the mobile. It will produce some
relaxation music during sleeping, show visuals during teaching, and help them
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Fig. 1. An AI-based autism monitoring system. There are sensor elements such as
accelerometer, gyroscope, magnetometer, temperature sensor, GPS, heartbeat sensor,
pedometer, and a camera attached to the monitor, which shows visuals based on the
mobile application decision. The camera output is used to detect the emotion of the
ASD patient. When some unusual event happens, an alarm signal is sent to the care-
givers. The mobile application takes the decision and sends it to the server.

play based on their emotion. We have proposed an Inception-ResNetV2 based
model for emotion recognition from camera images. It can detect the positive,
negative, and neutral state of a person.

If the child is in a positive mental state during the time of the study, the
mobile application will show him some alphabets, pictures for teaching counting,
or contents according to the school’s guidelines on the screen. It will also provide
sound to keep him attracted to this lesson. If his mindset becomes negative, the
application will try to relax him by showing cartoons or some relaxation songs,
which will make him ready to study again. The whole emotion state will be
controlled through the proposed CNN model using images taken by attached
camera in the monitor screen.

During playing, the software will give him the command to do something. If
he is trying to play Lego, it will provide instruction in a language that the child
can understand. RFID attached to the toys will detect the child’s touch on it
and will prompt the monitor to show the child a visual and a sound related to
the visual. If he successfully does something, the application will praise him and
take him to more laborious tasks. If the child is touching a dirty object, RFID
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will detect it, and the application will play visuals and sound so that the child
can learn that he should not move the dirty objects.

The ambient temperature sensor will try to alarm the other members when
the room temperature gets too hot or too cold. The attached heart rate sensor
and temperature sensor in the smart band will provide a way of monitoring
his health status. An AI model will be deployed to analyze his sleeping pattern,
heart rate data, and temperature data collected from the band. It will then alarm
parents through a text message and app notification. If the child goes outside
without telling anyone, he can easily be found out using the location tracked by
the GPS attached in the SWB.

The whole architecture will monitor the child’s concentration, health condi-
tion, and activity continuously. If it finds something unusual, it will send mes-
sages to the parents immediately. It will also generate a report every week,
including the child’s daily activity, performance in games, mental state, activity
log, progress in learning, and health condition. The parents can easily find the
growth of their child through it and send it to the doctor.

3.2 Emotion Detection Model

Fig. 2. (a) Distribution of images to seven different classes in the face recognition
dataset. The class labeled “Happy” contains the highest number of images (7,164) and
“Disgust” contains the least number of images (436) (b) Distribution of images after
removing, shuffling, and re-labeling images from the face recognition dataset. Images of
seven classes in the Face recognition dataset were distributed to three classes (Positive,
Negative, Neutral). The negative class contains the highest number of images (5,761),
and the neutral class contains the least number of images (3,064).

The emotion of ASD patient can be detected from real-time images. For train-
ing and testing the emotion recognition model, we have used a facial expression
recognition dataset that is publicly available at Kaggle [24]. This dataset con-
tains a total of 35,887 images divided into training and testing folders. This
dataset contains images of 7 facial expressions: happy, sad, anger, disgust, sur-
prise, sad, and neutral. The dimension of these images is 48 × 48 in grey-scaled
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form. In this work, we have divided the dataset into three classes: positive, neu-
tral, and negative. We have considered the images labeled happy as positive,
neutral labeled images were considered as neutral, and sad, disgust, and anger
tagged images were labeled as the negative class. After removing, shuffling, and
re-labeling images, we took 21,513 samples for training, testing, and validation.
For training purposes, we have kept 13,240 samples, and 3,254 were used as a
validation set. A set of 5,019 images were kept aside for testing the performance
of the model.

We have also used a facial expression recognition dataset named CK+48
[18] for cross-validating the model. This dataset contained images of 7 facial
expressions: happy, sad, anger, disgust, surprise, fear, and neutral. We converted
it to 3 classes (positive, negative, neutral), where we did not consider the images
of fear and surprise. The positive class contained images labeled as happy, the
neutral class had the images labeled as neutral, and the negative class was a
collection of images labeled as anger, disgust, and sad. Figure 2 presents how
emotion recognition dataset was created from the Kaggle dataset. Figure 2(a)
shows the number of samples in each class of the Kaggle dataset. Figure 2(b)
shows the distribution of number samples in each class in the converted dataset.

Inception-ResNet [30] architecture is a state-of-the-art CNN architecture, a
combination of InceptionNet [29] and ResNet [12]. These two architectures are
capable of acquiring high precision in lower epochs in case of image classification.
Inception-ResnetV2 combines the power of these two models. It contains 164 lay-
ers, which is trained with the ImageNet [9] dataset containing 1,000 classes. In this
architecture, the Inception block is combined with a 1×1 convolution layer without
activation for scaling up filter bank dimensionality. Convolution is done by multi-
plying filterswith the image pixels to findnew features. It is also necessary tomatch
dimensionality with input block as it is mandatory to have the same dimension in
input and output for residual operation. As the number of filters increases, residual
networks tend to die. So, residual activation is scaled to in between 0.1 and 0.3 in
Inception-ResNetV2. The total number of parameters in the Inception-ResnetV2
model is 55,873,736, and the size of the architecture is 215 MB.

The Inception-ResNetV2 model was trained and tested using the above men-
tioned facial expression recognition dataset. The model took images as input,
converted it to a tensor of 299 × 299 × 3, and was given input to the model’s
input layer. The model was trained using an adam optimizer, where the learn-
ing rate was set to 0.001. It was trained for 20 epochs. The model was then
tested using a separated testing set of facial expression recognition. We have
cross-validated the trained model using the CK+48 dataset. The images of this
dataset were at first converted to 299 × 299× 3 as InceptionResNetV2 can take
images of 299 × 299 × 3 as input. Then they were given input to the trained
model for predicting their class. We have removed the last layer from the origi-
nal Inception-ResNetv2 and tried several combinations of fully connected layers
and activation functions (Softmax, Sigmoid, Tanh). We have tried to improve
the model’s performance by changing learning rate (0.1, 0.01, 0.001, 0.0001).
The best model is presented in this study (Fig. 3).
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Fig. 3. The architecture of Inception-ResNetV2. There are three inception blocks where
each of them has an additional 1 × 1 convolutional layer for scaling up the dimension-
ality. Reduction blocks are introduced to change tensor’s height and width. The stem
takes a 299 × 299 ×3 image as input and performs some operations. After that, Incep-
tion blocks and reduction blocks extract significant features for classifying images.

4 Result Analysis

The Inception-ResNetV2 architecture achieved 78.56% accuracy in emotion
recognition from facial images. It has classified 3961 out of 5019 images suc-
cessfully into three different classes. Figure 4(a) shows the confusion matrix of
the proposed model. This architecture was most successful in classifying pos-
itive emotions. It has successfully recognized emotion from 1,521 out of 1,978
samples in negative class, 884 out of 1,216 images from neutral class, and 1,556
out of 1,825 samples in positive class. Figure 4(b) shows the prediction ability of
the model for classifying different emotions. The model was also cross-validated
using a publicly available CK+48 dataset, where this model achieved an accu-
racy of 76.70%. The images of this dataset were not used for training purposes.
So, it proves that the model is very much efficient in recognizing emotion from
facial expression image. Figure 5(a) shows the comparison of the achieved testing
accuracy of the model in the two different datasets.
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Fig. 4. (a) The confusion matrix of the emotion detection model. (b) Accuracy of the
InceptionResNetV2 model to classify positive, negative, and neutral emotions.

Figure 5(b) shows the comparison between different ML algorithms and the
Inception-ResNetV2 model for classifying emotions from a person’s image. The
ML models did not perform well with the data. Random forest (RF) and support
vector machine (SVM) achieved accuracy around 57% mark, which is not very
encouraging. On the other hand, our proposed transfer learning model achieved
good accuracy for this job.

5 Utility of the Proposed Model During COVID-19
Pandemic

Fig. 5. (a) Comparison of testing accuracies for two different datasets for the proposed
model. (c) Comparison of different ML models with the proposed CNN model. Among
the ML algorithms, SVM performed better than the others, but the CNN model out-
performed them.

Due to the Covid-19 pandemic, washing hands has become very important.
Autistic children don’t understand the importance of washing hands or putting
on masks, and he cannot understand what he should do in this tough time.
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The proposed application will show him visuals and make him washing hands
every 2 h. It will also teach him through games and visuals that he should wear
masks when he goes out. The games will have a few stages, and the child will
be prompted to do some tasks in the virtual game for completing every steps.
He will gather the understanding of COVID-19 through an interactive visual.
If he is sitting for a very long time, the visuals and sounds will be played to
make the child walk for sometimes. It will make them physically healthy, fit, and
boost their immune system. If he is walking for a long time, it will try to make
him rested for some time. The child will be prompted to do some easy physical
activities such as hand raising, spreading, and so on. The system will keep the
patient busy with engaging content and generate an alert in times of unusual
behaviors. It will optimize the method of learning based on the patient’s mood
so that burden is not imposed on them. If the parents of the patient are affected
by COVID-19, this system will help them maintain distance with the patient
and maintain a healthy environment.

6 Conclusions

In recent years, technologies are offering considerable assistance to every sectors.
AI has given some decision-making capabilities to electrical devices. Healthcare
systems are adopting AI, so that they can assist the clinicians in monitoring
and managing the patients. ASD patients need persistent assistance, which is
tough to get during the COVID-19 pandemic. The availability of clinical help
is limited, and emergency help is hard to get. A personalized monitoring and
supporting system can help the ASD patients during this pandemic and after-
ward. This study proposes an automated AI-based control system which can
not only monitor the patients but also give support with learning and therapy.
The patients with ASD are mentally and physically unstable. Their response to
any sudden event around them is extreme and this phenomenon needs proper
attention. That is why environment near them should be as stable as possible.
We are using an AI based emotion recognition system to evaluate their sudden
change in emotional state and finding out the cause of it by using the proposed
architecture’s sensor data. We have proposed the use of different sensors that
help the system to provide decisions accordingly. The emotion detection model
offers a good indication of the mood and unusual behavior of the patient. Based
on them, the level of the learning games and tasks are modified, and the reward
system is developed. This way, the patients never get bored with the therapy. At
last, we discussed how this proposed system could be used for maintaining the
patients during COVID-19. This system can help the clueless parents in finding
some space to get themselves sorted. In the future, more compact design and fea-
tures like augmented reality will be incorporated with this proposed system. A
human activity recognition model will be incorporated with this existing model
as well.
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Abstract. Alzheimer patient’s routine care at the onset of a catastro-
phe like coronavirus disease 2019 (COVID-19) pandemic is interrupted
as healthcare is providing special attention to the patient having severe
acute respiratory syndrome coronavirus 2 (SARS-COV-2) or COVID-
19 infection. In order to decrease the spread of the disease, government
has shut down regular services at the hospital, and advised all vulnera-
ble people to stay at home and maintain social distance (of 3 fts) which
hampered the routine care and rehabilitation therapy of elderly patient
having a chronic disease like Alzheimer. On the other hand, the artifi-
cial intelligence (AI)-based internet of healthcare things allows clinicians
to monitor physiological conditions of patients in real-time and machine
learning models can able to detect any anomaly in the patient’s con-
dition. Besides, the advancement in Information and Communication
Technology enable us to provide special distance care (such as medica-
tion and therapy) by dedicated medical teams or special therapists. This
paper discusses the effect of COVID-19 on patient care of Alzheimer’s
Disease (AD) and how AI-based IoT can help special care of AD patients
at home. Finally, we have outlined some recommendations for Family
and Caregiver, Volunteer and Social Care which will help to develop the
Government policy.

Keywords: IoT · Machine learning · SARS-COV-2 · Pandemic ·
Patient management

1 Introduction

Coronavirus disease 2019 (COVID-19), also called severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) disease, was first reported in Wuhan on
December 2019 which was caused by positive sense single RNA virus named
novel coronavirus. Due to its high transmissivity or spreading rate from human to
human, World Health Organization (WHO) declared it to be a global emergency
of public health concern [35]. For providing special attention to the patients
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having COVID-19, the regular healthcare services at the hospital is interrupted
and limited services are provided by the healthcare stuff to the patient suffering
from chronic and lifestyle diseases such as stroke, heart disease, cancer, diabetes,
Alzheimer’s disease (AD), depression, HIV etc. as per WHO recommendation.
[6,12].

The AD is an age-dependent chronic neurodegenerative disease that results
in progressive memory impairment. More than 50 million people around the
globe is suffering in AD right now [2]. Patient having AD may fail to maintain
personal hygiene (such as washing hand) and WHO recommended safeguard for
preventing COVID-19. Recent study found that AD gene has strong link for the
high risk of severe COVID-19 [19]. Thus, a special care has to be taken while
giving care to the AD patient. With no current cure to AD [23], we can only slow
the worsening of dementia symptoms by regular care with existing researches.
Due to the nature of the disease, an Alzheimer’s patient needs continuous support
such as caregiving, clinical assistancy etc. because they face difficulty in daily
activities and eventually can lose response ability to their environment.

Chronic Disease management during COVID-19 pandemic is challenging.
Taheri et al. [31] discussed management strategies for diabetic patients dur-
ing COVID-19 by advising glucose control and routine self monitoring of glu-
cose level along with text-messaging interventions. Authors stated that due to
COVID-19, patients’ normal routine care, physical activity, diet will be disrupted
and they may suffer in mental stress more. Bornstein et al. [8] discussed a sum-
mary of expert recommendation in endocrinology and diabetic field about the
relationship of COVID-19 and diabetes in their paper along with a few practical
recommendations on management for diabetic patients during this pandemic.
The European Society of Cardiology (ESC) [13] provided information about the
risk factors and a guideline for diagnosis and management of cardiac patients
during COVID-19. ESC also stated that heart and stroke patients are more likely
to suffer critically due to COVID-19.

With the availability of low cost sensors, ultra high speed computing technol-
ogy, and better understanding of deep learning (DL) algorithms, researchers and
clinicians are collaboratively working in deploying data-driven DL models [20]
on large scale healthcare data (also called electronic healthcare record or EHR)
collected using ubiquitous Internet of Things (IoT) sensors. These models can
be employed in predicting the incidence of diseases such as AD [25], developing
drug, and assessing risk in different components (patient management and drug
design, etc.) of healthcare system [16].

The role of community pharmacists can be remarkable to manage COVID-19.
Kretchy et al. [18] discussed community pharmacists’ role during COVID-19 out-
break in managing medication for patients having chronic diseases. The authors
believed that the medication management by the community pharmacists is
going to lessen the non-COVID disease burden from the healthcare system in
countries having low and middle-income. Artificial Intelligence (AI) tools along
with ML can be used to identify, to create awareness and to forecast the spread
of COVID-19. ML and AI can make these tasks lot easier [21,22].
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The contributions of this study are outlined below:

– we discussed the effect of COVID-19 on AD patient care and how AI based
IoT can help special care of AD patients at home.

– we identified challenges and recommendations for family, caregiver and social
care services in handling an AD patient at home/care-home, and

– we highlighted policies required for the management of AD patient at home
during COVID-19 pandemic.

The rest of the paper is organized by the following: Sect. 2 introduced the
basics of AD and its management plan; Sect. 3 reviewed effect of COVID-19
on AD care. The challenges and recommendation related to AD management
during COVID-19 pandemic were discussed in Sect. 4. At the end, the work is
concluded in Sect. 5.

2 AD and Its Management

AD is a form of dementia, a fatal neurological disorder, which gradually kills
nerve cells of a person’s brain causing a shrinkage in brain tissue which causes
memory loss, confusion, difficulty in communication and dependency to others
for daily activities. Unfortunately, no permanent cure has been reported till
date but existing treatment may temporarily slow down the worsening of AD.
Machine learning (ML) based AD prediction and its progression using EHR data
has been proposed in [15,25].

The causes of AD is yet unknown. It might be caused by single or several fac-
tors. People having age more than 65; family history of AD; unhealthy lifestyle;
physical/mental trauma; down syndrome (trisomy 21); Mild Cognitive Impair-
ment (MCI) are more likely to suffer in AD [16].

When a person is diagnosed with AD at the hospital via imaging and labo-
ratory test, they require proper AD education and support. Depending on their
current level of dementia, they are prescribed with medicine and the doctor
makes a treatment plan after taking consent from the patient and family mem-
ber(s). Patients need to visit the doctor/therapist on a routine basis according to
the care plan and any side effect arising may demand discontinuing medication
and consultation with doctor (see Fig. 1(A)).

Usual management plans for AD patients may involve the following [2]:

– Having an attendant (caregiver/family member) to take care of AD patient
and to help them in daily activities at home/carehome.

– Physical counselling service to cope with depression, apathy, wandering.
– Relaxation and meditation exercises for the well being of the patients.
– Maintaining a routine for AD patient.
– Sharing love, giving support to patients and paying attention to the tone

while talking with them.
– Supporting them in complicated tasks that makes them confused.
– Educating caregivers so that they can take care of the patients well.
– Regular check up with the primary doctor according to care plan.
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Fig. 1. A block diagrammatic representation of AD patient management. (A) Usual
patient management (B) patient Management during COVID-19

AI has a number of applications such as biological data mining [20,21],
anomaly detection[24,36,37] and designing a clinical decision support system
[17,27,28,30,32]. AI based smart diagnosis [14] and management [33] have been
also developed for assisting clinicians, caregivers, and family members. AI can
assist clinician, caregiver or family member to get a self-diagnostic report, pre-
dict any abnormality with AD patient while the physiological conditions (Blood
pressure, pulse, oxygen saturation level, etc.) of patients are monitored remotely
using Internet of Healthcare Things (IoHT) [1,5]. Figure 1(B) represents patient
management during COVID-19 which involves self screening of the patient to
diagnose AD, educating and supporting with necessary instructions like medi-
cation and dose remotely [7,26,30].

Figure 2 shows an IoHT and AI for AD care where patient data can be col-
lected using IoT sensors such as a smartphone/wearable device and camera(s)
installed inside the room. These data can be processed using (micro)-processor
of the smart/embedded devices. By employing AI based data-driven model we
can detect any anomaly and can generate emergency alerts by real-time process-
ing of the sensor data (Embedded Computing). For example, if an AD patient
falls in a room, the gyroscope and accelerometer sensors in the smart device can
track fall detection [34] and able to send notifications to emergency contact(s).
The AI model in the fog computing system generates better insights from the
data, and send it to the hospital. For example, an AI-based fall detection model
can be developed using state-of-the-art fall detection dataset [34] to differentiate
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Fig. 2. AD care using AI and IoHT.

fall activities and non-fall activities. The data are stored in the cloud-based elec-
tronic health record (EHR). In the cloud, an advanced ML model can be applied
in the patient care big data and generate brief knowledge visualization for the
users via expensive processing and advanced ML algorithm. Finally, the visu-
alized information can be sent to the [mobile]/[web]-application of the patient,
caregiver, doctor, and family member. Such an app can also be used for tracking
(but privacy is also a concern) the patient and help patient care via video con-
ferencing (e.g. zoom call, google meet etc.) with the primary doctor or clinicians
in the hospital during the situation like COVID-19 pandemic.

3 Effect of COVID-19 on Alzheimer Care

COVID-19 has affected the entire healthcare system during this ongoing pan-
demic. As long as COVID-19 is a communicable disease, COVID-19 makes it
way difficult for patients to receive medical services from their primary doctors
and clinical institutions in person but to depend on online servicing in most cases
due to overburden in hospitals with COVID-19 patients. Lacking of PPE, venti-
lator, cleaning supplies, disinfectants is a common scenario in current condition.
People are suffering economically which makes it difficult for them to bear the
cost of their treatment. In some cases, supply chain problem has been occurred
for medicine as well during this COVID-19 challenge.

AD patient care has been disrupted because of COVID-19 as well. During
this pandemic caregiver/ family members should maintain at least 3 ft distance
with AD patient during physical interaction [35].
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Online appointment with primary doctor is preferable over in person appoint-
ments like other disease patients during COVID-19. Alzheimer’s patients may
suffer in loneliness caused by disruption of social gatherings and increased iso-
lation for this pandemic which demands them with online counselling.

4 Challenges and Recommendation

4.1 Care Homes

Care Plan: General practitioners, care home professionals should review their
care plans during COVID-19 for general and emergency situations including
confirmed and suspected COVID-19 patients. An electronic version of the care
plan need to be sent to all residents and stuffs through email [10].

Training for Stuffs: For care home stuffs there should be training for check-
ing temperature, heart rate, blood pressure; measuring frequency of confusion,
consciousness level, respiratory rate, pulse oximetry for residents including AD
patients. By considering the COVID-19 situation, the training should be online
based [11].

Emotional Health: COVID-19 is restricting social gathering which leads to iso-
lation causing mental health problems to individuals including AD patients [9].
To eliminate isolation, by assessing individual risk, visitors might get allowed
in care homes if there is no local emergency by following infection and PPE
policy. If due to local emergency or other reason physical visit gets restricted,
alternative communication should be provided like telephone calls, video chats
etc. Online counselling need to be arranged for mental support of AD patients
and family if needed. If the AD patient has exposed with COVID-19, care homes
should not allow visitors physically until self-isolation period is over.

Urgent Medical Care: Care homes may have critical supportive treatments such
as oxygen therapy, antibiotics and subcutaneous fluids. The policy when and
how to use them needs to be reviewed carefully.

Admission Rule: New admissions need to undergo COVID-19 test and whether
the result is positive or negative, they need to be isolated for 14 days. No new
admission and returning of old residents should be accepted if there is shortage
of resources in the care home.

4.2 Family, Caregiver and Volunteer

Educating and Checking COVID-19 Symptoms: Although a COVID-19 infected
patient can be asymptomatic but most of them have reported to develop few
common symptoms which may get exposed after 2 to 14 days of the infection
including coughing, fever, nausea, vomiting, sore throat, diarrhea, runny nose,
loss in appetite, smell dysfunction, headache, fatigue, difficulty breathing etc
[12]. These symptoms need to be discussed with the family and caregivers along
with the AD patients [9].



Artificial and Internet of Healthcare Things 269

Educating Care-Givers: Care givers should be well-informed about the trans-
mission risk of COVID-19 and should avoid unnecessary exposure. They need
to follow appropriate protocols of hand washing for themselves and for AD
patients. Covering coughs, disinfecting surfaces frequently, stocking medicines
for 1–2 months if possible can be helpful. Telehealth appointments are recom-
mended instead of getting in person appointment with primary doctor which is
safer [9]. If the AD patient has exposed with COVID-19, caregiver should not
serve AD patient physically until self-isolation period is over [3,11].

Organizing a Daily Routine and Activities: AD Patients need to be encouraged
to establish a daily routine having a good balance of exercise, distant social
contact and good sleep routine. According to individual’s personal preference
music, favourite TV show etc. can be included in their daily routine. As long as
AD patients are forgetful, a written reminder post of washing hand can be kept
in the bathroom and in other places. A healthy diet is also recommended by
cutting down sugar level. Weight management, prioritizing fruits and vegetables
by including lots of omega-3 fats is recommended. Strategy games, riddles and
puzzle along with various memorization games can be helpful for their memory
management [29].

Home-Based Medical Servicing: If AD patients receive home based medical ser-
vicing should keep these recommendations in mind:

– Contacting home health care providers to understand protocols that minimize
spread of COVID-19.

– Health care provider should wear a mask.
– Asking health care professional if they have exposed to any COVID-19 posi-

tive patient. If so, they should not be allowed to enter the home.
– Checking body temperature of home health care provider. If their body tem-

perature exceeds 100.40 F, then they should not be allowed to give service.
– Upon arrival health care provider should wash their hand.
– Even though all health care tips has been followed by CDC, entering any

individual in a home always increases chance to COVID-19 infection.

Online Therapy: AD patients may suffer in mental disorders like depression
causing apathy, isolation, impaired thinking, lack of interest in activities, diffi-
culty in concentrations etc. To keep them away from mental disorders, online
counselling should be given in a weekly basis. AD patients can participate in
distant online meditation and relaxing activities for their stress management.

Online Socializing: For mental well-being of the AD patients social online gath-
ering can be really helpful in weekly basis.

Maintain Social Distance and Going Out: Family/caregiver should maintain the
social distance rule with patient and with other people due to COVID-19. Also,
they should maintain good personal hygiene as per guideline of WHO or local
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authority. AD Patients need to be discouraged for public gatherings. They should
not travel by public transportation as well during COVID-19 for ensuring safety
[9].

AD Patient Tested Positive for COVID-19: If a AD patient gets tested positive
with COVID-19, they should stay in their home preferably in a separate isolated
room, only exception is to get medical service. They should avoid contact with
pets and other animals and their sneezes and coughs should be covered with
tissues with proper disposal. They need to sanitize their hand frequently with
an alcohol based sanitizer and disinfect surfaces like phone, tables, toilets, key-
boards etc. They should not share their personal belongings with others. They
should also avoid public transportation/mass-gatherings. During going outside
they need to wear masks maintaining all guidelines provided by WHO. Appoint-
ment in hospital should be taken by prior phone calls so that the authority can
take proper precautions.
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Fig. 3. Recommendation for AD care During COVID-19

Figure 3 shows some recommendations for AD patients during COVID-19.
From the figure we can see, AD patient’s should avoid gathering, public trans-
portation and in person visits during this pandemic. Awareness should be cre-
ated by convenient ways like phone calls, printed leaflet, TV, radio, religious
organization, newspaper article etc. Patient care, social gathering, counselling
and medication exercises should be done online. About the personal care we
recommend ensuring patient care with proper care plan, mhealth etc.
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4.3 Government Policy

Special Care Team: We need to build up a specialized team for Alzheimer
patients’ services including telephone hotline, electronic media, remote care-
giving, online counselling etc. Due to COVID-19, telehealth is one of the way to
expand benefit of medicare to seniors [2].

24/7 Helpline Services: Special 24/7 h telephone hotline servicing for AD
patients should be available.

Awareness Programs: Arranging various awareness programs both online and
offline through TV, local radio, electronic media, newspaper, telephone, web-
sites etc. needs to be done. Government should Collect latest information from
trusted organizations like WHO about COVID-19 and reach out those messages
to people. Seeking medical advices by telephone from national and local author-
ities are very much recommended because family and caregivers will have latest
information about COVID-19 from them. If someone is exposed to COVID-19
symptoms, they should seek medical attention by telephone to local authorities
[35].

Mental Health Policy and Plan: A mental health plan should be developed by
considering COVID-19 situation for AD patients [35].

Health Policy and Local Health Authority: A health policy should be developed
to achieve COVID-19 free community, and local health authorities should be well
informed about the latest COVID-19 information and detailed guideline [35].

AI Based Remote Monitoring: Providing remote monitoring services using AI
for AD patients to track any risky movement and abnormality is essential.

Giving Financial Support to AD Patients: Alzheimer’s patients may have limited
or no ability to work thus many may get qualified for special benefits. Reducing
and bearing medical costs of few AD patients with and without COVID-19 is nec-
essary under special programs arranged by the Government or Non-Government
organizations.

Weekly Online Consultation for Family and Caregiver: Institutions, e.g., Amwell
[4], provides virtual care/telehealth solution for AD patient, caregivers and fam-
ily members.

