
An Improved Approximation Algorithm
for the Prize-Collecting Red-Blue Median

Problem

Zhen Zhang(B), Yutian Guo, and Junyu Huang

School of Computer Science and Engineering, Central South University,
Changsha 410083, People’s Republic of China

csuzz@foxmail.com

Abstract. The red-blue median problem considers a set of red facilities,
a set of blue facilities, and a set of clients located in some metric space.
The goal is to open kr red facilities and kb blue facilities such that the
sum of the distance from each client to its nearest opened facility is
minimized, where kr, kb ≥ 0 are two given integers. Designing approx-
imation algorithms for this problem remains an active area of research
due to its applications in various fields. However, in many applications,
the existence of noisy data poses a big challenge for the problem. In this
paper, we consider the prize-collecting red-blue median problem, where
the noisy data can be removed by paying a penalty cost. The current
best approximation for the problem is a ratio of 24, which was obtained
by LP-rounding. We deal with this problem using a local search algo-
rithm. We construct a layered structure of the swap pairs, which yields
a (9 + ε)-approximation for the prize-collecting red-blue median prob-
lem. Our techniques generalize to a more general prize-collecting τ -color
median problem, where the facilities have τ different types, and give a
(4τ + 1 + ε)-approximation for the problem for the case where τ is a
constant.

Keywords: Clustering · Approximation · Local search

1 Introduction

k-median is a widely studied clustering problem and finds applications in many
fields related to unsupervised learning. Given a set D of clients and a set F of
facilities in a metric space, the k-median problem is to open k facilities such
that the sum of the distance from each client to its nearest opened facility is
minimized.

In many applications, the clustering problem has different types of facilities
and upper bound on the number of the opened facilities of each type. One such

This work was supported by National Natural Science Foundation of China (61672536,
61872450, 61828205, and 61802441), Hunan Provincial Key Lab on Bioinformatics, and
Hunan Provincial Science and Technology Program (2018WK4001).

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 94–106, 2020.
https://doi.org/10.1007/978-3-030-59267-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_9

The Prize-Collecting Red-Blue Median Problem 95

example is in the design of Content Distribution Networks [2], where a set of
clients need to be connected to a set of servers with a few different types, and
there is a budget constraint on the number of the arranged severs of each type.
Motivated by such applications, Hajiaghayi et al. [9] introduced the red-blue
median problem which involves two facility-types. They showed that local search
yields a constant factor approximation for the problem. The current best approx-
imation for the red-blue median problem is a ratio of 5 + ε due to Friggstad and
Zhang [8]. Inspired by the work on the red-blue median problem, Krishnaswamy
et al. [12] introduced a more general matroid median problem, where the set
of facilities has a matroid structure, and the set of the opened facilities should
be an independent set in the matroid. The matroid median problem does not
only generalize the red-blue median problem, but also the τ -color median prob-
lem where more than two facility-types are considered. Krishnaswamy et al. [12]
gave a 16-approximation for the matroid median problem by an LP-rounding
technique. The approximation guarantee was later improved by a series of work
[4,14] to the current best ratio of 7.081 + ε [13].

Although red-blue median and its related clustering problems have been
extensively studied, algorithms developed for these problems could significantly
deteriorate their performance when applied to real-world data. One reason is that
these problems implicitly assume that all clients can be clustered into several
distinct groups. However, real-world data are often contaminated with various
types of noises, which need to be excluded from the solution [3,6,13]. To deal
with such noisy data, Charikar et al. [3] introduced the problem of prize-collecting
clustering. The problem is the same as the standard clustering problem, except
that we can remove a set of distant clients and pay their penalty costs instead.
By discarding the distant clients, one could significantly reduce the clustering
cost and thus improve the quality of solution.

Hajiaghayi et al. [9] gave an O(1)-approximation for the prize-collecting
red-blue median problem by local search technique. The approximation ratio
is implicit but can be easily shown not better than 30. Krishnaswamy et al.
[12] later gave a 360-approximation algorithm for the prize-collecting red-blue
median problem based on an LP-rounding technique. They showed that the guar-
antee of 360-approximation generalizes to the prize-collecting matroid median
problem. The approximation ratio was recently improved to 24 by a novel round-
ing procedure [14]. This is also the current best approximation guarantee for
both the problems of prize-collecting red-blue median and prize-collecting τ -
color median. The noisy data appear frequently in the clustering problems, and
the prize-collecting versions of other clustering problems have also been exten-
sively studied [5,7,11,15].

We curtly remark on the commonly used approaches for clustering to show
the obstacles in obtaining better ratios than 24 for the problems of prize-
collecting red-blue median and prize-collecting τ -color median.

