®

Check for
updates

Polynomial Kernels for Paw-Free Edge
Modification Problems

Yixin Cao'®)@®, Yuping Ke', and Hanchun Yuan?

! Department of Computing, Hong Kong Polytechnic University,
Hong Kong, China
yixin.cao@polyu.edu.hk
2 School of Computer Science and Engineering, Central South University,
Changsha, China

Abstract. Let H be a fixed graph. Given a graph G and an integer k,
the H-free edge modification problem asks whether it is possible to mod-
ify at most k edges in G to make it H-free. Sandeep and Sivadasan (IPEC
2015) asks whether the paw-free completion problem and the paw-free
edge deletion problem admit polynomial kernels. We answer both ques-
tions affirmatively by presenting, respectively, O(k)-vertex and O(k*)-
vertex kernels for them. This is part of an ongoing program that aims at
understanding compressibility of H-free edge modification problems.

Keywords: Kernelization - Paw-free graph - Graph modification

1 Introduction

A graph modification problem asks whether one can apply at most k modifi-
cations to a graph to make it satisfy certain properties. By modifications we
usually mean additions and/or deletions, and they can be applied to vertices
or edges. Although other modifications are also considered, most results in lit-
erature are on vertex deletion and the following three edge modifications: edge
deletion, edge addition, and edge editing (addition/deletion).

Compared to the general dichotomy results on vertex deletion problems [1,5],
the picture for edge modification problems is far murkier. Embarrassingly, this
remains true for the simplest case, namely, H-free graphs for fixed graphs H.
This paper is a sequel to [2], and we are aiming at understanding for which
H, the H-free edge modification problems admitting polynomial kernels. Our
current focus is on the four-vertex graphs; see Fig. 1 (some four-vertex graphs
are omitted because they are complement of ones presented here) and Table 1.
We refer the reader to [2] for background of this research and related work.

! Disclaimer: Independent of our work, Eiben et al. [3] obtain similar results for edge
modification problems to paw-free graphs. They are also able to develop a polynomial
kernel for the editing problem.

Supported by RGC grants 15201317 and 15226116, and NSFC grant 61972330.

© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 37-49, 2020.
https://doi.org/10.1007/978-3-030-59267-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_4&domain=pdf
http://orcid.org/0000-0002-6927-438X
https://doi.org/10.1007/978-3-030-59267-7_4

38 Y. Cao et al.
(a) Py (b) Cy4 (c) Ku (d) claw (e) paw (f) diamond

Fig. 1. Graphs on four vertices (their complements are omitted).

Table 1. The compressibility results of H-free edge modification problems for H being
four-vertex graphs. Note that every result holds for the complement of H; e.g., the
answers are also no when H is 2K (the complement of Cy).

H Completion Deletion Editing
K, Trivial O(k?) O(K?) [8]
Py O(k?) Ok?) O(k*) [4]
Diamond | Trivial O(k?) O(k®) [2]
Paw O(k) [this paper] | O(k*) [this paper] | O(k®) [3]
Claw Unknown Unknown Unknown
Cy No No No [4]

In this paper, we show polynomial kernels for both the completion and edge
deletion problems when H is the paw (Fig.1(e)). They answer open problems
posed by Sandeep and Sivadasan [7].

Theorem 1. The paw-free completion problem has a 38k-vertex kernel.
Theorem 2. The paw-free edge deletion problem has an O(k*)-vertex kernel.

It is easy to see that each component of a paw-free graph is either triangle-
free or a complete multipartite graph with at least three parts [6]. This simple
observation motivates us to take the modulator approach. Here by modulator
we mean a set of vertices that intersect every paw of the input graph by at least
two vertices. Note that the deletion of all the vertices in the modulator leaves
the graph paw-free. We then study the interaction between the modulator M
and the components of G — M, which are triangle-free or complete multipartite.
We use slightly different modulators for the two problems under study.

