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Abstract. Recently, a new model of delegated quantum computing has
been proposed, namely, rational delegated quantum computing. In this
model, after a client delegates quantum computing to a server, the client
pays a reward to the server. In this paper, we propose novel one-round
rational delegated quantum computing protocols. The construction of
the previous rational protocols depends on gate sets, while our sumcheck
technique can be easily realized with any local gate set. We also show
that a constant reward gap can be achieved if two non-communicating
but entangled rational servers are allowed. Furthermore, we show, under
a certain condition, the equivalence between rational and ordinary dele-
gated quantum computing protocols.

Keywords: Quantum computing · Rational interactive proof · Game
theory

1 Introduction

1.1 Background

Delegated quantum computing enables a client with weak computational power
to delegate quantum computing to a remote (potentially malicious) server in
such a way that the client can efficiently verify whether the server faithfully
computes the delegated problem (i.e., can verify the server’s integrity). Due to
the size of a universal quantum computer and the difficulty of maintaining it, it
is expected that first generation full-fledged quantum computers will be used in
the delegated-quantum-computing style. Furthermore, since quantum operations
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and communication are too demanding (for current technologies), the client’s
operations and their communication should be made classical.

One of the most important open problems in the field of quantum computing
is whether a classical client can efficiently delegate universal quantum comput-
ing to a quantum server while efficiently verifying the server’s integrity. In del-
egated quantum computing, the honest server’s computational power should be
bounded by polynomial-time quantum computing, because delegated quantum
computing with a server having unbounded computational power is unrealistic.
This limitation is the large difference between delegated quantum computing
and interactive proof systems for BQP. In interactive proof systems, the compu-
tational power of the prover (i.e., the server) is unbounded. Therefore, this open
problem cannot be straightforwardly solved from the well-known containment
BQP ⊆ PSPACE=IP [1].

In this paper, we take a different approach to construct protocols for classical-
client delegated quantum computing. We consider delegating quantum com-
puting to a rational server. This model was first proposed by Morimae and
Nishimura [2] based on the concept of rational interactive proof systems [3]. We
note again that the computational power of the server is bounded by BQP1 in
rational delegated quantum computing, while it is unbounded in the rational
interactive proof systems. In rational delegated quantum computing, after the
client interacts with the server, the client pays a reward to the server depend-
ing on the server’s messages and the client’s random bits. In ordinary delegated
quantum computing, the server may be malicious. On the other hand, in ratio-
nal one, the server is always rational, i.e., he/she tries to maximize the expected
value of the reward. In the real world, there are several situations where ser-
vice providers want to maximize their profits. Since rational delegated quantum
computing reflects such situations, this model can be considered as another pos-
sible situation for delegated quantum computing. In Ref. [2], it was shown that
the classical client can delegate universal quantum computing to the rational
quantum server in one round.

1.2 Our Contribution

As our main contribution, we propose a novel one-round delegated quantum
computing protocol with a classical client and a rational quantum server. More
precisely, we construct protocols where the classical client can efficiently delegate
to the rational quantum server the estimation of output probabilities of n-qubit
quantum circuits. Their estimation has many applications such as estimating
the expected values of observables, which are quantities interested especially by
physicists, and solving decision problems in BQP. Specifically, we consider any n-
qubit polynomial-size quantum circuit with k-qubit output measurements, where
k = O(log n). Since the goal of our rational protocol is to delegate the estima-
tion of the output probabilities, we, for clarity, refer to our protocol as delegated
1 For simplicity, we sometimes use complexity classes to represent computational pow-

ers. For example, we say that a server (a client) is a BQP server (a BPP client) when
he/she performs polynomial-time quantum (probabilistic classical) computing.
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quantum estimating protocol. As shown in the full paper [4], our argument can
also be used to construct a one-round rational delegated quantum computing
protocol for any BQP problem. Intuitively, using a certain BQP-complete prob-
lem [5], any BQP problem can be reduced to the estimation of the probability
of the first qubit being projected onto |1〉. Therefore, our argument works. Fur-
thermore, if a delegated quantum circuit is approximately sparse, our result can
be generalized to the estimation of output probabilities with n-qubit output
measurements. For general quantum circuits, such generalization is still open.

