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Abstract. Given a ground set U of n elements and a family of m subsets
S = {Si : Si ⊆ U}. Each subset S ∈ S has a positive cost c(S) and every
element e ∈ U is associated with an integer coverage requirement re > 0,
which means that e has to be covered at least re times. The weighted
set multi-cover problem asks for the minimum cost subcollection which
covers all of the elements such that each element e is covered at least re
times.

In this paper, we study the online version of the weighted set multi-
cover problem. We give a randomized algorithm with competitive ratio
8(1+ln m) ln n for this problem based on the primal-dual method, which
improve previous competitive ratio 12 log m log n for the online set multi-
cover problem that is the special version where each cost c(S) is 1 for
every subset S.

1 Introduction

The weighted set multi-cover problem is the generalization of the set cover prob-
lem, which is defined as follows. Given a ground set U = {1, . . . , n} of n elements
and a family of m subsets S = {Si : 1 ≤ i ≤ m}, where Si ⊆ U for all i. Each
subset S ∈ S has a positive cost c(S) and every element e ∈ U is associated with
an integer coverage requirement re > 0, which means that e has to be covered
at least re times. The goal is to find a minimum cost subcollection that covers
all of the elements such that each element e is covered at least specified times
re. When all re = 1, the set multi-cover problem becomes the set cover problem.
Let R = max

e∈U
re. We assume that R = O(n).

Similarly, the online weighted set multi-cover problem is the generalization of
the online set cover problem, which is described as follows. An adversary gives
elements and their coverage requirement to the algorithm from U one-by-one.
When a new element e and its coverage requirement re are given, the algorithm
has to cover it at least re times by choosing some sets of S containing it. We
assume that the elements of U and the coverage requirement of elements and
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the members of S are known in advance to the algorithm, however, the set of
elements given by the adversary is not known in advance to the algorithm. The
objective is to minimize the total cost of the sets chosen by the algorithm.

The performance of an online algorithm is measured by the competitive ratio,
which is defined as follows. Given an instance I of a minimization optimization
problem M . Let OPT (I) denote the optimum cost of off-line algorithms for
instance I. If for each instance I of M , an online algorithm OA outputs a solution
with cost at most c ·OPT (I)+α, where α is a constant independent of the input
sequence, then the competitive ratio of OA is c. If for each instance I of M ,
a randomized online algorithm ROA outputs a solution with expected cost at
most c · OPT (I) + α, where α is independent of the input sequence, then the
competitive ratio of ROA is c.

The set cover problem has wide application and is a well-known problem in
algorithms and complexity. In [11], Karp shows that the set cover problem is
NP-compete. Johnson [10] and Lovasz [13] give the greedy approximation algo-
rithm for the unweighted set cover problem. Chvatal [7] proposes the greedy
approximation algorithm for the weighted set cover problem. These greedy algo-
rithms are of approximation ratio Hn, where Hn = 1 + 1/2 + . . . + 1/n. Lund
and Yannakakis show that the approximation ratio O(log n) for the set cover
problem is essentially tight [14]. Later, Feige proves that it is impossible to have
an approximation algorithm for the set cover problem with approximation ratio
better than O(log n) [8]. Rajagopalan and Vazirani propose primal-dual RNC
approximation algorithms for the set mullti-cover and covering integer programs
problems [15]. Noga Alon et al. study the online set cover problem. Based on
the techniques from computational learning theory, Noga Alon et al. propose a
deterministic algorithm for this problem with competitive ratio O(log m log n)
[1]. The set cover problem is related to the budgeted maximum coverage problem,
which is a flexible model for many applications [16–20].

In the areas of exact and approximation algorithms, the primal-dual method
is one of powerful design methods. To our best of knowledge, the first time that
the primal-dual method is used to the design of online algorithms is in Young’
work about weighted paging [21], where he design an k-competitive online algo-
rithm. In recent several years, Buchbinder and Naor have shown that the primal-
dual method can be widely used to the design and analysis of online algorithms
for many problems such as ski-rental, ad-auctions, routing and network opti-
mization problems and so on [2–6].

