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Abstract. The concept of a synchronizing word is a very important
notion in the theory of finite automata. We consider the associated deci-
sion problem to decide if a given DFA possesses a synchronizing word
of length at most k, where k is the standard parameter. We show that
this problem DFA-SW is equivalent to the problem Monoid Factor-
ization introduced by Cai, Chen, Downey and Fellows. Apart from the
known W[2]-hardness results, we show that these problems belong to A[2],
W[P] and WNL. This indicates that DFA-SW is not complete for any
of these classes and hence, we suggest a new parameterized complexity
class W[Sync] as a proper home for these (and more) problems.
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1 Introduction

Černý’s conjecture is arguably the most famous open combinatorial problem
concerning deterministic finite automata (DFA), somehow dating back to [7].
Recently, a particular Special Issue was dedicated to this conjecture being around
for more than five decades; see [29]. This Special Issue also contains an English
translation of Černý’s paper [8]. The key notion is that of a synchronizing word.
A word x is called synchronizing for a DFA A, if there is a state sf , also called
the synchronizing state of A, such that if A reads x starting in any state, it
will end up in sf . The Černý conjecture states that every n-state DFA can be
synchronized by a word of length (n − 1)2 if it can be synchronized at all [9].
Although this bound was proven for several classes of finite-state automata, the
general case is still widely open. The currently best upper bound is cubic, and
only very little progress has been made; see [19,24,26,27].

The notion of a synchronizing word is not only important from a mathemat-
ical perspective, offering a nice combinatorial question, but it is quite important
in a number of application areas, simply because synchronization is an impor-
tant concept for many applied areas: parallel and distributed programming, sys-
tem and protocol testing, information coding, robotics, etc. Therefore, it is also
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interesting to compute a shortest synchronizing word. Unfortunately, as it was
shown by Ryststov and Eppstein in [14,25], the corresponding decision problem
DFA-SW (defined in the following) is NP-complete. Possible applications of this
problem are explained in [21]. The problem has also been considered from the
viewpoint of approximation [1] and parameterized complexity [4,15,17,23].

DFA-SW
Input: DFA A, k ∈ N

Question: Is there a synchronizing word w for A with |w| ≤ k?

We will continue to study this problem from the point of parameterized com-
plexity. The standard parameter for this problem is the length upper bound k,
which we assume to be the case without further mentioning in this paper.
W.l.o.g., we assume that k is given in unary. It was shown in [4,15,23] that this
problem is W[2]-hard, even when restricted to quite particular (and restricted)
forms of finite automata. Also, other parameters have been studied, in particu-
lar, in [15]. Two decades ago, in [5], Cai, Chen, Downey and Fellows introduced
the following algebraic problem.

Monoid Factorization (see [5])
Input: A finite set Q, a collection F = {f0, f1, . . . , fm} of mappings fi : Q → Q,
k ∈ N

Question: Is there a selection of at most k mappings fi1 , . . . , fik′ , k′ ≤ k, with
ij ∈ {1, . . . , m} for j = 1, . . . , k′, such that f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′ ?

Again, k is the standard parameter which we will also consider (exclusively)
in this paper. In [5], it was proven that Monoid Factorization is W[2]-hard.
We prove in this paper that both problems are in fact equivalent in a param-
eterized sense. Furthermore, we exhibit three parameterized complexity classes
to which both problems belong to, namely, A[2], W[P] and WNL. This indicates
that DFA-SW is not complete for any of these classes and hence, we suggest
a new parameterized complexity class W[Sync] as a proper home for these two
parameterized problems (and more, as we will show).

Throughout this paper, we assume the reader to be familiar with some con-
cepts from parameterized complexity. In particular, a parameterized reduction is
a many-one reduction that consumes FPT-time (in our cases, it mostly uses only
polynomial time) and translates a parameter value k to a parameter value of
f(k) (of the target problem), for some computable function f . A parameterized
complexity class can be characterized by one (complete) problem, assuming the
class is closed under parameterized reductions. Examples comprise the following
classes; for the typical problems, the parameter will be always called k:

W[1] Given a nondeterministic single-tape Turing machine and k ∈ N, does it
accept the empty word within at most k steps?