1). Hajiaghayi et al. [9] gave a constant factor approximation for the prize-
collecting red-blue median problem by local search. Their analysis is based
on a technique for dividing the facilities into blocks with certain properties.

96 Z. Zhang et al.

This provides a clear way to get the approximation guarantee for the local
search algorithm. However, getting such well structured blocks induces a large
approximation ratio for the problem. It seems quite difficult to apply the tech-
nique given in [9] to beat the 24-approximation. Moreover, the method for
constructing blocks relies heavily on the fact that the facilities have no more
than two different types, which cannot be applied to the τ -color median prob-
lem. Indeed, it is still an open problem that whether local search works for the
τ -color median problem for the case where τ is a constant, see discussions in
[8,10].

2). LP-rounding has been shown to be an effective technique for the problems of
red-blue median and τ -color median [4,12–14]. However, it was known that
the existence of the penalized clients has a strong impact on the performance
of the algorithms based on LP-rounding [12,14]. For instance, the standard
LP relaxation of the red-blue median problem has a variable xij associated
with each facility i and client j, which indicates that whether j is connected
to i. A constraint

∑
i xij = 1 is given for each client j to ensure that j is

connected to a facility. Unfortunately, in the prize-collecting red-blue median
problem, the sum

∑
i xij is not guaranteed to be an integer since not all the

clients should be connected. It is unclear whether the LP-rounding approach
for clustering with outliers given in [13] can be adapted to clustering with
penalties and beat the 24 approximation ratio.

3). The technique of primal-dual has been widely applied for the problem of
prize-collecting clustering [3,7,11]. However, it is difficult to use this tech-
nique to deal with the red-blue median problem, as discussed in [9,10]. This
is further compounded in the prize-collecting red-blue median problem since
there is an additional task of identifying the penalized clients.

1.1 Our Results

We use a local search algorithm to deal with the prize-collecting τ -color median
problem. Starting with an arbitrary feasible solution, the algorithm tries to swap
no more than O(τ) facilities of each type. It terminates if no such swap yields
an improved solution. Otherwise, it iterates with the improved solution. The
solution given by the algorithm is called local optimum.

Theorem 1. The local optimum for the prize-collecting τ -color median problem
is a (4τ + 1)-approximation solution.

On the basis of standard techniques [1] (which is curtly described in Sect. 2),
the runtime of the local search algorithm can be polynomially bounded for the
case where τ is a constant, which induces an arbitrarily small loss in the approx-
imation ratio.

Theorem 2. For any ε > 0, there is a (4τ +1+ ε)-approximation algorithm for
the prize-collecting τ -color median problem that runs in polynomial time for the
case where τ is a constant.

The Prize-Collecting Red-Blue Median Problem 97

Theorem 2 implies a (9 + ε)-approximation for the prize-collecting red-blue
median problem, which improves the previous best approximation ratio of 24
given by Swamy [14]. Note that for the prize-collecting τ -color median problem,
we only obtain improved approximation guarantee for the case where τ ≤ 5,
and the ratio of 24 given in [14] is still the best guarantee for the general prize-
collecting τ -color median problem. Indeed, Krishnaswamy et al. [12] showed
that local search cannot yield constant factor approximation for the τ -color
median problem with polynomial time. However, this negative result does not
rule out the possibility of obtaining a local search-based O(1)-approximation for
the problem in polynomial time for the case where τ is a constant. Theorem 2
shows that local search actually yields an O(1)-approximation for this special
case.

1.2 Our Techniques

The local search algorithms are commonly analyzed by considering a set of swap
pairs where some facilities in the local optimum are swapped with some facilities
from an optimal solution. The desired approximation guarantee is obtained by
the fact that no such swap pair can improve the local optimum. However, in
the prize-collecting τ -color median problem, the swap pairs may violate the
constraint on the number of the opened facilities of each type. For instance,
after closing a red facility and opening a blue facility, we are forced to swapping
another pair of facilities to balance the number of the facilities of each type.
This makes the analysis of the cost induced by the local optimum much more
complex.

For each to-be-clustered client j, let Oj and Sj be the costs of j induced by
the local optimum and optimal solution, respectively. Our analysis starts with
carefully constructing a set of feasible swap pairs with some special properties
(see Sect. 3.1). By estimating the increased cost induced by the constructed
swap pairs, we obtain a set of inequalities that involve some “+Oj”terms, some
“−Sj” terms, and some “+Sj” terms for each client j (see Sect. 3.2). We want
to add these inequalities together to get O(1)

∑
j Oj −O(1)

∑
j Sj ≥ 0, based on

which the desired approximation ratio can be obtained. The challenge is how to
eliminate each “+Sj” term. To overcome this challenge, we prove the existence
of a layered structure of our constructed swap pairs (see Sect. 3.3). It is shown
that for each swap pair, the “+Sj” terms induced by it can be counteracted by
repeatedly using the swap pairs in the lower layers. These ideas lead to the proof
of the (4τ + 1 + ε)-approximation ratio.