Figure 4 is the summarisation of challenges and recommendations of AD man-
agement discussed above.
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Care homes:
1. A revised care plan for COVID-19 situation and reaching out the care plan to all residents and staffs.
2. Arranging necessary online training for stuffs.
3. Allowing visitors according to local COVID-19 situation by following infection and PPE policy. 
4. Care homes should have critical supportive treatments.
5. No new admission is allowed if there is shortage of resources.

Family, caregiver and volunteer:
1. Proper explanation of COVID-19 to AD patient.
2. Educating COVID-19 symptoms to caregivers, family members and patient.
3. Organizing daily routine and activities.
4. Home based medical servicing should be allowed upon ensuring safety.
5. Online therapy for mental well-being of AD patients and their family.
6. Online socializing.
7. Social distance rule of at least 1 meter should be maintained during physical interaction.
8. AD patient tested positive for COVID-19 should be isolated from others until recovery.

Government Policy:
1. Specialized care team for AD patients during COVID-19.
2. 24/7 telephone helpline service for AD patients.
3. Awareness programs should be arranged.
4. Developing a mental health policy and plan for AD patients.
5. Developing a health policy to develop COVID free community.
6. Launching AI based remote monitoring.
7. Giving financial support to AD patients.
8. Weekly online consultation for family and caregiver.

Fig. 4. Summary of challenges and recommendations

5 Conclusion

This is obvious due to COVID-19 pandemic, the normal life has been disrupted to
everyone including AD patients. Like other chronic disease patients, AD patients
need frequent medical care and observation. Our AI- based internet of healthcare
things (IoHT) can help in self-management/self diagnosis for AD patients and
the caregivers and their family can monitor patients from distance by receiv-
ing required alert from the system. In addition, the ML model can detect any
abnormality in patient’s condition using real time physiological data collected
from patient’s smartphone and wearable device. In this paper, we tried to focus
on how to change management plan for an AD patient during COVID-19 and
the application of AI and ML which can help us to remotely track AD patients.
This paper also provides some recommendations for care home, family members,
caregivers which can be helpful for outlining Government policy.
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Abstract. The contemporary world’s emerging issue is how the men-
tal health and falling of a senior citizen with a neurological disorder
can be maintained living at their homes as the number of aged people is
increasing with the rising of life expectancy. With the advancement of the
Internet of Things (IoT) and big data analytics, several works had been
done on smart home health care systems that deal with in house mon-
itoring for fall detection. Despite so much work, the challenges remain
for not considering emotional care in the fall detection system for the
old ones. As a remedy to the problems mentioned above, we propose
an emotion aware fall monitoring framework using IoT, Artificial Intel-
ligence (AI) Algorithms, and Big data analytics, which will deal with
emotion recognition of the aged people, predictions about health con-
ditions, and real-time fall monitoring. In the case of an emergency, the
proposed framework alerts about a situation of urgency to the predefined
caregiver. A smart ambulance or mobile clinic will reach the older adult’s
location at minimum time.

Keywords: Neurological disorder · Emotion recognition · Fall
detection · IoT · Artificial Intelligence · Elderly

1 Introduction

The world population is increasing for different factors like more child mortal-
ity rate, the advancement of the medical sector. With the increase in the life

M. J. Al Nahian and T. Ghosh—Have contributed equally

c© Springer Nature Switzerland AG 2020
M. Mahmud et al. (Eds.): BI 2020, LNAI 12241, pp. 275–286, 2020.
https://doi.org/10.1007/978-3-030-59277-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59277-6_25&domain=pdf
http://orcid.org/0000-0003-3140-4588
http://orcid.org/0000-0001-5228-666X
http://orcid.org/0000-0001-7418-0110
http://orcid.org/0000-0002-4747-9704
http://orcid.org/0000-0002-2037-8348
http://orcid.org/0000-0002-4604-5461
https://doi.org/10.1007/978-3-030-59277-6_25


276 M. J. Al Nahian et al.

expectancy rate, the number of older people has increased in recent years. There
were 703 million people who matured 65 years or over on the planet in 2019.
According to the United Nations, there is more than 30% growth of the elderly
population anticipated by 2050 in 64 countries [16].

With age elderly people face various physical and mental health issues like
neurological disorders [7], diabetes [34], hypertension, depression [1], heart prob-
lem, high pressure, and fall [14]. Fall is the leading cause of injury among the
elderly. Older adults have fragile bones, less muscle strength, and poor eye vision
for which they can lose balance and hurt themselves. In developed countries with
elders living alone is rising the probability of deteriorating health problems as
well as falling in the elderly as they are that time unable to alert anyone if
they are unconscious. People aged 65 and 70 falls each year at a percentage of
28% and 32% respectively, according to the World Health Organization [9,15].
According to some mental health settings in Australia, most of the fall incidents
were not reported [9]. Only 75.5% of fall events were reported, according to Hill
et al. in [10]. People who have already faced a fall tend to face it again, which is
more common among women than men [18,19,28].

The risk of falling is excessive among aged people who have neurologi-
cal impairments. Elderly Patients with such disorders with indications of mild
motor, nervous system deficit along with mental problems, and also someone who
had a stroke or dementia are is at higher possibility of having a fall [11,26,31].
That risk is so high that even an elder with a very slight neurological disorder
has thrice times more chance than an elder who doesn’t have any neurological
problem cues according to a study. Also, neurological patients fell thrice or more
times higher every year, and that percentage is 13.2% contrast to the 3.6% in
the same category of fit elderly peoples [11].

Falls not just effects physically but also mentally. Along with a neurologically
disorder elder person’s fragile bone getting injured, they were psychologically
affected in many cases. Constant fear of falling can stick to their subconscious
mind. Fear of falling is a significant health problem alongside the problem of
falling itself and create various other cognitive disabilities [22]. It is an addition
that an older person who had a fall or someone afraid of a fall even without
having one in the past can lower that person’s self-esteem and confidence in his
day to day life. The incidents of falls can create anxiety in elder person emotions
along with fear to fall again [27]. As anxiety is a result of fear of falls, their
relationship is reciprocal. This anxiety can even create a depression and neuro-
sis condition. Depression and Emotional stress can trigger more falls, which can
create pelvic or hip fractures. Though there are several factors of fear of falling,
these should be taken more seriously by proper involvement. It is now clear
that falls and fear of falling are closely interrelated with mental health issues.
It is high time to take the necessary steps to maintain the emotions and fall of
aged people with a neurological disorder. With advancements, there have been
many works conducted by researchers related to the detection of falls and emo-
tion recognition separately. But no jobs have done before combining these two
issues on how they are correlated. As we can see, their relationship is connected.
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We are now addressing this research gap here and proposing an Artificial Intelli-
gence (AI)-driven emotion aware fall monitoring framework suitable for elderly
people with neurological disorder. With the help of this outcome acquired, we’ll
be able to detect emotions and eliminate the extra anxiety and depression among
the elders and reduce the fall risks. We have arranged this research paper in the
following way. In Sect. 2, we describe our cognitive framework scenario along
with the architecture of the proposed framework, emotion recognition model,
and fall detection model. In Sect. 3, we have presented the result of emotion
recognition and fall detection modules. Some recommendations are highlighted
in Sect. 4. Finally, Sect. 5 concludes the whole paper.

2 AI Driven Emotion Aware Fall Monitoring Framework
for Elderly Peoples with Neurological Disorder

In this section, we describe our proposed emotion aware fall detection framework
with a scenario.

2.1 Proposed Framework Scenario

To understand the framework of emotion aware cognitive elderly fall detection
framework lets first consider a context, where an elderly person with neurological
disorder who will consider as a client. The client lives in a smart house alone
which has the provision of many IoT devices. The IoT devices with the help of
a cloud server can capture and send signals. The cloud server will detect a fall
by identifying those signals. Next, the client needs caregivers immediately sent
by the service provider. To get the precise location of the client where he/she
fell down, the caregivers will get that information by a general-purpose global
positioning system (GPS). This will give the location of the client where he lives
but still to be more accurate a definite indoor positioning system is needed. The
caregivers can hurry to that definite spot once that is detected even without
disturbing other people’s privacy. The cognitive frameworks for emotion aware
fall monitoring are designed in such a way that it can not only discover an elderly
person’s psychological health but can even find out electronic health background
from any place no matter when by cloud and IoT automation. The aim of this
framework is precise fall detection, emotion identification, the reasonable cost
with trouble-free access, and these all can upgrade the quality of life. This new
framework of advanced sensor devices will be a big benefit to elderly people,
doctors, and stakeholders. The cognitive module records, examines and process
data in real-time. The medical history is then stored on the cloud server and
then can be obtainable by any medical specialist. This will create an advanced
cognitive connection between elderly people and healthcare specialists after the
registration procedure. At the same time, the registered stakeholders can use the
cognitive module to access the health records of the elderly people living alone.
Next, we need to implement this design, and to do so a camera device will be
attached to the elderly home. That camera records their facial expression and can
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send it to the cloud server for identifying the elder person’s emotion. Alongside
the motions of the elder person being continuously monitored by wearable sensors
such as accelerometer, gyroscope and magnetometer. The location of the elderly
is persistently recorded at actual times. After collecting all the elderly movement
data and their facial expression images, the sensor transmits the signal to the
cloud server. The data are next processed by the AI-enabled system. The fall
event and elderly emotion is detected by the AI-enabled module and prepares a
result to be sent to the cognitive system. According to those results, the cognitive
system creates a plan for further steps that need to be taken in the future. These
health records are saved as data and any doctor can access them for analysis
and examination. If the cognitive system alerts about a situation of emergency,
a smart ambulance or mobile clinic will reach the elderly person’s location at
minimum time. That smart ambulance can take the shortest route to reach the
elderly at least amount of time with the help of a smart traffic system. Along
these lines, the cognitive elderly fall monitoring framework provides complete
support to the elderly people with the neurological disorder in real time.

2.2 Proposed Framework Architecture

We have proposed an emotion aware elderly fall monitoring framework specially
for the people of neurological disorder based on IoT and AI algorithms due
to the popularity of AI methods in many diverse domains such as biological
data mining [18], anomaly detection [6,33], expert systems [13,23,24,29,30,32]
and cyber-security [25]. Elderly persons are monitored continuously in sensor
integrated smart home environments. Different types of wearable and ambient
sensors are employed to capture elderly movement information regularly and
send it to a cloud server via a wireless sensor network for analyzing to detect
falls and emotions. In a cloud server, an AI power cognitive engine is employed
to take intelligence decision based on collected data. A theoretical architecture
of our proposed framework has shown in Fig. 1.

The proposed framework consists of three layers. A smart home is the first
layer where different IoT sensors are deployed to collect elderly health informa-
tion continuously. There is a wide range of IoT sensors available for the smart
home environment including camera, RFID, radar sensor. Some wearable IoT
devices such as a smartwatch, wrist band, waistband containing accelerome-
ter sensor, gyroscope, magnetometer, pedometer can be used to capture elderly
movement information for detection of fall events. A wall-mounted camera can
be employed to capture the elderly facial expression for emotion recognition. All
IoT sensors captured data are transmitted to an edge cloud server which is the
second layer of the proposed framework. The main objective of the edge cloud
is to preprocess the huge amount of sensors data continuously and remove the
redundant data for further processing. The edge cloud contains low computa-
tional power resources so that it cannot process high computational tasks. It is
resided between IoT sensor-enabled smart home and cloud server and acts as an
interface. The third layer is a cloud server where all intelligence decisions will be
made.
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After data are preprocessed in the edge cloud, important data are sent to
the remote cloud server via 4G/5G technology for real-time processing. The
cloud server comprises of cloud manager, cognitive engine, AI-enabled emotion
recognition module, and elderly fall detection module. At first cloud manager
verified the authorized elderly users’ identity. Then accelerometer and gyroscope
sensors data and captured facial expression images are sent to the AI-enabled
fall detection module and emotion recognition module respectively. The emotion
recognition module recognizes different emotional states of older people using
facial expressions.

Fig. 1. Proposed emotion aware cognitive elderly fall monitoring framework. IoT sen-
sors and camera device capture elderly movement data in smart home and transmit to
a remote cloud server via an edge server. Cloud server contains a cognitive engine, AI
enabled emotion and fall detection module. Whenever an emergency situation arise,
the cognitive engine take decision and send notification to the caregiver, doctor and
relatives.

On the other hand, the fall detection module utilized different machine learn-
ing algorithms to detect potential elderly falls using wearable sensors data. The
outcome of the emotion detection module and fall detection module are sent to
the cognitive engine to take intelligent decisions. The cognitive engine will then
take real-time decisions about fall and emotional state information of elderly
people with neurological disorder and take necessary steps. In case of emergency
conditions, an emergency alert will send to the predefined contacts, respective
health care professionals, and close relatives to take immediate response to the
elderly people. All health, emotion, and fall-related information are recorded for
further analysis to prevent fall risk and other health-related complexities.

2.3 Fall Detection Model

For fall detection, we are using the Up-Fall dataset [20]. This dataset contains
values of a wide range of body-worn sensors and cameras. As we are only using a
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wearable accelerometer and gyroscope in the waist and ankle, we only considered
related to these sensor data and removed all the remaining attributes. After
removing attributes, there were 216 different attributes remaining which were
then used. The dataset is labeled with 6 different daily activities and 5 different
falls. We have converted this to two classes, where all the different daily activities
are included in the daily activity section and all the falls are assigned as fall. We
labeled activity of daily livings (ADL) class as 0 and fall class as 1. There were
32,294 total events, among them 31,339 events were ADL events and 955 were
fall events. As it was imbalanced, we have reduced the number of ADLs to 2,669
and it converted the total event number to 3,624. Then we divided the dataset
to train and test where 2965 events were considered for training and 659 events
were kept aside for testing. Figure 2 illustrates the feature selection, relabeling
and splitting of the Up Fall dataset.

Up Fall 
Dataset

Taken only 
216 attributes

Converted 11 
classes to 2 classes

Reduce daily activity 
and fall sample

Divided intro 
train-test

Fig. 2. Shuffling and relabeling of events of Up Fall dataset. At first, features related
to waist and ankle worn accelerometer and gyroscope were selected. Then events were
relabeled from 11 classes to 2 classes. Finally, the dataset was splitted to train and test
set.

We have used long short-term memory network (LSTM) [8] for fall detec-
tion. LSTM is very much efficient in sequential data classification. They can
keep information and use it for a longer period. The proposed model consists
of an LSTM layer and 3 dense layers. The events are given input to an LSTM
layer which contains 216 nodes. Then the features are extracted and flattened.
The features are then given input to a dense layer of 1075 nodes. Then it goes
through another dense layer of 512 nodes. Then the final dense layer of 2 nodes
representing two classes (ADL and fall) is classifying the event and providing the
final output. All the layers except the final layer used ReLU activation function
[4]. Figure 3 illustrates the whole training process and LSTM architecture.

Input 
(216,1)

LSTM 
(216)

Flatten 
(46656)

Dense
(1075)

Dense
(512) Dense (2) Fall/ ADL

Fig. 3. Proposed LSTM architecture. The events were at first given input to the LSTM
layer and it goes through 3 dense layers. The final dense layer classified the event as
fall or ADL.

The model was trained using Adam optimizer and for 30 epochs with a
learning rate of 0.001 on the training dataset. After training, the model was
tested using the separated test dataset.



Towards Artificial Intelligence Driven Emotion Aware Fall Monitoring 281

2.4 Emotion Recognition Model

We have used kaggle face expression recognition dataset to classify the emotion
of a person. This dataset contains images of 7 different emotions and among
them, we selected 5 emotions to classify (angry, fear, happy, neutral, sad). The
modified dataset was divided into train and test. The training set and the testing
set contained 21514 and 5476 images consecutively. The training dataset was
further divided into training (17214 images) and validation (4300 images) part.
The testing dataset was kept aside for evaluating model performance. Figure 4
shows the class-wise distribution of images in train and test set.
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Fig. 4. Class wise distribution of emotion recognition dataset where splitting percent-
age between train and test set are delineated over the stacked bar chart

In this work, we have used a state-of-the-art CNN model ‘MobileNetV1’
for emotion recognition. The proposed MobileNetV1 based emotion recognition
model is shown in Fig. 5.

Angry
Fear
Happy
Neutral
Sad

Convolution
Input

48×48×3
Depthwise

Convolution
Pointwise

Convolution
Depthwise Separable

Convolution
Depthwise Separable

Convolution
Global Average

Pooling
Full

Connection
Input

224×224×3

Depthwise Separable Convolution
Output

 Classes

Fig. 5. Proposed MobileNetV1 based emotion recognition model. Input images are first
converted to 224 by 224 from 48 by 48 original images. MobileNet architecture take the
converted input image and perform depthwise and pointwise convolution. Last layer of
the MobileNetV1 architecture changed for five emotion classes
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MobileNetV1 architecture was first proposed in [12] based on one depthwise
separable convolution [17,18,22]. It was first employed in ImageNet object detec-
tion competition and trained with a large ImageNet dataset [5] which contains
a thousand classes. MobileNetV1 is different than standard CNN architecture.
The Standard CNN model performs filtering and combining input in a single
step whereas the MobileNetV1 model performs these two tasks in two separate
stages. The MobileNetV1 performs depth wise convolution for filtering input
channel and pointwise convolution is used to combine the depthwise convolution
outputs. In the depthwise convolution stage, a single convolution is performed
to each input channel separately. On the other hand, standard CNN performs
convolution to all three channels at a time. After the depthwise convolution
stage, 1 by 1 convolution performs to combine the output features of all three
channels [3,21]. In this way, MobileNetV1 architecture is become highly effi-
cient, reduce the model size and trade-off between latency and model accuracy.
In addition, the width multiplier parameter and resolution multiplier parameter
were also proposed to further reduce the model size and computational cost.
This MobileNetV1 model can be used for different image classification tasks by
adopting a transfer learning approach.

In this paper, we have employed a pre-trained MobileNetV1 model for emo-
tion recognition which was trained on the ImageNet dataset. We keep all the
parameters of the ImageNet dataset by freezing the base layer of pre-trained
MobileNetV1 architecture. Only the top layers are trained by our Kaggle emo-
tion recognition dataset. The last layer of the MobileNetV1 model which is a
dense layer was changed to five neurons which are related to the number of classes
(5 classes). It is predicting a class label among the selected classes (angry, fear,
happy, neutral, sad). The model was trained using Adam optimizer, the learning
rate was 0.001, and for 50 epochs. After training, the model was evaluated using
the test set.

3 Results

In this section, we are presenting the outcome of our proposed fall detection
model and emotion recognition model. The comparison among different machine
learning algorithms are also described.

3.1 Fall Detection Result

The proposed model performed quite well in classifying fall events. It correctly
classifies 614 events from 659 total events which were in the testing dataset. It
achieved an accuracy of 93.17%. Out of 201 fall events that were in the testing
set, it was successful in classifying 171 fall events. So the F1-score achieved by
the proposed model in fall class was 85.07%.

We have used the same training and testing dataset in different machine
learning classifiers such as logistic regression, SVM, SGD, Näıve Bayes, Random
Forest, etc. to validate results. Logistic regression achieved the highest accuracy



Towards Artificial Intelligence Driven Emotion Aware Fall Monitoring 283

of 90.28% with an F1-score in the fall class of 83.42%. So, our proposed LSTM
model outperformed these machine learning models in both accuracy and F1-
score. Figure 6 (a) illustrates the comparison of the F1-score of fall class between
proposed model and other machine learning models. Figure 6 (b) shows the con-
fusing matrix of the test result and Fig. 6 (c) compares the performance of the
proposed model and other machine learning models on the basis of accuracy.
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Fig. 6. (a) Comparison of F1-score of fall class between proposed model and other
machine learning models. Proposed model performed better than other models in fall
detection. (b) Confusion matrix that was generated from the test result by the proposed
model. (c) Comparison of accuracy between proposed model and other machine learning
models. The proposed model outperformed other models by achieving 93.17% accuracy.

3.2 Emotion Recognition Result

The MobileNetv1 model has achieved 61.11% accuracy in classifying emotion
from images. It correctly classified 3346 images out of 5475 images. This model
classified emotions that are labeled as ‘happy’ with around 81% accuracy. The
model performed worst in classifying in sad images. The same training and test-
ing set was used in different machine learning classifiers such as logistic regres-
sion, SVM, SGD, Näıve Bayes, Random Forest, etc. to validate results [2].

Random forest achieved the highest accuracy (46%) among the machine
learning models which is way below the achieved accuracy by the proposed
MobileNetV1. The proposed MobileNetV1 model provided the best accuracy
in classifying emotion. Figure 7 (a) shows the confusion matrix obtained by the
proposed MobileNetV1 architecture during testing. Figure 7 (b) shows the class
wise accuracy obtained during testing and Fig. 7 (c) compares the performances
showed by the MobileNetV1 and other machine learning models based on accu-
racy in classifying emotion from facial image.

4 Recommendations

Elderly people with the neurological disorder are very sensitive and they need
constant support and monitoring. An automated decision support system can be
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Fig. 7. (a) Confusion matrix generated from the result obtained by the MobileNetV1
architecture during testing. (b) Class-wise accuracy obtained by the MobileNetV1
architecture. This model classified the ‘happy’ class better than other classes. (c) Per-
formance comparison of MobileNetV1 architecture and other machine learning models
based on accuracy in recognition of emotions. The MobileNetV1 architecture outper-
formed all the other models.

developed for them. In this work, we have proposed installing accelerometer and
gyroscope sensors. We can use smart bands for them. Smartband has an inbuilt
pedometer, GPS, blood pressure monitoring sensor, heart rate monitoring sensor.
These sensors can collect data and send it to the central processing system. Data
collected by cameras, accelerometer, and gyroscope can also send data to this
central processing system. These data can be analyzed using machine learning
and find out significant insights related to their health condition which will
ensure constant monitoring. Robots, screens, sound sensors can be installed to
act according to the decision provided by the central processing system. Elderly
people with a neurological disorder may fall anywhere in the house or building.
So, to find them fast, an indoor positioning system can be built. GPS trackers can
help in case they go outside of the house without telling anyone. In these ways, a
complete intelligent decision support system can be created for monitoring and
helping elderly people who are suffering from a neurological disorder.

5 Conclusion

We have proposed an AI driven emotion aware elderly fall monitoring framework
using IoT sensors and different AI algorithms in this paper. We tried to make
a bridge between elderly fall detection and their emotions as elderly people are
very much prone to fall and getting emotionally distracted. We have presented
a framework scenario where different intelligence wearable sensors and ambient
sensors are employed to monitor elderly people continuously and send sensors
data to the cloud server for further processing. In the cloud server, a cognitive
engine is employed to take intelligence decision and send a notification to the
respective caregivers. Two AI-enabled modules are implemented in the cloud
server to detect elderly falls and recognize their emotion. We are proposing a
popular state of the art CNN architecture, MobileNetV1 model for emotion
recognition and validate the proposed model using a publicly available emotion
recognition dataset. On the other hand, we also propose an LSTM based elderly
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fall detection model and utilize a publicly available fall detection dataset to
evaluate the proposed fall detection model. A different state of the art machine
learning algorithm is trained with the same dataset to compare the obtained
result. In both cases, our proposed models outperform the other machine learning
algorithms. In the future, we will implement the whole framework and deploy it
in an actual elderly home environment. An indoor positioning module will also
be included to locate elderly people without disturbing their neighbors.
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Abstract. Detecting emotions from the speech is one of the emergent
research fields in the area of human information processing. Express-
ing emotion is a very difficult task for a person with neurological dis-
order. Hence, a Speech Emotion Recognition (SER) system may solve
this by ensuring a barrier-less communication. Various research has been
carried out in the area of SER. Therefore, the main objective of this
research is to develop a system that can recognize emotion from the
speech of a neurologically disordered person. Since convolutional neural
network (CNN) is an effective method, it has been considered to develop
the system. The system uses tonal properties like MFCCs. RAVDESS
audio speech and song databases for training and testing. In addition, a
custom local dataset developed to support further training and testing.
The performance of the proposed system compared with the traditional
machine learning models as well as with the pre-trained CNN models
including VGG16 and VGG19. The results demonstrate that the CNN
model proposed in this research performed better than the mentioned
machine learning techniques. This system enables one tohhhhhh classify
eight emotions of neurologically disordered person including calm, angry,
fearful, disgust, happy, surprise, neutral and sad.

Keywords: CNN · Speech emotion · RAVDESS · MFCC · Data
augmentation

1 Introduction

Emotion is a mental state associated with the nervous system. It is what a
person feels inside as the effects of the environment of his surrounding area.
Emotions of a person can be detected in numerous ways. Some of them can be
analyzed by tonal properties, facial expression and body gesture. The computing
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or classification of emotion from speech or facial expression forms an important
part of human information processing. We need to understand the emotions
of a neurologically disordered person and react accordingly. This system can
enable a neurologically disordered person to express their emotions and interact
with us. The purpose of this research consists of developing a system capable
of automatically recognizing eight different emotions from the speech of a neu-
rologically disordered person. This purpose can be accomplished by training a
neural network developed with deep learning methodology [1,7,14] by utiliz-
ing two databases, the RAVDESS dataset, and a custom local dataset. Finally,
improving validation accuracy compared to other existing systems and main-
taining a praiseworthy accuracy for each class had also been addressed. In the
next section, some significantly related study on emotion recognition from the
speech is presented.

2 Related Work

Emotion from speech recognition has become a popular area of research. Several
researchers have analyzed various ways for better improvement of this field. R.
Aloufi [3] extracted the F0 counter, spectral envelope, and aperiodic information
in speech processing. They classified seven emotions including calm, angry, sad,
happy, fearful, disgust, and surprised by using the RAVDESS dataset. Hence,
they achieved an emotion recognition rate of 5%, speech recognition rate of 65%,
and speaker recognition rate of 92%. M. Bojanić [4] has applied Linear Discrim-
inant Classifiers(LDC) and k-Nearest Neighbor (kNN) in GEES corpus. The
accuracy of anger was 88.8%, fear was 92.5%, joy was 84.2%, neutral was 97.1%,
and sadness was 94.8% in LDC model. In kNN, anger became 86.8%, fear became
93.7%, joy became 83.6%, neutral became 95.9%, and sadness became 96.3%. M.
Ghai [8] selected the frame samples of the sound signals at 16000 Hz and the selec-
tion duration 0.25 s of each frame for feature extraction. A. Iqbal [13] extracted
34 audio features from two datasets (RAVDESS and SAVEE) and selected frame
size 0.05s and step size 0.025 s. They applied the Gradient Boosting method and
classified four expressions. They achieved 33% accuracy for anger, 66% for hap-
piness, 67% for sadness, and 50% for neutral in RAVDESS female dataset. In
the RAVDESS male dataset, accuracy for anger became 87%, happiness became
87%, sadness became 67% and neutral became 66%. The accuracy was 56% for
anger, 78% for happiness, 100% for sadness, and 78% for neutral after using the
SAVEE dataset. S. Rovetta [20] selected final features using Analysis of variance
(ANOVA) or mutual information (MI) test. They also classified seven emotions
(anger, neutral, disgust, sadness, boredom, fear, and joy) by applying the EMO-
DB dataset in the fuzzy clustering method. They achieved 35.157% accuracy for
neutral, 60.757% for anger, 17.629% for boredom, 12.751% for disgust, 35.061%
for fear, 18.743% for joy, and 25.485% for sadness. P. Tzirakis [22] resampled
the RECOLA dataset at a frame rate of 40ms. They proposed a new Deep
Neural Network (DNN) model by combining CNN and (Long ShortTerm Mem-
ory) LSTM network. The accuracy for arousal was 78.7% and valence was 44%.
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N. Yang [23] applied EMO-DB dataset into BPNN, ELM, PNN and SVM model.
They achieved 77.8% accuracy in BPNN, 78.4% accuracy in ELM, 81% accuracy
in PNN, and 92.4% in SVM. Z. Zhao [25] used the Hamming Window function
to generate spectrograms utilizing ShortTime Fourier Transform (STFT) with
frame length 25ms at the rate of 10ms. They used the IEMOCAP dataset and
applied the Attention-BLSTM-FCN model. The weighted accuracy was 68.1%
and unweighted accuracy was 67% of this model. Different frame sizes of 10–20
ms [6,8], etc., were selected in different works. Entropy, spectral entropy, MFCC,
ZCR (zero-crossing rate), pitch, energy, etc., were the common features for audio
data. Most of the researchers used pitch and energy [6,19,24] for sound process-
ing. Most of them calculated statistical features such as mean, standard devia-
tion, etc., to improve performance. Previous researchers also developed different
machine learning methods such as Gradient Boosting, Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), Neural Network, Random Forest, etc. to
classify emotions from speech. They used multiple speeches emotional databases
such as EMO-DB, BHUDES, RAVDESS, SUSAS, AIBO, SAVEE, etc. to build
their systems.