2 Paw-Free Graphs

All graphs discussed in this paper are undirected and simple. A graph G is given
by its vertex set V(G) and edge set E(G). For a set U C V(QG) of vertices, we
denote by G[U] the subgraph induced by U, whose vertex set is U and whose
edge set comprises all edges of G with both ends in U. We use G — X, where
X CV(Q), as a shorthand for G[V(G) \ X], which is further shortened as G —v
when X = {v}. For a set E of edges, we denote by G + E the graph obtained

Polynomial Kernels for Paw-Free Edge Modification Problems 39

by adding edges in F to G,—its vertex set is still V(G) and its edge set becomes
E(G)UE, . The graph G—E_ is defined analogously. A paw is shown in Fig. 1(e).

For the paw-free completion (resp., edge deletion) problem, a solution of an
instance (G, k) consists of a set E, (resp., E_) of at most k edges such that
G+ E; (resp., G — E_) is paw-free. For a positive integer k, a k-partite graph is
a graph whose vertices can be partitioned into k different independent sets, called
parts, and a k-partite graph is complete if all the possible edges are present, i.e.,
there is an edge between every pair of vertices from different parts. A complete
multipartite graph is a graph that is complete k-partite for some k£ > 3. Note
that here we exclude complete bipartite graphs for convenience.

Proposition 1 ([6]). A graph G is paw-free if and only if every component of
G is triangle-free or complete multipartite.

In other words, if a connected paw-free graph contains a triangle, then it is
necessarily a complete multipartite graph. Another simple fact is on the adja-
cency between a vertex and a (maximal) clique in a paw-free graph.

Proposition 2 (x?). Let K be a clique in a paw-free graph. If a vertex v is
adjacent to K, then |K \ N[v]| < 1.

A set M C V(G) of vertices is a modulator of a graph G if every paw in G
intersects M by at least two vertices. Note that G— M is paw-free. The following
three propositions characterize the interaction between the modulator M and
the components of G — M.

Proposition 3 (x). Let M be a modulator of G. If v € M forms a triangle with
some component C' of G — M, then all the neighbors of v are in M and C.

In other words, if a vertex v in M forms a triangle with a component of G —
M, then v is a “private” neighbor of this component. As we will see, these
components (forming triangles with a single vertex from M) are the focus of our
algorithms.

Proposition 4 (x). Let G be a graph and M a modulator of G. If a vertex
v € M forms a triangle with an edge in a triangle-free component C of G — M,
then (i) v is adjacent to all the vertices of C; and (ii) C is complete bipartite.

We say that a triangle-free component of G — M is of type 1 if it forms
a triangle with some vertex in M, or type 1I otherwise. By Proposition4, for
each type-I triangle-free component, all its vertices have a common neighbor in
M. A component is trivial if it consists of a single vertex. Note that all trivial
components of G — M are type-II triangle-free components.

Proposition 5. Let G be a graph and M a modulator of G. For any complete
multipartite component C' of G — M and vertex v € M adjacent to C, the set
of vertices in C that are nonadjacent to v is either empty or precisely one part

of C.

2 The proof of a proposition marked with a « is deferred to the full version.

40 Y. Cao et al.

Proof. Suppose that the parts of C' are Uy, ..., U,. We have nothing to prove if
all the vertices in C are adjacent to v. In the following we assume that, without
loss of generality, v is adjacent to v € U; and nonadjacent to w € U,. We need
to argue that v is adjacent to all vertices in the first p — 1 parts but none in the
last part. Any vertex z € U; with 1 < ¢ < p makes a clique with u and w. It
is adjacent to v by the definition of the modulator ({u,v,w,x} cannot induce a
paw) and Proposition 2. Now that v is adjacent to some vertex from another part
(p > 3), the same argument implies U; € N(v). To see U, N N (v) = (), note that
a vertex w’ € U, N N(v) would form a paw together with u,v,w, contradicting
the definition of the modulator. O

A false twin class of a graph G is a vertex set in which every vertex has
the same open neighborhood. It is necessarily independent. The following is
immediate from Proposition 5.

Corollary 1. Let M be a modulator of G, and C a complete multipartite com-
ponent of G — M. Each part of C is a false twin class of G.

The preservation of false twins by all minimum paw-free completions may be of
independent interest.