Our protocols can be applied to a broader class of universal gate sets than
the previous protocols [2]. They work for any universal gate set each of whose
elementary gates acts on at most O(log n) qubits, while the previous protocols
are tailored for Clifford gates plus T ≡ |0〉〈0| + eiπ/4|1〉〈1| or classical gates plus
the Hadamard gate. Note that we only consider gate sets whose elementary gates
can be specified with a polynomial number of bits.

Four conditions should be satisfied by practical rational delegated quantum
computing protocols:

1. The reward is upper-bounded by a constant.
2. The reward is always non-negative if the BQP server takes an optimal strategy

that maximizes its expected value.2
3. The maximum of the expected value of the reward is lower-bounded by a

constant.
4. The reward gap [6] is larger than a constant. Here, simply speaking, the

reward gap is a minimum loss on the expected value of the server’s reward
incurred by the server’s behavior that makes the client accept an incorrect
answer. Note that such behavior may require computational power beyond
BQP, while we limit the optimal strategy maximizing the expected value to
one that can be executed in quantum polynomial time.

The protocols of Ref. [2] and our protocol satisfy only conditions 1–3.
Whether the above four conditions can be satisfied simultaneously is an open
problem. In Ref. [2], it is shown that if the reward gap is larger than 1/f(n) with
a polynomial f(n), a super-polynomial increase of the reward (i.e., the violation
of the first condition) is unavoidable in one-round protocols with a single server
unless BQP ⊆ ΣP

3 . Since this inclusion is considered unlikely given the oracle
separation between BQP and PH [7], this implies that it may be impossible to
satisfy the above four conditions simultaneously in one-round protocols with a
single server.

As the second contribution, for BQP problems, we construct a multi-rational-
server delegated quantum computing protocol that satisfies all four conditions
simultaneously. In the full paper [4], we also discuss whether a single server is
sufficient under the (widely believed) assumption that the learning with errors
(LWE) problem is hard for polynomial-time quantum computation.
2 More precisely, the server takes an optimal strategy that can be executed in quantum

polynomial time, because we assume that the computational power of the server is
bounded by BQP. Throughout this paper, the server’s optimization is limited to one
that can be performed in quantum polynomial time unless explicitly noted otherwise.
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Finally, apart from these results, we show that under the certain condition
introduced in Ref. [12], rational and ordinary delegated quantum computing
protocols can be converted from one to the other and vice versa. This equivalence
may provide a new approach to tackle the open problem of whether a classical
client can efficiently delegate universal quantum computing to a (non-rational)
quantum server while efficiently verifying the server’s integrity. Based on this
equivalence, we give an amplification method for the reward gap.

2 Preliminaries

2.1 Rational Delegated Quantum Computing

In this subsection, we define rational delegated quantum computing. Following
the original definition of rational interactive proof systems [3], we first define the
transcript T , the server’s view S, and the client’s view C as follows:

Definition 1. We assume that k is odd. Given an instance x and a round i, we
define the ith transcript Ti, the ith server’s view Si, and the ith client’s view Ci

as follows (0 ≤ i ≤ k):

– T0 = S0 = C0 = {x}.
– When i is odd, Ti = {Ti−1, ai}, where ai is the ith server’s message. On the

other hand, when i(> 0) is even, Ti = {Ti−1, bi}, where bi is the ith client’s
message.

– For odd i, Si = {Si−2, Ti−1, Vi}, where Vi is a quantum circuit used to compute
ai. Note that Si and Vi are not defined for even i because the even-numbered
round is a communication from the client to the server.

– For even i, Ci = {Ci−2, Ti−1, ri}, where ri is a random bit string used to
compute bi. Note that Ci is not defined for odd i because the odd-numbered
round is a communication from the server to the client.

For all i, messages ai and bi are polynomial lengths. Particularly, bi is generated
from Ci in classical polynomial time. The quantum circuit Vi is decided from
Si−2.