In [12], Kuhnle et al. introduce the online set multi-cover problem and design
randomized algorithms with 12 log m log n-competitive ratio. In this paper, we
study the online weighted set multi-cover problem. We present an 8(1+ln m) ln n
competitive randomized algorithm for this problem based on the primal-dual
method. Specially, when each cost c(S) is 1 for every subset S, the online
weighted set multi-cover problem become the online set multi-cover problem.
Thus, our algorithm improve Kuhnle et al.’s competitive ratio for the online set
multi-cover problem.
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2 A Fractional Primal-Dual Algorithm For the Online
Weighted Set Multi-cover Problem

In this section, we design a fractional algorithm for the online weighted set
multi-cover problem via the primal-dual method. A fractional algorithm allows
an element e is fractionally covered its fS part by a set S such that

∑

e∈S

fS = 1.

First, the weighted set multi-cover problem can be formulated as a 0–1 integer
program as follows.

Minimize
∑

S∈S
c(S)xS

Subject to
∑

S:e∈S

xS ≥ re, e ∈ U
xS ∈ {0, 1}, S ∈ S

Its Linear Programs relaxation is as follows.

Minimize
∑

S∈S
c(S)xS

Subject to
∑

S:e∈S

xS ≥ re, e ∈ U
−xS ≥ −1, S ∈ S
xS ≥ 0, S ∈ S

Its Dual Programs is as follows

Maximize
∑

e∈U

reye − ∑

S∈S
zS

Subject to
∑

e∈S

ye − zS ≤ c(S), S ∈ S
ye ≥ 0, e ∈ U
zS ≥ 0, S ∈ S

In the following, we design the online fractional algorithm for the weighted
set multi-cover problem via the primal-dual design method developed in recent
years [2–6] (see Algorithm 2.1).

1: At time t, when an element e with coverage requirement re arrives:
2: If the primal constraints

∑

S:e∈S

xS ≥ re corresponding to e is satisfied, then do

nothing.
3: Otherwise, do the following:
4: While

∑

S:e∈S

xS < re:

5: Continuously increase ye .
6: If xS = 0 and (

∑

e∈S

ye) − zS = c(S), then set xS ← 1
m

.

7: If 1
m

≤ xS < 1, then xS increase by the following function:
xS ← 1

m
·exp( 1

c(S)
[(

∑

e∈S

ye) − zS − c(S)]).

8: If xS = 1, then zS is increased at the same ratio as ye.

Algorithm 2.1: The online fractional algorithm for the weighted set multi-cover
problem.
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Theorem 1. The fractional online algorithm for the weighted set multi-cover
problem is of competitive ratio 2(1 + lnm).

Proof. Let P denote the value of the objective function of the primal solution
and D denote the value of the objective function of the dual solution. Initially,
let P = 0 and D = 0. In the following, we prove three claims:

(1) The primal solution produced by the fractional algorithm is feasible.
(2) Every dual constraint in the dual program is violated by a factor of at most

(1 + lnm).
(3) P ≤ 2D.

By three claims and weak duality of linear programs, the theorem follows
immediately.

First, we prove the claim (1) as follows. Consider a primal constraint∑

S:e∈S

xS ≥ re. In each While iteration (From line 5 to line 8 in the fractional

algorithm), when this new primal constraint
∑

S:e∈S

xS ≥ re becomes be satisfied,

the variable xS stop increasing its value and its value is not greater than 1. Upon
xS become 1, the fractional algorithm begin to increase zS and ye at the same
ratio. After that, the increases of zS and ye cannot result in infeasibility.

Second, we prove the claim (2) as follows. Consider any dual constraint∑

e∈S

ye − zS ≤ c(S). Since its corresponding variable xS is not greater than 1, we

get that:
xS = 1

m ·exp( 1
c(S) [(

∑

e∈S

ye) − zS − c(S)]) ≤ 1.

So exp( 1
c(S) [(

∑

e∈S

ye) − zS − c(S)]) ≤ m.

Then, (
∑

e∈S

ye) − zS − c(S) ≤ c(S) ln m.

Thus, we get that: (
∑

e∈S

ye) − zS ≤ c(S)(1 + lnm).

Third, we prove claim (3) as follows. The contribution to the primal cost
consists of two parts. Let C1 denote the contribution part which is from (6) of
the fractional algorithm, where variables xS are increased from 0 → 1

m . Let C2

denote the other contribution part which is from (7) of the fractional algorithm,
where variables xS are increased from 1

m up to at most 1 by the exponential
function.