Lemma 1 (x). Let G be a graph and E a minimum set of edges such that
G+ Ey is paw-free. A false twin class of G remains a false twin class of G+ FE .

3 Paw-Free Completion

The safeness of our first rule is straightforward.
Rule 1. If a component of G contains no paw, delete it.

Behind our kernelization algorithm for the paw-free completion problem is the
following simple and crucial observation. After Rule 1 is applied, each remaining
component of G contains a paw, hence a triangle, and by Proposition1, we
need to make it complete multipartite. We say that a vertex v and an edge
zy dominate each other if at least one of x and y is adjacent to v. Note that
an edge dominates, and is dominated by, both endpoints of this edge. Every
edge in a complete multipartite graph dominates all its vertices, and hence in a
yes-instance, every edge “almost” dominates vertices in the component.

Lemma 2 (x). Let G be a connected graph containing a paw and wv an edge
in G. We need to add at least |V(G) \ N[{u,v}]| edges incident to u or v to G
to make it paw-free.

For the paw-free completion problem, we build the modulator using the pro-
cedure in Fig. 2, whose correctness is proved in Lemma 3. Starting from an empty
set of paws, we greedily add paws: If a paw does not intersect any previously cho-
sen paw with two or more vertices, then add it. All the vertices of the selected
paws already satisfy the definition of the modulator. After that, we have two

Polynomial Kernels for Paw-Free Edge Modification Problems 41

more steps, taking all the degree-one vertices of all paws in G, and deleting a
vertex from M NG’ for certain component G’ of G. Their purposes are to simplify
the disposal of triangle-free components of G — M: In particular, (iii) and (iv)
of Lemma 3 are instrumental for dealing with, respectively, type-1 and type-11
triangle-free components of G — M.

0. F<+0; M+ 0

1. for each paw F of G do

1.1. if [FNF’| <1 for each paw F’ in F then
F +— FU{F};
add the vertices of F' to M,

1.2. else add the degree-one vertex of F' to M;

2. for each component G’ of G do

2.1. if an isolated vertex v of G’ — M dominates all the edges in G’ then
find an edge vw in G[N(v)];
remove u from M;

3. return M.

Fig. 2. The construction of the modulator for G.

Lemma 3. Let (G, k) be an instance of the paw-free completion problem. The
vertex set M constructed in Fig. 2 has the following properties.

(i) The construction is correct and its result is a modulator of G.
(ii) For each component G' of G, we need to add at least |M N G'|/4 edges to
G’ to make it paw-free.
(iii) Let C be a triangle-free component of G — M. If C is nontrivial and any
vertex in C' is contained in a triangle, then C is of type 1.
(iv) For each isolated vertex v in G — M, there is an edge in G, — N[v], where
G, is the component of G containing v.

Proof. We may assume without loss of generality that G is connected and con-
tains a paw; otherwise it suffices to work on its components that contain paws
one by one, because both the construction and all the statements are component-
wise.

We denote by M’ the set of vertices added to M in step 1. Note that it is a
modulator of G because vertices added in step 1.1 already satisfy the definition.
Let X be the set of isolated vertices in G — M’ each of which dominates all the
edges in G. If X is empty, then step 2 is not run, M = M’ and we are done. In the
rest, X # (). We argue first that X is a false twin class. Vertices in X are pairwise
nonadjacent by definition. Suppose for contradiction that N(z1) # N(zg) for
x1,22 € X, then there is a vertex v in N(z1) \ N(z2) or in N(xz2) \ N(x1).
But then x5 does not dominate edge vxy, or 1 does not dominate edge vxo,

42 Y. Cao et al.

contradicting the definition of X. We then argue that any vertex x € X is in a
triangle. By assumption, G contains a triangle uvw. If z € {u, v, w}, then we are
done. Otherwise, z must be adjacent to at least two of {u,v,w} to dominate all
the three edges in this triangle. Note that N(z) € M’ because x is isolated in
G — M'. This justifies step 2.1 of the construction of M. Note that it removes
only one vertex from M’.