2 Preliminaries

The prize-collecting τ -color median problem can be defined as follows.

Definition 1 (prize-collecting τ -color median). Given a set C of clients
and τ disjoint sets F1,. . . , Fτ of facilities in a metric space, τ positive integers

98 Z. Zhang et al.

k1, . . . , kτ , and a penalty function p defined over the clients in C, where p(j) ≥ 0
for each j ∈ C, the goal is to identify a subset St ⊆ F t of no more than kt

facilities for each t ∈ {1, . . . , τ}, such that the objective function
∑

j∈C
min{d(j,

⋃

1≤t≤τ

St), p(j)}

is minimized, where d(j,
⋃

1≤t≤τ St) denotes the distance from j to its nearest
facility in

⋃
1≤t≤τ St.

The special case of τ = 2 corresponds to the prize-collecting red-blue median
problem. Given τ sets S1, . . . ,Sτ of facilities, where St ⊆ F t for each 1 ≤ t ≤ τ ,
we call S = (S1, . . . ,Sτ) a feasible solution if

∣
∣St

∣
∣ = kt for each 1 ≤ t ≤ τ , and

let Φ(S) =
∑

j∈C min{d(j,
⋃

1≤t≤τ St), p(j)} denote its cost. Let OPT denote
the cost of an optimal solution. The local search algorithm for the problem is
described in Algorithm 1.

Algorithm 1: Local search for the prize-collecting τ -color median problem
Input: An instance (C, F1, . . . , Fτ , k1, . . . , kτ , p) of the prize-collecting τ -color

median problem;
Output: A local optimum S = (S1, . . . , Sτ);

1 Let S = (S1, . . . , Sτ) be an arbitrary feasible solution;

2 while there exists a feasible solution ˜S = (˜S1, . . . , ˜Sτ) such that
∣

∣ ˜St − St
∣

∣ ≤ 2τ

for each 1 ≤ t ≤ τ and Φ(˜S) < Φ(S) do

3 S ⇐ ˜S;

4 return S.

Each iteration of Algorithm 1 takes O(
∣
∣C∣

∣ ∏
1≤t≤τ (

∣
∣F t

∣
∣kt)2τ) time, which is

polynomial in the input size for the case where τ is a constant. However, it
may be the case that the number of the iterations exponentially depends on
the input size. We can use a well-known trick to ensure that the algorithm
terminates in a polynomial number of steps. The idea is to execute a swap only
if Φ(S̃) ≤ (1− ε

Δ)Φ(S), where the value of Δ is polynomial in the input size. Our
analysis is compatible with this trick: it can be verified that the total weight of
all the inequalities we consider is polynomially bounded. See [1] for details of
the trick.

3 Analysis

We introduce some notations to help analyze Algorithm 1. Let F =
⋃

1≤t≤τ F t.
Let d(i, j) denote the distance from i to j for each i, j ∈ C ∪ F . Let S =
(S1, . . . ,Sτ) denote the local optimum and O = (O1, . . . ,Oτ) be an optimal
solution. Define S =

⋃
1≤t≤τ St and O =

⋃
1≤t≤τ Ot. Let P and P∗ denote the

The Prize-Collecting Red-Blue Median Problem 99

sets of the clients that are penalized when opening the facilities from S and
O, respectively. For each j ∈ C\P, let sj denote the nearest facility to j in S,
and define Sj = d(j, sj). Similarly, for each j ∈ C\P∗, let oj be the nearest
facility to j in O, and define Oj = d(j, oj). For each i ∈ O and i′ ∈ S, define
N ∗(i) = {j ∈ C\P∗ : oj = i} and N (i′) = {j ∈ C\P : sj = i′}. For each O′ ⊆ O
and S ′ ⊆ S, let N ∗(O′) =

⋃
i∈O′ N ∗(i) and N (S ′) =

⋃
i∈S′ N (i). Given an

integer 1 ≤ t ≤ τ and a facility i ∈ F t, define T (i) = t as its type. Given two
integers t1 and t2, if t1 = t2, then let δ(t1, t2) = 1. Otherwise, let δ(t1, t2) = 0.