Based on Definition 1, we define the following k-round interaction between a
BPP client and a server:

Definition 2. Let k be odd. This means that the protocol begins with the server’s
step. When k is even, the following definition can be adopted by adding a com-
munication from the server to the client at the beginning of the protocol. Let us
consider the following k-round interaction:

1. A BPP client interacts with a server k times. In the ith round for odd i, the
server sends ai to the client. In the ith round for even i, the client sends bi

to the server.
2. The client efficiently calculates a predicate on the instance x and the kth

transcript Tk. If the predicate evaluates to o = 1, the client answers YES. On
the other hand, if o = 0, the client answers NO.
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3. The client efficiently calculates the reward R ∈ [0, c] and pays it to the server,
where c is a positive constant. Note that it is not necessary for the client and
server to know the value of c. The reward function R : {0, 1}∗×{0, 1}poly(|x|) ×
{0, 1}poly(|x|) → R≥0 depends on the instance x ∈ {0, 1}∗, the kth transcript
Tk ∈ {0, 1}poly(|x|), and the client’s random bits rk+1 ∈ {0, 1}poly(|x|).

Rational delegated quantum computing for decision problems is defined as
follows:

Definition 3. The k-round interaction defined in Definition 2 is called a k-
round rational delegated quantum computing protocol for decision problems if
and only if the following conditions hold: let E[f ] denote the expectation value
of a function f . Let Dk be a distribution that the kth transcript follows. For a
language L ⊆ {0, 1}∗ in BQP, if x ∈ L, there exists a classical polynomial-time
predicate and a distribution DYES that can be generated in quantum polynomial
time, such that

Pr[o = 1 | Dk = DYES] ≥
2
3

(1)

and
ETk∼DYES,rk+1 [R(x, Tk, rk+1)] ≥ cYES (2)

with some positive constant cYES ≤ c.
On the other hand, if x /∈ L, there exists a classical polynomial-time predicate

and a distribution DNO that can be generated in quantum polynomial time, such
that

Pr[o = 0 | Dk = DNO] ≥
2
3

(3)

and
ETk∼DNO,rk+1 [R(x, Tk, rk+1)] ≥ cNO (4)

with some positive constant cNO ≤ c.
To generate distributions DYES and DNO, the server decides the ith message

ai following a distribution Di that can be generated in quantum polynomial time
and satisfies

Di = argmaxDi
EDk,Tk ∼Dk,rk+1 [R(x, Tk, rk+1)|Di,Si], (5)

where the expectation is taken over all possible distributions Dk that are compat-
ible with the current server’s view Si. Here, we consider only the maximizations
that can be performed in quantum polynomial time.

Since the server’s computational power is bounded by BQP, it is in general
hard for the server to select an optimal message that satisfies Eqs. (1) and (2).
Therefore, the server’s message ai should be probabilistically generated. That is
why we consider the distribution DYES. The same argument holds for the NO
case.

The value 2/3 in Eqs. (1) and (3) can be amplified to 1 − 2−f(|x|), where
f(|x|) is any polynomial in |x|, using the standard amplification method
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(i.e., by repeating steps 1 and 2, and then taking the majority vote among
outputs in step 2). We here mention that the above rational delegated quantum
computing protocol satisfies conditions 1–3 in Sect. 1. This is straightforward
from R ∈ [0, c] and Eqs. (2) and (4).

The server would like to generate the ith message ai following a distribution
that maximizes the expected value of the finally obtained reward. However,
at that time, the server cannot predict the future distribution Dk. Therefore,
the server also takes the expectation over all possible distributions Dk. The
distribution Di in Eq. (5) is a distribution that maximizes such expected reward.

All of our rational protocols except for one in Sect. 3 are in accordance with
Definition 3. Our rational protocol in Sect. 3 is a rational delegated quantum
computing protocol for function problems, which can be defined in a similar
way.