Now we prove by contradiction that M is a modulator of G. Suppose that
there is a paw F' with |FFN M| < 1. By construction, |F'N M’| > 2, which means
|[F N M| =1 and the only vertex in M’ \ M is in F. Let {v} = M’ \ M and
{u} = F N M; note that the other two vertices of F are in V(G) \ M’. Since
any vertex in X is isolated in G — M’ and dominates all the edges of G, every
component of G — M’ is trivial, which means that the two vertices in F'\ {u, v}
are not adjacent. Therefore, one of © and v must be the degree-three vertex of
F, and the other is a degree-two vertex of F'. But the degree-one vertex of F’
has been added to M’ in step 1.1 or 1.2, a contradiction. This justifies (i).

Let U; and U, be the sets of vertices added to M’ in steps 1.1 and 1.2
respectively; Uy U Uy = M. For each paw F added in step 1.1, at least one of
its missing edges needs to be added to G to make it paw-free. This edge is not
in any previous selected paw F’, because we add F only when |F'N F'| < 1.
Therefore, we need to add at least |Uz|/4 edges to G[Us] to make it paw-free. On
the other hand, each vertex v in Us is the degree-one vertex of some paw F, (it
is possible that all other three vertices of F are in Uj,) we need to add at least
one edge incident to v. Therefore, we need to add at least |Us|/2 edges incident
to vertices in Us to G to make it paw-free. Note that these two sets of edges
we need to add are disjoint. The total number of edges we need to add to G to
make it paw-free is at least |U1|/4 + |Uz|/2 > |U1 U Usl/4 = |M'|/4 > |M|/4.
This concludes assertion (ii).

Assertion (iii) follows from Proposition 4 if the triangle has two vertices from
C': Note that the other vertex must be from M because C itself is triangle-free.
Let the vertices in the triangle be u,v € M and w € C. If C' contains the vertex
in M’ \ M, then X C C because it is a false twin class, and there is a vertex in
M making a triangle with C, and it follows from Proposition 4. Now that C'is a
nontrivial component of G — M’, we can find a neighbor = of w in C. Note that
it is adjacent to at least one of u and v; otherwise, z is the degree-one vertex of
the paw induced by {z,u,v,w} and should be in M’. As a result, « is adjacent
to at least one of v and v, and then we can use Proposition 4.

Assertion (iv) follows from the construction of M and the fact that X is a
false twin class we proved above. O

Corollary 2. If (G, k) is a yes-instance, then M contains at most 4k vertices.

We proceed only when | M| < 4k. A consequence of this modulator is a simple
upper bound on the number of vertices in all the type-1I triangle-free components
of G — M. Note that all trivial components of G — M are considered here.

Lemma 4 (x). Let (G, k) be a yes-instance to the paw-free completion problem
on which Rule 1 is not applicable, and M the modulator of G. The total number
of vertices in all the type-11 triangle-free components of G — M is at most 2k.

Polynomial Kernels for Paw-Free Edge Modification Problems 43

Hereafter we consider the components G’ of G one by one; let M’ = M N
V(G"). If all components of G’ — M’ are type-1I triangle-free components, then
a bound of the size of V(G’) \ M’ is given in Lemma 4. In the rest, at least
one component of G' — M’ is a type-I triangle-free component or a complete
multipartite component. The way we bound |V (G’) \ M’| for such a component
is to show, after applying some reductions, the minimum number of edges we
need to add to G’ to make it paw-free is linear on |V (G’) \ M’|. The first one is
very straightforward.

Lemma 5 (x). If two components in G' — M' are not type-11 triangle-free com-
ponents, then we need to add at least |V(G') \ M'|/2 edges to G' to make it
paw-free.

Henceforth, G’ — M’ has precisely one type-I triangle-free component or one
complete multipartite component, but not both. Each part of such a component
is an independent set (recall that a type-1 triangle-free component is complete
bipartite by Proposition4). The next two propositions are on independent sets
I of G. The first is about the cost of separating vertices in I into more than one
part; it also means that a sufficiently large independent set cannot be separated.
The second states that if each of the vertices in I is adjacent to all the other
vertices, then we can remove all but one vertex in I from the graph.