W[2] Given a nondeterministic multi-tape Turing machine and k ∈ N, does it
accept the empty word within at most k steps?
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A[2] Given an alternating single-tape Turing machine whose initial state is exis-
tential and that is allowed to switch only once into the set of universal states
and k ∈ N, does it accept the empty word within at most k steps?

WNL Given a nondeterministic single-tape Turing machine and some integer
� ≥ 0 in unary and k ∈ N, does it accept the empty word within at most �
steps, visiting at most k tape cells?

W[P] Given a nondeterministic single-tape Turing machine and some integer
� ≥ 0 in unary and k ∈ N, does it accept the empty word within at most �
steps, thereby making at most k ≤ � nondeterministic steps?

More details can be found in textbooks like [12,18]. The Turing way to these
complexity classes is described also in [10,20]. Further interesting complexity
classes (in our discussion) are: FPT, W[3], W[SAT], A[3], para-NP and XP. From
the literature, the following relations are known:

– FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · ⊆ W[SAT] ⊆ W[P] ⊆ (para-NP ∩ XP);
– FPT ⊆ W[1] = A[1] ⊆ W[2] ⊆ A[2] ⊆ A[3] ⊆ · · · ⊆ AW[P] ⊆ XP.

Each of the inclusions that we have explicitly written is conjectured but not
known to be strict. Also, no non-trivial inter-relations are known between the
A- and W-hierarchies, apart from W[t] ⊆ A[t] for each t.

Guillemot defined WNL in [20] in the same way as we described it above.
Interesting formal language problems complete for WNL include Bounded
DFA-Intersection, given k DFAs, with parameter k, plus the length of the
word that should be accepted by all k automata, or Longest Common Subse-
quence, parameterized by the number of given strings. WNL is situated above
all levels of the W-hierarchy, because the last two mentioned problems are known
to be hard for W[t] for any t ≥ 1, see [3,30]. This proves the first part of the
following theorem that we include also for the ease of reference.

Theorem 1.
⋃

t≥1 W[t] ⊆ WNL ⊆ (para-NP ∩ XP).

Proof. Clearly, by a standard product automaton construction, Bounded DFA-
Intersection can be tested in time O(nk), where n is the maximum number
of states of the input DFAs. Hence, WNL is included in XP.

Recall that membership of Bounded DFA-Intersection (parameterized
by the number of automata) in WNL follows by guessing an input word letter-by-
letter, keeping track of the DFAs by writing their k current states, plus a counter
for the number of steps, on the tape of the Turing machine M . We can do so by
using as many letters as there are states in the automata, plus q (which is given
in unary). Alternatively, when counting the number of bits needed to write down
the tape contents using the alphabet {0, 1}, this amounts in O(k log(n)) many
bits, if n upper-bounds the size (number of bits) of (an encoding) of a Bounded
DFA-Intersection instance. Assuming that M has s many states, then there
are obviously no more than s · 2O(k log n) many configurations of M . With the
help of an additional counter, using log(s ·2O(k log n)) = log(s)+O(k log n) many
additional bits, we can ensure that such a nondeterministic Turing machine M ′

(simulating M) would need no more time than s·2O(k log n) when moving through
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the configuration graph, avoiding visiting configurations twice. This proves the
claimed membership in para-NP. Hence, WNL is included in para-NP. 	