3 Methodology

In this research, Convolution Neural Network (CNN) with data augmentation
was used to develop the system. Figure 1 illustrates the flow chart of this system.
According to the flow chart, the model takes audio data first from the dataset and
starts preprocessing. After completion of preprocessing, it extracts the MFCC
feature using the mfcc function offered by Librosa API. Then the features are
normalized by changing shape. Noise is augmented by the NoiseAug function
from Nlpaug Library. Finally, the augmented data is then fed into the proposed
model for emotion prediction. There are four convolution layers in this model
with 16, 32, 64, and 128 filters and the kernel size for each layer is 2*2. Rectified
Linear Unit (ReLU) used as the activation function in each convolution layer as
shown (1).

ReLU(y) = max(0, y) (1)

Fig. 1. System flow chart
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The model has been provided with audio data of 16000 Hz as an input. Input
shape of the RAVDESS dataset is (100, 196, 1), where 100 refers to the number
of MFCC features extracted, 196 is the number of frames taking padding into
account, and 1 signifying that the audio is mono. The model for the local dataset
uses the input shape of (100, 3200, 1). After the convolution layer, there is a
max-pooling layer where the pool size is 2*2. It selects the largest value from
the rectified feature map and reduces the size of the data, so the number of
parameters is decreased. Like the convolution layer, ReLU has been applied as
an activation function in hidden layers. A dropout layer is also inserted with
the dropout value of 0.2 which randomly deactivates 20% neurons to avoid over-
fitting [21]. In the last hidden layer, one Global Average Pooling layer has been
added which takes the average which is suitable for feeding into our dense output
layer. The output layer of this model consists of eight nodes as it has eight classes.
As an activation function, Softmax has been applied as shown (2) in this layer.

Softmax(y) =
ei

∑

j

ej
(2)

As a model optimizer, Adam [5] has been used. Categorical Crossentropy has
been used as a loss function. ModelCheckpoint and EarlyStopping are included
as callbacks in the model. ModelCheckpoint will save the best model in the
local storage while EarlyStopping will stop the training process if there is no
improvement in minimizing loss value after 5 epochs. The overview of the CNN
architecture that was designed for this model is illustrated in Table 1.

4 Databases

4.1 RAVDESS Database

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
is a validated database of emotional speech and song [18]. It contains 7356 files
including 8 emotions such as anger, happiness, calm, neutral, surprise, sad, fear,
and disgust. There were 24 professional actors where 12 were female and 12 were
male actors vocalizing two statements, ‘Kids are talking by the door’ and ‘Dogs
are sitting by the door’ in a neutral North American accent. It has speech and
song files under three modality formats: Audio-only (16bit, 48kHz .wav), Audio-
Video (720p H.264, AAC 48kHz, .mp4) and Video-only (no sound). There are
no song files for Actor 18. All the recordings are in American English.

4.2 Local Dataset

This dataset is created by recording voices from 25 patients from Chittagong,
Bangladesh. Ten of them are stroke patients, eight of them are affected with
dementia, four of them have epilepsy and rest of them have migraine headache.
Each expression is produced vocalizing two statements ‘Kids are talking by the
door’ and ‘Dogs are sitting by the door’ in Bangladeshi accent. So there are 400
audio files in 8 emotions.
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Table 1. System architecture

Content Details

First Convolution Layer 16 filters of size 2× 2, ReLU, input size 100*196*1
for RAVDESS and 100*3200*1 for local dataset

First Max Pooling Layer Pooling size 2 × 2

Dropout Layer Excludes 20% neurons randomly

Second Convolution Layer 32 filters of size 2 × 2, ReLU

Second Max Pooling Layer Pooling size 2 × 2

Dropout Layer Excludes 20% neurons randomly

Third Convolution Layer 64 filters of size 2 × 2, ReLU

Third Max Pooling Layer Pooling size 2 × 2

Dropout Layer Excludes 20% neurons randomly

Fourth Convolution Layer 128 filters of size 2 × 2, ReLU

Fourth Max Pooling Layer Pooling size 2 × 2

Dropout Layer Excludes 20% neurons randomly

Global Average Pooling Layer N/A

Output Layer 8 nodes for 8 classes, SoftMax

Optimization Function Adam

Callback ModelCheckpoint

4.3 Preprocessing

There are only 2452 audio files in RAVDESS audio speech and song dataset.
Hence, to increase our datasets and improve model performance, we also used
Audio song samples. All files are used with a sampling rate of 16KHz using the
parameter ‘sr = 16000’ in the load function of the Librosa library. For feature
extraction, the Mfcc function of the Librosa library is used. The sample rate is
16KHz for each audio file. The number of MFCC extracted are 100. The shape of
the extracted features would not be the same and the range would not be specific
without normalization. The unstructured feature may reduce the accuracy and
recognition rate. In this research, after extracting features from each file, we
normalized them by subtracting each feature from the maximum one to make
the shape the same. After normalization, these data are used to train and test
the system. Augmentation in the audio database usually generates additional
audio files by applying some special operation on the original database, such
as injecting noise, adjusting pitch, changing vocal tract, adjusting speed, etc.
In this work, all of the files are augmented with injecting noise by using the
NoiseAug function from the nlpaug library.
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5 Experiment

There are 1440 audio speech files and 1012 song files in the RAVDESS database.
Each class has 192 files except neutral in audio speech files and the neutral class
contains 96 files. On the other hand, angry, calm, fearful, happy, sad contains
184 files in each class in audio song files and the class Neutral contains 96 files.
There are no song files for the class’s disgust and surprise. To achieve the best
performance from the model, it is necessary to enrich the database with relevant
audio files. For this purpose, noise is injected into the existing database. After
augmentation, the database becomes twice the size of the previous one. There
are 4904 audio speech and song files after augmentation. Similarly, there are only
400 files in the local dataset where each class contains only 50 files. So each class
can have 100 files after augmentation. The dataset was split into training set,
validation set and testing set. Training set and validation set were used to train
the model. Testing set was used to test the performance of the model. This model
was trained using multiple split ratios (70:20:10, 75:15:10, 80:10:10), activation
functions (relu, sigmoid, softmax, softplus), and optimizers (adadelta, adagrad,
adamax, adam, nadam, sgd). During the learning process, the performance of
this model was best when 75:15:10 split ratio, softmax activation function, and
adam optimizer was used with five-fold cross validation.

6 Implementation

The system has been developed in Spyder IDE using Python as the program-
ming language. The model was trained using google collaboratory. The required
libraries for this experiment were: Keras, Tensorflow, NumPy, Librosa, sklearn,
nlpaug, matplotlib, etc. Keras was used for developing the model by implement-
ing some builtin functions such as layers, optimizers, activation functions, etc.
Tensorflow supported in the backend of the system. Numpy library was used for
numerical analysis. Loading audio files using a specific sampling rate was per-
formed by the librosa library, where sklearn library generated confusion matrix,
splitting train and test data, model checkpoint callback function, etc. Data was
augmented by using nlpaug API where matplotlib library was used for graphi-
cal representation, such as confusion matrix, accuracy vs epochs graph, loss vs
epochs graph, etc.

7 Result and Discussion

In the RAVDESS dataset, there are 2452 files (audio speech and song) before
augmentation where 1839 files were used for training, 368 files were used for
validation, and 245 files were used for testing the system. The best accuracy for
training, testing, and validation was 0.857, 0.743, and 0.756 respectively. The
average training, testing, and validation accuracy was 0.841, 0.740, and 0.744
respectively. After using data augmentation, the dataset becomes twice the pre-
vious size with a total of 4904 files in the dataset where 3679 files were used for
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Table 2. Cross-Validation result of RAVDESS augmented dataset.

Training accuracy Validation accuracy Testing accuracy

Fold-1 0.915 0.807 0.787

Fold-2 0.937 0.822 0.823

Fold-3 0.921 0.820 0.807

Fold-4 0.893 0.825 0.825

Fold-5 0.898 0.811 0.821

Average 0.913 0.817 0.813

Best 0.937 0.825 0.825

training, 736 files were used for validation, and 491 files were used for testing
the system. The result of five-fold cross-validation for this augmented dataset is
shown in Table 2. According to Table 2, the best testing accuracy was achieved
in the fourth fold and it was 0.825. The best accuracy for training and validation
was 0.937 and 0.825. The average testing accuracy became 0.813 where average
training and validation accuracy became 0.913 and 0.817. Confusion matrix of
RAVDESS augmented dataset with this best result is shown in Table 3. Some
existing machine learning algorithms such as Support Vector Machine (SVM),
Random Forest, Gradient Boosting, K Nearest Neighbor (KNN), Decision Tree
Classifier, etc. and some CNN pre-trained model such as VGG16, VGG19, etc.
were also trained using RAVDESS augmented dataset. A comparison between
these models and our proposed model is shown in Table 4. From this table, it can
be easily observed that the performance of our proposed model is better than
other models because it achieved larger accuracy, precision, recall, and f1-score
than others. Again in the Local dataset, there are 400 files before augmentation
where 300 files were used for training, 60 files were used for validation, and 40
files were used for testing the system. The best testing accuracy was achieved
in the third fold and it was 0.375. The best accuracy for training and validation

Table 3. Confusion matrix of RAVDESS augmented Dataset.

Angry Calm Disgust Fearful Happy Neutral Sad Surprised

Angry 65 0 2 0 1 3 2 1

Calm 3 67 0 2 1 0 2 2

Disgust 1 0 34 1 0 2 0 2

Fearful 3 2 2 60 3 4 2 4

Happy 4 2 3 2 52 2 4 2

Neutral 0 1 0 1 0 40 0 1

Sad 2 4 2 3 1 0 58 1

Surprised 1 1 2 0 1 0 1 29
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Table 4. Model comparison using RAVDESS dataset

Model Accuracy Precision Recall F1-Score

SVM 0.791 0.796 0.791 0.792

Random Forest 0.634 0.656 0.634 0.630

Gradient Boosting 0.616 0.623 0.616 0.617

KNN 0.443 0.460 0.443 0.445

Decision Tree 0.342 0.346 0.342 0.342

VGG16 0.747 0.747 0.747 0.747

VGG19 0.763 0.768 0.763 0.768

Proposed model 0.825 0.831 0.825 0.828

was 0.477 and 0.375. The average testing accuracy became 0.372 where average
training and validation accuracy became 0.470 and 0.371. After data augmen-
tation, the number of files was 800 in the dataset where 600 files were used for
training, 120 files were used for validation, and 80 files were used for testing
the system. The result of five-fold cross-validation for this dataset is shown in
Table 5. According to the table, the best testing accuracy was achieved in the
third fold and it was 0.612. The best accuracy for training and validation was
0.685 and 0.625. The average testing accuracy became 0.610 where average train-
ing and validation accuracy became 0.680 and 0.619. The confusion matrix of
the local augmented dataset with this best result is presented in Table 6.

Table 5. Cross-Validation result of local augmented dataset.

Training accuracy Validation accuracy Testing accuracy

Fold-1 0.685 0.622 0.611

Fold-2 0.679 0.618 0.610

Fold-3 0.683 0.607 0.612

Fold-4 0.671 0.621 0.611

Fold-5 0.682 0.625 0.605

Average 0.680 0.619 0.610

Best 0.685 0.625 0.612

Table 6. Confusion matrix of local augmented Dataset.

Angry Calm Disgust Fearful Happy Neutral Sad Surprised

Angry 8 1 1 0 0 2 1 0

Calm 1 7 0 1 2 1 0 1

Disgust 1 1 6 0 1 0 1 1

Fearful 0 1 0 4 0 0 1 1

Happy 0 1 1 0 5 1 0 0

Neutral 1 0 1 1 0 7 1 0

Sad 0 1 0 0 1 0 3 0

Surprised 1 0 1 0 0 1 1 9
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8 Conclusion

The goal of this research was to find the scope of improvement of the exist-
ing system of speech emotion recognition. Our proposed model, CNN with the
data augmentation method has shown to be more effective compared to other
existing models in this field. Although this model performed better, it needs a
few improvements in some areas, such as: The dataset should increase. More
data should be added in each class to get better performance. Noise reduction
algorithm can be applied for model improvement. Real-time validation using this
model should be improved. Finally, this system can be extended to an integrated
framework with any sophisticated methodology like BRB [2,9–12,15–17]. More-
over, researchers can attempt to improve this model more efficiently in the future
so that a more standard speech emotion recognition system for neurologically
disordered persons can be delivered.

References

1. Ahmed, T.U., Hossain, M.S., Alam, M.J., Andersson, K.: An integrated CNN-
RNN framework to assess road crack. In: 2019 22nd International Conference on
Computer and Information Technology (ICCIT), pp. 1–6. IEEE (2019)

2. Alharbi, S.T., Hossain, M.S., Monrat, A.A.: A belief rule based expert system
to assess autism under uncertainty. In: Proceedings of the World Congress on
Engineering and Computer Science, vol. 1 (2015)

3. Aloufi, R., Haddadi, H., Boyle, D.: Emotionless: privacy-preserving speech analysis
for voice assistants. arXiv preprint arXiv:1908.03632 (2019)
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Abstract. Cognitive performance dictates how an individual perceives,
records, maintains, retrieves, manipulates, uses and expresses informa-
tion and are provided in any task that the person is involved in, let it
be from the simplest to the most complex. Therefore, it is imperative to
identify how a person is cognitively engaging specially in tasks such as
information acquisition and studying. Given the surge in online educa-
tion system, this even becomes more important as the visual feedback
of student engagement is missing from the loop. To address this issue,
the current study proposes a pipeline to detect cognitive performance by
analyzing electroencephalogram (EEG) signals using bidirectional mul-
tilayer long-short term memory (BML-LSTM). Tested on an EEG brain-
wave dataset from 10 students while they watched massive open online
course video clips, the obtained results using BML-LSTM show an accu-
racy >95% in detecting cognitive performance which outperforms all
previous methods applied on the same dataset.

Keywords: Cognitive performance · Machine learning · EEG signal ·
Confused students · Classifiers

1 Introduction

Cognitive performance is an important concept to realize the cognition level of
individuals and implement different kind of tasks using their acquired knowledge.
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Several ways are existing to estimate cognitive performance, including question-
naire, physical and physiological based measures. Questionnaire based measures
are the personal measures combines self-reported actions and observers. Then,
physical measures include facial expression, gestures and postures detection and
physiological measures specifies the assessment of internal features of individuals.
Along with these approach, the analysis of brain signals, e.g., Electroencephalo-
graph (EEG), functional Near Infrared (fNIR), and functional Magnetic Res-
onance Imaging (fMRI) can provide useful information about human behavior
and physiological abnormality to estimate cognitive performance of individuals.
Among of them, EEG signal is easily acquirable and helps to identify relevant
features of cognitive performance. So, these signals can lent a hand to process
and extract features denoting brain states. Due to the non-stationary EEG sig-
nals, the development of sophisticated analysis is challenging. In this process,
machine learning (ML) has allowed dynamic analysis and extracted significant
features from it. These EEG features can be analyzed and lead to the accurate
detection of cognitive performance [7,8].

According to the previous studies, many ML based classifiers are used to
investigate cognitive performance through EEG signals and detected various
neurological issues. For instance, linear discriminant analysis (LDA) was identi-
fied a particular signal band that offers more distinct features in EEG signal [4].
Quadratic discriminant analysis (QDA) is closely related to LDA that manipu-
lates a separate covariance matrix for each class and shows the excellent perfor-
mance for classifying real time dataset. Multilayer perception (MLP) extracts
the dominant features and decreases the complexity to identify abnormality in
EEG signals like epileptic seizure analysis [10], academic emotions of students [3].
Näıve Bayes (NB) is a commonly used in medical and emotional data processing
[2,14] to classify EEG signals for detecting cyber-sickness [9]. Again, support
vector machine (SVM) and k-nearest neighbour (KNN) were investigated EEG
signals for different neurological problems as well as academic emotion analysis
[2]. Therefore, RNN was also widely used for the EEG data analysis such as
confused student’s [11] and epilepsy detection [1].

The technical contribution of this work to assess cognitive performance more
efficiently than previous approaches. Therefore, we proposed bidirectional multi-
layer long-short term memory (BML-LSTM) neural network that can detect cog-
nitive performance more accurately. It was implemented in an open source con-
fused student EEG dataset and identified cognition of individuals. This work was
conducted by various data transformation, machine and deep learning methods
respectively. Several data transformation methods were employed into primary
EEG dataset and generated several transformed datasets. Then, BML-LSTM
was applied into the primary and transformed datasets and shows around 96%
accuracy to identify confused students. In this case, baseline classifiers describes
in previous portion were employed into these datasets. The prime motive of using
these classifiers is to verify the performance of BML-LSTM and compare their
results. But these classifiers are not exceeded the results of BML-LSTM. Hence,
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this proposed model shows the best performance than previous works who were
investigated this confused students EEG dataset.

2 Proposed Method

To identify the cognitive performance from the EEG signals, a novel pipeline
has been developed (see Fig. 1) which describes in the following subsections.

2.1 Data Transformation

Data transformation facilitates the conversion of instances from one to another
format and represents values into more distinctive representation. In this work,
to identify the appropriate composition of the pipeline, we employed distinct
transformation methods such as discrete wavelet transform (DWT), fast fourier
transform (FFT) and principal component analysis (PCA) into primary EEG
dataset and generated several transformed datasets. In the previous literature
[5], these methods were widely used to transform instances into suitable format
and enhanced the diversity of classification results. For instances, DWT reduced
noise by filtering particular coefficients and scrutinizing different non-stationary
EEG signals [13]. Using FFT, confused students EEG signals can be converted
from time to frequency domain and decreases noise [5]. Furthermore, EEG signals
uses PCA to lessen dimensions, complexity and computational time and retain
more variability [6]. According to this analysis, we implemented these methods
into EEG dataset and get more diverse results along with raw dataset.

EEG Signals
Feature 

Transformation

BML-LSTM

Model Evaluation

CV Protocol

Transformed 
Datasets

Fig. 1. Proposed pipeline for cognitive performance detection from EEG signals.
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2.2 Bidirectional Multilayer LSTM (BML-LSTM)

To analyse the transformed EEG signals, we proposed a BML-LSTM to identify
cognitive ability of the students. Recurrent Neural Network (RNN) consists of a
recursive neural network where output from each layer is fed as input to the next
layer. Nevertheless, the result of a processing node on a certain layer depends
not only on the layer’s correlation weight but also on a state vector of prior input
or output. RNN remembers while learning and uses the same parameters in each
calculation and performs on all the hidden layers at same task. Such computation
reduces the parameter complexity contrast to other neural networks. Generally
the hidden state St at step t of a RNN can be defined as follows:

St = A (St−1, xt) (1)

where, xt is the input instance, St−1 is the output from previous layer and A is
called activation function. At every hidden layer, each hidden to hidden recurrent
connection has a weight matrix Ws and the input to hidden recurrent connection
has a weight matrix Wx. These weights are shared across time. The hidden state
can be defined with all the weighted variables as:

St = Wsst−1 + Wxxt + b (2)

where Ws ∈ R
ds×ds , Wx ∈ R

dx×dx , b ∈ R
ds and d represents the size of the

respective vector space.
The main drawback of RNN is vanishing gradient that explodes this problem.

At each time step, this classifier contains some loss parameters and gradients
carry this information from time to time. During back propagation, gradients
travel from last to first layer. Therefore, LSTM is an improved version of RNN
that handles long term dependencies problem. It uses designated hidden states
called cell that stores information for long period of time so that particular
information is available not only the immediate subsequent steps but also for
later nodes. It control removing or adding information to a cell state which
is carefully regulated by gates. It has three specialized gates called the forget
(f t), input (it) and output gate (ot). Therefore, the sigmoid (σ) and tanh are
activation function where tanh implies non-linearity to squash the activations
between [−1, 1].

ft = σ (Wf · [St−1, xt]) (3)

it = σ (Wi · [St−1, xt]) (4)

ot = σ (Wo · [St−1, xt]) (5)

The recurrent connection in a LSTM has the form:

ct = ct−1 ⊗ ft ⊕ c̃t ⊗ it (6)

and the cell’s final output has the form:

st = ot ⊗ tanh (ct) (7)
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Here, c̃t is the output of the two fully connected layer defined as:

c̃t = σ (Wo · [St−1, xt]) (8)

BML-LSTM trains two RNN and generates the output based on the previous
and future element. If all the time sequence is known, one network is trained the
input sequence and the second network is trained the time reversal of the input
sequence that significantly increase the accuracy. In the proposed model, three
BML-LSTM layers have been implemented where first, second and third layers
contained 5, 10 and 5 neural units, respectively. The tanh function is applied
as the activation function for the hidden layer. This states are linked to the
fully connected layer with sigmoid function and adam is used as the optimizer.
Therefore, it produce the output 0 or 1 that indicates a robust and stable model
to estimate cognitive performance respectively.

2.3 Baseline Classifiers

To justify the proposed BML-LSTM model performance, we used several baseline
classifiers include LDA, QDA, MLP, NB, SVM, KNN and RNN were applied into
confused student’s EEG dataset.

2.4 Evaluation Metrics

Confusion matrix is described the performance of a classification model based
on the test data where true values are known. It indicates the number of correct
and incorrect predictions with count values and broken down each class. Based
on positive and negative classes, this matrix is defined True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN).

– Accuracy: It denoted the efficiency of the classifier in terms of probability of
predicting true values.

Accuracy =
TP + TN

(TP + TN + FP + FN)
(9)

– AUC: It explores how well positive classes are isolated from negative classes.

AUC =
TP rate + TN rate

2
(10)

– F-measure: It measures the harmonic mean of the precision and recall.

F − measure =
2 × precision × recall
(precision + recall)

=
2TP

2TP + FP + FN
(11)

– G-mean: Geometric mean (G-mean) is the product root of class-specific sen-
sitivity, creates a trade-off between the accuracy maximization on each of the
classes and balancing accuracy.

GMean =
√

(TPrate × TNrate) (12)
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– Sensitivity: The proportion of correctly identified actual positives are mea-
sured by using following equation.

Sensitivity =
TP

(TP + FN)
(13)

– Specificity: The proportion of correctly identified actual negatives are deter-
mined by using following equation.

Specificity =
TN

(TN + FP )
(14)

– False Negative Rate: The ratio between correctly identified false negative and
actual positive values are indicated as false Negative Rate / miss rate.

False Negative Rate =
FN

(FN + TP )
(15)

– False positive rate: The ratio between correctly identified false positive and
actual negative values are indicated as false positive rate / fall out.

False Positive Rate =
FP

(FP + TN)
(16)

2.5 Dataset Description

The dataset was obtained from Wang et al. [14], who had collected 10 MOOC
watching students’ EEG signals. They prepared 20 online learning videos in
two categories 10 of them contained normal conceptual videos and another 10
videos have different unusual or hard topics. In critical videos, 2 min clip was
taken shortly from the middle of this videos that made more confusion to the
students. They considered 10 sessions for a student where first lesson was given
to refresh their mind for 30 s. In next lesson, students wore a wireless MindSet
EEG device and tries to learn from these videos as possible where this activities
around the frontal lobe have been captured by this device. The data points were
sampled at every 0.5 s. Different features such as proprietary measure of mental
focus (attention), proprietary measure of calmness (mediation), raw EEG signals,
delta band (1–3 Hz), theta (4–7 Hz), alpha1 (lower 8–11 Hz), alpha2 (higher
8–11 Hz), beta1 (lower 12–29 Hz), beta2 (higher 12–29 Hz), gamma1 (lower
30–100 Hz) and gamma2 (higher 30–100 Hz) power spectrum were included
respectively. After each session, each student graded his/her level on the scale of
1–7 where 1 indicated less confusing and 7 indicated more confusing. Moreover,
three students observed student’s attitude and graded them by following the
same scale. Again, four observers witnessed each 1–8 students in that work.
Therefore, these levels were quantized into two class that indicates whether the
student is confused or not.
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Table 1. Performance Comparison with Baseline Models

Classifier Acc AUC F-M G-M Sen Spe ME FO

KNN 0.5562 0.5557 0.5561 0.5557 0.5562 0.5552 0.4438 0.4448

LDA 0.5948 0.5951 0.5948 0.5951 0.5948 0.5954 0.4052 0.4046

MLP 0.5277 0.5265 0.5267 0.5265 0.5277 0.5253 0.4723 0.4747

NB 0.5414 0.5494 0.4914 0.5493 0.5414 0.5574 0.4586 0.4426

QDA 0.5526 0.5598 0.5128 0.5598 0.5526 0.5671 0.4474 0.4329

SVM 0.5126 0.5000 0.3474 0.4998 0.5126 0.4874 0.4874 0.5126

RNN 0.8725 0.8731 0.8725 0.8731 0.8725 0.8736 0.1275 0.1264

BML-LSTM 0.9550 0.9551 0.9550 0.9551 0.9550 0.9552 0.0450 0.0448

Legend: Acc: Accuracy; F-M: F-measure; G-M: G-Mean; Sen: Sensitivity; Spe: Speci-
ficity; ME: Miss Error; FO: Fall Out; bold values denote best performance.

3 Results and Discussion

In this work, we used scikit learn machine learning library [12] to transform
and classify confused student’s EEG dataset using 10-fold cross validation in
Python. Then, the performance of each classifier is evaluated using different
metrics respectively.