2.2 Reward Gap

Guo et al. have introduced the reward gap [6]. For convenience, we define a strat-
egy s as a set {ai}i of the server’s messages, which may be adaptively decided
according to the previous client’s messages. When we focus on the dependence
on the server’s messages, we write ETk∼D,rk+1 [R(x, Tk, rk+1)] by Es∼D′ [R(x, s)]
for short. For decision problems, the reward gap is defined as follows:

Definition 4. Let D′ be a distribution that the server’s strategy s follows. Let
D′

max be the distribution D′, where each message ai follows the distribution in
Eq. (5). We say that a rational delegated quantum computing protocol has a
1/γ(|x|)-reward gap if for any input x,

Es∼D′
max

[R(x, s)] − maxs∈SincorrectE[R(x, s)] ≥
1

γ(|x|), (6)

where γ(|x|) is any function of |x|, and Sincorrect is the set of the server’s strate-
gies that make the client output an incorrect answer. Here, the expectation is also
taken over the client’s random bits. Note that Sincorrect may include strategies
that cannot be executed in quantum polynomial time.

From Definition 3, if the server’s strategy s follows the distribution D′
max, the

client outputs a correct answer with high probability. Es∼D′
max

[R(x, s)] is the
maximum expected value of the reward paid to the rational BQP server. On
the other hand, maxs∈SincorrectE[R(x, s)] is the maximum expected value of the
reward paid to the malicious computationally-unbounded server if the server
wants to maximize the expected value as much as possible while deceiving the
client. This is because the client outputs an incorrect answer when the server
takes the strategy s ∈ Sincorrect. As a result, the reward gap represents how
much benefit the rational server can obtain compared with the malicious one.
For function problems, we can define the reward gap in a similar way.
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3 Sumcheck-Based Rational Delegated Quantum
Computing

In this section, we construct a rational delegated quantum computing protocol
for estimating output probabilities of n-qubit quantum circuits, which we call
the rational delegated quantum estimating protocol. Particularly, we consider
any n-qubit polynomial-size quantum circuit with O(log n)-qubit output mea-
surements. We also show that our protocol satisfies conditions 1–3 mentioned in
Sect. 1.

Let {qz}z∈{0,1}k be the output probability distribution of the quantum circuit
U , where qz ≡ 〈0n|U†(|z〉〈z|⊗I⊗n−k)U |0n〉 and I is the two-dimensional identity
operator. We show that if the quantum server is rational, the classical client can
efficiently obtain the estimated values {pz}z∈{0,1}k with high probability such
that |pz − qz| ≤ 1/f(n) for any z and any polynomial f(n). Therefore, for
example, the classical client can approximately sample with high probability
in polynomial time from the output probability distribution {qz}z∈{0,1}k of the
quantum circuit U . Before proposing our rational delegated quantum estimating
protocol, we calculate qz using the Feynman path integral. Let U = uL . . . u2u1 ≡∏1

i=L ui, where ui is an elementary gate in a universal gate set for all i, and L
is a polynomial in n. The probability qz is calculated as follows:

qz =
∑

s∈{0,1}(2L−1)n−k

g(z, s), (7)

where

g(z, s) ≡ 〈0n|u†
1

⎛

⎝
2∏

j=L

uj |s(j−1)〉〈s(j−1)|

⎞

⎠

†

|zs(L)〉〈zs(L)| (8)

(
2∏

i=L

ui|s(L+i−1)〉〈s(L+i−1)|
)

u1|0n〉,

and s is a shorthand notation of the (2L − 1)n − k bit string s(1)s(2) . . . s(2L−1).
As an important point, given z and s, the function g(z, s) can be calculated in
classical polynomial time. This is because each elementary gate acts on at most
O(log n) qubits. Furthermore, from Eq. (8), 0 ≤ (1 + Re[g(z, s)])/2 ≤ 1, where
Re[g(z, s)] is the real part of g(z, s).

To construct our rational delegated quantum estimating protocol, we use the
rational sumcheck protocol [8]. The rational sumcheck protocol enables the client
to efficiently delegate to the rational server the calculation (or approximation) of
∑l

i=1 xi, where xi is an integer for any i. To fit the rational sumcheck protocol
to our case, we generalize it for the case of the complex number xi. As a result,
we can set xi = g(z, s) and z to be a certain fixed value. Our protocol runs as
follows:

[Protocol 1]
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1. For all z ∈ {0, 1}k, the rational server and the client perform the following
steps:
(a) The rational server sends to the client a real non-negative number yz,

which is explained later. (Note that yz is represented by a bit string with
logarithmic length; therefore, the message size from the server to the client
is logarithmic.)