As a final remark concerning this detour to parameterized complexity, observe
that WNL is also closely linked to the class N[f poly, f log] of parameterized
problems that can be solved nondeterministically (at the same time) obeying
some time bound f(k) · nc for some constant c and some space bound f(k) ·
log(n), where f is some (computable) function, k is the parameter (value) and
n gives the instance size, as discussed in [13]. Our reasoning also shows that
Bounded DFA-Intersection (parameterized by the number of automata)
lies in N[f poly, f log]. Hence, WNL can be seen as the closure of N[f poly, f log]
under parameterized reductions. So, although one can argue that N[f poly, f log]
(and also some other classes introduced by Elberfeld, Stockhusen and Tantau)
is a better model of parameterized space complexity, WNL fits better into the
landscape depicted in Fig. 1, being closed under parameterized reductions by its
definition. Elberfeld, Stockhusen and Tantau [13] chose other types of reductions.

Fig. 1. Visualization of the complexity classes (‘A → B’ means ‘A is contained in B’)

2 Finding a Home for DFA-SW

As mentioned above, DFA-SW is known to be W[2]-hard. However, no com-
plexity class was hitherto suggested to which DFA-SW belongs. In this section,
we will describe three different memberships.

Theorem 2. DFA-SW is contained in the classes WNL and W[P].

Proof. Given a DFA A with state set Q and input alphabet Σ, where, w.l.o.g.,
Q ∩ Σ = ∅, together with a bound k on the length of a synchronizing word, a
Turing machine M is constructed that works as follows: (1) M writes a word of
length at most k over the alphabet Σ on its tape, followed by some letter over
the alphabet Q. (2) For each q ∈ Q (this information can be hard-coded in the
finite-state memory of M), M first moves its head to the left end of its tape
and then starts reading the tape content from left to right. Each time a symbol
a ∈ Σ is read, M updates the current state it stores according to the transition
function of A. Finally, M will read a symbol from Q, and it will only continue
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working if this symbol equals the current state stored in the finite memory of M .
Notice that (2) works deterministically. (3) Only if M has completely processed
the loop described in (2) (without abort), M will accept. This verifies that the
guessed word over Σ is indeed synchronizing, always leading into the state that
was also previously guessed. Hence, M will accept the empty word if and only
if there is a possibility to guess a synchronizing word of length at most k. It is
also clear that the Turing machine makes at most (|Q| + 1)(2k + 1) many steps,
visiting at most k + 1 tape cells, thereby making at most k + 1 guesses. 	


We failed when trying to put DFA-SW into W[SAT]. By observing that the
switch between phases (1) and (2) of the description of the Turing machine M
in the previous proof can be also viewed as switching between existentially and
universally quantified states, M can be also re-interpreted to show:

Theorem 3. DFA-SW is contained in the class A[2].

3 How to Factor Monoids

We are now going to prove that Monoid Factorization is FPT-equivalent to
DFA-SW.

Lemma 1. There is a polynomial-time computable parameterized many-one
reduction from Monoid Factorization to DFA-SW.

Proof. Let F = {f0, f1, . . . , fm} be a collection of mappings fi : Q → Q and
k ∈ N. Define Q̂ = Q × Q ∪ {s0, . . . , sk, sk+1, f}. Let Σ = {a1, . . . , am, σ, τ} and
define the transition function δ : Q̂ × Σ → Q̂ as follows.

δ(p, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q1, fi(q2)) if p = (q1, q2), x = ai for some 1 ≤ i ≤ m
(q1, q1) if p = (q1, q2), x = σ, or x = τ and q2 = f0(q1)
f if p = (q1, q2), x = τ and q2 = f0(q1)
s0 if p = s0, x = σ
s1 if p = s0, x = σ
s0 if p = si, x = τ, i = 1, . . . , k
si+1 if p = si, x = τ, i = 1, . . . , k
f if p = sk+1, x = τ
sk+1 if p = sk+1, x = τ
f if p = f, x ∈ Σ

This describes the interesting aspects of the automaton AF . We claim that (F, k)
is a YES-instance of Monoid Factorization if and only if (AF , k + 2) is a
YES-instance of DFA-SW.