3.1 Overall Performance of the Model

When we implemented BML-LSTM along with baseline classifiers in the raw
dataset. In this work, BML-LSTM represents the highest (96%) accuracy and
the lowest miss rate (4.50%) and fall out (4.48%) respectively (see Table 1). In
addition, it also represents similar results like accuracy for the other evaluation
metrics respectively. RNN shows 87% accuracy and more metrics are generated
same outcomes in this work. After RNN, LDA shows better results where it shows
59% accuracy, f-measure and sensitivity and 60% AUC, G-means and specificity
respectively. However, KNN shows 56% all of its evaluation metrics except error
rates. Later, another classifiers like QDA, NB, MLP and SVM also show their
results for different evaluation metrics (see Table 1). Like other neural network
performance e.g., BML-LSTM and RNN, MLP don’t show more accuracy in this
work. Therefore, SVM shows the lowest (51%) accuracy with other evaluation
metrics except error rates. Besides, The AUC scores give some more insight
about the outcomes to classify the EEG data of confused students in Fig. 2.

3.2 Effect of Preprocessing on Overall Model Performance

Therefore, the classification results of BML-LSTM for primary and transformed
datasets are shown from Table 2. This analysis indicates how proprocessing steps
such as data transformation methods can effect the results of proposed model.
In the DWT transformed dataset, the performance of the classifiers are not more
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Fig. 2. ROC Curves of BML-LSTM and Different Classifiers for Raw Signals

satisfactory comparing to raw data analysis where BML-LSTM shows 70% accu-
racy and AUC respectively. In FFT transformed dataset, the proposed model
represents 59% accuracy and AUC respectively. According to the Table 2, FFT
models show the lowest results in this work. Alternatively, BML-LSTM shows
better outcomes around 89% for the PCA transformed dataset. It performed
well rather than DWT and FFT transformed datasets, but it is not exceeded
the performance of BML-LSTM at raw EEG signals.

In this work, proposed BML-LSTM shows the best result than other baseline
classifiers for the primary EEG dataset. Therefore, we also represented the effect
of proposed model into transformed EEG datasets when the performance of
BML-LSTM is represented in Table 2. In previous studies, several works had been
happened to analyze bemused student’s instances about watching educational
video clips that makes them confusion in different levels. When we compared
the outcomes of current study with previous works, most of them didn’t justify
their studies with preprocessing perspectives. In current study, we implemented

Table 2. Effect of Preprocessing in the Performance of the BML-LSTM model.

DT Acc AUC F-M G-M Sen Spe ME FO

DWT 0.6975 0.6975 0.6976 0.6975 0.6975 0.6974 0.3025 0.3026

FFT 0.5908 0.5904 0.5907 0.5904 0.5908 0.5900 0.4092 0.4100

PCA 0.8935 0.8932 0.8935 0.8932 0.8935 0.8928 0.1065 0.1072

Raw Signal 0.9550 0.9551 0.9550 0.9551 0.9550 0.9552 0.0450 0.0448

Legend: Acc: Accuracy; F-M: F-measure; G-M: G-Mean; Sen: Sensitivity; Spe: Speci-
ficity; ME: Miss Error; FO: Fall Out; bold values denote best performance.
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most widely used data transformation methods to observe how these methods
were worked in confused student’s EEG dataset and generated significant results.
Therefore, the classification results of transformed datasets are not shown better
than raw EEG dataset. For only 11 features, feature selection methods are not
worked as well. Therefore, our proposed BML-LSTM shows the best classification
result comparing to previous studies. The comparison of current work with other
studies are represented in Table 3. Though we use a few amount of EEG dataset,
proposed model avoid overfitting and also increase the generalization ability
using cross validation techniques.

Table 3. Comparative Study with Previous Works

Year 2013 2016 2019 2020

Author Wang et al. [8] Ni et al. [10] Wang et al. [13] Proposed Method

Classifier Gaussain NB B-LSTM CF-B-LSTM BML-LSTM

Neural Unit 50 50 5, 10, 5

Hidden Layer’s
Activation Function

tanh tanh tanh

Cross Validation 5 5 10

Output Layer’s
Activation Function

sigmoid sigmoid sigmoid

Accuracy 73.30% 75% 95%

4 Conclusion

Cognitive performance measures as a effective capabilities that can arise indi-
vidual person at different circumstances. It can hamper for different reasons
and needs to identify these risk factors about it. For instance, EEG signals can
record the brain’s electric activities during the learning process and identify con-
fusion of students by scrutinizing extracted features in the signal sub-bands. ML
methods are generated significant gain to classify EEG signals. Learning through
MOOC videos, confusion occurs due to the lack of direct communication with
the mentors. With its increasing popularity of MOOC providers, it required to
look up individual methods and reduce such drawbacks. In this work, proposed
BML-LSTM shows 96% accuracy to classify confused and non-confused students
by analyzing their EEG signals. However, it represents the best result comparing
to baseline classifiers as well as existing works. To categorize confused students,
we used a open source EEG signal dataset which were not so much large for
analysis. In future, we will gather more EEG data to explore various confusion
related activities and generate numerous psychological outcomes.
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Abstract. Brain-Computer Interface (BCI) has been a hot topic and an
emerging technology in this decade. It is a communication tool between
humans and systems using electroencephalography (EEG) to predicts
certain aspects of cognitive state, such as attention or emotion. There
are many types of sensors created to acquire the brain signal for dif-
ferent purposes. For example, the wet electrode is to obtain good qual-
ity, and the dry electrode is to achieve a wearable purpose. Hence, this
paper investigates a comparative study of wet and dry systems using two
cognitive tasks: attention experiment and music-emotion experiment. In
attention experiments, a 3-back task is used as an assessment to measure
attention and working memory. Comparatively, the music-emotion exper-
iments are conducted to predict the emotion according to the user’s ques-
tionnaires. The proposed model is constructed by combining a shallow
convolutional neural network (Shallow ConvNet) and a long short-term
memory (LSTM) network to perform the feature extraction and classifi-
cation tasks, respectively. This study further proposes transfer learning
that focuses on utilizing knowledge acquired for the wet system and
applying it to the dry system.

Keywords: Brain-Computer Interface (BCI) ·
Electroencephalography (EEG) · Attention recognition ·
Music-emotion recognition · Transfer learning

1 Introduction

Brain-Computer Interface (BCI) is the concept of a communication tool between
humans and systems by using a physiological signal, especially brain signals, to
predict the cognitive state such as attention or emotion [1]. BCI is on the main-
stream of emerging technologies from 2010 to 2018, according to the Gartner
hype cycle1, and possibly achieves the plateau reached in more than 10 years.
1 https://www.gartner.com/.
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For brain monitoring, the recording method of the electrical activity is an elec-
troencephalography (EEG), which uses electrodes attached to the scalp and mea-
sures voltage fluctuations from ionic channels. There are many sensors built to
record EEG signals and use in various disciplines, both medical and non-medical
purposes.

A wet system means the EEG recording with placing electrodes on the scalp
with a conductive gel. Many researchers typically use wet electrodes in expert dis-
ciplines, such as clinical neurology, neurobiology, and medical physics. The signal
data, recording using wet electrodes, is highly reliable and can be used for med-
ical purposes. However, the wet system is meticulous in using and considerably
need both time and cost. Applying the concept of BCI, a wearable requirement
is needed. The dry sensors are generally designed based on a wearable concept
and use in practical application and non-medical tasks to investigate, entertain,
or monitor brain activity.

In EEG-based cognitive recognition, the system needs several consequential
steps to proceed from raw signals to cognitive labels, such as data preprocess-
ing, data cleaning, feature extraction, and classification. Considering the feature
extraction, we found that the frequency domain is the most popular technique
according to [8] and [12] reviews. Meanwhile, a convolutional neural network
(ConvNet) can efficiently perform deep feature learning by using advantage of
the hierarchical pattern. For EEG signals or time series classification, there are
various techniques and approaches. One of the effective techniques is a long
short-term neural (LSTM) network [6]. LSTM architecture can preserve tem-
poral dependencies using their memory blocks and gates. For the problem of
data quantity, the concept of transfer learning is used as a learning paradigm to
acquire knowledge from one system and apply it to solve the related system [10].

Accordingly, this study shows a comparative study of wet and dry systems
by conducting two cognitive tasks: attention and music-emotion classification.
Attention experiment assessed by using 3-back task and learned the sequence-
to-sequence of EEG signals and attention sequence. Furthermore, we learned the
sequence-to-label of EEG signals and emotion in the music-emotion experiment.
To improve dry system performance and achieve the BCI concept, we further
applied transfer learning by freezing the Shallow ConvNet [11] of the wet system
and used it as feature extractor in the dry system.

2 Related Works

2.1 Frontal Brain Electrical Activity

Frontal brain electrical activity derives from a frontal lobe, which controls cogni-
tive skills, such as emotional expression, working memory, and working memory
capacity. Many studies attempt to achieve cognitive recognition with various
stimuli by focusing on frontal brain activity. This research [13] found that the
pattern of asymmetrical frontal EEG activity distinguished valence of the musi-
cal excerpts and higher relative left frontal EEG activity to joy and happy musi-
cal excerpts. Brain activity in the frontal region shows a significant relation with
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musical stimuli, consistent with many of the literature’s findings. This study
[5] not only deals with the emotional state but also the working memory. The
frontal theta activity plays an active role in working memory. In particular, theta
activity increases while doing the working memory task [7].

To investigate an association between brain activity and working memory,
Wayne Kirchner introduced the n-back task [9]. It is a performance task that is
commonly used as an assessment in cognitive research. In the n-back task, The
subject is requested to memorize the sequence of a single character on the screen
continuously. The task is to indicate if the current character is the same as the
previous n-step before.

2.2 Segmentation and Classification Techniques

This study focuses on two different problems: sequence-to-sequence learning
and window learning. The sequence-to-sequence learning proceeded by using
an attention experiment (in Sect. 3.2), and the sequence-to-label proceeded by
using a music-emotion experiment (in Sect. 3.3). The learning of comprehensive
relation of physiological data over time is divided into two techniques: window
recognition and sequence learning. Both techniques applied a sliding window
for segmentation and then extracted the features from each segmented window.
Window learning performs the classification on the individual window and accu-
mulates the results into labeled class in case of sequence-to-labels learning. This
learning is not able to transmit useful information from neighbors. In contrast,
the sequence learning manifests the ability of dependencies learning. It properly
performs sequence-to-sequence learning and able to learn sequence-to-label by
using a model or network construction. This research of affect recognition in
advertising [3], studied the comparison between window learning and sequence
learning. The result indicates that sequence learning outperformed the accu-
racy through sequence-to-sequence learning and gain sequence emotional affect
overtime.

2.3 Shallow ConvNet

The shallow convolutional neural networks (Shallow ConvNet) [11] is inspired
by filter bank common spatial patterns (FBCSP). The main idea of FBCSP is
transformations by combining the multi-filtering such as frequency filtering, spa-
tial filtering, and feature selection. To imitate the same, Shallow ConvNet con-
structed band power feature extraction with 2 convolutional layers that perform
temporal convolution and spatial filtering. Subsequently, the feature extractor
layer is combined with the pooling and classification layers in the final step.
This research [4] shows the study of attention using Shallow ConvNet and fully-
connected neural network. Based on their overall result, they indicate that Shal-
low ConvNet is a promising classification technique, which outperforms other
techniques. Besides, valuable knowledge is also successfully transferred to the
new target domain even though the dataset has the corresponding environment.
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3 Data Acquisition and Preprocessing

This study collected datasets from five healthy subjects, which are four males
and one female. They are graduate students of Osaka University, between 20 and
30 years of age. The subjects were asked to finish two different cognitive tasks:
attention experiments using the 3-back task and music-emotion experiments
using the brAInMelody application. Meanwhile, the EEG signals were recorded
while doing these cognitive tasks. The experiments were conducted twice in the
corresponding task and setting but properly using different systems of dry and
wet sensors.

3.1 Sensors

In this study, the experiments were conducted with two systems comparatively.
The wet device is polymate AP1532 & EASYCAP GmbH with AP monitor
cable connection, and the sampling rate is 1000 (Hz). On the other hand, the
dry device is an imec sensor named EEG brAInMelody Gen-3 compatible2 with
brAInMelody application and Nyx software. The sampling rate of the sensor is
256 (Hz). EEG placement is in accordance with the international 10–20 system.
Ten electrodes (Fz, Fpz, T3, F7, F3, Fp1, Fp2, F4, F8, and T4.) are placed in
the frontal brain region. The Fpz and Fz set as ground and reference electrodes.
The total signals gained are eight signals, consequently.

3.2 Attention Experiment Setting Using 3-Back Task

In the experiments, the subject performed the 33 repetitions of 3-back task,
which is memorizing the 3-back character. Firstly, the subject was introduced
instructions and then wore the sensor. Before doing the task, the ‘+’ character
appeared in the middle of the screen for 20 s. At the same time, the brain signals
began to be recorded as a baseline. After that, the 33 repetitions of the 3-back
task started sequentially. Each repetition consists of a 0.5-s character and a 2-s
blank screen. Additionally, the experiment conducted in a closed room with
minimal noise, and the subject was asked to minimize their movement to avoid
the noises. To consider the comparison of two systems, all subjects performed
the same task two times, with a different random set of characters, in both dry
and wet setting.

This study classifies the recorded signals into two classes: attention and non-
attention. The signal while doing the 3-back task is an attention class, and the
baseline signal is a non-attention class.

3.3 Music-Emotion Experiment Setting

For the music-emotion experiment, the introductory and environment are the
same as the previous attention experiment. Each subject was asked to listen to
2 https://www.imec-int.com/en/articles/imec-and-holst-centre-introduce-eeg-

headset-for-emotion-detection.
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Fig. 1. Data preprocessing and feature extraction

five MIDI songs. Each song was added a 20-s baseline with no sound before the
music started. After listening, the users immediately filled in the questionnaires,
consisting of valence and arousal level between −1 to 1. They performed the
same playlist for two times in a dry setting and a wet setting, respectively. The
subjects also filled in the questionnaires for two times because their feelings
might slightly change in the second round. Moreover, the subject is required to
close the eyes while recording a baseline and listening to music.

In the music-emotion experiment, we study to investigate the emotional state
from the EEG signals. The target labels or emotions obtained from the user’s
questionnaires are valence and arousal values from −1 to 1. For the reason that
the emotion label is ambiguous, this study merely classifies two classes: positive
and negative. The positive class represents positive valence and arousal, and the
rest represents the negative class.

3.4 Preprocessing and Feature Extraction

In the recorded signals, there are missing values caused by the device connec-
tion. So, the signals were manipulated by duplicating the previous eight samples.
Then, we applied a notch filter to remove 60 Hz power line noise and applied arti-
fact removal using the EEGLAB [2] toolbox to avoid the severe contamination
of EEG signals. In addition, the sampling rate of wet sensors was downsampled
into 256, which equivalent to the dry sensors. To extract the features after pre-
processing, we applied sliding window techniques with 2-s window size and 1-s
overlapping for segmentation and sequential analysis. Then, the PSD features
were extracted from each window sequentially. The process is shown in Fig. 1.

4 Statistical Analysis

This section shows the difference between dry and wet electrodes by calculating
the statistical values and their tendencies. The reports investigated from range,
mean, and standard deviation and noticed that there is a diversity among users
and systems. Table 1 shows the statistical report of voltages and features each
user data and each system.

After preprocessing and PSD feature extraction, we analyzed and found the
different statistical values on both system and user dependency. Figure 2 and 3
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show the comparison by topoplots and histograms on 3-back and music-listening
tasks respectively. The topoplots show the PSD features: theta, alpha, and beta
waves, respectively. The colors represent the extracted PSD values: red denotes
high value, and blue denotes low value. The rows show the averages of baseline
and doing-3-back PSD features. The below histograms sequentially show the
difference of average PSD features from left to right (T3, F7, F3, Fp1, Fp2, F4,
F8, and T4).

baseline

doing 3-back

diff

Wet systemDry system

Fig. 2. The comparison between dry and wet systems on the 3-back task of user 4.

baseline

diff

Wet systemDry system

music listening

Fig. 3. The comparison between dry and wet systems on the music-listening task of
user 2.
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Table 1. The statistical report of voltages and PSD features in our 4 collected datasets

Task Type Raw data (µV) PSD features (×10−11)

Range Mean S.D Theta Alpha Beta Avg.

Mean S.D Mean S.D Mean S.D Mean S.D

Emotion-Music dry 21764.39 −34.65 68.65 9.65 6.21 5.22 3.48 5.61 2.32 6.83 4.00

wet 1783.34 0.01 11.06 0.09 0.05 0.08 0.05 0.13 0.07 0.1 0.06

3-Back Task dry 727.47 −26.25 39.07 8.64 3.46 4.51 1.4 5.54 1.21 6.23 2.02

wet 486.42 −0.04 12.54 0.11 0.06 0.07 0.04 0.18 0.05 0.12 0.05

Fortunately, there are tendencies of the extracted features while doing tasks
compared to baseline. For example, Fig. 2 shows the average PSD features. The
different values between baseline and task seem to be the corresponding rela-
tively. Notably, the theta of the left frontal brain (especially T3 and F7) identifies
the increase while doing the 3-back task in both wet and dry systems. For the
alpha and beta bands, they also have tendencies comparatively. These findings
are consistent with other researchers in reviews.

On the other hand, in the example of the music-listening task which shows in
Fig. 3, the PSD features of user two is plotted. We observe that theta and alpha
bands have a similarity in increasing while the beta band is contrast. The high-
frequency features might be sensitive and contaminated by the environment or
unrelated noises. From this observation and investigation, we decided to classify
these datasets by analyzing the extracted PSD features.

5 Proposed Method

The purposed model utilizes Shallow ConvNet and an LSTM network for
sequence learning. In this case, 24 variables of three PSD channels and eight
electrodes are used as the training features. This problem is a multivariate time
series classification, which means each variable depends not only on its past val-
ues but also has some dependency on other variables. Besides, we utilized the
z-score normalization to avoid the subject dependencies and focus on only the
changes over time, according to the investigation in Sect. 4.

The network setting is shown in Fig. 4. It consists of two parts: the feature
extractor and classification. In the first half, two 1D convolutional neural net-
works are built and then appended with the max-pooling layer with two of pool
size to obtain the features. The filter size is 16, and the kernel size is three

Fig. 4. The network structure of purposed model
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according to three channels of PSD features. The activation function is a recti-
fied linear unit (ReLU). In the second half, two LSTM layers are performed as
the leaner of time dependencies. The hidden nodes are 100 for each layer with
ReLU activation function. Lastly, the fully-connected layer is connected from
LSTM layers to perform the classification. The number of nodes is equivalent
to the number of window sequence with padding. For learning two classes, the
activation function is sigmoid. Moreover, sequence-to-label learning adds one
more fully-connected layer with a single node to classify the single label for each
sequence.

For transfer learning, this study transferred the knowledge of feature extrac-
tion from the wet system to the dry system. The implementation is the freezing
of feature extractor or the first half in the source domain and then apply it to
the target domain. In transferring from wet to dry, we retrained only the second
half layers and analyzed the result.

6 Experiments and Results

In the attention dataset, the data sequence individually consists of 84 pairs of
input data and labels obtaining from 19 baseline windows and 65 doing-task
windows. Each system entirely contains 420 pairs. When training and testing
the models, we randomly chose the data as train and test samples without any
user-dependencies or class-dependencies. While the music-emotion dataset, each
system consists of 5 pairs of data and labels. Thus, there are 25 pairs of train and
test samples for each system. In the case of window recognition, we trained the
various size of windows, depending on the song duration, with the same labels
and then accumulated the predicted label by the majority.

In both cognitive tasks, we compared two classifiers based on learning tech-
niques. For window learning, support vector machine with radial basis function
kernel (RBF-SVM) was implemented. While, the sequence learning perform the
purposed method, sequence learning with Shallow ConvNet and LSTM net-
work. The setting of both cognitive tasks are the same, but the difference in
sequence-to-sequence learning and sequence-to-label learning. We implemented
the leave-one-out (LOO) cross-validation for five users. The evaluation matrice
is an F1-score to prevent the problem of an unbalanced dataset and prove the
learning performance underlying the prediction.

6.1 Attention Classification (seq-to-seq)

From the graphs in Fig. 5 (left), the result of sequence learning, with Shallow
ConvNet and LSTM network, outperforms window learning classification by
using the ability to learn the information over arbitrary time intervals. It can
process not only single window classification but also entire window sequences.
Z-score normalization can help model generalization and support the learning of
user independence. Especially, the dry system has more effect on improvement
than the wet system. The best results are obtained by classifying PSD features
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Fig. 5. (left) F1-score of attention/non-attention classification in 3-back task, and
(right) F1-score of music-emotion classification (The error bars denote the standard
deviation)

with normalization with the purposed method, which achieved 97.6% f1-score in
the dry system and 96.4% f1-score in the wet system.

6.2 Music-Emotion Classification (seq-to-label)

These results resemble the previous experiment correspondingly. Whereas, the
overall performance of emotion classification is lower than the attention classi-
fication explicitly. PSD features with normalization with the purposed method
still outperformed window learning. It achieved 56.0% f1-score in the dry system
and 71.6% f1-score in the wet system. Figure 5 (right) shows the music-emotion
performance.

6.3 Transfer Learning

By using the modeling in Sect. 5, this experiment focused on the improvement
of the dry system by using the proposed method with transfer learning. In the
attention experiment, the new f1-scores of the purposed model with and with-
out normalization using transferred feature extraction are 94.8% (+0.2% from
94.8%) and 97.6% (+0.0% from 97.6%), respectively. In the music-emotion exper-
iment, the new f1-scores of the purposed model with and without normalization
using transferred feature extraction are 56.8% (+11.8% from 45.0%) and 56.2%
(+0.2% from 56.0%), respectively.

7 Discussion

In this study, we present a comparative study of wet and dry systems by per-
forming 2 cognitive tasks: 3-back task and music-listening task. The result shows
that the proposed method outperformed window learning, which is traditional
techniques. The use of sequence learning also can obtain knowledge over time
effectively. In the attention classification, we can distinguish the attention and
non-attention from the observation of raw signals. So, the results are high perfor-
mance relatively. In contrst to emotion classification, there is still an ambiguity
between emotion expression, questionnaires, and emotion model, and It causes
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the performance of learning. However, we discovered the possibility of using a
wearable sensor in a real-world application with transferring the knowledge from
laboratory sensors.

The main problem of this research is the data limitation. This study con-
ducted experiments on the small imbalanced-dataset. It directly causes sensitiv-
ity and variation of performance in concordance with the high values of standard
deviation, especially the music-emotion results. In future work, we planned to
scale up the number of subjects and tasks to verify the learning performance.

References

1. Al-Nafjan, A., Hosny, M., Al-Ohali, Y., Al-Wabil, A.: Review and classification
of emotion recognition based on EEG brain-computer interface system research: a
systematic review. Appl. Sci. (Switzerland) 7(12) (2017). https://doi.org/10.3390/
app7121239

2. Delorme, A., Makeig, S.: Eeglab Jnm03.Pdf 134, 9–21 (2004). https://doi.org/10.
1016/j.techsoc.2013.07.004

3. Emsawas, T., Fukui, K., Numao, M.: Feasible affect recognition in advertising based
on physiological responses from wearable sensors. In: Ohsawa, Y., et al. (eds.) JSAI
2019. AISC, vol. 1128, pp. 27–36. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-39878-1 3

4. Fahimi, F., Zhang, Z., Goh, W., Lee, T.S., Ang, K., Guan, C.: Inter-subject transfer
learning with end-to-end deep convolutional neural network for EEG-based BCI.
J. Neural Eng. 16 (2018). https://doi.org/10.1088/1741-2552/aaf3f6

5. Gevins, A.S., et al.: Monitoring working memory load during computer-based tasks
with EEG pattern recognition methods. Hum. Factors 40(1), 79–91 (1998)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

7. Jensen, O., Tesche, C.: Frontal theta activity in humans increases with memory
load in a working memory task. Eur. J. Neurosci. 15, 1395–1399 (2002). https://
doi.org/10.1046/j.1460-9568.2002.01975.x

8. Kim, M.K., Kim, M., Oh, E., Kim, S.P.: A review on the computational methods
for emotional state estimation from the human EEG. Comput. Math. Methods
Med. 2013 (2013). https://doi.org/10.1155/2013/573734

9. Kirchner, W.K.: Age differences in short-term retention of rapidly changing infor-
mation. J. Exp. Psychol. 55(4), 352 (1958). https://doi.org/10.1037/h0043688

10. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

11. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for
EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017).
https://doi.org/10.1002/hbm.23730

12. Shu, L., et al.: A review of emotion recognition using physiological signals. Sensors
(Switzerland) 18(7) (2018). https://doi.org/10.3390/s18072074

13. Trainor, L.: Frontal brain electrical activity (EEG) distinguishes valence and inten-
sity of musical emotions. Cogn. Emot. 15, 487–500 (2001). https://doi.org/10.
1080/02699930126048

https://doi.org/10.3390/app7121239
https://doi.org/10.3390/app7121239
https://doi.org/10.1016/j.techsoc.2013.07.004
https://doi.org/10.1016/j.techsoc.2013.07.004
https://doi.org/10.1007/978-3-030-39878-1_3
https://doi.org/10.1007/978-3-030-39878-1_3
https://doi.org/10.1088/1741-2552/aaf3f6
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1046/j.1460-9568.2002.01975.x
https://doi.org/10.1046/j.1460-9568.2002.01975.x
https://doi.org/10.1155/2013/573734
https://doi.org/10.1037/h0043688
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1002/hbm.23730
https://doi.org/10.3390/s18072074
https://doi.org/10.1080/02699930126048
https://doi.org/10.1080/02699930126048


Recall Performance Improvement
in a Bio-Inspired Model of the Mammalian

Hippocampus

Nikolaos Andreakos1 , Shigang Yue1 ,
and Vassilis Cutsuridis1,2(&)

1 School of Computer Science, University of Lincoln, Lincoln, UK
{nandreakos,syue,vcutsuridis}@lincoln.ac.uk

2 Lincoln Sleep Research Center, University of Lincoln, Lincoln, UK

Abstract. Mammalian hippocampus is involved in short-term formation of
declarative memories. We employed a bio-inspired neural model of hip-
pocampal CA1 region consisting of a zoo of excitatory and inhibitory cells.
Cells’ firing was timed to a theta oscillation paced by two distinct neuronal
populations exhibiting highly regular bursting activity, one tightly coupled to
the trough and the other to the peak of theta. To systematically evaluate the
model’s recall performance against number of stored patterns, overlaps and
‘active cells per pattern’, its cells were driven by a non-specific excitatory input
to their dendrites. This excitatory input to model excitatory cells provided
context and timing information for retrieval of previously stored memory pat-
terns. Inhibition to excitatory cells’ dendrites acted as a non-specific global
threshold machine that removed spurious activity during recall. Out of the three
models tested, ‘model 1’ recall quality was excellent across all conditions.
‘Model 2’ recall was the worst. The number of ‘active cells per pattern’ had a
massive effect on network recall quality regardless of how many patterns were
stored in it. As ‘active cells per pattern’ decreased, network’s memory capacity
increased, interference effects between stored patterns decreased, and recall
quality improved. Key finding was that increased firing rate of an inhibitory cell
inhibiting a network of excitatory cells has a better success at removing spurious
activity at the network level and improving recall quality than increasing the
synaptic strength of the same inhibitory cell inhibiting the same network of
excitatory cells, while keeping its firing rate fixed.