(b) The client samples s uniformly at random from {0, 1}(2L−1)n−k.
(c) The client flips a coin that lands heads with probability (1+Re[g(z, s)])/2.

If the coin lands heads, the client sets bz = 1; otherwise, bz = 0.
(d) Let Yz ≡ [yz + 2(2L−1)n−(k+1)]/2(2L−1)n−k. The client calculates the

reward

R(yz, bz) ≡
1
2k

[
2Yzbz + 2 (1 − Yz) (1 − bz) − Y 2

z − (1 − Yz)
2 + 1

]
, (9)

which is the (slightly modified) Brier’s scoring rule [9]. This scoring rule
guarantees that the expected value of the reward is maximized when yz

is equal to the probability of bz = 1 up to additive and multiplicative
factors. Then, the client pays the reward R(yz, bz) to the rational server.

2. The client calculates

pz ≡
yz

∑
z∈{0,1}k yz

(10)

for all z.

Since the sampling in step (c) can be approximately performed in classical poly-
nomial time, what the client has to do is simply efficient classical computing.
Furthermore, since the repetitions in step 1 can be performed in parallel, this is
a one-round protocol. Note that except for the communication required to pay
the reward to the server, Protocol 1 only requires one-way communication from
the server to the client.

We show that pz satisfies
∑

z∈{0,1}k |pz − qz| ≤ 1/f(n) for any fixed polyno-
mial f(n) with high probability. This means that pz is an approximated value
of qz for each z with high probability. More precisely, we show the following
theorem:

Theorem 1. Let f(n) and h(n) be any polynomials in n. Let qz =
〈0n|U†(|z〉〈z| ⊗ I⊗n−k)U |0n〉, and pz be the probability given in Eq. (10). Then,
for any f(n) and h(n), there exists Protocol 1 such that

∑
z∈{0,1}k |pz − qz| ≤

1/f(n) with probability of at least 1 − e−h(n).

The proof is given in the full paper [4]. The intuitive idea is that the expected
value of our reward function increases as yz becomes to be close to qz/2 for
all z. Therefore, the rational server essentially sends approximated values of
{qz}z∈{0,1}k to the client.

From Theorem 1, by approximately sampling from {pz}z∈{0,1}k , the client can
approximately sample from {qz}z∈{0,1}k with high probability. Given the values
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of {pz}z∈{0,1}k , the approximate sampling from {pz}z∈{0,1}k can be classically
performed in polynomial time.

In Protocol 1, we assume that (1 + Re[g(z, s)])/2 can be exactly represented
using a polynomial number of bits. If this is not the case, the classical client has
to approximate (1 + Re[g(z, s)])/2. As a result, as shown in the full paper [4],
the expected value of the reward is maximized when yz = qz/2 + δ, where the
real number δ satisfies |δ| ≤ 2−f ′(n) for a polynomial f ′(n). Therefore, even in
the approximation case, the classical client can efficiently obtain the estimated
values of the output probabilities of quantum circuits.

Next, we show the following theorem:

Theorem 2. In Protocol 1, the total reward
∑

z∈{0,1}k R(yz, bz) is between 3/2−
O(1/2(2L−1)n−k) and 3/2 + O(1/2(2L−1)n−k) for bz ∈ {0, 1} and any real values
yz ∈ [0, 1/2]. Furthermore, the maximum expected value of the total reward is
lower-bounded by 3/2 + O

(
1/22(2L−1)n−k

)
.

The proof is given in the full paper [4]. From this theorem, Protocol 1 satisfies
conditions 1–3 in Sect. 1.