3.1 A Set of Swap Pairs

Algorithm 1 closes a set Aout of facilities and opens a set Ain of facilities in each
iteration, let A = (Aout | Ain) denote this swap pair. We call A a feasible swap
pair if

∣
∣Aout

∣
∣ =

∣
∣Ain

∣
∣ �= 0, and

∣
∣Aout ∩F t

∣
∣ =

∣
∣Ain ∩F t

∣
∣ holds for each 1 ≤ t ≤ τ .

It is easy to show that after performing a feasible swap pair, a feasible solution
to the problem is still feasible. We also use a notation of almost-feasible pairs.
Given a swap pair B = (Bout | Bin) that is not feasible, if there exist a facility
i1 ∈ Bout and a facility i2 ∈ Bin, such that either Bout\{i1} = Bin\{i2} = ∅, or
(Bout\{i1} | Bin\{i2}) is a feasible swap pair, then we call B an almost-feasible
pair, and define T (Bout) = T (i1) and T (Bin) = T (i2). The following proposition
follows directly from the definition of the almost-feasible pairs.

Proposition 1. Given an almost-feasible pair B and two facilities i1 ∈ S, i2 ∈
O, swap pair (Bout ∪{i1} | Bin ∪{i2}) is a feasible swap pair iff T (Bout) = T (i2)
and T (Bin) = T (i1).

It can be seen that no feasible swap pair A with
∣
∣Aout∩F t

∣
∣ =

∣
∣Ain∩F t

∣
∣ ≤ 2τ

for each t ∈ {1, . . . , τ} can be performed to reduce the cost of the local optimum.
We consider a set of such swap pairs to show that the local optimum has small
cost. These swap pairs close some facilities from S and open some facilities from
O. The swap pairs are selected based on the following mapping relationships.

Definition 2 (ϕ(∗), η(∗)). For each i ∈ O, let ϕ(i) denote the nearest facility
to i in S. For each i′ ∈ S with ϕ−1(i′) �= ∅, let η(i′) denote the nearest facility
to i′ in ϕ−1(i′). Given a set S ′ ⊆ S, define ϕ−1(S ′) =

⋃
i∈S′ ϕ−1(i).

Define S1 = {i ∈ S : ϕ−1(i) �= ∅}, O1 = {η(i) : i ∈ S1}, S2 = S\S1, and
O2 = O\O1. The procedure for selecting the swap pairs is given in Algorithm 2.
Note that this procedure is only used in the analysis. The algorithm yields a set
A of feasible swap pairs, which is empty initially. In the process of the algorithm,
we say that a facility is unpaired if it is not yet involved in a swap pair from A.
Each facility is involved in at most one swap pair in A.

In the first loop (steps 2 and 3), Algorithm 2 considers each subset S ′ ⊆ S1

of size no more than τ , and adds (S ′ | ⋃
i∈S′{η(i)}) to A if it is a feasible

swap pair. The algorithm then constructs a set B of almost-feasible pairs. By
the termination condition of the first loop, for each unpaired facility i ∈ S1,
({i} | {η(i)}) is not a feasible swap pair and can be viewed as an almost-feasible

100 Z. Zhang et al.

Algorithm 2: Selecting a set of swap pairs
Input: The local optimum (S1, . . . , Sτ) and an optimal solution (O1, . . . , Oτ);
Output: A set A of swap pairs;

1 A ⇐ ∅, B ⇐ ∅, S ′
1 ⇐ {i ∈ ⋃

1≤t≤τ St : ϕ−1(i) �= ∅}, S ′
2 ⇐ (

⋃

1≤t≤τ St)\S ′
1,

O′
1 ⇐ {η(i) : i ∈ S ′

1}, O′
2 ⇐ (

⋃

1≤t≤τ Ot)\O′
1;

2 while ∃ S ′ ⊆ S ′
1 with 1 ≤ |S ′| ≤ τ , such that A = (S ′ | ⋃

i∈S′{η(i)}) is a feasible
swap pair do

3 A ⇐ A ∪ {A}, S ′
1 ⇐ S ′

1\S ′, O′
1 ⇐ O′

1\
⋃

i∈S′{η(i)};

4 for each i ∈ S ′
1 do

5 B ⇐ B ∪ {(i | η(i))};

6 while ∃ B1, B2 ∈ B such that B = (B1
out ∪ B2

out | B1
in ∪ B2

in) is an almost-feasible
pair do

7 B ⇐ B ∪ {B}\{B1, B2};

8 while ∃ B
′ ⊆ B, H1 ⊆ S ′

2, and H2 ⊆ ϕ−1(
⋃

B∈B′ Bout) ∩ O′
2, such that

1 ≤ |B′| = |H1| = |H2| ≤ τ and A = (
⋃

B∈B′ Bout ∪ H1 | ⋃

B∈B′ Bin ∪ H2) is a
feasible swap pair do

9 A ⇐ A ∪ {A}, B ⇐ B\B′, S ′
2 ⇐ S ′

2\H1, O′
2 ⇐ O′

2\H2;