Bounding C1: Let x̃S = min(xS , 1
m ). We bound the term

∑

S∈S
c(S)x̃S . To do

this, we need the following several facts.
First, from the fractional algorithm, we get that if xS > 0, and therefore

x̃S > 0, then: ∑

e∈S

ye − zS ≥ c(S). (1)

We call (1) as the primal complementary slackness condition.
At the time t, let B′(S) = {S|xS = 1, e ∈ S}. Then |B′(S)| ≤ re since

otherwise the constraint at time t has been already satisfied and the fractional
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algorithm stops increasing the variable ye. Thus, (m − 1)|B′(S)| ≤ (m − 1)re.
So m−|B′(S)|

m ≤ re − |B′(S)|. Since x̃S ≤ 1
m ,

∑

S∈S\B′(S)

x̃S ≤ m−B′(S)
m . Hence

∑

S∈S\B′(S)

x̃S ≤ re − |B′(S)| (2)

Also, it follows from the algorithm that if zS > 0, then:

xS ≥ 1. (3)

We call (2) as the dual complementary slackness and (3) as the second dual
complementary slackness condition.

Using the primal and dual complementary slackness conditions, we show the
following conclusions:

∑

S∈S
c(S)x̃S

≤
∑

S∈S
(
∑

e∈S

ye − zS)x̃S (4)

=
∑

S∈S
(
∑

e∈S

yex̃S) −
∑

S∈S
zS x̃S (5)

=
∑

e

(
∑

S:e∈S

x̃S)ye) −
∑

S∈S
zS x̃S (6)

≤
∑

e

reye −
∑

S∈S
zS (7)

Where inequality (4) follows from inequality (1) and equality (6) follows by
changing the order of summation. As for the reason why inequality (7) holds,
we consider some time t. At the time t when e with coverage requirement re
arrive. From the fractional algorithm, we know that zS is increased at the same
ratio as ye only when xS = 1. Thus, dye

dt = dzS
dt only when S ∈ B′(S). Hence, the

increasing ratio of the left-hand side of (7) at the time t is (
∑

S∈S\B′(S)

x̃S)dye

dt . But,

at the time t, the increasing ratio of the right-hand side of (7) is (re−|B′(S)|)dye

dt .
By inequality (2), we get (

∑

S∈S\B′(S)

x̃S)dye

dt ≤ (re − |B′(S)|)dye

dt . So inequality

(7) holds
Thus, C1 is at most D.
Bounding C2 : At some time t, we show that the increase ΔC2 is most ΔD

in the same round.
ΔC2 =

∑

S∈S, 1
m≤xS<1

c(S) · ΔxS (8)
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From the line 7 of the fractional algorithm, we get that dxS

dye
= 1

c(S) · xS . So,
ΔxS = 1

c(S) · xS · Δye. Thus, we get that:

ΔC2 = (
∑

S∈S, 1
m≤xS<1

xS) · Δye (9)

At the time t, the new primal constraints are not yet satisfied, so we get that:∑

S∈S, 1
m≤xS<1

xS +
∑

xS=1
1 < re. Thus,

∑

S∈S, 1
m≤xS<1

xS < re − ∑

xS=1
1. Hence,

ΔC2 ≤ (re −
∑

xS=1

1) · Δye (10)

From the line 8 of the fractional algorithm, Δye = ΔzS when xS = 1 in the
same sound at the time t. So,

ΔC2 ≤ re · Δye −
∑

xS=1

ΔzS = ΔD (11)

Thus, C2 ≤ D.
Hence, we get that P = C1 +C2 ≤ 2D. So, claim (3) holds. Furthermore, the

theorem holds. ��

3 Randomized Algorithm for the Online Weighted Set
Multi-cover Problem

In this section, we design a randomized algorithm for the online weighted set
multi-cover problem with competitive ratio 8(1 + lnm) ln n.

1: For each set S ∈ S, 4 ln n independently random variables V (S, i) are uniformly
chosen from [0, 1] at random.

2: For every set S ∈ S, let ε(S) = min4 lnn
i=1 V (S, i).

3: At time t,a new element e and its cover requirement re arrives. Let ce is the times
that e has been covered at time t and let ue = re − ce. If ce ≥ re, then do nothing.