Proposition 6 (x). Let G’ be a connected graph containing a paw, and I an
independent set of G'. If we do not add all the missing edges between I and N (I),
then we need to add at least |I| — 1 edges among I to G’ to make it paw-free.

Proposition 7 (x). Let I be an independent set in a component G' of a graph
G. If every vertex in I is adjacent to every verter in V(G') \ I, then (G, k) is
a yes-instance if and only if (G — (I \ {v}),k) is a yes-instance for any v € I.
Moreover, if G — I is connected, then (G,k) is a yes-instance if and only if
(G —1,k) is a yes-instance.

We are now ready to consider type-I triangle-free components.

Lemma 6. Let C be a type-1 triangle-free component of G'— M’ and let LW R be
the bipartition of C' with |L| > |R|. If any of the following conditions is satisfied,
then we need to add at least |C|/32 edges to G' to make it paw-free.

(i) |L| < 4|M'|;
(ii) there is an edge in G' — N[L];
(111) V(G') # N[C] and |L| < 2|R|;
(iv) there are |L|/2 or more missing edges between L and N(L);
(v) |L| < |R|+ |M’| and G — N[R] has an edge; or
(vi) |L| < |R| + |M’| and there are |R|/2 or more missing edges between R and
N(R).

Proof. (1) If |L| < 4|M’|, then |C| = |L| 4+ |R| < 2|L| < 8|M’|, and it follows
from Lemma 3(ii). (ii) By Lemma 2, we need to add at least |L| > |C|/2 edges.

44 Y. Cao et al.

(iii) Since C' is complete bipartite and |L| > |R|, we can find a matching of
size |R| between L and R. By Lemma 2, for each vertex v € V(G') \ N[C], the
number of edges between v and C' we need to add is at least |R| = (2|R|+|R])/3 >
(IL|+|R|)/3 = |C|/3. (iv) By Proposition 6, we need to add at least |L|/2 > |C|/4
edges.

In the rest, (v) and (vi), |L| < |R|+|M’|. We may assume none of the previous
conditions is satisfied. Therefore, |L| > 4|M’|, which means |L| < 2|R|. Also note
that the proofs for these two conditions are almost the same as conditions (ii)
and (iv) respectively. (v) By Lemma 2, we need to add at least |R| > |C|/3
edges. (vi) By Proposition 6, we need to add at least |R|/2 > |C|/6 edges. O

We say that a type-I triangle-free component C' of G’ — M’ is reducible if
none of the conditions in Lemma 6 holds true.

Rule 2 (x). Let C be a type-1 triangle-free component of G' — M’ and let L &
R be the bipartition of C with |L| > |R|. If C is reducible, then add all the
missing edges between L and N(L) and all the missing edges between V(G') \

NI[L] and N(L); decrease k accordingly; and remove all but one vertex from
(V(G")\ N[L]) U L.

In the last we consider the complete multipartite components of G’ — M’.

Lemma 7 (x). Let C be a complete multipartite component of G' — M', and let
P* be a largest part of C. If any of the following conditions is satisfied, then we
need to add at least |C|/12 edges to G' to make it paw-free.

(i) |C] < 300
(i1) there is an edge in G' — N[C];
(i1i) |P*| > 2|C|/3 and G' — N[P*] has an edge;
(iv) |P*| <2|C|/3 and V(G') # N[C]; or
(v) |P*| <2|C|/3 and V(G') = N[C], and for every part P of C,
— G’ — N[P] contains an edge, or
— there are at least |P| missing edges between V(G')\ N[P] and N(P).

We say that a complete multipartite component C of G’ — M’ is reducible if
none of the conditions in Lemma 7 holds true.

Rule 3 (x). Let C be a reducible complete multipartite component of G' — M’
and P* a largest part of C'.

(1) If |P*| > 2|C|/3, then add all the missing edges between V(G') \ N[P*] and
N(P*); decrease k accordingly; and remove (V(G')\ N[P*]) U P* from G.

(2) Otherwise, find a part P such that V(G') \ N[P] is an independent set and
there are less than |P| missing edges between V(G')\ N[P] and N(P). Add
all the missing edges between V (G')\N[P] and N (P); decrease k accordingly;
and remove P U (V(G') \ N[P]) from G.