10 while ∃ B ∈ B, i1 ∈ S ′
2, and i2 ∈ O′

2, such that A = (Bout ∪ {i1} | Bin ∪ {i2}) is
a feasible swap pair do

11 A ⇐ A ∪ {A}, B ⇐ B\{B}, S ′
2 ⇐ S ′

2\{i1}, O′
2 ⇐ O′

2\{i2};

12 while ∃ i1 ∈ S ′
2 and i2 ∈ O′

2 such that A = ({i1} | {i2}) is a feasible swap pair
do

13 A ⇐ A ∪ {A}, S ′
2 ⇐ S ′

2\{i1}, O′
2 ⇐ O′

2\{i2};

14 return A.

pair. The algorithm adds all such almost-feasible pairs to B in the second loop
(steps 4 and 5). In the third loop (steps 6 and 7), it combines two almost-
feasible pairs from B if this yields a new almost-feasible pair. The combination
is performed iteratively until no two pairs in B can form an almost-feasible pair.
After that, the algorithm combines the almost-feasible pairs in B with some
facilities from S2 and O2 to obtain a set of feasible swap pairs in the fourth
and fifth loops (steps 8, 9, 10, and 11). In the fourth loop (steps 8 and 9),
the algorithm iteratively determines whether there exist g almost-feasible pairs
B1, . . . ,Bg in B, g unpaired facilities in ϕ−1(

⋃
1≤t≤g Bt

out) ∩ O′
2, and g unpaired

facilities in S2 that can form a feasible swap pair, where 1 ≤ g ≤ τ . If such
a feasible swap pair exists, then the algorithm adds the swap pair to A and
deletes B1, . . . ,Bg from B. In the fifth loop (steps 10 and 11), for each remained
almost-feasible pair B in B, the algorithm finds two unpaired facilities i1 ∈ S2

and i2 ∈ O2, such that (Bout ∪ {i1} | Bin ∪ {i2}) is a feasible swap pair and
can be added to A. Finally, the remained unpaired facilities in S2 and O2 are
assigned to single-swap pairs and added to A in the last loop (steps 12 and 13).

See Figs. 1 and 2 for an example. By the definitions of S1, S2, O1, and O2,
we have {r1, r2, r3, r4, b1} = S1, {b2, b3, b4} = S2, {r∗

1 , r
∗
2 , b

∗
1, b

∗
2, b

∗
3} = O1, and

The Prize-Collecting Red-Blue Median Problem 101

{r∗
3 , r

∗
4 , b

∗
4} = O2. It can be seen that A1 = ({r1} | {η(r1)}) and A2 = ({r2, b1} |

{η(r2), η(b1)}) are two feasible swap pairs and should be added to A in the first
loop of Algorithm 2 (steps 2 and 3). The algorithm then considers two almost-
feasible pairs B1 = ({r3} | {η(r3)}) and B2 = ({r4} | {η(r4)}). In the fourth loop
(steps 8 and 9), it combines B1 with two facilities r∗

3 ∈ ϕ−1(r3)∩O2 and b2 ∈ S2

to obtain a feasible swap pair A3 = ({r3, b2} | {r∗
3 , η(r3)}). In the fifth loop

(steps 10 and 11), a feasible swap pair A4 = ({r4, b3} | {r∗
4 , η(r4)}) is obtained

by combining B2 with two facilities r∗
4 ∈ O2 and b3 ∈ S2. Finally, the remained

unpaired facilities b4 and b∗
4 are combined into a feasible swap pair in the last

loop (steps 12 and 13). The constructed swap pairs are shown in Fig. 2.

r∗
1 (η(r1)) r∗

2 (η(b1)) b∗
1(η(r2)) b∗

2(η(r3)) b∗
3(η(r4))r∗

3 r∗
4 b∗

4

r1 r2 r3 r4 b1 b2 b3 b4

Fig. 1. O = {r∗
1 , r∗

2 , r∗
3 , r∗

4 , b∗
1, b

∗
2, b

∗
3, b

∗
4} and S = {r1, r2, r3, r4, b1, b2, b3, b4} are the sets

of the facilities opened in the optimal solution and local optimum respectively, where
{r∗

1 , r∗
2 , r∗

3 , r∗
4 , r1, r2, r3, r4} ⊆ F1 and {b∗

1, b
∗
2, b

∗
3, b

∗
4, b1, b2, b3, b4} ⊆ F2. For each i ∈ S

and i∗ ∈ ϕ−1(i)\{η(i)}, we joint i and i∗ with a dashed line. For each i ∈ S with
ϕ−1(i) �= ∅, we joint i and η(i) with a solid line.

r∗
1 r∗

2 b∗
1 r∗

3 b∗
2 r∗

4 b∗
3 b∗

4

r1 r2 b1 r3 b2 r4 b3 b4

A1 A2 A3 A4 A5

Fig. 2. The constructed swap pairs.