4 Multi-Rational-Server Delegated Quantum Computing
with a Constant Reward Gap

In this section, we consider the reward gap. Although a large reward gap is
desirable to incentivize the server to behave optimally, our sumcheck-based pro-
tocol has only an exponentially small gap as in the existing rational delegated
quantum computing protocols [2]. It is open as to whether a constant reward
gap is possible. However, in this subsection, we show that if non-communicating
but entangled multiservers are allowed, we can construct a rational delegated
quantum computing protocol with a constant reward gap for BQP problems
while keeping three conditions 1–3 in Sect. 1. To this end, we utilize multiprover
interactive proof systems for BQP. In some multiprover interactive proof systems
proposed for BQP, the computational ability of the honest provers is bounded by
BQP but that of the malicious provers is unbounded (e.g., Refs. [10,11]). Simply
speaking, these multiprover interactive proof systems satisfy the following: for
any language L ∈ BQP, there exists a poly(|x|)-time classical verifier V interact-
ing with a constant number of non-communicating but entangled provers, such
that for instances x, if x ∈ L, then there exists a poly(|x|)-time quantum provers’
strategy in which V accepts with probability of at least 2/3, and if x /∈ L, then
for any (computationally-unbounded) provers’ strategy, V accepts with proba-
bility of at most 1/3. We denote the above interaction between V and provers
as πL for the language L ∈ BQP.

Using the above multiprover interactive proof systems and the construction
used in Ref. [3], we construct the following rational delegated quantum comput-
ing protocol:
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[Protocol 2]

1. For a given BQP language L and an instance x, one of M rational servers
sends b ∈ {0, 1} to the client. As shown in Theorem 3, if the server is rational,
b = 1(0) when x is in L (x is not in L).

2. If b = 1, the client and M servers simulate πL for the language L and instance
x; otherwise, the client and M servers simulate πL̄ for the complement L̄ and
the instance x.

3. The client pays reward R = 1/M to each of the M servers if the simulated
verifier accepts. On other hand, if the simulated verifier rejects, the client
pays R = 0.

4. The client concludes x ∈ L if b = 1; otherwise, the client concludes x /∈ L.

Note that since BQP is closed under complement, πL̄ exists for the complement
L̄. Here, we notice that even if the simulated verifier accepts, each server can
obtain only 1/M as the reward. However, since the number M of the servers
is two in the multiprover interactive proof systems in Refs. [10,11], the reward
1/M paid to each server can be made 1/2. Furthermore, when we use the results
in Refs. [10,11], the number of rounds in Protocol 2 becomes a constant.

We clarify the meaning of “rational” in multi-rational-server delegated quan-
tum computing. We can consider at least two possible definitions of “rational”.
One is that each server wants to maximize each reward, and the other is that all
servers want to collaboratively maximize their total reward. Fortunately, in Pro-
tocol 2, these two definitions are equivalent. In other words, the total reward is
maximized if and only if the reward paid to each server is maximized. Hereafter,
we therefore do not distinguish between these two definitions.

Before we show that Protocol 2 has a constant reward gap, we show that if
the servers are rational, the client’s answer is correct. More formally, we prove
the following theorem:

Theorem 3. In Protocol 2, if the servers are rational, i.e., take the strategy that
maximizes the expectation value of the reward, then b = 1 if and only if x ∈ L.

Proof. First, we consider the YES case, i.e., the case where x is in L. If b = 1,
the client and the servers perform πL for the language L and the instance x.
Therefore, when the servers simulate the honest provers in πL, the client accepts
with probability of at least 2/3. On the other hand, if b = 0, the client accepts
with probability less than or equal to 1/3. This is because x is a NO instance for
the complement L̄, i.e., x /∈ L̄. In πL̄, when the answer is NO, the acceptance
probability is at most 1/3 for any provers’ strategy. Since the completeness-
soundness gap 1/3 is a positive constant, one of the rational servers sends b = 1
if x ∈ L. By following the same argument, one of them sends b = 0 when x /∈ L.