We summarize our kernelization algorithm for the paw-free completion prob-
lem in Fig. 3 and use it to prove our main result of this section.

Polynomial Kernels for Paw-Free Edge Modification Problems 45

procedure reduce(G, k)

if k < 0 then return a trivial no-instance;
remove all paw-free components from Gj;
construct modulator M;
if |[M| > 4k then return a trivial no-instance;
if > 2k vertices in type-1I triangle-free components of G — M then
1. return a trivial no-instance;
for each component G’ of G do
51. M+ V(G")n M,
5.2. if 2 components in G’ — M’ are not type-II triangle-free components then
goto 5;
5.3. if G’ — M’ has a type-I triangle-free component C' then
if C is reducible then apply Rule 2 and return reduce(G, k);
5.4. if G’ — M’ has a complete multipartite component C' then
if C is reducible then apply Rule 3 and return reduce(G, k);
6. if |V(G)| < 38k then return (G, k);
7. else return a trivial no-instance.

GUs R WD O

Fig. 3. The kernelization algorithm for the paw-free completion problem.

Proof (of Theorem 1). We use the algorithm described in Fig. 3. The correctness
of steps 0 and 1 follows from the definition of the problem and Rule 1 respectively.
Steps 2 and 3 are justified by Lemma 3 and Corollary 2. Step 4 is correct because
of Lemma 4, and after that we only need to consider the components of G — M
that are not type-1I triangle-free components, which are dealt with in step 5.
The cost of a component of G is the minimum number of edges we need to add
to it to make it paw-free.

If two components of G'—M’ are not type-II triangle-free components, then by
Lemma 5, the cost of G” is at least |V (G’)\ M| /2. Therefore, there is nothing to do
for step 5.2. Henceforth, G’ — M’ has precisely one type-I triangle-free component
or one complete multipartite component, but not both. The algorithm enters
step 5.3 if there is a type-I triangle-free component C' in G'—M’. If C is reducible,
we rely on the correctness of Rule 2; otherwise, the cost of G’ is at least |C|/32
by Lemma 6. The algorithm enters step 5.4 if there is a complete multipartite
component C' in G’ — M’. If C is reducible, we rely on the correctness of Rule 3;
otherwise, the cost of G’ is at least |C|/12 by Lemma 7.

When the algorithm reaches step 6, neither of Rules 2 and 3 is applicable.
There are at most 4k vertices in M, at most 2k vertices in all the type-II triangle-
free components of G — M. On the other hand, for each other vertex, there is an
amortized cost of at least 1/32. Therefore, if (G, k) is a yes-instance, then the
number of vertices is at most 38k, and this justifies steps 6 and 7.

We now analyze the running time of this algorithm. When each time the
algorithm calls itself in step 5.3 or 5.4, it removes at least one vertex from the
graph. Therefore, the recursive calls can be made at most n times. On the other

46 Y. Cao et al.

hand, each step clearly takes polynomial time. Therefore, the algorithm returns
in polynomial time. a

4 Paw-Free Edge Deletion

For this problem, we construct the modulator in the standard way. We greedily
find a maximal packing of edge-disjoint paws. We can terminate by returning
“no-instance” if there are more than k of them. Let M denote the set of vertices
in all the paws found; we have | M| < 4k. It is a modulator because every paw not
included shares at least an edge with some chosen one, hence at least 2 vertices.
The safeness of the following rule is straightforward: If we do not delete this
edge, we have to delete a distinct one from each of the paws, hence k + 1.

Rule 4. Let uv be an edge of G. If there exist k+ 1 paws such that for any pair
of them, the only common edge is uv, then delete uv from G and decrease k by 1.

We first deal with complete multipartite components of G — M.

Rule 5 (x). Let C be a complete multipartite component of G — M. From each
part of C, delete all but k + 1 vertices.

Rule 6 (x). Let C be a complete multipartite component of G — M. Delete all
but k + 4 parts of C that are adjacent to all vertices in N(C).

Lemma 8 (x). After Rules 5 and 6 are applied, there are at most O(k®) vertices
in the complete multipartite components of G — M.