Let A denote the set of the swap pairs given by Algorithm 2. Let B be the set
of the almost-feasible pairs obtained after the third loop of the algorithm (steps
6 and 7). We now give some useful properties of Algorithm 2.

102 Z. Zhang et al.

Proposition 2. We have
∑

B∈B
δ(T (Bout), t) · ∑

B∈B
δ(T (Bin), t) = 0 for each

t ∈ {1, . . . , τ}.
Proposition 3. For each A ∈ A and i ∈ Aout with ϕ−1(i) �= ∅, η(i) ∈ Ain.

Proposition 4. For each A ∈ A and t ∈ {1, . . . , τ}, ∣
∣Aout ∩St

∣
∣ =

∣
∣Ain ∩Ot

∣
∣ ≤

2τ .

Proposition 5. Each facility i ∈ S ∪ O appears exactly one time in the swap
pairs from A.

3.2 An Upper Bound on the Cost Increase

In this section, we present a strategy for reconnecting clients after performing
the swap pairs from A on the local optimum. This gives an upper bound on the
increased cost induced by a swap pair. Consider a swap pair A ∈ A, we close the
facilities in Aout and open the facilities in Ain. We reconnect the clients from
N (Aout)∪N ∗(Ain). Each j ∈ N ∗(Ain) is reconnected to oj (oj is guaranteed to
be opened by the definition of N ∗(∗)). We pay the penalty costs of the clients
from N (Aout) ∩ P∗. The clients from N (Aout)\P∗ should be reconnected to a
nearby opened facility. By Proposition 3, η(i) is opened for each i ∈ Aout. This
motivates the following strategy for reconnecting each j ∈ N (Aout)\P∗. See
Fig. 3 for an example of the strategy.

i∗
1(η(i1)) i∗

2 i∗
3

i1(ϕ(i∗
2)) i2(ϕ(i∗

3))

N (i1) ∩ N ∗(i∗
1) N (i1) ∩ N ∗(i∗

2) N (i1) ∩ N ∗(i∗
3)

j1 j2 j3

Fig. 3. Reconnection of the clients after performing the swap pair A = ({i1} | {i∗1}).
The solid lines indicate the connection of the clients after the swap. For each j ∈
N (i1)\P∗, j is reconnected to oj , if j ∈ N (i1) ∩ N ∗(i∗1); ϕ(oj), if j ∈ N (i1) ∩ N ∗(i∗3);
and η(ϕ(oj)), if j ∈ N (i1) ∩ N ∗(i∗2).

• If oj ∈ Ain, then j is reconnected to oj .
• If oj /∈ Ain and ϕ(oj) /∈ Aout, then j is reconnected to ϕ(oj).
• If oj /∈ Ain and ϕ(oj) ∈ Aout, then j is reconnected to η(ϕ(oj)).

The Prize-Collecting Red-Blue Median Problem 103

The following lemma shows that the reconnection cost of each client j ∈
N (Aout)\P∗ can be bounded by a combination of Oj and Sj .

Lemma 1. For each j ∈ C\(P∗ ∪ P), we have d(j, ϕ(oj)) ≤ 2Oj + Sj and
d(j, η(ϕ(oj))) ≤ 3Oj + 2Sj.

The following lemma follows from an upper bound on the increased cost
induced by performing a swap pair from A.

Lemma 2. For each swap pair A ∈ A, we have

0 ≤
∑

j∈N ∗(Ain)∩P
(Oj − p(j)) +

∑

j∈N ∗(Ain)\P
(Oj − Sj)

+
∑

j∈N (Aout)∩P∗
(p(j) − Sj) +

∑

j∈[N (Aout)\P∗]\N ∗(ϕ−1(Aout)∪Ain)

2Oj

+
∑

j∈N ∗(ϕ−1(Aout)\Ain)∩N (Aout)

(3Oj + Sj). (1)

3.3 A Layered Structure of the Swap Pairs

Observe that inequality (1) contains “+Oj” terms for some clients from C\P∗,
“−Sj” terms for some clients from C\P, “+p(j)” terms for some clients from
P∗, and “−p(j)” terms for some clients from P. Our idea for obtaining the
approximation guarantee for the local optimum is to add together some inequal-
ities of this type such that we can get O(1)(

∑
j∈C\P∗ Oj +

∑
j∈P∗ p(j)) −

O(1)(
∑

j∈C\P Sj +
∑

j∈P p(j)) ≥ 0, which directly implies the desired approxi-
mation ratio. The challenge is that inequality (1) also involves a “+Sj” term for
a client from N ∗(ϕ−1(Aout)\Ain)∩N (Aout). In this case, we have to repeatedly
use another inequality which contains a “−Sj” term to counteract the “+Sj”
term. To obtain a “−Sj” term for each j ∈ C\P, we prove the existence of a
layered structure of the swap pairs from A. Note that this structure is only used
in the analysis.