Keywords: Associative memories � Neural information processing � Brain �
Inhibition

1 Introduction

Memory is our most precious faculty. The case of Henry Molaison (the infamous ‘HM’
patient) has taught us a lot about what happens when we cannot store memories.
Without memory we are unable to remember our past experiences and our loved ones,
while still being able to think about the future. Without memory we cannot learn

© Springer Nature Switzerland AG 2020
M. Mahmud et al. (Eds.): BI 2020, LNAI 12241, pp. 319–328, 2020.
https://doi.org/10.1007/978-3-030-59277-6_29

http://orcid.org/0000-0002-1471-7278
http://orcid.org/0000-0002-1899-6307
http://orcid.org/0000-0001-9005-0260
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59277-6_29&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59277-6_29&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59277-6_29&amp;domain=pdf
https://doi.org/10.1007/978-3-030-59277-6_29


anything new. Associative memory is the ability to learn and remember the relationship
between items, places, events, and/or objects which may be unrelated [1].

Hippocampus, the site of short-term storage of declarative memories [2], is one of
the most studied brain areas yielding a wealth of knowledge of cell types and their
anatomical, physiological, synaptic, and network properties [3]. Cells in various hip-
pocampal regions have been hypothesized to compute information differently. Regions
CA3 and CA1 have also been implicated in auto- and hetero-association (storage) of
declarative memories, respectively [4].

In 2010 a bio-inspired microcircuit model of region CA1 was introduced that
controlled for itself the storage and recall of patterns of information arriving at high
rates [5]. The model was based upon the biological details were then known about the
hippocampal neural circuit [6, 7]. The model explored the functional roles of somatic,
axonic and dendritic inhibition in the encoding and retrieval of memories. It showed
how theta modulated inhibition separated encoding and retrieval of memories into two
functionally independent processes. It showed how somatic inhibition allowed gener-
ation of dendritic calcium spikes that promoted synaptic long-term plasticity (LTP),
while minimizing cell output. Proximal dendritic inhibition controlled both cell output
and suppressed dendritic calcium spikes, thus preventing LTP, whereas distal dendritic
inhibition removed interference from spurious memories during recall. The mean recall
quality of the model was tested as function of memory patterns stored. Recall dropped
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Fig. 1. Associative neural network model of region CA1 of the hippocampus and CA1-PC
model with one excitatory (CA3) and six inhibitory (BSC) synaptic contacts on its SR dendrites.
During retrieval only PC, BSC, and OLM cells are active. AAC and BC are inactive due to strong
medial septum inhibition. BSC and PC are driven on their SR dendrites by a strong CA3
excitatory input, which presented the contextual information. Red circles on PC dendrites
represent loaded synapses, whereas black circles on PC dendrites represent unloaded synapses.
EC: Entorhinal cortical input; CA3: Schaffer collateral input; AAC: Axo-axonic cell; BC: basket
cell; BSC: bistratified cell; OLM: oriens lacunosum-moleculare cell; SLM: stratum lacunosum
moleculare; SR: stratum radiatum; SP: stratum pyramidale; SO: stratum oriens.
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as more patterns were encoded due to interference between previously stored
memories.

Here, we systematically investigate the biophysical mechanisms of this bio-inspired
neural network model of region CA1 of the hippocampus [5] to improve its memory
capacity and recall performance. In particular, we examine how selective modulation of
feedforward/feedback excitatory/inhibitory pathways targeting inhibitory and excita-
tory cells may influence the thresholding ability of dendritic inhibition to remove at the
network level spurious activities, which may otherwise impair the recall performance of
the network, and improve its mean recall quality as more and more overlapping
memories are stored.

2 Materials and Methods

2.1 Neural Network Model

Figure 1 depicts the simulated neural network model of region CA1 of the hip-
pocampus. The model consisted of 100 excitatory cells (pyramidal cells (PC)) and four
types of inhibitory cells: 1 axo-axonic cell (AAC), 2 basket cells (BC), 1 bistriatified
(BSC) and 1 oriens lacunosum-moleculare (OLM) cell. Simplified morphologies
including the soma, apical and basal dendrites and a portion of the axon were used for
each cell type. The biophysical properties of each cell were adapted from cell types
reported in the literature, which were extensively validated against experimental data in
[8–12]. Using known physical properties and effects of cell structures is a more efficient
way to examine scientific hypothesis compare to blind computational optimization. The
core of our research was biological properties and mechanisms because by we obtained
a better understanding on how these mechanisms affected the whole circuit and gained
some insightful intuitions. The complete mathematical formalism of the model has
been described elsewhere [5]. Schematic representations of model cells can be found in
[13]. The dimensions of the somatic, axonic and dendritic compartments of model
cells, the parameters of all passive and active ionic conductances, synaptic waveforms
and synaptic conductances can be found in [13]. All simulations were performed using
NEURON [14] running on a PC with four CPUs under Windows 10.

2.2 Inputs

Network was driven by an excitatory CA3 input and an inhibitory medial septum
(MS) input. The excitatory input was modelled as the firing of 20 out of 100 CA3
pyramidal cells at an average gamma frequency of 40 Hz (spike trains only modelled
and not the explicit cells). PCs, BCs, AACs, BSCs in our network received excitatory
input in their proximal-to-soma dendrites. The inhibitory input was modelled with the
rhythmic firing of two opponent processing populations of 10 inhibitory cells each
firing at opposite phases of a theta cycle (180° out of phase) [15]. Each such cell output
was modelled as bursts of action potentials using a presynaptic spike generator. Each
spike train consisted of bursts of action potentials at a mean frequency of 8 Hz for a
half-theta cycle (125 ms) followed by a half-theta cycle of silence (125 ms).
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Due to 8% noise in the inter-spike intervals, the 10 spike trains in each population
were asynchronous. One inhibitory population input provided inhibition to BSCs and
OLMs during the encoding cycle, whereas the other inhibitory population input pro-
vided inhibition to AACs and BCs during the retrieval cycle.

2.3 Network Training and Testing

The goal of this work is to test the recall performance of the model when the network
had already stored memory patterns without examining the exact details of the learning
process. To test the recall performance of the model the methodology described in [5]
was adopted. Briefly, a memory pattern was stored by generating weight matrices based
on a clipped Hebbian learning rule; these weight matrices were used to pre-specify the
CA3 to CA1 PC connection weights. Without loss of generality, the input (CA3) and
output (CA1) patterns were assumed to be the same, with each pattern consisting of N
(N = 5 or 10 or 20) randomly chosen PCs (active cells per pattern) out of the popu-
lation of 100. The 100 by 100 dimensional weight matrix was created by setting matrix
entry (i, j), wij = 1 if input PC i and output PC j are both active in the same pattern pair;
otherwise weights are 0. Any number of pattern pairs could be stored to create this
binary weight matrix. The matrix was applied to our network model by connecting a
CA3 input to a CA1 PC with a high AMPA conductance (gAMPA = 1.5 nS) if their
connection weight was 1, or with a low conductance (gAMPA = 0.5 nS) if their con-
nection was 0. This approach is in line with experimental evidence that such synapses
are 2-state in nature [16].

8 borrowed cells 
from one pattern 
to another 

40% overlap
in 20 active cells 
per pattern

Non - active cells

Common cells between 1st and 2nd pattern

Common cells between 2nd and 3rd pattern

Common cells between 3rd and 4th pattern

Common cells between 4th and 5th pattern

Common cells between 5th and 1st pattern

1st 2nd 3rd 4th 5th

Number of
stored patterns

Fig. 2. Set of five memory patterns with 40% overlap between them.
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2.4 Memory Patterns

We created sets of memory patterns at different sizes (1, 5, 10, 20), percent overlaps
(0%, 10%, 20%, 40%) and number of active cells per pattern (5, 10, 20). For example,
a 0% overlap between N patterns in a set meant no overlap between patterns 1 and 2, 1
and 3, 1 and 4, 1 and 5, 2 and 3, 2 and 4, 2 and 5, 3 and 4, 3 and 5, and 4 and 5. A 40%
overlap between 5 patterns in a set meant that 0.4*N cells were shared between patterns
1 and 2, a different 0.4*N cells were shared between patterns 2 and 3, a different 0.4*N
cells between patterns 3 and 4, a different 0.4*N cells between patterns 4 and 5 and a
different 0.4*N cells between patterns 5 and 1 (see Fig. 2). For 20 active cells per
pattern that meant that a maximum of 5 patterns could be stored by a network of 100
PCs. For 10 active cells per pattern, then a maximum of 10 patterns could be stored and
for 5 active cells per pattern, a maximum of 20 patterns could be stored. Similar
maximum number of patterns could be stored for 10%, 20% and 40% overlap and 5, 10
and 20 active cells per pattern, respectively. In the case of 10% overlap, 5 active cells
per pattern, the maximum number of stored patterns was not an integer, so this case
was excluded from our simulations.

2.5 Recall Performance Measure

The recall performance metric used for measuring the distance between the recalled
output pattern, B, from the required output pattern, B*, was the correlation (i.e., degree
of overlap) metric, calculated as the normalized dot product:

C ¼ B�B�

PNB
i¼1 Bi�

PNB
j¼1 B

�
j

� �1=2
ð1Þ

where NB is the number of output units. The correlation takes a value between 0 (no
correlation) and 1 (the vectors are identical). The higher the correlation, the better the
recall performance.

2.6 Mean Recall Quality

Mean recall quality of our network model was defined as the mean value of all recall
qualities estimated from each pattern presentation when an M number of patterns were
already stored in the network. For example, when five patterns were initially stored in
the network and pattern 1 was presented to the network during recall, then a recall
quality value for pattern 1 was calculated. Repeating this process for each of the other
patterns (pattern 2, pattern 3, pattern 4, and pattern 5) a recall quality value was
calculated. The mean recall quality of the network was then the mean value of these
individual recall qualities.
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2.7 Model Selection

In [5], BSC inhibition to PC dendrites acted as a global non-specific threshold machine
capable of removing spurious activity at the network level during recall. In [5] BSC
inhibition was held constant as the number of stored patterns to PC dendrites increased.
The recall quality of the model in [5] decreased as more and more memories were
loaded onto the network (see Fig. 14 in [5]). To improve the recall performance of [5]
we artificially modulated the synaptic strength of selective excitatory and inhibitory
pathways to BSC and PC dendrites as more and more patterns were stored in the
network (see Figs. 1 and 6):

1. Model 1: Increased CA3 feedforward excitation (weight) to BSC (Fig. 6A)
increased the frequency of its firing rate. As a result, more IPSPs were generated in
the PC dendrites producing a very strong inhibitory environment which eliminated
all spurious activity.

2. Model 2: Increased BSC feedforward inhibition (weight) to PC dendrites (Fig. 6B)
produced fewer IPSPs, but with greater amplitude, in the PC dendrites.

3. Model 3: Increased PC feedback excitation (weight) to BSC (Fig. 6C) had a similar
effect as Model 1, but with less potency.

Comparative analysis of the above three models’ recall performance is depicted in
Figs. 3, 4 and 5.

3 Results and Discussion

A set of patterns (1, 5, 10, 20) at various percent overlaps (0%, 10%, 20%, 40%) were
stored by different number of ‘active cells per pattern’ (5, 10, 20) without recourse to a
learning rule by generating a weight matrix based on a clipped Hebbian learning rule,
and using the weight matrix to prespecify the CA3 to CA1 PC connection weights. To
test recall of a previously stored memory pattern in the model, the entire associated

Stored patterns = 10, Active cells per pattern = 5
1

0.5

0
0

4020
% overlap

1

0.5

0
0

4020
% overlap

Stored patterns = 20, Active cells per pattern = 5

Stored patterns = 5, Active cells per pattern = 10

Stored patterns = 5, Active cells per pattern = 20

M
ea

n 
re

ca
ll 

qu
al

ity
M

ea
n 

re
ca

ll 
qu

al
ity

M
ea

n 
re

ca
ll 

qu
al

ity

M
ea

n 
re

ca
ll 

qu
al

ity
M

ea
n 

re
ca

ll 
qu

al
ity

Stored patterns = 10, Active cells per pattern = 10

Model 1
Model 2
Model 3

Model 1
Model 2
Model 3

1

0.5

0
0

4020
% overlap

Model 1
Model 2
Model 3

1

0.5

0
0

40

10

10 20
% overlap

1

0.5

0
0

4010 20
% overlap

Model 1
Model 2
Model 3

Model 1
Model 2
Model 3

Fig. 3. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of percent
overlap (0%, 10%, 20%, 40%).
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input pattern was applied as a cue in the form of spiking of active CA3 inputs (those
belonging to the pattern) distributed within a gamma frequency time window. The cue
pattern was repeated at gamma frequency (40 Hz). During the retrieval only the BSCs
and OLM cells were switched on, whereas the AACs and BCs were switched off. The
CA3 spiking drove the CA1 PCs plus the BSCs. The EC input, which excited the apical
dendrites of PCs, AACs and BCs, was disconnected during the retrieval.

It is evident from Fig. 3 that recall performance is best for all three models (‘model 1’,
‘model 2’, ‘model 3) when there is no overlap between patterns or when the overlap is
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Fig. 4. Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of ‘active cells
per pattern’. Five patterns were stored in a network of 100 PCs at 0%, 10%, 20% and 40%
overlap.
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small (up to 10%) regardless of the number ‘active cells per pattern’ (i.e. the number of
cells needed to represent a memory pattern) and patterns stored in the network. At
overlaps larger than 10%, the recall performance depends solely on the number of ‘active
cells per pattern’ and it is completely independent of how many patterns are stored in the
network. When just 5 ‘active cells per pattern’ are used to represent a memory, then the
recall performance is best for all three models across all overlaps and irrespective of
number of stored patterns. When 10 ‘active cells per pattern’ are used to represent a
memory, the performance of all three models are comparably similar when 5 or
10 patterns are stored and across overlap percentages. When 20 ‘active cells per pattern’
are used to represent amemory, then even for just 5 patterns stored, the recall performance
is consistently best for ‘model 1’ and consistently worst for ‘model 2’ across all overlaps.
‘Model 3’ performance is between ‘model 1’ and ‘model 2’. The performances of
‘model 2’ and ‘model 3’ get worse as overlap increases (from 10% to 40%).

Figures 4 and 5 compare and contrast the recall performance of models 1, 2, and 3
against number of ‘active cells per pattern’ for various overlaps (0%, 10%, 20% and
40%) and stored patterns (5 or 10). When 5 or 10 ‘active cells per pattern’ are used to
represent a memory, then the recall performances of all three models when number of
stored patterns were 5 or 10 was exactly the same at 0%, 10%, 20% and 40%,
respectively. This means that the number of patterns stored in the network did not affect
its recall quality. When ‘active cells per pattern’ were increased (from 10 to 20), then
the recall qualities of models 2 and 3 progressively got worse as overlap between
patterns increased (from 0% to 40%). ‘Model 1’ recall quality was consistently best
(C = 1) across ‘active cells per pattern’, stored patterns, and overlap conditions.

Why was ‘model 1’ performance so consistently better than ‘model 2’ and ‘model
3’ across all conditions? Why the recall quality of ‘model 1’ was always perfect
(C = 1) even when more patterns were stored in the network, more/less ‘active cells per
pattern’ were used to represent a memory and greater percentages of overlap between
patterns were used? As we stated in section “2.7 – Model selection”, ‘model 1’ was the
model where CA3 feedforward excitation to BSC was progressively increased as more
and more patterns were stored, while the BSC inhibitory effect to PC dendrites was
held fixed. ‘Model 3’ was the model where PC feedback excitation to BSC was
progressively increased as more and more patterns were stored, while the BSC inhi-
bitory effect to PC dendrites was held fixed. ‘Model 2’ was the model where the exact
opposite took place: the inhibitory effect of BSC to PC dendrites progressively
increased as more and more patterns were stored in the network, while keeping the
BSC firing rate constant. In all simulations, ‘model 1’ outperformed ‘model 3’ across
all conditions (overlaps and ‘active pattern cells’). This was due to the fact that in
‘model 1’ BSC was excited by 100 CA3-PCs at high frequency (40 Hz), whereas in
‘model 3’ BSC was excited by 20 CA1-PCs that fired once or twice. Since in ‘model 1’
the BSC firing frequency response is higher than in ‘model 3’, then the postsynaptic
effect of BSC on the PC dendrites in ‘model 1’ is higher in frequency and duration (but
not in amplitude) than in ‘model 3’ (see Fig. 6A & 6C). Thus, ‘model 1’ has a better
success at removing spurious activities and improving recall quality than ‘model 3’.
Since the BSC frequency response in ‘model 2’ was fixed, but its postsynaptic effect
(weight) on PC dendrites increased, then the amplitude of the inhibitory postsynaptic
potentials (IPSPs) on PC dendrites increased (compared to the IPSP amplitudes in

326 N. Andreakos et al.



models 1 and 3), but their frequency response was low (lower than in models 1 and 3;
see Fig. 6B). Each IPSP decayed to almost zero before another IPSP was generated
post-synaptically on PC dendrites.

4 Conclusions

A bio-inspired neural model of mammalian hippocampal CA1 region [5] was employed
to systematically evaluate its mean recall quality against number of stored patterns,
percent overlaps and ‘active cells per pattern’. We modulated the strength of selective
excitatory and inhibitory pathways to BSC and PC dendrites as more and more patterns
were stored in the network of 100 CA1-PCs and this resulted into three models, the
performances of which were compared against each other. Model 1 recall performance
was excellent (C = 1) across all conditions. Model 2 performance was the worst. A key
finding of our study is that the number of ‘active cells per pattern’ has a massive effect
on the recall quality of the network regardless of how many pattern are stored in it. As
the number of dedicated cells representing a memory (‘active cells per pattern’)
decrease, the memory capacity of the CA1-PC network increases, so interference
effects between stored patterns decrease, and mean recall quality increases. Another
key finding of our study is that increased firing frequency response of a presynaptic
inhibitory cell (BSC) inhibiting a network of PCs has a better success at removing
spurious activity at the network level and thus improving recall quality than an
increased synaptic efficacy of a presynaptic inhibitory cell (BSC) on a postsynaptic PC
while keeping its presynaptic firing rate fixed.

BSC

CA3

Pyramidal
dendrite

Pyramidal
dendrite

Postsynaptic
potential

Postsynaptic
potential

BSC

BSC

CA3

116 ms

117 ms

0.009

0.027

Strong excitatory synapse 
Inhibitory synapse 

Excitatory synapse
Strong inhibitory synapse

112 ms

MODEL 1

MODEL 3

MODEL 2

113 ms

CA3

Pyramidal
dendrite

Postsynaptic
potential

112 ms
117 ms

0.011

Excitatory synapse

Strong excitatory synapse 
Inhibitory synapse 

Pyramidal
soma

B

A

C

Fig. 6. Schematic drawing of presynaptic BSC firing response and inhibitory postsynaptic
potentials (IPSPs) on PC dendrites in (A) ‘model 1’, (B) ‘model 2’ and (C) ‘model 3’.

Recall Performance Improvement in a Bio-Inspired Model 327



Acknowledgements. This work was supported in part by EU Horizon 2020 through Pro-
ject ULTRACEPT under Grant 778062.

References

1. Suzuki, W.A.: Making new memories: the role of the hippocampus in new associative
learning. Ann. N. Y. Acad. Sci. 1097, 1–11 (2007)

2. Eichenbaum, H., Dunchenko, P., Wood, E., Shapiro, M., Tanila, H.: The hippocampus,
memory and place cells: is it spatial memory or a memory of space? Neuron 23, 209–226
(1999)

3. Cutsuridis, V., Graham, B.P., Cobb, S., Vida, I.: Hippocampal Microcircuits: A compu-
tational modeller’s resource book, 2nd edn. Springer, Cham (2019). https://doi.org/10.1007/
978-3-319-99103-0

4. Treves, A., Rolls, E.: Computational constraints suggest the need for two distinct input
systems to the hippocampal CA3 network. Hippocampus 2, 189–200 (1992)

5. Cutsuridis, V., Cobb, S., Graham, B.P.: Encoding and retrieval in a model of the
hippocampal CA1 microcircuit. Hippocampus 20, 423–446 (2010)

6. Klausberger, T., et al.: Brain-state- and cell-type-specific firing of hippocampal interneurons
in vivo. Nature 421, 844–848 (2003)

7. Klausberger, T., Marton, L.F., Baude, A., Roberts, J.D., Magill, P.J., Somogyi, P.: Spike
timing of dendrite-targeting bistratified cells during hippocampal network oscillations
in vivo. Nat. Neurosci. 7, 41–47 (2004)

8. Poirazi, P., Brannon, T., Mel, B.W.: Arithmetic of subthreshold synaptic summation in a
model of CA1 pyramidal cell. Neuron 37, 977–987 (2003)

9. Poirazi, P., Brannon, T., Mel, B.W.: Pyramidal neuron as a 2-layer neural network. Neuron
37, 989–999 (2003)

10. Santhakumar, V., Aradi, I., Soltetz, I.: Role of mossy fiber sprouting and mossy cell loss in
hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal
topography. J. Neurophysiol. 93, 437–453 (2005)

11. Buhl, E.H., Szilágyi, T., Halasy, K., Somogyi, P.: Physiological properties of anatomically
identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro.
Hippocampus 6(3), 294–305 (1996)

12. Buhl, E.H., Han, Z.S., Lorinczi, Z., Stezhka, V.V., Kapnup, S.V., Somogyi, P.:
Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus.
J. Neurophysiol. 71(4), 1289–1307 (1994)

13. Cutsuridis, V.: Improving the recall performance of a brain mimetic microcircuit model.
Cogn. Comput. 11, 644–655 (2019). https://doi.org/10.1007/s12559-019-09658-8

14. Hines, M.L., Carnevale, T.: The NEURON simulation environment. Neural Comput. 9,
1179–1209 (1997)

15. Borhegyi, Z., Varga, V., Szilagyi, N., Fabo, D., Freund, T.F.: Phase segregation of medial
septal GABAergic neurons during hippocampal theta activity. J. Neurosci. 24, 8470–8479
(2004)

16. Petersen, C.C.H., Malenka, R.C., Nicoll, R.A., Hopfield, J.J.: All-or none potentiation at
CA3-CA1 synapses. Proc. Natl. Acad. Sci. USA 95, 4732–4737 (1998)

328 N. Andreakos et al.

https://doi.org/10.1007/978-3-319-99103-0
https://doi.org/10.1007/978-3-319-99103-0
https://doi.org/10.1007/s12559-019-09658-8


Canonical Retina-to-Cortex Vision Model
Ready for Automatic Differentiation

Qiang Li(B) and Jesus Malo

Image and Signal Processing Lab, University of Valencia, 46980 Valencia, Spain
{qiang.li,jesus.malo}@uv.es

Abstract. Canonical vision models of the retina-to-V1 cortex pathway
consist of cascades of several Linear+Nonlinear layers. In this setting,
parameter tuning is the key to obtain a sensible behavior when putting
all these multiple layers to work together. Conventional tuning of these
neural models very much depends on the explicit computation of the
derivatives of the response with regard to the parameters. And, in gen-
eral, this is not an easy task. Automatic differentiation is a tool devel-
oped by the deep learning community to solve similar problems without
the need of explicit computation of the analytic derivatives. Therefore,
implementations of canonical visual neuroscience models that are ready
to be used in an automatic differentiation environment are extremely
needed nowadays. In this work we introduce a Python implementation
of a standard multi-layer model for the retina-to-V1 pathway. Results
show that the proposed default parameters reproduce image distortion
psychophysics. More interestingly, given the python implementation, the
parameters of this visual model are ready to be optimized with automatic
differentiation tools for alternative goals.

Keywords: Computational visual neuroscience · Retina · LGN ·
Primary Visual Cortex · Chromatic adaptation · Opponent channels ·
Contrast Sensitivity Functions · Deep linear+Nonlinear models ·
Python implementation · Automatic differentiation

1 Introduction

Current canonical vision models of the retina-to-V1 cortex include: light inte-
gration at the cones tuned to long, medium, and short (LMS) wavelengths [30],
color adaptation mechanisms [8,29], transforms to chromatic opponent channels
in cells of the Lateral Geniculate Nucleus (LGN) [5,27], different spatial band-
width of achromatic and chromatic channels [3,4,22], and wavelet-like decompo-
sitions modelling achromatic and double opponent cells in the Primary Visual
Cortex V1 [25,27]. In this pathway, the output of linear units is known to interact
nonlinearly through recurrence [38] or divisive normalization [6,7,14,39]. These
standard linear+nonlinear (L+NL) layers have been put to work together in
image computable models [20,21,26]. These image computable models of the
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visual pathway have obvious impact in engineering applications [15,17,18], but
also in basic visual neuroscience because they allow to performing new psy-
chophysical and physiological experiments [19,21,26,33]. However, the models
in this standard family have many parameters, and parameter tuning is the
key to obtain a sensible behavior given certain generic architecture. Minimal-
ist architect Mies van der Rohe used to say that god is in the details [37]. In
the conventional retina-to-cortex computational architectures, the devil is in the
parameters.

Parameter tuning is very much dependent on the explicit computation of the
derivatives of the response with regard to the parameters of the model. And, in
general, this is not an easy task (see for instance [21]). Automatic differentiation
is a tool developed by the deep learning community that solves similar prob-
lems without the need of explicit computation of the analytic derivatives [2].
Therefore, implementations of canonical models that are ready to be used in an
automatic differentiation setting are extremely needed nowadays. When fitting
complex models, initialization of parameters is extremely relevant [12]. There-
fore, proper selection of a default state is of paramount relevance.

In this work, we introduce a python implementation of a canonical model for
the retina-to-V1 pathway. Therefore, in this python setting, the parameters of
the canonical visual model are ready to be optimized with the automatic differ-
entiation tools for the goal function the user may design. The proposed image
computable model comes with a set of default parameters taken from the large
literature associated to each specific perceptual phenomenon addressed by each
of the standard modules. In this work, we provide a proof of the psychophysical
plausibility of this default model by showing that it reproduces human opin-
ion in image distortion experiments with the default parameters. However, the
advantage of the proposed python implementation is that these default parame-
ters can be easily be optimized for other goals using the autodiff utilities of the
pytorch/tensorflow environments.

The structure of the paper is as follows. Section 2 presents the structure of the
model and its implementation. Section 3 shows experimental results that prove
the psychophysical plausibility of the default parameters of the implementation.
And finally, Sect. 4 discusses the differences of the proposed implementation with
similar modelling efforts introduced since 2017 [1,11,15,17].