In the following, we assume that Rule 4 is not applicable. We mark some
vertices from each of the triangle-free components that should be preserved, and
then remove all the unmarked vertices. Recall that a triangle-free component of
G — M is of type 1 or type 11 depending on whether it forms a triangle with some
vertex in M.

The following simple observation is a consequence of Proposition 3 and the
definition of type-I triangle-free components.

Corollary 3. If a vertex in M is adjacent to the triangle-free components of
G — M, then either it is adjacent to precisely one type-1 triangle-free component,
or it is adjacent to only type-11 triangle-free components.

By Proposition4, a type-I triangle-free component C' of G — M is complete
bipartite.

Rule 7. Let C be all the type-1 triangle-free components of G — M, and let U =
Ucee V(O

(i) For each S C M with |S| = 3 and each S" C S, mark k + 1 vertices from
{reU|N@)nsS=5%.

Polynomial Kernels for Paw-Free Edge Modification Problems 47

(i) For each C € C with bipartition LW R do the following. For each S C M with
|S| =2 and each S’ C S, mark k + 3 vertices from {x € L | N(x)NS = 5"}
and k + 3 vertices from {x € R| N(x)NS =5"}.

Delete all the unmarked vertices from U.
Lemma 9. Rule 7 is safe.

Proof. Let G’ be the graph obtained after applying Rule 7. If (G, k) is a yes-
instance, then (G’,k) is a yes-instance. For the other direction, suppose that
(G',k) is a yes-instance, with a solution E_. We prove by contradiction that
G — E_ is paw-free as well. A paw F' in G — F_ contains at least one deleted
vertex, because G’ — E_ is paw-free, and at most two deleted vertices, because
otherwise F' is a paw of G and should be in the modulator.

Consider first that F' contains only one deleted vertex x. Let C' be the
triangle-free component of G — M containing it. If all the other three vertices in
F are from M, then in step (i) we have marked k + 1 vertices in C' that have
the same adjacency to F'\ {z} as z in G. Since |E_| < k, the adjacency between
F\ {z} and at least one of these marked vertex is unchanged. This vertex forms
a paw with F\{z} in G’ — E_, a contradiction. Now at most two vertices of
F are from M. We may assume without loss of generality that x € L, where
LR is the bipartition of C. In step (ii) we have marked k + 3 vertices in L that
have the same adjacency to F'N M as x; let them be Q). By Proposition 4, every
vertex in Q U {z} is adjacent to all vertices in R; on the other hand, no vertex
in @ U {z} is adjacent to any vertex in another component of G — M different
from C. Therefore, all vertices in @ U {z} have the same adjacency to F'\ L in
G. Since |E_| < k, the adjacency between F'\ {z} and at least one vertex in Q
is unchanged (noting that |Q N F| < 2). This vertex forms a paw with F\{z} in
G' — E_, a contradiction.

In the rest, F' contains two deleted vertices = and y. If x and y are adjacent,
then they are from the different parts of some component C' = L & R. Without
loss of generality, we assume that € L and y € R. Since |F'N M| < 2, by step
(ii), we can find two set @1 C L and Q2 C R that have the same adjacency to
F N M as x and y respectively. Note that |Q1] > k + 3 and |Q2| > k + 3. Each
vertex in @1 has the same adjacency to F'\ {«}. The situation is similar for Q-
and F\{y}. Fori = 1,2, since |[E_| < k and |@Q;NF| < 2, the adjacency between
F\ {z} and at least one vertex in @); is unchanged. These two vertices form a
paw with F\{z,y} in G’ — E_, a contradiction (because Q1 W Q2 is complete
bipartite). Now that « and y are not adjacent, then they are in the same part
or in different components. Then one of z and y is the degree-one vertex of F
and the other is a degree-two vertex of F', and we can get that the adjacency of
2z and y to F N M are different. By Proposition4, the component(s) containing
z and y is complete bipartite, then = and y are adjacent to all vertices in the
part that does not contain them in corresponding component. By step (ii), we
can find two set ()1 in the part containing x and @ in the part containing y
that have the same adjacency to F'N M as x and y respectively. Then Q1 # Qs.
Since |E_| <k, |Q1NF| <2 and |Q2 N F| < 2, at least one vertex in @ and

48 Y. Cao et al.

at least one vertex in ()2 are unchanged. These two vertices form a paw with
F\{z,y} in G’ — E_, a contradiction. O

Lemma 10 (%). After Rule 7 is applied, there are at most O(k*) vertices in all
the type-1 triangle-free components of G — M.