Lemma 3. A can be partitioned into f disjoint sets A1, . . . ,Af satisfying the
following properties.

• 3 ≤ f ≤ τ + 1.
• ⋃

A∈At
ϕ−1(Aout)\Ain ⊆ ⋃

A∈A
−
t

Ain for each t ∈ {1, . . . , f −1}, where A
−
t =

⋃
t<t′≤f At′ .

• ⋃
A∈Af

ϕ−1(Aout) = ∅.
Before proving Lemma 3, we first show its implication. Given a swap pair

A ∈ A, inequality (1) involves a “+Sj” term for each j ∈ N ∗(ϕ−1(Aout)\Ain) ∩
N (Aout) and a “−Sj” term for each j ∈ N ∗(Ain). Using Lemma 3, we know that⋃

A∈A1
ϕ−1(Aout)\Ain ⊆ ⋃

A∈A
−
1

Ain and
⋃

A∈A2
ϕ−1(Aout)\Ain ⊆ ⋃

A∈A
−
2

Ain.
Thus, we can multiply inequality (1) by factor 2 for each A ∈ A

−
1 to counter-

act the “+Sj” terms induced by the swap pairs from A1. Now each swap pair

104 Z. Zhang et al.

from A2 induces some “+2Sj” terms, which can be counteracted by multiplying
inequality (1) by factor 3 instead of 2 for each A ∈ A

−
2 . By a similar argu-

ment, we can counteract all the “+Sj” terms through using the swap pairs from
At for t times, for each t ∈ {1, . . . , f}. We will later show that this yields an
O(f)-approximation guarantee for the prize-collecting τ -color median problem.

Proof [of Lemma 3]. Let A′ denote the set of the swap pairs added to A in the
fifth loop of Algorithm 2 (steps 10 and 11). It can be seen that each A ∈ A

′

is a combination of an almost-feasible pair and two facilities from S2 ∪ O2. For
each A ∈ A

′, define T (A) = T (B′
out), where B′ denotes the almost-feasible pair

involved in A. For each t ∈ {1, . . . , τ}, define A
′
t = {A ∈ A

′ : T (A) = t}. We
construct a directed graph G as follows: A vertex vt is constructed for each
t ∈ {1, . . . , τ} with A

′
t �= ∅; For any two vertices vt1 , vt2 of G, there is a directed

edge (simply called arc) from vt1 to vt2 if there exist a swap pair A ∈ A
′
t1 and a

facility i ∈ ϕ−1(Aout)\Ain such that T (i) = t2. We have the following claim.

Claim 1. G is a directed acyclic graph, whose vertices are no more than τ − 1.

Define V as the vertex set of G. Given two vertices v, v′ ∈ V, if there exists
a path from v to v′ in G, then let L(v, v′) denote the number of the vertices in
a longest path from v to v′. Otherwise, let L(v, v′) = 2. Let V0 denote the set of
the vertices in G whose in-degrees are 0. For each v ∈ V0, define L(v) = 2. For
each v ∈ V\V0, define L(v) = maxv′∈V0 L(v′, v) + 1. We have 2 ≤ L(v) ≤ ∣

∣V∣
∣ + 1

for each v ∈ V. Let f = maxv∈V L(v) + 1. We have 3 ≤ f ≤ ∣
∣V∣

∣ + 2 ≤ τ + 1 by
Claim 1. We partition A into f disjoint sets A1, . . . ,Af as follows.

• Let A1 be the set of the swap pairs added to A in the first and fourth loops
of Algorithm 2 (steps 2, 3, 8, and 9).

• For each integer 1 < g < f , let Ag =
⋃

L(vt)=g A
′
t.

• Let Af be the set of the swap pairs added to A in the last loop of Algorithm 2
(steps 12 and 13).

Recall that A
−
t =

⋃
t<t′≤f At′ for each t ∈ {1, . . . , f − 1}. Based on Claim 1

and the properties of the swap pairs from A, we have the following result.

Claim 2. For each t ∈ {1, . . . , f − 1},
⋃

A∈At
ϕ−1(Aout)\Ain ⊆ ⋃

A∈A
−
t

Ain.