2 Model Structure and Implementation

The brain can be a perfect response (R) to certain stimuli (S), which is called
encoding. Meanwhile, after the brain receives and decomposes external signals,
it can be given feedback, this is defined as decoding. The encoding and decoding
model which are the basic function of how the brain interacts with the outside
world. It can be mathematically defined as:
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Encoding p(R—S)
︷ ︸︸ ︷

Sn
︸︷︷︸

Stimuli

= Retina(c) + Brain(ψ, θ, w, l, i2, d, e, v)
︸ ︷︷ ︸

Decomposition channels
︸ ︷︷ ︸

Decoding p(S—R)

(1)

where Sn=1,2,··· ,n, n ∈ R
∞ represent series of stimulus, r is neural response

corresponding given stimuli, ψ is spatial frequency, θ is orientation, w is temporal
frequency, l is adapting luminance, i2 is stimulus size, d is view distance, e is
eccentricity, c is chromatic information and v represents motion/speed. The brain
is very sensitive to spatial frequency [9,23], spatial orientation, luminance, and
local contrast and other very fine information of stimuli, and it can decompose
the very complex natural world into very precise channel then drive the specific
receptive field excitation or inhibition. The feed-forward pathway which encodes
stimuli information in the brain, inverse, is called decoding which infers the
stimuli from neural activity.

2.1 Multi-layer Linear Plus Nonlinear Model of V1

In the case of the visual information flow in the brain, we refer to the set of
responses of a population of simple cells as the vectors. The considered models
(linear+nonlinear) define a linear+nonlinear mapping (L+NL), that transforms
the input vector (before the interaction among neurons) into the output cortex.
The total structure of the model can be defined as bellows (Based on Eq. 1):

S0 R1 R2 R3 R4 R5 R6
L1 N1 L2 N2 L3 N3

Brain(S0, θ)

Retina
LGN V1

Where L denotes linear function and N refers to nonlinear transform. Finally,
the model can be divided into three phases, which are the retina phase, LGN
phase, and V1 cortex, respectively.

Retina Phase. The human retina mainly contributes to the physic optical
function. The stimuli can randomly reflect light into the retina, then the size and
density of the retina pupil can control how much spatial or optical information
flows into the eyes. In the model, we implement a modulation transfer function
(MTF) to simulate the retina physic optical function. The total function in the
retina can be mathematically defined as:

R1 = M ∗ (S0 + n(s0)) + n0(si) (2)

Which the star denotes a linear convolution operation, M represents filter
which considers both MTF and low-pass filtering which models by butter filter
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for remove input noise, n(s0) is input noise along with the image, the input
noise created by man-made Gaussian white noise for better and optimization
simulating our model, the details implement noise will explain below. n0(si), i =
1, 2, · · · , n;n ∈ R

∞ is intrinsic noise that models the neural self-noise. The total
model in the retina can be divided by multiple LN stages.

1. Linear stage
– Optical transform function with MTF filters for each chromatic channel.
– Low-pass filters for removing Gaussian noise.
– Chromatic channel summation then according to LMS sensitivity function

transform from RGB2LMS and considered chromatic adaptation cogni-
tive mechanisms with von-Kries Model.

– After von-Kries Model, convert LMS to chromatic vision oppo-
nent(Achromatic, Tritanopic, Deuteranopic, ATD) which mainly repre-
sents white-black (WB), red-green (RG), yellow-blue (YB) channels that
represent inhibitory and excitatory neuron in the ganglion cells.

2. Nonlinear stage
– The half-squaring operation for avoiding negative response and correct

response positive.
– Non-linear divisive normalization of each chromatic channel. The divi-

sive normalization model proposed by Heeger in the early 1990s which
mainly used to simulate the primary visual cortex function [6,13,14,39].
The model defined neuron activity saturation phenomena when neuron
processing tasks facing overload problem, in other words, the response of
neuron suppress by sum of all neighbor neurons with adding some bias,
it can be mathematically defined as:

R2 =
(R2)g

bg + (
∑

t NNt)g
(3)

where R2 represents response neurons, t refers to the total number of
neighbor neurons. NN denotes neighbor neurons and the constant b and
g prevents division by zero, it also controls the strength of normalization.

LGN Phase. The human brain is very sensitive to frequency bands change.
Here, we implemented a band-pass filter with contrast sensitivity functional
(CSF) and all responses happened in the Fourier domain then inverse for visu-
alization [9,23,35].

V1 Phase. The wavelet transform approximately simulates primary visual cor-
tex V1 multi-orientation and multi-scale properties. Multi-channel decomposi-
tion happened in the brain and via optimization parameters in the model which
can reproduce the function of V1. The wavelet transform can capture frequency
and space information both compared with Gabor function. Here, the steerable
pyramid implemented in the model, it can decompose visual channel into the
low, medium, and high-frequency channel, respectively.
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1. Linear stage
– Steerable pyramid transforms with 3 scales and 4 orientations. Steerable

pyramid can efficient linear decomposition of an image into the scale
and orientation subbands [28]. The basic principles of this function are
high-order statistics of the directional derivative to calculate any desired
order. Here, we instead Gabor functional with steerable pyramid trans-
form to simulate the V1 multiscale and multiresolution psychophysiology
properties.

2. Nonlinear stage
– Non-linear saturation in the wavelet domain.

In summary, spatial interactions happen at different layers of the model:
when including the convolutions associated with the MTF and CSFs, and in the
convolutions with the receptive fields of the wavelet transforms. Nonlinearities
are applied in the (color) Von-Kries adaptation and in the saturation of the ATD
channels, and at the (contrast) saturation of the wavelet responses.

3 Results: Psychophysical Plausibility of the Default
Mode

In this section, we experimentally show that the default parameters of the
proposed implementation make psychophysical sense. This check is important
because (as stated in the introduction) despite the architecture of the standard
model is grounded in a large body of physiological, psychophysical, and sta-
tistical evidence, the key is in the parameter details. The specific behavior is
determined by the specific value of the parameters, and the interested reader
may find a detailed account of the parameters and the Python implementation
can get here1.

Here we illustrate the plausibility of the specific blocks (and parameters)
considered in this work by predicting results in image distortion psychophysics.
In image quality databases [24] human viewers assess the visibility of a range of
distortions seen on top of natural images. A vision model is good if its predictions
of visibility correlate with human opinion. The visibility of a distortion using a
psychophysical response model is done by measuring the distance between the
response vectors to the original and the distorted images [18,31]. In this context,
we made a simple numerical experiment: we checked if the consideration of more
and more standard blocks in the model leads to consistent improvements of the
correlation with human opinion. Figure 1 confirms that the progressive consid-
eration of the blocks leads to consistent improvements. Moreover, the result-
ing model is reasonable: the final correlation with human behavior in this non-
trivial scenario is similar to state-of-the-art image quality metrics [15,18,21,34].
Note for instance that the acclaimed AlexNet [16] when trained to reproduce
contrast thresholds [40] gets a Spearman correlation of 0.75 [15], and the widely
used SSIM [31] gets 0.77 [32], while Fig. 1 shows that the proposed model with
1 https://github.com/sinodanish/BioMulti-L-NL-Model.

https://github.com/sinodanish/BioMulti-L-NL-Model
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Fig. 1. Correlation with the human opinion as additional layers is added to the model.
As different illuminations are not present in the considered database [24], we are not
reporting the correlation after the Von-Kries adaptation since in this case is the iden-
tity. The first figure shows the prediction using the Euclidean distance. Then from
left to right, we show the perceptual distance after the optical Modulation Transfer
Function, the opponent channels, the Contrast Sensitivity Functions, and the Contrast
Saturation, respectively. ρ refers to the Spearman correlation.

generic (non optimized) default parameters gets 0.82. These results illustrate
the meaningfulness of the considered psychophysical blocks and its appropriate
behavior when functioning together.

4 Discussion and Final Remarks

In this work, we presented an optics+retina+LGN+V1 model ready for auto-
matic differentiation tuning given the Pytorch/Tensorflow nature of its imple-
mentation. Experimental results show that the default mode of the presented
model reproduces image distortion psychophysics better than AlexNet tuned for
contrast threshold prediction and classical SSIM.

This tunable model of early vision is in line with recent implementations
of biologically plausible visual networks in automatic differentiation environ-
ments [1,11,15,17]. However, the implementation presented here has a number
of differences in the architecture and considered phenomena. First, none of the
above references includes a block to model the MTF of the eye. Second, Von-
Kries chromatic adaptation as considered here is only considered in [15]. Third,
references [1,15] learn the filters of the linear transforms with the corresponding
possibility of overfitting. This is not the case in the presented implementation
(which uses fixed center-surround and wavelet filters) nor in [17] which considers
a pyramid of center-surround sensors and [11] which considers a steerable pyra-
mid. Finally, regarding the nonlinearities, while [1,17] use restricted versions
of the divisive normalization which do not consider spatial interactions, this is
solved in [11,15] which do consider spatial interactions, either through divisive
normalization [15], or through Wilson-Cowan recurrence [11]. Note that spatial
interactions are strictly required for a proper account of masking [20,36].

Beyond the architecture differences mentioned above, it is worth mention-
ing that optimization for different goal functions (available through automatic
differentiation) could lead to networks with substantially different behavior.
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Possibilities include: (i) information maximization, as suggested in [11], (ii) rate-
distortion performance, as done in [1], (iii) image quality, as done in [15,17,21],
or (iv) texture synthesis, as done in [10]. Moreover, some of the cost functions
mentioned above could have nontrivial behavior as for instance nonstationarity.
In the current implementation, we rely on optimization based on a selected set
of images (or batch). Therefore, strong dependence of the goal functions on the
kind of images is a matter for further research. It is important to note that
even when optimizing for sensible goal functions, one should always check that
basic psychophysical behavior is still reproduced after the optimization. In this
regard, biologically sensible architectures and economy of parameters (as in the
implementation presented here) are highly desirable [20].
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Abstract. Studying on EEG (Electroencephalography) data instances to dis-
cover potential recognizable patterns has been a emerging hot topic in recent
years, particularly for cognitive analysis in online education areas. Machine
learning techniques have been widely adopted in EEG analytical processes for
non-invasive brain research. Existing work indicated that human brain can
produce EEG signals under the stimulation of specific activities. This paper
utilizes an optimized data analytical model to identify statuses of brain wave and
further discover brain activity patterns. The proposed model, i.e. Seg-
mented EEG Graph using PLA (SEGPA), that incorporates optimized data
processing methods and EEG-based analytical for EEG data analysis. The data
segmentation techniques are incorporated in SEGPA model. This research
proposes a potentially efficient method for recognizing human brain activities
that can be used for machinery control. The experimental results reveal the
positive discovery in EEG data analysis based on the optimized sampling
methods. The proposed model can be used for identifying students cognitive
statuses and improve educational performance in COVID19 period.

Keywords: EEG pattern recognition � Online teaching � Brain informatics

1 Introduction

In this paper, we focus on analyzing EEG data sets that stimulated by EEG motion
detection or environment change; and using the optimized methods to recognize the
EEG data patterns. Environment change generally refers to the environment that EEG
lab participants stay in has been changed, which results in EEG status change. Through
conducting sensory stimulation, the cerebral cortex corresponding to cognitive center
will generate corresponding electrical activities to create recognizable EEG patterns.

Electroencephalogram (EEG) is a graph obtained by continuously amplifying the
spontaneous biological potential of the brain with the aid of precise electronic instru-
ments and recording the rhythmic and spontaneous electrical activity of brain cell
group by electric motor. EEG’s most signification advantage is that it can record the
change of brain wave during brain activity accurately, with a time resolution of 1 ms.
The traditional EEG recognition adopts classification methods [1, 2].
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Traditionally, EEG data analysis models have been utilized in studying the prop-
erties of cerebral and neural networks in neurosciences. In recent years, health infor-
matics applications based on EEG have been successfully adopted in many fields, e.g.
psychological research, physical recovery, robotic control, and so on [1–3].

The major disadvantages of EEG based methods can be briefly summarized as:
(1) EEG analytical methods have poor spatial resolution, which cannot efficiently
identify the location of the source of brain activity. (2) EEG signals are basically
magnified signals, which normally can produce high noises. However, EEG-based
models have the obvious advantages. The expanses of EEG equipment are much lower
than MRI scanning and EEG is relatively tolerable to subject movements as compared
to MRI. In addition, EEG caps can be flexibly applied to various applications. EEG
based systems allow persons who are unable to make motor response to send signals.
[1–3].

In this paper, we investigate motion actions induced EEG data. Our research
indicates that motion actions can produce recognizable EEG patterns. In this research,
EEG signals are acquired synchronously by EEG signal acquisition equipment; and the
EEG signals are recorded. Relevant EEG signal characteristics are extracted and ana-
lyzed by corresponding signal analysis methods. This paper explores the research on
the psychology and consciousness of users and their changing trend in different motion
statues. Therefore, discovering consumers’ brain activities through on EEG analysis
based on motion change or cognitive environment change, such as background music,
is this paper’s major contribution and objective.

Existing EEG pattern recognition models are facing the challenging of dealing with
time series data. In this paper, we propose an optimized model for EEG pattern
recognition based on SEGPA [3]. The SEGPA model incorporates the clustering
method, i.e. K-means, with logistic regression method for EEG pattern discovery.

Based on the above methods, the SEGPA model can dynamically adapt to the EEG
recognition process, which can be more efficient than traditional classification methods.
Currently, the SEGPA model is less efficient in dynamic adaptation and real time
processing. The reminder of this paper is structured as follows. Section 2 reviews the
existing research work on EEG-based classification and recognition. Section 3 pro-
poses the optimized SEGPA model and the related methods used in the model. Sec-
tion 4 provides the experimental design and analysis. The final section concludes the
research findings.

2 Related Work

2.1 Classification Methods for EEG Analysis

Traditional classification methods for EEG recognition include linear discriminant
analysis (LDA), regularized LDA and Support Vector Machines (SVMs), Neural
networks (NN), Learning Vector Quantization (LVQ), Non-linear Bayesian classifiers,
Bayes quadratic classifiers and hidden Markov models (HMMs), etc. However, the
main challenges faced by classification methods for EEG recognition or BCI are the
low signal-to-noise ratio of EEG signals and their nonstationarity over time among
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users [3–7], the limited amount of training data that is available to quantify the clas-
sifiers, and the overall low reliability and performance of current EEG pattern recog-
nition and BCI data analysis [4, 8].

Bayesian classifier is a popular method for EEG analysis [4]. It is one of the clas-
sifiers with the least classification error probability or the least average risk at a given
cost. Bayesian classifier is a statistical method. Its principle is to calculate the posterior
probability of an object by using the Bayesian equation (as shown in Eq. 1); and select
the category with the maximum posterior probability as the category of the object.

pðcjaÞ ¼ pðajcÞPðcÞ
PðaÞ ð1Þ

Bayes rule is about the conditional probability and marginal probability of random
events A and B. Which Eq. 1 can be further extended as below. Non-linear Bayesian
classifiers model the probability distributions of each class and use Bayes’ rule to select
the class to assign to the current feature vector [3, 4].

pðyjx1; . . .:; xnÞ ¼ pðx1jyÞpðx2jyÞ. . .pðxnjyÞpðyÞ
pðx1Þpðx2Þ. . .pðxnÞ
¼ pðyÞQn

i¼1 pðxijyÞ
pðx1Þpðx2Þ. . .pðxnÞ

ð2Þ

where P(C|A) is the possibility of occurrence of A when B occurs. A1, A2, …An is a
complete event group. Pr(A|B) is the conditional probability of A after the occurrence
of B, known as a posterior probability due to the value obtained from B.

Support vector machine (SVM) is a typical classifier for EEG classification, which
classifies data according to supervised learning. Its decision boundary is the maximum
margin hyperplane for learning samples. Least Square SVM (LS-SVM) is a variant of
standard SVM. The difference between them is that LS-SVM does not use hinge loss
function, but rewrites its optimization problem into a form similar to ridge regression.
The optimization problems of soft margin SVM and LS-SVM are as follows.

max
w;b

1
2

wk k2 þC
XN
i¼1

e2i ; ei ¼ yi � ðwTXi þ bÞ

s:t: yiðwTXi þ bÞ� 1� ei

ð3Þ

where the hyper-plane normal vector w is the only optimization objective. Given the
input data and learning objective: x = {x1,…, xn}, y = {y1,…, yn}. SVM is a fast and
dependable classification algorithm that performs efficiently with a relatively small
amount of data.

2.2 New EEG Classification Methods and Other Methods

The research on emerging and novel classification algorithms studied in past ten years
focus on addressing the major EEG recognition challenges. Specifically, the adaptive
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classifiers and their parameters are incrementally updated and developed to deal with
EEG non-stationarity in order to track changes [4].

The parameters of adaptive classifiers, e.g. the weights attributed to each feature in
a linear discriminant hyperplane, are incrementally re-evaluated and renewed when
new EEG data sets are collected [4, 9]. Unsupervised deployment of classifiers is more
difficult, due to the class labels is unknown. Therefore, unsupervised methods have
been proposed to estimate the class labels of new samples before adapting classifiers
based on their estimation [4].

Some new classification methods are introduced recently, such as FAHT (Fairness-
Aware Hoeffding Tree). FAHT is an extension of the well-known Hoeffding Tree
algorithm for decision tree induction over streams, that also accounts for fairness. It is
able to deal with discrimination in streaming environments, while maintaining a
moderate performance over the stream [10]. The splitting criterion of FAHT to consider
the fairness gain of a potential split is expressed as below.

fgðd; aÞ ¼ discðdÞj j �
X

v2domðaÞ

dvj j
d

discðdvÞj j ð4Þ

where dv, v2dom(a) are the partitions induced by A.
Some researchers have been working on graph-based EEG pattern recognition

methods in recent years. In [11], the EEG selection process adopts the graph-based
method, which aims to search maximum weight cliques for EEG analysis.

3 An Optimized Pattern Recognition Model for Online
Education

The optimized EEG pattern recognition model is proposed in this paper through
combining clustering methods with association rule methods based on the SEGPA
model. The major steps of this model can be summarized into six major steps. Each
step has dependency to its previous process, which are introduced below.

The SEGPA model introduced in the previous work [12] consists of five major
steps: (1) EEG data segmentation; (2) optimized Piecewise Linear Approximation
(PLA) or granular computing; (3) processed EEG K-means clustering; (4) Logistic
classification results generation; and (5) EEG pattern recognition based on classifica-
tion and intelligent agents. The SEGPA model utilizes the clustering algorithm to
generate EEG data clusters and takes time series data dependency analysis into con-
sideration based on Savit and Green [17]. The SEGPA model generalizes the dj’s that
are sensitive to the assumption of j-dependence in k dimensions as below [17]:

d½k�j ¼ Ck � ðCj=Cj�1Þk�jCj

Ck
¼ 1� Cj

Cj�1

� �k�jCj

Ck
ð5Þ

where dj denotes dependencies that are the result of averages over regions of a map.
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The algorithm of the SEGPA pattern recognition is modified based on the previous
graph-based EEG PR method; and the algorithm is listed as below:

3 Perform K-means clustering based on distance.

4 Calculate

5 Clusters_List = K-means(Differentiate_List)
6 Association_Rule_List = Apriori(Clusters_List)
7 P(A) = Sort(Association_Rule_List, i) #i is defined list size.
8 Return (P(A))

Algorithm 1: Optimized SEGPA PR-tree Construction

Input: EEG time series data set C, Time elapsing t.
Output: EEG data pattern P(A).
1 Differentiate_List = Original(ti) - Original(ti-1).
2 Calculate distribution of C, PD(C) Fi list (Fi list is in ascending order).

3.1 EEG Segmentation and PLA/Granular Method

In the previous work, we discovered that a segment of a large data set with proper size
will inherit the original data set’s characteristic [13]. EEG data sets follow Normal
Distribution (ND) and Poisson Distribution (PD) in different statues. Based on this
theory, splitting and extracting a smaller size of segment from a large EEG data set can
still contain the crucial data information. In this way, the ND/PD based data splitting
methods can be more efficient for dealing with large data sets [13].

The PDA/NDA segmentation procedures generate EEG data segments, which have
been greatly minimized in size without much losing crucial information such as means,
standard deviation, etc. A ND-based segmented EEG data example is shown as below
(Table 1).

Table 1. Segmented EEG data based on ND model

Time Amplified EEG (V)

0.01 −0.950942
0.02 1.701686
0.03 4.404364
0.04 1.301289
….. ………

13.33 2.50248
13.34 −4.504463
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The ND/PD segmentation methods are combined and deployed in the first stage in
order to accommodate EEG real-time analytical requirements. EEG caps normally
consist of multi-channels for data collection. Therefore, EEG data is a multivariate
distribution issue. The multivariate ND f(z) is defined as follow.

f ðzÞ ¼ 1
ð ffiffiffiffi

2p
p Þnrz e

�z2
2 ; z ¼ x�l

r ;

z2 ¼ ðx1�l1Þ2
r21

þ ðx2�l2Þ2
r22

� � � þ ðxn�lnÞ2
r2n

;
rz ¼ r1r2 � � � rn

ð6Þ

where l is the mean or expectation of the distribution, r is its standard deviation,
f(z) denotes multivariate distribution. The joint probability for a Multivariate Poisson
distribution is a limiting distribution of binomial distribution B(N, pi) as N!∞ under
the condition of N, pi = kt where kt is a non-negative fixed parameter.

The PD model in this paper adopts the Gamma function is employed for dealing
with real and complex numbers, which is expressed as follows:

CðzÞ ¼
Z 1

0
ln

1
t

� �� �z�1

dt ð7Þ

For a as integer n,

Cðn; xÞ ¼ ðn� 1Þ!e�x
Xn�1

k¼0

xk

k!

¼ ðn� 1Þ!e�xen�1ðxÞ
ð8Þ

where en(x) is the exponential sum function, which is implemented as Gamma[a, z] in
the Wolfram Language.

The granular computing is an emerging concept and computing paradigm of
information processing, covers all the theories, methods, technologies and tools related
to granularity. It is mainly used for the intelligent processing of uncertain and
incomplete fuzzy massive information. Some researchers have applied granular
methods for data abstraction in order to reduce data volume. In this model, the optimal
PLA method has been applied to reduce data volume and improve EEG recognition
process for real-time processing. The optimal PLA computes slp[1, k] and slp[1, k] by
using incremental and localization strategies, which can be expressed as follows[14]:

slp 1; k½ � ¼ max
a� i� d

ðyk � dÞ � ðyi þ dÞ
ðxk � xiÞ ; slp 1; k � 1½ �

� �
;

slp 1; k½ � ¼ min
b� i� c

ðyk þ dÞ � ðyi � dÞ
ðxk � xiÞ ; slp 1; k � 1½ �

� �
:

8>>><
>>>:

ð9Þ

where slp [i, j] denotes the slope of a d - representative line on time slot[xi, xj]. d denotes
the error bound for approximation (>0). (xi, yi) denotes at time slot xi with value yi.
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The time complexity of Algorithm 1 is the sum of Aproiri time complexity and K-
Means time complexity that is: O(2|D|) + O(n2), where |D| is the horizontal width (the
total number of items) present in the data sets and n is the input data size. Equation 9 is
the pre-processing phase for generating segmented EEG data sets for down stream
processing, such as Algorithm 1 and other related procedures.

3.2 Combining K-means Clustering with Logistic Regression

The K-means clustering algorithm has been applied to the proposed model to generate
the clusters that can distinguish the differences of various EEG instances. Table 2
shows the clustered EEG data instances based on K-means algorithm. The clustered
instances are based on EEG data differentiation by time, i.e. the current EEG data point
at time t minimizes the previous EEG data point at time t − 0.01.

The main goal of K-means clustering is to segment n observations into k (� n)
clusters. The distance within each cluster is minimized, which can expressed in the
following Eq. (10) [15]. The K-means algorithm begins with initial K centroids, which
can be randomly generated or selected from the data set.

argmin
s

Xk
i¼1

X
x2Si

x� lik k2¼ argmin
s

Xk
i¼1

Sij jVarSi ð10Þ

where li is the mean of points in Si; Si denotes a clustering set; x is a data item. The
results are illustrated as below.

The clustering analysis can produce data sets according to centroids, which nor-
mally represents the average value of a cluster. We compare the EEG data sets col-
lected from different EEG statuses using the clustering methods to distinguish the
difference between different statuses. The clustering analysis is the initial step of EEG
pattern analysis. The value distribution of centroids generates electrode recognizable
and value bounded figures. The electrode recognizable figures meaning that indepen-
dent electrodes have their recognizable electrode value change activities.

Table 2. Clustered EEG data based on K-means algorithm

Time Amplified EEG (V) Cluster

0.01 −6.506447 Cluster2
0.02 0.900892 Cluster0
0.03 6.806745 Cluster0
….. ……… ………

14.09 −2.902877 Cluster3
14.10 2.001984 Cluster1
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In order to further improve the SEGPA model efficiency; each node is assigned
with pro-active and self-adaptive capability. We discovered that intelligent agents can
efficiently fulfill the needs of the SEGPA model since multi-agent systems
(MAS) promote the development of distributed applications in complex and dynamic
environments to deal with complex problems [16]. The proposed new model aims
combining MAS with SEGPA, which forms a multi-objective coordination model for
brain research. Theoretically, the proposed model is efficient in terms of EEG data
characteristic and brain activities.

4 Experimental Results

The experimental design and configuration are listed as follows. The collected EEG
data instances are based on a 5–7 min online shopping simulation. The hardware and
software configurations are: Windows 8 64-bit OS, Intel N3540 CPU, 4G RAM, C++
for ND segmentation software, Weka analytical software. The EEG recording time
interval is 0.01 s for CONTEC KT88 used in this research. The lab environment and
configurations are shown as below (Fig. 1).

Our online poll shows that 31.3% students would like to have some Artificial
Intelligence (AI) related applications for assisting their studying. The poll further
indicates that 65.4% students demand customized tutorials for their studies. The pro-
posed EEG-based method could provide students with customized tutorials that can
fulfill students’ demands specially during the COVID19 period.

The LR classifier in the SEGPA model has a relatively high accuracy because of the
efficient K-means clustering process. The clustering process actually replaces dis-
cretization process, which categorizes discrete EEG data in certain range. The clus-
tering process in this paper generates simple cluster numbers as inputs for LR classifier,
which improves the classification results and efficiency.

The prediction for electron 1 based on other electrons’ EEG instances using LR
classifier can achieve 97.3% accuracy. In this paper, we adopt one segment for

Fig. 1. EEG lab settings and configuration.
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experimental analysis. Mean absolute error is: 0.0174, total number of instances is:
1334. The classifier using 10 cross-validation mode can achieve 97.3% accuracy; the
accuracy remains the same 97.3% accuracy through using training set mode.

Table 3 and 4 show the prediction for electron 1 and 5 based on electron 0–4 EEG
instances using LR classifier can achieve 91.9% accuracy. Mean absolute error is:
0.0467, total number of instances is: 1334. The classifier using 10 cross-validation
mode can achieve 91.9% accuracy; the accuracy can be improved to 92.12% through
using training set mode.

The segmentation software generated 15 segments for each electrode. The LR
classifier for each segment require 0.5 s by using training set mode and 0.7 s by using
cross-validation mode.

The results of PLA experiments are based on the full size of the original full driving
simulation data since we are going to assess the overall PLA performance. In practice,
this data sets can be replaced by ND/Poisson segmented data sets. The PLA com-
pressed results are shown as below. Due to space limitation, we only illustrate the PLA
results of 6 electrodes. The original driving simulation EEG data and full PLA com-
pression and ND segmented results can be acquired upon requests.

The optimized model based on the combination of ND/PD model and PLA process
has achieved medium high accuracy performance and dramatic data reduction
performance.