Finally, we deal with type-II triangle-free components of G — M.

Rule 8. Let C be all the type-11 triangle-free components of G — M, and let
U= UCeC V(C).

(i) For each S C M with |S| = 3 and each S" C S, mark k + 1 vertices from
{xeU|N@&)nS =5}

(i) Mark all the vertices in non-trivial components that form a triangle with M,
and for each of them, mark k + 1 of its neighbors in C.

Delete all the unmarked vertices from C.
Lemma 11. Rule 8 is safe.

Proof. Let G’ be the graph obtained after applying Rule 8. If (G, k) is a yes-
instance, then (G’ k) is a yes-instance. For the other direction, suppose that
(G',k) is a yes-instance, with a solution E_. We prove by contradiction that
G — E_ is paw-free as well. A paw F' in G — F_ contains at least one deleted
vertex since G’ — E_ is paw-free.

By the definition of type-1I triangle-free components, no triangle contains an
edge in C, implying that the triangle ¢ in F' contains no edge in C. Note that if F’
contains three vertices in C, then ¢ must contain an edge in C, a contradiction.
If F contains precisely one vertex v in C, then by step (i), we can find a vertex
v’ in G’ — E_ such that v’ has the same adjacency to FF'N M as v, implying that
F\{v}U{v'} in G' — E_ forms a paw. If F' contains two vertices x and y in C,
then either x or y is in a triangle ¢ of F'. Without loss of generality, we assume
that x is in ¢, implying that z is marked in step (ii). If y is adjacent to z, then
by step (ii), there are k + 1 marked vertices adjacent to z; let them be Q. The
vertices in) are not adjacent to any vertex in F' N M since no triangle in G
contains an edge in C. Then, each vertex in @) forms a paw with F'\ {y} in G’
Since |E_| < k, there is a vertex v/ in @ forms a paw with F'\ {y} in G' — E_,
a contradiction. If = is not adjacent to y, by step (i), there are k + 1 marked
vertices () having the same adjacency to F' N M as y such that each vertex in
Q' is not adjacent to z since no triangle in G contains an edge in C. Then, each
vertex in @' forms a paw with F'\ {y} in G’. Since |E_| < k, there is a vertex
v in Q' forms a paw with F'\ {y} in G’ — E_, a contradiction. O

Lemma 12 (%). After Rule 8 is applied, there are at most O(k*) vertices in all
the type-11 triangle-free components of G — M.

Polynomial Kernels for Paw-Free Edge Modification Problems 49

References

1. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171-176 (1996)

2. Cao, Y., Rai, A., Sandeep, R.B., Ye, J.: A polynomial kernel for diamond-free edit-
ing. In: ESA 2018, pp. 10:1-10:13 (2018)

3. Eiben, E., Lochet, W., Saurabh, S.: A polynomial kernel for paw-free editing (2019).
arXiv:1911.03683

4. Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (non-)existence of polynomial
kernels for P;-free edge modification problems. Algorithmica 65(4), 900-926 (2013)

5. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219-230 (1980)

6. Olariu, S.: Paw-free graphs. Inf. Process. Lett. 28(1), 53-54 (1988)

7. Sandeep, R.B., Sivadasan, N.: Parameterized lower bound and improved kernel for
diamond-free edge deletion. In: IPEC 365-376 (2015)

8. Tsur, D.: Kernel for K;-free edge deletion (2019). arXiv:1908.03600

http://arxiv.org/abs/1911.03683
http://arxiv.org/abs/1908.03600

	Polynomial Kernels for Paw-Free Edge Modification Problems
	1 Introduction
	2 Paw-Free Graphs
	3 Paw-Free Completion
	4 Paw-Free Edge Deletion
	References