For each swap pair A added to A in the last loop of Algorithm 2, we have
Aout ⊆ S2. The definition of S2 implies that ϕ−1(S2) = ∅, which in turn implies
that ϕ−1(Aout) = ∅ for each A ∈ Af . By the fact that 3 ≤ f ≤ τ + 1 and
Claim 2, we complete the proof of Lemma 3. ��

3.4 Bound the Cost of the Local Optimum

We are now ready to bound the cost of the local optimum. Adding together
several inequalities (1), we obtain the following result.

The Prize-Collecting Red-Blue Median Problem 105

Lemma 4.
∑

j∈C\P Sj +
∑

j∈P\P∗ p(j) ≤ (4τ + 1)
∑

j∈C\P∗ Oj + (τ +
1)

∑
j∈P∗\P p(j).

Adding
∑

j∈P∗∩P p(j) to both sides of the inequality in Lemma 4 and sim-
plifying, we have

∑

j∈C\P
Sj +

∑

j∈P
p(j) ≤ (4τ + 1)

∑

j∈C\P∗
Oj + (τ + 1)

∑

j∈P∗
p(j) ≤ (4τ + 1)OPT,

which implies that the local optimum is a (4τ + 1)-approximation solution to
the prize-collecting τ -color median problem.

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput.
33(3), 544–562 (2004)

2. Bateni, M., Hajiaghayi, M.: Assignment problem in content distribution networks:
unsplittable hard-capacitated facility location. ACM Trans. Algorithms 8(3), 20:1–
20:19 (2012)

3. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of the 12th ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 642–651 (2001)

4. Charikar, M., Li, S.: A dependent LP-rounding approach for the k -median problem.
In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012.
LNCS, vol. 7391, pp. 194–205. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31594-7 17

5. Cohen-Addad, V., Feldmann, A.E., Saulpic, D.: Near-linear time approximation
schemes for clustering in doubling metrics. In: Proceedings of the 60th IEEE Sym-
posium on Foundations of Computer Science, pp. 540–559 (2019)

6. Feng, Q., Zhang, Z., Huang, Z., Xu, J., Wang, J.: Improved algorithms for clustering
with outliers. In: Proceedings of the 30th International Symposium on Algorithms
and Computation, pp. 61:1–61:12 (2019)

7. Feng, Q., Zhang, Z., Shi, F., Wang, J.: An improved approximation algorithm for
the k -means problem with penalties. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW
2019. LNCS, vol. 11458, pp. 170–181. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18126-0 15

8. Friggstad, Z., Zhang, Y.: Tight analysis of a multiple-swap heurstic for bud-
geted red-blue median. In: Proceedings of the 43rd International Colloquium on
Automata, Languages, and Programming, pp. 75:1–75:13 (2016)

9. Hajiaghayi, M.T., Khandekar, R., Kortsarz, G.: Budgeted red-blue median and its
generalizations. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp.
314–325. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-
2 27

10. Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the
red-blue median problem. Algorithmica 63(4), 795–814 (2012). https://doi.org/
10.1007/s00453-011-9547-9

11. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM
50(6), 795–824 (2003)

https://doi.org/10.1007/978-3-642-31594-7_17
https://doi.org/10.1007/978-3-642-31594-7_17
https://doi.org/10.1007/978-3-030-18126-0_15
https://doi.org/10.1007/978-3-030-18126-0_15
https://doi.org/10.1007/978-3-642-15775-2_27
https://doi.org/10.1007/978-3-642-15775-2_27
https://doi.org/10.1007/s00453-011-9547-9
https://doi.org/10.1007/s00453-011-9547-9

106 Z. Zhang et al.

12. Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The
matroid median problem. In: Proceedings of 22nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1117–1130 (2011)

13. Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k-median and
k-means with outliers via iterative rounding. In: Proceedings of the 50th ACM
Symposium on Theory of Computing, pp. 646–659 (2018)

14. Swamy, C.: Improved approximation algorithms for matroid and knapsack median
problems and applications. ACM Trans. Algorithms 12(4), 49:1–49:22 (2016)

15. Zhang, D., Hao, C., Wu, C., Xu, D., Zhang, Z.: Local search approximation algo-
rithms for the k-means problem with penalties. J. Comb. Optim. 37(2), 439–453
(2019)

	An Improved Approximation Algorithm for the Prize-Collecting Red-Blue Median Problem
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	3 Analysis
	3.1 A Set of Swap Pairs
	3.2 An Upper Bound on the Cost Increase
	3.3 A Layered Structure of the Swap Pairs
	3.4 Bound the Cost of the Local Optimum

	References