Namely, if (F, k) is a YES-instance of Monoid Factorization, then there
exists a selection of at most k mappings fi1 , . . . , fik′ , k′ ≤ k, with ij ∈ {1, . . . , m}
for j = 1, . . . , k′, such that f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′ . Then, w = σk−k′+1ai1 ·
ai2 · · · aik′ τ synchronizes AF . Clearly, w begins with σk−k′+1. When started in
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some (q1, q2), AF will be in state (q1, q1) after digesting σk−k′+1. The word
ai1 · ai2 · · · aik′ will then drive AF into some state (q1, q′

2). Now, upon reading τ ,
AF could only enter (the only) synchronizing state f if q′

2 = f0(q1) was true. If
AF starts reading w in any of the states {s0, . . . , sk, sk+1, f}, it is straightforward
to check that AF will be in state f thereafter.

Conversely, if w is any word of length at most k +2 that is synchronizing for
AF , then it must be of length exactly k + 2, as this is the shortest path length
from s0 down to f , which is a sink state and must be hence the synchronizing
state. This also enforces w to start with σ and to end with τ . Also, w cannot
contain another occurrence of τ , as this would lead to s0 again (from any of the
states si) and hence prevent w from entering f , because the states si should
be walked through one-by-one, hence counting up to k + 2. Let us study the
longest suffix vτ of w that satisfies v ∈ {a1, . . . , am}∗. By the structure of w
that we analyzed before, we must have w = uσvτ , for some possibly empty word
u such that uσ starts with σ. In particular, |v| ≤ k, as |u|+ |v| = k. Hence, after
reading the symbol σ preceding v, AF will be in one of the states (q, q) or si (for
some |u| + 1 ≤ i ≤ k + 1) or f . Now, digesting v leads us into one of the states
sk+1 or f or (q, p), with p = (fi1 ◦ fi2 ◦ · · · ◦ fik′ )(q), from which we can enter f
only (after reading τ) if f0(q) = p. This shows that, if u = ai1 · ai2 · · · aik′ , then
f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′ . 	

Lemma 2. There is a polynomial-time computable parameterized reduction that
produces, given some DFA A and some integer k as an instance of DFA-SW,
an equivalent instance (A′, k′) of DFA-SW such that A′ possesses a sink state
(which is then also the unique possible synchronizing state).

Proof. Consider the DFA A = (Q,Σ, δ, q0, F ). Without loss of generality, assume
Σ ∩ Q = ∅ and σ /∈ Σ ∪ Q. Let Σ′ = Σ ∪ Q ∪ {σ} be the input alphabet of the
DFA A′ that we are going to construct. Let s0, . . . , sk, f /∈ Q be fresh states. Let
Q′ = Q ∪ {s0, . . . , sk, f} be the states of A′. Define the transition function δ′ as:

δ′(p, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(p, x) if p ∈ Q,x ∈ Σ
p if p ∈ Q,x = σ ∨ x ∈ Q \ {p}
f if p ∈ Q,x = p
s0 if p = si, x ∈ Q, i = 0, . . . , k − 1
si+1 if p = si, x /∈ Q, i = 0, . . . , k − 1
f if p = sk, x ∈ Q
sk if p = sk, x /∈ Q
f if p = f, x ∈ Σ′

This describes the interesting aspects of the automaton A′. We claim that, letting
k′ = k + 1, then A has a synchronizing word of length at most k if and only if
A′ has a synchronizing word of length (at most and exactly) k′.

Let w ∈ Σ∗ be a synchronizing word, leading A into state qf ∈ Q, with
|w| ≤ k. Then it is easy to observe that the word w′ = σk−|w|wqf leads A′

into the sink state f , wherever A′ starts. Hence, w′ is a synchronizing word of
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length k′ as claimed. Notice that due to the sequence of states s0, . . . , sk, f , there
cannot be any shorter synchronizing word in A′.