From this proof, we notice that the reward gap has the same value as the
completeness-soundness gap.3 Protocol 2 has a 1/3 reward gap, which is con-
stant. Furthermore, it can be straightforwardly shown that Protocol 2 also satis-
fies conditions 1–3 mentioned in Sect. 1 as follows. Since the total reward M ×R
3 Precisely speaking, since the computational power of the server is bounded by BQP,

the server sends b = 0(1) with an exponentially small probability when the correct
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paid to M servers is 0 or 1, the first and second conditions are satisfied. When
the servers behave rationally, the client accepts with probability at least 2/3.
Therefore, the expected value of the total reward paid to the rational servers is
at least 2/3, which satisfies the third condition.

5 Relation Between Rational and Ordinary Delegated
Quantum Computing Protocols

In Sect. 4, by incorporating ordinary delegated quantum computing into rational
delegated quantum computing, we have shown that the four conditions can be
simultaneously satisfied. In this section, we consider the reverse direction, i.e.,
constructing ordinary delegated quantum computing protocols from rational del-
egated quantum computing protocols. By combining this construction with the
idea in Sect. 4, we obtain an equivalence (under a certain condition) between
these two types of delegated quantum computing. Note that in ordinary ones,
the server’s ability is unbounded in NO cases (i.e., when x /∈ L).

To construct ordinary delegated quantum computing protocols from ratio-
nal ones, we consider the general poly(|x|)-round rational delegated quantum
computing protocol defined in Definition 3, which we call RDQC for short. By
adding two conditions for RDQC, we define constrained RDQC as follows:

Definition 5. The constrained RDQC protocol is an RDQC protocol defined in
Definition 3 such that

1. There exists a classically efficiently computable polynomial f(|x|) such that

cYES − maxs∈Sincorrect,x/∈LE[R(s, x)] ≥
1

f(|x|), (11)

2. The upper-bound c of the reward is classically efficiently computable.

The first condition was introduced in Ref. [12]. It is worth mentioning that
the second condition is satisfied in our sumcheck-based protocol, while the first
condition is not. Note that the left-hand side of Eq. (11) is not the reward gap.

We show that an ordinary delegated quantum computing protocol with a sin-
gle BQP server and a single BPP client can be constructed from any constrained
RDQC protocol. To this end, we show the following theorem:

Theorem 4. If a language L in BQP has a k-round constrained RDQC protocol,
then L has a k-round interactive proof system with the completeness-soundness
gap 1/(cf(|x|)) between an honest BQP prover and a BPP verifier.

answer is YES (NO). Therefore, the finally obtained reward gap is decreased by the
inverse of an exponential from the original completeness-soundness gap. However,
this is negligible because the original completeness-soundness gap is a constant.
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The proof is essentially the same as that of Theorem 4 in Ref. [12].
As shown in the full paper [4], from Theorem 4, we can show that if there

exists a constant-round constrained RDQC protocol for BQP, then BQP ⊆
∏p

2,
which seems to be unlikely due to the oracle separation between BQP and PH [7].

We show that the reverse conversion is also possible using the idea in Sect. 4.

Theorem 5. If a language L in BQP has an interactive proof system with an
honest BQP prover and a BPP verifier, then L has a constrained RDQC protocol.

The detail is given in the full paper [4].
Finally, by applying Theorems 4 and 5, we give the following amplification

method for the reward gap:

Corollary 1. The reward gap of the constrained RDQC can be amplified to a
constant.

The proof is given in the full paper [4]. Here, we explain the basic idea of the
proof. Using the conversion between rational and ordinary delegated quantum
computing protocols, we show that the amplification of the reward gap can
be replaced with that of the soundness-completeness gap. This means that the
traditional amplification method for the soundness-completeness gap can be used
to amplify the reward gap. Remarkably, this amplification method works even if
the original constrained RDQC protocol has only an exponentially small reward
gap. This is because the original constrained RDQC protocol satisfies Eq. (11).
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6. Guo, S., Hubáček, P., Rosen, A., Vald, M.: Rational arguments: single round dele-
gation with sublinear verification. In: Proceedings of the 5th Conference on Inno-
vations in Theoretical Computer Science, pp. 523–540. ACM, New Jersey (2014)

7. Raz, R., Tal, A.: Oracle separation of BQP and PH. In: Proceedings of the 51st
Annual Symposium on Theory of Computing, pp. 13–23. ACM, New York (2019)
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