4: Otherwise, we use Algorithm 2.1 to compute the values of xS in the unsatisfied
primal constraint that corresponds to e, and let C denote the cover set, then do the
following:

5: for j = 1 to ue do
6: For all unchosen sets S ∈ S\C that appears in the unsatisfied primal constraint

that corresponds to e, when xS ≥ ε(S), take one of these sets to the cover C.
7: S ← S\{S}; C ← C ∪ S.
8: end for

Algorithm 3.1: The randomized online algorithm for the weighted set multi-
cover problem.
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Theorem 2. The randomized algorithm is of competitive ratio 8(1 + lnm) ln n.

Proof. First, we show that the randomized algorithm produces a feasible solution
with high probability 1 − O( 1

n2 ) > 1
2 .

Consider any an element e, assume that it appears at time t. let Ai denote
the event that e isn’t covered in the i-th round from 5-th to 7-th line in the
randomized algorithm. Let Sti denote the unchosen sets of S and Cti denote the
chosen sets at the beginning of in the i-th round. c(e, ti) denote the number of
e has been covered at the beginning of in the i-th round.

Then, we compute the probability that Ai occurs. Consider any j(1 ≤ j ≤
4 ln n), let Dj denote the event that e is not covered due to j, which means that
for all unchosen sets S ∈ Sti and e ∈ S, none of the value of V (S, j) is less than
xS . Thus, Pr(Ai = 1) =

⋂

1≤j≤4 lnn

Pr(Dj = 1)

The probability Pr(V (S, i) ≤ xS) is xS . So Pr(Dj = 1) =
∏

S∈Sti
|e∈S

(1 −
xS). Since 1 − x ≤ exp(−x), we get that: Pr(Dj = 1) ≤ exp(− ∑

S∈Sti
|e∈S

xS).

Since all xS consist of a fractional solution after the fractional algorithm, we get
that

∑

S∈S:e∈S

xS ≥ re. Thus,
∑

S∈Sti
|e∈S

xS +
∑

S∈Cti
|e∈S

xS ≥ re. So
∑

S∈Sti
|e∈S

xS ≥
re − ∑

S∈Cti
|e∈S

xS = re − c(e, ti). Hence, Pr(Dj = 1) ≤ exp(− ∑

S∈Sti
|e∈S

xS) ≤
exp(−ni), where ni = re − c(e, ti). So, Pr(Dj = 1) ≤ exp(−1). Hence, Pr(Ai =
1) ≤ (exp(−1))4 lnn = exp(−4 ln n) = 1

n4 .
So, the probability that e is not covered re times is Pr(A1 = 1 ∨ . . . ∨ Aue

=
1) ≤ ∑ue

i=1 Pr(Ai = 1) ≤ ∑ue

i=1
1
n4 = ne

n4 ≤ re
n4 ≤ R

n4 ≤ O(n)
n4 = O( 1

n3 ).
By the union bound that the probability of union events is at most the sum

of the probability of each event, the probability that there is an element e which
is not covered re times is at most n × O( 1

n3 ) = O( 1
n2 ) since there are at most n

elements.
Hence, the randomized algorithm produces a feasible solution with high prob-

ability 1 − O( 1
n2 ) > 1

2 .
Second, we show that the expected cost of the solution of randomized algo-

rithms is O(log n) times the fractional solution.
Let Bi denote the event that V (S, i) ≤ xS . Then, Pr(Bi = 1) = xS . The

probability that the set S is chosen to the solution is at most the probability
that there exists an i, 1 ≤ i ≤ 4 ln n, such that V (S, i) ≤ xS .

Thus, the probability that S is chosen to the solution is at most the prob-
ability of

⋃4 lnn
i=1 Bi. By the union bound this probability is at most the sum of

the probabilities of the different events, which is 4xS ln n. Therefore, using the
linearity of expectation, the expected cost of the solution is at most 4 lnn times
the cost of the fractional solution.

By Theorem 1, the cost of the fractional solution is 2(1 + lnm) times the
optimal solution. So the competitive ratio of the randomized algorithm is 8(1 +
ln m) ln n. ��
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4 Conclusion

In this paper, we have studied the online version of the weighted set multi-cover
problem. We have proposed a 8(1+lnm) ln n-competitive randomized algorithm
for this problem based on the primal-dual method. An interesting open problem
is to design deterministic algorithms for the online weighted set multi-cover
problem.
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