Conversely, let w′ be a synchronizing word of length at most k′ for A′. As f is
a sink state, it must be the synchronizing state. Since in particular δ′∗(s0, w′) =
f , |w′| = k′ = k+1, and for the same reason, w′ = w′′q for some w′′ ∈ (Σ∪{σ})k

and q ∈ Q. Observe that the special letter σ either loops (on Q∪{f}) or advances
as any other letter from Σ (on Q′ \ Q). Therefore, if w′ is synchronizing for A′,
then so is σk−|w|wq, where w is obtained from w′′ by deleting all occurrences of
σ, i.e., w ∈ Σ∗. As σ acts as the identity on Q, and because the final letter q
indicates that, upon starting in some state from Q, the automaton must have
reached state q (as w′ is leading to the sink state f), we can see that w is indeed
a synchronizing word for A; moreover, |w| ≤ k. 	

Theorem 4. Monoid Factorization is (parameterized and polynomial-time)
equivalent to DFA-SW.

Proof. By Lemma 1, we can reduce Monoid Factorization to DFA-SW. Con-
versely, by Lemma 2, we need to consider only instances of DFA-SW that have
a sink state. With some background knowledge on transition monoids, it is clear
that by interpreting a given DFA A = (Q,Σ, δ, q0, F ) with sink state sf as a
collection FA of |Σ| many mappings fa : Q → Q, by setting fa(q) = δ(q, a), we
can solve a DFA synchronization problem given by (A, k) by solving the instance
(F, k) of Monoid Factorization, where F = {f0 = sf} ∪ FA and the aim is
to represent the constant target map f0 = sf . 	


This motivates us to suggest a new parameterized complexity class W[Sync]
as the class of parameterized problems that can be reduced to DFA-SW (Fig. 1).

Corollary 1. Monoid Factorization is W[Sync]-complete.

4 More Problems Complete for or Contained in W[Sync]

Theorem 5. Bounded DFA-Intersection, parameterized by the length of
the commonly accepted string, is complete for W[Sync].

Previously [30], only W[2]-hardness was known for this parameterized problem.

Proof. By Lemma 2, we need to consider only an instance A = (Q,Σ, δ, q0, F ) of
DFA-SW with a sink state sf . Observe that A has a synchronizing word of length
at most k if and only if A has a synchronizing word of length exactly k, because
wu is a synchronizing word if w is. Define Aq = (Q,Σ, δ, q, {sf}). Observe that⋂

q∈Q L(Aq) contains some word w ∈ Σk if and only if A has a synchronizing
word of length exactly k.

Conversely, if {Ai | 1 ≤ i ≤ �} is a collection of DFAs Ai = (Qi, Σ, δi, q0,i, Fi),
then construct an equivalent instance of DFA-SW as follows. First, assume that
the state sets Qi are pairwise disjoint. Then, take two new letters a, b to form
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Fig. 2. Transition function δ of the constructed W[Sync] instance.

Σ′ = Σ ∪ {σ, τ}. Let Q′ =
(⋃�

i=1 Qi

)
∪ {s0, . . . , sk, sk+1, f} be the state set of

the DFA A that we construct. Define the transition function δ as in Fig. 2.
This describes the interesting aspects of the automaton A. We claim that,

letting k′ = k + 2, then
⋂�

i=1 L(Ai) contains some word w ∈ Σk if and only if A
has a synchronizing word of length (at most and exactly) k′, namely w′ = σwτ .
More precisely, similar to the construction from Lemma 1, the states si force
to consider a word from {σ}Σk{τ} if there should be a synchronizing word of
length k′ for A at all. One could move only from the part Ai of A to f when
reading τ , which also forces to have been in the set of final states Fi before.
Digesting σ as the first letter lets Ai start in the initial state q0,i. 	


We now discuss the well-known Longest Common Subsequence problem.
The input consists of � strings x1, . . . , x� over an alphabet Σ, and the task is to
find a string w ∈ Σk occurring in each of the xi as a subsequence. As explained
in [30], by building an automaton Ai for each xi that accepts all subsequences
of xi, it is not hard to solve a Longest Common Subsequence instance by a
Bounded DFA-Intersection instance, preserving our parameter. Hence:

Proposition 1. Longest Common Subsequence ∈ W[Sync].