Table 3. LR for electron 1 based on segmented EEG

TP rate FP rate Precision Recall MCC Class

0.962 0.010 0.948 0.962 0.946 cluster0
0.925 0.003 0.984 0.925 0.947 cluster2
0.985 0.021 0.941 0.985 0.950 cluster1
0.979 0.001 0.997 0.979 0.984 cluster3
0.996 0.000 1.000 0.996 0.998 cluster4
0.973 0.008 0.974 0.973 0.966 Weighted Avg.

Table 4. LR for electron 5 based on segmented EEG

TP rate FP rate Precision Recall MCC Class

0.988 0.049 0.820 0.988 0.876 cluster0
0.549 0.005 0.949 0.549 0.689 cluster2
0.961 0.040 0.878 0.961 0.893 cluster1
0.997 0.007 0.979 0.997 0.984 cluster3
1.000 0.001 0.996 1.000 0.998 cluster4
0.919 0.021 0.925 0.919 0.901 Weighted Avg.
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5 Conclusion

An optimized data analytical model has been introduced in this paper to identify
statuses of brain activities and further discover potential patterns. The proposed model,
the optimized SEGPA, incorporates optimized data processing methods and EEG-
based analytical for EEG data analysis. In particular, the data segmentation techniques
are incorporated in SEGPA model.

The experimental results show that EEG data sets can generate different results for
‘meditation’, ‘meditating-left-hand-rise’, ‘meditating-right-hand-rise’, ‘left-hand-rise’
and ‘right-hand-rise’. Based on various results, we discovered some preliminary pat-
terns for analysis. The future work will focus on delivering more efficient algorithm for
EEG pattern generation and improve the EEG experimental data variety. The combi-
nation of the Association Rule algorithm with clustering K-Means algorithm has
demonstrated the efficiency in reducing EEG data size by clustering and establishing
connections among EEG electrons by association. The results evident the efficiency of
the combination.

This research proposes a potentially efficient method for recognizing human brain
activities that can be used for machinery control. The experimental results reveal the
high classification accuracy that reflects the efficiency of the proposed model for EEG
data analysis based on the optimized sampling methods. Our future work may seek the
possibility of utilizing graph-based method in EEG pattern recognition.
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Abstract. The neuronal paradigm of studying the brain has left us
with limitations in both our understanding of how neurons process infor-
mation to achieve biological intelligence and how such knowledge may
be translated into artificial intelligence and even its most brain-derived
branch, neuromorphic computing. Overturning our assumptions of how
the brain works, the recent exploration of astrocytes reveals how these
long-neglected brain cells dynamically regulate learning by interacting
with neuronal activity at the synaptic level. Following recent exper-
imental studies, we designed an associative, Hopfield-type, neuronal-
astrocytic network and analyzed the dynamics of the interaction between
neurons and astrocytes. We show how astrocytes were sufficient to trig-
ger transitions between learned memories in the network and derived
the timing of these transitions based on the dynamics of the calcium-
dependent slow-currents in the astrocytic processes. We further evaluated
the proposed brain-morphic mechanism for sequence learning by emu-
lating astrocytic atrophy. We show that memory recall became largely
impaired after a critical point of affected astrocytes was reached. These
results support our ongoing efforts to harness the computational power
of non-neuronal elements for neuromorphic information processing.

Keywords: Associative networks · Astrocytes · Sequence learning

1 Introduction

Understanding intelligence is a fundamental goal in several disciplines. Trans-
lating the understanding of biological intelligence to machines is a fundamental
problem in Computing [39]. The breadth of solutions now offered by deep learn-
ing has established the connectionist modeling of neural computation [22] as
the most faithful representation of the brain’s intelligence. Yet, despite their
impressive performance, neural nets are challenged by their intrinsic limitations
in real-world applications [25] related to their computational and energy effi-
ciency and input variability [33,44]—tasks that brain networks are well-suited
to execute by being radically different from the deep learning networks [30].
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Neural connectionist algorithms are better fit for large-scale neuromorphic
chips [9,13] that are designed to run spiking neural networks (SNN), where
asynchronous computing units are emulated as spiking neurons and memory
is distributed in the synapses [21]. Indeed, by following a more faithful repre-
sentation of the brain’s computational principles, we and others have used this
non-Von Neumann architecture to introduce robustness to SNN [35,37], and
SNN to robots [5] as energy-efficient [36] and highly accurate [34] controllers.
The main criticism to neuromorphic solutions is that, in the absence of funda-
mental algorithmic contributions, these promising results do not currently share
the same scaling abilities with the mainstream deep learning approaches. To
address this point, one alternative is to further pursue their biological plausibil-
ity by introducing new brain principles currently under study at the forefront of
neuroscience [31].

With neurons long-monopolizing brain research, many are surprised to learn
that up to 90% of brain cells are not neurons, but are instead glial cells. The
impressive empirical evidence of the importance of non-neuronal cells, particu-
larly astrocytes, in all facets of cognitive processes [41], including learning and
memory [1,16], is shaping a paradigm shift where brain function is now seen as a
phenomenon emerging from the interaction between neurons and astrocytes [3].
This also opens prospects for establishing new connections between biological
and artificial intelligence (AI) at the cellular, the most fundamental level of com-
puting. Astrocytes receive input from neurons and also provide input to them.
They do so by using their processes that extend from their somas and reach
thousands nearby synapses [15,28], which are named tripartite synapses [2]. The
main astrocytic signaling mechanism is the wave-like elevation of their Ca2+

concentration [4]. Astrocytes propagate these mysterious Ca2+ waves within
themselves with individual astrocyte processes responding to pre-synaptic input
with an elevation in their internal Ca2+ levels [4]. Interestingly, this neuronal-
astrocytic interaction is dynamic and plastic, although little is known about the
exact form of this plasticity [27,38]. Although the timescale of astrocyte Ca2+

excitability was believed to be on the order of seconds to hours, recent experi-
ments have found a faster astrocytic response to synaptic activity—on the order
of hundreds of milliseconds, taking place at the astrocytic process [20], reinforced
by our computational speculations [29] on the role of these “fast” Ca2+ signals.

The leading hypothesis about learning is that memories are stored as mod-
ifiable connection strengths between neurons [17]. A computationally elegant
model of memory, the Hopfield network, incorporates the above features to per-
form autoassociation: the tag to retrieve a network state is a corrupted version
of the state itself [6]. Learning in a Hopfield network [18] means creating new
attractors in the configuration space of the system, so that the system dynam-
ically relaxes towards the nearest stored memory with respect to the current
configuration, and stays there indefinitely. This model has been used to explain
neuronal dynamics in several brain regions, including persistent activity in the
cortex [8,43] and path integration in the hippocampus [23]. A challenge for
Hopfield-type neural networks is explaining the origin of temporal sequences:
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How can a network retrieve a given sequence of memories? Hopfield himself pro-
posed a modification to his original model which allowed for the recall of tem-
poral sequences by using an asymmetric synaptic weight matrix [18]. However,
this method suffered from instabilities and was difficult to control. Sompolinsky
et al. [32], independently and in parallel with Kleinfeld [19], showed that this
scheme could be made robustly stable by the introduction of “slow-synapses”—
synapses which compute a weighted average of the pre-synaptic neuron state.

Fig. 1. a) An astrocyte ensheathing a fully-connected recurrent neuronal network
with no self-connections (N = 4). Large colored circles: neurons; small colored circles:
synapses, with the color corresponding to the color of the afferent neuron; b) The tripar-
tite synapse, where a presynaptic activity sj(t) drove the astrocytic process state Pj(t)
which triggered the SC signal injected into the postsynaptic neuron; c) The dynamics
of the local Ca2+ wave (blue) which rose in response to presynaptic activity and the
related SIC (green) injected into postsynaptic neurons. The y-axes are in a.u. (Color
figure online)

Here, we present a theoretical abstraction of the astrocytic response to neu-
ronal activity, analyze the associated dynamics of the neuron-astrocyte interac-
tion, and derive a neuromorphic framework for sequence learning. Specifically,
we propose a Hopfield-type recurrent neuronal-astrocytic network (NAN), where
each synapse is enseathed by an astrocytic process (Fig. 1a, b). The network used
its neuronal component to learn distinct memories and its astrocytic component
to transition between the stored memories. We also suggest a Hebbian-type
astrocytic mechanism to learn the transition between stored memories, upon
triggering the network state changes. We validated our model by studying its
performance as a function of astrocytic atrophy, following studies on cognition-
impairing diseases [40]. Interestingly, we found a strong correlation between the
level of atrophy and the error in the network’s ability to recall a sequence, in
agreement with studies on cognitive impairment.

2 Methods

2.1 Neurophysiological Background

Astrocytes share the same mechanisms with neurons as they, too, modulate the
flux of ions into and out of the neurons. The current injected into the neurons
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can be positive or negative–denoted slow-inward current (SIC) and slow-outward
current (SOC), respectively [26]. SICs appear to be released into postsynaptic
neurons when the Ca2+ level inside the astrocyte reaches a certain threshold
from below [42]. SOCs seem to follow a similar time-course to SICs [24]. Here,
we present a biophysically plausible model of how astrocytes may employ the
SICs and SOCs to enable the transition between memories in a network. We
also propose a Hebbian-type learning rule between the astrocyte and the post-
synaptic neuron, which formalizes the notion of astrocyte-neuron plasticity [38].
Incorporating the recently discovered “fast” Ca2+ astrocytic signals, our memory
model used astrocytes to trigger the transitions between learned states, where
the transitions’ timing was governed by the dynamics of the SICs and SOCs.

2.2 Deriving Network Dynamics

We modeled neurons as zero-temperature, spin-glass units, with 1 and 0 repre-
senting the active and quiescent states, respectively. The output of neuron i was
aligned with the local field, hi:

si(t + 1) = sgn(hi(t)). (1)

We expanded hi to include the effects of astrocyte-mediated post-synaptic
SICs and SOCs:

hi(t) = hi(t)neural + hi(t)astro, (2)

hi(t)neural =
N∑

j=1

Jijsj(t), (3)

hi(t)astro =
N∑

j=1

TijSCj(t), (4)

where N was the number of neurons, Jij was the stabilizing, symmetric
matrix, and Tij was the matrix of amplitudes for the astrocyte-mediated slow-
currents (SCs), either a SIC or a SOC. All N2 synapses were tripartite synapses.
Since all the processes that take neuron i as its input were synchronized, the
vector of SCs was of size N2/N . Let ξμ

i denote the activity of neuron i during
memory μ, and m denote the number of memories stored in the network. Then

Jij =
1
N

m∑

μ

(2ξμ
i − 1)(2ξμ

j − 1), i �= j, (5)

Tij =
λ

N

q∑

μ

(2ξμ+1
i − 1)(2ξμ

j − 1), i �= j, (6)

where q < m, the ξμ+1
i ξμ

j terms define the sequence of memories, and λ con-
trols the relative strength between the two matrices. We set al.l diagonal elements
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of both matrices to zero, not allowing self-connections. Following experimental
evidence [24], the SCs exponentially decayed after a rapid rise time (Fig. 1c):

SC = e
t−δcal

τSC , (7)

where δcal is the time at which the astrocyte Ca2+ reached the SC-release
threshold, cthresh. We propose a minimal model for Ca2+ level in the process,
Pj , where the time evolution of Pj depended linearly on the activity of the
presynaptic neuron sj and the previous state. Dropping the j subscript, an
astrocyte process activity at time t + 1 is given by:

Pt+1 = αPt + βst, where 0 ≤ α < 1. (8)

2.3 Modeling the Effects of Astrocytic Atrophy to Memory Recall

To evaluate our model, we randomly selected a percentage (from 0 to 100%)
of astrocytic processes that were atrophied and for each selected process, we
introduced a gain (from 0 to 1, representing high and no atrophy, respectively).
We validated the network performance as follows: for an ordered sequence of q
memories, the performance error was the number of times a memory did not
appear in its appropriate spot, divided by the number of possible errors (to
ensure the error is between 0 and 1). We excluded the first memory from the
evaluation, as it did not depend on the astrocyte dynamics.

3 Results

3.1 Deriving Transition Times and Stability

Equation 8 is solved in terms of st, α and β by defining the operator L̂ such that

L̂Pt ≡ Pt−1

L̂2Pt ≡ Pt−2

We can then arrive at an expression for Pt:

Pt =
βst

1 − αL̂
= β

∞∑

t′=0

(αL̂)t′
st = β

∞∑

t′=0

αt′
st−t′

.
We can now derive the time it takes for the Ca2+ to reach the SC-release

threshold, which in turn determines the duration a network spends in a quasi-
attractor (τ) (Fig. 2). The analysis is simplified in the continuous limit:

cthresh

β
=

τ∫

0

ατ−′tdt′, (9)
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which has the general solution:

τ =
ln( cthresh

β ln(α) + 1)

ln(α)
. (10)

Though the choice ofβ and cthresh are arbitrary (for τ > 0 and0 < cthresh < 1),
if we assume that βαt is normalized to unity, the expression becomes:

τ =
ln(1 − cthresh)

ln(α)
. (11)

The biological interpretation of the normalization β = ln( 1
α ) is that the more

the astrocyte process depends on its own Ca2+ level, the less it depends on the
presynaptic neuronal activity.

We can now examine the dynamics of the network in detail. The analysis is
simplified by switching to the si = ±1 neuronal representation, which is related
to the si = 0, 1 representation by the transformation 2si − 1. Let at time t = 0
the network enter into the attractor for memory ξ1. The Ca2+ thresholds have
not been hit (i.e. SCj(t) = 0 for all j). The total field felt by neuron i is:

hi(t) =
N∑

j=1

Jijξ
1
i = ξ1i + noise. (12)

If we assume low loading (p � N), the noise term vanishes. This field persists
until t = τ , the time at which cthresh is reached by the active astrocyte processes.
Now the field becomes:

hi(t) =
1
N

m∑

μ=1

ξμ
i ξμ

j ξ1j +
λ

N

q∑

μ=1

ξμ+1
i ξμ

j SCj(t). (13)

Since the SCs are only released from an astrocyte process if the neuron has
been in the active state for 0 < t < τ , the vector of SCs at t = τ is equal to the
vector of neuron states when 0 < t < τ . In other words, we identify SCj(t) = ξ1j ,
which permits the simplification

hi(t) = ξ1i + λξ2i . (14)

In the zero noise limit, the neurons will align with memory ξ2. The field
persists until t = 2τ , when the next transition is precipitated by the astrocyte
(Fig. 2).

3.2 Model Generality

The results are insensitive to the choice of response function for Ca2+, so long
as the Ca2+ crosses the threshold periodically. It is interesting to consider
cases when τ is time-dependent, since simulations of biophysically-detailed Ca2+

response [14] suggest that astrocytes can perform frequency modulation (FM)
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Fig. 2. The derived time the network spends in each quasi-attractor τ , as a function
of α and cthresh.

and amplitude modulation (AFM) encoding of synaptic information. Let us con-
sider the case of a frequency modulated sinusoid:

y(t) = cos(ω(t)t)

and its first time derivative

dy

dt
= [

dω

dt
t + ω(t)]sin(ω(t)t).

To solve for τ , we attempt to solve for t such that: y(tthresh) = 0 and
dy
dt |tthresh

> 0. We assume that SC-threshold equals zero without loss of gen-
erality and that the SC-threshold must be reached for glio-transmission. For
example, if ω(t) = w0t, then the time between the nth SC-threshold crossings
can be written as:

τn =
√

π

2ω0
(
√

4n + 1 − √
4n − 3)

which, for large n, approximately equals
√

π
2ω0n . Note that τn tends to zero

for large n, as expected when the frequency tends to infinity.

3.3 Astrocytic Learning

For learning, we propose a Hebbian-type mechanism by which the NAN could
arrive at the correct form of the matrix T. Assume that at t = 0 the network
is presented a pattern, ξμ, until some later time t = tswitch when the network
is presented ξμ+1. If tswitch � 0, the astrocyte process which takes neuron i as
its input will be very nearly equal to ξμ. At t = tswitch, the astrocyte process
correlates its current state with the state of the post-synaptic neuron and adjusts
the levels of future gliotransmitter release accordingly—changing the sign and
amplitude of future SC release (Fig. 3a). This can be expressed as

ΔTij = ηsi(tswitch)Pj(tswitch) = ηsi(tswitch)sj(0) = ηξμ+1
i ξμ

i , (15)
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Fig. 3. a) (Up) Overlap of the neuronal network state with the stored memories
(N = 500, p = 7, q = 6). (Down) Average SCs injected into the post-synaptic neurons;
b) Network performance as a function of increasing astrocytic atrophy. As the fraction
of affected astrocytes (x-axis) and the degree of atrophy (y-axis) increase, the sequence
recall error increases. The recall errors are averaged over 50 trials per (x, y) point.

which yields the T-matrix above (assuming η = 1 and the sequence is pre-
sented to the network exactly one time), in the si = ±1 representation. Notably,
this mechanism requires retrograde signaling between the post-synaptic neuron
and astrocyte process, which is known to occur through endocannabinoid medi-
ated pathways [11].

3.4 Memory Retrieval Robustness to Astrocytic Impairment

The degree of a cognitive impairment depended strongly on the degree of astro-
cytic atrophy (Fig. 3b), in agreement with experimental data [3,7,40]. This result
can be understood on the basis of stability arguments. Atrophying the astrocyte
SC signal is equivalent to decreasing λ. Thereby, increasing the effective λ below
1 at a given neuron will make that neuron unstable. After a critical point of
unstable neurons was reached, the network error rapidly increased to 1.

4 Discussion

Here, we presented a Hopfield-type NAN and derived the dynamics of the inter-
actions between neurons and astrocytes to effectively transition between memo-
ries. Building from the bottom-up, our model was inspired by the last decade of
memory-related glial research and the studies on the fast signaling taking place
between astrocytes and neurons; it was also qualitatively evaluated by studies
on memory impairment. We demonstrated how astrocytes were sufficient to trig-
ger transitions between stored memories. By injecting a “fast” Ca2+ triggered
current in the postsynaptic neuron, astrocytes modulated the neuronal activ-
ity into predictable patterns across time, sharpening a particular input and,
thereby, recalling a learned memory sequence. This ability of astrocytes to mod-
ulate neuronal excitability and synaptic strength can have several implications,
both theoretical and practical, for neuromorphic algorithms.
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On the theory side, Sompolinsky et al. showed mathematically that the intro-
duction of “slow-synapses”—synapses that perform a running average of pre-
synaptic input using a weighting function w(t − τ) would stabilize the sequence
of memories [32]. The authors were able to show this quite generally, placing
only a few requirements on the choice of w(t−τ). Here, we showed how the time
delay,τ , could emerge naturally out of the reported dynamics of Ca2+ depen-
dent gliotransmission. Formally, the dynamics of our biomimetic approach are
mathematically equivalent to the case where: w(t − τ) = δ(t − τ), where δ(t) is
the delta function. Interestingly, these results demonstrate how biologically plau-
sible models of recently identified cellular processes may provide a mechanistic
explanation for theoretical analyses conducted at the network scale, decades ago.
Previous astrocyte modelling efforts have focused primarily on reproducing the
Ca2+ response of astrocytes by numerically solving systems of coupled differen-
tial equations, where each equation determines the time evolution of an organelle
believed to be important for the mechanism of Ca2+ oscillation, such as ATP
or IP3. While crucial for our understanding of astrocytic Ca2+, these studies
typically shy away from proposing and modelling actual computational roles for
astrocytic function. A notable exception is from Wade et al. [42], who showed
that astrocyte oscillations can induce synchrony in unconnected neurons, using
the same mechanism of Ca2+ dependent gliotransmission as our study. De Pittà
et al. [10] also explored the role of astrocyte Ca2+ oscillations in long term poten-
tiation (LTP) and long term depression (LTD), two phenomena known to play
a key role in brain computation and learning. While previous efforts on fleshing
out mechanisms known to be involved in brain computation, our work presents
an end-to-end solution, an associative network that uses astrocytic mechanisms
to perform a function, sequence memory recall.

On the applications side, by enabling the most faithful representation of neu-
rons, networks and brain systems, neuromorphic computing allows for studies
that not necessarily follow a mainstream machine learning direction [35]. NAN
on neuromorphic chips may be used to study hypotheses on astrocytes failing to
perform their critical synaptic functions, as we did here. For instance, mounting
evidence suggests that astrocytes change the strength of their connections in
learning [12]. We speculate that the astrocytic training does not only encom-
pass learning the correct sequence of memories, but also the time spent in each
memory for a given sequence. This is biologically faithful, as the amount of time
spent in each memory (e.g. the duration of a note when humming a melody) is
crucial for correctly recalling a learned sequence. In the framework of our model,
this can be achieved by dynamically modifying τ–which in turn is controlled by
the SC-release threshold and the astrocytic sensitivity to pre-synaptic activity.
Learning is at the core of neuromorphic computing. By reproducing the func-
tional organization of NAN, as well as the dynamics of astrocytic Ca2+ activity
and astrocyte-neuron interactions, we suggest a learning role for astrocytes oper-
ating on temporal and spatial scales that are larger than the ones of neurons.
The underlying mechanisms of having parallel processing on different temporal



358 L. Kozachkov and K. P. Michmizos

and spatial scales is an open question in brain science, but it is already con-
sidered as a computational method that increases the processing efficiency of a
system: Our work tackles this problem by combining millisecond-scale neuronal
activity with the comparatively slow Ca2+ activity of astrocytes.

Most of the neuroscience knowledge accumulated over the past couple decades
has yet to be funnelled in AI. Being shadowed by the wide applications of neural
nets, we might not appreciate that the mounting knowledge on the biological
principles of intelligence is partially harnessed on the computational side. Can
we establish new push-pull dynamics between newly identified biological princi-
ples of intelligence and the computational primitives used to build our artificial
models of brain computation? To explore this fascinating possibility, our work
couples computational modeling and neuromorphic computing to introduce to
neurocomputing a long-neglected non-neuronal cell, astrocytes, which are now
placed alongside neurons, as key cells for learning. The further scaling of the
astrocytic roles will support real-world neuromorphic applications, where astro-
cytes will be able to mine intrinsically noisy data, by virtue of their low spatial
and temporal resolution. Drawing from newly identified primitives of biological
intelligence, the results presented here suggest that the addition of astrocytes as
a second processing unit to neuromorphic chips is a direction worth pursuing.
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Abstract. Classification of sleep-wake is necessary for the diagnosis and
treatment of sleep disorders, and EEG is normally used to assess sleep quality.
Manual scoring is time-consuming and requires a sleep expert. Therefore,
automatic sleep classification is essential. To accomplish this, features are
extracted from the time domain, frequency domain, wavelet domain, and also
from non-linear dynamics. In this study, a novel Jaya Optimization based hyper-
Parameter and feature Selection (JOPS) algorithm is proposed to select optimal
feature subset as well as hyper-parameters of the classifier such as KNN and
SVM, simultaneously. JOPS is self-adaptive that automatically adapts to the
population size. The proposed JPOS yielded the accuracy of 94.99% and
94.85% using KNN and SVM, respectively. JPOS algorithm is compared with
genetic algorithm and differential evaluation-based feature selection algorithm.
Finally, a decision support system is created to graphically visualize the sleep-
wake state which will be beneficial to clinical staffs. Furthermore, the proposed
JOPS can not only be used in sleep-wake classification but could be applied in
other classification problems.

Keywords: Sleep-Wake cycle � Hyper-parameter tuning � Feature Selection �
JOPS algorithm � Classification � Decision Support System

1 Introduction

Sleep is considered one of the vigorous physiological activities as it is responsible for
the optimum functioning of the human body. Sleep helps the brain to string preceding
experiences, zenith individuals’ memories, and cause the relief of hormones controlling
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spirit, attitude, and mental sharpness and temper. Besides, sleep assists in alleviating,
soothing, and overhauling blood veins, the artery, and the heart of the human body.
These types of assistance indirectly reduce the chance of kidney failure, diabetes,
intensive blood-pressure, heart attack, and other diseases. Healthy sleep plays a vital
role in reducing the possibility of obesity as it controls the ghrelin and leptin hormone
regulating the appetite or full, respectively [1]. The deficiency of sleep causes a high
level of ghrelin that makes individuals feel more appetite. Sound sleep advantages the
individuals with the equilibrium in the regulation and generation of hormones to
sustain a healthy life. To cope with the technological growth of modern life, people
have to live a hectic life which causes acute disturbance in normal sleep structure. As a
consequence, numerous neural, psychological, and behavioral ailments are widely
present among people [2]. A number of 84 distinct sleep disorders (SDs) are present
among people [3]. These are the prime cause for both short term and long-term effects
on daily life including hypertension, difficulty concentrating, amnesia, etc. [4].
According to a study on more than six thousand people, impoliteness, degraded per-
formance, and rudeness are present among people suffering from SD [5]. Hence sleep
staging and analysis carry a high level of significance.

Conventional polysomnography (PSG) signals are used to analyze the sleep stage.
Though this method is termed as the ‘gold standard’, it is a complicated method as it
requires multiple biomedical signals namely EEG, EMG, EOG, blood oxygenation, etc.
[6]. Experts visualize these signals to diagnose sleep structure. This type of manual
evaluation is tiresome, time prolonging, laborious, and highly susceptible to error [7]. It
takes higher critical form in developing countries such as Bangladesh since these
countries suffer from the crisis of expert diagnosticians and analysts. Contrariwise,
automatic evaluation of the sleep stage will not only reduce the workload of the
physician but also reduce time consumption maintaining a higher accuracy level. In
cooperation with signal processing and artificial intelligence, machine learning algo-
rithms may be practiced to carry out an automatic evaluation of sleep scoring and
staging simultaneously. Both single-channel (SC) and multi-channel (MC) EEGs can
be used in this respect. While providing exclusive results, MC-EEGs create diverse
complexities. In addition, MC-EEGs are very expensive. On the other hand, SC-EEG is
not only simpler and fast but also inexpensive compared to MC-EEGs.

Numerous researches have been carried out using SC-EEG signals to achieve
automatic sleep scoring and staging. In [7], an automatic sleep staging has been pro-
posed that used the Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN) on SC-EEG signals which is followed by multiple probabilisti-
cally features computation using modes functions. Extracting numerous features,
namely linear statistical error energy, mean, variance, kurtosis, and skewness, the
method achieved 86.89% accuracy in 6-class sleep staging using partial least squares
(PLS) algorithm and Adaptive Boosting (Ada-Boost). A similar type of method has
been proposed in [8] where Empirical Mode Decomposition (EMD) has been practiced
to extract features. These extracted features are then fed to eleven different classifiers
i.e., Naive Bayes, random forest (RF), support vector machine (SVM), neural network
(NN), discriminant analysis (DA), SV-DA, least-square-SVM (LSSVM), etc., to carry
out automatic sleep staging. The proposed method exhibited 90.38% accuracy in 6-
class sleep staging. In [9], another automatic sleep staging method has been proposed
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using the entropy-based features. The method attained about 80% accuracy. An SC-
EEG based sleep staging model has been proposed in [10], where features are extracted
using multi-scale convolutional-NN (CNN). After feature extraction, recurrent NN
(RNN) and conditional RF (CRF) are introduced to attain the contextual information
among consecutive epochs. This contextual information takes part in concluding the
type of sleep stage and thereby the method achieved about 81 to 88% accuracy on
different sleep data. In [11], an automatic SC-EEG based sleep staging method has been
presented which captures features using relevance and redundancy-based feature
selection (FS) method. Then RF classifier has been applied to the features which is
followed by the application of Hidden Markov Model (HMM) to minimize false
positives via the integration of the information of the temporal formation of shifts
among different sleep stages. The proposed method attained about 79.4 to 87.4%
accuracy for 6-class sleep staging.