We do not know if Longest Common Subsequence is also hard for W[Sync].
We only know W[2]-hardness from [3], further membership results were unknown
hitherto, so the previous proposition remedies this situation a bit.

One could also think of many ways to restrict the inputs of Bounded DFA-
Intersection. For instance, observe that the automata constructed in the argu-
ment of Proposition 1 are all accepting finite languages. Is there a converse reduc-
tion from such a Bounded DFA-Intersection instance to some Longest
Common Subsequence instance? Is this leading to another complexity class
between W[2] and W[Sync]?

In [4], we discussed the restriction of DFAs to so-called TTSPL graphs
for instances of DFA-SW. While we could prove W[2]-hardness also for such
restricted instances, it is open if this leads to a problem that is still complete for
W[Sync]. As shown by Möhring [22], there are quite close connections between
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TTSP(L) graphs and so-called series-parallel partial orders. Without going into
any details here, observe that the mappings Q → Q that can be associated
to input letters are monotone with respect to the series-parallel partial order
corresponding to the TTSPL automaton graph. Our earlier constructions show:

Corollary 2. DFA-SW, restricted to DFAs with TTSPL automata graphs,
is parameterized and polynomial-time equivalent to Monoid Factorization,
restricted to collections of mappings F that are monotone with respect to a given
series-parallel partial order on the finite ground set Q.

This discussion also entails the (open) question concerning the complexity
status of Monoid Factorization, restricted to collections of mappings F that
are monotone with respect to a given partial order on the finite ground set Q.

5 Further Comments

The problems that we considered in this paper have quite a rich structure and
many variations. We will comment on these variations in this section.

5.1 Variations on MONOID FACTORIZATION

Observe that it is important that the monoid used in Monoid Factorization
is only implicitly given, not by a multiplication table. A variation could be:

Input: A finite set M , a binary operation ◦ given in the form of a multiplication
table, such that (M, ◦) forms a finite monoid, with neutral element e ∈ M , a
target element t ∈ M , a finite subset B ⊆ M , k ∈ N

Question: Is there a selection of at most k elements b1, . . . , bk′ , k′ ≤ k, from B,
such that t = b1 ◦ b2 ◦ · · · ◦ bk′?

However, an explicit representation of the multiplication table of (QQ, ◦)
(where QQ is the set of all mappings from Q to Q) would already take O∗(|Q|2|Q|)
space and hence allow to construct an arc-labeled directed graph with a vertex
for each mapping Q → Q and an arc labeled fi from f to g if f ◦fi = g, where fi

is from the explicit set of generators F ′ = {f1, . . . , fm}. Now, the representability
of f0 with at most k mappings from F ′ can be solved by looking for a path of
length at most k in the directed graph we just described, leading from the identity
mapping ΔQ to f0. Hence, when the monoid is given in an explicit form, then the
factorization problem can be solved in polynomial time. It might be interesting to
study other implicitly given monoids with respect to the factorization question.
Let us mention one more example. Assume that our implicitly given monoid
operation is set union. Then, the corresponding factorization problem would take
subsets {X0,X1, . . . , Xm} of a given finite set S as an input, and the question is
to pick at most k sets from {X1, . . . , Xm}, say, Xi1 , . . . , Xik′ , where k′ ≤ k, such
that X0 =

⋃k′

j=1 Xij . Obviously, this corresponds to Set Cover, which hence
gives an example of a monoid factorization problem which, when parameterized
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by k, is complete for W[2]. It might be interesting to investigate further implicitly
given monoids from this parameterized perspective. We only mention as a last
example from the literature Permutation Group Factorization, which is
known to be W[1]-hard but is lacking a precise classification; see [3,12].

5.2 Extension Variants

Following [6,16], we are now defining so-called extension problems, depending
on the chosen partial order ≺ on Σ∗. Maybe surprisingly, the complexity status
of these problems heavily depends on this choice.

Ext DFA-SW-≺
Input: DFA A with input alphabet Σ, u ∈ Σ∗

Question: Is there a w ∈ Σ∗, u ≺ w, such that w is minimal for the set of
synchronizing words for A with respect to ≺?

We are focussing on the length-lexicographical ordering ≤ll and the subse-
quence ordering | in the following. For further orderings, we refer to [16]. We
consider |u| to be the standard parameter.

Theorem 6. Ext DFA-SW-≤ll is contained in co-WNL ∩ co-W[P] ∩ co-A[2],
but hard for co-W[Sync].

Proof. For membership in co-WNL∩co-W[P]∩co-A[2], we can modify the proofs
of Theorems 2 or 3, building a nondeterministic Turing machine M as follows,
given A and u. As before, the machine can first guess a possible word w ≤ll u
and verify if it is synchronizing. If such a word is found, then (A, u) is a NO-
instance. The reduction itself checks if A is synchronizable at all; then we also
have that if M does not find a synchronizing word w ≤ll u, then (A, u) is a
YES-instance, because as A is synchronizable, there must be a synchronizing
word v, and according to the previous tests, u ≤ll v must hold.

For the hardness claim, consider a DFA A on input alphabet Σ, together
with k, as an instance of DFA-SW. We can first check in polynomial time if A
is synchronizable at all. If A is not synchronizable, then (A, k) (clearly) is a NO-
instance of DFA-SW, so our reduction will produce some fixed NO-instance of
Ext DFA-SW-≤ll. Hence, we now assume that A is synchronizable. Let c /∈ Σ
be a fresh letter. Consider an arbitrary ordering < on Σ, extended by c < x
for all x ∈ Σ towards an ordering on Σ̂ = Σ ∪ {c}. We are going to define the
DFA Â as an extension of A, working on the same state set Q. Let c simply
act as the identity on Q. Hence, no word from c∗ is synchronizing for Â. As A
is synchronizable, Â is also synchronizable. Consider Â together with u = ck+1

as an instance of Ext DFA-SW-≤ll. If Â has a synchronizing word w ∈ Σ≤k,
then clearly u is not extendible, as |w| < |u|. Otherwise, as Â is synchronizable,
Â must have some synchronizing word w with |w| ≥ |u|, and any synchronizing
word of Â is of length at least |u|. As u is the smallest of all words in Σ̂∗ of
length at least |u|, any synchronizing word will hence extend u. Hence, if Â has
no synchronizing word of length at most k, then u is extendible. 	
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Theorem 27 in [16] converted an instance of Ext Hitting Set into an
instance of Ext DFA-SW-|. With [2], this proves that Ext DFA-SW-|, is
W[3]-hard, lifting it beyond another rarely mentioned complexity class; see [11].
This construction can be also adapted for TTSPL automata graphs.

5.3 Minimum Synchronizable Sub-automata

DFA-MSS (referring to a minimum synchronizable sub-automaton)
Input: DFA A with input alphabet Σ, k ∈ N

Question: Is there a sub-alphabet Σ̂ ⊆ Σ, |Σ̂| ≤ k, such that the restriction
of A to Σ̂ is synchonizable, i.e., is there a synchronizing word over Σ̂?

In [28], Türker and Yenegün asked to extract a synchronizable sub-automaton
that is as small as possible, obtained by deleting letters from its specification.
They formalized this idea as a weighted minimization problem. Here, it is suffi-
cient to consider the unweighted variant (defined in the box). Their NP-hardness
proof can be re-interpreted as a result on parameterized complexity.

Corollary 3. DFA-MSS is W[2]-hard.

Without proof, we mention the following membership result. However, mem-
bership in A[2] is open, nor to we know about WNL-hardness. It might be also
the case that DFA-MSS is W[Sync]-hard.

Theorem 7. DFA-MSS is contained in WNL ∩ W[P].

A Short Summary. We looked at various W[2]-hard problems where a proper
classification is still missing. In particular, problems rooting in Formal Languages
offer interesting sample problems. Many questions are still open about W[Sync].
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