Stirred from the above studies, the SC-EEG signal is taken for the analysis and
automatic classification of sleep staging in this paper. We have extracted numerous
features, namely the time domain (TD), frequency domain (FD), and time-frequency
domain (wavelet) features as well as the entropy-based features. Then the highly dis-
criminant features are selected as well as the values of classifier hyper-parameters are
evaluated at the same time by applying the proposed Jaya Optimization based hyper-
Parameter and feature Selection (JOPS) algorithm. The JOPS algorithm is not only
easier to understand than nature-inspired algorithms such as genetic algorithm.
Moreover, nature-inspired algorithms have algorithm-specific parameters that need to
be tuned for better performance other than the common parameters like population size
and maximum iterations. For example, genetic algorithm (GA) tunes the cross-over
probability, mutation probability, selection operator for optimization [12]. Thereby, the
JOPS algorithm avoids the necessity of separate classifier hyper-parameter selection
step and saves computational time. The algorithm is based on an intelligent version of
the Jaya algorithm, namely the self-adaptive Jaya algorithm (SAJA). In addition, we
have designed a decision support system to analyze the sleep quality of any individual
as well as perform automatic sleep staging.

2 Materials and Methods

A schematic diagram of the proposed automatic sleep staging method is shown in
Fig. 1. First, we have collected data from the open database of Harvard-MIT, phys-
ionet.org, where the sleep staging of data is already leveled using the R&K method.
The collected data is cleaned applying pre-processing. After that, the feature extraction
is performed on the clean data which is followed by the application of an JOPS
algorithm. Features are extracted from time domain (TD), frequency domain (FD),
wavelet domain, and also from non-linear dynamics. JOPS will not only select the
distinguishing features but also evaluate the value of hyper parameters of the classifiers,
simultaneously. Then, the state-of-the-art classifiers will perform the classification on
the optimized feature subsets to define the six-class sleep stages. These processes will
result in an optimized sleep staging model. Finally, the performance of the optimized
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sleep staging model on the testing the dataset will be evaluated through different
classification performance indexes i.e., accuracy, sensitivity, etc.

2.1 Data Collection and Preparation

Since sleep EDF is an open-source database, it has gained popularity among
researchers working on sleep scoring. We have extracted the Harvard-MIT open source
sleep EDF database available at https://physionet.org/ [13]. We have taken data for
eight participants whose age ranges from twenty-one to thirty-five years. The partici-
pants were forbidden to have medicine. As shown in Table 1, the database is classified
into two categories namely the sleep cassette indicated by ‘SC’ and sleep telemetry
indicated by ‘ST’. A dataset with ST as the prefix was collected in a hospital during the
night using a mini-telemetry scheme [7] (Fig. 2).

Data Collection 
and Preparation

Data Pre-
processing

Feature Extraction 
in TD, FD, wavelet, 

range EEG and 
entropy based 

domain

Hyper-parameters 
and Features 

Selection using 
Proposed JOPS

Classification using 
different classifiers

Performance 
Evaluation using 

accuracy, 
sensitivity, etc.

Comparison with 
other Methods

Fig. 1. Schematic diagram for the work flow of this study.

Fig. 2. Sample sleep wave classes found from MIT-BIH sleep EDF database.

Table 1. The three cases categorized in this paper.

Category No. of
class

Sleep stages Dataset identity

Case-S Two AW, Sleep (RM,
N1, N2, N3, N4)

sc4112e0, sc4102e0, sc4012e0, sc4002e0,
st7132j0, st7121j0, st7052j0, st7022j0
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The database is comprised of EEG signals taken via both Pz-Oz and Fpz-Cz
channels. Between them, the Pz-Oz channel shows superior performance in automatic
sleep scoring as per the earlier researches [7]. This motivates us to use the Pz-Oz
channel-based EEG data. The sampling interval for this dataset is 0.01 s. In this paper,
we have molded a particular sleep case (Case-S) by forming two special sleep classes
considering AW, RM, N1, N2, N3, and N4, where N denotes the sleep stage; see
Table 1. After forming the sleep class, the segmentation of the data is performed and
thereby the epoch length (Awake epoch = 1726 and Sleep epoch = 14906) is set to be
thirty seconds or, three thousand samples.

2.2 Data Pre-processing

The segmented data are then fed to 3rd order Butterworth filter in the frequency band
ranging from 0.5 to 30 Hz since the significant sleep information exists in this region.
The filtering process results in a clean, noise-free EEG signal more suitable for the
automatic sleep staging model of this study.

2.3 Feature Extraction

We have extracted a total of 125 features, see [14] for details. These features are useful
and have been used in other sleep studies [14].

2.4 Feature Selection: Using Proposed JOPS

A novel and intelligent FS method is proposed in this study for the optimum selection
of features and hyper-parameters values at the same time. This would avoid the use of a
separate optimization technique to evaluate the usefulness of hyper-parameters. The
proposed JOPS algorithm is based on a smart version of Jaya algorithm i.e., SAJA. The
proposed JOPS algorithm is described in the following subsection.

Proposed JOPS Algorithm. JOPS aims to perform the task of hyper-parameters and
features selection simultaneously. FS is performed based on SAJA which is a variant of
Jaya algorithm. Jaya algorithm introduced by Rao does not involve the regulation of
any algorithm dependent variables [15]. The algorithm acts in a loop manner where
each iteration shifts the value of the object function closer to the optimum solution. In
this manner, this method attempts to achieve victory in attaining the optimum solution.
This implies the name of this algorithm as ‘Jaya’ which means victory in Sanskrit. In
this algorithm, N preliminary solutions are initiated following the maximum and
minimum limits of processing variables. A probabilistic modification is accomplished
for each processing variable in the solutions using the following equation.

Bðxþ 1; y; zÞ ¼ Bðx; y; zÞþRðx; y; 1Þ Bðx; y; sÞ � Bðx; y; zÞj jf g
� Rðx; y; 2Þ Bðx; y; iÞ � Bðx; y; zÞj jf g ð1Þ

Here, x, y, and z denote the iteration number, variable number and probable
solutions number.
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SAJA is a smart version of Jaya. Similar to other population-oriented algorithms, the
conventional Jaya involves the choice of the ordinary controlling variables of population
volume and number of generations by the user. But, the selection of an optimum value
for the population volume in diverse cases is quite problematic [16]. SAJA avoids this
user-specific choice of population size, rather it automatically evaluates the population
volume [17, 18]. SAJA starts by setting an original population size, U = 10 � c, where
c is the no. of design variables. In each iteration until the stopping condition of the
algorithm fulfilled, the population size is updated as follows [17, 18]:

Uupdated ¼ roundðUprevious þ c� UpreviousÞ ð2Þ

Here, the value of c ranges from −0.5 to +0.5 and it acts as a tuning parameter by
either increasing or decreasing the population size. A flowchart of the proposed JOPS
algorithm is shown in Fig. 3.

Set the population size (U=10×n), number of 
variables (n), classifier hyper-parameters and 

stopping condition

Find the superior (s) and inferior (i) solutions in the 
population

Adjust the solutions based on the superior and inferior solutions:

Does contains better solution 
than ?

Keep the current solution and 
change the earlier solution

Discard the current solution 
and keep the earlier solution

Does the stopping condition 
fulfilled?

Offer the optimum feature subsets and 
optimum values for classifier parameters

Proposed 
JOPS Algorithm

Yes No

YesNo

If , put superior solutions in the 
present population to the solutions; 

If , put only superior solutions in 
the present population to the solutions;

If , then 

Fig. 3. Flowchart for the proposed Jaya Optimization based hyper-Parameter and feature
Selection (JOPS) algorithm.
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Hyper-parameters are tunable variables of classifiers which require proper tuning to
get optimum performance from any machine learning model. These parameters are
classifier specific. We have used KNN and linear SVM as they have used in other
studies for feature selection [19]. The controlling parameters of KNN are no. of
neighbors (K), distance function (e.g. Euclidean or Manhattan), distance weight (e.g.,
equal, inverse, squared inverse) and for linear SVM the controlling parameters Cost
(C) parameters that regularize the classifiers.

2.5 Performance Evaluation

Multiple performance indices are assessed for the performance evaluation of the
classifiers in this study. These indices include accuracy, error, sensitivity, specificity,
and F1-score.

3 Results and Discussion

This study proposed JOPS algorithm for feature and hyper-parameter selection and
used this algorithm for sleep-wake classification by following the methodology pre-
sented above. To accomplish this, 70% of the total data was used for training and
validation purposes and 30% of the data is used for testing purposes. Table 2 shows the
performance of JOPS algorithm on training, validation, and testing dataset. It can be
seen that, in the case of KNN, both sensitivity and F1 Score on training dataset are
100% whereas on validation dataset and test dataset these values are 98.15%, 97.23%,
and 98.17%, 97.23%, respectively. On the other hand, in the case of SVM, sensitivity
and F1 Score on training dataset are 98.47% and 97.31% whereas on the validation
dataset and test dataset these values are 98.30%, 97.30%, and 98.61%, 97.17%,
respectively.

Table 2. Performance analysis of KNN and SVM using JOPS algorithm.

Training
results

Validation
results

Test results

Classifiers KNN SVM KNN SVM KNN SVM
Accuracy (%) 100 95.13 94.99 95.10 94.99 94.85
Error (%) 0 4.871 5.01 4.92 5.012 5.152
Sensitivity (%) 100 98.47 98.15 98.30 98.17 98.61
Specificity (%) 100 66.31 67.77 67.20 67.5 62.28
F1_score (%) 100 97.31 97.23 97.30 97.23 97.17

EEG Based Sleep-Wake Classification Using JOPS Algorithm 367



As the dataset was collected on the only 8 subjects, the 10-fold cross validation1

was also performed. The accuracy of the 10-fold cross-validation has been used for
box-plotting and the statistically significant test has been performed by t-test and
finally, p value is reported in this study. It can be seen from the boxplot presented in
Fig. 4 that the classification accuracy of SVM is higher than KNN which is statistically
significant as the p value is 0.0009.

The proposed JOPS algorithm is compared with other state-of-the-art optimization
algorithm used in the feature selection such as genetic algorithm (GA) [20, 21] and
differential evaluation [19]. It can be seen from Table 3 that the training accuracy using
our proposed JOPS was 100% and 95.13% for KNN and SVM classifiers, respectively.
On the other hand, GA based feature selection provides 96.87% and 95.20% accuracy
for KNN and SVM classifiers, respectively. The DE based feature selection yielded
96.95% and 95.00% accuracy. Moreover, compared to GA and DE based feature
selection our proposed algorithm sleeted a moderate number of features. The classifi-
cation performance without FS yielded lower accuracy using KNN and provided
similar accuracy using SVM.

Fig. 4. Box plot for sleep wake classification for KNN and SVM classifiers.

Table 3. Comparison with other optimization algorithms and without feature selection (FS).

JOPS
optimization

GA based
[20, 21]

DE based
[19]

Without FS

Classifiers KNN SVM KNN SVM KNN SVM KNN SVM
Accuracy 100 95.13 96.87 95.20 96.95 95.00 94.41 95.45
Error 0.00 4.87 3.13 4.80 3.05 5.00 5.59 4.51
No. of selected features 27 55 48 62 20 20 125 125

1 In 10-fold cross validation, one-fold is used for testing and nine other folds are used for training and
repeated ten times so that each fold i.e. whole dataset is tested.
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Regarding the comparison with other studies relevant to sleep-wake classification,
the fuzzy logic-based iterative method provided 95.4%, statistical features and bagging
provided 95.04%, and PSD of single-channel EEG and ANN-based method 96.90%.
Our approach is very similar to their works. The intention of this study is the simul-
taneous selection of classifier hyper parameter and feature subset.

We have provided a decision support system using our proposed algorithm. A de-
cision support system (DSS) can be built to support clinical staffs. We have created a
program that visually presents the probable patient state, in terms of posterior proba-
bilities. An example of hypnograms consisting of 50 epochs generated by the machine
(i.e., the proposed method) and a sleep expert is shown in Fig. 5. The misclassification
is marked as red color. In addition, the probability of sleep and awake have also been
shown. The 2nd subplot shows the sleeping probability. The sleeping probability � 0.5
indicates that the subject is in sleep stage and sleeping probability <0.5 indicates the
subject has less chance to stay sleep stage. The 3rd subplot can be interpreted in the
similar way for awaking stage. In this way, the intensity of sleeping e.g., deep sleep,
mild sleep etc. can be measured from this DSS.

4 Conclusion

This paper presents a novel algorithm for simultaneously select the optimal classifier
hyper-parameter and optimal features namely, the JOPS algorithm from the high
dimensional feature set. It is then applied to the EEG based sleep-wake classification.
The KNN and SVM were applied in this study. The 10-fold cross-validation results
provide the average accuracy for KNN and SVM of 93.77% and 95% with a standard
deviation of ±0.0065 and ±0.0041, respectively. Only two classifiers have been used
in this study. The DSS created by this study is also useful to sleep expert and needs
further experiment to apply in clinical settings. Unlike GA and DE based feature
selection, JOPS is very simple and adaptive and therefore, could be useful for non-
specialist user. It is necessary to assess the JOPS performance with other classifiers

Fig. 5. A DSS for sleep-wake classification. (Color figure online)
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such as XGboost, kernel KNN, random forest, etc. It is also necessary to use a larger
database with more subjects and other real-life problems to examine the efficiency of
the JOPS algorithm. However, the primary intension of this study is to provide a simple
but adaptive algorithm for simultaneous selection of optimal classifier hyper-parameter
and optimal features.

Acknowledgements. This work is a part of the work supported by Khulna University Research
Cell (KURC).
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Neurosymbolic Expert System for Disorders
of Consciousness

Paola Di Maio
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Abstract. Thanks to the increased availability of neuroscience technologies and
data, it is now possible to study a wide range of brain and mind states using
available images and data analysis tools. Disorders of Consciousness (DOC) are
observed mainly in patients suffering from brain injury or other head trauma.
Equivalent or similar symptoms, however, are also present in a range of other
disorders, including schizophrenia autism and locked-in syndrome. There is a
need to widen the applicability of diagnoses to broader classes of patients,
including individuals affected by emotional traumas, and to widen the diag-
nosing modality include broader sets of parameters by leveraging the conver-
gence of multiple approaches, from neurology to psychiatry to behaviour and
cognitive from multiple cases. As the knowledge required for extensive and
complex navigation of diagnostic rules is incremental, an expert system is
conceived to support both the integration, navigation and reasoning of relevant
knowledge sets.

This work introduces the rationale, motivation and outline of a modular web
based expert system (ES) that facilitates the integration of multiple clinical
perspectives (e.g., cognitive, behavioural and neurological) using neurosymbolic
knowledge integration and neurules, a hybrid logical construct aimed at lever-
aging symbolic and neurosymbolic representation. This expert system can be
used in support of remote consultations and diagnostics.

Keywords: Disorder of consciousness • Awareness • Expert system •

Neurosymbolic knowledge integration



The Resolution Matrix for Visualizing
Functional Network Connectivity

Keith Dillon

University of New Haven, 300 Boston Post Rd, West Haven, CT 06516, USA
kdillon@newhaven.edu

Abstract. The resolution matrix is a mathematical tool for analyzing inverse
problems such as computational imaging systems. When treating network
connectivity estimation as an inverse problem, the resolution matrix describes
the degree to which network nodes and edges can be resolved. This is useful
both for quantifying robustness of the network estimate, as well as identifying
correlated activity. Theoretically, there is a close relationship between the res-
olution matrix and the partial correlation estimates defining Gaussian graphical
models. Univariate correlation describes the similarity between signals collected
from different points, which would conceptually be similar to a resolution cell
describing the blurring of points together. However, the act of computationally
reconstructing the image unmixes this blurring to the degree possible, hence
resolution (and partial correlation) provide a kind of sharpened estimate as
compared to univariate correlation. While the goal of resolution estimation in
imaging is to identify which regions are unresolvable due to physical limitations
of the imaging system, partial correlation is used to suggest network relations
such as causality. In application to networks, therefore, resolution provides a
combination of both kinds of information. We analyzed the resolution matrix for
functional MRI data from the Human Connectome project. We find that com-
mon metrics of the resolution metric can be used to identify networked activity,
yielding patterns reminiscent of well-known networks such as the default-mode
and frontoparietal networks. These two networks in particular were originally
defined as being positively correlated, while being negatively correlated
between each other. Further, Independent component analysis generally sepa-
rated the frontoparietal network into a unilateral pair. However, from the per-
spective of resolution cells, we find a different combination of regions and
asymmetry, with a symmetric network of lateral regions, and an asymmetric
network with symmetric medial regions and asymmetric lateral regions.

Keywords: Resolution • Brain networks • Functional MRI



Knowledge Representation for Neuroscience

Paola Di Maio

Center for Systems, Knowledge Representation and Neuroscience, Taitung,
950001, Taiwan

paola.dimaio@gmail.com

Abstract. As artificial intelligence is increasingly used to perform analysis of
vast amounts of brain data, the relationship between KR (Knowledge Repre-
sentation) and Neuroscience is becoming stronger and can be mapped across
several dimensions. Following up on past developments (e.g., Brain Informatics
conference 2019, held at Haikou, China), it is important to continue to char-
acterize aspects of the complex but necessary relationship between KR (as in
Artificial Intelligence) and Neuroscience. The research published in the past
evaluated a broad range of state-of-the-art Artificial Neural Network
(ANN) models on the match of their internal representations to 84 neural
datasets from three humans spanned all major classes of existing language
models and included embedding models. It concluded that a key missing piece
in scholarly literature in the mechanistic modeling of human language pro-
cessing is a more detailed mapping from model components onto brain anatomy.
In particular, aside from the general targeting of the fronto-temporal language
network, it is unclear which parts of a model map onto which components of the
brain’s language processing mechanisms. In models of vision, for instance,
attempts are made to map ANN layers and neurons onto cortical regions and
sub-regions. However, a similar mapping is not yet established in language
beyond the broad distinction between perceptual processing and higher-level
linguistic interpretation. It is therefore important to seek to explore paths and
obstacles to the brain-to-model mapping taking a systems neuroscience view.
The correspondence between KR and various aspects of Neuroscience needs to
be explored in particular with respect to the importance of higher brain functions
such as consciousness, free will and metacognition. Similarly, illustration of the
challenges of identifying appropriate levels of abstraction and
functional/systemic knowledge boundaries (network view vs. systems view),
overview of data standards/model integration conceptual/ontological mapping
considerations are also important.

Keywords: Knowledge representation • Neuroscience • Brain to model



Epileptic Seizures Could Be Abated in Advance
by Changing the Synchronicity

and Directionality of Onset Propagation
with Stimulation

Denggui Fan

University of Science and Technology Beijing, Haidian District, Beijing 100083,
China

worldfandenggui@163.com

Abstract. Many neurological and psychiatric diseases are associated with
clinically detectable, altered brain dynamics. To better understand seizure onset
and propagation, as well as propose an effective seizure interfering strategy, we
need to identify the coherence and transferring process of the dynamic infor-
mation evolutions within the epileptogenic network. In this paper, we employ a
simple methodology to successively estimate the synchronicity and direction-
ality over time between signals from different brain areas. First, the reliability of
this method is numerically assessed with a coupled mass neural model, which
shows that this estimating method is effective for expressing the causality
characteristics of the simulated epileptic signals. Then this method is applied to
investigate the foci localization and its synchronous evolution based on the
intracranial human EEG recordings. It is shown that the dominant, recessive and
extended seizure foci as well as their propagation paths could be detected and
traced through this estimation method for synchronicity and directionality. In
addition, the aberrant brain activity, in principle, can be restored through elec-
trical stimulation. It is verified that the synchronicity and directionality can be
changed with the deep brain stimulation (DBS) applied on the dominant foci
using the spatiotemporally extended neural model network. In particular, the
dominant and extended seizure foci vanish when the recessive focus is removed
or destroyed by DBS. These results suggest that the coherence and transferring
process of brain information evolutions can be dynamically identified, and also
computationally evidence the effect of DBS on the seizure control, and also
provide new insights into the seizure prediction and detection and DBS therapy.

Keywords: Epileptic seizures • Mean-field model • Synchronicity and
directionality • Deep brain stimulation (DBS) • Seizure abatement
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	Peer-Reviewed Abstracts Presented at the 13th International Conference on Brain Informatics (BI2020), September 19, 2020, Held Virtually��Neurosymbolic Expert System for Disorders of ConsciousnessPaola Di MaioCenter for Systems, Knowledge Representation and Neuroscience, �Taitung, 950001, Taiwanpaola.dimaio@gmail.comAbstract. Thanks to the increased availability of neuroscience technologies and data, it is now possible to study a wide range of brain and mind states using available images and data analysis tools. Disorders of Consciousness (DOC) are observed mainly in patients suffering from brain injury or other head trauma. Equivalent or similar symptoms, however, are also present in a range of other disorders, including schizophrenia autism and locked-in syndrome. There is a need to widen the applicability of diagnoses to broader classes of patients, including individuals affected by emotional traumas, and to widen the diagnosing modality include broader sets of parameters by leveraging the convergence of multiple approaches, from neurology to psychiatry to behaviour and cognitive from multiple cases. As the knowledge required for extensive and complex navigation of diagnostic rules is incremental, an expert system is conceived to support both the integration, navigation and reasoning of relevant knowledge sets.�This work introduces the rationale, motivation and outline of a modular web based expert system (ES) that facilitates the integration of multiple clinical perspectives (e.g., cognitive, behavioural and neurological) using neurosymbolic knowledge integration and neurules, a hybrid logical construct aimed at leveraging symbolic and neurosymbolic representation. This expert system can be used in support of remote consultations and diagnostics.Keywords: Disorder of consciousness • Awareness • Expert system • �Neurosymbolic knowledge integration
	The Resolution Matrix for Visualizing Functional Network ConnectivityKeith DillonUniversity of New Haven, 300 Boston Post Rd, West Haven, CT 06516, USAkdillon@newhaven.eduAbstract. The resolution matrix is a mathematical tool for analyzing inverse problems such as computational imaging systems. When treating network connectivity estimation as an inverse problem, the resolution matrix describes the degree to which network nodes and edges can be resolved. This is useful both for quantifying robustness of the network estimate, as well as identifying correlated activity. Theoretically, there is a close relationship between the resolution matrix and the partial correlation estimates defining Gaussian graphical models. Univariate correlation describes the similarity between signals collected from different points, which would conceptually be similar to a resolution cell describing the blurring of points together. However, the act of computationally reconstructing the image unmixes this blurring to the degree possible, hence resolution (and partial correlation) provide a kind of sharpened estimate as compared to univariate correlation. While the goal of resolution estimation in imaging is to identify which regions are unresolvable due to physical limitations of the imaging system, partial correlation is used to suggest network relations such as causality. In application to networks, therefore, resolution provides a combination of both kinds of information. We analyzed the resolution matrix for functional MRI data from the Human Connectome project. We find that common metrics of the resolution metric can be used to identify networked activity, yielding patterns reminiscent of well-known networks such as the default-mode and frontoparietal networks. These two networks in particular were originally defined as being positively correlated, while being negatively correlated between each other. Further, Independent component analysis generally separated the frontoparietal network into a unilateral pair. However, from the perspective of resolution cells, we find a different combination of regions and asymmetry, with a symmetric network of lateral regions, and an asymmetric network with symmetric medial regions and asymmetric lateral regions.Keywords: Resolution • Brain networks • Functional MRI
	Knowledge Representation for NeurosciencePaola Di MaioCenter for Systems, Knowledge Representation and Neuroscience, Taitung, 950001, Taiwanpaola.dimaio@gmail.comAbstract. As artificial intelligence is increasingly used to perform analysis of vast amounts of brain data, the relationship between KR (Knowledge Representation) and Neuroscience is becoming stronger and can be mapped across several dimensions. Following up on past developments (e.g., Brain Informatics conference 2019, held at Haikou, China), it is important to continue to characterize aspects of the complex but necessary relationship between KR (as in Artificial Intelligence) and Neuroscience. The research published in the past evaluated a broad range of state-of-the-art Artificial Neural Network (ANN) models on the match of their internal representations to 84 neural datasets from three humans spanned all major classes of existing language models and included embedding models. It concluded that a key missing piece in scholarly literature in the mechanistic modeling of human language processing is a more detailed mapping from model components onto brain anatomy. In particular, aside from the general targeting of the fronto-temporal language network, it is unclear which parts of a model map onto which components of the brain’s language processing mechanisms. In models of vision, for instance, attempts are made to map ANN layers and neurons onto cortical regions and sub-regions. However, a similar mapping is not yet established in language beyond the broad distinction between perceptual processing and higher-level linguistic interpretation. It is therefore important to seek to explore paths and obstacles to the brain-to-model mapping taking a systems neuroscience view. The correspondence between KR and various aspects of Neuroscience needs to be explored in particular with respect to the importance of higher brain functions such as consciousness, free will and metacognition. Similarly, illustration of the challenges of identifying appropriate levels of abstraction and functional/systemic knowledge boundaries (network view vs. systems view), overview of data standards/model integration conceptual/ontological mapping considerations are also important.Keywords: Knowledge representation • Neuroscience • Brain to model
	Epileptic Seizures Could Be Abated in Advance by Changing the Synchronicity and Directionality of Onset Propagation with StimulationDenggui FanUniversity of Science and Technology Beijing, Haidian District, Beijing 100083, Chinaworldfandenggui@163.comAbstract. Many neurological and psychiatric diseases are associated with clinically detectable, altered brain dynamics. To better understand seizure onset and propagation, as well as propose an effective seizure interfering strategy, we need to identify the coherence and transferring process of the dynamic information evolutions within the epileptogenic network. In this paper, we employ a simple methodology to successively estimate the synchronicity and directionality over time between signals from different brain areas. First, the reliability of this method is numerically assessed with a coupled mass neural model, which shows that this estimating method is effective for expressing the causality characteristics of the simulated epileptic signals. Then this method is applied to investigate the foci localization and its synchronous evolution based on the intracranial human EEG recordings. It is shown that the dominant, recessive and extended seizure foci as well as their propagation paths could be detected and traced through this estimation method for synchronicity and directionality. In addition, the aberrant brain activity, in principle, can be restored through electrical stimulation. It is verified that the synchronicity and directionality can be changed with the deep brain stimulation (DBS) applied on the dominant foci using the spatiotemporally extended neural model network. In particular, the dominant and extended seizure foci vanish when the recessive focus is removed or destroyed by DBS. These results suggest that the coherence and transferring process of brain information evolutions can be dynamically identified, and also computationally evidence the effect of DBS on the seizure control, and also provide new insights into the seizure prediction and detection and DBS therapy.Keywords: Epileptic seizures • Mean-field model • Synchronicity and �directionality • Deep brain stimulation (DBS) • Seizure abatement
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